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Chapter 1

Vectors

1.1 Vectors in Two and Three Dimensions

1. Here we just connect the point (0, 0) to the points indicated:
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2. Although more difficult for students to represent this on paper, the figures should look something like the following. Note that
the origin is not at a corner of the frame box but is at the tails of the three vectors.
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In problems 3 and 4, we supply more detail than is necessary to stress to students what properties are being used:
3. (a) (3, 1) + (−1, 7) = (3 + [−1], 1 + 7) = (2, 8).

(b) −2(8, 12) = (−2 · 8,−2 · 12) = (−16,−24).
(c) (8, 9) + 3(−1, 2) = (8 + 3(−1), 9 + 3(2)) = (5, 15).
(d) (1, 1) + 5(2, 6) − 3(10, 2) = (1 + 5 · 2 − 3 · 10, 1 + 5 · 6 − 3 · 2) = (−19, 25).
(e) (8, 10) + 3((8,−2) − 2(4, 5)) = (8 + 3(8 − 2 · 4), 10 + 3(−2 − 2 · 5)) = (8,−26).

4. (a) (2, 1, 2) + (−3, 9, 7) = (2 − 3, 1 + 9, 2 + 7) = (−1, 10, 9).
(b) 1

2
(8, 4, 1) + 2

(
5,−7, 1

4

)
=
(
4, 2, 1

2

)
+
(
10,−14, 1

2

)
= (14,−12, 1).

(c) −2
(
(2, 0, 1) − 6

(
1
2
,−4, 1

))
= −2((2, 0, 1) − (3,−24, 6)) = −2(−1, 24,−5) = (2,−48, 10).

5. We start with the two vectors a and b. We can complete the parallelogram as in the figure on the left. The vector from the
origin to this new vertex is the vector a + b. In the figure on the right we have translated vector b so that its tail is the head of
vector a. The sum a + b is the directed third side of this triangle.

c© 2012 Pearson Education, Inc. 1



2 Chapter 1 Vectors
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6. a = (3, 2) b = (−1, 1)
a − b = (3 − (−1), 2 − 1) = (4, 1) 1

2
a =

(
3
2
, 1
)

a + 2b = (1, 4)
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7. (a)
−→
AB = (−3 − 1, 3 − 0, 1 − 2) = (−4, 3,−1)

−→
BA = −−→

AB = (4,−3, 1)

(b)
−→
AC = (2 − 1, 1 − 0, 5 − 2) = (1, 1, 3)−→
BC = (2 − (−3), 1 − 3, 5 − 1) = (5,−2, 4)−→
AC+

−→
CB = (1, 1, 3) − (5,−2, 4) = (−4, 3,−1)

(c) This result is true in general:

A

B

C

Head-to-tail addition demonstrates this.

c© 2012 Pearson Education, Inc.



Section 1.1. Vectors in Two and Three Dimensions 3

8. The vectors a = (1, 2, 1),b = (0,−2, 3) and a + b = (1, 2, 1) + (0,−2, 3) = (1, 0, 4) are graphed below. Again note that
the origin is at the tails of the vectors in the figure.

Also, −1(1, 2, 1) = (−1,−2,−1). This would be pictured by drawing the vector (1, 2, 1) in the opposite direction.
Finally, 4(1, 2, 1) = (4, 8, 4) which is four times vector a and so is vector a stretched four times as long in the same direction.
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9. Since the sum on the left must equal the vector on the right componentwise:
−12 + x = 2, 9 + 7 = y, and z + −3 = 5. Therefore, x = 14, y = 16, and z = 8.

10. If we drop a perpendicular from (3, 1) to the x-axis we see that by the Pythagorean Theorem the length of the vector (3, 1) =√
32 + 12 =

√
10.
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11. Notice that b (represented by the dotted line) = 5a (represented by the solid line).
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4 Chapter 1 Vectors

12. Here the picture has been projected into two dimensions so that you can more clearly see that a (represented by the solid
line) = −2b (represented by the dotted line).

-8 -6 -4 -2 2 4

-4

-2

2

4

6

8a

b

13. The natural extension to higher dimensions is that we still add componentwise and that multiplying a scalar by a vector means
that we multiply each component of the vector by the scalar. In symbols this means that:

a + b = (a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn) and ka = (ka1, ka2, . . . , kan).
In our particular examples, (1, 2, 3, 4) + (5,−1, 2, 0) = (6, 1, 5, 4), and 2(7, 6,−3, 1) = (14, 12,−6, 2).

14. The diagrams for parts (a), (b) and (c) are similar to Figure 1.12 from the text. The displacement vectors are:
(a) (1, 1, 5)
(b) (−1,−2, 3)
(c) (1, 2,−3)
(d) (−1,−2)

Note: The displacement vectors for (b) and (c) are the same but in opposite directions (i.e., one is the negative of the
other). The displacement vector in the diagram for (d) is represented by the solid line in the figure below:

x

y

P1

P2

0.5 1 1.5 2 2.5 3

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

15. In general, we would define the displacement vector from (a1, a2, . . . , an) to (b1, b2, . . . , bn) to be (b1−a1, b2−a2, . . . , bn−
an).

In this specific problem the displacement vector from P1 to P2 is (1,−4,−1, 1).
16. Let B have coordinates (x, y, z). Then

−→
AB = (x − 2, y − 5, z + 6) = (12,−3, 7) so x = 14, y = 2, z = 1 so B has

coordinates (14, 2, 1).
17. If a is your displacement vector from the Empire State Building and b your friend’s, then the displacement vector from you

to your friend is b − a.

c© 2012 Pearson Education, Inc.
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a

b

b-a

you

friend

Empire State Bldg

18. Property 2 follows immediately from the associative property of the reals:

(a + b) + c = ((a1, a2, a3) + (b1, b2, b3)) + (c1, c2, c3)

= ((a1 + b1, a2 + b2, a3 + b3) + (c1, c2, c3)

= ((a1 + b1) + c1, (a2 + b2) + c2, (a3 + b3) + c3)

= (a1 + (b1 + c1), a2 + (b2 + c2), a3 + (b3 + c3))

= (a1, a2, a3) + ((b1 + c1), (b2 + c2), (b3 + c3))

= a + (b + c).

Property 3 also follows from the corresponding componentwise observation:

a + 0 = (a1 + 0, a2 + 0, a3 + 0) = (a1, a2, a3) = a.

19. We provide the proofs for R3:

(1) (k + l)a = (k + l)(a1, a2, a3) = ((k + l)a1, (k + l)a2, (k + l)a3)

= (ka1 + la1, ka2 + la2, ka3 + la3) = ka + la.

(2) k(a + b) = k((a1, a2, a3) + (b1, b2, b3)) = k(a1 + b1, a2 + b2, a3 + b3)

= (k(a1 + b1), k(a2 + b2), k(a3 + b3)) = (ka1 + kb1, ka2 + kb2, ka3 + kb3)

= (ka1, ka2, ka3) + (kb1, kb2, kb3) = ka + kb.

(3) k(la) = k(l(a1, a2, a3)) = k(la1, la2, la3)

= (kla1, kla2, kla3) = (lka1, lka2, lka3)

= l(ka1, ka2, ka3) = l(ka).

20. (a) 0a is the zero vector. For example, in R3:

0a = 0(a1, a2, a3) = (0 · a1, 0 · a2, 0 · a3) = (0, 0, 0).

(b) 1a = a. Again in R3:
1a = 1(a1, a2, a3) = (1 · a1, 1 · a2, 1 · a3) = (a1, a2, a3) = a.

21. (a) The head of the vector sa is on the x-axis between 0 and 2. Similarly the head of the vector tb lies somewhere on the
vector b. Using the head-to-tail method, sa + tb is the result of translating the vector tb, in this case, to the right by 2s
(represented in the figure by tb*). The result is clearly inside the parallelogram determined by a and b (and is only on the
boundary of the parallelogram if either t or s is 0 or 1.

sa

tb

b

a

tb*

x

c© 2012 Pearson Education, Inc.



6 Chapter 1 Vectors

(b) Again the vectors a and b will determine a parallelogram (with vertices at the origin, and at the heads of a, b, and a + b.
The vectors sa + tb will be the position vectors for all points in that parallelogram determined by (2, 2, 1) and (0, 3, 2).

22. Here we are translating the situation in Exercise 21 by the vector
−−→
OP0. The vectors will all be of the form

−−→
OP0 + sa + tb for

0 ≤ s, t ≤ 1.
23. (a) The speed of the flea is the length of the velocity vector =

√
(−1)2 + (−2)2 =

√
5 units per minute.

(b) After 3 minutes the flea is at (3, 2) + 3(−1,−2) = (0,−4).
(c) We solve (3, 2)+t(−1,−2) = (−4,−12) for t and get that t = 7 minutes. Note that both 3−7 = −4 and 2−14 = −12.
(d) We can see this algebraically or geometrically: Solving the x part of (3, 2) + t(−1,−2) = (−13,−27) we get that

t = 16. But when t = 16, y = −30 not −27. Also in the figure below we see the path taken by the flea will miss the
point (−13,−27).

x

y

-15 -12.5 -10 -7.5 -5 -2.5 2.5 5

-30

-25

-20

-15

-10

-5

-13,-27

3,2

24. (a) The plane is climbing at a rate of 4 miles per hour.
(b) To make sure that the axes are oriented so that the plane passes over the building, the positive x direction is east and the

positive y direction is north. Then we are heading east at a rate of 50 miles per hour at the same time we’re heading north
at a rate of 100 miles per hour. We are directly over the skyscraper in 1/10 of an hour or 6 minutes.

(c) Using our answer in (b), we have traveled for 1/10 of an hour and so we’ve climbed 4/10 of a mile or 2112 feet. The plane
is 2112 − 1250 or 862 feet about the skyscraper.

25. (a) Adding we get: F1 + F2 = (2, 7,−1) + (3,−2, 5) = (5, 5, 4).
(b) You need a force of the same magnitude in the opposite direction, so F3 = −(5, 5, 4) = (−5,−5,−4).

26. (a) Measuring the force in pounds we get (0, 0,−50).
(b) The z components of the two vectors along the ropes must be equal and their sum must be opposite of the z component

in part (a). Their y components must also be opposite each other. Since the vector points in the direction (0, ±2, 1),
the y component will be twice the z component. Together this means that the vector in the direction of (0,−2, 1) is
(0,−50, 25) and the vector in the direction (0, 2, 1) is (0, 50, 25).

27. The force F due to gravity on the weight is given by F = (0, 0,−10). The forces along the ropes are each parallel to the
displacement vectors from the weight to the respective anchor points. That is, the tension vectors along the ropes are

F1 = k((3, 0, 4) − (1, 2, 3)) = k(2,−2, 1)

F2 = l((0, 3, 5) − (1, 2, 3)) = l(−1, 1, 2),

where k and l are appropriate scalars. For the weight to remain in equilibrium, we must have F1+F2+F = 0, or, equivalently,
that

k(2,−2, 1) + l(−1, 1, 2) + (0, 0,−10) = (0, 0, 0).

Taking components, we obtain a system of three equations:⎧⎨
⎩

2k − l = 0
−2k + l = 0
k + 2l = 10.

Solving, we find that k = 2 and l = 4, so that

F1 = (4,−4, 2) and F2 = (−4, 4, 8).

c© 2012 Pearson Education, Inc.



Section 1.2. More about Vectors 7

1.2 More about Vectors

It may be useful to point out that the answers to Exercises 1 and 5 are the “same”, but that in Exercise 1, i = (1, 0) and in Exercise
5, i = (1, 0, 0). This comes up when going the other direction in Exercises 9 and 10. In other words, it’s not always clear whether
the exercise “lives” inR2 orR3.
1. (2, 4) = 2(1, 0) + 4(0, 1) = 2i + 4j.
2. (9,−6) = 9(1, 0) − 6(0, 1) = 9i − 6j.
3. (3, π,−7) = 3(1, 0, 0) + π(0, 1, 0) − 7(0, 0, 1) = 3i + πj − 7k.
4. (−1, 2, 5) = −1(1, 0, 0) + 2(0, 1, 0) + 5(0, 0, 1) = −i + 2j + 5k.
5. (2, 4, 0) = 2(1, 0, 0) + 4(0, 1, 0) = 2i + 4j.
6. i + j − 3k = (1, 0, 0) + (0, 1, 0) − 3(0, 0, 1) = (1, 1,−3).
7. 9i − 2j +

√
2k = 9(1, 0, 0) − 2(0, 1, 0) +

√
2(0, 0, 1) = (9,−2,

√
2).

8. −3(2i − 7k) = −6i + 21k = −6(1, 0, 0) + 21(0, 0, 1) = (−6, 0, 21).
9. πi − j = π(1, 0) − (0, 1) = (π,−1).

10. πi − j = π(1, 0, 0) − (0, 1, 0) = (π,−1, 0).

Note: You may want to assign both Exercises 11 and 12 together so that the students may see the difference. You should stress
that the reason the results are different has nothing to do with the fact that Exercise 11 is a question aboutR2 while Exercise 12 is
a question aboutR3.

11. (a) (3, 1) = c1(1, 1) + c2(1,−1) = (c1 + c2, c1 − c2), so
{

c1 + c2 = 3, and
c1 − c2 = 1.

Solving simultaneously (for instance by adding the two equations), we find that 2c1 = 4, so c1 = 2 and c2 = 1. So
b = 2a1 + a2.

(b) Here c1 + c2 = 3 and c1 − c2 = −5, so c1 = −1 and c2 = 4. So b = −a1 + 4a2.

(c) More generally, (b1, b2) = (c1 + c2, c1 − c2), so
{

c1 + c2 = b1, and
c1 − c2 = b2.

Again solving simultaneously, c1 =
b1 + b2

2
and c2 =

b1 − b2

2
. So

b =

(
b1 + b2

2

)
a1 +

(
b1 − b2

2

)
a2.

12. Note that a3 = a1 + a2, so really we are only working with two (linearly independent) vectors.
(a) (5, 6,−5) = c1(1, 0,−1) + c2(0, 1, 0) + c3(1, 1,−1); this gives us the equations:⎧⎨

⎩
5 = c1 + c3

6 = c2 + c3

−5 = −c1 − c3.

The first and last equations contain the same information and so we have infinitely many solutions. You will quickly see
one by letting c3 = 0. Then c1 = 5 and c2 = 6. So we could write b = 5a1 + 6a2. More generally, you can choose any
value for c1 and then let c2 = c1 + 1 and c3 = 5 − c1.

(b) We cannot write (2, 3, 4) as a linear combination of a1, a2, and a3. Here we get the equations:⎧⎨
⎩

c1 + c3 = 2
c2 + c3 = 3

−c1 − c3 = 4.

The first and last equations are inconsistent and so the system cannot be solved.
(c) As we saw in part (b), not all vectors in R3 can be written in terms of a1, a2, and a3. In fact, only vectors of the form

(a, b,−a) can be written in terms of a1, a2, and a3. For your students who have had linear algebra, this is because the
vectors a1, a2, and a3 are not linearly independent.

Note: As pointed out in the text, the answers for 13–21 are not unique.

13. r(t) = (2,−1, 5) + t(1, 3,−6) so

⎧⎨
⎩

x = 2 + t
y = −1 + 3t
z = 5 − 6t.

c© 2012 Pearson Education, Inc.



8 Chapter 1 Vectors

14. r(t) = (12,−2, 0) + t(5,−12, 1) so

⎧⎨
⎩

x = 12 + 5t
y = −2 − 12t
z = t.

15. r(t) = (2,−1) + t(1,−7) so
{

x = 2 + t
y = −1 − 7t.

16. r(t) = (2, 1, 2) + t(3 − 2,−1 − 1, 5 − 2) so

⎧⎨
⎩

x = 2 + t
y = 1 − 2t
z = 2 + 3t.

17. r(t) = (1, 4, 5) + t(2 − 1, 4 − 4,−1 − 5) so

⎧⎨
⎩

x = 1 + t
y = 4
z = 5 − 6t.

18. r(t) = (8, 5) + t(1 − 8, 7 − 5) so
{

x = 8 − 7t
y = 5 + 2t.

Note: In higher dimensions, we switch our notation to xi.

19. r(t) = (1, 2, 0, 4) + t(−2, 5, 3, 7) so

⎧⎪⎪⎨
⎪⎪⎩

x1 = 1 − 2t
x2 = 2 + 5t
x3 = 3t
x4 = 4 + 7t.

20. r(t) = (9, π,−1, 5, 2) + t(−1 − 9, 1 − π,
√

2 + 1, 7 − 5, 1 − 2) so

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 = 9 − 10t
x2 = π + (1 − π)t

x3 = −1 + (
√

2 + 1)t
x4 = 5 + 2t
x5 = 2 − t.

21. (a) r(t) = (−1, 7, 3) + t(2,−1, 5) so

⎧⎨
⎩

x = −1 + 2t
y = 7 − t
z = 3 + 5t.

(b) r(t) = (5,−3, 4) + t(0 − 5, 1 + 3, 9 − 4) so

⎧⎨
⎩

x = 5 − 5t
y = −3 + 4t
z = 4 + 5t.

(c) Of course, there are infinitely many solutions. For our variation on the answer to (a) we note that a line parallel to the
vector 2i − j + 5k is also parallel to the vector −(2i − j + 5k) so another set of equations for part (a) is:⎧⎨

⎩
x = −1 − 2t
y = 7 + t
z = 3 − 5t.

For our variation on the answer to (b) we note that the line passes through both points so we can set up the equation with
respect to the other point: ⎧⎨

⎩
x = −5t
y = 1 + 4t
z = 9 + 5t.

(d) The symmetric forms are:

x + 1

2
= 7 − y =

z − 3

5
(for (a))

5 − x

5
=

y + 3

4
=

z − 4

5
(for (b))

x + 1

−2
= y − 7 =

z − 3

−5
(for the variation of (a))

x

−5
=

y − 1

4
=

z − 9

5
(for the variation of (b))

c© 2012 Pearson Education, Inc.



Section 1.2. More about Vectors 9

22. Solve for t in each of the parametric equations. Thus

t =
x − 5

−2
, t =

y − 1

3
, t =

z + 4

6

and the symmetric form is
x − 5

−2
=

y − 1

3
=

z + 4

6
.

23. Solving for t in each of the parametric equations gives t = x−7, t = (y+9)/3, and t = (z−6)/(−8), so that the symmetric
form is

x − 7

1
=

y + 9

3
=

z − 6

−8
.

24. Set each piece of the equation equal to t and solve:

x − 2

5
= t ⇒ x − 2 = 5t ⇒ x = 2 + 5t

y − 3

−2
= t ⇒ y − 3 = −2t ⇒ y = 3 − 2t

z + 1

4
= t ⇒ z + 1 = 4t ⇒ z = −1 + 4t.

25. Let t = (x+5)/3. Then x = 3t−5. In view of the symmetric form, we also have that t = (y−1)/7 and t = (z+10)/(−2).
Hence a set of parametric equations is x = 3t − 5, y = 7t + 1, and z = −2t − 10.

Note: In Exercises 26–29, we could say for certain that two lines are not the same if the vectors were not multiples of each
other. In other words, it takes two pieces of information to specify a line. You either need two points, or a point and a direction (or
in the case ofR2, equivalently, a slope).

26. The first line is parallel to the vector a1 = (5,−3, 4), while the second is parallel to a2 = (10,−5, 8). Since a1 and a2 are
not parallel, the lines cannot be the same.

27. If we multiply each of the pieces in the second symmetric form by −2, we are effectively just traversing the same path at a
different speed and with the opposite orientation. So the second set of equations becomes:

x + 1

3
=

y + 6

7
=

z + 5

5
.

This looks a lot more like the first set of equations. If we now subtract one from each piece of the second set of equations (as
suggested in the text), we are effectively just changing our initial point but we are still on the same line:

x + 1

3
− 3

3
=

y + 6

7
− 7

7
=

z + 5

5
− 5

5
.

We have transformed the second set of equations into the first and therefore see that they both represent the same line in R3.

28. If you first write the equation of the two lines in vector form, we can see immediately that their direction vectors are the same
so either they are parallel or they are the same line:

r1(t) = (−5, 2, 1) + t(2, 3,−6)

r2(t) = (1, 11,−17) − t(2, 3,−6).

The first line contains the point (−5, 2, 1). If the second line contains (−5, 2, 1), then the equations represent the same line.
Solve just the x component to get that −5 = 1 − 2t ⇒ t = 3. Checking we see that r2(3) = (1, 11,−17) − 3(2, 3,−6) =
(−5, 2, 1) so the lines are the same.

29. Here again the vector forms of the two lines can be written so that we see their headings are the same:

r1(t) = (2,−7, 1) + t(3, 1, 5)

r2(t) = (−1,−8,−3) + 2t(3, 1, 5).

The point (2,−7, 1) is on line one, so we will check to see if it is also on line two. As in Exercise 28 we check the equation for
the x component and see that −1+6t = 2 ⇒ t = 1/2. Checking we see that r2(1/2) = (−1,−8,−3)+(1/2)(2)(3, 1, 5) =
(2,−7, 2) �= (2,−7, 1) so the equations do not represent the same lines.
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10 Chapter 1 Vectors

Note: It is a good idea to assign both Exercises 30 and 31 together. Although they look similar, there is a difference that
students might miss.

30. If you make the substitution u = t3, the equations become:

⎧⎨
⎩

x = 3u + 7,
y = −u + 2, and
z = 5u + 1.

The map u = t3 is a bijection. The important fact is that u takes on exactly the same values that t does, just at different times.
Since u takes on all reals, the parametric equations do determine a line (it’s just that the speed along the line is not constant).

31. This time if you make the substitution u = t2, the equations become:

⎧⎨
⎩

x = 5u − 1,
y = 2u + 3, and
z = −u + 1.

The problem is that u cannot take on negative values so these parametric equations are for a ray with endpoint (−1, 3, 1) and
heading (5, 2,−1).

32. (a) The vector form of the equations is: r(t) = (7,−2, 1)+ t(2, 1,−3). The initial point is then r(0) = (7,−2, 1), and after
3 minutes the bird is at r(3) = (7,−2, 1) + 3(2, 1,−3) = (13, 1,−8).

(b) (2, 1,−3)
(c) We only need to check one component (say the x): 7 + 2t = 34/3 ⇒ t = 13/6. Checking we see that r

(
13
6

)
=

(7,−2, 1) +
(

13
6

)
(2, 1,−3) =

(
34
3

, 1
6
,− 11

2

)
.

(d) As in part (c), we’ll check the x component and see that 7 + 2t = 17 when t = 5. We then check to see that r(5) =
(7,−2, 1) + 5(2, 1,−3) = (17, 3,−14) �= (17, 4,−14) so, no, the bird doesn’t reach (17, 4,−14).

33. We can substitute the parametric forms of x, y, and z into the equation for the plane and solve for t. So (3t − 5) + 3(2 −
t) − (6t) = 19 which gives us t = −3. Substituting back in the parametric equations, we find that the point of intersection is
(−14, 5,−18).

34. Using the same technique as in Exercise 33, 5(1− 4t)− 2(t− 3/2) + (2t + 1) = 1 which simplifies to t = 2/5. This means
the point of intersection is (−3/5,−11/10, 9/5).

35. We will set each of the coordinate equations equal to zero in turn and substitute that value of t into the other two equations.

x = 2t − 3 = 0 ⇒ t = 3/2. When t = 3/2, y = 13/2 and z = 7/2.

y = 3t + 2 = 0 ⇒ t = −2/3, so x = −13/3 and z = 17/3.

z = 5 − t = 0 ⇒ t = 5, so x = 7 and y = 17.

The points are (0, 13/2, 7/2), (−13/3, 0, 17/3), and (7, 17, 0).

36. We could show that two points on the line are also in the plane or that for points on the line:
2x − y + 4z = 2(5 − t) − (2t − 7) + 4(t − 3) = 5, so they are in the plane.

37. For points on the line we see that x− 3y + z = (5− t)− 3(2t− 3) + (7t + 1) = 15, so the line does not intersect the plane.

38. First we parametrize the line by setting t = (x − 3)/6, which gives us x = 6t + 3, y = 3t − 2, z = 5t. Plugging these
parametric values into the equation for the plane gives

2(6t + 3) − 5(3t − 2) + 3(5t) + 8 = 0 ⇐⇒ 12t + 24 = 0 ⇐⇒ t = −2.

The parameter value t = −2 yields the point (6(−2) + 3, 3(−2) − 2, 5(−2)) = (−9,−8,−10).
39. We find parametric equations for the line by setting t = (x − 3)/(−2), so that x = 3 − 2t, y = t + 5, z = 3t − 2. Plugging

these parametric values into the equation for the plane, we find that

3(3 − 2t) + 3(t + 5) + (3t − 2) = 9 − 6t + 3t + 15 + 3t − 2 = 22

for all values of t. Hence the line is contained in the plane.
40. Again we find parametric equations for the line. Set t = (x + 4)/3, so that x = 3t − 4, y = 2 − t, z = 1 − 9t. Plugging

these parametric values into the equation for the plane, we find that

2(3t − 4) − 3(2 − t) + (1 − 9t) = 7 ⇐⇒ 6t − 8 − 6 + 3t + 1 − 9t = 7 ⇐⇒ −13 = 7.

Hence we have a contradiction; that is, no value of t will yield a point on the line that is also on the plane. Thus the line and
the plane do not intersect.
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41. We just plug the parametric expressions for x, y, z into the equation for the surface:

(at + a)2

a2
+

b2

b2
− (ct + c)2

c2
=

c2(t + 1)2

a2
+ 1 − c2(t + 1)2

c2
= 1

for all values of t ∈ R. Hence all points on the line satisfy the equation for the surface.
42. As explained in the text, we can’t just set the two sets of equations equal to each other and solve. If the two lines intersect at a

point, we may get to that point at two different times. Let’s call these times t1 and t2 and solve the equations⎧⎪⎨
⎪⎩

2t1 + 3 = 15 − 7t2,

3t1 + 3 = t2 − 2, and
2t1 + 1 = 3t2 − 7.

Eliminate t1 by subtracting the third equation from the first to get t2 = 2. Substitute back into any of the equations to get
t1 = −1. Using either set of equations, you’ll find that the point of intersection is (1, 0,−1).

43. The way the problem is phrased tips us off that something is going on. Let’s handle this the same way we did in Exercise 42.⎧⎪⎨
⎪⎩

2t1 + 1 = 3t2 + 1,

−3t1 = t2 + 5, and
t1 − 1 = 7 − t2.

Adding the last two equations eliminates t2 and gives us t1 = 13/2. This corresponds to the point (14, −39/2, 11/2).
Substituting this value of t1 into the third equation gives us t2 = 3/2, while substituting this into the first equation gives us
t2 = 13/3. This inconsistency tells us that the second line doesn’t pass through the point (14,−39/2, 11/2).

44. (a) The distance is
√

(3t − 5 + 2)2 + (1 − t − 1)2 + (4t + 7 − 5)2 =
√

26t2 − 2t + 13.
(b) Using a standard first year calculus trick, the distance is minimized when the square of the distance is minimized. So we

find D = 26t2 − 2t + 13 is minimized (at the vertex of the parabola) when t = 1/26. Substitute back into our answer
for (a) to find that the minimal distance is

√
337/26.

45. (a) As in Example 2, this is the equation of a circle of radius 2 centered at the origin. The difference is that you are traveling
around it three times as fast. This means that if t varied between 0 and 2π that the circle would be traced three times.

(b) This is just like part (a) except the radius of the circle is 5.
(c) This is just like part (b) except the x and y coordinates have been switched. This is the same as reflecting the circle about

the line y = x and so this is also a circle of radius 5. If you care, the circle in (b) was drawn starting at the point (5, 0)
counterclockwise while this circle is drawn starting at (0, 5) clockwise.

(d) This is an ellipse with major axis along the x-axis intersecting it at (±5, 0) and minor axis along the y-axis intersecting it
at (0,±3) : x2

25
+ y2

9
= 1.

x

y

-4

-2

2

4

-4 -2 2 4

46. The discussion in the text of the cycloid looked at the path traced by a point on the circumference of a circle of radius a as it is
rolled without slipping on the x-axis. The vector from the origin to our point P was split into two pieces:

−→
OA (the vector from

the origin to the center of the circle) and
−→
AP (the vector from the center of the circle to P ). This split remains the same in our

problem.
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12 Chapter 1 Vectors

The center of the circle is always a above the x-axis, and after the wheel has rolled through a central angle of t radians the
x coordinate is just at. So

−→
OA = (at, a). This does not change in our problem.

The vector
−→
AP was calculated to be (−a sin t,−a cos t). The direction of the vector is still correct but the length is not. If

we are b units from the center then
−→
AP = −b(sin t, cos t).

We conclude then that the parametric equations are x = at − b sin t, y = a − b cos t. When a = b this is the case of the
cycloid described in the text; when a > b we have the curtate cycloid; and when a < b we have the prolate cycloid.

For a picture of how to generate one consider the diagram:

Here the inner circle is rolling along the ground and the prolate cycloid is the path traced by a point on the outer circle.
There is a classic toy with a plastic wheel that runs along a handheld track, but your students are too young for that. You could
pretend that the big circle is the end of a round roast and the little circle is the end of a skewer. In a regular rotisserie the roast
would just rotate on the skewer, but we could imagine rolling the skewer along the edges of the grill. The motion of a point on
the outside of the roast would be a prolate cycloid.

47. You are to picture that the circular dispenser stays still so Egbert has to unwind around the dispenser. The direction is
(cos θ, sin θ). The length is the radius of the circle a, plus the amount of tape that’s been unwound. The tape that’s been
unwound is the distance around the circumference of the circle. This is aθ where θ is again in radians. The equation is
therefore (x, y) = a(1 + θ)(cos θ, sin θ).

1.3 The Dot Product

Exercises 1–16 are just straightforward calculations. For 1–6 use Definition 3.1 and formula (1). For 7–11 use formula (4). For
12–16 use formula (5).

1. (1, 5) · (−2, 3) = 1(−2) + 5(3) = 13, ‖(1, 5)‖ =
√

12 + 52 =
√

26,
‖(−2, 3)‖ =

√
(−2)2 + 32 =

√
13.

2. (4,−1) · (1/2, 2) = 4(1/2) − 1(2) = 0, ‖(4,−1)‖ =
√

42 + (−1)2 =
√

17

‖(1/2, 2)‖ =
√

(1/2)2 + 22 =
√

17/2.

3. (−1, 0, 7) · (2, 4,−6) = −1(2) + 0(4) + 7(−6) = −44, ‖(−1, 0, 7)‖ =
√

(−1)2 + 02 + 72 =
√

50 = 5
√

2, and
‖(2, 4,−6)‖ =

√
22 + 42 + (−6)2 =

√
56 = 2

√
14.

4. (2, 1, 0)·(1,−2, 3) = 2(1)+1(−2)+0(3) = 0, ‖(2, 1, 0)‖ =
√

22 + 1 =
√

5, and ‖(1,−2, 3)‖ =
√

12 + (−2)2 + 32 =√
14.

5. (4i − 3j + k) · (i + j + k) = 4(1) + −3(1) + 1(1) = 2, ‖4i − 3j + k‖ =
√

42 + 32 + 12 =
√

26, and ‖i + j + k‖ =√
1 + 1 + 1 =

√
3.

6. (i + 2j − k) · (−3j + 2k) = 2(−3) − 1(2) = −8, ‖i + 2j − k‖ =
√

12 + 22 + (−1)2 =
√

6, and ‖ − 3j + 2k‖ =√
(−3)2 + 22 =

√
13.

7. θ = cos−1

(
(
√

3i + j) · (−√
3i + j)

‖(√3i + j)‖ ‖ − √
3i + j‖

)
= cos−1

(−3 + 1

(2)(2)

)
= cos−1

(−1

2

)
=

2π

3
.
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8. θ = cos−1

(
(−1, 2) · (3, 1)

‖(−1, 2)‖ ‖(3, 1)‖
)

= cos−1

( −3 + 2√
5
√

10

)
= cos−1

(
− 1

5
√

2

)
.

9. θ = cos−1

(
(i + j) · (i + j + k)

‖i + j‖ ‖i + j + k‖
)

= cos−1

(
1 + 1√
2
√

3

)
= cos−1

(√
2√
3

)
.

10. θ = cos−1

(
(i + j − k) · (−i + 2j + 2k)

‖i + j − k‖ ‖ − i + 2j + 2k‖
)

= cos−1

(−1 + 2 − 2

(
√

3)(
√

3)

)
= cos−1

( −1

3
√

3

)
.

11. θ = cos−1

(
(1,−2, 3) · (3,−6,−5)

‖(1,−2, 3)‖ ‖(3,−6,−5)‖
)

= cos−1

(
3 + 12 − 15√

14
√

70

)
= cos−1(0) =

π

2
.

Note: The answers to 12 and 13 are the same. You may want to assign both exercises and ask your students why this should be
true. You might then want to ask what would happen if vector a was the same but vector b was divided by

√
2.

12. proji+j(2i + 3j − k) =

(
(i + j) · (2i + 3j − k)

(i + j) · (i + j)

)
(i + j) =

2 + 3

1 + 1
(1, 1, 0) =

(
5

2
,
5

2
, 0

)
.

13. proj i+j√
2

(2i + 3j − k) =

⎛
⎝
(

i+j√
2

)
· (2i + 3j − k)(

i+j√
2

)
·
(

i+j√
2

)
⎞
⎠(

i+j√
2

)
=

1√
2
(2 + 3)
1+1
2

(1, 1, 0)√
2

=

(
5

2
,
5

2
, 0

)
.

14. proj5k(i − j + 2k) =

(
(5k) · (i − j + 2k)

(5k) · (5k)

)
(5k) =

10

25
(5k) = 2k.

15. proj−3k(i − j + 2k) =

(
(−3k) · (i − j + 2k)

(−3k) · (−3k)

)
(−3k) =

−6

9
(−3k) = 2k.

16. proji+j+2k(2i − 4j + k) =

(
(i + j + 2k) · (2i − 4j + k)

(i + j + 2k) · (i + j + 2k)

)
(i + j + 2k) =

2 − 4 + 2

1 + 1 + 4
(1, 1, 2) = 0.

17. We just divide the vector by its length: 2i − j + k

||2i − j + k|| =
1√
6
(2,−1, 1).

18. Here we take the negative of the vector divided by its length: i − 2k

‖i − 2k‖ =
1√
5
(1, 0,−2).

19. Same idea as Exercise 17, but multiply by 3: 3(i + j − k)

‖i + j − k‖ =
3√
3
(1, 1,−1) =

√
3(1, 1,−1).

20. There are a whole plane full of perpendicular vectors. The easiest three to find are when we set the coefficients of the coordinate
vectors equal to zero in turn: i + j, j + k, and −i + k.

21. We have two cases to consider.
If either of the projections is zero: projab = 0 ⇔ a · b = 0 ⇔ projba = 0.
If neither of the projections is zero, then the directions must be the same. This means that a must be a multiple of b. Let
a = cb, then on the one hand

projab = projcbb =
cb · b
cb · cb cb = b.

On the other hand

projba = projbcb =
b · cb
b · b b = cb.

These are equal only when c = 1.
In other words, projab = projba when a · b = 0 or when a = b.

