The Graph Abstract Data Type

13

CHAPTER OUTLINE

13.1 Graph Terminology
13.2 Representations of Graphs
13.3 Graph Algorithms: Traversals

Investigate: Applying BFS and DFS—Shortest Path and Spanning Tree Algorithms
13.4 Graph Algorithms: Minimum Cost Paths and Minimal Spanning Trees
13.5 Graph ADTs
13.6 Implementation of Graph ADTs

Exercises

As suggested in Chapter 10 when we introduced the Tree ADT, a graph is a more general instance of a tree. Indeed, we can say that a graph is the most general of all the collections we have seen because unlike the other collections presented, graphs allow arbitrary relationships to exist among their elements.

As you might expect, graphs have many applications: from determining the shortest flight time between a collection of cities, to identifying an activity graph for the construction of a building, to identifying connections on a circuit board or computer network.

This chapter provides an introduction to graphs, their representation as data structures, and some important graph algorithms. The implementation of the Graph ADT provides some new and interesting challenges.

13.1 Graph Terminology

A graph $G=(V, E)$ is an ordered pair of finite sets V and E, where $V(G)$ is the set of vertices in G, and $E(G)$ is the set of edges in G. The edge connecting vertices v_{i} and v_{j} is represented as $\left(v_{i}, v_{j}\right)$. The number of vertices in G is given as $|V|$ and the number of edges in G is given as $|E|$.

The edges in an undirected graph are bidirectional; therefore, they can be traversed in both directions. Graph G_{1} shown in Figure 13.1 (a) is undirected; the edge connecting vertices B and E allows you to traverse from B to E and from E to B. The edges in a directed graph (also called a digraph) are unidirectional from the source vertex to the destination vertex. Graph G_{2} shown in Figure 13.1 (b) allows traversal from T to Z (note the direction of the arrow on the edge), but not from Z to T . Similarly, you can travel from Z to R, but not from R to Z . Bidirectionality between adjacent vertices in a digraph is achieved by providing a pair of edges. Digraph G_{3} shown in Figure 13.1 (c) allows the same connectivity as the undirected graph G_{1}. Note that this is easily accomplished by turning every undirected edge into a pair of directed edges traveling in opposite directions. We will disallow a loop, also called a self-edge, which is an edge from a vertex to itself.

A weighted graph associates a non-negative value with each edge. This weight could represent, for example, the cost in time or money to traverse the edge, or the distance between the adjacent vertices. Graph G_{4} shown in Figure 13.1 (d) has weighted edges. The algorithms we will examine for weighted graphs assume that the weights are non-negative.

Figure 13.1 Sample undirected, directed, and weighted graphs.

(a) Graph G_{1}-an undirected graph.

(c) Graph G_{3}-a directed version of graph G_{1}.

(b) Graph G_{2}-a directed graph.

(d) Graph G_{4}-an undirected graph with weighted edges.

A graph consists of a collection of vertices and edges that connect vertices

Edges in an undirected graph are bidirectional

Edges in a directed graph are directional

A weighted graph associates a nonnegative value with each edge

Note that vertex C in G_{1} is not connected to any other vertex and is therefore unreachable from another vertex in the graph.

Two vertices are adjacent if they are connected by an edge. An edge $\left(v_{i}, v_{j}\right)$ is said to be incident on vertices v_{i} and v_{j}. The in-degree of a vertex is the number of edges coming into it; the out-degree of a vertex is the number of edges leaving it. In an undirected graph, a vertex's in-degree and out-degree are the same, so we usually refer to the degree of a vertex, without the "in/out." By contrast, the in- and outdegree of a vertex in a digraph may be different. For example, in G_{1} the degree of B is 3 and the degree of C is 0 . In the directed graph G_{2}, the in-degree of Z is 2 and the out-degree is also 2 , while the in-degree of R is 1 and the out-degree is 0 .

A path in a graph is a sequence of adjacent vertices. The length of the path is the number of edges it contains. In G_{1} there is a path from A to D of length 3. There is no path from A to $\mathrm{C} . \mathrm{G}_{2}$ has a path of length 2 from N to R . If the edges are weighted, we talk about the cost of the path, which is the sum of the edge weights in the path. In G_{4} there are two paths from D to B : $\{D, E, F, B\}$ with a cost of 10 , and $\{D, E, A, B\}$ with a cost of 6 . A simple path is a path in which each vertex appears only once. The path from A to D in G_{1} is an example, as is the path from A to F.

A cycle is a path that begins and ends with the same vertex. The path $\{A, B, E$, $A\}$ in G_{1} is an example. There are no other cycles in G_{1}.

In $G_{2}\{T, Z, P, M\}$ and $\{T, Z, R\}$ are simple paths. Vertices $\{N, Z, P, M, N\}$ form a cycle. Note that there is no path from R to any other vertex in the graph, but R is reachable from every other vertex.

Two vertices v_{i} and v_{j} in graph G are said to be connected if there is a path in G from v_{i} to v_{j}. We also say that v_{j} is reachable from v_{i}. If G is undirected, this implies that there is also a path from v_{j} to v_{i} and that v_{i} is reachable from v_{j}.

A connected graph, G, is one in which every vertex in G is reachable from (connected to) every other vertex in G. A complete graph is a connected graph in which each pair of vertices is connected by an edge. There are $n(n-1) / 2$ edges in a complete undirected graph and at most $n(n-1)$ edges in a complete directed graph. Figure 13.2 shows some examples.

A subgraph of G is a graph containing some or all of the vertices and edges from G. More formally, G^{\prime} is a subgraph of G such that $V\left(G^{\prime}\right) \subseteq V(G)$ and $\mathrm{E}\left(\mathrm{G}^{\prime}\right) \subseteq \mathrm{E}(\mathrm{G})$. Figure 13.3 shows some examples.

Figure 13.2 Connected, disconnected, and complete graphs.

(a) A connected graph.

(b) A disconnected graph.

(c) A complete graph.

Figure 13.3 A graph G_{5} and some of its subgraphs.

(a) Graph G_{5}.

(b) Some subgraphs of G_{5}.

SUMMING UP

A graph is a collection of vertices and edges connecting vertices. In an undirected graph the edges are bidirectional, and in a directed graph the edges are directional from source to destination vertex. The edges in a weighted graph have an associated weight (cost).

CHECKPOINT

13.1 Give an example of the following:
a. A connected undirected graph containing five vertices
b. An unconnected digraph containing five vertices
c. A directed graph of five vertices containing a cycle
d. An undirected acyclic graph
13.2 Give two subgraphs for the following graph:

13.3 Provide the equivalent directed graph for graph G_{5}.

13.2 Representations of Graphs

There are two common representations of graphs: adjacency matrices and adjacency lists. They have different space complexities, which has implications for the time complexities of graph algorithms, as we will see later.

13.2.1 Adjacency Matrix Representation

The idea behind the adjacency matrix representation is very simple. An adjacency matrix is a $|\mathrm{V}| \times|\mathrm{V}|$ array of integer. A matrix entry $[\mathrm{i}, \mathrm{j}]$ is 1 if the graph contains an edge (i, j), and is 0 otherwise. If the graph is undirected, the entry $[\mathrm{j}, \mathrm{i}]$ will also be 1 (recall that edges in an undirected graph are bidirectional). If the edges are weighted, the $[i, j]$ entry for an edge connecting $v_{i j}$ to v_{j} can be the weight of that edge (in this case we might want to make the matrix an array of double). A special value indicating that no edge exists must be selected for weighted graphs.

Figure 13.4 (a) shows an adjacency matrix of an undirected graph. Note that it is symmetric around the diagonal. Figure 13.4 (b) shows the adjacency matrix of a directed graph. Note that the adjacency matrix of a directed graph does not need to be symmetric around the diagonal. Figure 13.4 (c) gives the adjacency matrix of a weighted graph in which a value of 0 indicates no connection.

The space complexity of an adjacency matrix is always $\Theta\left(|\mathrm{V}|^{2}\right)$ because it maintains an entry for each possible edge.

Adjacency matrix: a $|\mathbf{V}| \times|\mathbf{V}|$ array of integer

Adjacency matrix space complexity: $\Theta\left(|\mathbf{V}|^{2}\right)$

13.2.2 Adjacency List Representation

If the graph is large and sparse (the number of actual edges in the graph is much smaller than the number of possible edges), then the adjacency matrix representation is inefficient in its space usage (most of the entries are 0).

Figure 13.4 Adjacency matrices of undirected and directed graphs.

		B	C	D	E	F
A	0	1	0	0	1	0
B	1	0	0	0	1	1
C	0	0	0	0	0	0
D	0	0	0	0	0	1
E	1	1	0	0	0	

(a) Adjacency matrix of an undirected graph.

				R	T	
M	-	1	0	0	0	0
N	0	0	0	0	0	1
P	1	0	0	0	0	0
R	0	0	0	0	0	0
T	0	0	0	0	0	1
Z	0	0	1		0	

(b) Adjacency matrix of a directed graph.

					E	
A	0	2	0	0	5	0
B	2	0	0	0	3	4
C	0	0	0	0	0	0
D	0	0	0	0	0	3
E	5	3	0	0	0	0
F			0		0	

(c) Adjacency matrix of an undirected weighted graph.

Figure 13.5 Adjacency lists of undirected and directed graphs.

In this situation, we would prefer to store information about the edges that are actually in the graph. Unlike an adjacency matrix, this is precisely what the adjacency list representation allows us to do. As shown in Figure 13.5, each vertex has an associated linked list of nodes, each of which stores information about an adjacent vertex. If the edges are weighted, the nodes must store 〈vertex, weight〉 pairs.