22. Property 2: a · b = (a1, a2, a3) · (b1, b2, b3) = a1b1 + a2b2 + a3b3 = b1a1 + b2a2 + b3a3 = b · a.
Property 3: a · (b + c) = (a1, a2, a3) · ((b1, b2, b3) + (c1, c2, c3)) = (a1, a2, a3) · (b1 + c1, b2 + c2, b3 + c3) = a1(b1 +
c1) + a2(b2 + c2) + a3(b3 + c3) = (a1b1 + a2b2 + a3b3) + (a1c1 + a2c2 + a3c3) = a · b + a · c.
Property 4: (ka) · b = (k(a1, a2, a3)) · (b1, b2, b3) = (ka1, ka2, ka3) · (b1, b2, b3) = ka1b1 + ka2b2 + ka3b3(for the
1st equality) = k(a1b1 + a2b2 + a3b3) = k(a · b). (for the 2nd equality) = a1 kb1 + a2 kb2 + a3 kb3 = (a1, a2, a3) ·
(kb1, kb2, kb3) = a · (kb).

23. We have ‖ka‖ =
√

ka · ka =
√

k2(a · a) =
√

k2
√

a · a = |k| ‖a‖.
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14 Chapter 1 Vectors

24. The following diagrams might be helpful:

a

0.5 1 1.5 2 2.5 3 3.5 4

F

-2

-1.5

-1

-0.5

0.5

1

1.5

2
y

x

x

F

F1

F2

-2

-1.5

-1

-0.5

0.5 1 1.5 2

y

To find F1, the component of F in the direction of a, we project F onto a:

F1 = projaF =

(
(i − 2j) · (4i + j)

(4i + j) · (4i + j)

)
(4i + j) =

2

17
(4, 1).

To find F2, the component of F in the direction perpendicular to a, we can just subtract F1 from F:

F2 = (1,−2) − 2

17
(4, 1) =

(
9

17
,
−36

17

)
=

9

17
(1,−4).

Note that F1 is a multiple of a so that F1 does point in the direction of a and that F2 · a = 0 so F2 is perpendicular to a.
25. (a) The work done by the force is given to be the product of the length of the displacement (‖−−→PQ‖) and the component of

force in the direction of the displacement (±‖proj−−→
PQ

F‖ or in the case pictured in the text, ‖F‖ cos θ). That is,

Work = ‖−−→PQ‖ ‖F‖ cos θ = F ·

−−→
PQ

using Theorem 3.3.
(b) The displacement vector is

−−→
PQ = i + j − 2k and so, using part (a), we have

Work = F ·

−−→
PQ = (i + 5j + 2k) · (i + j − 2k) = 1 + 5 − 4 = 2.

26. The amount of work is
‖F‖ ‖−−→PQ‖ cos 20◦ = 60 · 12 · cos 20◦ ≈ 676.6 ft-lb.

27. To move the bananas, one must exert an upward force of 500 lb. Such a force makes an angle of 60◦ with the ramp, and it is
the ramp that gives the direction of displacement. Thus the amount of work done is

‖F‖ ‖−−→PQ‖ cos 60◦ = 500 · 40 · 1
2

= 10, 000 ft-lb.

28. Note that i, j, and k each point along the positive x-, y-, and z-axes. Therefore, we may use Theorem 3.3 to calculate that

cos α =
(i + 2j − k) · i

‖i + 2j − k‖(1)
=

1√
6
;

cos β =
(i + 2j − k) · j

‖i + 2j − k‖(1)
=

2√
6
;

cos γ =
(i + 2j − k) · k

‖i + 2j − k‖(1)
= − 1√

6
.
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29. As in the previous problem, we use a = 3i + 4k to find that

cos α =
(3i + 4k) · i

‖3i + 4k‖(1)
=

3

5
;

cos β =
(3i + 4k) · j

‖3i + 4k‖(1)
= 0;

cos γ =
(3i + 4k) · k

‖3i + 4k‖(1)
=

4

5
.

30. You could either use the three right triangles determined by the vector a and the three coordinate axes, or you could use

Theorem 3.3. By that theorem, cos α =
a · i

‖a‖ ‖i‖ =
a1√

a2
1 + a2

2 + a2
3

. Similarly, cos β =
a2√

a2
1 + a2

2 + a2
3

and cos γ =

a3√
a2
1 + a2

2 + a2
3

.

31. Consider the figure:

B

A

C
P1

P2

If P1 is the point on AB located r times the distance from A to B, then the vector
−→
AP1 = r

−→
AB. Similarly, since P2 is the point

on AC located r times the distance from A to C, then the vector
−→
AP2 = r

−→
AC. So now we can look at the line segment P1P2

using vectors.

−−−→
P1P2 =

−→
AP2 −−→

AP1 = r
−→
AC− r

−→
AB = r(

−→
AC−−→

AB) = r
−→
BC.

The two conclusions now follow. Because
−−−→
P1P2 is a scalar multiple of

−→
BC, they are parallel. Also the positive scalar r pulls

out of the norm so ‖−−−→P1P2‖ = ‖r−→BC‖ = r‖−→BC‖.
32. This now follows immediately from Exercise 31 or Example 6 from the text. Consider first the triangle ABC.
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D

A

B

C

M1

M2

M3

M4

If M1 is the midpoint of AB and M2 is the midpoint of BC, we’ve just shown that M1M2 is parallel to AC and has
half its length. Similarly, consider triangle DAC where M3 is the midpoint of CD and M4 is the midpoint of DA. We see
that M3M4 is parallel to AC and has half its length. The first conclusion is that M1M2 and M3M4 have the same length and
are parallel. Repeat this process for triangles ABD and CBD to conclude that M1M4 and M2M3 have the same length and
are parallel. We conclude that M1M2M3M4 is a parallelogram. For kicks—have your students draw the figure for ABCD a
non-convex quadrilateral. The argument and the conclusion still hold even though one of the “diagonals” is not inside of the
quadrilateral.

33. In the diagram in the text, the diagonal running from the bottom left to the top right is a + b and the diagonal running from
the bottom right to the top left is b − a.

‖a + b‖ = ‖−a + b‖ ⇔√
(a + b) · (a + b) =

√
(−a + b) · (−a + b) ⇔√

a · a + b · b + 2a · b =
√

(−1)2a · a + b · b − 2a · b ⇔
a · b = 0

Since neither a nor b is zero, they must be orthogonal.
34. Using the same set up as that in Exercise 33, we note first that

(a + b) · (−a + b) = a · (−a) + b · (−a) + a · b + b · b = −‖a‖2 + ‖b‖2.

It follows immediately that
(a + b) · (−a + b) = 0 ⇔ ‖a‖ = ‖b‖.

In other words that the diagonals of the parallelogram are perpendicular if and only if the parallelogram is a rhombus.
35. (a) Let’s start with the two circles with centers at W1 and W2. Assume that in addition to their intersection at point O that

they also intersect at point C as shown below.

C

O

W2W1

The polygon OW1CW2 is a parallelogram. In fact, because all sides are equal, it is a rhombus. We can, therefore, write
the vector c =

−→
OC =

−→
OW1 +

−→
OW2 = w1 + w2. Similarly, we can write b = w1 + w3 and a = w2 + w3.
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Section 1.4. The Cross Product 17

(b) Let’s use the results of part (a) together with the hint. We need to show that the distance from each of the points A, B,
and C to P is r. Let’s show, for example, that ‖−→CP‖ is r:

‖−→CP‖ = ‖−→OP−−→
OC‖ = ‖(w1 + w2 + w3) − (w1 + w2)‖ = ‖w3‖ = r.

The arguments for the other two points are analogous.
(c) What we really need to show is that each of the lines passing through O and one of the points A, B, or C is perpendicular to

the line containing the two other points. Using vectors we will show that
−→
OA ⊥ −→

BC,
−→
OB ⊥ −→

AC, and
−→
OC ⊥ −→

AB by showing
their dot products are 0. It’s enough to show this for one of them:

−→
OA · −→BC = (w2 + w3) · ((w1 + w2)− (w1 + w3)) =

(w2 + w3) · (w2 − w3) = w2 · w2 + w3 · w2 − w2 · w3 − w3 · w3 = r2 − r2 = 0.
36. (a) This follows immediately from Exercise 34 if you notice that the vectors are the diagonals of the rhombus with two sides

‖b‖a and ‖a‖b.
Or we can proceed with the calculation: (‖b‖a + ‖a‖) · (‖b‖a − ‖a‖b). The only bit of good news here is that the

cross terms clearly cancel each other out and we’re left with: ‖b‖2(a · a)−‖a‖2(b ·b) = ‖b‖2‖a‖2 −‖a‖2‖b‖2 = 0.
(b) As in (a), the slicker way is to recall (or reprove geometrically) that the diagonals of a rhombus bisect the vertex angles.

Then note that (‖b‖a+‖a‖b) is the diagonal of the rhombus with sides ‖b‖a and ‖a‖b and so bisects the angle between
them which is the same as the angle between a and b.

Another way is to let θ1 be the angle between a and ‖b‖a+‖a‖b, and let θ2 be the angle between b and ‖b‖a+‖a‖b.
Then

cos−1 θ1 =
a · (‖b‖a + ‖a‖b)

(‖a‖)‖(‖b‖a + ‖a‖b)‖ =
‖a‖2‖b‖ + ‖a‖a · b

(‖a‖)‖(‖b‖a + ‖a‖b)‖ =
‖a‖ ‖b‖ + a · b
‖(‖b‖a + ‖a‖b)‖ .

Also

cos−1 θ2 =
b · (‖b‖a + ‖a‖b)

(‖b‖)‖(‖b‖a + ‖a‖b)‖ =
‖b‖b · a + ‖b‖2‖a‖

(‖b‖)‖(‖b‖a + ‖a‖b)‖ =
b · a + ‖a‖ ‖b‖
‖(‖b‖a + ‖a‖b)‖ .

So ‖b‖a + ‖a‖b bisects the angle between the vectors a and b.

1.4 The Cross Product

For Exercises 1–4 use Definition 4.2.
1. (2)(3) − (4)(1) = 2.
2. (0)(6) − (5)(−1) = 5.
3. (1)(2)(3) + (3)(7)(−1) + (5)(0)(0) − (5)(2)(−1) − (1)(7)(0) − (3)(0)(3) = −5.
4. (−2)(6)(2) + (0)(−1)(4) + (1/2)(3)(−8) − (1/2)(6)(4) − (−2)(−1)(−8) − (0)(3)(2) = −32.

Note: In Exercises 5–7, the difference between using (2) and (3) really amounts to changing the coefficient of j from (a3b1 −
a1b3) in formula (2) to −(a1b3 − a3b1) in formula (3). The details are only provided in Exercise 5.

5. First we’ll use formula (2):

(1, 3,−2) × (−1, 5, 7) = [(3)(7) − (−2)(5)]i + [(−2)(−1) − (1)(7)]j + [(1)(5) − (3)(−1)]k

= 31i − 5j + 8k = (31,−5, 8).

If instead we use formula (3), we get:

(1, 3,−2) × (−1, 5, 7) =

∣∣∣∣∣∣
i j k

1 3 −2
−1 5 7

∣∣∣∣∣∣
=

∣∣∣∣ 3 −2
5 7

∣∣∣∣ i −
∣∣∣∣ 1 −2
−1 7

∣∣∣∣ j +

∣∣∣∣ 1 3
−1 5

∣∣∣∣k
= 31i − 5j + 8k = (31,−5, 8).
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18 Chapter 1 Vectors

6. Just using formula (3):

(3i − 2j + k) × (i + j + k) =

∣∣∣∣∣∣
i j k

3 −2 1
1 1 1

∣∣∣∣∣∣ =

∣∣∣∣ −2 1
1 1

∣∣∣∣ i −
∣∣∣∣ 3 1

1 1

∣∣∣∣ j +

∣∣∣∣ 3 −2
1 1

∣∣∣∣k
= −3i − 2j + 5k = (−3,−2, 5).

7. Note that these two vectors form a basis for the xy-plane so the cross product will be a vector parallel to (0, 0, 1). Again, just
using formula (3):

(i + j) × (−3i + 2j) =

∣∣∣∣∣∣
i j k

1 1 0
−3 2 0

∣∣∣∣∣∣ =

∣∣∣∣ 1 0
2 0

∣∣∣∣ i −
∣∣∣∣ 1 0
−3 0

∣∣∣∣ j +

∣∣∣∣ 1 1
−3 2

∣∣∣∣k = 5k = (0, 0, 5).

8. By (1) (a + b) × c = −c × (a + b).
By (2), this = −c × a + −c × b.
By (1), this = a × c + b × c.

9. (a + b) × (a − b) = (a × a) + (b × a) − (a × b) − (b × b). The cross product of a vector with itself is 0 and also
(b × a) = −(a × b), so

(a + b) × (a − b) = −2(a × b).

You may wish to have your students consider what this means about the relationship between the cross product of the sides of a
parallelogram and the cross product of its diagonals. In any case, we are given that a×b = (3,−7, −2), so (a+b)×(a−b) =
(−6, 14, 4).

10. If you plot the points you’ll see that they are given in a counterclockwise order of the vertices of a parallelogram. To find the
area we will view the sides from (1, 1) to (3, 2) and from (1, 1) to (−1, 2) as vectors by calculating the displacement vectors:
(3, 2) − (1, 1) and (−1, 2) − (1, 1). We then embed the problem in R3 and take a cross product. The length of this cross
product is the area of the parallelogram.

-

-1 -0.5 0.5 1 1.5 2 2.5 3

1

-0.5

0.5

1

1.5

2

2.5

3
y

x

(3 − 1, 2 − 1, 0) × (−1 − 1, 2 − 1, 0) = (2, 1, 0) × (−2, 1, 0) = 4k = (0, 0, 4).

So the area is ‖(0, 0, 4)‖ = 4.
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11. This is tricky, as the points are not given in order. The figure on the left shows the sides connected in the order that the points
are given.

x

y

-2

0

2

-2

0

2

z

-2

0

2

4

x

y

-2

0

2

-2

0

2

z

-2

0

2

4

As the figure on the right shows, if you take the first side to be the side that joins the points (1, 2, 3) and (4,−2, 1) then
the next side is the side that joins (4,−2, 1) and (0,−3,−2). We will again calculate the length of the cross product of the
displacement vectors. So the area of the parallelogram will be the length of

(0 − 4,−3 − (−2),−2 − 1) × (1 − 4, 2 − (−2), 3 − 1) = (−4,−1,−3) × (−3, 4, 2) = (10, 17,−19).

The length of (10, 17,−19) is
√

102 + 172 + (−19)2 =
√

750 = 5
√

30.
12. The cross product will give us the right direction; if we then divide this result by its length we will get a unit vector:

(2, 1,−3) × (1, 0, 1)

‖(2, 1,−3) × (1, 0, 1)‖ =
(1,−5,−1)

‖(1,−5,−1)‖ =
1√
27

(1,−5,−1).

13. For (a × b) · c to be zero either

• One or more of the three vectors is 0,

• (a × b) = 0 which would happen if a = kb for some real k, or

• c is in the plane determined by a and b.

For Exercises 14–17 we’ll just take half of the length of the cross product. Unlike Exercises 10 and 11, in Exercises 16 and 17
we don’t have to worry about the ordering of the points. In a triangle, whichever order we choose we are traveling either clockwise
or counterclockwise. Just choose any of the vertices as the base for the cross product. Our choices may differ, but the solution
won’t.
14. (1/2)‖(1, 1, 0) × (2,−1, 0)‖ = (1/2)‖(0, 0,−3)‖ = 3/2.
15. (1/2)‖(1,−2, 6) × (4, 3,−1)‖ = (1/2)‖(−16, 25, 11)‖ =

√
1002/2.

16. (1/2)‖(−1 − 1, 2 − 1, 0) × (−2 − 1,−1 − 1, 0)‖ = (1/2)‖(−2, 1, 0) × (−3,−2, 0)‖ =
(1/2)‖(0, 0, 7)‖ = 7/2.

17. (1/2)‖(0 − 1, 2, 3 − 1) × (−1 − 1, 5,−2 − 1)‖ = (1/2)‖(−1, 2, 2) × (−2, 5,−3)‖ =
(1/2)‖(−16,−7,−1)‖ =

√
306/2 = 3

√
34/2.

The triple scalar product is used in Exercises 18 and 19 and the equivalent determinant form mentioned in the text is proved
in Exercise 20.

Some people write this product as a · (b × c) instead of (a × b) · c. Exercise 28 shows that these are equivalent.
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20 Chapter 1 Vectors

18. Here we are given the vectors so we can just use the triple scalar product:

(a × b) · c = ((3i − j) × (−2i + k)) · (i − 2j + 4k) =

∣∣∣∣∣∣
3 −1 0

−2 0 1
1 −2 4

∣∣∣∣∣∣
= 3

∣∣∣∣ 0 1
−2 4

∣∣∣∣− (−1)

∣∣∣∣ −2 1
1 4

∣∣∣∣+ 0

∣∣∣∣ −2 0
1 −2

∣∣∣∣ = 3(2) + (−9) = −3.

Volume = |(a × b) · c| = 3.
19. You need to figure out a useful ordering of the vertices. You can either plot them by hand or use a computer package to help

or you can make some observations about them. First look at the z coordinates. Two points have z = −1 and two have z = 0.
These form your bottom face. Of the remaining points two have z = 5—these will match up with the bottom points with
z = −1, and two have z = 6—these will match up with the bottom points with z = 0. The parallelepiped is shown below.

We’ll use the highlighted edges as our three vectors a, b, and c. You could have based the calculation at any vertex. I have
chosen (4, 2,−1). The three vectors are:

a = (0, 3, 0) − (4, 2,−1) = (−4, 1, 1)

b = (4, 3, 5) − (4, 2,−1) = (0, 1, 6)

c = (3, 0,−1) − (4, 2,−1) = (−1,−2, 0)

0

2

4

0
1

2
3

4

0

2

4

6

z

x

y

We can now calculate

(a × b) · c = ((−4, 1, 1) × (0, 1, 6)) · (−1,−2, 0) =

∣∣∣∣∣∣
−4 1 1

0 1 6
−1 −2 0

∣∣∣∣∣∣
= −4

∣∣∣∣ 1 6
−2 0

∣∣∣∣− 1

∣∣∣∣ 0 6
−1 0

∣∣∣∣+ 1

∣∣∣∣ 0 1
−1 −2

∣∣∣∣ = −4(12) − (6) + (1) = −53.

Finally, Volume = |(a × b) · c| = 53.

Note: The proofs of Exercises 20 and 28 are easier if you remember that if matrix A is just matrix B with any two rows
interchanged then the determinant of A is the negative of the determinant of B. If you don’t use this fact (which is explored in
exercises later in this chapter), you can prove this with a long computation. That is why the author of the text suggests that a
computer algebra system could be helpful—and this would be a great place to use it in a class demonstration.
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20. This is not as bad as it might first appear.

(a × b) · c =

⎛
⎝
∣∣∣∣∣∣

i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
⎞
⎠ · (c1, c2, c3)

=

(
i

∣∣∣∣ a2 a3

b2 b3

∣∣∣∣− j

∣∣∣∣ a1 a3

b1 b3

∣∣∣∣+ k

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣
)
· (c1, c2, c3)

= c1

∣∣∣∣ a2 a3

b2 b3

∣∣∣∣− c2

∣∣∣∣ a1 a3

b1 b3

∣∣∣∣+ c3

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣
=

∣∣∣∣∣∣
c1 c2 c3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ = −
∣∣∣∣∣∣

a1 a2 a3

c1 c2 c3

b1 b2 b3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣
21. (a × b) · c =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ by Exercise 20. Similarly, a · (b × c) = (b × c) · a =

∣∣∣∣∣∣
b1 b2 b3

c1 c2 c3

a1 a2 a3

∣∣∣∣∣∣ by Exercise 20.

Expand these determinants to see that they are equal.∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ = a1(b2c3 − b3c2) − a2(b1c3 − b3c1) + a3(b1c2 − b2c1)

∣∣∣∣∣∣
b1 b2 b3

c1 c2 c3

a1 a2 a3

∣∣∣∣∣∣ = b1(a3c2 − a2c3) − b2(a3c1 − a1c3) + b3(a2c1 − a1c2)

22. The value of |(a× b) · c| is the volume of the parallelepiped determined by the vectors a,b, c. But so is |b · (a× c)|, so the
quantities must be equal.

23. (a) We have

Area = 1
2
‖−−−→P1P2 ×−−−→

P1P3‖
= 1

2
‖(x2 − x1, y2 − y1, 0) × (x3 − x1, y3 − y1, 0)‖

Now
−−−→
P1P2 ×−−−→

P1P3 =

∣∣∣∣∣∣
i j k

x2 − x1 y2 − y1 0
x3 − x1 y3 − y1 0

∣∣∣∣∣∣
= [(x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1)]k

P3

y

x

P2
P1

Hence the area is 1
2
|(x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1)|. On the other hand

1
2

∣∣∣∣∣∣
1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ = 1
2

(∣∣∣∣ x2 x3

y2 y3

∣∣∣∣−
∣∣∣∣ x1 x3

y1 y3

∣∣∣∣+
∣∣∣∣ x1 x2

y1 y2

∣∣∣∣
)

.

Expanding and taking absolute value, we obtain
1
2
|x2y3 − x3y2 + x3y1 − x1y3 + x1y2 − x2y1|.
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From here, its easy to see that this agrees with the formula above.

(b) We compute the absolute value of 1
2

∣∣∣∣∣∣
1 1 1
1 2 −4
2 3 −4

∣∣∣∣∣∣ = 1
2
(−8 − 8 + 3 − 4 + 12 + 4) = 1

2
(−1) = − 1

2
.

Thus the area is
∣∣− 1

2

∣∣ = 1
2

.
24. Surface area = 1

2
(‖a × b‖ + ‖b × c‖ + ‖a × c‖ + ‖(b − a) × (c − a)‖)

c

a

b

25. We assume that a, b, and c are non-zero vectors in R3.
(a) The cross product a × b is orthogonal to both a and b.

(b) Scale the cross product to a unit vector by dividing by the length and then multiply by 2 to get 2

(
a × b

‖a × b‖
)

.

(c) projab =

(
a · b
a · a

)
a.

(d) Here we divide vector a by its length and multiply it by the length of b to get
(‖b‖
‖a‖

)
a.

(e) The cross product of two vectors is orthogonal to each: a × (b × c).
(f) A vector perpendicular to a × b will be back in the plane determined by a and b, so our answer is (a × b) × c.

26. I love this problem—students tend to go ahead and calculate without thinking through what they’re doing first. This would
make a great quiz at the beginning of class.
(a) Vector: The cross product of the vectors a and b is a vector so you can take its cross product with vector c.
(b) Nonsense: The dot product of the vectors a and b is a scalar so you can’t dot it with a vector.
(c) Nonsense: The dot products result in scalars and you can’t find the cross product of two scalars.
(d) Scalar: The cross product of the vectors a and b is a vector so you can take its dot product with vector c.
(e) Nonsense: The cross product of the vectors a and b is a vector so you can take its cross product with vector that is the

result of the cross product of c and d.
(f) Vector: The dot product results in a scalar that is then multiplied by vector d. We can evaluate the cross product of vector

a with this result.
(g) Scalar: We are taking the dot product of two vectors.
(h) Vector: You are subtracting two vectors.

Note: You can have your students use a computer algebra system for these as suggested in the text. I’ve included worked out
solutions for those as old fashioned as I am.

27. Exercise 25(f) shows us that (a×b)× c is in the plane determined by a and b and so we expect the solution to be of the form
k1a + k2b for scalars k1 and k2.

Using formula (3) from the text for a × b:

(a × b) × c =

∣∣∣∣∣∣∣∣
i j k∣∣∣∣ a2 a3

b2 b3

∣∣∣∣ −
∣∣∣∣ a1 a3

b1 b3

∣∣∣∣
∣∣∣∣ a1 a2

b1 b2

∣∣∣∣
c1 c2 c3

∣∣∣∣∣∣∣∣
=

(
−
∣∣∣∣ a1 a3

b1 b3

∣∣∣∣ c3 −
∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ c2

)
i −

(∣∣∣∣ a2 a3

b2 b3

∣∣∣∣ c3 −
∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ c1

)
j

+

(∣∣∣∣ a2 a3

b2 b3

∣∣∣∣ c2 +

∣∣∣∣ a1 a3

b1 b3

∣∣∣∣ c1

)
k

Look first at the coefficient of i: −a1b3c3 + a3b1c3 − a1b2c2 + a2b1c2. If we add and subtract a1b1c1 and regroup we have:
b1(a1c1 + a2c2 + a3c3) − a1(b1c1 + b2c2 + b3c3) = b1(a · c) − a1(b · c). Similarly for the coefficient of j. Expand then
add and subtract a2b2b3 and regroup to get b2(a · c)− a2(b · c). Finally for the coefficient of k, expand then add and subtract
a3b3c3 and regroup to obtain b3(a · c) − a3(b · c). This shows that (a × b) × c = (a · c)b − (b · c)a.
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Now here’s a version of Exercise 27 worked on Mathematica. First you enter the following to define the vectors a, b, and
c.

a = {a1, a2, a3}
b = {b1, b2, b3}
c = {c1, c2, c3}

The reply fromMathematica is an echo of your input for c. Let’s begin by calculating the cross product. You can either select
the cross product operator from the typesetting palette or you can type the escape key followed by “cross” followed by the
escape key. Mathematica should reformat this key sequence as × and you should be able to enter

(a × b) × c.

Mathematica will respond with the calculated cross product

{a2b1c2 − a1b2c2 + a3b1c3 − a1b3c3,

−a2b1c1 + a1b2c1 + a3b2c3 − a2b3c3,

−a3b1c1 + a1b3c1 − a3b2c2 + a2b3c2}.
Now you can check the other expression. Use a period for the dot in the dot product.

(a.c)b − (b.c) a

Mathematica will immediately respond

{b1(a1c1 + a2c2 + a3c3) − a1(b1c1 + b2c2 + b3c3),

b2(a1c1 + a2c2 + a3c3) − a2(b1c1 + b2c2 + b3c3),

b3(a1c1 + a2c2 + a3c3) − a3(b1c1 + b2c2 + b3c3)}
This certainly looks different from the previous expression. Before giving up hope, note that this one has been factored and
the earlier one has not. You can expand this by using the command

Expand[(a.c)b − (b.c)a]

or use Mathematica’s command % to refer to the previous entry and just type

Expand[%].

This still might not look familiar. So take a look at

(a × b) × c − [(a.c)b − (b.c)a].

If this still isn’t what you are looking for, simplify it with the command

Simplify[%]

andMathematica will respond
{0, 0, 0}.

28. The exercise asks us to show that six quantities are equal.
The most important pair is a · (b×c) = c · (a×b). Because of the commutative property of the dot product c · (a×b) =

(a × b) · c and so we are showing that a · (b × c) = (a × b) · c.

c · (a × b) = (a × b) · c =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣
=

∣∣∣∣∣∣
b1 b2 b3

c1 c2 c3

a1 a2 a3

∣∣∣∣∣∣
= (b × c) · a = a · (b × c).
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The determinants of the 3 by 3 matrices above are equal because we had to interchange two rows twice to get from one to
the other. This fact has not yet been presented in the text. This would be an excellent time to use a computer algebra system
to show the two determinants are equal. Of course, you could use Mathematica or some other such system to do the entire
problem.

To show that a · (b × c) = b · (c × a) we use a similar approach:

a · (b × c) = (b × c) · a =

∣∣∣∣∣∣
b1 b2 b3

c1 c2 c3

a1 a2 a3

∣∣∣∣∣∣
=

∣∣∣∣∣∣
c1 c2 c3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
= (c × a) · b = b · (c × a).

So we’ve established that the first three triple scalars are equal.
We get the rest almost for free by noticing that three pairs of equations are trivial:

a · (b × c) = −a · (c × b),

b · (c × a) = −b · (a × c), and

c · (a × b) = −c · (b × a).

Each of the above pairs are equal by the anticommutativity property of the cross product. If you prefer the matrix approach,
this also follows from the fact that interchanging two rows changes the sign of the determinant.

29. By Exercise 28, (a × b) · (c × d) = c · (d × (a × b)).
By anticommutativity, c · (d × (a × b)) = −c · ((a × b) × d).

By Exercise 27, −c · ((a × b) × d) = −c · ((a · d)b − (b · d)a) = (a · c)(b · d) − (a · d)(b · c) =

∣∣∣∣ a · c a · d
b · c b · d

∣∣∣∣.
30. Apply the results of Exercise 27 to each of the three components:

(a × b) × c + (b × c) × a + (c × a) × b = [(a · c)b − (b · c)a] + [(b · a)c − (c · a)b]

+ [(c · b)a − (a · b)c] = 0.

(For example, the (a · c)b cancels with the (c · a)b because of the commutative property for the dot product.)
31. If your students are using a computer algebra system, they may not notice that this is exactly the same problem as Exercise 27.

Just replace c with (c × d) on both sides of the equation in Exercise 27 to obtain the result here.
32. First apply Exercise 29 to the dot product to get

(a × b) · (b × c) × (c × a) = [a · (b × c)][b · (c × a)] − [a · (c × a)][b · (b × c)].

You can either observe that two of these quantities must be 0, or you can apply Exercise 28 to see a ·(c×a) = c ·(a×a) = 0.
Exercise 28 also shows that b · (c × a) = a · (b × c). The result follows.

33. We did this above in Exercise 29.
34. The amount of torque is the product of the length of the “wrench” and the component of the force perpendicular to the

“wrench”. In this case, the wrench is the door—so the length is four feet. The 20 lb force is applied perpendicular to the
plane of the doorway and the door is open 45◦. So from the text, the amount of torque = ‖a‖‖F‖ sin θ = (4)(20)(

√
2/2) =

40
√

2 ft-lb.
35. (a) Here the length of a is 1 foot, the force F = 40 pounds and angle θ = 120 degrees. So

Torque = (1)(40) sin 120◦ = 40

(√
3

2

)
= 20

√
3 foot-pounds.

(b) Here all that has changed is that ‖a‖ is 1.5 feet, so

Torque = (3/2)(40) sin 120◦ = 60

(√
3

2

)
= 30

√
3 foot-pounds.
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36. a = 2 in but torque is measured in foot-pounds so ‖a‖ = (1/6) ft.

Torque = a × F =

(
1

6
, 0, 0

)
× (0, 15, 0) =

(
0, 0,

5

2

)
.

So Egbert is using 5/2 foot-pounds straight up.
37. From the figure

sin θ =
1.5

3
=

1

2

⇒ θ = π/6.

This is the angle the seesaw makes with horizontal. The angle we want is

π/6 + π/2 = 2π/3.

Since ‖r‖ = 3 and ‖F‖ = 50, the amount of torque is

‖T‖ = ‖r × F‖ = ‖r‖ ‖F‖ sin
2π

3

= 3 · 50 ·
√

3

2
= 75

√
3 ft-lb

1.5�
3�

�

F

r

2�/3

F (translated)

38. (a) The linear velocity is v = ω × r so that

‖v‖ = ‖ω‖ ‖r‖ sin θ.

We have that the angular speed is 2π radians
24 hrs

= π
12

radians/hr (this is ‖ω‖.) Also ‖r‖ = 3960, so at 45◦ North latitude,
‖v‖ = π

12
· 3960 · sin 45◦ = 330π√

2
≈ 733.08 mph.

(b) Here the only change is that θ = 90◦. Thus ‖v‖ = π
2
· 3960 · sin 90◦ = 330π ≈ 1036.73 mph.

39. Archie’s actual experience isn’t important in solving this problem; he could have ridden closer to the center. Since we are only
interested in comparing Archie’s experience with Annie’s, it turns out that their difference would be the same so long as the dif-
ference in their distance from the center remained at 2 inches. The difference in speed is (331/3)(2π)(6)−(331/3)(2π)(4) =
(331/3)(2π)(2) = 4π(331/3) = 1331/3π = 400π/3 in/ min.

40. (a) v = ω × r = (0, 0, 12) × (2,−1, 3) = (12, 24, 0) = 12i + 24j.
(b) The height of the point doesn’t change so we can view this as if it were a problem in R2. When x = 2 and y = −1, we

can find the central angle by taking tan−1(−1/2). In one second the angle has moved 12 radians so the new point is

(
√

5 cos(tan−1(−1/2) + 12),
√

5 sin(tan−1(−1/2) + 12), 3) ≈ (1.15,−1.92, 3).
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41. Consider the rotations of a sphere about each of the two parallel axes pictured below.

W2 W1

Assume the two corresponding angular velocity vectors ω1 and ω2 (denoted w1 and w2 in the diagram) are “parallel” and
even have the same magnitude. Let them both point straight up (parallel to (0, 0, 1)) with magnitude 2π radians per second.
The idea is that as “free vectors” ω1 and ω2 are both equal to (0, 0, 2π). but that the corresponding rotational motions are
very different.

In the case of ω1, each second every point on the sphere has made a complete orbit around the axis. The corresponding
motion is that the sphere is rotating about this axis. (More concretely, take your Vector Calculus book and stand it up on its
end. Imagine an axis anywhere and spin it around that axis at a constant speed.)

In the case of ω2, each second every point on the sphere has made a complete orbit around the axis. In this case that means
that the corresponding motion is that the sphere is orbiting about this axis. (Hold your Vector Calculus book at arms length
and you spin around your axis.)

1.5 Equations for Planes; Distance Problems

1. This is a straightforward application of formulas (1) and (2):

1(x − 3) − (y + 1) + 2(z − 2) = 0 ⇐⇒ x − y + 2z = 8.

2. Again we apply formula (2):
(x − 9) − 2(z + 1) = 0 ⇐⇒ x − 2z = 11.

So what happened to the y term? The equation is independent of y. In the x− z plane draw the line x− 2z = 11 and then the
plane is generated by “dragging” the line either way in the y direction.

3. We first need to find a vector normal to the plane, so we take the cross product of two displacement vectors:

(3 − 2,−1 − 0, 2 − 5) × (1 − 2,−2 − 0, 4 − 5) = (1,−1,−3) × (−1,−2,−1) = (−5, 4,−3).

Now we can apply formula (2) using any of the three points:

−5(x − 3) + 4(y + 1) − 3(z − 2) = 0 ⇐⇒ −5x + 4y − 3z = −25.

4. We’ll again find the cross product of two displacement vectors:

(A,−B, 0) × (0,−B, C) = (−BC,−AC,−AB).

Now we apply formula (2):

−BC(x − A) − AC(y) − AB(z) = 0 ⇐⇒ BCx + ACy + ABz = ABC.

5. If the planes are parallel, then a vector normal to one is normal to the other. In this case the normal vector is n = (5,−4, 1).
So using formula (2) we get:

5(x − 2) − 4(y + 1) + (z + 2) = 0 ⇐⇒ 5x − 4y + z = 12.
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6. The plane must have a normal vector parallel to the normal n = 2i − 3j + k of the given plane; therefore, the vector n may
also be taken to be the normal to the desired plane. Hence an equation is

2(x + 1) − 3(y − 1) + 1(z − 2) = 0 ⇐⇒ 2x − 3y + z = −3.

7. We may take the normal to the plane to be the same as a normal to the given plane; thus we may let n = i − j + 7k. Hence
an equation for the desired plane is

1(x + 2) − 1(y − 0) + 7(z − 1) = 0 ⇐⇒ x − y + 7z = 5.

8. We may take the normal to the desired plane to be n = 2i + 2j + k. Therefore, the equation of the plane must be of the
form 2x + 2y + z = D for some constant D. For the plane to contain the given line, every point on the line must satisfy the
equation for the plane. Thus for all t ∈ R we must have

2(2 − t) + 2(2t + 1) + (3 − 2t) = D

⇐⇒ 4 − 2t + 4t + 2 + 3 − 2t = D

⇐⇒ 9 = D.

Hence the desired equation is 2x + 2y + z = 9.
9. Any plane parallel to 5x − 3y + 2z = 10 can be written in the form 5x − 3y + 2z = D for some constant D. For this plane

to contain the given line, it must be the case that for all t ∈ R we have

5(t + 4) − 3(3t − 2) + 2(5 − 2t) = D

⇐⇒ 5t + 20 − 9t + 6 + 10 − 4t = D

⇐⇒ 36 − 8t = D ⇐⇒ 8t = 36 − D.

However, there is no constant value for D for which 8t = 36 − D for all t ∈ R. Hence the given line will intersect each
plane parallel to 5x − 3y + 2z = 10, but it will never be completely contained in any of them.

10. The plane contains the line r(t) = (−1, 4, 7) + (2, 3,−1)t and the point (2, 5, 0). Choose two points on the line, for example
(−1, 4, 7) and (13, 25, 0) and proceed as in Exercises 3 and 4.

(−1 − 2, 4 − 5, 7 − 0) × (13 − 2, 25 − 5, 0) = (−3,−1, 7) × (11, 20, 0) = (−140, 77,−49)

= 7(−20, 11,−7).

We are just looking for the plane perpendicular to this vector so we can ignore the scalar 7.

−20(x − 2) + 11(y − 5) − 7(z) = 0 ⇐⇒ −20x + 11y − 7z = 15.

11. The only relevant information contained in the equation of the line r(t) = (−5, 4, 7) + (3,−2,−1)t is the vector coefficient
of t. This is the normal vector n = (3,−2,−1).

3(x − 1) − 2(y + 1) − (z − 2) = 0 ⇐⇒ 3x − 2y − z = 3.

12. We have two lines given by the vector equations:

r1(t) = (2,−5, 1) + (1, 3, 5)t

r2(t) = (5,−10, 9) + (−1, 3,−2)t

The vector (1, 3, 5) × (−1, 3,−2) = (−21,−3, 6) = −3(7, 1,−2) is orthogonal to both lines. So the equation of the plane
containing both lines is:

7(x − 2) + y + 5 − 2(z − 1) = 0 ⇐⇒ 7x + y − 2z = 7.
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13. The line shared by two planes will be orthogonal each of their normal vectors. First, calculate: (1, 2,−3) × (5, 5,−1) =
(13,−14,−5). Now find a point on the line by setting z = 0 and solving the two equations{

x + 2y = 5
5x + 5y = 1

to get x = −23/5 and y = 24/5. The equation of the line is r(t) = (−23/5, 24/5, 0) + (13,−14,−5)t, or in paramet-
ric form: ⎧⎪⎨

⎪⎩
x = 13t − 23

5

y = −14t + 24
5

z = −5t.

14. The normal to the plane is n = (2,−3, 5) and the line passes through the point P = (5, 0, 6). The equation of the line

r(t) = P + nt = (5, 0, 6) + (2,−3, 5) t.

In parametric form this is: ⎧⎨
⎩

x = 2t + 5
y = −3t
z = 5t + 6.

15. The easiest way to solve this is to check that the vector from the coefficients of the first equation (8,−6, 9A) is a multiple of
the coefficients of the second equation (A, 1, 2). In this case the first is −6 times the second. This means that 8 = −6A or
A = −4/3. Checking we see this is confirmed by 9A = −6(2).

16. For perpendicular planes we check that 0 = (A,−1, 1) · (3A, A,−2). This yields the quadratic 0 = 3A2 − A − 2 =
(3A + 2)(A − 1). The two solutions are A = −2/3 and A = 1.

17. This is a direct application of formula (10):

x(s, t) = sa + tb + c = s(2,−3, 1) + t(1, 0,−5) + (−1, 2, 7).

In parametric form this is: ⎧⎨
⎩

x = 2s + t − 1
y = −3s + 2
z = s − 5t + 7

18. Again this follows from formula (10):

x(s, t) = s(−8, 2, 5) + t(3,−4,−2) + (2, 9,−4) or

⎧⎨
⎩

x = −8s + 3t + 2
y = 2s − 4t + 9
z = 5s − 2t − 4

19. The plane contains the lines given by the equations:

r1(t) = (5,−6, 10) + t(2,−3, 4), and

r2(t) = (−1, 3,−2) + t(5, 10, 7).

So we use formula (10) with the vectors (2,−3, 4) and (5, 10, 7) and either of the two points to get:

x(s, t) = t(2,−3, 4) + s(5, 10, 7) + (−1, 3,−2) or

⎧⎨
⎩

x = 2t + 5s − 1
y = −3t + 10s + 3
z = 4t + 7s − 2.

20. We need to find two out of the three displacement vectors and use any of the three points:

a = (0, 2, 1) − (7,−1, 5) = (−7, 3,−4) and b = (0, 2, 1) − (−1, 3, 0) = (1,−1, 1) so

x(s, t) = s(−7, 3,−4) + t(1,−1, 1) + (0, 2, 1) or

⎧⎨
⎩

x = −7s + t
y = 3s − t + 2
z = −4s + t + 1.
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21. The equation of the line r(t) = (−5, 10, 9) + t(3,−3, 2) immediately gives us one of the two vectors a = (3,−3, 2). The
displacement vector from a point on the line to our given point gives us the vector b = (−5, 10, 9)− (−2, 4, 7) = (−3, 6, 2).
So our equations are:

x(s, t) = s(3,−3, 2) + t(−3, 6, 2) + (−5, 10, 9) or

⎧⎨
⎩

x = 3s − 3t − 5
y = −3s + 6t + 10
z = 2s + 2t + 9.

22. To convert to the parametric form we will need two vectors orthogonal to the normal direction n = (2,−3, 5) and a point on
the plane. The easiest way to find an orthogonal vector is to let one coordinate be zero and find the other two. For example if
the x component is zero then (2,−3, 5) · (0, y, z) = −3y + 5z is solved when y = 5k and z = 3k for any scalar k. In other
words, the vectors a = (0, 5, 3) and b = (3, 2, 0) are orthogonal to n. For a point in the plane 2x − 3y + 5z = 30, set any
two of x, y, and z to zero. For example (0, 0, 6) is in the plane. Our parametric equations are:

x(s, t) = s(0, 5, 3) + t(3, 2, 0) + (0, 0, 6) or

⎧⎨
⎩

x = 3t
y = 5s + 2t
z = 3s + 6.

23. We combine the parametric equations into the single equation:

x(s, t) = s(3, 4, 1) + t(−1, 1, 5) + (2, 0, 3).

Use the cross product to find the normal vector to the plane:

n = (3, 4, 1) × (−1, 1, 5) = (19,−16, 7).

So the equation of the plane is:

19(x − 2) − 16y + 7(z − 3) = 0 or 19x − 16y + 7z = 59.

24. Using method 1 of Example 7, choose a point B on the line, say B = (−5, 3, 4). Then −−→BP0 = (−5, 3, 4) − (1,−2, 3) =
(−6, 5, 1), and a = (2,−1, 0). So

proja
−−→BP0 =

(
a · −−→BP0

a · a

)
a =

(
(2,−1, 0) · (−6, 5, 1)

(2,−1, 0) · (2,−1, 0)

)
(2,−1, 0) =

−17

5
(2,−1, 0).

The distance is

‖−−→BP0 − proja
−−→BP0‖ =

∥∥∥∥(−6, 5, 1) − −17

5
(2,−1, 0)

∥∥∥∥ = (1/5)‖(4, 8, 5)‖ =
√

105/5.

25. This time we’ll use method 2 of Example 7. Again choose a point B on the line and a vector a parallel to the line. The distance
is then

D =
‖a × −−→BP0‖

‖a‖ =
‖(3, 5, 0) × (7 − 2,−3 + 1, 0)‖

‖(3, 5, 0)‖ =
31√
34

.

For a method 3, you could have solved for an arbitrary point on the line B such that −−→BP0 · a = 0 and then found the length of−→BP0. In R2, the calculation is not too bad.
26. Using method 1 of Example 7, choose a point B on the line, say B = (5, 3, 8). Then −−→BP0 = (−11, 10, 20) − (5, 3, 8) =

(−16, 7, 12), and a = (−1, 0, 7). So

proja
−−→BP0 =

(
a · −−→BP0

a · a

)
a =

(
(−1, 0, 7) · (−16, 7, 12)

(−1, 0, 7) · (−1, 0, 7)

)
(−1, 0, 7) = (−2, 0, 14).

The distance is
‖−−→BP0 − proja

−−→BP0‖ = ‖(−16, 7, 12) − (−2, 0, 14)‖ = ‖(−14, 7,−2)‖ =
√

249.
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27. Use Example 9 and for two points B1 = (−1, 3, 5) on l1 and B2 = (0, 3, 4) on l2 calculate
−−−→
B1B2 = (1, 0,−1). To find the

vector n, calculate the cross product n = (8,−1, 0) × (0, 3, 1) = (−1,−8, 24).

projn
−−−→
B1B2 =

(
n · −−−→B1B2

n · n

)
n =

(
(−1,−8, 24) · (1, 0,−1)

(−1,−8, 24) · (−1,−8, 24)

)
(−1,−8, 24)

= − 25

641
(−1,−8, 24).

Finally
∥∥∥∥− 25

641
(−1,−8, 24)

∥∥∥∥ =
25√
641

.

28. Again, use Example 9 and for two points B1 = (−7, 1, 3) on l1 and B2 = (0, 2, 1) on l2 calculate
−−−→
B1B2 = (7, 1,−2). To

find the vector n, calculate the cross product n = (1, 5,−2) × (4,−1, 8) = (38,−16,−21).

projn
−−−→
B1B2 =

(
n · −−−→B1B2

n · n

)
n =

(
(38,−16,−21) · (7, 1,−2)

(38,−16,−21) · (38,−16,−21)

)
(38,−16,−21)

=
292

2141
(38,−16,−21).

Finally
∥∥∥∥ 292

2141
(38,−16,−21)

∥∥∥∥ =
292√
2141

.

29. (a) Again, use Example 9 with the two points B1 = (4, 0, 2), and B2 = (2, 1, 3) and normal vector n = (3, 1, 2)×(1, 2, 3) =

(−1,−7, 5). The displacement vector is
−−−→
B1B2 = (−2, 1, 1). Note that

−−−→
B1B2 is orthogonal to n and so the projection

projn
−−−→
B1B2 = 0 (if you’d like, you can go ahead and calculate this) and so the lines are distance 0 apart.

(b) This means that the lines must have a point in common (that they intersect at least once). The lines are not parallel so they
have exactly one point in common (i.e., they aren’t the same line).

30. (a) The shortest distance between a point P0 and a line l is a straight line that meets P0 orthogonally. If we have two
nonparallel lines then we can use the cross product to find the one direction n that is orthogonal to each. The shortest
segment between two lines will meet each orthogonally, for two skew lines l1 and l2 the line that joins them at these
closest points will be parallel to n.

If instead l1 is parallel to l2 we get a whole plane’s worth of orthogonal directions. We have no way of choosing a
unique vector n that is used in the calculation.

O.K., that’s why we can’t use the method of Example 9. What can we do instead?
(b) Fix a point on l1, say P1 = (2, 0,−4). Then as we saw in an earlier exercise, the distance from P1 to an arbitrary point

P2 = (1 + t, 3 − t,−5 + 5t) on l2 is

‖−−−→P1P2‖ =
√

(t − 1)2 + (3 − t)2 + (−1 + 5t)2 =
√

27t2 − 18t + 11.

‖−−−→P1P2‖ is minimized when ‖−−−→P1P2‖2 is minimized. This is at the vertex of the parabola, when 54t− 18 = 0 or t = 1/3.
At this point the distance is √

27(1/3)2 − 18(1/3) + 11 =
√

3 − 6 + 11 =
√

8 = 2
√

2.

Note: In Exercises 31–33 we could just cut to the end of Example 8 and realize that the length of projn
−−−→
P1P2 =

|n · −−−→P1P2|
‖n‖ .

Instead we will stay true to the spirit of the examples and follow the argument through.

31. These planes are parallel so we can use Example 8. The point P1 = (1, 0, 0) is on plane one and the point P2 = (8, 0, 0) is
on plane two. We project the displacement vector

−−−→
P1P2 = (7, 0, 0) onto the normal direction n = (1,−3, 2):

projn
−−−→
P1P2 =

(
(7, 0, 0) · (1,−3, 2)

(1,−3, 2) · (1,−3, 2)

)
(1,−3, 2) =

7

14
(1,−3, 2) =

1

2
(1,−3, 2).

So the distance is ‖projn
−−−→
P1P2‖ =

√
14/2.
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32. These planes are also parallel. We choose point P1 = (0, 0, 6) on plane one and P2 = (0, 0,−2) on plane two. The
displacement vector is therefore

−−−→
P1P2 = (0, 0,−8), and the normal vector is n = (5,−2, 2). So

projn
−−−→
P1P2 =

(
(0, 0,−8) · (5,−2, 2)

(5,−2, 2) · (5,−2, 2)

)
(5,−2, 2) =

−16

33
(5,−2, 2).

The distance is ‖projn
−−−→
P1P2‖ = 16√

33
.

33. As in Exercises 27 and 28, we’ll choose a point P1 = (D1/A, 0, 0) on plane one and P2 = (D2/A, 0, 0) on plane two. The
displacement vector is

−−−→
P1P2 =

(
D2 − D1

A
, 0, 0

)
.

A vector normal to the plane is n = (A, B, C).

projn
−−−→
P1P2 =

((
D2−D1

A
, 0, 0

) · (A, B, C)

(A, B, C) · (A, B, C)

)
(A, B, C) =

D2 − D1

A2 + B2 + C2
(A, B, C).

The distance between the two planes is:

‖projn
−−−→
P1P2‖ =

|D2 − D1|
A2 + B2 + C2

‖(A, B, C)‖ =
|D2 − D1|√

A2 + B2 + C2
.

34. (a) Plane one is normal to n1 = (9,−5, 9) × (3,−2, 3) = (3, 0,−3) while plane two is normal to n2 = (−9, 2,−9) ×
(−4, 7,−4) = (55, 0,−55). So n1 = (3/55)n2, i.e. they normal vectors are parallel so the planes are parallel.

(b) We’ll use the two points in the given equations to get the displacement vector
−−−→
P1P2 = (8,−4, 12), and the normal vector

n = (3, 0,−3). So

projn
−−−→
P1P2 =

(
(8,−4, 12) · (3, 0,−3)

(3, 0,−3) · (3, 0,−3)

)
(3, 0,−3) =

−12

18
(3, 0,−3).

The distance is ‖projn
−−−→
P1P2‖ = 12√

18
= 12

3
√

2
= 4√

2
= 2

√
2.
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35. This exercise follows immediately from Exercise 33 (and can be very difficult without it). Here A = 1, B = 3, C = −5 and
D1 = 2. The equation in Exercise 33 becomes:

3 =
|2 − D2|√

12 + 32 + (−5)2
=

|2 − D2|√
35

.

So
3
√

35 = |2 − D2| or 2 − D2 = ±3
√

35.

So D2 = 2 ± 3
√

35 and the equations of the two planes are:

x + 3y − 5z = 2 ± 3
√

35.

36. The lines are parallel, so the distance between them is the same as the distance between any point on one of the lines and the

other line. Thus take b2—the position vector of a point on the second line—and use Example 7. Then D =
‖a × (b2 − b1)‖

‖a‖ .

a

a

b1

b2

37. We have
−→
AB = b − a.

D = ‖projn(b − a)‖ =
|n · (b − a)|

‖n‖2
‖n‖

=
|n · (b − a)|

‖n‖ .

B

A

n

(As for the motivation, consider Example 8 with A as P1, B as P2.)
38. The parallel planes have equations n · (x − x1) = 0 and n · (x − x2) = 0. The desired distance is given by ‖projn

−−−→
P1P2‖

where Pi is the point whose position vector is xi. Thus
−−−→
P1P2 = x2 − x1 so

‖projn
−−−→
P1P2‖ =

|n · (x2 − x1)|
‖n‖2

‖n‖

=
|n · (x2 − x1)|

‖n‖ .

39. By letting t = 0 in each vector parametric equation, we obtain b1,b2 as position vectors of points B1, B2 on the respective
lines. Hence

−−−→
B1B2 = b2 − b1. A vector n perpendicular to both lines is given by n = a1 × a2. Thus

D = ‖projn
−−−→
B1B2‖ =

|n · −−−→B1B2|
‖n‖2

‖n‖ =
|n · −−−→B1B2|

‖n‖

=
|(a1 × a2) · (b2 − b1)|

‖a1 × a2‖ .
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1.6 Some n-dimensional Geometry

1. (a) (1, 2, 3, . . . , n) = (1, 0, 0, . . . , 0) + 2(0, 1, 0, 0, . . . , 0) + · · · + n(0, 0, 0, . . . , 0, 1) = e1 + 2e2 + 3e3 + · · · + nen.
(b) (1, 0,−1, 1, 0,−1, . . . , 1, 0,−1) = e1 − e3 + e4 − e6 + e7 − e9 + · · · + en−2 − en.

2. e1 + e2 + · · · + en = (1, 1, 1, . . . , 1).
3. e1 − 2e2 + 3e3 − 4e4 + · · · + (−1)n+1nen = (1,−2, 3,−4, . . . , (−1)n+1n).
4. e1 + en = (1, 0, 0, . . . , 0, 1).
5. (a) a + b = (1 + 2, 3− 4, 5 + 6, 7− 8, . . . , 2n− 1 + (−1)n+12n) = (3,−1, 11,−1, 19,−1, . . . , 2n− 1 + (−1)n+12n).

The nth term is
{

4n − 1 if n is odd, and
−1 if n is even.

(b) a−b = (1− 2, 3 + 4, 5− 6, 7 + 8, . . . , 2n− 1− (−1)n+12n) = (−1, 7,−1, 15,−1, . . . , 2n− 1− (−1)n+12n). The

nth term is
{

4n − 1 if n is even, and
−1 if n is odd.

(c) −3(1, 3, 5, 7, . . . , 2n − 1) = (−3,−9,−15,−21, . . . ,−6n + 3).
(d) ‖a‖ =

√
a · a =

√
12 + 32 + 52 + · · · + (2n − 1)2.

(e) a · b = 1(2) + 3(−4) + 5(6) + · · · + (2n − 1)(−1)n+12n = 2 − 12 + 30 − 56 + · · · + (−1)n+12n(2n − 1).
6. We want to show that ‖a + b‖ ≤ ‖a‖ + ‖b‖. Here n is even and a and b are vectors in Rn,

a = (1, 0, 1, 0, . . . , 0)

b = (0, 1, 0, 1, . . . , 1), and

a + b = (1, 1, 1, 1, . . . , 1).

‖a + b‖ =
√

12 + 12 + · · · + 12︸ ︷︷ ︸
n times

=
√

n = 2
√

n/4 ≤ 2
√

n/2 = 2
√

12 + 12 + · · · + 12︸ ︷︷ ︸
n/2 times

= ‖a‖ + ‖b‖.

7. First we calculate

‖a‖ =
√

12 + 22 + 32 + · · · + n2 =

√
n(n + 1)(2n + 1)

6

‖b‖ =
√

12 + 12 + · · · + 12︸ ︷︷ ︸
n times

=
√

n, and

|a · b| = 1 + 2 + 3 + · · · + n =
n(n + 1)

2

So

‖a‖ ‖b‖ =

(√
n(n + 1)(2n + 1)

6

)
(
√

n) =
(n

2

)(√ 2(n + 1)(2n + 1)

3

)
.

For n = 1,
√

2(n+1)(2n+1)
3

= 2 = n + 1.

For n = 2,
√

2(n+1)(2n+1)
3

=
√

10 ≥ 3 = n + 1.
For n ≥ 3, (n

2

)(√ 2(n + 1)(2n + 1)

3

)
≥
(n

2

) 2n + 1√
3

≥
(n

2

)
(n + 1) = |a · b|.

8. As always,

projab =

(
a · b
a · a

)
a =

2 − 5 + 27 − 2

1 + 1 + 49 + 9 + 4
a =

22

64
a

=
11

32
(1,−1, 7, 3, 2) =

(
11

32
,
−11

32
,
77

32
,
11

16

)
.

9. This is just the triangle inequality:

‖a − b‖ = ‖(a − c) + (c − b)‖ ≤ ‖a − c‖ + ‖c − b‖.
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10. We are given that c = a + b so

‖c‖2 = ‖a + b‖2 = (a + b) · (a + b) = a · a + a · b + b · a + b · b.

But a · b = 0 = b · a, so
a · a + a · b + b · a + b · b = a · a + b · b = ‖a‖2 + ‖b‖2.

This is analogous to the Pythagorean Theorem. Here a and b are playing the role of the legs. They are orthogonal vectors.
The third side of the triangle is a + b = c. The theorem in this case says that the sum of the squares of the lengths of the
“legs” is the square of the length of the “hypotenuse”.

11. We have

‖a + b‖ = ‖a − b‖ ⇒ ‖a + b‖2 = ‖a − b‖2

⇒ (a + b) · (a + b) = (a − b) · (a − b).

Expand to find

a · a + 2a · b + b · b = a · a − 2a · b + b · b
⇒ 4a · b = 0,

so a and b are orthogonal.
12. As above, if ‖a − b‖ > ‖a + b‖, then −2a · b > 2a · b so −4a · b > 0 ⇔ a · b < 0. Thus cos θ = a · b

‖a‖ ‖b‖ < 0. Hence
π
2

< 0 ≤ π.
13. The equation could also be written in the more suggestive form:

(2, 3,−7, 1,−5) · [(x1, x2, x3, x4, x5) − (1,−2, 0, 4,−1)] = 0.

These are the points in R5 so that (x1, x2, x3, x4, x5) − (1,−2, 0, 4,−1) is orthogonal to the vector (2, 3,−7, 1,−5). This
is the four dimensional hyperplane in R5 orthogonal to (2, 3,−7, 1,−5) containing the point (1,−2, 0, 4,−1).

14. Half of each type of your inventory gives T-shirts in quantities of 10, 15, 12, 10 (in order of lowest to highest selling price).
Half of each type of your friend’s inventory gives 15, 8, 10, 14 baseball caps. The value of your half of the inventory is

(8, 10, 12, 15) · (10, 15, 12, 10) = $524.

The value of your friend’s inventory is

(8, 10, 12, 15) · (15, 8, 10, 14) = $530.

Thus your friend might be reluctant to accept your offer, unless he’s quite a good friend.
15. (a) We have

p = (200, 250, 300, 375, 450, 500)

Total cost = p · x = 200x1 + 250x2 + 300x3 + 375x4 + 450x5 + 500x6

(b) With p as in part (a), the customer can afford commodity bundles x in the set

{x ∈ R6|p · x ≤ 100,000}.

The budget hyperplane is p · x = 100,000 or 200x1 + 250x2 + 300x3 + 375x4 + 450x5 + 500x6 = 100,000.
16.

3A − 2B = 3

[
1 2 3

−2 0 1

]
− 2

[ −4 9 5
0 3 0

]

=

[
3 6 9

−6 0 3

]
−
[ −8 18 10

0 6 0

]

=

[
11 −12 −1
−6 −6 3

]
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17.

AC =

[
1 2 3

−2 0 1

] ⎡⎣ 1 −1 0
2 0 7
0 3 −2

⎤
⎦

=

[
1(1) + 2(2) + 3(0) 1(−1) + 2(0) + 3(3) 1(0) + 2(7) + 3(−2)

−2(1) + 0(2) + 1(0) −2(−1) + 0(0) + 1(3) −2(0) + 0(7) + 1(−2)

]

=

[
5 8 8

−2 5 −2

]
.

18.

DB =

[
1 0
2 −3

] [ −4 9 5
0 3 0

]

=

[
1(−4) + 0(0) 1(9) + 0(3) 1(5) + 0(0)
2(−4) − 3(0) 2(9) − 3(3) 2(5) − 3(0)

]

=

[ −4 9 5
−8 9 10

]
.

19.

BT D =

⎡
⎣ −4 0

9 3
5 0

⎤
⎦ [ 1 0

2 −3

]

=

⎡
⎣ −4(1) + 0(2) −4(0) + 0(−3)

9(1) + 3(2) 9(0) + 3(−3)
5(1) + 0(2) 5(0) + 0(−3)

⎤
⎦

=

⎡
⎣ −4 0

15 −9
5 0

⎤
⎦

20. (a)

I2 =

[
1 0
0 1

]
, I3 =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ , and I4 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

(b) The ijth entry of the product of matrices A and B is the product of the ith row of A and the jth column of B. So in case
i. we have:

(AIn)ij = [ai1 ai2 ai3 . . . ain](ej)
T = (ai1, ai2, ai3, . . . , ain) · ej = aij .

In case ii. we have:

(InA)ij = (ei)

⎛
⎜⎜⎜⎜⎜⎝

a1j

a2j

a3j

...
anj

⎞
⎟⎟⎟⎟⎟⎠ = ei · (a1j , a2j , a3j , . . . , anj) = aij .

In both cases we’ve shown that the ijth component of the product is the ijth component of matrix A, so AIn = A = InA.
21. We’ll expand on the first row:∣∣∣∣∣∣∣∣

7 0 −1 0
2 0 1 3
1 −3 0 2
0 5 1 −2

∣∣∣∣∣∣∣∣ = 7

∣∣∣∣∣∣
0 1 3

−3 0 2
5 1 −2

∣∣∣∣∣∣−
∣∣∣∣∣∣

2 0 3
1 −3 2
0 5 −2

∣∣∣∣∣∣
= 7

(
−1

∣∣∣∣ −3 2
5 −2

∣∣∣∣+ 3

∣∣∣∣ −3 0
5 1

∣∣∣∣
)
−
(

2

∣∣∣∣ −3 2
5 −2

∣∣∣∣+ 3

∣∣∣∣ 1 −3
0 5

∣∣∣∣
)

= 7(−1(−4) + 3(−3)) − (2(−4) + 3(5)) = −42.
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Note: Exercises 22 and 23 are good exploration problems for students before they’ve done Exercise 25.
22. Note that if we expand along the first row, only one term survives. If at each step we expand along the first row, the pattern

continues. What we are left with is the product of the elements along the diagonal.∣∣∣∣∣∣∣∣
8 0 0 0

15 1 0 0
−7 6 −1 0

8 1 9 7

∣∣∣∣∣∣∣∣ = 8

∣∣∣∣∣∣
1 0 0
6 −1 0
1 9 7

∣∣∣∣∣∣
= (8)(1)

∣∣∣∣ −1 0
9 7

∣∣∣∣
= (8)(1)(−1)(7) = −56.

23. This is similar to Exercise 22. Either we could expand along the last row of each matrix at each step or we could expand along
the first column at each step. It is easier to keep track of signs if we choose this second approach. We again find that the
determinant is the product of the diagonal elements.∣∣∣∣∣∣∣∣∣∣

5 −1 0 8 11
0 2 1 9 7
0 0 4 −3 5
0 0 0 2 1
0 0 0 0 −3

∣∣∣∣∣∣∣∣∣∣
= 5

∣∣∣∣∣∣∣∣
2 1 9 7
0 4 −3 5
0 0 2 1
0 0 0 −3

∣∣∣∣∣∣∣∣
= (5)(2)

∣∣∣∣∣∣
4 −3 5
0 2 1
0 0 −3

∣∣∣∣∣∣
= (5)(2)(4)

∣∣∣∣ 2 1
0 −3

∣∣∣∣
= (5)(2)(4)(2)(−3) = −240.

24. There really isn’t anything to show. Using the convenient fact provided after Example 8:

• If row i consists of all zeros (i.e., aij = 0 for 1 ≤ j ≤ n) then expand along row i. Using the cofactor notation:

|A| = (−1)i+1ai1|Ai1| + (−1)i+2ai2|Ai2| + · · · + (−1)i+nain|Ain|
= (−1)i+1(0)|Ai1| + (−1)i+2(0)|Ai2| + · · · + (−1)i+n(0)|Ain| = 0.

• If column j consists of all zeros (i.e., aij = 0 for all 1 ≤ i ≤ n) then expand along column j. As above we get

|A| = (−1)1+ja1j |A1j | + (−1)2+ja2j |A2j | + · · · + (−1)n+janj |Anj |
= (−1)1+j(0)|A1j | + (−1)2+j(0)|A2j | + · · · + (−1)n+j(0)|Anj | = 0.

25. (a) A lower triangular matrix is an n×n matrix whose entries above the main diagonal are all zero. For example the matrix
in Exercise 22 is lower triangular.

(b) If we expand the determinant of an upper triangular matrix along its first column we get:

|A| = (−1)1+1a11|A11| + (−1)2+1a21|A21| + · · · + (−1)n+1an1|An1|
= (−1)1+1(a11)|A11| + (−1)2+1(0)|A2j | + · · · + (−1)n+1(0)|Anj | = (a11)|A11|.

Looking back on what we have found: The determinant of an upper triangular matrix is equal to the term in the upper left
position multiplied by the determinant of the matrix that’s left when the top most row and left most column are removed. Each
time we remove the top row and left column we are left with an upper triangular matrix of one dimension lower. Repeat the
process n times and it is clear that

|A| = a11|A11| = a11(a22|(A11)11|) = · · · = a11a22a33 · · · ann.
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26. (a) Type I Rule: If matrix B results from matrix A by exchanging rows i and j then |A| = −|B|.
As one example, ∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ = 1, while

∣∣∣∣∣∣
0 1 0
1 0 0
0 0 1

∣∣∣∣∣∣ = −1.

A more important example is

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ = a1b2 − a2b1 = −(b1a2 − b2a1) = −
∣∣∣∣ b1 b2

a1 a2

∣∣∣∣ .

The reason this second example is more important is that you can always expand the determinants of A and B so that you
are left with a sum of scalars times the determinants of 2 by 2 matrices involving only the two rows being switched. Since
the scalars will be the same in both cases, this second example shows that the effect of switching rows i and j is to switch
the sign of every component in the sum and so |A| = −|B|.

(b) Type III Rule: If matrix B results from matrix A by adding a multiple of row i to row j and leaving row i unchanged
then |A| = |B|.

As one example, ∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ = 1, and also

∣∣∣∣∣∣
1 1 0
0 1 0
0 0 1

∣∣∣∣∣∣ = 1.

To see what’s going on, let’s look at the example

∣∣∣∣ a1 + nb1 a2 + nb2

b1 b2

∣∣∣∣ = (a1 + nb1)b2 − (a2 + nb2)b1 = a1b2 − a2b1 + n(b1b2 − b2b1)

= a1b2 − a2b1.

Another way to look at the example above is to see that the determinant splits into two pieces:

a1b2 − a2b1 + n(b1b2 − b2b1) =

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣+ n

∣∣∣∣ b1 b2

b1 b2

∣∣∣∣ =

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ .

Note: A more general case of this rule will be proved in Exercise 28.
(c) Type II Rule: If matrix B results from matrix A by multiplying the entries in the ith row of A by the scalar c then

|B| = c|A|.
We will prove this by expanding the determinant for B along the ith row. Because row i is the only one changed, the

cofactors Bij are the same as the cofactors Aij .

|B| = (−1)i+1bi1|Bi1| + (−1)i+2bi2|Bi2| + · · · + (−1)i+nbin|Bin|
= (−1)i+1cai1|Ai1| + (−1)i+2cai2|Ai2| + · · · + (−1)i+ncain|Ain|
= c((−1)i+1ai1|Ai1| + (−1)i+2ai2|Ai2| + · · · + (−1)i+nain|Ain|) = c|A|.
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27. Here we go: at each step we’ll specify what we’ve done.

∣∣∣∣∣∣∣∣∣∣

2 1 −2 7 8
1 0 1 −2 4

−1 1 2 3 −5
0 2 3 1 7

−3 2 −1 0 1

∣∣∣∣∣∣∣∣∣∣
= (−1)

∣∣∣∣∣∣∣∣∣∣

2 1 −2 7 8
−1 1 2 3 −5

1 0 1 −2 4
0 2 3 1 7

−3 2 −1 0 1

∣∣∣∣∣∣∣∣∣∣
switched rows 2

and 3

= (−1)

∣∣∣∣∣∣∣∣∣∣

2 1 −2 7 8
0 1 3 1 −1
1 0 1 −2 4
0 2 3 1 7
0 2 2 −6 13

∣∣∣∣∣∣∣∣∣∣
← row 2 + row 3

← row 5 + 3(row 3)

=

(−1

2

)
∣∣∣∣∣∣∣∣∣∣

2 1 −2 7 8
0 1 3 1 −1
2 0 2 −4 8
0 2 3 1 7
0 2 2 −6 13

∣∣∣∣∣∣∣∣∣∣
← 2(row 3)

=

(−1

2

)
∣∣∣∣∣∣∣∣∣∣

2 1 −2 7 8
0 1 3 1 −1
0 −1 4 −11 0
0 2 3 1 7
0 2 2 −6 13

∣∣∣∣∣∣∣∣∣∣
← row 3 − row 1

=

(−1

2

)
∣∣∣∣∣∣∣∣∣∣

2 1 −2 7 8
0 1 3 1 −1
0 0 7 −10 −1
0 0 −3 −1 9
0 0 −4 −8 15

∣∣∣∣∣∣∣∣∣∣
← row 3 + row 2
← row 4 − 2(row 2)
← row 5 − 2(row 2)

=

( −1

2(7)(7)

)
∣∣∣∣∣∣∣∣∣∣

2 1 −2 7 8
0 1 3 1 −1
0 0 7 −10 −1
0 0 −21 −7 63
0 0 −28 −56 105

∣∣∣∣∣∣∣∣∣∣ ← 7(row 4)
← 7(row 5)

=

( −1

2(7)(7)

)
∣∣∣∣∣∣∣∣∣∣

2 1 −2 7 8
0 1 3 1 −1
0 0 7 −10 −1
0 0 0 −37 60
0 0 0 −96 101

∣∣∣∣∣∣∣∣∣∣ ← row 4 + 3(row 4)
← row 5 + 4(row 3)

=

( −1

2(7)(7)(−37)

)
∣∣∣∣∣∣∣∣∣∣

2 1 −2 7 8
0 1 3 1 −1
0 0 7 −10 −1
0 0 0 −37 60
0 0 0 3552 −3737

∣∣∣∣∣∣∣∣∣∣ ← −37(row 5)

=

( −1

2(7)(7)(−37)

)
∣∣∣∣∣∣∣∣∣∣

2 1 −2 7 8
0 1 3 1 −1
0 0 7 −10 −1
0 0 0 −37 60
0 0 0 0 2023

∣∣∣∣∣∣∣∣∣∣ ← row 5 + 96(row 4)

=

( −1

2(7)(7)(−37)

)
(2)(1)(7)(−37)(2023) =

2023

7
= −289.
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28. (a) If you let A =

(
1 0
0 0

)
and B =

(
0 0
0 1

)
then 1 = det(A + B) but det(A) = det(B) = 0. So in general

det(A + B) �= det(A) + det(B).