We need a container of size $\Theta(|\mathrm{V}|)$ to store the vertices, and there will be $\Theta(|\mathrm{E}|)$ elements in the adjacency lists for a total cost of $\max (\Theta(|\mathrm{V}|), \Theta(|\mathrm{E}|))$. Of course, what we save in space we give up in the time needed to traverse the adjacency lists searching for a vertex-a lesson we learned in Chapter 3.

Adjacency list: a |V| array of linked lists

Adjacency list space complexity: $\max (\Theta(|\mathrm{V}|), \Theta(|\mathrm{E}|))$

SUMMING UP

There are two common representations of graphs: adjacency matrices and adjacency lists. The adjacency matrix representation stores an entry for every possible edge in a graph; thus, it has a space complexity of $\Theta\left(|V|^{2}\right)$. The adjacency list stores entries for edges actually in the graph; thus, its space complexity is $\max (\Theta(|\mathrm{V}|)$, $\Theta(|E|))$. The representation used has implications for some graph algorithms.

CHECKPOINT

13.4 Provide the adjacency list for graph G_{6}.
13.5 Provide the adjacency matrix for graph G_{7}.

Graph G_{6}.

Graph G7.
13.6 Explain why the space complexity for the adjacency matrix representation is $\Theta\left(|\mathrm{V}|^{2}\right)$.
13.7 Explain why the space complexity for the adjacency list representation is Θ $\max (\Theta(|\mathrm{V}|), \Theta(|E|))$.

13.3 Graph Algorithms: Traversals

There are two general strategies for traversing (searching) a graph: depth first search (DFS) and breadth first search (BFS).

13.3.1 Depth First Search

DFS behaves similarly to a preorder traversal of a binary tree. In the language of tree traversals, descendants of a node are visited before the node's siblings. It is the same with graphs, except that in a graph we need to deal with the possibility of cycles.

As shown in the pseudocode for DFS, the algorithm is naturally recursive (as with the preorder traversal for binary trees). The runtime stack stores vertices that still need to be explored and guarantees that we go as deep in the graph as we can (visiting a node's descendants) before spreading out (visiting a node's siblings).

// Perform a depth first search of a Graph g

// originating from Vertex v

> Pseudocode: DFS (Graph g, Vertex v)
> mark v as visited // don't need to visit a vertex more than once!
> for each Vertex w adjacent to v
> if whas not been visited
> \quad DFS (w)

Next we discuss an aspect of DFS that we will see repeated in our coverage of graph algorithms. An important difference between a tree and a graph is that a graph can contain cycles and a tree cannot. This is important for graph algorithms because we don't want to visit a vertex more than once, and of course, we want to avoid the embarrassment of getting caught in an infinite loop going round and round the vertices in a cycle. The solution is somehow to mark a vertex as visited as done in the first step of the pseudocode. A common solution is to use colors: white

Depth first search: visits descendants before visiting siblings

Figure 13.6 Contents of the queue during a depth first search.

indicates not yet visited and black indicates visited. It's useful to have a third color (gray) to indicate a state somewhere between visited and not visited. Figure 13.6 shows the order in which the vertices are visited and the vertices on the method call stack as the graph is searched, starting with vertex A.

What is DFS's time complexity? Since DFS follows available edges, intuition tells us that the cost is tied to the number of edges in the graph. However, the underlying graph representation plays an important role here. If the graph is represented as an adjacency matrix, step 2 of the pseudocode (for each Vertex w adjacent to v) has a cost of $\Theta(|\mathrm{V}|)$ since we need to examine every column in a row to see if the entry corresponds to an adjacent vertex. We must do this for all $|\mathrm{V}|$ rows in the matrix, giving a cost of $\Theta\left(|\mathrm{V}|^{2}\right)$ for DFS for the adjacency matrix representation. Significantly, this is independent of the actual number of edges in the graph.

This highlights the advantage of the adjacency list representation for some algorithms because an adjacency list contains only edges that are actually in the graph. To get a feel for the difference, consider the adjacency entries for vertex F shown in Figure 13.6. In the adjacency matrix representation you need to look at all seven columns to determine which vertices are adjacent to F and which are not, but in the adjacency list representation you need to examine only the one vertex to which F is adjacent.

In the best case there are no edges and the cost is $\mathrm{O}(1)$ since the starting node will have no adjacent vertices and the algorithm will quit. In the worst case, the graph is fully connected and the cost is $\Theta\left(|\mathrm{V}|^{2}\right)$. In the absence of information about the connectivity of a graph, the cost of DFS for a graph when stored as an adjacency list is $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$. (Note the use of big O here.)

13.3.2 Breadth First Search

BFS is similar to a level order traversal of a tree: it visits a node's children before visiting any of their children. In graph terms this translates to a visit pattern that

DFS time complexityadjacency matrix: $\Theta\left(\mid \mathbf{V}{ }^{2}\right)$ adjacency list: $\mathbf{O}\left(|\mathrm{V}|^{2}\right)$
spreads out in waves from the start vertex; the first wave is one edge away from the start vertex; the second wave is two edges away from the start vertex, and so on, as shown in the top left of Figure 13.7.

As shown in the following pseudocode, BFS uses a queue to store vertices still to be explored. This guarantees that those vertices that are enqueued first (those nearest to the start vertex) will be visited before those enqueued later (those farther from the start vertex). Figure 13.7 shows the contents of the queue as the graph is searched starting from vertex A.

The cost of BFS is the same as DFS and for similar reasons.
The time complexity of BFS is the same as DFS

// Perform a breadth first search of a Graph g $/ /$ originating from Vertex v

```
Pseudocode: BFS ( Graph g, Vertex v ) vertexQueue-a Queue of Vertices
mark v as visited
enqueue v in vertexQueue
while vertexQueue is not empty
    let v be the element removed from the front of vertexQueue
        for all Vertices w adjacent to v
        if w has not been visited
            enqueue w in vertexQueue
            mark w as visited
```

Figure 13.7 Contents of the queue during a breadth first search. The vertices grouped by the dotted ovals represent their distance from the start vertex.

SUMMING UP

Depth first search (DFS) and breadth first search (BFS) are common graph traversal algorithms that are similar to some tree traversal algorithms. The important difference is that DFS and BFS must deal with the possibility of a cycle in a graph. DFS is similar to a preorder traversal of a tree: a vertex is visited, and then its descendants are visited before its siblings are visited. DFS naturally uses a stack to store vertices yet to be visited. BFS is similar to a level order traversal, visiting a node and all its children before extending to grandchildren. BFS naturally uses a queue to store vertices yet to be visited.

CHECKPOINT

13.8 Show the order in which the vertices in graph G_{8} would be visited using the following:
a. DFS starting at vertex A
b. BFS starting at vertex A
13.9 Show the order in which the vertices in graph G_{9} would be visited using the following:
a. DFS starting at vertex X
b. BFS starting at vertex X

Graph G_{8}.

Graph Gg.

INVESTIGATE Applying BFS and DFS—Shortest Path and Spanning Tree Algorithms

BFS and DFS are the basis for a number of important graph algorithms. In this Investigate you develop two of those algorithms, shortest path and spanning tree, while further investigating the similarities and differences between BFS and DFS, and directed and undirected graphs.

Shortest Path Algorithm

As its name suggests, the shortest path algorithm finds the shortest path in a graph between a source vertex and a destination vertex, as measured by the number of
edges in the path. A little thought about the behavior of BFS will tell you that it can find the shortest path rather easily.

1. Enter the pseudocode for BFS into a text file or as comments in a file opened in your IDE. You will gradually modify the pseudocode to provide the following operation:

List shortestPath(Graph g, Vertex src, Vertex dest)

// Find a shortest path from src to dest in Graph g. Return an empty List if no path // exists, or the vertices in the path from src to dest otherwise.
2. Produce the adjacency matrix or adjacency list for graph G_{10} in Figure 13.8.
3. Figure 13.8 shows the levels visited by BFS starting at vertex A. Provide subscripts for the vertices showing the order in which they are visited by BFS, assuming that adjacent vertices are visited in alphabetical order.
4. As you can see, if the destination is reachable from the source vertex, the algorithm eventually finds the destination vertex. When should the modified BFS algorithm stop searching? Make this change to the pseudocode.
5. Clearly, if successful, we will end up with a path from $s r c$ to dest. As vertices are visited, a path is built from src toward dest. We need to keep track of each vertex's predecessor in the path. This can easily be done by storing a pair \langle predecessor, $v\rangle$, where v is a new vertex found in some possible path to the destination, and predecessor is v 's predecessor in that path. For example, we see A has two adjacent vertices that could be on a path to E , so we would add them to our collection as $\langle A, F\rangle$ and $\langle A, B\rangle$.
a. What kind of collection is appropriate to store these pairs? On what basis do you decide what is appropriate?
b. Modify the algorithm to collect these pairs.
6. Apply your algorithm to the graph shown in Figure 13.8 looking for a path from A to E. Be sure to show all vertex pairs collected.
7. In step 4 you determined when the search part of the algorithm should stop. Assuming the destination vertex was found, we now need to reconstruct the path from the source to the destination. The algorithm cannot know in advance

Figure 13.8 The levels of vertices visited by BFS starting at vertex A.