(b)

∣∣∣∣∣∣
1 2 7

3 + 2 1 − 1 5 + 1
0 −2 0

∣∣∣∣∣∣ = −58, while

∣∣∣∣∣∣
1 2 7
3 1 5
0 −2 0

∣∣∣∣∣∣ +
∣∣∣∣∣∣

1 2 7
2 −1 1
0 −2 0

∣∣∣∣∣∣ = −32 − 26 = −58. It makes sense that

these should be equal; if you imagine expanding on the second row we see that∣∣∣∣∣∣
1 2 7

3 + 2 1 − 1 5 + 1
0 −2 0

∣∣∣∣∣∣ = (3 + 2)

∣∣∣∣ 2 7
−2 0

∣∣∣∣+ (1 − 1)

∣∣∣∣ 1 7
0 0

∣∣∣∣+ (5 + 1)

∣∣∣∣ 1 7
0 0

∣∣∣∣
=

(
3

∣∣∣∣ 2 7
−2 0

∣∣∣∣+
∣∣∣∣ 1 7

0 0

∣∣∣∣+ 5

∣∣∣∣ 1 7
0 0

∣∣∣∣
)

+

(
2

∣∣∣∣ 2 7
−2 0

∣∣∣∣−
∣∣∣∣ 1 7

0 0

∣∣∣∣+ 1

∣∣∣∣ 1 7
0 0

∣∣∣∣
)

=

∣∣∣∣∣∣
1 2 7
3 1 5
0 −2 0

∣∣∣∣∣∣+
∣∣∣∣∣∣

1 2 7
2 −1 1
0 −2 0

∣∣∣∣∣∣ .

(c)

∣∣∣∣∣∣
1 3 2 + 3
0 4 −1 + 5

−1 0 0 − 2

∣∣∣∣∣∣ = 0, while

∣∣∣∣∣∣
1 3 2
0 4 −1

−1 0 0

∣∣∣∣∣∣+
∣∣∣∣∣∣

1 3 3
0 4 5

−1 0 −2

∣∣∣∣∣∣ = −11 + 11 = 0.

(d) We might characterize the rules for rows as follows:
Let A, B and C be three matrices whose elements are the same except for those in row i where cij = aij + bij for
1 ≤ j ≤ n. Then det(C) = det(A) + det(B). We prove this by expanding the determinant along row i noting that in that
case the cofactors for all three matrices are equal (i.e., Aij = Bij = Cij for 1 ≤ j ≤ n):

|C| = (−1)i+1ci1|Ci1| + (−1)i+2ci2|Ci2| + · · · (−1)i+ncin|Cin|

= (−1)i+1(ai1 + bi1)|Ci1| + (−1)i+2(ai2 + bi2)|Ci2| + · · · (−1)i+n(ain + bin)|Cin|

= (−1)i+1(ai1)|Ci1| + (−1)i+2(ai2)|Ci2| + · · · (−1)i+n(ain)|Cin|

+ (−1)i+1(bi1)|Ci1| + (−1)i+2(bi2)|Ci2| + · · · (−1)i+n(bin)|Cin|
= (−1)i+1(ai1)|Ai1| + (−1)i+2(ai2)|Ai2| + · · · (−1)i+n(ain)|Ain|

+ (−1)i+1(bi1)|Bi1| + (−1)i+2(bi2)|Bi2| + · · · (−1)i+n(bin)|Bin|
= |A| + |B|.

The rule for columns is exactly the same:
Let A, B and C be three matrices whose elements are the same except for those in column j where cij = aij + bij for
1 ≤ i ≤ n. Then det(C) = det(A) + det(B). We could prove this by expanding the determinant along column j just as
above. Instead note that AT , BT , and CT satisfy the above rule for rows and that the determinant of a matrix is equal to
the determinant of its transpose. Our proof is then:

|C| = |CT | = |AT | + |BT | = |A| + |B|.

29. This is a pretty cool fact. If AB and BA both exist, these two matrices may not be equal. It doesn’t matter. They still have the
same determinant. The proof is straightforward: det(AB) = (det A)(det B) = (det B)(det A) = det (BA).

30. (a) Check the products in both directions . . .[
1 0
1 1

] [
1 0

−1 1

]
=

[
(1 + 0) (0 + 0)
(1 − 1) (0 + 1)

]
=

[
1 0
0 1

]

=

[
(1 + 0) (0 + 0)

(−1 + 1) (0 + 1)

]
=

[
1 0

−1 1

] [
1 0
1 1

]
.
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(b) Again, the products in both directions yield the identity matrix:

⎡
⎣ 1 2 3

2 5 3
1 0 8

⎤
⎦
⎡
⎣ −40 16 9

13 −5 −3
5 −2 −1

⎤
⎦ =

⎡
⎣ (−40 + 26 + 15) (16 − 10 − 6) (9 − 6 − 3)

(−80 + 65 + 15) (32 − 25 − 6) (18 − 15 − 3)
(−40 + 0 + 40) (16 + 0 − 16) (9 + 0 − 8)

⎤
⎦

=

⎡
⎣ −40 16 9

13 −5 −3
5 −2 −1

⎤
⎦
⎡
⎣ 1 2 3

2 5 3
1 0 8

⎤
⎦ =

⎡
⎣ (−40 + 32 + 9) (−80 + 80 + 0) (−120 + 48 + 72)

(13 − 10 − 3) (26 − 25 + 0) (39 − 15 − 24)
(5 − 4 − 1) (10 − 10 + 0) (15 − 6 − 8)

⎤
⎦ .

31. Say the given matrix is A. Then the top left entry in the inverse must be 1/2 because 1 is the top left entry of the product of
A−1A and it is twice the top left entry in the inverse matrix.

Looking at the second row of A, in the product AA−1 it “picks out” the element in the second row. This means that the
second row of A−1 is (0, 1, 0). Similarly, the third row of A picks out the opposite of the element in the third row in the
product AA−1 so the third row of A−1 is (0, 0,−1).

The third column of A tells us that the first and third elements of the top row of A−1 must be the same. The final element
to solve for is the middle element of the top row of A−1. It must be the opposite of the middle element of the third row of
A−1. Putting this information together, we have that

A−1 =

⎡
⎣ 1/2 −1 1/2

0 1 0
0 0 −1

⎤
⎦

32. Since the first column is 0, the determinant is 0. This means that the matrix could not have an inverse. We’ll actually show
this in Exercise 35 below. Say, for a minute that you don’t accept the results of Exercise 35 and you think you have found an
inverse matrix A−1 for the given matrix A. Then look at the product A−1A. It should be the identity matrix I3 but the first
column of the product will be all 0’s. For this reason, no inverse for A could exist.

33. Using the hint, assume that A has two inverses B and C. Then

B = BI = B(AC) = (BA)C = IC = C.

34. We just verify that B−1A−1 behaves as an inverse:

(B−1A−1)(AB) = B−1(A−1A)B = B−1InB = B−1B = In

(AB)(B−1A−1) = A(BB−1)A−1 = AInA−1 = AA−1 = In

35. (a) If A is invertible, consider the product AA−1 = I . By the formula in Exercise 29, (det A)(det A−1) = det(AA−1) =
det I = 1. From this we see that det A �= 0. In fact, we see more − the results of part (b) follow immediately.

(b) See part (a).
36. (a)

1

ad− bc
[

d −b
−c a

] [
a b
c d

]
=

1

ad− bc
[
ad− bc 0

0 ad− bc
]

= I2

[
a b
c d

]
· 1

ad− bc
[

d −b
−c a

]
=

1

ad− bc
[
ad− bc 0

0 ad− bc
]

= I2

(b) [
2 4

−1 2

]−1

=
1

(2 · 2 − (4)(−1))

[
2 −4
1 2

]
=

1

8

[
2 −4
1 2

]
=

[
1/4 −1/2
1/8 1/4

]

c© 2012 Pearson Education, Inc.



Section 1.6. Some n-dimensional Geometry 41

37. If A =

⎡
⎣ 2 1 1

0 2 4
1 0 3

⎤
⎦, then det A = 12 + 4 − 2 = 14, so the formula gives

A−1 =
1

14

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∣∣∣∣ 2 4
0 3

∣∣∣∣ −
∣∣∣∣ 1 1

0 3

∣∣∣∣
∣∣∣∣ 1 1

2 4

∣∣∣∣
−
∣∣∣∣ 0 4

1 3

∣∣∣∣
∣∣∣∣ 2 1

1 3

∣∣∣∣ −
∣∣∣∣ 2 1

0 4

∣∣∣∣∣∣∣∣ 0 2
1 0

∣∣∣∣ −
∣∣∣∣ 2 1

1 0

∣∣∣∣
∣∣∣∣ 2 1

0 2

∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
1

14

⎡
⎣ 6 −3 2

4 5 −8
−2 1 4

⎤
⎦ =

⎡
⎢⎢⎣

3
7

− 3
14

1
7

2
7

5
14

− 4
7

− 1
7

1
14

2
7

⎤
⎥⎥⎦

38. If A =

⎡
⎣ 2 −1 3

1 2 −2
3 0 1

⎤
⎦, then det A = 4 + 6 − 18 + 1 = −7, so the formula gives

A−1 = −1

7

⎡
⎢⎢⎢⎢⎢⎢⎣

∣∣∣∣ 2 −2
0 1

∣∣∣∣ −
∣∣∣∣ −1 3

0 1

∣∣∣∣
∣∣∣∣ −1 3

2 −2

∣∣∣∣
−
∣∣∣∣ 1 −2

3 1

∣∣∣∣
∣∣∣∣ 2 3

3 1

∣∣∣∣ −
∣∣∣∣ 2 3

1 −2

∣∣∣∣∣∣∣∣ 1 2
3 0

∣∣∣∣ −
∣∣∣∣ 2 −1

3 0

∣∣∣∣
∣∣∣∣ 2 −1

1 2

∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎦

= −1

7

⎡
⎣ 2 1 −4

−7 −7 7
−6 −3 5

⎤
⎦ =

⎡
⎢⎢⎣

− 2
7

− 1
7

4
7

1 1 −1

6
7

3
7

− 5
7

⎤
⎥⎥⎦

39. We’ll transform the cross product into a determinant. To make the determinant easier to calculate we’ll replace the fourth row
with the sum of the fourth row and five times the second row. Finally we’ll expand along the first column.

(1, 2,−1, 3) × (0, 2,−3, 1) × (−5, 1, 6, 0) =

∣∣∣∣∣∣∣∣
e1 e2 · · · en

1 2 −1 3
0 2 −3 1

−5 1 6 0

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
e1 e2 · · · en

1 2 −1 3
0 2 −3 1
0 11 1 15

∣∣∣∣∣∣∣∣ ← row 4 + 5(row 2)

= e1

∣∣∣∣∣∣
2 −1 3
2 −3 1

11 1 15

∣∣∣∣∣∣−
∣∣∣∣∣∣

e2 e3 e4

2 −3 1
11 1 15

∣∣∣∣∣∣
= 32e1 + 46e2 + 19e3 − 35e4 = (32, 46, 19,−35).
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40. (a) We use the matrix form to write the cross product as a determinant. We then switch row i + 1 (the row consisting of
ai1, ai2, . . . , ain) with row j + 1 (the row consisting of aj1, aj2, . . . , ajn) which multiplies the determinant by −1:

a1 × · · · × ai × · · · × aj × · · · × an−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 · · · en

a11 a12 · · · ain
...

...
...

...
ai1 ai2 · · · ain

...
...

...
...

aj1 aj2 · · · ajn

...
...

. . . ...
a(n−1)1 a(n−1)2 · · · a(n−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 · · · en

a11 a12 · · · a1n

...
...

...
...

ai1 ai2 · · · ain

...
...

...
...

aj1 aj2 · · · ajn

...
...

. . . ...
a(n−1)1 a(n−1)2 · · · a(n−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

← Switch this row (i + 1)

← with this row (j + 1)

= −(a1 × · · · × aj × · · · × ai × · · · × an−1)

(b) Again we will change to the matrix form and then use the rule for the row operation of type II to pull the scalar k out and
then rewrite as a cross product.

a1 × · · · × kai × · · · × an−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 . . . en

a11 a12 . . . a1n

...
...

...
...

kai1 kai2 . . . kain

...
...

. . . ...
a(n−1)1 a(n−1)2 . . . a(n−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 . . . en

a11 a12 . . . a1n

...
...

...
...

ai1 ai2 . . . ain

...
...

. . . ...
a(n−1)1 a(n−1)2 . . . a(n−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
← row (i + 1) divided by k

= k(a1 × · · · × ai × · · · × an−1)

(c) Once again, we will change to the matrix form. This time we will use the rule we developed in Exercise 28 to write this
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as two determinants. Finally we will convert each back to the cross product form.

a1 × · · · × (ai + b) × · · · × an−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 . . . en

a11 a12 . . . a1n

...
...

...
...

(ai1 + b1) (ai2 + b2) . . . (ain + bn)

...
...

. . . ...
a(n−1)1 a(n−1)2 . . . a(n−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 e2 . . . en

a11 a12 . . . a1n

...
...

...
...

ai1 ai2 . . . ain

...
...

. . . ...
a(n−1)1 a(n−1)2 . . . a(n−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

le1 e2 . . . en

a11 a12 . . . a1n

...
...

...
...

b1 b2 . . . bn

...
...

. . . ...
a(n−1)1 a(n−1)2 . . . a(n−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (a1 × · · · × ai × · · · × an−1) + (a1 × · · · × b × · · · × an−1)

(d) Expand the determinant along the first row; we’ll refer to the cross product matrix as C:

b · |C| = b · ((a1 × · · · × ai × · · · × an−1) = b ·

∣∣∣∣∣∣∣∣∣∣∣

e1 e2 . . . en

a11 a12 . . . a1n

...
...

. . . ...
a(n−1)1 a(n−1)2 . . . a(n−1)n

∣∣∣∣∣∣∣∣∣∣∣
= b · (e1|C11| − e2|C12| + · · · + (−1)1+nen|C1n|)

= b1|C11| − b2|C12| + · · · + (−1)1+nbn|C1n| =

∣∣∣∣∣∣∣∣∣∣∣

b1 b2 · · · bn

a11 a12 · · · a1n

...
...

. . . ...
a(n−1)1 a(n−1)2 · · · a(n−1)n

∣∣∣∣∣∣∣∣∣∣∣
41. This follows immediately from part (d) of Exercise 28. For 1 ≤ i ≤ n − 1,

ai · (a1 × · · · × ai × · · · × an−1) =

∣∣∣∣∣∣∣∣∣∣∣

ai1 ai2 · · · ain

a11 a12 · · · a1n

...
...

. . . ...
a(n−1)1 a(n−1)2 · · · a(n−1)n

∣∣∣∣∣∣∣∣∣∣∣
.

Replace the first row with the difference between row 1 and row i+1 and you will get (by Exercise 26) a matrix with the same
determinant, namely: ∣∣∣∣∣∣∣∣∣∣∣

0 0 · · · 0
a11 a12 · · · a1n

...
...

. . . ...
a(n−1)1 a(n−1)2 · · · a(n−1)n

∣∣∣∣∣∣∣∣∣∣∣
= 0.

Therefore b is orthogonal to ai for 1 ≤ i ≤ n − 1.
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42. To find the normal direction n we’ll take the cross product of the displacement vectors:

−−−→
P0P1 = (2,−1, 0, 0, 5) − (1, 0, 3, 0, 4) = (1,−1,−3, 0, 1)

−−−→
P0P2 = (7, 0, 0, 2, 0) − (1, 0, 3, 0, 4) = (6, 0,−3, 2,−4)

−−−→
P0P3 = (2, 0, 3, 0, 4) − (1, 0, 3, 0, 4) = (1, 0, 0, 0, 0)

−−−→
P0P4 = (1,−1, 3, 0, 4) − (1, 0, 3, 0, 4) = (0,−1, 0, 0, 0)

We take the cross product which is the determinant (expand along the fourth row, and then along the last row):∣∣∣∣∣∣∣∣∣∣

e1 e2 e3 e4 e5

1 −1 −3 0 1
6 0 −3 2 −4
1 0 0 0 0
0 −1 0 0 0

∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣
e2 e3 e4 e5

−1 −3 0 1
0 −3 2 −4

−1 0 0 0

∣∣∣∣∣∣∣∣ = −
∣∣∣∣∣∣

e3 e4 e5

−3 0 1
−3 2 −4

∣∣∣∣∣∣
= 2e3 + 15e4 + 6e5 = (0, 0, 2, 15, 6).

We can choose any of the points, say P0 to find the equation of the hyperplane:

2(x3 − 3) + 15(x4) + 6(x5 − 4) = 0 or 2x3 + 15x4 + 6x5 = 30.

1.7 New Coordinate Systems

In Exercises 1–3 use equations (1) x = r cos θ and y = r sin θ.
1. x =

√
2 cos π/4 = (

√
2)(

√
2/2) = 1, and y =

√
2 sin π/4 = 1. The rectangular coordinates are (1, 1).

2. x =
√

3 cos 5π/6 = (
√

3)(−√
3/2) = −3/2, and y =

√
3 sin 5π/6 = (

√
3)(1/2) =

√
3/2. The rectangular coordinates

are (−3/2,
√

3/2).
3. x = 3 cos 0 = 3(1) = 3, and y = 3 sin 0 = 0. The rectangular coordinates are (3, 0).

In Exercises 4–6 use equations (2) r2 = x2 + y2, and tan θ = y/x.

4. r2 = (2
√

3)2 + 22 = 16, so r = 4. Also, tan θ = 2/2
√

3 = (1/2)/(
√

3/2). Since we are in the first quadrant the polar
coordinates are (4, π/6).

5. r2 = (−2)2 + 22 = 8, so r = 2
√

2. Also, tan θ = 2/(−2) = −1. Since we are in the second quadrant the polar coordinates
are (2

√
2, 3π/4).

6. r2 = (−1)2 + (−2)2 = 5, so r =
√

5. Also, tan θ = −2/(−1) = 2. If the point were in the first quadrant, then the angle
would be tan−1 2. Since we are in the third quadrant the polar coordinates are (

√
5, π + tan−1 2).

Exercises 7–9 involve exactly the same idea as Exercises 1–3. Since the z coordinates are the same again we use equations (1)
or (3).

7. Here there’s nothing to do; the rectangular coordinates are (2 cos 2, 2 sin 2, 2).
8. x = π cos π/2 = (π)(0), y = π sin π/2 = (π)(1), and z = 1. The rectangular coordinates are (0, π, 1).
9. x = 1 cos 2π/3 = −1/2, y = 1 sin 2π/3 =

√
3/2, and z = −2. The rectangular coordinates are (−1/2,

√
3/2,−2).

In Exercises 10–13 use equations (7) x = ρ sin ϕ cos θ, y = ρ sin ϕ sin θ, and z = ρ cos ϕ.

10. x = 4(sin π/2)(cos π/3) = 4(1)(1/2) = 2, y = 4(sin π/2)(sin π/3) = 4(1)(
√

3/2) = 2
√

3, and z = 4 cos π/2 =
4(0) = 0. So the rectangular coordinates are (2, 2

√
3, 0).

11. x = 3(sin π/3)(cos π/2) = 3(
√

3/2)(0) = 0, y = 3(sin π/3)(sin π/2) = 3(
√

3/2)(1) = 3
√

3/2, and z = 3 cos π/3 =
3(1/2) = 3/2. So the rectangular coordinates are (0, 3

√
3/2, 3/2).

12. x = (sin 3π/4)(cos 2π/3) = (
√

2/2)(−1/2) = −√
2/4, y = (sin 3π/4)(sin 2π/3) = (

√
2/2)(

√
3/2) =

√
6/4, and

z = cos 3π/4 = −√
2/2. So the rectangular coordinates are (−√

2/4,
√

6/4,−√
2/2). I gave the answer in this form

because most students have been told throughout high school that you can never leave a square root in the denominator. They
should, of course, feel comfortable leaving the answer as (−1/

√
8,
√

3/
√

8,−1/
√

2), but most won’t.
13. x = 2(sin π)(cos π/4) = 2(0)(

√
2/2) = 0, y = 2(sin π)(sin π/4) = 2(0)(

√
2/2) = 0, and z = 2 cos π = 2(−1) = −2.

So the rectangular coordinates are (0, 0,−2).
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Exercises 14–16 are basically the same as Exercises 4–6 since the z coordinates are the same in both coordinate systems. Use
equations (2) or (4).

14. r2 = (−1)2 + 02 = 1, so r = 1. Also, tan θ = 0/(−1) = 0, so θ = π. The cylindrical coordinates are (1, π, 2).
15. r2 = (−1)2 + (

√
3)2, so r = 2. Also, tan θ =

√
3/(−1) = (

√
3/2)/(−1/2), so θ = 2π/3. The cylindrical coordinates are

(2, 2π/3, 13).
16. r2 = 52 + 62, so r =

√
61. Also tan θ = 6/5, so θ = tan−1 6/5. The cylindrical coordinates are (

√
61,

tan−1 6/5, 3).

In Exercises 17 and 18 use equations (7) ρ2 = x2 + y2 + z2, tan ϕ =
√

x2 + y2/z, and tan θ = y/x.

17. ρ2 = (1)2 + (−1)2 + (
√

6)2 = 8, so ρ =
√

8 = 2
√

2. Also, tan ϕ =
√

12 + (−1)2/
√

6 =
√

2/
√

6 = (1/2)/(
√

3/2),
so ϕ = π/6. Finally, tan θ = −1/1 = −1, so θ = 7π/4 (since the point, when projected onto the xy-plane is in the fourth
quadrant). In spherical coordinates the point is (2

√
2, π/6, 7π/4).

18. ρ2 = 02 + (
√

3)2 + 12 = 4, so ρ = 2. Also tan ϕ =
√

02 + (
√

3)2/1 =
√

3, so ϕ = π/3. Finally, when we project the
point onto the xy-plane we see that the point is on the positive y-axis so θ = π/2. Or, just using the equation tan θ =

√
3/0,

so θ = π/2. In spherical coordinates the point is (2, π/3, π/2).

The figures in Exercises 19–21 form a progression. To complete it, the next in line following Exercise 21 would be a sphere.

19. As in Example 5, θ does not appear so the surface will be circularly symmetric about the z-axis. Once we have our answer to
part (a), we can just rotate it about the z-axis to generate the answer to part (b).
(a) We are slicing in the direction π/2 which puts us in the yz-plane for positive y. This means that (r − 2)2 + z2 = 1

becomes (y − 2)2 + z2 = 1. This is a circle of radius 1 centered at (0, 2, 0).

0.5 1 1.5 2 2.5 3 3.5 4

z

y

-2

-1.5

-1

-0.5

0.5

1

1.5

2

(b) As we start to rotate this about the z-axis, we get a feel for the shape being generated (see below left). In the figure above
we see the result of the condition that r ≥ 0. Without that restriction we would see two circles, each sweeping out a
trail like that above. We would end up tracing our surface twice. Rotating this circle (with the restriction on r) about the
z-axis, we will end up with a torus (see below right).
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20. (a) As in Example 2, we could reason that our result is a circle that is traced twice (in the figures a is taken to be 1):

-1 -0.5 0.5 1

0.5

1

1.5

2
y

x

(b) When we move to spherical coordinates ϕ takes on the role of θ from part (a). Note θ does not explicitly appear in this
spherical equation. As in the case for cylindrical equations, this means that the surface will be circularly symmetric about
the z-axis. As we start to revolve about the z-axis we get the figure on the left.

0

0.5

1

1.5

2

x
0

0.5

1

1.5

2

y

-1

-0.5

0

0.5

1

z

Again, the completed figure is a torus (see above right), but this time the “hole” closes off at the origin.

Note: You might want to assign both Exercises 21 and 22. They look so similar and yet the results are very different.

21. As noted above, surface will be circularly symmetric about the z-axis (the equation does not involve θ). In this case we are
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rotating a piece of the cardioid 1 − cos ϕ shown below left:

0.20.40.60.8 1 1.2

-2

-1.5

-1

-0.5

z

x

As we start to rotate it we see a “flattened” circle sweeping out the figure pictured above right. The completed figure is like a
“dimpled” sphere:
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x
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1
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22. Once again, the surface will be circularly symmetric about the z-axis (the equation does not involve θ). In this case we are
rotating a piece of the cardioid 1 − sin ϕ shown below left:

x

-1

-0.5

0.5

1

z

0.05 0.15 0.25

As we start to rotate it we see a “double hump” sweeping out the figure pictured above right. The completed figure is shown
below:

23. The equation: ρ sin ϕ sin θ = 2 is clearly a spherical equation (it involves all three of the spherical coordinates).
• Use equation (7) to convert it to cartesian coordinates: y = ρ sin ϕ sin θ so the cartesian form is simply

y = 2.
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This is a vertical plane parallel to the xz-plane.

• Use equation (6) to convert to cylindrical coordinates. sin θ stays sin θ and ρ sin ϕ = r. So the cylindrical form is

r sin θ = 2.

24. The equation

z2 = 2x2 + 2y2

is clearly a cartesian equation (it involves all three of the cartesian coordinates).

• Use equation (4) to convert it to cylindrical coordinates: z2 = 2(x2 + y2) = 2r2 so the cylindrical form is simply

z2 = 2r2.

This is a cone which is symmetric about the z-axis, whose vertex is at the origin, one nappe above and one below the
xy-plane.

• Use equation (7) to convert to spherical coordinates. z2 = 2x2 +2y2, so 0 = 2(x2 +y2 + z2)−3z2. So the cylindrical
form is

0 = 2ρ2 − 3(ρ cos ϕ)2 or cos ϕ = ±
√

2/3.

In this final form it is again clear that the surface is a cone.

25. r = 0 is an equation in cylindrical coordinates. If r = 0 then it doesn’t matter what θ is and z is free to take on any value.
This is the z-axis. In cartesian coordinates this is

x = y = 0,

and in spherical coordinates ρ and θ are not constrained but

ϕ = 0 or ϕ = π.

26. You are slicing a wedge out of a cylinder. The result looks like a quarter of a wheel of cheese.
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27. Here you are taking the triangular region above the ray z = r and below the ray z = 5 in a plane for which θ is fixed (say
θ = 0) and rotating it through half a rotation to get half of a cone. The figure is below left.
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0
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-0.5
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2

4

z

-0.50

2

28. Again we are rotating a triangular region—but this time it is above the line z = 2r and below the line z = 5 − 3r. This gives
us an image that looks like a diamond spun on a diagonal. The figure is above right.

29. This solid is bound by two paraboloids.

-1
0

1
x-1

0
1

y

0

2

4

z

Note: For Exercises 30–32 no sketch is included. I’ve just roughly described the figure.
30. This is a hollow sphere. The sphere of radius 2 is missing a spherical hole of radius 1.
31. This is the top half of the unit sphere.
32. This is a quarter of the unit sphere sitting over (and under) the first quadrant.
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33. This looks like an ice cream cone:

x

y

z

34. This may look complicated, but it is the cone without the ice cream from the previous problem. The equation ρ = 2/ cos ϕ
looks worse than it is. Remember that z = ρ cos ϕ so this is equivalent to z = 2. So we get a flat topped cone with height 2
and tip on the origin.

35. This is a sphere of radius 3 centered at the origin from which we’ve removed a sphere of radius 1 centered at
(0, 0, 1).

x

y

z

36. (a) Look for where (x, y) = (r, θ). We know also that x = r cos θ, so r cos θ = r. This implies that cos θ = 1 so θ = 0.
Also y = r sin θ, but sin θ = 0 so y = 0. So points of the form (a, 0) are the same in both cartesian and polar coordinates.

(b) The only difference between this and part (a) is that a z coordinate has been added to each. So points of the form (a, 0, b)
are the same in both rectangular and cylindrical coordinates.

(c) Here (x, y, z) must equal (ρ, ϕ, θ), where x = ρ sin ϕ cos θ, y = ρ sin ϕ sin θ, and z = ρ cos ϕ.
By the first equation ρ sin ϕ cos θ = ρ. This implies that sin ϕ = 1 which in turn implies that cos ϕ = 0,
cos θ = 1, and sin θ = 0. But then z = ρ cos ϕ = 0, and y = ρ sin ϕ sin θ = ρ(1)(0) = 0. It looks as if we’re
headed to solutions on the x-axis again. But wait a minute, if y = 0, then ϕ = 0, but if sin ϕ = 1 then ϕ can’t be zero.
The only point satisfying all of the conditions is the origin (0, 0, 0).

37. (a) Picture drawing the graph of the polar equation r = f(θ) by standing at the origin and turning to angle θ and then walking
radially out to f(θ). You can see that if instead you walked radially out to −f(θ) you would be heading the same distance
in the opposite direction. This tells you that the graph r = −f(θ) is just the graph r = f(θ) reflected through the origin.

(b) Although we now have an additional degree of freedom the idea is the same. For each direction specified by ϕ and θ we
would be heading the same distance in the opposite direction. Again this tells you that the graph ρ = −f(ϕ, θ) is just the
graph ρ = f(ϕ, θ) reflected through the origin.

(c) We’re back to the situation in part (a). This time you head in the same direction, you just walk three times as far. So
r = 3f(θ) is as if we expanded the graph r = f(θ) to three times its original size without changing its shape or
orientation.

(d) Analogously, ρ = 3f(ϕ, θ) is as if we expanded the graph ρ = f(ϕ, θ) to three times its original size without changing
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its shape or orientation.
38. Because there is no dependence on θ it means that for each r and the corresponding z = f(r) you have a solution set that

corresponds to rotating the point (r, f(r)) about the z-axis.
39. (a) We need to take six dot products. Each vector dotted with itself must be 1 and each vector dotted with any other must

be 0.

er · er = (cos θ, sin θ, 0) · (cos θ, sin θ, 0) = cos2 θ + sin2 θ = 1.

eθ · eθ = (− sin θ, cos θ, 0) · (− sin θ, cos θ, 0) = sin2 θ + cos2 θ = 1.

ez · ez = (0, 0, 1) · (0, 0, 1) = 1.

er · eθ = (cos θ, sin θ, 0) · (− sin θ, cos θ, 0) = − cos θ sin θ + sin θ cos θ = 0.

er · ez = (cos θ, sin θ, 0) · (0, 0, 1) = 0.

eθ · ez = (− sin θ, cos θ, 0) · (0, 0, 1) = 0.

(b) We now do the same for the spherical basis vectors.

eρ · eρ = (sin ϕ cos θ, sin ϕ sin θ, cos ϕ) · (sin ϕ cos θ, sin ϕ sin θ, cos ϕ) = sin2 ϕ cos2 θ + sin2 ϕ sin2 θ + cos2 ϕ

= sin2 ϕ + cos2 ϕ = 1.

eϕ · eϕ = (cos ϕ cos θ, cos ϕ sin θ,− sin ϕ) · (cos ϕ cos θ, cos ϕ sin θ,− sin ϕ) = cos2 ϕ cos2 θ

+ cos2 ϕ sin2 θ + sin2 ϕ = cos2 ϕ + sin2 ϕ = 1.

eθ · eθ = (− sin θ, cos θ, 0) · (− sin θ, cos θ, 0) = sin2 θ + cos2 θ = 1.

eρ · eϕ = (sin ϕ cos θ, sin ϕ sin θ, cos ϕ) · (cos ϕ cos θ, cos ϕ sin θ,− sin ϕ) = sin ϕ cos ϕ cos2 θ + sin ϕ cos ϕ cos2 θ

− sin ϕ cos ϕ = sin ϕ cos ϕ − sin ϕ cos ϕ = 0.

eρ · eθ = (sin ϕ cos θ, sin ϕ sin θ, cos ϕ) · (− sin θ, cos θ, 0) = − sin ϕ cos θ sin θ + sin ϕ sin θ cos θ = 0.

eϕ · eθ = (cos ϕ cos θ, cos ϕ sin θ,− sin ϕ) · (− sin θ, cos θ, 0) = − cos ϕ cos θ sin θ + cos ϕ sin θ cos θ = 0.

40. Begin with

er = cos θ i + sin θ j

eθ = − sin θ i + cos θ j.

Then

sin θ er + cos θ eθ = (sin θ cos θ i + sin2 θ j) + (− cos θ sin θ i + cos2 θ j)

= j.

Similarly, cos θ er − sin θ eθ = i. Thus, all together

i = cos θ er − sin θ eθ

j = sin θ er + cos θ eθ

k = ez.

41. First note that, from (9),

sin ϕ eρ + cos ϕ eϕ = (sin2 ϕ cos θ i + sin2 ϕ sin θ j) + (cos2 ϕ cos θ i + cos2 ϕ sin θ j)

= cos θ i + sin θ j.

Hence

cos θ (sin ϕ eρ + cos ϕ eϕ) − sin θ eθ = (cos2 θ i + cos θ sin θ j) + (sin2 θ i − sin θ cos θ j)

= i.
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and, similarly, sin θ (sin ϕ eρ + cos ϕ eϕ) + cos θ eθ = j.
Finally, verify that cos ϕ eρ − sin ϕ eϕ = k.
So our results are

i = sin ϕ cos θ eρ + cos ϕ cos θ eϕ − sin θ eθ

j = sin ϕ sin θ eρ + cos ϕ sin θ eϕ + cos θ eθ

k = cos ϕ eρ − sin ϕ eϕ.

42. The exercise is more naturally set up for spherical coordinates.
(a) Here we are inside the portion of the sphere ρ = 3 for | tan ϕ| ≤ 1/

√
8.

Ice cream cone = {(ρ, ϕ, θ)|0 ≤ ρ ≤ 3, 0 ≤ ϕ ≤ tan−1(1/
√

8), and 0 ≤ θ < 2π}.
(b) Here, z’s lower limit is the cone portion so z ≥ √

8r. The upper limit is the portion of the sphere so z ≤ √
32 − r2.

The variable r is free to be anything between 0 and 1 and θ is free to take on values between 0 and 2π. The cylindrical
description is:

{(r, θ, z)|
√

8r ≤ z ≤
√

9 − r2, 0 ≤ r ≤ 1, and 0 ≤ θ ≤ 2π}.
43. From the formulas in (10) in §1.7, we have that

x1 = ρ sin ϕ1 sin ϕ2 · · · sin ϕn−2 cos ϕn−1

and
x2 = ρ sin ϕ1 sin ϕ2 · · · sin ϕn−2 sin ϕn−1.

Thus when we take the ratio x2/x1, everything cancels to leave us with

x2

x1
=

sin ϕn−1

cos ϕn−1
= tan ϕn−1.

44. (a) Using the formulas in (10), we have that

x2
1 + x2

2 = ρ2 sin2 ϕ1 · · · sin2 ϕn−2 cos2 ϕn−1 + ρ2 sin2 ϕ1 · · · sin2 ϕn−2 sin2 ϕn−1

= ρ2 sin2 ϕ1 · · · sin2 ϕn−2

(
cos2 ϕn−1 + sin2 ϕn−1

)
= ρ2 sin2 ϕ1 · · · sin2 ϕn−2.

(b) If we assume the restrictions given by the inequalities in (11), then the result in part (a) implies that√
x2

1 + x2
2

x3
=

ρ sin ϕ1 · · · sin ϕn−3 sin ϕn−2

ρ sin ϕ1 · · · sin ϕn−3 cos ϕn−2

=
sin ϕn−2

cos ϕn−2
= tan ϕn−2.

45. (a) From part (a) of the previous exercise, we know that x2
1 + x2

2 = ρ2 sin2 ϕ1 · · · sin2 ϕn−2. Thus(
x2

1 + x2
2

)
+ x2

3 = ρ2 sin2 ϕ1 · · · sin2 ϕn−3 sin2 ϕn−2

+ ρ2 sin2 ϕ1 · · · sin2 ϕn−3 cos2 ϕn−2

= ρ2 sin2 ϕ1 · · · sin2 ϕn−3

(
sin2 ϕn−2 + cos2 ϕn−2

)
= ρ2 sin2 ϕ1 · · · sin2 ϕn−3.