Graph G_{10}.
which pairs of adjacent vertices are in the path from the source to the destination, and the code trace you completed in step 6 will have revealed that some vertex pairs may have been collected that are not in the path. How do we pull out just the pairs on the path we want? The answer is pretty straightforward. We will have arrived at the destination vertex from some other vertex, v, in the graph, giving us a pair $\langle v$, destination \rangle in our collection. For example, we might have arrived at E from C , giving us a pair $\langle C, E\rangle$. What we need to do is to find a pair in our collection that has v as the successor to some vertex w (that is, a pair $\langle w, v\rangle\rangle$. We keep doing this until we get the pair \langle source, $v\rangle$. Really what we are doing is tracing the path backward from the destination to the source.
a. Make this addition to the pseudocode so that a list is returned containing the vertices in the path from the source to the destination vertex. For the graph shown in Figure 13.8, this would be $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{E}\}$.
b. How can we determine the length of this path?
c. Provide an argument for why your algorithm is correct. How is it guaranteed to find the shortest path?
8. Create another graph and apply your pseudocode algorithm to it. If the result isn't correct, modify the pseudocode and reapply it to the graph. If any of your pseudocoded instructions are not clear, rephrase them to better describe their purpose.
9. What is the time complexity of this algorithm assuming the graph is represented using an adjacency matrix? An adjacency list?
10. Will this algorithm work for a directed graph? If so, explain why. If not, provide a counter example.
11. Will this algorithm work for a weighted graph? If so, explain why. If not, provide a counter example.
12. Could you modify DFS to give a shortest path? If so, outline the changes. If not, explain why not.

Spanning Tree Algorithm

A spanning tree of a graph G is a connected acyclic subgraph, G^{\prime}, containing all the vertices of G; that is, $V\left(G^{\prime}\right)=V(G)$. Since G^{\prime} is connected and acyclic, it must contain the minimum number of edges possible $(|\mathrm{V}|-1)$. Figure 13.9 shows graph G_{10} from Figure 13.8 and four possible spanning trees for it.

As we have seen, DFS will visit all the vertices of a connected graph just once. If we modify DFS to keep track of connected pairs of vertices, it will produce a spanning tree.

1. Enter the pseudocode for DFS into a text file or as comments in a file opened in your IDE. You will gradually modify the pseudocode to provide the following operation:

Graph spanningTree(Graph g, Vertex src)

// Return a spanning tree of g using src as the root of the tree. If the returned // graph is empty, g is not connected.

Figure 13.9 Four possible spanning trees for graph G_{10} from Figure 13.8.

Graph G_{10}.

2. Apply the DFS algorithm to graph G_{10} and provide subscripts for the vertices showing the order in which they are visited, assuming that adjacent vertices are visited in alphabetical order.
a. Given that we want to identify a spanning tree for the graph, when should the DFS algorithm stop searching? Make this change to the pseudocode.
3. If successful, we will visit all the vertices in the graph once. As vertices are visited, we need to keep track of each vertex's predecessor. This can easily be done with a pair \langle predecessor, $v\rangle$, where v is a newly visited vertex and predecessor is v 's predecessor in the graph.
a. What kind of collection is appropriate to store these pairs? On what basis do you decide what is appropriate?
b. Modify the algorithm to collect these pairs.
4. In step 2 we determined when the search part of the algorithm should stop. Now we need to reconstruct the spanning tree. This can be done using the pairs collected in step 3. Make this change to the algorithm. The graph created is returned as the result of the method.
5. Create another graph and apply your pseudocode algorithm to it. If the result isn't correct, modify the pseudocode and reapply it to the graph. If any of your pseudocoded instructions are not clear, rephrase them to better describe their purpose.
6. What is the time complexity of this algorithm assuming the graph is represented using an adjacency matrix? An adjacency list?
7. Will this algorithm work for a directed graph? If so, explain why. If not, provide a counter example.

8．Will this algorithm work for a weighted graph？If so，explain why．If not，pro－ vide a counter example．
9．Could you modify BFS to provide a spanning tree？If so，outline the changes．If not，explain why not．

13．4 Graph Algorithms：Minimum Cost Paths and Minimal Spanning Trees

The shortest path and spanning tree algorithms you developed in the Investigate are insufficient if the edges have different weights（costs）associated with them．In this section we present a minimum cost path algorithm based on a solution developed by E．W．Dijkstra ${ }^{1}$ and an algorithm for finding a minimal spanning tree based on a solution credited to R．C．Prim．${ }^{2}$ These algorithms use a greedy strategy to find their solutions；that is，at each step，a greedy algorithm makes a locally optimal（greedy） selection to produce a globally optimal solution．

13．4．1 Minimum Cost Paths

We want to find a minimum cost path in a weighted graph from a source vertex to a destination vertex．As we did with our modified BFS algorithm for shortest path in the Investigate，our approach here is to build a path gradually from the source toward the destination one edge at a time．The important difference is that at each step in extending the path we are building，we will always select the vertex whose path length from the source vertex is the minimum of all paths seen so far（this is the greedy selection part）．We will store this information in a pair 〈Vertex， minCostToVertex \rangle where minCostToVertex is the total cost of a path from the source vertex to Vertex．Since we always want to work from the minimum path seen so far， we＇ll keep our pairs in a priority queue using the $\operatorname{minCostToVertex~field~to~determine~}$ priority．As shown in the pseudocode，we start with the $s r c$ vertex，which has a minCostToVertex of 0 （that is，the cost to get from the $s r c$ vertex to $s r c$ is 0 ）．
> ／／Return the cost of a minimal cost path in
> ／／Graph g from Vertex src to dest
> Pseudocode：Minimal Path（ Graph g，Vertex src，Vertex dest ）
> priorityQueue—a priority queue holding 〈Vertex，minCostToVertex〉 pairs
> verticesInSomePathToDest－a collection of vertices in some possible path from src to dest
> place $\langle s r c, 0\rangle$ in priorityQueue
> while priorityQueue is not empty
> ／／get the least expensive path seen so far