(b) Assuming the restrictions given by the inequalities in (11), we obtain√
x2

1 + x2
2 + x2

3

x4
=

ρ sin ϕ1 · · · sin ϕn−4 sin ϕn−3

ρ sin ϕ1 · · · sin ϕn−4 cos ϕn−3

=
sin ϕn−3

cos ϕn−3
= tan ϕn−3.
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46. (a) By the work in the previous two exercises, the result holds when k = 2 and k = 3. To establish the result in general by
mathematical induction, we suppose that

x2
1 + · · · + x2

k−1 = ρ2 sin2 ϕ1 · · · sin2 ϕn−(k−1).

Then (
x2

1 + · · · + x2
k−1

)
+ x2

k = ρ2 sin2 ϕ1 · · · sin2 ϕn−k sin2 ϕn−k+1

+ ρ2 sin2 ϕ1 · · · sin2 ϕn−k cos2 ϕn−k+1

= ρ2 sin2 ϕ1 · · · sin2 ϕn−k

(
sin2 ϕn−k+1 + cos2 ϕn−k+1

)
= ρ2 sin2 ϕ1 · · · sin2 ϕn−k.

(b) Assuming the restrictions given by the inequalities in (11), then the result in part (a) implies that√
x2

1 + · · · + x2
k

xk+1
=

ρ sin ϕ1 · · · sin ϕn−k−1 sin ϕn−k

ρ sin ϕ1 · · · sin ϕn−k−1 cos ϕn−k

=
sin ϕn−k

cos ϕn−k
= tan ϕn−k.

47. By part (a) of the previous exercise with k = n − 1, we have

x2
1 + · · · + x2

n−1 = ρ2 sin2 ϕ1 · · · sin2 ϕn−(n−1) = ρ2 sin2 ϕ1.

Hence (
x2

1 + · · · + x2
n−1

)
+ x2

n = ρ2 sin2 ϕ1 + ρ2 cos2 ϕ1 = ρ2.

True/False Exercises for Chapter 1

1. False. (The corresponding components must be equal.)
2. True. (Apply two kinds of distributive laws.)
3. False. ((−4,−3,−3) is the displacement vector from P2 to P1.)
4. True.
5. False. (Velocity is a vector, but speed is a scalar.)
6. False. (Distance is a scalar, but displacement is a vector.)
7. False. (The particle will be at (2,−1) + 2(1, 3) = (4, 5).)
8. True.
9. False. (From the parametric equations, we may read a vector parallel to the line to be (−2, 4, 0). This vector is not parallel to

(−2, 4, 7).)
10. True. (Note that a vector parallel to the line is (1, 2, 3) − (4, 3, 2) = (−3,−1, 1).)
11. False. (The line has symmetric form x−2

−3
= y − 1 = z+3

2
.)

12. True. (Check that the points (−1, 2, 5) and (2, 1, 7) lie on both lines.)
13. False. (The parametric equations describe a semicircle because of the restriction on t.)
14. False. (The dot product is the cosine of the angle between the vectors.)
15. False. (‖ka‖ = |k| ‖a‖.)
16. True.
17. False. (Let a = b = i, and c = j.)
18. True.
19. True.
20. True.
21. True. (Check that each point satisfies the equation.)
22. False. (No values of s and t give the point (1, 2, 1).)
23. False. (The product BA is not defined.)
24. False. (The expression gives the opposite of the determinant.)
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25. False. (det(2A) = 2n det A.)

26. True.
27. False. (The surface with equation ρ = 4 cos ϕ is a sphere.)
28. True. (It’s the plane x = 3.)
29. True.
30. False. (The spherical equation should be ϕ = tan−1 1

2
.)

Miscellaneous Exercises for Chapter 1

1. Solution 1. We add the vectors head-to-tail by parallel translating
−−→
OP 2 so its tail is at the vertex P1, translating

−−→
OP 3 so that

its tail is at the head of the translated
−−→
OP 2, etc. Since each vector

−−→
OP i has the same length and, for i = 2, . . . , n, the vector−−→

OP i is rotated 2π/n from
−−→
OP i−1, the translated vectors will form a closed (regular) n-gon, as the figure below in the case

n = 5 demonstrates.

P2

P1

P5

P4 P3

O

Thus, using head-to-tail addition with the closed n-gon, we see that
∑n

i=1

−−→
OP i = 0.

Solution 2. Suppose that
∑n

i=1

−−→
OP i = a �= 0. Imagine rotating the entire configuration through an angle of 2π/n about

the center O of the polygon. The vector a will have rotated to a different nonzero vector b. However, the original polygon
will have rotated to an identical polygon (except for the vertex labels), so the new vector sum

∑n
i=1

−−→
OP i must be unchanged.

Hence a = b, which is a contradiction. Thus a = 0.

2. The line will be r(t) = (1, 0,−2) + t(3,−7, 1), or

⎧⎨
⎩

x = 1 + 3t
y = −7t
z = −2 + t.

3. The displacement vector (3t0 + 1, 5 − 7t0, t0 + 12) − (1, 0,−2) = (3t0, 5 − 7t0, t0 + 14) is orthogonal to (3,−7, 1). This
means that

0 = (3t0, 5 − 7t0, t0 + 14) · (3,−7, 1) = 9t0 − 35 + 49t0 + t0 + 14 = 59t0 − 21.

So t0 = 21/59. The displacement vector gives us the direction of the line:

(3t0, 5 − 7t0, t0 + 14) = (1/59)(63, 148, 847).

So the equation of the line is

r(t) = (1, 0,−2) + t(63, 148, 847), or

⎧⎨
⎩

x = 1 + 63t
y = 148t
z = −2 + 847t.

4. (a) If r(t) =
−→
OP0 + t

−−→
P0P 1, then r(0) =

−→
OP0 and r(1) =

−→
OP0 +

−−→
P0P 1 =

−→
OP1.

(b) Part (a) set us up for part (b). We know that r(0) and r(1) give us the end points of the line segment so r(t) =
−→
OP0+t

−−→
P0P 1,

for 0 ≤ t ≤ 1 is the equation of the line segment.
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(c) We can just plug into our equation in part (b) to get r(t) = (0, 1, 3) + t(2, 4,−10) for 0 ≤ t ≤ 1. In parametric form
this is ⎧⎨

⎩
x = 2t
y = 1 + 4t
z = 3 − 10t

for 0 ≤ t ≤ 1.

5. (a) The desired line must pass through the midpoint of P1P 2, which has coordinates
(−1+5

2
, 3−7

2

)
= (2,−2). The line must

also be perpendicular to
−−−→
P1P2. The vector

−−−→
P1P2 is (5 + 1,−7 − 3) = (6,−10). A vector perpendicular to this must

satisfy (6,−10) · (a1, a2) = 0 so 3a1 − 5a2 = 0 Hence a = (5, 3) will serve. A vector parametric equation for the line
is l(t) = (2,−2) + t(5, 3), yielding {

x = 5t + 2
y = 3t − 2.

P1

P2

(b) We generalize part (a). Midpoint of P1P 2 is
(

a1+b1
2

, a2+b2
2

)
. Vector

−−→
P1P 2 is (b1−a1, b2−a2). A vector v perpendicular

to
−−→
P1P 2 satisfies (b1−a1, b2−a2)·v = 0 We may therefore take v to be v = (b2−a2, a1−b1) so l(t) =

(
a1+b1

2
, a2+b2

2

)
+

t(b2 − a2, a1 − b1) yielding

x = (b2 − a2)t +
a1 + b1

2

y = (a1 − b1)t +
a2 + b2

2
.

P2

P1

6. (a) Desired plane passes through midpointM(1, 2,−1) and has
−−→
P1P 2 = (−10,−2, 2) as normal vector. So the equation is

−10(x − 1) − 2(y − 2) + 2(z + 1) = 0 ⇐⇒ 5x + y − z = 8.

(b) M is
(

a1+b1
2

, a2+b2
2

, a3+b3
2

)
;
−−→
P1P 2 = (b1 − a1, b2 − a2, b3 − a3).

Equation for plane is

(b1 − a1)

(
x − a1 + b1

2

)
+ (b2 − a2)

(
y − a2 + b2

2

)
+ (b3 − a3)

(
z − a3 + b3

2

)
= 0

or
(b1 − a1)x + (b2 − a2)y + (b3 − a3)z =

1

2
(b2

1 + b2
2 + b2

3 − a2
1 − a2

2 − a2
3).

7. (a) Midpoint of segment is
(

1−3
2

, 6−2
2

, 0+4
2

, 3+1
2

−2+0
2

)
= (−1, 2, 2, 2,−1). Normal to hyperplane is

−−−→
P1P2 = (−4,−8, 4,

−2, 2) so the equation of the hyperplane is −4(x1 + 1) − 8(x2 − 2) + 4(x3 − 2) − 2(x4 − 2) + 2(x5 + 1) = 0 or
2x1 + 4x2 − 2x3 + x4 − x5 = 5.

(b) Very similar to 6(b). Equation for plane is

(b1 − a1)

(
x1 − a1 + b1

2

)
+ · · · + (bn − an)

(
xn − an + bn

2

)
= 0

or
(b1 − a1)x1 + · · · + (bn − an)xn =

1

2
(b2

1 + · · · + b2
n − a2

1 − · · · − a2
n).
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8. We have
‖a × b‖ = ‖a‖ ‖b‖ sin θ = sin θ, a · b = ‖a‖ ‖b‖ cos θ = cos θ,

since a, b are unit vectors. Thus ‖a × b‖2 + (a · b)2 = sin2 θ + cos2 θ = 1.
9. (a) No. a · b = a · c just means that the angle between vectors a and b and the angle between vectors a and b have the same

cosine. If you would prefer, rewrite the equation as a · (b − c) = 0 and you can see that what this says is that one of the
following is true: vector a is orthogonal to the vector b − c or a = 0 or b − c = 0.

(b) No. Use the distributive property of cross products to rewrite the equation as a × (b − c) = 0. This could be true if a is
parallel to b − c or if a = 0 or if b − c = 0.

10. The lines are r1(t) = (−3, 1, 5) + t(1,−2, 2) and r2(t) = (4, 3, 6) + t(−2, 4,−4). The direction vector for line 2 is −2
times the direction vector for line 1 so either they are parallel or they are the same line. Look at the displacement vector from a
point on line 1 to a point on line 2, for example (4, 3, 6)− (−3, 1, 5) = (7, 2, 1). This is not a multiple of the direction vector
so they are not the same line. Now, to find the normal direction we’ll take

(7, 2, 1) × (1,−2, 2) = (6,−13,−16).

The equation of the plane is therefore

6(x + 3) − 13(y − 1) − 16(z − 5) = 0 or 6x − 13y − 16z = −111.

11. (a) The angle between the two planes will be the same as the angle between the normal vectors. The normal to x + y = 1 is
n1 = (1, 1, 0), and the normal to y + z = 1 is n2 = (0, 1, 1).

The angle is then

cos−1

(
(1, 1, 0) · (0, 1, 1)

‖(1, 1, 0)‖ ‖(0, 1, 1)‖
)

= cos−1

(
1

2

)
=

π

3
.

(b) The line common to both planes must be orthogonal to both n1 and n2. We use the cross product to find:

n1 × n2 = (1, 1, 0) × (0, 1, 1) = (1,−1, 1).

The line must also pass through the point (0, 1, 0). Of course this isn’t the only point you could have come up with, but it
is the easiest to see. So parametric equations for the line are:⎧⎨

⎩
x = t
y = 1 − t
z = t.

12. We begin by computing vectors that are parallel to each of the given lines. In particular, we have

a = 4i − 2j + 8k for line (a),

b = −6i + 3j − 9k for line (b),

c = −2i + j − 4k for line (c),

d = 2i − j + 3k for line (d).

Note that a = −2c and b = −3d, but c and d are not scalar multiples of one another. Hence lines (a) and (c) are at least
parallel, as are lines (b) and (d), but line (a) is not parallel to (b). To see if any of the parallel pairs coincide, note that by letting
t = 0 in the parametric equations for line (a) we obtain the point (6, 2, 1). This point also lies in line (c): let t = −2 in the
parametric equations for (c) to obtain it. Hence since we already know that the lines are parallel, this shows that they must in
fact be the same. However, if we let t = 0 in the parametric equations for (b), we obtain the point (3, 0, 4). This point does
not lie on line (d) because the only point on (d) with a y-coordinate of 0 is (6, 0, 1). Hence lines (b) and (d) are only parallel.

13. First note that vectors normal to the respective planes are given by:

a = 2i + 3j − k for plane (a),

b = −6i + 4j − 2k for plane (b),

c = i + j − k for plane (c),

d = 10i + 15j − 5k for plane (d),

e = 3i − 2j + k for plane (e).
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It is easy to see that d = 5a and b = −2e and that c is not a scalar multiple of any of the other vectors (also that b and d are
not multiples of one another). Hence planes (a) and (d) must be at least parallel; so must planes (b) and (e). In the case of (b)
and (e) note that the equation for (b) may be written as

−2(3x − 2y + z) = −2(1).

That is, the equation for (b) may be transformed into that for (e) by dividing terms by −2. Hence (b) and (e) are equations
for the same plane. In the case of (a) and (d), note that (0, 0,−3) lies on plane (a), but not on (d). Hence (a) and (d) are
parallel, but not identical. Finally, it is easy to check that c · e = 3 − 2 − 1 = 0. Thus the normal vectors to planes (c) and
(e) are perpendicular, so that the corresponding planes are perpendicular as well. (c · a = 2 + 3 + 1 = 6 �= 0, so plane (c) is
perpendicular to neither plane (a) nor (d).)

14. Set up a cube so that one vertex is at the origin and the rest of the bottom face has vertices at (1, 0, 0), (0, 1, 0), and (1, 1, 0).
Then the top face will have vertices at (0, 0, 1), (1, 0, 1), (0, 1, 1), and (1, 1, 1).
(a) The angle between the diagonal and one of the edges is

cos−1

(
(1, 1, 1) · (1, 0, 0)

‖(1, 1, 1)‖ ‖(1, 0, 0)‖
)

= cos−1

(
1√
3

)
.

(b) You might be tempted to think that the angle between the diagonal of the cube and the diagonal of one of its faces is (by
inspection) half of a right angle. The triangle with the diagonal of the cube as its hypotenuse and the diagonal of one of
the faces as one of the legs is a 1 :

√
2 :

√
3 right triangle. The cosine of the angle between the diagonal of the cube and

the diagonal of a side is
√

2/
√

3. Using the formula above we also see

cos−1

(
(1, 1, 1) · (1, 1, 0)

‖(1, 1, 1)‖ ‖(1, 1, 0)‖
)

= cos−1

(
2√
6

)
= cos−1

(√
2√
3

)
= cos−1

(√
6

3

)
.

15. The dot product of your two vectors indicates how much you agree with your friend on these five questions. When you both
agree or both disagree with an item, the contribution to your dot product is 1. When one of you agrees and the other disagrees
the contribution is −1. Your dot product will be an odd number between −5 and 5.

16. (a) Following the instructions, we can write −→BM1 =
−→
AM1 −−→

AB = 1
2

−→
AC−−→

AB because M1 is the midpoint of AC. Similarly,−→
CM2 = 1

2

−→
AB−−→

AC.
(b) P is on BM1 so we can write −→BP as some multiple of −→BM1. For definiteness, let’s say that −→BP = k

−→BM1 where 0 < k < 1.
Similarly,

−→
CP = l

−→
CM2 where 0 < l < 1. Putting this together with our results from part (a), −→BP = k( 1

2

−→
AC − −→

AB) and−→
CP = l( 1

2

−→
AB−−→

AC).
(c) First,

−→
CB =

−→
CP +

−→PB =
−→
CP − −→BP. From part (b), this is l( 1

2

−→
AB − −→

AC) − k( 1
2

−→
AC − −→

AB) = ( l
2

+ k)
−→
AB − (l + k

2
)
−→
AC.

But,
−→
CB also equals

−→
CA +

−→
AB =

−→
AB − −→

AC. Equating the coefficients gives us the simultaneous equations ( l
2

+ k) = 1
and (l + k

2
) = 1. This easily gives us l = k = 2/3.

(d) Repeat steps (a) through (c) with
−→
AM3 and either of the other median vectors. You will again get a point of intersection,

say Q. You will show that Q is 2/3 of the way down each median and so must be the same point as P .
17. We are assuming that the plane Π contains the vectors a, b, c, and d. The vector n1 = a× b is orthogonal to Π, and the vector

n2 = c × d is orthogonal to Π. So the vectors n1 and n2 are parallel. This means that n1 × n2 = 0.
18. The first two ways that may come to mind to your students each depends on prior knowledge:

Method One: Recall that the area of a triangle is (1/2)‖a‖ ‖b‖ sin C, where C is the angle between a and b. So the area is

(
1

2

)
‖a‖ ‖b‖ sin C =

(
1

2

)√
‖a‖2 ‖b‖2 sin2 C

=

(
1

2

)√
‖a‖2 ‖b‖2(1 − cos2 C)

=

(
1

2

)√
‖a‖2 ‖b‖2 − (‖a‖2 ‖b‖2) cos2 C

=

(
1

2

)√
‖a‖2 ‖b‖2 − (a · b)2.
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Method Two: The area of a triangle is 1/2 the area of the parallelogram determined by the same two vectors. The area of
the parallelogram is the length of the cross product. So the area is(

1

2

)
‖a × b‖ =

(
1

2

)√
(a × b) · (a × b)

(by Section 1.4, Exercise 29) =

(
1

2

)√
(a · a)(b · b) − (a · b)(b · a)

=

(
1

2

)√
‖a‖2 ‖b‖2 − (a · b)2.

19. (a) The vertices are given so that if they are connected in order ABDC we will sketch a parallelogram. From Exercise 18 we
could say that

Area =

√
‖−→AB‖2 ‖−→AC‖2 − (

−→
AB · −→AC)2

= [‖(4 − 1,−1 − 3, 3 + 1)‖2 ‖(2 − 1, 5 − 3, 2 + 1)‖2

− ((4 − 1,−1 − 3, 3 + 1) · (2 − 1, 5 − 3, 2 + 1))2]1/2

=
√

‖(3,−4, 4)‖2 ‖(1, 2, 3)‖2 − ((3,−4, 4) · (1, 2, 3))2

=
√

(41)(14) − (72) =
√

525 = 5
√

21.

(b) When we project the parallelogram in the xy-plane we get the same points with the z coordinate equal to 0. We do the
same calculation as in part a with the new vectors:

Area =

√
‖−→AB‖2 ‖−→AC‖2 − (

−→
AB · −→AC)2

=
√

‖(4 − 1,−1 − 3, 0)‖2 ‖(2 − 1, 5 − 3, 0)‖2 − ((4 − 1,−1 − 3, 0) · (2 − 1, 5 − 3, 0))2

=
√

‖(3,−4, 0)‖2 ‖(1, 2, 0)‖2 − ((3,−4, 0) · (1, 2, 0))2

=
√

(25)(5) − (52) =
√

100 = 10.

20. (a) Students raised on the slope-intercept form of a line may be more comfortable once you point out that the slope of the line
ax + by = d is Δy

Δx
= −a

b
. Now the direction that the vector points is clear: v = (b,−a).

(b) A vector n normal to the line l must be orthogonal to the vector v you found in part (a). We are also told that the first
component of n is a. This means that

0 = n · v = (a, ?) · (b,−a) = ab−? a.

So n = (a, b).
(c) Choose a point P1 on the line ax + by = d. For example, if P1 has x component zero then y = d/b. In other words,

choose P1 = (0, d/b). It doesn’t matter. We are going to project the displacement vector from the point P1 to the point
P0 = (x0, y0) onto n.

‖projn
−−−→
P0P1‖ =

∥∥∥∥∥
(

n · −−−→P0P1

n · n

)
n

∥∥∥∥∥ =
|n · −−−→P0P1|

‖n‖ =
|(a, b) · (x0, y0 − d/b)|

‖(a, b)‖ =
|ax0 + by0 − d|√

a2 + b2
.

(d) We plug into our brand new formula:

Distance from (3, 5) to l : (3x − 5y = 2) is |8(3) − 5(5) − 2|√
82 + 52

=
3√
89

.

21. (a) As should be expected, this is similar to the calculation in Exercise 20. We choose any point P1 in the plane Π :
Ax+By+Cz = D. For example, let P1 = (0, 0, D/C) and P0 = (x0, y0, z0). The normal vector n = (A, B, C). Again

c© 2012 Pearson Education, Inc.



60 Chapter 1 Vectors

the distance from P0 to Π is

‖projn
−−−→
P1P0‖ =

∥∥∥∥∥
(

n · −−−→P1P0

n · n

)
n

∥∥∥∥∥
=

|n · −−−→P1P0|
‖n‖

=
|(A, B, C) · (x0, y0, z0 − D/C)|

‖(A, B, C)‖

=
|Ax0 + By0 + Cz0 − D|√

A2 + B2 + C2
.

(b) We plug into our formula from part (a):

Distance from (1, 5,−3) to Π: (x − 2y + 2z + 12 = 0) is |1(1) − 2(5) + 2(−3) + 12|√
12 + (−2)2 + 22

=
3√
9

= 1.

22. (a) A vector n normal to Π may be obtained as n = b× c as both b =
−→
AB and c =

−→
AC are parallel to Π. Thus the distance

from P to Π may be found by taking ‖projn
−→
AP‖ = ‖projnp‖. Now

projnp =
n · p

n · n
n =

n · p

‖n‖2
n.

Thus
‖projnp‖ =

|n · p|
‖n‖2

‖n‖ =
|n · p|
‖n‖ =

|(b × c) · p|
‖n‖ .

(b) We have b = (2,−3, 1) − (1, 2, 3) = (1,−5,−2), c = (2,−1, 0) − (1, 2, 3) = (1,−3,−3), and p = (1, 0,−1) −
(1, 2, 3) = (0,−2,−4). Thus

b × c =

∣∣∣∣∣∣
i j k

1 −5 −2
1 −3 −3

∣∣∣∣∣∣ = (9, 1, 2).

Hence the desired distance is
|(0,−2,−4) · (9, 1, 2)|

‖(9, 1, 2)‖ =
| − 10|√

86
=

10√
86

.

23. (a) The vector
−→
AB ×−→

AC = 0 if and only if
−→
AB is parallel to

−→
AC. This happens if and only if A, B, and C are collinear.

(b) We note that
−−→
CD �= 0 since C and D are distinct points. Then (

−→
AB ×−→

AC) ·

−−→
CD = 0 if and only if

−→
AB ×−→

AC = 0 or−→
AB ×−→

AC is perpendicular to
−−→
CD. The first case occurs exactly when A, B, and C are collinear (so A, B, C and D are

coplanar). In the second case,
−→
AB × −→

AC is perpendicular to the plane containing A, B, and C and so
−−→
CD can only be

perpendicular to it if and only if D lies in this plane as well.
24. We have the equation that if α is the angle between vectors x and the vector k = (0, 0, 1), then

cos α =
x · k

‖x‖ ‖k‖ =
x · k
‖x‖ .

Since we are given that this last quantity = 1/
√

2, x makes an angle of 45 degrees with the positive z-axis. So the points P
satisfying the condition of this exercise sweep out the top nappe of the cone making an angle of 45 degrees with the positive
z-axis minus the origin.

25. The equation a × x = b tells us that x points in the direction of b × a. Now we have to determine the length of x. We can
choose any vector in the direction of x. For convenience, let y be the unit vector in direction of x:

y =
b × a

‖b × a‖ .

The angle between a and x is the same as that between a and y so

a · y
‖a‖ =

a · x
‖a‖ ‖x‖ =

c

‖a‖ ‖x‖ .
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So if c �= 0,

‖x‖ =
c

a · y
, and, x =

(
c

a · y

)
y.

If c = 0 then a is orthogonal to x (and y). Use the fact that

‖b‖ = ‖a × x‖ = ‖a‖ ‖x‖ sin θ = ‖a‖ ‖x‖ sin π/2 = ‖a‖ ‖x‖.

So when c = 0,

‖x‖ =
‖b‖
‖a‖ and x =

(‖b‖
‖a‖

)
y.

26. (a) Let a = i, b = c = j. Then
a × (b × c) = i × (j × j) = i × 0 = 0,

but
(a × b) × c = (i × j) × j = k × j = −i.

(b) The Jacobi identity states that
(a × b) × c + (b × c) × a + (c × a) × b = 0.

This result is equivalent to
−(b × c) × a = (a × b) × c + (c × a) × b.

Since −(b × c) × a = a × (b × c), we see that we always have

a × (b × c) = (a × b) × c + (c × a) × b,

so that
a × (b × c) = (a × b) × c

precisely when (c × a) × b = 0.
27. (a) In the figure below left, the cross product a × b is a vector outwardly normal to the face containing edges a and b with

length equal to twice the area of the face. To keep the diagram uncluttered, it has been split into two:

a

b

c

d

e

So the sum of the four vectors v1, v2, v3, and v4 asked for in the exercise can be expressed as

(1/2)[(a × b) + (b × c) + (c × a) + (e × d)].

But d = b − a and e = c − a so

e × d = (c − a) × (b − a)

= (c × b) − (a × b) − (c × a) + (a × a)

= −(a × b) − (b × c) − (c × a).

We put this together with the above to conclude:

v1 + v2 + v3 + v4 = (1/2)[(a × b) + (b × c) + (c × a) + (e × d)]

= (1/2)[(a × b) + (b × c) + (c × a) − (a × b) − (b × c) − (c × a)]

= 0.

c© 2012 Pearson Education, Inc.



62 Chapter 1 Vectors

(b) Denote the vectors associated with the first tetrahedron as v1, v2, v3, and v4 and the vectors associated with the second
tetrahedron as v′

1, v′
2, v′

3, and v′
4. Let the vectors associated with the sides being glued together be v1 and v′

1.
By construction v1 and v′

1 have equal lengths and point in opposite directions so v1 + v′
1 = 0. From part (a) we

know that
v1 = −(v2 + v3 + v4) and v′

1 = −(v′
2 + v′

3 + v′
4).

This means that
(v2 + v3 + v4) + (v′

2 + v′
3 + v′

4) = 0.

(c) Just as we can break any polygon into triangles, we can break any polyhedron into tetrahedra. The key to part (b) was that
when we glue two tetrahedra together, the vector of the face being hidden is equal to the sum of the three vectors being
introduced. In symbols,

v′
1 = v2 + v3 + v4.

From part (a) we know that for any tetrahedron v1 + v2 + v3 + v4 = 0. So as we build up our polyhedron by gluing
tetrahedra together, at each stage (by parts (a) and (b)) the sum of the outward normals with length equal to the area of the
face will be zero.

28. We may construct vectors v1, . . . ,v4 outwardly normal to each face of the tetrahedron and with length equal to the area of
that face. Using the result of part (a) of Exercise 27, we have that v1 + · · · + v4 = 0. Hence v4 = −(v1 + v2 + v3). Let’s
assume that the vectors are indexed so that v4 is the vector normal to the face that is opposite to vertex R. Then v1, v2, v3

are pairwise perpendicular and thus v1 · v2 = v1 · v3 = v2 · v3 = 0.
Now we compute

d2 = ‖v4‖2 = ‖ − (v1 + v2 + v3)‖2 = ‖v1 + v2 + v3‖2

= (v1 + v2 + v3) · (v1 + v2 + v3)

= v1 · v1 + v2 · v2 + v3 · v3 + 2v1 · v2 + 2v1 · v3 + 2v2 · v3

= ‖v1‖2 + ‖v2‖2 + ‖v3‖2 + 0 + 0 + 0

= a2 + b2 + c2.

29. (a) Remember, if the adjacent sides of a parallelogram are a and b, then the diagonals are a + b and a − b. So the sum of the
squares of the lengths of the diagonals are

‖a + b‖2 + ‖a − b‖2 = (a + b) · (a + b) + (a − b) · (a − b)

= (a · a + 2a · b + b · b) + (a · a − 2a · b + b · b) = 2‖a‖2 + 2‖b‖2

which is the sum of the squares of the lengths of the four sides (opposite sides have equal lengths).
(b) ‖a + b‖2 + ‖a − b‖2 = 2(‖a‖2 + ‖b‖2).

30. The last line of the proof of the Cauchy–Schwarz inequality in Section 1.6 is

‖a‖2‖b‖2 ≥ (a · b)2.

Now we only need to notice that

(a · b)2 =

[
n∑

i=1

aibi

]2

‖a‖2 =
n∑

i=1

a2
i

‖b‖2 =
n∑

i=1

b2
i

and the result follows immediately: [
n∑

i=1

a2
i

] [
n∑

i=1

b2
i

]
≥
[

n∑
i=1

aibi

]2

.
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31. (a)

A =

[
1 1
0 1

]
, A2 =

[
1 2
0 1

]
, A3 =

[
1 3
0 1

]
, A4 =

[
1 4
0 1

]

(b) It seems reasonable to guess that

An =

[
1 n
0 1

]
.

(c) We need only show the inductive step:

An+1 = AAn =

[
1 1
0 1

] [
1 n
0 1

]
=

[
1 n + 1
0 1

]
.

32. (a) There’s nothing much to show. A2 = 0.
(b) You shouldn’t need a calculator or computer for this. The diagonal of 1’s keeps moving to the left so that

A2 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

⎤
⎥⎥⎥⎥⎦ , A3 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

A4 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , and A5 = 0.

33. (a) The determinants are:

|H2| =
1

12
, |H3| =

1

2160
, |H4| =

1

6048000
,

|H5| =
1

266716800000
, and |H6| =

1

186313420339200000

The determinants are going to 0 as n gets larger. As for writing out the matrices, note that H2 is the upper left two by two
matrix in H10 in part (b). Similarly, H3 is the upper left three by three . . . H6 is the upper left six by six matrix in H10. I
would consider deducting points from any student who actually writes these out. They can use a computer algebra system
to accomplish this. ForMathematica the command for generating H10 would be

Table[1/(i + j − 1), {i, 10}, {j, 10}]//MatrixForm.

The command for calculating the determinant would be

Det[Table[1/(i + j − 1), {i, 10}, {j, 10}]].

(b) Using theMathematica commands described in part (a), the determinant

|H10| = 1/46206893947914691316295628839036278726983680000000000

≈ 2.16 × 10−53.
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The matrix is

H10 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
6

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
7

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
8

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
9

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
10

1
11

1
12

1
13

1
14

1
15

1
16

1
17

1
18

1
19

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(c) Again, the code examples will be from Mathematica. Let’s first calculate a numerical approximation A of H10 with the
command

A = N[Table[1/(i + j − 1), {i, 10}, {j, 10}]].
We can then calculate the inverse B and A with the command

B = Inverse[A].

You can display these as matrices by appending “//MatrixForm” to the command. Now generate AB and BA with the
commands

A.B//MatrixForm and B.A//MatrixForm.

You should note that these aren’t equal and neither is the 10 × 10 identity matrix I10.
34. The center of the moving circle is at (a − b)(cos t, sin t). Notice that as the moving circle rolls so that its center moves

counterclockwise it is turning clockwise relative to its center. When the small circle has traveled completely around the large
circle it has rolled over a length of 2π(a). Its circumference is 2πb so if it were rolling along a straight line it would have
revolved a/b times. The problem is that it is rolling around in a circle and so it has lost a rotation each time the center has
traveled completely around. In other words the smaller wheel is turning at a rate of

((a/b) − 1)t = (a − b)t/b.

The position of P relative to the center of the moving circle is

b

(
cos

(
− (a − b)t

b

)
, sin

(
− (a − b)t

b

))
= b

(
cos

(a − b)t

b
,− sin

(a − b)t

b

)
.

Putting this together, the position of P is the sum of the vector from the origin to the center of the moving circle and the vector
from the center of the moving circle to P . This is

(a − b)(cos t, sin t) + b

(
cos

(
(a − b)t

b

)
,− sin

(
(a − b)t

b

))
.

35. Not much changes here. The center of the moving circle is now at (a + b)(cos t, sin t). Now the moving circle gains one
revolution each time around the fixed circle and so turns at a rate of ((a/b) + 1)t = (a + b)t/b. Since we are starting P
at (a, 0), the initial angle from the center of the moving circle to P is π so the position of P relative to the center of the
moving circle is b

(
cos

(
π + (a+b)t

b

)
, sin

(
(a−b)t

b

))
= −b

(
cos (a+b)t

b
, sin (a+b)t

b

)
. As in Exercise 34 we sum the same

two vectors to get the expression:

(a + b)(cos t, sin t) − b

(
cos

(
(a + b)t

b

)
, sin

(
(a + b)t

b

))
.
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36. (a) Let’s look at diagrams of hypocycloid (below on the left) and an epicycloid (below on the right) with a = 6 and b = 5:

-6 -4 -2 2 4 6

-4

-2

2

4

y

x -15 -10 -5 5 10 15
x

y

-15

-10

-5

5

10

15

What are the roles of a and b? You can see in the figure on the left that there are 6 cusps. This is also true, but harder
to see, in the figure on the right. Let’s look at what portion of these curves correspond to 0 ≤ t ≤ 2π.
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y

x

-5
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-1
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x

-10

-5

5
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15
y

The figure on the left shows that 6/5 of the hypocycloid is covered for 0 ≤ t ≤ 2π. The figure on the right is the
corresponding portion of the epicycloid. Usually what we call the hypocycloid is what we draw until the ends close up.
In this case, the hypocycloid is complete when t = 5(2π). Again, although it is harder to see, this epicycloid will close
up when t = 5(2π).

If a and b have no common divisors and are both rational, then the hypocycloid or epicycloid will have a cusps and
will close up after t = b(2π). If a and b have common divisors then write a/b in lowest terms. The hypocycloid or
epicycloid will have as many cusps as the numerator. The same answer holds for epicycloids.

(b) We noted in part (a) that if a/b is rational in lowest terms, the hypocycloid or epicycloid closes up when t = b(2π). In the
case of the hypocycloid, this is because then (a− b)(cos b(2π), sin b(2π)) + b

(
cos

(
a−b

b

)
b(2π),− sin

(
a−b

b

)
b(2π)

)
=

(a − b)(cos 0, sin 0) + b
(
cos

(
a−b

b

)
0,− sin

(
a−b

b

)
0
)
. In words, its because the angle is a rational multiple of 2π.
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A picture of part of an epicycloid for which a/b is irrational is:
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If a/b is irrational then the curve will never close up. It can’t. At no time when the center of the moving circle comes
back to its original position will P be back in its original position.

A picture of part of a hypocycloid for which a/b is irrational is:
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In each case, the figure on the left shows several periods. For the figure on the right we let t get larger. If we let t get
arbitrarily large the curve is dense.

37. Look at the second part of the answers in Exercises 34 and 35. The only difference is that we are changing the distance from
the center of the moving wheel to P from b to c. The formula for a hypotrochoid is:

(a − b)(cos t, sin t) + c

(
cos

(
(a − b)t

b

)
,− sin

(
(a − b)t

b

))
.
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In parametric form, the formulas for a hypotrochoid are:

x = (a − b) cos t + c cos

(
(a − b)t

b

)
, y = (a − b) sin t − c sin

(
(a − b)t

b

)
.