[^0]```
 pair = the \langlevertex, minCostToVertex\rangle pair removed from priorityQueue
 v ~ = ~ p a i r . v e r t e x ~ / / ~ e x t r a c t ~ t h e ~ v e r t e x ~ f i e l d ~ f r o m ~ p a i r ~
 minCostToV = pair. minCostToVertex // extract the cost field from pair
 if v}==\mathrm{ dest
 return minCostToV // success; return cost from src to v
 // haven't found the target yet, so continue the search
 addv to verticesInSomePathToDest
 for each Vertex w adjacent to v
 if w is not in verticesInSomePathToDest // avoid revisiting a visited vertex
 let minCostToW be minCostToV + weight(v,w) // get total cost from src to w
 add the pair \langlew, minCostToW\rangle to priorityQueue
return failure // there is no path from src to dest
```

The annotated example shown in Figure 13.10 (next page) illustrates the algorithm's behavior and provides an intuitive sense for why it works. As you can see from the example, the algorithm is actually building several possible paths. After four steps, for example, we have $\{\mathrm{A}, \mathrm{F}\}$ and $\{\mathrm{A}, \mathrm{B}\}$ (look at the shaded vertices in the graphs); after five steps we have $\{\mathrm{A}, \mathrm{F}\}$, and $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$; and after six steps there are three possibilities under consideration: $\{\mathrm{A}, \mathrm{F}\},\{\mathrm{A}, \mathrm{B}, \mathrm{D}\}$, and $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$.

Since a path is always extended to the least cost adjacent vertex, every 〈Vertex, minCostToVertex pair pulled from the priority queue represents the minimal cost of a path from src to Vertex. Consequently, when a pair is pulled from the priority queue that has dest as its Vertex, the minimal cost of a path from $s r c$ to dest has been found and the algorithm can terminate.

### 13.4.2 Minimal Spanning Tree

From the Investigate you learned that a spanning tree of a graph G is a connected acyclic subgraph containing all the vertices of $G$ and the minimum number of edges possible $(|V|-1)$. A minimal spanning tree (MST) of a weighted graph $G$ is a spanning tree with a minimum total path cost over all possible spanning trees of $G$.

The DFS-based approach taken in the Investigate to produce a spanning tree will not produce a minimal spanning tree for a graph whose edges have different weights (costs). However, just as we were able to modify the BFS algorithm to produce a spanning tree, we can base a minimal spanning tree algorithm on the ideas behind the minimal path algorithm. The algorithm presented here is called Prim's algorithm. Like the minimal path algorithm, Prim's algorithm follows a greedy strategy.

The main idea behind Prim's algorithm is quite simple and will look familiar to you from the minimal path algorithm. As with the minimal path, we build our MST incrementally using a greedy strategy to pick a least cost edge from a set of candidate edges. Here is how it works. To find an MST for a weighted graph G, we start by adding the source vertex, $v$, to the MST (this will be the root of the MST). The candidate edges are those edges $(v, w)$ such that $v$ is in our MST and $w$ is not. So the first edges to add to the candidate edges are those incident on the source vertex. At each iteration of the main loop we choose the least cost edge $(v, w)$ from the candidate edges. By adding $(v, w)$ to our MST, we are extending it by one more least cost

Figure 13.10 Annotated example of the minimal path algorithm searching for a path from A to E.
(v) A vertex in a possible path from src to dest.

Vertex represents the vertex extracted from Priority Queue. The associated path cost is the minimum path cost from src to this Vertex.

Priority Queue holds (vertex, path cost) pairs and is ordered such that the pair with the lowest path cost has the highest priority (shown as boldface and underlined). It is assumed that duplicate pairs are not allowed, so ( $D, 5$ ) and ( $D, 5$ ) would not both appear in Priority Queue, but ( $\mathrm{D}, 5$ ) and ( $\mathrm{D}, 8$ ) could.


Vertex: none<br>Priority Queue: (A, 0)

Vertex: A<br>Priority Queue: (F, 2), (B, 3)

## Vertex: F <br> Priority Queue: <br> (B, 3), (G, 6)

Vertex: B
Priority Queue:
(C, 4), (D, 5)
(G, 6)
The path is extended by selecting the smallest path seen so far from Priority Queue. This is (A, 0). The vertex removed from Priority Queue is marked as visited (it becomes shaded). If they haven't already been visited, the vertices adjacent to A are added to Priority Queue along with their distance from the source vertex (A). From A we can get to $F$ with a cost of 2 , and to $B$ with a cost of 3 .


The path from $A$ to $F$ with a cost of 2 is the cheapest path seen so far, so $(F, 2)$ is removed from Priority Queue. $F$ is marked as visited. $G$ is adjacent to $F$ and hasn't been visited yet, so (G, 6) is added to Priority Queue. Note that the cost of 6 represents the total cost from $A$ to $G$ :
$(\mathrm{A}, \mathrm{F}, 2)+(\mathrm{F}, \mathrm{G}, 4)=>(\mathrm{A}, \mathrm{G}, 6)$

The cheapest path in Priority Queue is ( $B, 3$ ), which is removed from Priority Queue. B is marked as visited. C and $D$ are adjacent to $B$ and have not been visited, so we add paths from $A$ to $D(D, 5)$ and $A$ to $C(C, 4)$ to Priority Queue.

## Vertex: C

Priority Queue:
(D. 5), (G, 6)
(E, 12)

The search for a minimal cost path begins with the source vertex, $A$, which has a distance of 0 from itself, so $(A, 0)$ is placed in Priority Queue.

Vertex: C
Priority Queue:
$\frac{(\mathrm{D}, 5),(\mathrm{G}, 6)}{(\mathrm{E}, 12)}$
$(C, 4)$ was at the front of Priority Queue, so is removed and C is marked as visited. Unvisited vertices D and E are adjacent to C, however, since ( $D, 5$ ) is already in Priority Queue, it does not get added again. ( $\mathrm{E}, 12$ ) is added. Note that $B$ is also adjacent to $C$, but since $B$ has already been visited, it is ignored.

Figure 13.10 (continued) Annotated example of the minimal path algorithm searching for a path from A to E .


The minimal path is $\{A, F, G, H, E\}$ with a cost of 9 .
edge. With $w$ added to our MST, we then add to the collection of candidate edges all the edges ( $w, x$ ) for which $x$ is not in our MST. This process continues until either there are no more candidate edges to examine or the number of edges in MST is $|V|-1$, which you'll recall is the minimum number of edges for a connected graph
with $|V|$ vertices. If the main loop terminates and the number of edges in the MST is less than $|V|-1$, the graph is not connected and failure is returned.

Let's look at a high level algorithm (appears after Figure 13.11) that succinctly captures what has to be done. An annotated example is shown in Figure 13.11.

Figure 13.11 Annotated example of Prim's algorithm to find a minimal spanning tree.
V- A vertex / edge that is part of the MST.
$\cdots$ A vertex / edge in the collection of candidate edges.
A wer....
A vertex / edge in the graph that hasn't been seen yet.


MST: A
Candidate Edges: (A, F. 2), (A, H, 4), (A, B, 3)


MST: A, F, B
Candidate Edges: (B, C, 1), (A, H, 4), (F, G, 4), (B, D, 2)
MST: A, F Candidate Edges: (A, B, 3), (A, H, 4), (F, G, 4)
(F, G, 4), (B, D, 2)

The source vertex, A , is added to the MST. Edges incident on $A$ become candidate edges on the fringe of the MST being built.

The least cost candidate edge (A, $F, 2$ ) is selected. By definition it has one vertex (A) in the MST and the other, $F$, not in the MST. $F$ is added to the MST and edges incident on F are added to the candidate edges. Note this does not include edge ( $F, A, 2$ ) since $F$ and $A$ are already in the MST.

The least cost candidate edge, (A, B, 3) is selected and is added to the MST causing edges ( $\mathrm{B}, \mathrm{D}, 2$ ) and ( $\mathrm{B}, \mathrm{C}, 1$ ) to be added to the candidate edges.


MST: A, F, B, C
Candidate Edges:
(C. D. 1), (A, H, 4), (F, G, 4), (B, D, 2),
(C, E, 8)

Figure 13.11 (continued) Annotated example of Prim's algorithm to find a minimal spanning tree


$$
\begin{array}{ll}
\text { MST: A, F, B, C, D } & \begin{array}{l}
\text { Edge (C, D, 1) is selected from the pool of } \\
\text { candidate edges and added to the MST. This } \\
\text { provides additional candidate edges (D, G, 2) }
\end{array} \\
\text { Candidate Edges: } \\
\text { (B, D, 2), (A, H, 4) } & \text { and (D,H,3). Edge (B, D, 2) is the least cost } \\
\text { (F, G, 4), (C, E, 8), } & \begin{array}{l}
\text { edge among the candidate edges, but since } \\
\text { both of its vertices are already in the MST, it }
\end{array} \\
\text { (D, G, 2), (A, H, 4) } & \begin{array}{l}
\text { will be removed and ignored. The least cost } \\
\text { edge with one vertex not in the MST is (D, G, 2). }
\end{array}
\end{array}
$$



MST: A, F, B, C, D, G
Candidate Edges:
( $\mathrm{D}, \mathrm{H}, 3$ ), (A, H, 4)
(F, G, 4), (C, E, 8),
(G, H, 4)
( $\mathrm{D}, \mathrm{G}, 2$ ) is removed from the candidate edges and is added to the MST. From vertex G, we add $(\mathrm{G}, \mathrm{H}, 4)$ to the candidate edges.

MST: A, F, B, C, D, Edge ( $D, H, 3$ ) is the least cost edge among G, H
Candidate Edges:
(H, E, 1), (A, H, 4) the candidate edges and is added to the MST. From vertex H we add ( $\mathrm{H}, \mathrm{E}, 1$ ) to the candidate (F, G, 4), (C, E, 8), (G, H, 4) edges.

MST: A, F, B, C, D, G, H, E

Finally, edge $(H, E, 1)$ is added to the MST. There are now $|\mathrm{V}|$ vertices and $|\mathrm{V}|-1$ edges in the MST, Candidate Edges: so the construction is complete.

## // Identify a Minimal Spanning Tree for a weighted Graph $g$ with Vertex $v$ as its root.

```
Pseudocode: minimalSpanningTree (Graph g, Vertex v)
MST—a collection of edges (v, w) in the Minimal Spanning Tree; initially this
collection is empty
mstCost-the total cost of all edges in MST; initially 0
visitedVertices-a collection of all vertices that are in MST; initially this collection
stores a vertex from G that will be the root of the MST
allVerticesVisited = false
put the starting vertex v in visitedVertices
// while the MST is not complete and there are vertices to visit
while MST.size()< <V|-1 and not allVerticesVisited
 // select the least cost candidate edge
 get the least cost edge (v,w) such that v is in visitedVertices
 and w is not in visitedVertices
if no such edge exists then
 allVerticesVisited is true
else
 add (v,w) to MST
 add the cost of edge (}v,w)\mathrm{ to mstCost
 add w to visitedVertices
 // loop invariant: MST contains the edges of a minimal spanning
 // tree for all vertices from G that are in visitedVertices
if MST.size() != |V| - }1\mathrm{ then
 return failure
return MST // success
```


## SUMMING UP

A minimal cost path between two vertices in a weighted graph is the path with the least total path cost over all possible paths between the vertices. The minimal path algorithm uses a greedy strategy to find the minimal cost path. At each step, a greedy algorithm makes locally optimal (greedy) selections to produce a globally optimal solution. The minimal path algorithm builds a collection of possible paths to the destination, extending these paths with the least cost edge available. The algorithm terminates when a least cost edge to the destination vertex is added to a possible path.

A minimal spanning tree (MST) is a spanning tree of a weighted graph that has the least total cost over all possible spanning trees for the graph. Prim's algorithm finds a minimal spanning tree using a greedy strategy. Starting from a single vertex in the graph, it keeps track of candidate edges $(v, w)$ such that $v$ is in the MST and $w$ is not. In adding $w$ to the MST, the pool of candidate edges is extended by those edges $(w, x)$ incident on $w$ for which $x$ is not in the MST. The algorithm terminates with success when there are $|V|$ vertices and $|V|-1$ edges in the MST.

## CHECKPOINT

13.10 What makes a greedy algorithm greedy?
13.11 The minimal path algorithm works when there are multiple paths with different costs represented in PriorityQueue ( $\langle H, 8\rangle$ and $\langle H, 9\rangle$, for example). Why does this not pose a problem for the algorithm?
13.12 Will you get the same MST for a graph no matter which vertex is the MST's starting point?


Graph $\mathrm{G}_{11}$.
13.13 Apply the minimal path algorithm to graph $G_{11}$ to find the cost of the minimal path from A to G .
13.14 Apply the MST algorithms to graph $G_{11}$ starting at vertex A.

### 13.5 Graph ADTs

In this section we specify three related ADTs: Graph, WeightedGraph, and BFSSearcher. In the next section we will look at their implementation.

### 13.5.1 The Graph ADT

When designing a graph we must decide what needs to be represented explicitly. For example, do we need a type to represent vertices? What about edges?

The approach taken here is to represent vertices explicitly because we want to be able to identify them via a label, and to represent edges implicitly via the vertices they connect. This design decision is reflected in the Graph ADT, which specifies an unweighted graph that could be directed or undirected. The ADT supports adding and deleting vertices and edges, getting the number of vertices and edges in the graph, and getting a list of the neighbors of a vertex.

It is in the addition and deletion of edges that directionality matters. As you would expect, the operation description specifies that if the implementation is for a directed graph, then addEdge ( $\mathrm{v} 1, \mathrm{v} 2$ ) creates an edge from v 1 to v 2 . If the graph is undirected, there is also an edge from v2 to v1. This piece of otherwise obvious information is offered because it will play a key role in making some implementation decisions in the next section.

## ADT Name: Graph

## Description:

A Graph is a non-linear collection containing vertices and edges connecting vertices. This ADT does not specify if the edges are directed, leaving that to an implementation. The edges have no weights.

## Invariants:

1. Empty graph: number of vertices is 0 ; number of edges is 0 .
2. Self-loops are not allowed.

## Attributes:

number of vertices: The number of vertices in the graph; number of vertices $\geq 0$. number of edges: The number of edges in the graph; $0 \leq$ number of edges $\leq n(n-1)$, where $n$ is the number of vertices in the graph.

## Operations:

```
Graph ()
 pre-condition: none
 responsibilities: initializes the graph attributes
 post-condition: number of vertices is 0
 number of edges is 0
 returns: nothing
addVertex(Vertex v)
 pre-condition: v is not already in the graph
 responsibilities: insert a Vertex into this graph
 post-condition: a Vertex is added to this graph
 number of vertices is incremented by 1
 exception: if Vertex v is already in this graph
 returns: nothing
addEdge(Vertex v1,Vertex v2)
 pre-condition: v1 and v2 are Vertices in this graph and aren't already connected
 by an edge
 responsibilities: connect Vertices v1 to v2; if this is an undirected graph, this edge
 also connects v2 to v1
 post-condition: an edge connecting v1 and v2 is added to this graph
 number of edges is incremented by 1
 exception: if v1 or v2 are not in the graph or are already connected by an
 edge
 returns: nothing
removeVertex (Vertex v)
 pre-condition: v is a Vertex in this graph
 responsibilities: remove Vertex v from this graph
```

```
 post-condition: Vertex v is removed from this graph
 All edges incident on v are removed
 number of vertices is decremented by }
 number of edges is decremented by degree(v)
 exception: if v is not in this graph
 returns:
 nothing
removeEdge (Vertex v1, Vertex v2)
 pre-condition: v1 and v2 are vertices in this graph and an edge exists from v1 to
 v2
 responsibilities: remove from this graph the edge connecting v1 to v2; if this is an
 undirected graph, there is no longer an edge from v2 to v1
 post-condition: the edge connecting v1 and v2 is removed from this graph
 number of edges is decremented by 1
 exception: if v1 or v2 are not in this graph, or if no edge from v1 to v2 exists
 returns: nothing
getNeighbors (Vertex v)
 pre-condition:
 responsibilities:
 post-condition:
 exception:
 returns:
getNumberOfVertices()
 pre-condition: none
 responsibilities: get the number of vertices in this graph
 post-condition: the graph is unchanged
 returns:
getNumberOfEdges()
 pre-condition: none
 responsibilities: get the number of edges in this graph
 post-condition: the graph is unchanged
 returns:
 v}\mathrm{ is a Vertex in this graph
 get the neighbors of Vertex v from this graph
 the graph is unchanged
 if v is not in this graph
 a collection containing the Vertices incident on v
 the number of vertices in this graph
 the number of edges in this graph
```


### 13.5.2 The WeightedGraph ADT

As described at the beginning of the chapter, a weighted graph is simply a graph whose edges have weights. Consequently, the weighted graph specified in the WeightedGraph ADT is shown as an extension of the Graph ADT. The only significant difference is the addition of operations to support edge weights. The presentation of a weighted graph as an extension of a graph will be reflected in the implementation described in the next section.

## ADT Name: WeightedGraph extends Graph

## Description:

A WeightedGraph is a graph whose edges have non-negative weights.

## Invariants:

1. Edge weights must be $>=0$; the default edge weight is 1.0 .

## Operations:

```
addEdge(Vertex v1, double w, Vertex v2)
 pre-condition: \(\quad \mathrm{v} 1\) and v 2 are Vertices in this graph and aren't already connected
 by an edge; \(w\) is \(>=0\)
 responsibilities: connect Vertices v 1 to v 2 with weight w ; if this is an undirected
 graph, this edge also connects v 2 to v 1
 post-condition: an edge connecting v 1 and v 2 with weight w is added to this
 graph
 number of edges is incremented by 1
 exception: if v 1 or v 2 are not in the graph, are already connected by an edge,
 or \(\mathrm{w}<0\)
 returns: nothing
getEdgeWeight(Vertex v1, Vertex v2)
 pre-condition: \(\quad \mathrm{v} 1\) and v 2 are Vertices in this graph and are connected by an edge
 responsibilities: get the weight of the edge connecting Vertices v1 to v2
 post-condition: the graph is unchanged
 exception: if v 1 or v 2 are not in the graph or are not connected by an edge
 returns: the weight of the edge connecting v 1 to v 2
setEdgeWeight(Vertex v1, double newWeight, Vertex v2)
 pre-condition: \(\quad \mathrm{v} 1\) and v 2 are Vertices in this graph and are connected by an edge;
 newWeight is \(>=0\)
 responsibilities: set the weight of the edge connecting Vertices v1 to v2 to
 newWeight
 post-condition: the graph is unchanged
 exception:
 returns: nothing
```


### 13.5.3 The BFSSearcher ADT

Finally, the BFSSearcher ADT specifies a breadth first search utility tool. Its constructor takes a graph as an argument and supports operations to determine if a path exists between two vertices in the graph, the length of that path (in edges), and the vertices in the path. We use this tool in the test plans developed next.

## ADT Name: BFSSearcher

## Description:

Performs searches on a given Graph using breadth first search.

## Attributes:

graph: The graph to search.

## Operations:

BFSSearcher ( Graph g )
pre-condition: $\quad \mathrm{g}$ is not null
responsibilities: constructor initializes the graph attributes
post-condition: set graph to $g$
exception: if g is null
returns: nothing
containsPath ( Vertex v1, Vertex v2 )
pre-condition: $\quad \mathrm{v} 1$ and v 2 are Vertices in graph
responsibilities: determine if there is a path from v1 to v2 in graph
post-condition: graph is unchanged
exception: if v 1 or v 2 are not in graph
returns: true if there is a path from v1 to v2 in graph; false otherwise
getPathLength (Vertex v1, Vertex v2 )
pre-condition: $\quad \mathrm{v} 1$ and v2 are Vertices in graph
responsibilities: determine the length of the path (in number of edges) from v1
to v2 in graph
post-condition: graph is unchanged
exception: if v 1 or v 2 are not in graph
returns: the length of the path from v 1 to $\mathrm{v} 2,0$ if there is no path

```
getPath (Vertex v1, Vertex v2)
 pre-condition: v1 and v2 are Vertices in graph
 responsibilities: get the vertices on the path from v1 to v2 in graph
 post-condition: graph is unchanged
 exception: if v1 or v2 are not in graph
 returns:
 a collection containing the vertices on the path from v1 to v2,
 null if there is no path
```


### 13.6 Implementation of Graph ADTs

The Graph interface shown in Listing 13.1 reflects the graph specification in the Graph ADT. Like the ADT, the interface is silent on whether or not an implementing class is a directed or undirected graph. Directed, undirected, and weighted

How should graph types be related?

Listing 13.1 The Graph interface based on the Graph ADT.

```
package gray.adts.graph;
import java.util.List;
/**
 * A graph G consists of a finite set of vertices, V, and edges,
 * E. An edge in E connects two vertices in v.
 *
 * This interface makes no assumption about whether the graph
 * is directed or undirected; implementing classes make that
 * specialization. Edges are unweighted.
 */
public interface Graph<T> {
```

/**
* Insert <tt>Vertex $v</ t t>$ into this graph.
* @param v The <tt>Vertex</tt> to add to the graph;
* can't already be in the graph.
* @throws IllegalArgumentException if <tt>v</tt> is
* already in this graph.
*/
void addVertex( Vertex<T> v );
/**
* Add an edge connecting vertex <tt>v1</tt> to
* <tt>v2</tt>. The edge must not already be in the
* graph. In an undirected graph, this edge is bidirectional.
* @param v1 The source vertex; must not be
* <tt>null</tt> and must be a vertex in this graph.
* param v2 The destination vertex; must not be
* <tt>null</tt> and must be a vertex in this graph.
* @throws IllegalArgumentException if <tt>v1</tt> or
* <tt>v2</tt> are <tt>null</tt>, are not in this
* graph, or if the edge already exists.
*/
void addEdge( Vertex<T> v1 , Vertex<T> v2 );
/**

* Remove vertex <tt>v</tt> and all edges incident on
    * <tt>v</tt> from this graph.
    * @param v The vertex to remove; must not be
    * <tt>null</code and must be a vertex in this graph.
    * @throws IllegalArgumentException if <tt>v1</tt> is