The formula for an epitrochoid is:

(a + b)(cos t, sin t) − c

(
cos

(
(a + b)t

b

)
, sin

(
(a + b)t

b

))
.

In parametric form, the formulas for an epitrochoid are:

x = (a + b) cos t − c cos

(
(a + b)t

b

)
, y = (a + b) sin t − c sin

(
(a + b)t

b

)
.

38. (a) Here (below left) we get the four leaf rose:

-1 -0.5 0.5 1
x

-1

-0.5

0.5

1

y

(b) We just erect a cylinder on that base and get the above right image.
(c) There is no θ explicitly in the equation, so the rose is being rotated about the z-axis (we show both the completed figure

and a partial to see how it is formed):
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(d) Here we show half of the figure and then the completed figure. From the outside, the figure looks as if the rose has been
first rotated about the x-axis and then about the y-axis.

39. Parts (a), (b), and (d) are pictured below top, left, and right. They look very similar to the graphs from the previous exercise.
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0.5
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(c) This looks very different from its counterpart for Exercise 38. It looks like a dented sphere.

40. (a) We begin with a three leaf rose (the path is traced twice) shown below left.

y

x

-0.75

-0.5

-0.25

0.25

0.5

0.75

-0.5 -0.25 0.25 0.5 0.75 1

(b) The cylindrical equation again adds nothing. A cylinder is built over the rose. It is shown above right.
(c) This interesting and different image is shown below left.

(d) This three leaf version of what we saw in Exercises 38 and 39 is shown above right.
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41. The polar plot, cylinder and part (d) are similar to the corresponding solutions for Exercise 40. They are shown below.
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-0.25

0.25

0.5

-0.75 -0.5 -0.25 0.25 0.5 0.75

y

x

(c) Here in the figure shown below you see a difference in the solid generated by using sine instead of cosine.
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42. (a) The nephroid is shown below left.

y

x

-1.5

-1

-0.5

0.5

1

1.5

-2 -1.5 -1 -0.5 0.5 1

(b) The cylinder based on it is shown above right.
(c) The first spherical graph is a dimpled sphere.

(d) The second spherical graph has a lot of complexity so I have included a partial graph and the completed graph.
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43. (a) The curve is a spiral and is pictured below left.
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(b) The cylinder based on the spiral in part (a) is shown above right.
(c) Because only part of the spiral is used, the resulting surface is a dimpled ball.

x

y

z

(d) Finally, we see a lovely and intricate shell-like surface.

x

y

z

44. (a) In spherical coordinates the flat top of the hemisphere is the xy-plane with spherical equation ϕ = π/2. The hemispherical
bottom has equation ρ = 5, but only with π/2 ≤ ϕ ≤ π. Thus we may describe the object as

{(ρ, ϕ, θ)|0 ≤ ρ ≤ 5, π/2 ≤ ϕ ≤ π, 0 ≤ θ < 2π}.

(b) Now the flat top is described in cylindrical coordinates as z = 0 and the bottom hemisphere as z2 + r2 = 25 with z ≤ 0,
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that is, as z = −√
25 − r2. Bearing this in mind, the solid object is the set of points

{(r, θ, z)| −
√

25 − r2 ≤ z ≤ 0, 0 ≤ r ≤ 5, 0 ≤ θ < 2π}.

45. Position the cylinder so that the center of the bottom disk is at the origin and the z-axis is the axis of the cylinder.
(a) In cylindrical coordinates θ is free to take on any values between 0 and 2π. The z-coordinate is bounded by 0 and 3, and

0 ≤ r ≤ 3. To sum up:
{(r, θ, z) | 0 ≤ r ≤ 3, 0 ≤ z ≤ 3, 0 ≤ θ ≤ 2π}.

(b) Since the solid cylinder is rotationally symmetric about the z-axis, there is no restriction on the θ coordinate, and we may
slice the cylinder with the half-plane θ = constant, in which case we see that the cross section is a filled-in square of side
length 3. Consider the cross section by the half-plane θ = 0, pictured below:

-0.5
x

0.5 1 1.5 2 2.5 3 3.5

0.5

1

1.5

2

2.5

3

3.5

-0.5

z

The top of the square (which corresponds to the top of the cylinder) has equation z = 3, or ρ cos ϕ = 3. Thus the top
of the cylinder is the plane ρ = 3 sec ϕ. The bottom is, of course, the plane z = 0, which is given by ρ cos ϕ = 0,
which implies ϕ = π/2. The right side of the square, pictured as x = 3 in the figure above, corresponds to a cross
section of the lateral surface of the cylinder given in cylindrical coordinates as r = 3, and thus in spherical coordinates by
ρ sin ϕ = 3 ⇐⇒ ρ = 3 csc ϕ.

Now fix a value of ϕ. If this value of ϕ is between 0 and π/4, the spherical coordinate ρ must be between 0 and the
top of the cylinder ρ = 3 sec ϕ. On the other hand, if this value of ϕ is between π/4 and π/2, the spherical coordinate ρ
must be between 0 and the lateral part of the cylinder ρ = 3 csc ϕ. If ϕ is larger than π/2, no value of ρ (other than zero)
would give a point remaining inside the solid cylinder. To sum up:

{(ρ, ϕ, θ) | 0 ≤ ρ ≤ 3 sec ϕ, 0 ≤ ϕ ≤ π/4, 0 ≤ θ ≤ 2π}
∪{(ρ, ϕ, θ) | 0 ≤ ρ ≤ 3 csc ϕ, π/4 ≤ ϕ ≤ π/2, 0 ≤ θ ≤ 2π}.
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Differentiation in Several Variables

2.1 Functions of Several Variables; Graphing Surfaces

1. f : R → R : x �→ 2x2 + 1
(a) Domain f = {x ∈ R}, Range f = {y ∈ R|y ≥ 1}.
(b) No. For instance f(1) = 3 = f(−1).
(c) No. For instance if y = 0, there is no x such that f(x) = 0.

2. f : R2 → R : (x, y) �→ 2x2 + 3y2 − 7
(a) Domain g = {(x, y) ∈ R2}, Range g = {z ∈ R|z ≥ −7}.
(b) Let Domain g = {(x, x) ∈ R2|x ≥ 0}.
(c) Let Codomain g = Range g.

3. Domain f = {(x, y) ∈ R2|y �= 0}, Range f = R.
4. Domain f = {(x, y) ∈ R2|x + y > 0}, Range f = R.
5. Domain g = R3, Range g = {w ∈ R|w ≥ 0}.
6. Domain g = {x ∈ R3| ‖x‖ < 2}, Range g = {y ∈ R|y ≥ 1/2}.
7. Domain f = {(x, y) ∈ R2|y �= 1}, Range f = {(x, y, z) ∈ R3|y �= 0, y2z = (xy− y − 1)2 + (y + 1)2}.
8. The component functions of f are f1(x, y) = x + y, f2(x, y) = yex, and f3(x, y) = x2y + 7.
9. The component functions of v are obtained by extracting the i-, j- and k-components of the expression for v(x, y, z, t). Thus

we have
v1(x, y, z, t) = xyzt, v2(x, y, z, t) = x2 − y2, v3(x, y, z, t) = 3z + t.

10. If x = (x1, x2, x3) = x1i + x2j + x3k, then

f(x) = x + 3j = x1i + (x2 + 3)j + x3k,

so that the component functions are

f1(x) = x1, f2(x) = x2 + 3, f3(x) = x3.

11. (a) f(x) = −2x/‖x‖.
(b) The component functions are

f1(x, y, z) =
−2x√

x2 + y2 + z2
, f2(x, y, z) =

−2y√
x2 + y2 + z2

, and f3(x, y, z) =
−2z√

x2 + y2 + z2
.

12. (a) The component functions of f are just the components of the output vector f(x) = Ax. Thus we calculate

f(x) =

⎡
⎣ 2 −1

5 0
−6 3

⎤
⎦ [x1

x2

]
=

⎡
⎣ 2x1 − x2

5x1

−6x1 + 3x2

⎤
⎦ .

Hence the component functions are:

f1(x1, x2) = 2x1 − x2, f2(x1, x2) = 5x1, f3(x1, x2) = −6x1 + 3x2.

(b) First note that, as x varies through all of R2, the expression 2x1 − x2 can be any real number and 5x1 can be any real
number. In addition, considering our answer in part (a), we see that

f3(x1, x2) = −6x1 + 3x2 = −3(2x1 − x2) = −3f1(x1, x2).

Thus the range of f consists of those vectors y = (y1, y2, y3) ∈ R3 with y3 = −3y1.
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13. (a) The component functions of f are the components of the output vector f(x) = Ax. Thus

f(x) =

⎡
⎣ 2 0 −1 1

0 3 0 0
2 0 −1 1

⎤
⎦
⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎣2x1 − x3 + x4

3x2

2x1 − x3 + x4

⎤
⎦ .

The component functions are thus:

f1(x) = 2x1 − x3 + x4, f2(x) = 3x2, f3(x) = 2x1 − x3 + x4.

(b) Note that, as x varies through all of R4, the expression 2x1 − x3 + x4 can be any real number and 3x2 can be any real
number. In addition, considering our answer in part (a), we see that

f1(x) = 2x1 − x3 + x4 = f3(x).

Hence the range of f consists of those vectors y = (y1, y2, y3) ∈ R3 with y1 = y3.
14. Here there is nothing to show. Everything is at level 3. This surface is a plane parallel to the xy-plane 3 units above it so the

level set is the entire xy-plane if c = 3 and is the empty set if c �= 3.
15. For c > 0 the level sets are circles centered at the origin of radius

√
c. For c = 0 the level set is just the origin. There are

no values corresponding to c < 0. Note that the curves get closer together, indicating that we are climbing faster as we head
out radially from the origin. The second figure below shows the plot of the level curves shaded to indicate the height of the
level set (lighter is higher). The surface is therefore a paraboloid symmetric about the z-axis. We show it with and without the
surface filled in.
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16. This is exactly the same as Exercise 15 except that the paraboloid has been shifted down 9 units so the level curves begin in
the center at c = −9, not c = 0.

17. Again this time for c > 0 the level curves are circles. This time, however, the circles corresponding to the level sets at height
c are of radius c. In other words, they are evenly spaced. We are climbing at a constant rate as we head out radially, so the
surface is a cone.
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x

y

z

18. This time the level curves are ellipses. The sections as we cut in the direction x is constant or y is constant are still parabolas.

x y

z

19. The graphs xy = c are hyperbolas (unless c = 0 in which case it is the union of the two axes). When x and y are both positive
the height of the level curves are positive and so the hyperboloid is increasing as we head away from the origin radially in
either the first or third quadrant. When x and y are of different signs, the heights of the level curves are negative and so the
hyperboloid is decreasing as we head out radially in either the second or fourth quadrant.
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20. This is exactly the same as Exercise 21 except that the image has been reflected about the plane y = x.
21. We have a problem when y = 0. When k < 0, the section by x = k looks like the hyperbola in the figure on the left, when

k > 0, the section looks like the hyperbola in the figure on the right:

You can see that as y → 0 from either side, along a line where x is constant and not 0, the z values won’t match up. We
are going to get a tear down the line y = 0. The level sets look like:
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Notice that you can see that tear on the right center part of the above graph. The solid black and solid white areas which
are on either side of the x-axis point to the behavior around the tear.
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Graph each side of the x-axis and you will see the following piece of the surface:
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Our final surface is what you get when you try to glue two of those together:

22. The surface is a plane. Level sets for which f(x, y) = c are lines c = 3 − 2x − y or y = −2x + (3 − c). Level sets are
pictured below on the left. The surface is pictured below on the right.
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23. Here we are looking at the graph of z = |x|. For c > 0, level sets for z = c will be the lines x = ± c. For c = 0 the level set
is the y-axis. The graph is like a folded plane.
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Note: In Problems 24–27 the level curves are shown along with the contour shading so you get an idea at what height to hang
the curves. You should be able to figure out the orientation of the surface from the contour plot.

24. Figures below:
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25. Figures below:
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26. Figures below: (note only a portion of the surface has been sketched so that you get a better idea of what’s going on)
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27. Figures below:
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28. (a) We solve the equation PV = kT for T , obtaining T = f(P, V ) = (1/k)PV. This is the same as we considered in Exercise
15. See the figures for Exercise 19 for the general shape of the level curves.

(b) Here V = g(P, T ) = kT
P

. This is the same as the cases we considered in Exercises 20 and 21. We will get a “torn” surface
similar to the one shown in Exercise 21. The level curve V = c is the line through the origin: P = (k/c)T .

29. (a) The surface z = x2 is graphed below left and z = y2 below right.

x

yz

x

y
z

(b) Consider first the surface z = f(x) by considering the curve in the uv-plane given by v = f(u). The intersection of the
surface with planes of the form y = c will look the same as the curve in the uv-plane for any value of y. This helps us see
that if we “drag” this curve in each direction along the y-axis, the trail will trace out the surface. Similarly, but along the
x-axis for surfaces of the form z = f(y). The lack of dependence on x is our clue.

(c) The graph of the surface y = x2 is shown below. It’s what we would expect from parts (b) and (a).
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x

yz

30. See the solution to Exercise 21 and the note in Exercise 20.

31. They can’t intersect—even though they may sometimes appear to. Say that two different level curves f(x, y) = c1 and
f(x, y) = c2 where c1 �= c2 intersect at some point (a, b). Then f(a, b) would have assigned to it two non-equal values. This
can’t happen for a function (it’s our vertical line test). On the other hand, if the limit as you approach (a, b) along different
paths is different, those level curves may appear to intersect at (a, b) no matter how good the resolution on your contour plot.

32. The level surfaces are planes x − 2y + 3z = c.

33. The level surfaces at level w = c are elliptic paraboloids.

34. The level surfaces at level w = c are nested spheres of radius
√

c centered at the origin.

35. The level surfaces at level w = c are nested ellipsoids.

36. The level surfaces are of the form y(x − z) = c. If c = 0 we get the union of the xz-plane and the plane x = z. If c �= 0 we
get the hyperbola in the xy-plane y = c/x; this generates the solution surfaces when translated by m(1, 0,−1).

37. (a) These are cylinders with the z-axis being the axis of the cylinder. For the surface at level w = c, the radius of the cylinder
is
√

c.
(b) This is related to Exercise 29. A level surface at w = c will be the surface generated by building a cylinder on the curve

h(x, y) = c in the z = 0 plane. You are dragging the curve both directions along the z-axis so that all cross sections for
z = c1 look identical.

(c) Same thing in the y direction.
(d) If you said “same thing in the x direction,” read the problem again. You are solving equations that look like h(x) = c.

For each xi that solves this equation, you have no dependency on y or z so the level set looks like a plane in R3 parallel
to the yz-plane of the form x = xi.

38. (a) F is, of course, not uniquely determined. But if we let F (x, y, z) = x2 + xy − xz − 2, then the surface is the level set
F (x, y, z) = 0.

(b) x2 + xy− xz = 2 is equivalent to z =
x2 + xy− 2

x
= f(x, y).

39. The ellipsoid is pictured below left. To see why you couldn’t express the surface as one function z = f(x, y), look for example
at the intersection of the ellipsoid and the plane y = 0 pictured below on the right.
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You can see that for −2 < x < 2 there correspond two values of z. We could express the top portion of the ellipsoid as
f(x, y) =

√
1 − (x2/4 + y2/9) and the bottom portion as g(x, y) = −

√
1 − (x2/4 + y2/9).

40. The figure is a hyperbolic paraboloid shown below left.

x

y
z

41. The only difference here is that z is squared. Here we get a cone with axis of symmetry the x-axis. The figure is shown above
right.

42. This is Exercise 40 with the roles of x, y and z permuted and a change in the constants. The figure is shown below left.
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43. This is “cone” where the cross sections are ellipses, not circles. The figure is shown above right.
44. We see the figure is a hyperboloid. It is shown below left.
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45. This is a hyperboloid of two sheets. It is shown above right.
46. Here we have the parabola z = y2 +2 translated arbitrarily in the x direction. This is what we call a cylinder over the parabola

z = y2 + 2.
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Note: Except that your students have to complete the square first, these are similar to Exercises 40–46 above. You may want
them to be more explicit in reporting the translation as that’s sometimes hard to pick up from a diagram.

47. This is the equation of an elliptic cone with vertex at (1,−1,−3). The graph is shown below left.
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48. Here we have an elliptic paraboloid. The graph is shown above right.
49. This is the equation of an ellipsoid 4(x + 1)2 + y2 + z2 = 4. The graph is shown below left.
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50. This is the equation of a hyperboloid of one sheet 4(x + 1)2 + (y − 2)2 − 4z2 = 4. The graph is shown above right.
51. This is similar to Exercise 48. The equation is equivalent to z − 1 = (x − 3)2 + 2y2.
52. Here we get 9x2 + 4(y − 1)2 − 36(z + 4)2 = 684 which is similar to Exercise 50.

2.2 Limits

Note: In Exercises 1–6, the rule of thumb is that a set is closed if it contains all of its boundary points.
1. This is an annulus which doesn’t include its inner or outer boundary and so is open.
2. This is an annulus which includes all of its boundary points and so is closed.
3. This is an annulus which includes its inner boundary but not its outer boundary and so it is neither open nor closed.
4. This is a hollowed out sphere which includes its boundary points and so is closed.
5. This may be a bit harder to see. This is the union of an infinite open strip in the plane (−1 < x < 1) and a closed line in the

plane (x = 2) and so is neither open nor closed.
6. This is the open infinite cylinder in R3 and so is open. You could follow up on this by asking about {(x, y, z) ∈ R3|1 ≤

x2 + y2 ≤ 4}.

Note: As pointed out in the text, the most common and convincing way to prove that a limit of a function with domain in R2

doesn’t exist is to show that you get two different answers when you follow two different paths. After doing Exercises 7–18 students
may get in the habit of thinking that it is sufficient to check a few straight paths. Exercise 23 should make them think twice.

7. There’s no trick to taking this limit. Just let (x, y, z) → (0, 0, 0) and x2 + 2xy+ yz+ z3 + 2 → 2.
8. We can see that lim

(x,y)→(0,0)

|y|√
x2+y2

doesn’t exist by looking at the limit along the paths x = 0 and y = 0. On the one hand

lim
(0,y)→(0,0)

|y|√
x2 + y2

=
|y|√
y2

= 1 while lim
(x,0)→(0,0)

|y|√
x2 + y2

=
0√
x2

= 0.

9. Again, the limit does not exist.

lim
(x,y)→(0,0)

(x + y)2

x2 + y2
= lim

(x,y)→(0,0)

x2 + 2xy+ y2

x2 + y2
= 1 + lim

(x,y)→(0,0)

2xy
x2 + y2

.

When x = y,

1 + lim
(x,y)→(0,0)

2xy
x2 + y2

= 1 + lim
x→0

2x2

x2 + x2
= 1 + 1 = 2.

When x = 0,
1 + lim

(0,y)→(0,0)

2xy
x2 + y2

= 1 + lim
y→0

0

y2
= 1.
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10. Here nothing goes wrong so we can evaluate the limit by substituting in the expression.

lim
(x,y)→(0,0)

exey

x + y + 2
=

e0e0

0 + 0 + 2
=

1

2
.

11. No limit exists.
lim

(x,y)→(0,0)

2x2 + y2

x2 + y2
= 1 + lim

(x,y)→(0,0)

x2

x2 + y2
.

We reason, as above, that if x = y then the limit is 3/2, but if y = 0 the limit is 2.
12. Here we can evaluate the function at the limit point and find that

lim
(x,y)→(−1,2)

2x2 + y2

x2 + y2
=

6

5
.

13. Just as with limits in first semester Calculus, this is begging to be simplified.

lim
(x,y)→(0,0)

x2 + 2xy+ y2

x + y
= lim

(x,y)→(0,0)

(x + y)2

x + y
= lim

(x,y)→(0,0)
(x + y) = 0.

14. This is the same as the limit in Exercise 9 (once we simplified it). The limit does not exist.
15. This, too, is begging to be simplified.

lim
(x,y)→(0,0)

x4 − y4

x2 + y2
= lim

(x,y)→(0,0)

(x2 − y2)(x2 + y2)

x2 + y2
= lim

(x,y)→(0,0)
(x2 − y2) = 0.

16. This is the same as the limit in Exercise 11 (once we simplified it). The limit does not exist.
17. This is another standard trick from first year Calculus.

lim
(x,y)→(0,0),x �=y

x2 − xy√
x −√

y
= lim

(x,y)→(0,0),x �=y

x(x − y)√
x −√

y
= lim

(x,y)→(0,0),x �=y

x(
√

x +
√

y)(
√

x −√
y)√

x −√
y

= lim
(x,y)→(0,0),x �=y

x(
√

x +
√

y) = 0.

18. You can see that you would get different values depending on the path you took to (x, y) = (2, 0). If you followed the path
(2, y) → (2, 0) the limit would be −1. If you followed the path (x, 0) → (2, 0) the limit would be 1. So the limit doesn’t exist.

19. The function is continuous so the limit is f(0,
√

π, 1) = e0 cos π − 0 = −1.
20. As in Exercise 18, you get different values depending on the path you choose. Look, for example, at paths along the three

axes. Along (x, 0, 0) → (0, 0, 0) the limit is 2, along (0, y, 0) → (0, 0, 0) the limit is 3 and along (0, 0, z) → (0, 0, 0) the
limit is 1. We can see that no limit can exist.

21. Again the limit doesn’t exist because the value would differ on different paths. If you followed a path (t, t, t) → (0, 0, 0) the
limit would be 1/3. If you followed the path (x, 0, 0) → (0, 0, 0) the limit would be 0.

22. (a) We know from single-variable calculus (either using l’Hôpital’s rule or the direct geometric argument) that

lim
θ→0

sin θ

θ
= 1.

(b) lim
(x,y)→(0,0)

sin(x+y)
x+y

= lim
θ→0

sin θ
θ

= 1.

(c) lim
(x,y)→(0,0)

sin(xy)
xy = lim

θ→0

sin θ
θ

= 1.

Note: Exercise 23 is a classic and cool problem. You may wish to set it up in class before assigning it. Write the function on the
board and ask the students to evaluate the limit or explain why the limit fails to exist. For those who get it right, this is wonderful.
For those who get it wrong, they are now in a position to appreciate the subtlety of the problem.

23. Our goal is to evaluate lim(x,y)→(0,0)
x4y4

(x2 + y4)3
or explain why the limit fails to exist. We divide the answer into parts to

make it easier to follow—there are no corresponding parts (a)–(d) in the text.
(a) If you evaluate the limit along the lines x = 0 and y = 0 the limit is 0. We might be tempted to guess that

lim(x,y)→(0,0) f(x, y) = 0 but as we saw in Exercise 14, we could get a limit of 0 along the paths x = 0 and y = 0 but
perhaps not along x = y.
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(b) So now let’s follow the line y = mx into the origin and see where f heads off to.

lim
(x,y)→(0,0),y=mx

x4y4

(x2 + y4)3
= lim

x→0

x4(mx)4

(x2 + (mx)4)3

= lim
x→0

m4x8

(x2(1 + m4x2))3

= m4 lim
x→0

x8

(x6)(1 + m4x2)3

= m4 lim
x→0

x2

(1 + m4x2)3
= 0.

This means then if we head into the origin along any straight line the limit of f is 0. Here is the point of this problem: If
we head into the origin in any constant direction, the limit of f is 0 and yet lim(x,y)→(0,0) f(x, y) does not exist!

(c) For the limit to exist f must approach the same number no matter what path we choose to take to the origin. So let’s
approach along the parabola x = y2.

lim
(x,y)→(0,0),x=y2

x4y4

(x2 + y4)3
= lim

y→0

(y2)4y4

((y2)2 + y4)3

= lim
y→0

y12

(2y4)3

= lim
y→0

y12

8y12
=

1

8
.

(d) So we get different answers for lim(x,y)→(0,0)
x4y4

(x2 + y4)3
depending on what path we follow into the origin. So the limit

does not exist.

Note—In Exercises 24–27 your students may find better visual information by using a contour plot than a three-dimensional
plot.

24. Below see two graphs of the function. The three-dimensional plot makes it seem as if there are mountains and valleys quite
close to the origin. The contour plot helps you see from the diagonal lines that meet at the origin that the limit doesn’t exist.
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0
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Analytically, f is equivalent to 1 + (x2 + 2xy)/(3x2 + 5y2). Head in toward the origin on a path where x = y and the
limit is 13/8. Head in toward the origin on a path where x = 0 and the limit is 1. Head in toward the origin on a path where
y = 0 and the limit is 11/3. So the limit doesn’t exist.

25. Below see two graphs of the function. You actually get most of the picture from the three-dimensional graph—except that it
looks as if things are joined smoothly. The contour plot shows the dramatic problems near the origin. Particularly if you look
along the vertical line x = 0 you’ll see that the limit does not exist at the origin.
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Analytically, look at the path x = 0. Here we’re looking at the graph of z = −1/y. The limits as we approach from
positive and negative y values is ±∞ so no limit exists.

26. In the three-dimensional graph below you can see that the extreme behavior calms down near the origin. This is confirmed in
the contour plot. From the graphs it appears that the limit exists at the origin.

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

0

0.2

0.4

Before exploring this one analytically, consider the graph g(x, t) = xt/(x2 + t2) Its contour plot is shown below.
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So really the problem we are considering is the same with t = y5. We’re not looking along a path that shows us enough. Let’s
look at the limit for our original function f as we approach the origin. Along a path where x = 0 or y = 0 the limit is 0.
Along a path where x = y5 the limit is 1/2. This is a good place to encourage your students to be careful drawing conclusions
from even very good graphs.

27. You’d think we would have learned our lesson from Exercise 26. On the other hand, it sure looks as if things are calming down
near the origin. Sure sin 1/y oscillates madly between −1 and 1 but x seems to dampen it. We’ll boldly assert that the limit
exists at the origin.
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Actually, the discussion above leads us to the truth. The product of a bounded function and one going to 0 goes to 0. The
limit exists and is 0.

28. We rewrite x2y

x2 + y2
as

r2 cos2 θ · r sin θ

r2 cos2 θ + r2 sin2 θ
= r cos2 θ sin θ.

Because 0 ≤ cos2 ≤ 1 and −1 ≤ sin θ ≤ 1, we have

0 ≤ r cos2 θ sin θ ≤ r.

Thus

lim
(x,y)→(0,0)

x2y

x2 + y2
= lim

r→0
r cos2 θ sin θ = 0

because the expression r cos2 θ sin θ is squeezed between two others that have the same limits as r → 0.
29.

lim
(x,y)→(0,0)

x2

x2 + y2
= lim

r→0

r2 cos2 θ

r2
= lim

r→0
cos2 θ = cos2 θ

Limit does not exist as the result depends on θ.
30.

lim
(x,y)→(0,0)

x2 + xy+ y2

x2 + y2
= lim

r→0

r2 + (r cos θ)r sin θ

r2
= lim

r→0
(1 + cos θ sin θ) = 1 + cos θ sin θ.

Thus the limit does not exist.
31. We have

lim
(x,y)→(0,0)

x5 + y4 − 3x3y + 2x2 + 2y2

x2 + y2

= lim
r→0

r5 cos5 θ + r4 sin4 θ − 3r4 cos3 θ sin θ + 2r2 cos2 θ + 2r2 sin2 θ

r2 cos2 θ + r2 sin2 θ

= lim
r→0

r2(r3 cos5 θ + r2 sin4 θ − 3r2 cos3 θ sin θ + 2)

r2

= lim
r→0

[
r2(r cos5 θ + sin4 θ − 3 cos3 θ sin θ) + 2

]
Note that −1 ≤ cosn θ ≤ 1 when n is odd, −1 ≤ sin θ ≤ 1, and 0 ≤ sinm θ ≤ 1 when m is even. Thus we have that

r2(−r + 0 − 3) + 2 ≤ r2(r cos5 θ + sin4 θ − 3 cos3 θ sin θ) + 2 ≤ r2(r + 1 + 3) + 2.

Now
lim
r→0

[−r2(r + 3) + 2
]

= lim
r→0

[
r2(r + 4) + 2

]
= 2;

thus limr→0

[
r2(r cos5 θ + sin4 θ − 3 cos3 θ sin θ) + 2

]
= 2 by squeezing.
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32.

lim
(x,y)→(0,0)

x2 − y2√
x2 + y2

= lim
r→0

r2 cos2 θ − r2 sin2 θ√
r2 cos2 θ + r2 sin2 θ

= lim
r→0+

r2 cos 2θ

r
= lim

r→0+

r cos 2θ,

from the double-angle formula for cosine. (Note that since
√

r2 = |r|, we used a one-sided limit.) Since −r ≤ r cos 2θ ≤ r,
we conclude that limr→0+ r cos 2θ = 0 by squeezing.

33.

lim
(x,y)→(0,0)

x + y√
x2 + y2

= lim
r→0

r cos θ + r sin θ√
r2 cos2 θ + r2 sin2 θ

= lim
r→0+

r cos θ + r sin θ

r

= lim
r→0+

(cos θ + sin θ) = cos θ + sin θ.

Since this result depends on θ, the limit does not exist.
34.

lim
(x,y,z)→(0,0,0)

x2y

x2 + y2 + z2
= lim

ρ→0

(
ρ2 sin2 ϕ cos2 θ

)
(ρ sin ϕ sin θ)

ρ2

= lim
ρ→0

ρ sin3 ϕ cos2 θ sin θ

Since 0 ≤ cos2 θ ≤ 1, we have 0 ≤ ρ sin3 ϕ cos2 θ sin θ ≤ ρ. Thus we conclude that limρ→0 ρ sin3 ϕ cos2 θ sin θ = 0 by
squeezing.

35.

lim
(x,y,z)→(0,0,0)

xyz
x2 + y2 + z2

= lim
ρ→0

(ρ sin ϕ cos θ)(ρ sin ϕ sin θ)(ρ cos ϕ)

ρ2

= lim
ρ→0

ρ sin2 ϕ cos ϕ cos θ sin θ = 0

36.

lim
(x,y,z)→(0,0,0)

x2 + y2√
x2 + y2 + z2

= lim
ρ→0

ρ2 sin2 ϕ cos2 θ + ρ2 sin2 ϕ sin2 θ

ρ
= lim

ρ→0
ρ sin2 ϕ = 0

37.

lim
(x,y,z)→(0,0,0)

xz

x2 + y2 + z2
= lim

ρ→0

ρ2 sin ϕ cos ϕ cos θ

ρ2
= lim

ρ→0
sin ϕ cos ϕ cos θ = sin ϕ cos ϕ cos θ

The limit does not exist.

In Exercises 38–45: as the rules on continuity show, if the components are continuous and we put the functions together by
adding, subtracting, multiplying, or composing, then the result is continuous. It should be clear to the students what points need
checking.

38. This is a polynomial and is continuous everywhere.
39. This too is a polynomial and is continuous everywhere.

To make the point about composition, you may want to assign Exercises 40 and 41 together.

40. The only place we could get into trouble is where the denominator is 0, but x2 + 1 �= 0 so g is always continuous.
41. Here we are composing a continuous function (cos) with the continuous function g from Exercise 22, so the composition is

continuous.
42. You can even rewrite the function as (cos x)2 − 2(sin xy)2 so that it is clear that this is just the composition of continuous

functions.
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43. The only place we need to check is the origin. We need to show that the limit of f as we approach (0, 0) is 0. If we add and
subtract y2 to the numerator we find that:

lim
(x,y)→(0,0)

x2 − y2

x2 + y2
= 1 − 2 lim

(x,y)→(0,0)

y2

x2 + y2
.

In Exercise 16 we showed that this limit doesn’t exist (in this case you get two different answers if you follow the paths y = 0
and y = x) and so f is not continuous at (0, 0).

44. As in Exercise 43, the only point we need to check is the origin.

lim
(x,y)→(0,0)

x3 + x2 + xy2 + y2

x2 + y2
= lim

(x,y)→(0,0)

(x2 + y2)(x + 1)

x2 + y2
= lim

(x,y)→(0,0)
(x + 1) = 1.

The good news is that the limit exists, the bad news is that

lim
(x,y)→(0,0)

g(x, y) = 1 �= 2 = g(0, 0),

so g is not continuous at the origin.
45. A vector-valued function is continuous if each of its component functions is continuous. Each clearly is, so F is continuous.
46. Notice that when (x, y) �= 0,

x3 + xy2 + 2x2 + 2y2

x2 + y2
=

(x2 + y2)(x + 2)

x2 + y2
= x + 2.

So c = 2 and the function g(x, y) is seen to be equivalent to x + 2.
47. Here you can view f as being a function R3 → R; then f(x1, x2, x3) = 2x1 − 3x2 + x3 which is linear in x1, x2, and x3

and therefore continuous.
48. This is equivalent to f(x, y, z) = (−5y, 5x− 6z, 6y). Since each of the component functions from R3 → R is continuous, so

is f.

We make students do at least a few of the following because “it’s good for them.” Exercise 49 is a review of how they looked at
limits in first semester Calculus—it prepares them for Exercise 50. Exercise 51 is a generalization of Exercise 50.
49. Here f(x) = 2x − 3.

(a) If |x − 5| < δ, then |f(x) − 7| = |(2x − 3) − 7| = |2x − 10| = 2|x − 5| < 2δ.
(b) For any ε > 0, if 0 < |x − 5| < ε/2, then |f(x) − 7| < ε. This means that limx→5 f(x) = 7.

50. Now the function is f(x, y) = 2x − 10y + 3.
(a) Really we’re just arguing that the hypotenuse of a right triangle is at least as long as either leg.

δ > ‖(x, y) − (5, 1)‖ =
√

(x − 5)2 + (y − 1)2 ≥
√

(x − 5)2 = |x − 5|.
And

δ > ‖(x, y) − (5, 1)‖ =
√

(x − 5)2 + (y − 1)2 ≥
√

(y − 1)2 = |y − 1|.
(b) First:

|f(x, y) − 3| = |2x − 10y + 3 − 3| = |2x − 10y| = |2(x − 5) − 10(y − 1)|.
(c) By the triangle inequality

|2(x − 5) − 10(y − 1)| ≤ |2(x − 5)| + |10(y − 1)| = 2|x − 5| + 10|y − 1|.
But we are assuming that ‖(x, y) − (5, 1)‖ < δ and from part (a) we know that this implies that |x − 5| < δ and
|y − 1| < δ, so

2|x − 5| + 10|y − 1| < 2δ + 10δ = 12δ.

(d) We put these together to obtain: For any ε > 0, if 0 < ‖(x, y)− (5, 1)‖ < ε/12, then |f(x, y)− 3| < ε. In other words,

lim
(x,y)→(5,1)

f(x, y) = 3.

51. This is just a generalization of Exercise 50. We can use the same steps outlined there:
(a)

δ > ‖(x, y) − (x0, y0)‖ =
√

(x − x0)2 + (y − y0)2 ≥
√

(x − x0)2 = |x − x0|.
And

δ > ‖(x, y) − (x0, y0)‖ =
√

(x − x0)2 + (y − y0)2 ≥
√

(y − y0)2 = |y − y0|.
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(b) Assume that ‖(x, y) − (x0, y0)‖ < δ, then follow the steps in part (b) of Exercise 50:

|f(x, y) − (Ax0 + By0 + C)| = |Ax + By + C − (Ax0 + By0 + C)|
= |A(x − x0) + B(y − y0)| ≤ |A(x − x0)| + |B(y − y0)|
= |A||x − x0| + |B||y − y0| < |A|δ + |B|δ = (|A| + |B|)δ.