```
* <tt>null</tt> or is not in this graph.
 */
void removeVertex(Vertex<T> v);
/**
 * Remove the edge from <tt>v1</tt> to <tt>v2</tt>
 * from this graph.
 *
 * @parm v1 The source vertex for the edge to remove; must
 * not be <tt>null</tt> and must be a vertex in this
 * graph.
 * @param v2 The destination vertex for the edge to remove;
 * must not be <tt>null</tt> and must be a vertex in this
 * graph.
 * @throws IllegalArgumentException if <tt>v1</tt> or
 * <tt>v2</tt> are <tt>null</tt>, are not in this
 * graph, or the edge doesn't exist.
 */
void removeEdge(Vertex<T> v1, Vertex<T> v2);
/**
 * Get the neighbors of Vertex <tt>V</tt> in this graph.
 * @param v Vertex The vertex whose neighbors we want; must
 * not be <tt>null</tt> and must be a vertex in this
 * graph.
 * @return List The vertices incident on <tt>v</tt>.
 * @throws IllegalArgumentException if <tt>v1</tt> is
 * <tt>null</tt> or is not in this graph.
 */
List< Vertex<T> > getNeighbors (Vertex<T> v);
/**
 * Get the number of vertices in this graph.
 * @return int The number of vertices in this graph.
 */
int getNumberOfVertices();
/**
 * Get the number of edges in this graph.
 * @return int The number of edges in this graph.
 */
int getNumberOfEdges();
```

\}
graphs are clearly related so we would like to create an inheritance hierarchy of classes that promotes code reuse through inheritance. But can a directed graph class and an undirected graph class be directly related? Should a digraph be a subclass of an undirected graph class, or vice versa? How do weighted graphs affect this design?

The discussion of graph ADTs in the last section gave a hint about how to relate our graph classes. The deciding issue is how to handle the addition and deletion of edges. The addEdge(v1, v2) operation will produce an edge from v1 to v2 in a directed graph, and an edge from v2 to v1 in an undirected graph. With this in mind, we will have AdjMatrixDiGraph implement the Graph interface for directed graphs using an adjacency matrix to store the graph. To represent undirected graphs we'll have AdjMatrixGraph be a subclass of AdjMatrixDiGraph. When dealing with edges, its methods will invoke their superclass (directed graph) counterparts, and then will handle the bidirectionality of an undirected graph locally. We'll do the implementation shortly and you will see that this design makes the overridden methods quite short, but we need to do some planning to make this work. WeightedAdjMatrixGraph is a subclass of AdjMatrixGraph and will also implement the WeightedGraph interface.

The UML class diagram shown in Figure 13.12 shows our hierarchy for the adjacency matrix representations. The methods listed in a class are implemented in that class or are overridden from an inherited class. Portions of these classes will be presented here with emphasis on code reuse through inheritance. We'll also look at an implementation of the minimal path algorithm.

### 13.6.1 The AdjMatrixGraph Class: A Directed Graph Implementation of the Graph Interface

The Graph ADT attributes are declared on lines 12 and 13 of Listing 13.2, and the adjacency matrix, adjMatrix is declared on line 19. An array, vertices, of vertex references is declared on line 26 . The ith entry in vertices corresponds to the ith row and column of adjmatrix. These fields are declared protected to allow subclasses to access them directly.

Thinking ahead to our needs in the subclasses, int variables v1Pos and v2Pos (line 32) are also protected. These integers will represent an entry in the adjacency matrix and will be used by all methods (in this class and in subclasses) that access an edge.

Method addEdge(v1, v2) (lines 46-72) creates a directed edge from v1 to v 2. It uses a utility method, getVertexIndexFor(), to get the index into the vertices array for some vertex. If either of the vertices is not found (lines 62-64) or if the edge already exists (line 66), an exception is thrown. Otherwise, an entry is made indicating a new edge (line 67). Remember, this implementation is for a directed graph, so the method only establishes an edge from v1 to v2.

Method removeEdge(v1, v2) (lines 74-97) removes the edge from v1 to v2 and has the same structure as addEdge(). The only difference is that the adjMatrix entry is cleared (line 93).

Method removeVertex (v) (lines 99-129) must not only remove the vertex from the graph (lines 113-114), it must also remove all edges coming into or going out of the vertex. This is accomplished by walking along the vertex's row in the adjacency
addEdge()
removeEdge()
removeVertex()

Figure 13.12 The graph hierarchy. The methods shown in a concrete class are either implemented in that class or are overridden there to provide a specialization of the method's behavior (UML class diagram).

matrix looking for an edge from $v$ to some other vertex. When such an edge is found, it is cleared and numberofedges is decremented (lines 116-123). Similarly, we then walk down the column for $v$ (lines 124-127) looking for edges coming into $v$.

Listing 13.2 Portion of the AdjMatrixDiGraph class.
protected int numberOfVertices;
protected int numberOfEdges;
/**
* adjMatrix[i][j] = 1; an edge exists FROM vertex i TO vertex j
* adjMatrix[i][j] = O; NO edge exists from vertex i to vertex j
*/
protected int[][] adjMatrix;
/**
* Stores the vertices that are part of this graph. There is no
* requirement that the vertices be in adjacent cells of the
* array; as vertices are deleted, some gaps may appear.
*/
protected Vertex<T>[] vertices;
/**
* v1Pos and v2Pos represent a position in adjMatrix. This
* class and subclasses use it to access an edge.
*/
protected int v1Pos, v2Pos;
protected static int SIZE = 10;
/**
* Constructor. Create an empty instance of a directed graph.
*/
public AdjMatrixDiGraph() {
this.numberOfVertices = 0;
this.numberOfEdges = 0;
this.adjMatrix = new int[this.SIZE][this.SIZE];
this.vertices = new Vertex[this.SIZE];
}

```
```

```
package gray.adts.graph;
```

```
package gray.adts.graph;
import java.util.*;
import java.util.*;
/**
/**
 * An implementation of the <tt>Graph</tt> interface for a
 * An implementation of the <tt>Graph</tt> interface for a
 * directed graph using an adjacency matrix to indicate the
 * directed graph using an adjacency matrix to indicate the
 * presence/absence of edges connecting vertices in the graph.
 * presence/absence of edges connecting vertices in the graph.
 */
 */
public class AdjMatrixDiGraph<T> implements Graph<T> {
```

public class AdjMatrixDiGraph<T> implements Graph<T> {

```

46
```

/**
* Add an edge connecting vertex <tt>v1</tt> to
* <tt>v2</tt>. This edge must not already be in the graph.
* In an undirected graph, this edge is bidirectional.
* @param vl the source vertex; must not be <tt>null</tt>
* and must be a vertex in this graph.
* @param v2 the destination vertex; must not be
* <tt>null</tt> and must be a vertex in this graph.
* @throws IllegalArgumentException if <tt>v1</tt> or
* <tt>v2</tt> are <tt>null</tt>, are not in this
* graph or if the edge already exists in the graph.
*/
public void addEdge( Vertex<T> v1, Vertex<T> v2 ) {
v1Pos = getVerticesIndexFor( v1 );
v2Pos = getVerticesIndexFor( v2 );
if ( v1Pos == -1 || v2Pos == -1 ) {
throw new IllegalArgumentException("vertex not found");
}
// avoid adding duplicate edges
if ( this.adjMatrix[v1Pos][v2Pos] == 0 ) {
this.adjMatrix[v1Pos][v2Pos] = 1;
this.numberOfEdges++;
}
else throw new IllegalArgumentException( "duplicate edge "
+ v1 + " " + v2 );
}
/**
* Remove the edge from <tt>v1</tt> to <tt>v2</tt> from
* this graph.
* @param v1 the source vertex of the edge to remove; must not
* be <tt>null</tt> and must be a vertex in this graph.
* @param v2 the destination vertex of the edge to remove; must
* not be <tt>null</tt> and must be a vertex in this graph.
* @throws IllegalArgumentException if <tt>v1</tt> or
* <tt>v2</tt> are <tt>null</tt>, are not in this
* graph, or the edge doesn't exist.
*/
public void removeEdge( Vertex<T> v1, Vertex<T> v2 ) {
v1Pos = getVerticesIndexFor( v1 );
v2Pos = getVerticesIndexFor( v2 );
if ( v1Pos == -1 || v2Pos == -1 ) {
throw new IllegalArgumentException("vertex not found");
}
if ( this.adjMatrix[v1Pos][v2Pos] == 1 ) {

```

93
```

        this.adjMatrix[v1Pos][v2Pos] = 0;
            this.numberOfEdges--;
        }
        else throw new IllegalArgumentException("edge not found");
    }
/**
* Remove vertex <tt>v</tt> and all edges incident
* on <tt>v</tt> from this graph.
* @param v the vertex to remove; must not be
* <tt>null</tt> and must be a vertex in this graph.
* @throws IllegalArgumentException if <tt>v1</tt>
* is <tt>null</tt> or is not in this graph.
*/
public void removeVertex( Vertex<T> v ) {
int pos = getVerticesIndexFor( v );
if ( pos == -1 ) {
throw new IllegalArgumentException("vertex not found");
}
this.numberOfVertices--;
this.vertices[pos] = null;
// now we need to go through the adjacency matrix and
// remove all edges incident on v. We do this by walking
// along the row and column for v in the adjacency matrix
for ( int i = 0; i < vertices.length; i++ ) {
if ( this.adjMatrix[pos][i] == 1 ) { // row check
this.adjMatrix[pos][i] = 0;
this.numberOfEdges--;
}
if ( this.adjMatrix[i][pos] == 1 ) { // column check
this.adjMatrix[i][pos] = 0;
this.numberOfEdges--;
}
}
}

```

Because we'll revisit this issue shortly it is important to note that for each such edge found, the edge is cleared and numberOfEdges is decremented.

The other methods in AdjMatrixDiGraph are not shown and can be found in the source code on the book's companion Web site.

\subsection*{13.6.2 The AdjMatrixGraph Class: A Subclass of AdjMatrixDigraph}

AdjMatrixGraph is the adjacency matrix implementation of an undirected graph. As discussed earlier and shown in Figure 13.12, it is a subclass of AdjMatrixDigraph. The complete class is shown in Listing 13.3. Here we continue our focus on the use of inheritance and overridden methods.

Method addEdge(v1, v2) (lines 12-29) invokes its superclass counterpart to make an entry for the edge from v1 to v 2 . If that operation is successful, variables v1Pos and v2Pos hold the information needed to make the edge bidirectional (line 28). Only two lines of code-not bad! Note the comment on lines 26-27 explaining our expectation about what executing the superclass method means.

Not surprisingly, method removeEdge(v1, v2) (lines 31-49) has the same structure as addEdge (). Again, code reuse through inheritance (and some careful design) has led to a compact implementation.

Finally, we look at removeVertex (v) (lines 51-69). When removing a vertex we
addEdge()
removeEdge()
removeVertex() must remove all edges going into and coming out of the vertex. Method removeVertex() in the directed graph AdjMatrixDiGraph does this by walking along the row and down the column for the vertex's entry in the adjacency matrix zeroing out any entries storing 1 . Unfortunately, in a directed graph, each of these entries is treated as a separate edge, so attribute numberOfEdges is decremented twice for each deleted edge in an undirected graph. The somewhat complicated code in lines 67-68 corrects this problem by figuring that the actual number of edges that should have been deleted is half of what AdjMatrixDiGraph thinks should be deleted. \({ }^{3}\)

Listing 13.3 The AdjMatrixGraph class (a subclass of AdjMatrixDiGraph).
```

package gray.adts.graph;
/**
* Adjacency Matrix implementation of an undirected Graph.
*/
public class AdjMatrixGraph<T> extends AdjMatrixDiGraph<T> {
public AdjMatrixGraph() {
super();
}
/**
* Add an edge connecting vertex <tt>v1</tt> to
* <tt>v2</tt>. This edge is bidirectional.
* @param v1 the source vertex; must not be <tt>null</tt>

```

\footnotetext{
\({ }^{3}\) The Exercises have you consider a much simpler solution.
}
```

    * and must be a vertex in this graph.
    * @param v2 the destination vertex; must not be
    * <tt>null</tt> and must be a vertex in this graph.
    * @throws IllegalArgumentException if <tt>v1</tt> or
    * <tt>v2</tt> are <tt>null</tt> or are not in this
    * graph.
    */
    public void addEdge( Vertex<T> v1, Vertex<T> v2 ) {
super.addEdge(v1, v2); < < See addEdge() in
adjMatrixDiGraph,
// if we get here, the superclass method completed
lines 46-72
// successfully and we can set edge from v2 to v1
this.adjMatrix[v2Pos][v1Pos] = 1;
}
/**
* Remove the edge from <tt>v1</tt> to <tt>v2</tt>
* from this graph.
* @param v1 the source vertex for the edge to remove; must
* not be <tt>null</tt> and must be a vertex in this graph.
* @param v2 the destination vertex for the edge to remove;
* must not be <tt>null</tt> and must be a vertex in this
* graph.
* @throws IllegalArgumentException if <tt>vl</tt> or
* <tt>v2</tt> are <tt>null</tt> or are not in this
* graph.
*/
public void removeEdge( Vertex<T> v1, Vertex<T> v2 ) {
super.removeEdge( v1, v2 ); « See removeEdge() in
adjMatrixDiGraph,
// if we get here, the superclass method completed lines 74-97
// successfully and we can clear edge from v2 to v1
this.adjMatrix[v2Pos][v1Pos] = 0;
}
/**

* Remove vertex <tt>v</tt> and all edges incident on
* <tt>v</tt> from this graph.
* @param v the vertex to remove; must not be <tt>null</tt>
* and must be a vertex in this graph.
* @throws IllegalArgumentException if <tt>v1</tt> is
* <tt>null</tt> or is not in this graph.
*/
public void removeVertex( Vertex<T> v ) {
int numEdges = super.numberOfEdges;
super.removeVertex( v );

```
 // if we get here, the superclass method completed
 // successfully and we can update the number of edges
 // For edge (v1, v2), the superclass removeVertex() will
 // decrement numberOfEdges twice.
 super.numberOfEdges \(=\) numEdges - (numEdges -
 super.numberOfEdges) / 2;
 \(\}\)
\}

\subsection*{13.6.3 The WeightedAdjMatrixGraph Class: A Subclass of AdjMatrixGraph}

Listing 13.4 gives the implementation of weightedAdjMatrixGraph. As shown in Figure 13.12 and in the class header (lines 13-14), the class extends class AdjMatrixGraph and implements interface WeightedGraph. A quick look at the code tells you that the bulk of the work is done in the superclass. Method addEdge(v1, weight, v2) (lines 31-55), for example, simply invokes its superclass counterpart, then if all goes well adding the edge, the method updates the weights matrix (declared on line 24). The overloaded addedge(v1, v2) method (lines 104-119) simply uses addEdge(v1, weight, v2) to create an edge using a default edge weight.

Listing 13.4 Part of the WeightedAdjMatrixGraph class.
```

package gray.adts.graph;
import java.util.*;
import gray.adts.priorityqueue.*;
import gray.adts.priorityqueue.PriorityQueue;
import gray.misc.*;
/**
* A weighted, undirected graph stored in an adjacency matrix.
* The weights must be >= 0.
*/
public class WeightedAdjMatrixGraph<T> extends AdjMatrixGraph<T>
implements WeightedGraph<T> {
/**
* The default weight for an edge in a weighted graph.
*/
public float DEFAULT_WEIGHT = 1.0;
/**

```
```

    * Store weight edges. The adjacency matrix storing
    * edges is in an ancestor class.
    */
    protected double[][] weights;
public WeightedAdjMatrixGraph() {
super();
weights = new double[super.SIZE][super.SIZE];
}
/**
* Add an edge connecting vertex <tt>v1</tt> to
* <tt>v2</tt>. In an undirected graph, this edge is
* bidirectional.
* @param v1 the source vertex; must not be <tt>null</tt>
* and must be a vertex in this graph.
* @param weight the weight of this edge; must be >= 0.0.
* @param v2 the destination vertex; must not be
* <tt>null</tt> and must be a vertex in this graph.
* @throws IllegalArgumentException if <tt>v1</tt> or
* <tt>v2</tt> are <tt>null</tt> or are not in this
* graph, or if <tt>weight</tt> is < 0.
*/
public void addEdge( Vertex<T> v1, double weight,
Vertex<T> v2 ) {
if ( weight < 0.0 )
throw new IllegalArgumentException ("Edge weight " +
" must be >= 0.0");
super.addEdge( v1, v2 ); « < See addEdge() in
adjMatrixDiGraph,
// if we get here, method in superclass didn't throw lines 46-72
// an exception and method preconditions are met
this.setEdgeWeight( v1, weight, v2 );
}
/**
* Get the weight of the edge from <tt>v1</tt> to
* <tt>v2</tt>.
* @param v1 the source vertex; must not be
* <tt>null</tt> and must be a vertex in this graph.
* @param v2 the destination vertex; must not be
* <tt>null</tt> and must be a vertex in this graph.
* @return double the weight of the edge from <tt>v1</tt>
* to <tt>v2</tt>.
* @throws IllegalArgumentException if <tt>v1</tt> or
* <tt>v2</tt> are <tt>null</tt> or are not in this

```
```

    * graph.
    */
    public double getEdgeWeight( Vertex<T> v1, Vertex<T> v2 ) {
int v1Pos = super.getVerticesIndexFor( v1 );
int v2Pos = super.getVerticesIndexFor( v2 );
// if we get here, method in superclass didn't throw
// an exception and method preconditions are met
return weights[v1Pos][v2Pos];
}
/**
* Reset the weight for the edge connecting vertex
* <tt>v1</tt> to <tt>v2</tt>.
* @param v1 the source vertex; must not be <tt>null</tt>
* and must be a vertex in this graph.
* @param newWeight the weight of this edge; must be >= 0.0.
* @param v2 the destination vertex; must not be
* <tt>null</tt> and must be a vertex in this graph.
* @throws IllegalArgumentException if <tt>v1</tt> or
* <tt>v2</tt> are <tt>null</tt> or are not in this
* graph, or if <tt>weight</tt> is < 0.
*/
public void setEdgeWeight( Vertex<T> v1, double newWeight,
Vertex<T> v2 ) {
if ( newWeight < 0.0 )
throw new IllegalArgumentException ("Edge weight "
+ "must be >= 0.0");
int v1Pos = super.getVerticesIndexFor( v1 );
int v2Pos = super.getVerticesIndexFor( v2 );
// if we get here, method in superclass didn't throw an
// exception and method preconditions are met
weights[v1Pos][v2Pos] = newWeight;
weights[v2Pos][v1Pos] = newWeight;
}
// overloaded methods from AdjMatrixGraph
/**
* Add an edge connecting vertex <tt>v1</tt> to
* <tt>v2</tt>. The edge is bidirectional in an
* undirected graph. The default weight for an edge
* is <tt>DEFAULT_WEIGHT</tt>.
* @param v1 the source vertex; must not be <tt>null</tt>
* and must be a vertex in this graph.
* @param v2 the destination vertex; must not be
* <tt>null</tt> and must be a vertex in this graph.
* @throws IllegalArgumentException if <tt>v1</tt> or
* <tt>v2</tt> are <tt>null</tt> or are not in this

```

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
```

    * graph.
    */
    public void addEdge( Vertex<T> v1, Vertex<T> v2 ) {
this.addEdge( v1, DEFAULT_WEIGHT, v2 );
}
/**
* Find a minimal cost path from <tt>src</tt> to
* <tt>dest</tt> in this graph. Assumes edge weights
* are positive.
* @param src Vertex the first vertex in the path.
* @param dest Vertex the last vertex in the path.
* @return double the cost of the path or -1 if none is found.
*/
public double minimalPath( Vertex<T> src, Vertex<T> dest ) {
// keep track of which vertices have been visited already
ArrayList<Vertex<T>> visitedVertices =
new ArrayList<Vertex<T>> ();
// Comparator for the priority queue where the shortest
// paths found so far are stored.
final Comparator pathCostComparator = new Comparator() {
public int compare( Object o1, Object o2 ) {
Double i1 =
((Tuple<Vertex<T>, Double>)o1).getSecondElement();
Double i2 =
((Tuple<Vertex<T>, Double>)o2).getSecondElement();
return i1.compareTo( i2 );
}
public boolean equals( Object obj ) {
return false;
}
};
// Stores the shortest paths from the source vertex
// found so far. These are stored as tuples.
// The first field of the tuple is the terminating
// node in some shortest path starting from src
// The second field is the cost of that path
PriorityQueue<Tuple<Vertex<T>, Double>> pq
= new HeapPriorityQueue<Tuple<Vertex<T>,
Double>>( pathCostComparator );
Tuple<Vertex<T>, Double> pathTuple;