(c) Now we’re ready to put this together: For any ε > 0, if 0 < ‖(x, y)− (x0, y0)‖ < ε/(|A|+ |B|), then |f(x, y)− (Ax0 +
By0 + C)| < ε. In other words,

lim
(x,y)→(x0,y0)

f(x, y) = Ax0 + By0 + C.

52. (a) This is really what we just showed in Exercise 51 with x0 = 0 and y0 = 0.

‖(x, y)‖ =
√

x2 + y2 ≥
√

x2 = |x|.

And
‖(x, y)‖ =

√
x2 + y2 ≥

√
y2 = |y|.

(b) We follow the hint given in the text: |x3 + y3| ≤ |x3|+ |y3| = |x|3 + |y|3. But by part (a), |x| ≤ ‖(x, y)‖ =
√

x2 + y2,
and |y| ≤ ‖(x, y)‖ =

√
x2 + y2. Therefore,

|x3 + y3| ≤ |x|3 + |y|3 ≤ 2(
√

x2 + y2)3 = 2(x2 + y2)3/2.

(c) If 0 < ‖(x, y)‖ < δ then by part (b),∣∣∣∣x3 + y3

x2 + y2

∣∣∣∣ ≤
∣∣∣∣2(x2 + y2)3/2

x2 + y2

∣∣∣∣ = 2
√

x2 + y2 = 2‖(x, y)‖ < 2δ.

(d) First we know by part (c) that x3 + y3

x2 + y2
can be made to be arbitrarily close to 0 by choosing (x, y) close enough to the

origin. This means that the limit is 0.
Assemble the pieces: For any ε > 0, if 0 < ‖(x, y)‖ < ε/2, then |f(x, y)| < ε. This shows that

lim
(x,y)→(0,0)

x3 + y3

x2 + y2
= 0.

53. (a) 0 ≤ (a+ b)2 = a2 +2ab+ b2, so −2ab ≤ a2 + b2. Also 0 ≤ (a− b)2 = a2 −2ab+ b2, so 2ab ≤ a2 + b2. We combine
these two results to get: 2|ab| ≤ a2 + b2.

(b) If ‖(x, y)‖ < δ, then we’ll use part (a) to rewrite |xy| in the following calculation:∣∣∣∣xy
(

x2 − y2

x2 + y2

)∣∣∣∣ = |xy|(|x2 − y2|)
x2 + y2

≤ (1/2)(x2 + y2)|x2 − y2|
x2 + y2

=

(
1

2

)
|x2 − y2|.

We can apply part (a) again with a = x + y and b = x − y so that

|(x + y)(x − y)| ≤ (x + y)2 + (x − y)2

2
= x2 + y2.

Noting that x2 + y2 = ‖(x, y)‖2 = δ2, we have:∣∣∣∣xy
(

x2 − y2

x2 + y2

)∣∣∣∣ ≤
(

1

2

)
|x2 − y2| =

δ2

2
.

(c) As in Exercise 52, the limit has to be 0 because we can make f as small as we want by choosing (x, y) close enough to the
origin.

We summarize the above as: For any ε > 0, if 0 < ‖(x, y)‖ <
√

2ε, then |f(x, y)| < ε. This shows that

lim
(x,y)→(0,0)

∣∣∣∣xy
(

x2 − y2

x2 + y2

)∣∣∣∣ = 0.
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2.3 The Derivative

The general strategy for Exercises 1–15 is to treat all variables except for the one with respect to which we are differentiating as
constants.

1. f(x, y) = xy2 + x2y, so ∂f/∂x = y2 + 2xy, and ∂f/∂y = 2xy+ x2.
2. f(x, y) = ex2+y2

, so ∂f/∂x = 2xex2+y2

, and ∂f/∂y = 2yex2+y2

.
3. f(x, y) = sin xy+ cos xy, so ∂f/∂x = y cos xy− y sin xy, and ∂f/∂y = x cos xy− x sin xy.

4. f(x, y) =
x3 − y2

1 + x2 + 3y4
, so

∂f

∂x
=

(1 + x2 + 3y4)(3x2) − (x2 − y2)(2x)

(1 + x2 + 3y4)2

and
∂f

∂y
=

(1 + x2 + 3y4)(−2y) − (x2 − y2)(12y3)

(1 + x2 + 3y4)2
.

5. f(x, y) =
x2 − y2

x2 + y2
, so ∂f

∂x
=

(x2 + y2)(2x) − (x2 − y2)(2x)

(x2 + y2)2
=

4xy2

(x2 + y2)2

and ∂f

∂y
=

(x2 + y2)(−2y) − (x2 − y2)(2y)

(x2 + y2)2
=

−4x2y

(x2 + y2)2
.

6. f(x, y) = ln(x2 + y2), so ∂f

∂x
=

1

x2 + y2
(2x) =

2x

x2 + y2
and ∂f

∂y
=

2y

x2 + y2
.

7. f(x, y) = cos x3y, so ∂f

∂x
= (− sin x3y)(3yx2) = −3x2y sin x3y and ∂f

∂y
= −x3 sin x3y.

8. f(x, y) = ln (x/y), so ∂f

∂x
=

1

x/y
· 1

y
=

1

x
and ∂f

∂y
=

1

x/y

(
− x

y2

)
= −1

y
.

9. f(x, y) = xey + y sin (x2 + y), so ∂f/∂x = ey + 2xy cos (x2 + y) and ∂f/∂y = xey + sin (x2 + y) + y cos (x2 + y).
10. F (x, y, z) = x + 3y − 2z, so ∂F/∂x = 1, ∂F/∂y = 3, and ∂F/∂z = −2.

11. F (x, y, z) =
x − y

y + z
, so ∂F

∂x
=

1

y + z
,

∂F

∂y
=

(y + z)(−1) − (x − y)(1)

(y + z)2
= − x + z

(y + z)2
,

and

∂F

∂z
=

(y + z)(0) − (x − y)(1)

(y + z)2
=

y − x

(y + z)2
.

12. F (x, y, z) = xyz, so ∂F/∂x = yz, ∂F/∂y = xz, and ∂F/∂z = xy.

13. F (x, y, z) =
√

x2 + y2 + z2 = (x2 + y2 + z2)1/2. The partial derivatives are:

∂F

∂x
=

2x

2
√

x2 + y2 + z2
=

x√
x2 + y2 + z2

,

∂F

∂y
=

y√
x2 + y2 + z2

and,

∂F

∂z
=

z√
x2 + y2 + z2

.

14. F (x, y, z) = eax cos by + eaz sin bx so

∂F

∂x
= aeax cos by + beaz cos bx,

∂F

∂y
= −beax sin by, and

∂F

∂z
= aeaz sin bx.
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15. F (x, y, z) =
x + y + z

(1 + x2 + y2 + z2)3/2

Fx(x, y, z) =
(1 + x2 + y2 + z2)3/2 − (x + y + z)(3/2)(1 + x2 + y2 + z2)1/2(2x)

(1 + x2 + y2 + z2)3

=
1 − 2x2 + y2 + z2 − 3xy− 3xz

(1 + x2 + y2 + z2)5/2

Fy(x, y, z) =
1 + x2 − 2y2 + z2 − 3xy− 3yz

(1 + x2 + y2 + z2)5/2
, and

Fz(x, y, z) =
1 + x2 + y2 − 2z2 − 3xz− 3yz

(1 + x2 + y2 + z2)5/2
.

16. F (x, y, z) = sin x2y3z4 so this is similar to Exercise 7 above. Fx(x, y, z) = 2xy3z4 cos x2y3z4, Fy(x, y, z) =
3x2y2z4 cos x2y3z4 and Fz(x, y, z) = 4x2y3z3 cos x2y3z4.

17. F (x, y, z) =
x3 + yz

(x2 + z2 + 1)
We’ve seen this form a couple of times by now.

Fx(x, y, z) =
(x2 + z2 + 1)(3x2) − (x3 + yz)(2x)

(x2 + z2 + 1)2
=

x4 + 3x2z2 + 3x2 − 2xyz
(x2 + z2 + 1)2

Fy(x, y, z) =
(x2 + z2 + 1)(z) − (x3 + yz)(0)

(x2 + z2 + 1)2
=

z

x2 + z2 + 1

Fz(x, y, z) =
(x2 + z2 + 1)(y) − (x3 + yz)(2z)

(x2 + z2 + 1)2
=

x2y − yz2 + y − 2x3z

(x2 + z2 + 1)2

The gradient of f is the function (fx(x, y, z), fy(x, y, z), fz(x, y, z)). In Exercises 18–25 we are evaluating the gradient at a
given point.

18. f(x, y) = x2y + ey/x, so ∇f(x, y) = (2xy+ (−y/x2)ey/x, x2 + (1/x)ey/x). This means that ∇f(1, 0) = (0, 2).

19. f(x, y) =
x − y

x2 + y2 + 1
, so

∇f(x, y) =

(
(x2 + y2 + 1)(1) − (x − y)(2x)

(x2 + y2 + 1)2
,
(x2 + y2 + 1)(−1) − (x − y)(2y)

(x2 + y2 + 1)2

)

=

(−x2 + y2 + 1 + 2xy
(x2 + y2 + 1)2

,
−x2 + y2 − 1 − 2xy

(x2 + y2 + 1)2

)
.

So

∇f(2,−1) =

(
− 6

36
,

0

36

)
=

(
−1

6
, 0

)
.

20. f(x, y, z) = sin xyz, so ∇f(x, y, z) = (cos xyz)(yz, xz, xy). This means that

∇f(π, 0, π/2) = cos 0(0, π2/2, 0) = (0, π2/2, 0).

21. f(x, y, z) = xy+ y cos z − x sin yz, so ∇f(x, y, z) = (y − sin yz, x + cos z − xz cos yz,−y sin z − xy cos yz). So,

∇f(2,−1, π) = (−1 − sin(−π), 2 + cos(π) − 2(π) cos(−π), sin(π) + 2 cos(−π))

= (−1, 1 + 2π,−2).

22. f(x, y) = exy+ln(x−y), so ∇f(x, y) = (yexy+1/(x−y), xexy−1/(x−y)). This means that ∇f(2, 1) = (e2+1, 2e2−1).
23. f(x, y, z) = (x + y)e−z , so ∇f(x, y, z) = (e−z, e−z,−(x + y)e−z). So, ∇f(3,−1, 0) = (1, 1,−2).
24. f(x, y, z) = cos z ln (x + y2), so ∇f(x, y, z) = (1/(x + y2), 2y/(x + y2),− sin z ln (x + y2)). Hence ∇f(e, 0, π/4) =

(1/e, 0,−1/
√

2).
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25. f(x, y, z) =
xy2 − x2z

y2 + z2 + 1
, so we have ∂f

∂x
=

y2 − 2xz

y2 + z2 + 1
and the quotient rule applied appropriately gives

∂f

∂x
=

(y2 + z2 + 1)(2xy) − (xy2 − x2z)(2y)

(y2 + z2 + 1)2
=

2xy(xz + z2 + 1)

(y2 + z2 + 1)2

and
∂f

∂x
=

(y2 + z2 + 1)(−x2) − (xy2 − x2z)(2z)

(y2 + z2 + 1)2
=

x(xz2 − xy2 − 2y2z − x)

(y2 + z2 + 1)2
.

Therefore, ∇f(−1, 2, 1) = (1,−1/9, 1/9).

The nth row of the derivative matrix is the gradient of the nth component function.

26. f(x, y) = x
y
,Df(x, y) =

[
1
y
, −x

y2

]
. So Df(3, 2) = [1/2,−3/4].

27. f(x, y, z) = x2+x ln (yz), so Df(x, y, z) =
[
2x + ln (yz) x/y x/z

]
and thus Df(−3, e, e) =

[−4 −3/e −3/e
]
.

28. f(x, y, z) =
(
2x − 3y + 5z, x2 + y, ln (yz)

)
, so Df(x, y, z) =

⎡
⎣ 2 −3 5

2x 1 0
0 1/y 1/z

⎤
⎦. Hence

Df(3,−1,−2) =

⎡
⎣ 2 −3 5
−6 1 0
0 −1 −1/2

⎤
⎦ .

29. f(x, y, z) = (xyz,
√

x2 + y2 + z2), so

Df(x, y, z) =

⎡
⎣ yz xz xy

x/
√

x2 + y2 + z2 y/
√

x2 + y2 + z2 z/
√

x2 + y2 + z2

⎤
⎦ .

This means,

Df(1, 0,−2) =

[
0 −2 0

1/
√

5 0 −2/
√

5

]
.

30. f(t) = (t, cos 2t, sin 5t), so

Df(t) =

⎡
⎣ 1

−2 sin 2t
5 cos 5t

⎤
⎦ and so Df(0) =

⎡
⎣ 1

0
5

⎤
⎦ .

31. f(x, y, z, w) = (3x − 7y + z, 5x + 2z − 8w, y − 17z + 3w) so

Df(x, y, z, w) =

⎡
⎣ 3 −7 1 0

5 0 2 −8
0 1 −17 3

⎤
⎦ .

Since all of the entries are constant, the matrix doesn’t depend on a.
32. f(x, y) = (x2y, x + y2, cos πxy), so

Df(x, y) =

⎡
⎣ 2xy x2

1 2y
−πy sin πxy −πx sin πxy

⎤
⎦ .

This means,

Df(2,−1) =

⎡
⎣ −4 4

1 −2
0 0

⎤
⎦ .

33. f(s, t) = (s2, st, t2), so

Df(s, t) =

⎡
⎣ 2s 0

t s
0 2t

⎤
⎦ .
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This means,

Df(−1, 1) =

⎡
⎣ −2 0

1 −1
0 2

⎤
⎦ .

We will appeal to Theorem 3.5 for Exercises 34–36.

34. f(x, y) = xy − 7x8y2 + cos x is differentiable because the two partials fx(x, y) = y − 56x7y2 − sin x and fy(x, y) =
x − 14x8y are continuous.

35. f(x, y, z) =
x + y + z

x2 + y2 + z2
is differentiable because the three partials

fx(x, y, z) =
−x2 + y2 + z2 − 2xy− 2xz

(x2 + y2 + z2)2

fy(x, y, z) =
x2 − y2 + z2 − 2xy− 2yz

(x2 + y2 + z2)2

fz(x, y, z) =
x2 + y2 − z2 − 2xz− 2yz

(x2 + y2 + z2)2

are all continuous.

36. f(x, y) =

(
xy2

x2 + y4
,
x

y
+

y

x

)
is differentiable because the partials in the matrix

Df(x, y) =

⎡
⎢⎣

y6 − x2y2

(x2 + y4)2
2x3y − 2xy5

(x2 + y4)2
1

y
− y

x2

−x

y2
+

1

x

⎤
⎥⎦

are continuous in the domain of f.
37. (a) The graph of z = x3 − 7xy+ ey has continuous partial derivatives at (−1, 0, 0).

(b) By Theorem 3.3, the equation for the tangent plane is: z = f(−1, 0) + fx(−1, 0)(x − (−1)) + fy(−1, 0)(y − 0). In
this case fx(x, y) = 3x2 − 7y so fx(−1, 0) = 3. Also fy(x, y) = −7x + ey and so fy(−1, 0) = 8. The equation of the
plane is z = 3(x + 1) + 8y.

38. Again using Theorem 3.3, the equation for the tangent plane is: z = f(π/3, 1) + fx(π/3, 1)(x− π/3) + fy(π/3, 1)(y − 1).
Here z = 4 cos xy, so fx(x, y) = −4y sin xy and fy(x, y) = −4x sin xy. Plugging in we get z = 2 − 2

√
3(x − π/3) −

(2π/
√

3)(y − 1).
39. Again using Theorem 3.3, the equation for the tangent plane is: z = f(0, 1) + fx(0, 1)(x) + fy(0, 1)(y − 1). Here z =

ex+y cos xy, so fx(x, y) = ex+y(cos xy − y sin xy) and fy(x, y) = ex+y(cos xy − x sin xy). Plugging in we get z =
e + ex+ e(y − 1) or z = ex+ ey.

40. First find the two partials fx(x, y) = 2x− 6 and fy(x, y) = 3y2. Then putting the tangent plane equation into the same form
as the plane 4x−12y+z = 7 gives us z−(2a−6)(x−a)−(3b2)(y−b) = a2−6a+b3 or z−(2a−6)x−3b2y = −a2−2b3. So
2a−6 = −4 so a = 1 and 3b2 = 12 so b = ±2. This gives two tangent planes. The equation for one is 4x−12y + z = −17
and the equation for the other is 4x − 12y + z = 15.

41. For f(x1, . . . , x4) = 10 − (x2
1 + 3x2

2 + 2x2
3 + x2

4), we have

∇f = (−2x1,−6x2,−4x3,−2x4) so ∇f(2,−1, 1, 3) = (−4, 6,−4,−6).

Formula (8) gives that the hyperplane has equation

x5 = −8 + (−4, 6,−4,−6)(x1 − 2, x2 + 1, x3 − 1, x4 − 3)

= −8 − 4(x1 − 2) + 6(x2 + 1) − 4(x3 − 1) − 6(x4 − 3)

or
x5 = −4x1 + 6x2 − 4x3 − 6x4 + 28.
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42. (a)

fx(2, 3) ≈ f(1.98, 3) − f(2, 3)

1.98 − 2
=

12.1 − 12

−.02
=

.1

−.02
= −5

fy(2, 3) ≈ f(2, 3.01) − f(2, 3)

3.01 − 3
=

12.2 − 12

0.01
=

.2

.01
= 20

Thus, formula (4) of §2.3 would give an approximate equation for the tangent plane as

z = f(2, 3) + fx(2, 3)(x − 2) + fy(2, 3)(y − 3) ≈ 12 − 5(x − 2) + 20(y − 3)

or
z = −5x + 20y − 8.

(b)

f(1.98, 2.98) ≈ 12 − 5(1.98 − 2) + 20(2.98 − 3) = 12 − 5(−0.02) + 20(−0.02)

= 11.7

Exercises 43–45 have the student investigate the linear approximation h of f near a given point a. We use the formula in
Definition 3.8:

h(x) = f(a) + Df(a)(x − a).

43. Here f(x, y) = ex+y so the partials are fx(x, y) = ex+y = fy(x, y).
(a) h(.1,−.1) = f(0, 0) + (e0, e0) · (.1,−.1) = 1.
(b) f(.1,−.1) = e0 = 1. So the approximation is exact.

44. Here f(x, y) = 3 + cos πxy so the partials are fx(x, y) = −πy sin πxy and fy(x, y) = −πx sin πxy.
(a) h(.98, .51) = 3+cos π(1)(.5)−(π(.5) sin[π(1)(.5)], π(1) sin[π(1)(.5)]) ·(−.02, .01) = 3−π(.5, 1) ·(−.02, .01) = 3.
(b) f(.98, .51) = 3 + cos π(.98)(.51) ≈ 3.00062832.

45. f(x, y, z) = x2 + xyz+ y3z, so the partials are fx(x, y, z) = 2x + yz, fy(x, y, z) = xz+ 3y2z, and fz(x, y, z) = xy+ y3.
(a) h(1.01, 1.95, 2.2) = f(1, 2, 2) + (fx(1, 2, 2), fy(1, 2, 2), fz(1, 2, 2)) · (.01,−.05, .2) = 21 +

(6, 26, 10) · (.01,−.05, .2) = 21.76.
(b) f(1.01, 1.95, 2.2) = 21.665725.

46.

f(x1, x2, . . . , xn) =
x1 + x2 + · · · + xn√
x2

1 + x2
2 + · · · + x2

n

, so

fxi
(x1, x2, . . . , xn) =

√
x2

1 + x2
2 + · · · + x2

n − xi(x1 + x2 + · · · + xn)(x2
1 + x2

2 + · · · + x2
n)−1/2

x2
1 + x2

2 + · · · + x2
n

=
x2

1 + x2
2 + · · · + x2

n − xi(x1 + x2 + · · · + xn)

(x2
1 + x2

2 + · · · + x2
n)3/2

.

47. (a) For (x, y) �= (0, 0) we can find a neighborhood that misses the origin. In this neighborhood

f(x, y) =
xy2 − x2y + 3x3 − y3

x2 + y2
= x − y +

2x3

x2 + y2
.

We can then easily compute the partials as

fx(x, y) = 1 +
2x4 + 6x2y2

(x2 + y2)2
and fy(x, y) = −1 − 4x3y

(x2 + y2)2
.

(b) Using Definition 3.2 of the partial derivative, if

f(x, y) =

⎧⎨
⎩ x − y +

2x3

x2 + y2
if (x, y) �= (0, 0)

0 if (x, y) = (0, 0)
,
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then
∂f

∂x
(0, 0) = lim

h→0

f(h, 0) − f(0, 0)

h
= lim

h→0

3h

h
= 3,

and
∂f

∂y
(0, 0) = lim

h→0

f(0, h) − f(0, 0)

h
= lim

h→0

−h

h
= −1.

Note: Exercises 48–51 are review exercises for single-variable calculus. The idea is to see that near a point, the tangent line
approximates the curve. This idea will then be extended to a tangent plane and a surface in Exercises 53–57. For Exercises 48–51
use either the point-slope equation y − f(a) = f ′(a)(x − a) or solve for y to get y = f ′(a)x + f(a) − f ′(a)a.

48. For the tangent line to F (x) = x3 − 2x + 3 at a = 1 F ′(x) = 3x2 − 2 so F ′(1) = 1. The tangent line is y = x + 1. The
graph of F and the tangent line near x = 1 (in this case for .8 ≤ x ≤ 1.2) is shown below left.

49. For the tangent line to F (x) = x + sin x at a = π/4 F ′(x) = 1 + cos x so F ′(π/4) = 1 +
√

2/2. The tangent line is
y = (1 +

√
2/2)x + (π/4 +

√
2/2 − (1 +

√
2/2)π/4). The graph of F and the tangent line near x = π/4 is shown above

right.
50. For the tangent line rewrite F (x) = x − 3 + 3/(x2 + 1). F ′(x) = 1 − 6x/(x2 + 1)2 so F ′(0) = 1 and F (0) = 0. The

tangent line is y = x. We can see that by looking at our rewritten version of F . The graph of F and the tangent line near
x = 0 is shown below left.

51. For the tangent line to F (x) = ln(x2 + 1) at a = −1, F ′(x) = 2x/(x2 + 1) so F ′(−1) = −1. The tangent line is
y = −x + ln 2 − 1. The graph of F and the tangent line near x = −1 is shown above right.

52. Looking at the graph below, we can see that there is a cusp at x = 2 (trust me, that’s where the cusp is). You can also see that
the limit of the derivative using points to the left of 2 would not be the same as the derivative using points to the right of 2 as
one set is negative and the other is positive. Finally, the tangent line looks to be a vertical line. This has no slope and so the
derivative wouldn’t exist.

53. (a) For the function f(x, y) = x3 − xy + y2, fx(x, y) = 3x2 − y and fy(x, y) = −x + 2y. So at the point (2, 1) these
become f(2, 1) = 7, fx(2, 1) = 11, and fy(2, 1) = 0. The equation of the tangent plane is z = 7 + 11(x − 2).
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(b)

(c) The partials are continuous so by Theorem 3.5, f is differentiable.
54. (a) To find the partial derivatives fx(1, 0) and fy(1, 0), we must look at appropriate partial functions of f(x, y) = ((x −

1)y)2/3:

f(x, 0) ≡ 0 ⇒ fx(1, 0) = 0

f(1, y) ≡ 0 ⇒ fy(1, 0) = 0

Since f(1, 0) = 0, the candidate tangent plane has equation z = 0 + 0(x − 1) + 0(y − 0) or z = 0.
(b) A computer graph looks as follows.

0.8
0.9

1
1.1

-0.2

-0.1

0

0.1

0.2

0
0.025
0.05

0.075
0.1

Zooming in closer to the point (1, 0, 0) doesn’t make things appear very different, so it’s tempting to conclude that f must
not be differentiable at (1, 0).

(c) From our calculations in part (a), the linear function h(x, y) = f(1, 0) + fx(1, 0)(x − 1) + fy(1, 0)(y − 0) = 0. Thus,
for (x, y) �= (1, 0) we have

0 ≤ |f(x, y) − h(x, y)|
‖(x, y) − (1, 0)‖ =

|f(x, y)|√
(x − 1)2 + y2

.

Now

|f(x, y)| = |x − 1|2/3|y|2/3 ≤ ((x − 1)2 + y2)1/3((x − 1)2 + y2)1/3

= ((x − 1)2 + y2)2/3.

Thus

|f(x, y)|√
(x − 1)2 + y2

≤ ((x − 1)2 + y2)2/3

((x − 1)2 + y2)1/2
= ((x − 1)2 + y2)1/6.

Since this last expression approaches zero as (x, y) → (1, 0), we see that f must be differentiable at (1, 0) by Defini-
tion 3.4.

55. (a) For the function f(x, y) =
xy

x2 + y2 + 1
, fx(x, y) =

−x2y + y3 + y

(x2 + y2 + 1)2
and fy(x, y) =

x3 − xy2 + y

(x2 + y2 + 1)2
. So at the point

(0, 0) these become f(0, 0) = 0, fx(0, 0) = 0, and fy(0, 0) = 0. The equation of the tangent plane is z = 0.
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(b) The surface is shown below left. It is shown with the tangent plane below right.

-2
-1

0
1

2

x
-2

-1

0

1

2

y
-0.4
-0.2

0
0.2
0.4

z

-2
-1

0
1

2

x

-2 -1 0 1 2y

-0.4
-0.2

0

0.2

0.4

z

(c) This is the plane that best approximates the surface at that point. But we can see that it’s not a very good approximation
as you move way in any direction other than the two axes lines. Analytically, the reason is that the partials are continuous
in a neighborhood of (0, 0).

56. (a) For the function f(x, y) = sin x cos y, fx(x, y) = cos x cos y and fy(x, y) = − sin x sin y. So at the point (π/6, 3π/4)
these become f(π/6, 3π/4) = −√

2/4, fx(π/6, 3π/4) = −√
6/4, and fy(π/6, 3π/4) = −√

2/4. The equation of the
tangent plane is z = −√

2/4 −√
6/4(x − π/6) −√

2/4(y − 3π/4).
(b)

-0.5
0

0.5
1

1.5
x 1.5

2

2.5

3

y

-1
-0.5

0
0.5
1

z

(c) Again the partials are continuous in a neighborhood of (π/6, 3π/4) so by Theorem 3.5, f is differentiable at the point.
57. (a) For the function f(x, y) = x2 sin y + y2 cos x, fx(x, y) = 2x sin y − y2 sin x and fy(x, y) = x2 cos y + 2y cos x.

So at the point (π/3, π/4) these become f(π/3, π/4) = π2
√

2/18 + π2/32, fx(π/3, π/4) = π
√

2/3 − π2
√

3/32,
and fy(π/3, π/4) = π2

√
2/18 + π/4. The equation of the tangent plane is z = (π2

√
2/18 + π2/32) + (π

√
2/3 −

π2
√

3/32)(x − π/3) + (π2
√

2/18 + π/4)(y − π/4).
(b)

0
0.5

1
1.5

2

x
0

0.5

1

1.5

2

y

0

2

4

z

(c) The partials are continuous near (π/3, π/4) so by Theorem 3.5, f is differentiable there.
58. (a) Yes g(x, y) = (xy)1/3 is continuous at (0, 0).

(b) ∂g/∂x = (1/3)x−2/3y1/3, and ∂g/∂y = (1/3)x1/3y−2/3.
(c) Unfortunately we can’t just substitute the point (0, 0) in our answers to (b), but using Definition 3.2 of partial derivatives,

we see that the two partials must be 0. In other words we define gx(0, 0) = 0, and gy(0, 0) = 0.
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(d) No (choose a path that crosses the x- and y-axes).
(e) You can see this answer if you look along the line y = x. There g(x, x) = x2/3 which has a corner at (0, 0). So there

can’t be a tangent plane.
(f) No g isn’t differentiable at (0, 0).

59. If f(x) = Ax =
(∑n

k=1 a1kxk,
∑n

k=1 a2kxk, . . . ,
∑n

k=1 amkxk

)
. Let’s look at the entry in row i column j of Df(x). This

will be
∂fi

∂xj
=

∂

∂xj

(
n∑

k=1

aikxk

)
= aij .

So Df(x) = A.
60. By Theorem 2.6, if limx→a F(x) = 0, then limx→a Fi(x) = 0 for each component function Fi of F. Hence limx→a ‖F(x)‖ =

0.
Conversely, assume that limx→a ‖F(x)‖ = 0. This means that, given any ε > 0, we can find an appropriate δ > 0 such

that if 0 < ‖x − a‖ < δ, then |‖F(x)‖ − 0| < 0. But note that

|Fi(x)| ≤
√

F1(x)2 + F2(x)2 + · · · + Fm(x)2 = |‖F(x)‖ − 0|.
Hence if 0 < ‖x − a‖ < δ, then |Fi(x) − 0| < ε, so that limx→a F(x) = 0.

61. (a) First, Exercise 60 shows that

lim
x→a

f(x) − [f(a) + A(x − a)]

‖x − a‖ = lim
x→a

f(x) − [f(a) + B(x − a)]

‖x − a‖ .

Subtracting these limits we have

0 = lim
x→a

(
f(x) − f(a) − A(x − a)

‖x − a‖ − f(x) − f(a) − B(x − a)

‖x − a‖
)

= lim
x→a

(B − A)(x − a)

‖x − a‖ .

(b) When taking the limit, it’s possible to have x → a in a completely arbitrary manner. But one way to have x → a is along
a straight-line path, which may be described as x = a + th. For such paths, having x → a is achieved by letting t → 0.
Thus if we know that

lim
x→a

(B − A)(x − a)

‖x − a‖ = 0,

then it must follow that
lim
t→0

(B − A)(th)

‖th‖ = 0.

(Note: The converse need not be true.) It follows that we must have a consistent one-sided limit; hence

lim
t→0+

(B − A)(th)

‖th‖ = 0.

Now, for t > 0, we have
(B − A)(th)

‖th‖ =
(B − A)h

‖h‖ .

Thus if
lim

t→0+

(B − A)(th)

‖th‖ = lim
t→0+

(B − A)h

‖h‖ = 0,

it must be the case that (B −A)h = 0. Moreover, this must be true for any nonzero vector h ∈ Rn. By setting h in turn
equal to the standard basis vectors e1, . . . , en, we conclude that B − A must be the zero matrix. Similarly, we must also
have

lim
t→0−

(B − A)(th)

‖th‖ = 0.

For t < 0, we have
(B − A)(th)

‖th‖ =
(B − A)(th)

|t|‖h‖ = − (B − A)h

‖h‖ .

Thus if
lim

t→0−

(B − A)(th)

‖th‖ = lim
t→0−

− (B − A)h

‖h‖ = 0,

again it must be the case that (B − A)h = 0. Hence B − A must be the zero matrix.
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62. (a) In the fraction that defines the function F, the denominator ‖x − a‖ is already a scalar-valued expression. Thus

Fi(x) =
fi(x) − fi(a) − (row i of A)(x − a)

‖x − a‖ .

(b) By Theorem 2.6, since limx→a F(x) = 0, we must have limx→a Fi(x) = 0 for i = 1, . . . , m as well. Since the latter
limit is known and is zero, it must be that the same limit is attained by letting x approach a along any straight-line path.
We may describe staight-line paths that run parallel to the coordinate axes by x = a + hej , where ej is a standard basis
vector for Rn. Thus if limx→a Fi(x) = 0, then limh→0 Fi(a + hej) = 0.

Now we determine limh→0 Fi(a + hej). Using the description of the component function Fi from part (a), we have

0 = lim
h→0

fi(a + hej) − fi(a) − (row i of A)(hej)

‖hej‖

= lim
h→0

[
fi(a + hej) − fi(a)

‖hej‖ − (row i of A)(hej)

‖hej‖
]

= lim
h→0

[
fi(a + hej) − fi(a)

|h|‖ej‖ − (row i of A)(hej)

|h|‖ej‖
]

= lim
h→0

[
fi(a + hej) − fi(a)

|h| − (row i of A)(hej)

|h|
]

,

since the standard basis vectors are all unit vectors. Now consider one-sided limits. Suppose first that h > 0. Then

0 = lim
h→0+

[
fi(a + hej) − fi(a)

|h| − (row i of A)(hej)

|h|
]

= lim
h→0+

[
fi(a + hej) − fi(a)

h
− (row i of A)ej

]

= lim
h→0+

fi(a1, . . . , aj + h, . . . , an) − fi(a1, . . . , an)

h
− aij .

Similarly, if h < 0,

0 = lim
h→0−

[
fi(a + hej) − fi(a)

|h| − (row i of A)(hej)

|h|
]

= lim
h→0−

[
fi(a + hej) − fi(a)

−h
+ (row i of A)ej

]

= lim
h→0−

−fi(a1, . . . , aj + h, . . . , an) − fi(a1, . . . , an)

h
+ aij .

Taking both cases together, we have shown that

lim
h→0

fi(a1, . . . , aj + h, . . . , an) − fi(a1, . . . , an)

h
= aij .

This last limit is precisely the definition of the partial derivative. Hence we have shown that aij =
∂fi

∂xj
(a), as desired.

2.4 Properties; Higher-Order Partial Derivatives

In Exercises 1–4 there isn’t much to show . . . the students just need to verify that the sum of the derivative is the derivative of the
sum (Proposition 4.1).

1. f(x, y) = xy+ cos x, and g(x, y) = sin(xy) + y3, so Df = [y − sin x, x], Dg = [y cos xy, x cos xy+ 3y2], and D(f + g) =
[y − sin x + y cos xy, x + x cos xy+ 3y2].

2. f(x, y) = (ex+y, xey), and g(x, y) = (ln(xy), yex), so

Df =

[
ex+y ex+y

ey xey

]
, Dg =

[ y
xy

x
xy

yex ex

]
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and

D(f + g) =

[
ex+y + y

xy ex+y + x
xy

ey + yex xey + ex

]
.

Note the use of the product rule in Exercise 3 when calculating (g1)x.

3. f(x, y, z) = (x sin y + z, yex − 3x2) and g(x, y, z) = (x3 cos x, xyz), so

Df =

[
sin y x cos y 1
−6x ez yez

]
, Dg =

[
3x2 cos x − x3 sin x 0 0

yz xz xy

]
and

D(f + g) =

[
sin y + 3x2 cos x − x3 sin x x cos y 1

−6x + yz ez + xz yez + xy

]
.

4. f(x, y, z) = (xyz2, xe−y, y sin xz) and g(x, y, z) = (x − y, x2 + y2 + z2, ln(xz+ 2)), so

Df =

⎡
⎣ yz2 xz2 2xyz

e−y −xe−y 0
zy cos xz sin xz xy cos xz

⎤
⎦ , Dg =

⎡
⎣ 1 −1 0

2x 2y 2z
z/(xz+ 2) 0 x/(xz+ 2)

⎤
⎦ and

D(f + g) =

⎡
⎣ 1 + yz2 −1 + xz2 2xyz

e−y + 2x −xe−y + 2y 2z
zy cos xz+ z/(xz+ 2) sin xz xy cos xz+ x/(xz+ 2)

⎤
⎦ .

Exercises 5–8 are again mainly calculations to convince the students of the formulas given in Proposition 4.2; we hope that
they remember to apply them when confronted with a product or quotient. In Exercises 6 and 7 we notice that we just get the
quotient rule in each component which factors into the quotient rule given in the proposition (and we drop the argument when
convenient and clear).