```

161
 // start with the source, which has a cost of 0 to
 // get to itself
 pq.enqueue(new Tuple(src, 0.0));
 while (!pq.isEmpty()) \{
 // get cheapest path seen so far from src to some
 // other vertex
 pathTuple = pq.dequeue();
 // extract the fields of the tuple so we can
 // work with them
 Vertex<T> v = pathTuple.getFirstElement();
 double minCostToV = pathTuple.getSecondElement();
 visitedVertices.add(v); // visit vertex v
 // if \(v\) is the destination vertex, we are done
 if (v.equals(dest)) \{
 return minCostToV;
 \}
 // okay, not done yet; look at the vertices
 // adjacent to \(v\)
 ArrayList<Vertex<T>>
 neighbors = (ArrayList<Vertex<T>>)getNeighbors(v);
 while (!neighbors.isEmpty()) \{
 Vertex<T> w = neighbors.remove(0); // next neighbor
 // if w hasn't been visited already, add it to
 // the priority queue
 if (!visitedVertices.contains(w)) \{
 // get the total path cost from src to \(v\)
 double minCostToW = minCostToV
 + getEdgeWeight(v, w);
 pathTuple =
 new Tuple<Vertex<T>, Double>(w, minCostToW);
 pq.enqueue(pathTuple);
 \}
 \}
 \}
 // if the loop terminates naturally, we never found
 // the destination vertex, so return failure
 return -1;
 \}
\}

An implementation for the minimal path algorithm pseudocoded in Section 13.4.1 is given in AdjMatrixWeightedGraph on lines 121-204). The implementation uses a new class, Tuple, which is like the Pair class developed in Chapter 2, except Tuple supports storing a pair of elements of different types. The PriorityQueue (lines 150-157) stores tuples consisting of a vertex and the cost to get to that vertex from the src vertex. This tuple corresponds to the 〈Vertex, minCostToVertex from the pseudocoded algorithm. The comparator defined on lines \(134-148\) is used by the PriorityQueue to compare the path cost field of Tuple instances.

A vertex is marked as visited by placing it in an array of visited vertices (see lines 131-132, 175, and 191). The main work of the algorithm (lines 165-200) follows closely from the pseudocode.

\section*{SUMMING UP}

The implementation of a hierarchy of graph classes makes careful use of inheritance and the protected access modifier to maximize code reuse. The Graph interface supports directed and undirected unweighted graphs and makes no assumptions about the underlying representation of the graph. The AdjMatrixDiGraph class provides a directed graph implementation of Graph, using an adjacency matrix to represent the graph. Class AdjMatrixGraph extends AdjMatrixDiGraph to provide an undirected graph. The methods in AdjMatrixGraph to create and remove edges extend and use their superclass counterparts to create/remove the unidirectional edge, and then finish the operation by creating/removing the reverse direction edge. Class WeightedAdjMatrixGraph extends AdjMatrixGraph and implements interface weightedGraph to provide a weighted, undirected graph. WeightedAdjMatrixGraph must override the addEdge() method it inherits to provide the edge a weight. All other inherited methods can be used as is. WeightedAdjMatrixGraph adds several methods that deal with edge weights.

\section*{EXERCISES}

\section*{Review}
1. Describe the similarities and differences between a graph and a tree.
2. How is a directed graph different from an undirected graph? Draw an example of each.
3. What does it mean for two vertices to be adjacent? Does it matter if the graph is directed or not?
4. What might the weights in a weighted graph represent?
5. What is a simple path? How do you determine its length? How is a simple path different from a cycle?
6. What does it mean to say a graph is connected? Is it possible for a graph to have more than one connected component? If so, draw such a graph.
7. How many edges are there in a complete graph?
8. Briefly describe the similarities and differences between the adjacency matrix and adjacency list representation of a graph. What are their space complexities?
9. How are the adjacency matrix and adjacency list representations different for directed and undirected graphs?
10. If the graph is weighted, how does that affect an adjacency matrix representation? An adjacency list representation?
11. Briefly describe the difference between depth first and breadth first search of a graph.
12. What does it mean to mark a vertex? Why would you need to do this?
13. Why is the time complexity of DFS guaranteed to be \(\theta\left(|V|^{2}\right)\) if the graph is represented as an adjacency matrix? How does this change if an adjacency list is used?
14. Why is a stack a good collection to use for DFS? Why is a queue a good collection to use for BFS?
15. What is a spanning tree of a graph?
16. How can the DFS and BFS algorithms be modified to produce a spanning tree?
17. What is a greedy algorithm?
18. In what way is the minimal cost path algorithm greedy?
19. What is a minimal spanning tree?
20. How is the MST algorithm greedy?
21. The implementation presented in this chapter had an undirected graph as a subclass of a directed graph. What are the implications of this when adding an edge to a graph? If the inheritance were reversed so that a directed graph was a subclass of an undirected class, what would the implications be for adding an edge to a graph?
22. How is the Tuple class different from the Pair class?

\section*{Paper and Pencil}

Graph \(\mathrm{G}_{12}\).
1. Show the order in which DFS and BFS would visit graph \(G_{12}\).
2. Apply the shortest path algorithm to find the shortest path from A to \(G\).
3. Apply the spanning tree algorithm to graph \(G_{12}\).

Graph \(\mathrm{G}_{13}\).
4. Apply the minimal path algorithm to get the minimal cost path from \(B\) to \(H\) in graph \(\mathrm{G}_{13}\).
5. Show the minimal spanning tree found by the MST algorithm for graph \(G_{13}\) starting with vertex C.

\section*{Modifying the Code}
1. How might the idea about the representation for graphs be used to represent dense and sparse matrices?
2. Instead of decorating an edge with a weight (a double), David wants to use a string. What changes have to be made to the interface to support this? What changes need to be made to the internal representation of vertices and edges?
3. Instead of decorating an edge with just a weight (a double), Amir needs a weight (a double) and a name (a string). What changes have to be made to the interface to support this? What changes need to be made to the internal representation of vertices and edges?
4. Instead of decorating an edge with just a weight (a double), Felice needs a weight (a double representing distance), a route number (an int), and a name (a String). What changes have to be made to the interface to support this? What changes need to be made to the internal representation of vertices and edges?
5. How would you redesign the graph interface so that you can accommodate Gary, Amir, and Felice's needs? (See the last three problems.) Provide the following:
a. A modified Graph interface
b. A test plan for the new feature
c. An implementation of one of the concrete classes
d. A short paper describing the changes that had to be made, a rationale for your approach, and an evaluation of the difficulty of changing an existing piece of code (consider such things as reading and understanding the existing code, identifying what needed to be changed, and so on)
6. Provide a non-recursive version of depthFirstSearch().
7. In her implementation, Yvonne mistakenly used a priority queue that allows duplicates. That is, there could be two entries \(\langle\mathrm{D}, 5\rangle\). Will the minimal path algorithm still work?
8. Method AdjMatrixDiGraph.removeVertex() tests to see if an entry represents an edge (is equal to 1) and if so, clears it (sets it to 0). Would the method be more efficient if it just walked through and cleared the appropriate row and column of the adjacency matrix? Would this work?
9. The implementation of AdjMatrixDiGraph has a few "opportunities for improvement." Make the following changes to the class:
a. Currently the maximum number of vertices is fixed at 10 . There is no mechanism for the client to specify how many vertices to use, nor is it possible to expand the size of the graph dynamically. Provide a constructor that takes a positive integer as an argument (you may want to specify an upper bound on the size, but be sure to document it) and creates a vertices array and an adjMatrix two-dimensioned array for this number of vertices.
b. Provide support that will allow the dimensions of the graph to increase dynamically if an attempt to add another vertex is made when the vertices array is full. How much more difficult would it be to shrink the arrays if the graph goes from being full and large to being much smaller?
c. The getFreeVertexPosition() and getVertexNumber() utility methods return -1 to indicate failure. Provide meaningful symbolic constants instead.
10. Traian is tired of getting exceptions when he tries to delete a vertex or edge that isn't in a graph or when he tries to add an edge to a graph and one or the other of the vertices isn't in it. He argues that if the class is going to throw an exception for these things, it ought to provide the programmer a way to check that a vertex or edge is in a graph. That is, there ought to be something like hasVertex(Vertex v) and hasEdge(Vertex v1, Vertex v2) predicate methods. Add these methods to the ADT, provide test cases for them, and then add them to the implementation.
11. The minimal path algorithm finds the cost of the least expensive path from the source to the destination vertex (if such a path exists), but it doesn't determine which vertices are in that path. Modify the pseudocode to return an object that consists of the vertices in the path from the source to the destination (in the order they would be traversed while following the path), and the cost of the path. Hint: Instead of storing vertices in verticesInSomePathToDest, store vertex pairs where each pair represents an edge in a possible path to the destination.
a. What is the cost of your algorithm?
b. Modify the book's implementation to include your additions.
12. Provide a test plan and implementation for the minimal spanning tree algorithm.```

[^0]: ${ }^{1}$ E．W．Dijkstra，＂A Note on Two Problems in Connection with Graphs，＂Numerische Mathematik， 1（1959），pp．269－271．
 ${ }^{2}$ R．C．Prim，＂Shortest Connection Networks and Some Generalizations，＂Bell System Technical Journal， 36（1957），pp．1389－1401．