5. f(x, y) = x2y + y3, g(x, y) = x/y, f(x, y)g(x, y) = x3 + xy2, and f(x, y)

g(x, y)
= xy2 + y4/x.

So Df = [2xy, x2 + 3y2], and Dg = [1/y,−x/y2],

D(fg) = [3x2 + y2, 2xy]

= (x2y + y3)[1/y,−x/y2] + (x/y)[2xy, x2 + 3y2]

= fD(g) + gD(f), and

D

(
f

g

)
= [y2 − y4/x2, 2xy+ 4y3/x]

= (y/x)[2xy, x2 + 3y2] − (y2/x2)(x2y + y3)[1/y,−x/y2]

=
gDf− fDg

g2
.

6. f(x, y) = exy, g(x, y) = x sin 2y, f(x, y)g(x, y) = xexy sin 2y, and f(x, y)

g(x, y)
=

exy

x sin 2y
.

So Df = [yexy, xexy], and Dg = [sin 2y, 2x cos 2y],

D(fg) = [sin 2y(exy + xy exy), x(xexy sin 2y + 2exy cos 2y)]

= exy[sin 2y, 2x cos 2y] + x sin 2y[yexy, xexy]

= fD(g) + gD(f), and

D

(
f

g

)
=

[
xyexy sin 2y − exy sin 2y

x2 sin2 2y
,
x2exy sin 2y − 2xexy cos 2y

x2 sin2 2y

]

=
x sin 2y[yexy, xexy] − exy[sin 2y, 2x cos 2y]

x2 sin2 2y

=
gDf− fDg

g2
.
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7. f(x, y) = 3xy+ y5, g(x, y) = x3 − 2xy2, f(x, y)g(x, y) = 3x4y + x3y5 − 6x2y3 − 2xy7, and f(x, y)

g(x, y)
=

3xy+ y5

x3 − 2xy2
. So

Df = [3y, 3x + 5y4], and Dg = [3x2 − 2y2,−4xy],

D(fg) = [12x3y + 3x2y5 − 12xy3 − 2y7, 3x4 + 5x3y4 − 18x2y2 − 14xy6]

= (3xy+ y5)[3x2 − 2y2,−4xy] + (x3 − 2xy2)[3y, 3x + 5y4]

= fD(g) + gD(f), and

D

(
f

g

)
=

[
g(x, y)fx(x, y) − f(x, y)gx(x, y)

[g(x, y)]2
,
g(x, y)fy(x, y) − f(x, y)gy(x, y)

[g(x, y)]2

]

=
gDf− fDg

g2
.

8. f(x, y, z) = x cos(yz), g(x, y, z) = x2 + x9y2 + y2z3 + 2, f(x, y)g(x, y) = x3 cos(yz) + x10y2 cos(yz) + xy2z3 cos(yz) +

2x cos(yz), and f(x, y)

g(x, y)
=

x cos(yz)
x2 + x9y2 + y2z3 + 2

.

So Df = [cos(yz),−xz sin(yz),−xy sin(yz)], and Dg = [2x + 9x8y2, 2x9y + 2yz3, 3y2z2],

D(fg) =

⎡
⎢⎣ 3x2 cos yz+ 10x9y2 cos yz+ y2z3 cos yz+ 2 cos yz

−x3z sin yz+ 2x10y cos yz− x10y2z sin yz+ 2xyz3 cos yz− xy2z4 sin yz− 2xz sin yz
−x3y sin yz− x10y3 sin yz+ 3xy2z2 cos xy− xy3z3 sin yz− 2xy sin yz

⎤
⎥⎦

T

= (x cos yz)

⎡
⎣ 2x + 9x8y2

2x9y + 2yz3
3y2z2

⎤
⎦T

+ (x2 + x9y2 + y2z3 + 2)

⎡
⎣ cos yz

−xz sin yz
−xy sin yz

⎤
⎦T

= fDg+ gDf, and

D

(
f

g

)
=

[
gfx − fgx

g2
,
gfy − fgy

g2
,
gfz − fgz

g2

]

=
gDf− fDg

g2
.

In Exercises 9–21, students should verify that fxy = fyx. The fact that in these problems the derivative with respect to y of fx

is equal to the derivative with respect to x of fy is not trivial. Problem 22 explicitly asks them to examine the mixed partials.

9. f(x, y) = x3y7 + 3xy2 − 7xy so fx(x, y) = 3x2y7 + 3y2 − 7y and fy(x, y) = 7x3y6 + 6xy− 7x. The second order partials
are:

fxx(x, y) = 6xy7,

fxy(x, y) = fyx(x, y) = 21x2y6 + 6y − 7, and

fyy(x, y) = 42x3y5 + 6x.

10. f(x, y) = cos(xy) so fx(x, y) = −y sin(xy) and fy(x, y) = −x sin(xy). The second order partials are:

fxx(x, y) = −y2 cos xy,

fxy(x, y) = fyx(x, y) = −xy cos xy− sin xy, and

fyy(x, y) = −x2 cos xy.
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11. f(x, y) = ey/x − ye−x so fx(x, y) =
−y

x2
ey/x + ye−x and fy(x, y) =

1

x
ey/x − e−x. The second order partials are:

fxx(x, y) =
2y

x3
ey/x +

y2

x4
ey/x − ye−x,

fxy(x, y) = fyx(x, y) =
−1

x2
ey/x − y

x3
ey/x + e−x, and

fyy(x, y) =
1

x2
ey/x.

12. f(x, y) = sin
√

x2 + y2 so

fx(x, y) =
x cos

√
x2 + y2√

x2 + y2
and fy(x, y) =

y cos
√

x2 + y2√
x2 + y2

.

The second order partials are:

fxx(x, y) =

√
x2 + y2

[
cos
√

x2 + y2 + (x)
−x sin

√
x2+y2√

x2+y2

]
− (x cos

√
x2 + y2) x√

x2+y2

x2 + y2

=
y2 cos

√
x2 + y2 − x2

√
x2 + y2 sin

√
x2 + y2

(x2 + y2)3/2
, and by symmetry

fyy(x, y) =
x2 cos

√
x2 + y2 − y2

√
x2 + y2 sin

√
x2 + y2

(x2 + y2)3/2
, and

fxy(x, y) = fyx(x, y) =
−xy
√

x2 + y2 sin
√

x2 + y2 − xy cos
√

x2 + y2

(x2 + y2)3/2
.

13. f(x, y) =
1

sin2 x + 2ey
so

fx(x, y) =
−2 sin x cos x

(sin2 x + 2ey)2
=

− sin 2x

(sin2 x + 2ey)2
and fy(x, y) =

−2ey

(sin2 x + 2ey)2
.

The second order partials are:

fxx(x, y) =
(sin2 x + 2ey)2(−2 cos 2x) + sin 2x · 2(sin2 x + 2ey) sin 2x

(sin2 x + 2ey)4

=
(sin2 x + 2ey)(−2 cos 2x) + 2 sin2 2x

(sin2 x + 2ey)3
,

fxy(x, y) = fyx(x, y) =
4ey sin 2x

(sin2 x + 2ey)3
, and

fyy(x, y) =
2ey(2ey − sin2 x)

(sin2 x + 2ey)3
.

14. f(x, y) = ex2+y2

so fx(x, y) = 2xex2+y2

and fy(x, y) = 2yex2+y2

. The second order partials are:

fxx(x, y) = 2ex2+y2

+ 2x · 2xex2+y2

= ex2+y2

(2 + 4x2),

fxy(x, y) = fyx(x, y) = 4xyex2+y2

, and

fyy(x, y) = ex2+y2

(2 + 4y2).
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15. f(x, y) = y sin x − x cos y, so

fx(x, y) = y cos x − cos y and fy(x, y) = sin x + x sin y.

The second order partial derivatives are:

fxx(x, y) = −y sin x,

fxy(x, y) = fyx(x, y) = cos x + sin y, and

fyy(x, y) = x cos y.

16. f(x, y) = ln

(
x

y

)
, so

fx(x, y) =
y

x
· 1

y
=

1

x
and fy(x, y) =

( y

x

)(
− x

y2

)
= −1

y
.

The second order partial derivatives are:

fxx(x, y) = − 1

x2
,

fxy(x, y) = fyx(x, y) = 0, and

fyy(x, y) =
1

y2
.

17. f(x, y, z) = x2ey + e2z , so fx(x, y, z) = 2xey , fy(x, y, z) = x2ey , and fz(x, y, z) = 2e2z . The second order partial
derivatives are:

fxx(x, y, z) = 2ey

fyy(x, y, z) = x2ey

fzz(x, y, z) = 4e2z

fxy(x, y, z) = fyx(x, y, z) = 2xey

fxz(x, y, z) = fzx(x, y, z) = 0

fyz(x, y, z) = fzy(x, y, z) = 0

18. f(x, y, z) =
x − y

y + z
, so

fx(x, y, z) =
1(y + z) − 0(x − y)

(y + z)2
=

1

y + z

fy(x, y, z) =
−1(y + z) − 1(x − y)

(y + z)2
= − x + z

(y + z)2

fz(x, y, z) =
0(y + z) − 1(x − y)

(y + z)2
=

y − x

y + z)2
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The second order partial derivatives are:

fxx(x, y, z) = 0

fyy(x, y, z) =
2(x + z)

(y + z)3

fzz(x, y, z) =
2(x − y)

(y + z)3

fxy(x, y, z) = fyx(x, y, z) = − 1

(y + z)2

fxz(x, y, z) = fzx(x, y, z) = − 1

(y + z)2

fyz(x, y, z) = fzy(x, y, z) = −1(y + z)2 − 2(y + z)(x + z)

(y + z)4
=

2x − y + z

(y + z)3

19. f(x, y, z) = x2yz + xy2z + xyz2 so fx(x, y, z) = 2xyz + y2z + yz2, fy(x, y, z) = x2z + 2xyz + xz2, and fz(x, y, z) =
x2y + xy2 + 2xyz. The second order partials are:

fxx(x, y, z) = 2yz

fyy(x, y, z) = 2xz

fzz(x, y, z) = 2xy

fxy(x, y, z) = fyx(x, y, z) = 2xz+ 2yz+ z2

fxz(x, y, z) = fzx(x, y, z) = 2xy+ y2 + 2yz

fyz(x, y, z) = fzy(x, y, z) = x2 + 2xy+ 2xz

20. f(x, y, z) = exyz so fx(x, y, z) = yzexyz, fy(x, y, z) = xzexyz, and fz(x, y, z) = xyexyz. The second order partials are:

fxx(x, y, z) = y2z2exyz

fyy(x, y, z) = x2z2exyz

fzz(x, y, z) = x2y2exyz

fxy(x, y, z) = fyx(x, y, z) = zexyz(1 + xyz)

fxz(x, y, z) = fzx(x, y, z) = yexyz(1 + xyz)

fyz(x, y, z) = fzy(x, y, z) = xexyz(1 + xyz)

21. f(x, y, z) = eax sin y + ebx cos z so fx(x, y, z) = aeax sin y + bebx cos z, fy(x, y, z) = eax cos y, and
fz(x, y, z) = −ebx sin z. The second order partials are:

fxx(x, y, z) = a2eax sin y + b2ebx cos z

fyy(x, y, z) = −eax sin y

fzz(x, y, z) = −ebx cos z

fxy(x, y, z) = fyx(x, y, z) = aeax cos y

fxz(x, y, z) = fzx(x, y, z) = −bebx sin z

fyz(x, y, z) = fzy(x, y, z) = 0

22. F (x, y, z) = 2x3y + xz2 + y3z5 − 7xyz so Fx(x, y, z) = 6x2y + z2 − 7yz, Fy(x, y, z) = 2x3 + 3y2z5 − 7xz, and
Fz(x, y, z) = 2xz+ 5y3z4 − 7xy.
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(a) Fxx(x, y, z) = 12xy, Fyy(x, y, z) = 6yz5, and Fzz(x, y, z) = 20y3z3 + 2x.
(b) Fxy(x, y, z) = 6x2 − 7z = Fyx(x, y, z), Fxz(x, y, z) = 2z − 7y = Fzx(x, y, z), and Fyz(x, y, z) = 15y2z4 − 7x =

Fzy(x, y, z).
(c) Fxyx(x, y, z) = 12x = Fxxy(x, y, z). We knew that these would be equal because they are the mixed partials of Fx (i.e.,

(Fx)yx = (Fx)xy).
(d) Fxyz(x, y, z) = −7 = Fyzx(x, y, z).

23. For f(x, y) = ye3x, we have fx(x, y) = 3ye3x; that is, the differentiation with respect to x causes a factor of 3 to arise.
Hence it follows that

∂nf

∂xn
= 3nye3x.

Moreover, this result is valid for n ≥ 1. On the other hand, fy(x, y) = e3x; note that y does not appear in the derivative.
Therefore,

∂nf

∂yn
= 0 for n ≥ 2.

24. For f(x, y, z) = xe2y + ye3z + ze−x, we have fx(x, y, z) = e2y − ze−x; note that x only appears in the second term of the
derivative (and a negative sign has arisen). Therefore,

∂nf

∂xn
=

{
e2y − ze−x n = 1

(−1)nze−x n ≥ 2
.

Similarly, fy(x, y, z) = 2xe2y + e3z; note that y does not appear in the second term of this derivative. Therefore,

∂nf

∂yn
=

{
2xe2y + e3z n = 1

2nxe2y n ≥ 2
.

Finally, fz(x, y, z) = 3ye3z + e−x. In the same manner, we have

∂nf

∂zn
=

{
3ye3z + e−x n = 1

3nye3z n ≥ 2
.

25. First, for f(x, y, z) = ln
(xy

z

)
, we have

fx(x, y, z) =

(
z

xy

)(y

z

)
=

1

x
,

fy(x, y, z) =

(
z

xy

)(x

z

)
=

1

y
,

fz(x, y, z) =

(
z

xy

)(
−xy

z2

)
= −1

z
.

From this, we see that, for n ≥ 1.

∂nf

∂xn
=

(−1)n−1(n − 1)!

xn
,

∂nf

∂yn
=

(−1)n−1(n − 1)!

yn
, and ∂nf

∂zn
=

(−1)n(n − 1)!

zn
.

Note that all mixed partials of this function are zero, since the first-order partial derivatives each involve just a single variable.
26. Note that the function f is of class C∞, so we may differentiate in any order we wish.

(a) If we differentiate first with respect to y and z, we obtain

∂2f

∂y∂z
= 6x7yz2 − 2x4.

Differentiating this result with respect to x twice gives our answer:

∂4f

∂x2∂y∂z
= 252x5yz2 − 24x2.
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(b) We may take our answer in part (a) and differentiate once more with respect to x:

∂5f

∂x3∂y∂z
= 1260x4yz2 − 48x.

(c) Every additional time we differentiate f with respect to x, the power in x drops. Since the highest power of x that appears
is 7, once we differentiate with respect to x seven times, the partial derivative will be constant with respect to x. Hence
any higher derivatives with respect to x will be zero and so ∂15f/∂x13∂y∂z = 0.

27. We will denote the degree of f by deg(f ) in this solution.
(a) deg(px) = 16, deg(py) = 16, deg(pxx) = 15, deg(pyy) = 15, and deg(pyx) = 15.
(b) deg(px) = 3, deg(py) = 3, deg(pxx) = 2, deg(pyy) is undefined, and deg(pyx) = 2.
(c) This is difficult because the term of highest degree can switch during the process of taking a derivative. For example

consider f(x, y) = xy2 + x3y. Take the derivative with respect to y and the degree has decreased by one as we would
expect: fy(x, y) = 2xy + x3 so deg(fy) = 3. Now take another derivative with respect to y: fyy(x, y) = 2x and so the
degree is now one.
For a polynomial f(x1, x2, . . . , xn) which has degree d = d1 + d2 + · · · + dn because of a term cxd1

1 xd2
x . . . xdn

n ,
∂kf/∂xi1 . . . ∂xik

has degree d − k if xj occurs at most dj times in the partial derivative—
otherwise we must look for the highest degree of any other surviving terms. If no terms survive, (i.e., ∂kf/∂xi1 . . . ∂xik

=
0) then the degree is undefined.

Exercises 28 and 29 have the students verify that certain functions are solutions to the given differential equations. When
the students studied exponential equations in first semester calculus they may have seen that f(x) = cekx solves the differential
equation y′ = ky. Here is a nice way to introduce the idea of a partial differential equation.
28. (a) For the first function, f(x, y, z) = x2 + y2 − 2z2, fx(x, y, z) = 2x, fy(x, y, z) = 2y, and fx(x, y, z) = −4z.

This means that fxx(x, y, z) = 2, fyy(x, y, z) = 2, and fzz(x, y, z) = −4. We see that fxx + fyy + fzz = 0 and
conclude that f is harmonic.

For the second function, f(x, y, z) = x2 − y2 + z2, fx(x, y, z) = 2x, fy(x, y, z) = −2y, and fz(x, y, z) = 2z.
This means that fxx(x, y, z) = 2, fyy(x, y, z) = −2, and fzz(x, y, z) = 2. We see that fxx + fyy + fzz �= 0 and

conclude that f is not harmonic.
(b) One possible example is f(x1, x2, . . . , xn) = x2

1 − x2
2 + 3x3 + 4x4 + 5x5 + · · · + nxn.

Here fxixi
=

⎧⎨
⎩

2 if i = 1,
−2 if i = 2,

0 if i > 2.
and we see that

∑n
i=1 fxixi

= 0 so f is harmonic.

29. (a) To show that T (x, t) = e−kt cos x satisfies the differential equation kTxx = Tt we calculate the derivatives:

Tx(x, t) = −e−kt sin x

Txx(x, t) = −e−kt cos x

Tt(x, t) = −ke−kt cos x

so kTxx = Tt.
For t0 = 0 and t0 = 1 the graphs are:
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For t0 = 10 the graph is further damped. The graph of the surface z = T (x, t) is:

c© 2012 Pearson Education, Inc.



110 Chapter 2 Differentiation in Several Variables

0

10

-5

0

5

x
-1

0

1

T

1

t

(b) To show that T (x, y, t) = e−kt(cos x + cos y) satisfies the differential equation k(Txx + Tyy) = Tt we calculate the
derivatives:

Tx(x, y, t) = −e−kt sin x

Txx(x, y, t) = −e−kt cos x

Ty(x, y, t) = −e−kt sin y

Tyy(x, y, t) = −e−kt cos y

Tt(x, y, t) = −ke−kt(cos x + cos y)

so k(Txx + Tyy) = Tt.
The graphs of the surfaces given by z = T (x, y, t0) for t0 = 0, 1, and 10 are:
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(c) Finally, to show that T (x, y, z, t) = e−kt(cos x+cos y+cos z) satisfies the differential equation k(Txx+Tyy+Txx) = Tt

we calculate the derivatives:

Tx(x, y, z, t) = −e−kt sin x

Txx(x, y, z, t) = −e−kt cos x

Ty(x, y, z, t) = −e−kt sin y

Tyy(x, y, z, t) = −e−kt cos y

Tz(x, y, z, t) = −e−kt sin z

Tzz(x, y, z, t) = −e−kt cos z

Tt(x, y, z, t) = −ke−kt(cos x + cos y + cos z)

so k(Txx + Tyy + Tzz) = Tt.
30. (a) For (x, y) �= (0, 0), compute the partial derivatives:

fx(x, y) = y

(
x2 − y2

x2 + y2

)
+ xy

(
[x2 + y2](2x) − [x2 − y2](2x)

(x2 + y2)2

)

=
y(x2 − y2)(x2 + y2) + xy(4xy2)

(x2 + y2)2

=
y(x4 + 4x2y2 − y4)

(x2 + y2)2
and similarly

fy(x, y) =
x(x4 − 4x2y2 − y4)

(x2 + y2)2

(b) We use part (a):

fx(0, y) =
y(−y4)

(y2)2

= −y for y �= 0, and

fy(x, 0) = x for x �= 0.

(c) From part (b), fxy(0, y) = −1 while fyx(x, 0) = 1 and fx(0, y) and fy(x, 0) are continuous at the origin so you can
conclude that fxy(0, 0) = −1 while fyx(0, 0) = 1. Why aren’t the mixed partials equal? The answer is that the second
partials are not continuous at the origin. We can see this by calculating

fxy(x, y) =
x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3
.

Therefore fxy(x, 0) = 1 and

fxy(0, y) = −1.

Hence lim
(x,y)→(0,0)

fxy(x, y) does not exist.

In other words, fxy is not continuous at the origin.
31. An equation of a plane in the form z = f(x, y) is z = Ax + By + C. Here zx = A, zy = B and the second derivatives are

all 0. The partial differential equation for minimal surfaces is therefore trivially satisfied and a plane is seen to be a minimal
surface.
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32. (a) Here’s an image of Scherk’s surface.

(b) In this case z = ln(cos x/ cos y). So zx = − tan x, zy = tan y, zxy = 0, zxx = − sec2 x, and zyy = sec2 y. So

(1 + z2
y)zxx + (1 + z2

x)zyy = (1 + tan2 y)(− sec2 x) + (1 + tan2 x)(sec2 y)

= − sec2 x sec2 y + sec2 x sec2 y = 0.

This agrees with the right side of the equation as zxy = 0.
33. (a) Here’s an image of the helicoid:
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(b) There’s no reason not to think of this surface as z = x tan y. Then zx = tan y, zy = x sec2 y, zxx = 0, zxy = sec2 y, and
zyy = 2 tan y sec2 y. So

(1 + z2
y)zxx + (1 + z2

x)zyy = (1 + x2 sec4 y)(0) + (1 + tan2 y)(2 tan y sec2 y)

= (sec2 y)(2 tan y sec2 y) = 2(tan y)(x sec2 y)(sec2 y)

= 2zxzyzxy
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2.5 The Chain Rule

In Exercises 1– 3 students see that if you have a composite function you can take the derivative either by substituting or by using
the chain rule.

1. f(x, y, z) = x2 − y3 + xyz, x = 6t + 7, y = sin 2t, and z = t2.

Substitution:

f(x(t), y(t), z(t)) = (6t + 7)2 − (sin 2t)3 + (6t + 7)(sin 2t)(t2)

= (6t + 7)2 − (sin 2t)3 + (6t3 + 7t2)(sin 2t) and so

df
dt

= 2(6t + 7)6 − 3(sin 2t)2(2 cos 2t) + (18t2 + 14t) sin 2t + (6t3 + 7t2)(2 cos 2t)

Chain Rule:

df
dt

=
∂f

∂x

dx
dt

+
∂f

∂y

dy
dt

+
∂f

∂z

dz
dt

= (2x + yz)(6) + (−3y2 + xz)(2 cos 2t) + (xy)(2t)

= [2(6t + 7) + (sin 2t)(t2)](6) + [−3 sin2 2t + (6t + 7)t2](2 cos 2t) + [(6t + 7) sin 2t](2t)

2. f(x, y) = sin(xy), x = s + t, and y = s2 + t2.
(a) f(x(t), y(t)) = sin(x(t)y(t)) = sin[(s + t)(s2 + t2)].

∂f

∂s
= cos[(s + t)(s2 + t2)][(s2 + t2) + (s + t)(2s)]

∂f

∂t
= cos[(s + t)(s2 + t2)][(s2 + t2) + (s + t)(2t)]

(b)
∂f

∂s
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s

= y cos(xy) + x cos(xy)2s

= cos[(s + t)(s2 + t2)][(s2 + t2) + (s + t)(2s)] and

∂f

∂t
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t

= y cos(xy) + x cos(xy)2t

= cos[(s + t)(s2 + t2)][(s2 + t2) + (s + t)(2t)]

3. (a) We want

dP
dt

=
∂P

∂x

dx
dt

+
∂P

∂y

dy
dt

+
∂P

∂z

dz
dt

=
12xz
y

(−2 sin t) − 6x2z

y2
(2 cos t) +

6x2

y
(3)

=
12(2 cos t)(3t)

2 sin t
(−2 sin t) − 6(4 cos2 t)3t

4 sin2 t
(2 cos t) +

6(4 cos2 t)

2 sin t
(3)

= −72t cos t − 36t
cos3 t

sin2 t
+

36 cos2 t

sin t
.

Therefore,

dP
dt

∣∣∣∣
t=π/4

=
(36 − 27π)√

2
.
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(b) P (x(t), y(t), z(t)) = 6(2 cos t)2(3t)
2 sin t

= 36t cos2 t
sin t

, so

dP
dt

=
sin t(36 cos2 t − 36t · 2 cos t sin t) − 36t cos2 t(cos t)

sin2 t
.

Therefore,

dP
dt

∣∣∣∣
t=π/4

=
(36 − 27π)√

2
.

(c) Using differentials,

ΔP ≈
(
dP
dt

∣∣∣∣
t=π/4

)
(dt) =

(
36 − 27π√

2

)
(.01) ≈ −.34523.

So (writing P as a function of t),

P (π/4 + .01) ≈ P (π/4) + ΔP ≈ 9π√
2
− .34523 ≈ 19.6477.

4. We are thinking of z = z(s, t) = [x(s, t)]2 + [y(s, t)]3. So

∂z

∂t
(2, 1) =

∂z

∂x

∣∣∣∣
(2,1)

· ∂x

∂t

∣∣∣∣
(2,1)

+
∂z

∂y

∣∣∣∣
(2,1)

· ∂y

∂t

∣∣∣∣
(2,1)

= 2x|(2,1) · s|(2,1) + 0 = 8.

5. Here V = LWH, so

dV
dt

=
∂V

∂L

dL
dt

+
∂V

∂W

dW
dt

+
∂V

∂H

dH
dt

= WH

(
dL
dt

)
+ LH

(
dW
dt

)
+ LW

(
dH
dt

)
= 5 · 4(.75) + 7 · 4(.5) + 7 · 5(−1)

= −6 in3/min.

Since dV

dt
< 0, the volume of the dough is decreasing at this instant.

6. Let the length of the butter be y and the length of an edge of the cross section be x. Then the volume V = x2y. The rate at
which the volume is changing is

dV
dt

= 2xydx
dt

+ x2 dy
dt

= 2(1.5)(6)(−.125) + (1.5)2(−.25) = −2.8125 in3/min.

7. Note that in 6 months:

x = 1 + .6 − cos π = 2.6

y = 200 + 12 sin π = 200

The chain rule gives

dP
dt

∣∣∣∣
t=6

=
∂P

∂x

∣∣∣∣
x=2.6
y=200

dx
dt

∣∣∣∣
t=6

+
∂P

∂y

∣∣∣∣
x=2.6
y=200

dy
dt

∣∣∣∣
t=6

= 10(0.1x + 10)−
1

2 (0.1)|x=2.6

(
0.1 − π

6
sin

πt

6

)∣∣∣∣
t=6

− 4y− 2

3 |y=200

(
2 sin

πt

6
+

2πt

6
cos

πt

6

)∣∣∣∣
t=6

= (10.26)−
1

2 (0.1) − 4(200− 2

3 )(−2π)

= 0.031219527 + 0.734885812 = 0.766105339 units/month (demand in rising slightly).
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8. (a) The chain rule gives

d
dt

(BMI) =
∂(BMI)

∂w

dw
dt

+
∂(BMI)

∂h

dh
dt

=
10,000

h2

dw
dt

− 20,000 w

h3

dh
dt

On the child’s 10th birthday: w = 33 kg, h = 140 cm,

dw
dt

= 0.4,
dh
dt

= 0.6.

So

d(BMI)
dt

=
10,000

1402
(0.4) − 20,000 · 33

1403
(0.6)

≈ 0.0598 points/month.

(b) The rate we found in part (a) is greater than the typical rate by about 49%. I’d monitor the situation monthly so that it
doesn’t persist for too long, but I wouldn’t be very concerned, since the current BMI is roughly 16.84, which is quite low.

9. If we let h denote the height of the pile and r the base radius, then we have the volume V given by V =
π

3
r2h. If we

differentiate with respect to time t and use the chain rule, we obtain

dV

dt
=

π

3

(
2rh

dr

dt
+ r2 dh

dt

)
.

We wish to find dr/dt when h = 30, r = 12, dh/dt = 1, and dV/dt = 320. Using this numerical information, we have

320 =
π

3

(
720

dr

dt
+ 144 · 1

)
= π

(
240

dr

dt
+ 48

)
.

Now we solve for dr/dt:
dr

dt
=

1

240

(
320

π
− 48

)
=

4

3π
− 1

5
≈ 0.2244 cm/min.

10. Bearing in mind that c is a constant (i.e., 330 m/sec), the frequency Hermione hears when f = 440 and v = 4 is

φ(f, v) =

(
330 + 4

330

)
440 = 445.3 Hz.

Now we wish to find dφ/dt when f = 440 and v = 4. To do this, we use the chain rule:

dφ

dt
=

∂φ

∂f

df

dt
+

∂φ

∂v

dv

dt
=

c + v

c

df

dt
+

f

c

dv

dt
.

The numerical information tells us that when f = 440 and v = 4:

df

dt
= 100,

dv

dt
= −2.

Therefore,
dφ

dt
= 1.012(100) + 1.3(−2) = 98.54 Hz/sec.

Since this result is positive, the perceived frequency is increasing, so that Hermione hears the clarinet as sounding higher.
11. Since x = er cos θ and y = er sin θ we can write

∂z

∂r
=

(
∂z

∂x

)(
∂x

∂r

)
+

(
∂z

∂y

)(
∂y

∂r

)
=

(
∂z

∂x

)
(er cos θ) +

(
∂z

∂y

)
(er sin θ).

Similarly,

∂z

∂θ
=

(
∂z

∂x

)(
∂x

∂θ

)
+

(
∂z

∂y

)(
∂y

∂θ

)
=

(
∂z

∂x

)
(−er sin θ) +

(
∂z

∂y

)
(er cos θ).
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Therefore,

(
∂z

∂r

)2

+

(
∂z

∂θ

)2

= e2r

[
(cos2 θ + sin2 θ)

(
∂z

∂x

)2

+(cos2 θ + sin2 θ)

(
∂z

∂y

)2

+ (2 cos θ sin θ − 2 cos θ sin θ)

(
∂z

∂x

)(
∂z

∂y

)]

= e2r

[(
∂z

∂x

)2

+

(
∂z

∂y

)2
]

.

The result follows.

Exercises 12–18 are fun exercises. You may want to stress that we are showing that the partial differential equations are true
without even knowing the “outside” function.

12. By the chain rule, we have

∂z

∂u
=

∂z

∂x

∂x

∂u
+

∂z

∂y

∂y

∂u
= 2v

∂z

∂x
+ 2u

∂z

∂y
,

∂z

∂v
=

∂z

∂x

∂x

∂v
+

∂z

∂y

∂y

∂v
= 2u

∂z

∂x
+ 2v

∂z

∂y
.

Hence

∂z

∂u

∂z

∂v
= 4uv

(
∂z

∂x

)2

+
(
4u2 + 4v2) ∂z

∂x

∂z

∂y
+ 4uv

(
∂z

∂y

)2

= 4uv

[(
∂z

∂x

)2

+

(
∂z

∂y

)2
]

+ 4
(
u2 + v2) ∂z

∂x

∂z

∂y

= 2x

[(
∂z

∂x

)2

+

(
∂z

∂y

)2
]

+ 4y
∂z

∂x

∂z

∂y

since x = 2uv and y = u2 + v2.
13. First we calculate

∂w

∂u
=

∂w

∂x

∂x

∂u
+

∂w

∂y

∂y

∂u
= 2u

∂w

∂x
− 2u

∂w

∂y
,

∂w

∂v
=

∂w

∂x

∂x

∂v
+

∂w

∂y

∂y

∂v
= −2v

∂w

∂x
+ 2v

∂w

∂y
.

Hence

v
∂w

∂u
+ u

∂w

∂v
= v

(
2u

∂w

∂x
− 2u

∂w

∂y

)
+ u

(
−2v

∂w

∂x
+ 2v

∂w

∂y

)

= 2uv
∂w

∂x
− 2uv

∂w

∂y
− 2uv

∂w

∂x
+ 2uv

∂w

∂y
= 0.
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14. We’ll start by calculating the components on the left side:

∂z

∂x
=

∂z

∂u

∂u

∂x
+

∂z

∂v

∂v

∂x

=
∂z

∂u
(1) +

∂z

∂v
(1)

=
∂z

∂u
+

∂z

∂v
and

∂z

∂y
=

∂z

∂u

∂u

∂y
+

∂z

∂v

∂v

∂y

=
∂z

∂u
(1) +

∂z

∂v
(−1)

=
∂z

∂u
− ∂z

∂v
so

∂z

∂x

∂z

∂y
=

(
∂z

∂u
+

∂z

∂v

)(
∂z

∂u
− ∂z

∂v

)

=

(
∂z

∂u

)2

−
(

∂z

∂v

)2

.

15. First calculate:

∂u

∂x
=

y(y2 − x2)

(x2 + y2)2
and

∂u

∂y
=

x(x2 − y2)

(x2 + y2)2

Now
x

∂w

∂x
+ y

∂w

∂y
= x

∂w

∂u

∂u

∂x
+ y

∂w

∂u

∂u

∂y

=

(
∂w

∂u

)(
x

∂u

∂x
+ y

∂u

∂y

)

=

(
∂w

∂u

)(
x

y(y2 − x2)

(x2 + y2)2
+ y

x(x2 − y2)

(x2 + y2)2

)
= 0.

16. First calculate:
∂u

∂x
=

4xy2

(x2 + y2)2
and

∂u

∂y
=

−4x2y

(x2 + y2)2

Now

x
∂w

∂x
+ y

∂w

∂y
= x

∂w

∂u

∂u

∂x
+ y

∂w

∂u

∂u

∂y

=

(
∂w

∂u

)(
x

∂u

∂x
+ y

∂u

∂y

)

=

(
∂w

∂u

)(
x

4xy2

(x2 + y2)2
+ y

−4x2y

(x2 + y2)2

)
= 0.
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17. ∂u

∂x
=

−1

x2
, ∂u

∂y
=

1

y2
, and ∂u

∂z
= 0. Also ∂v

∂x
=

−1

x2
, ∂v

∂y
= 0, and ∂v

∂z
=

1

z2
. Now it is just a matter of using the chain rule

and plugging in:

x2 ∂w

∂x
+ y2 ∂w

∂y
+ z2 ∂w

∂z
= x2

[
∂w

∂u

∂u

∂x
+

∂w

∂v

∂v

∂x

]
+ y2

[
∂w

∂u

∂u

∂y
+

∂w

∂v

∂v

∂y

]
+ z2

[
∂w

∂u

∂u

∂z
+

∂w

∂v

∂v

∂z

]

=
∂w

∂u

[
x2 ∂u

∂x
+ y2 ∂u

∂y
+ z2 ∂u

∂z

]
+

∂w

∂v

[
x2 ∂v

∂x
+ y2 ∂v

∂y
+ z2 ∂v

∂z

]

=
∂w

∂u

[
x2

(−1

x2

)
+ y2

(
1

y2

)
+ 0

]
+

∂w

∂v

[
x2

(−1

x2

)
+ 0 + z2

(
1

z2

)]
= 0.

18. ∂u

∂x
=

1

y
, ∂u

∂y
=

−x

y2
, and ∂u

∂z
= 0. Also ∂v

∂x
= 0, ∂v

∂y
=

−z

y2
, and ∂v

∂z
=

1

y
. Again, it is just a matter of using the chain rule

and plugging in:

x
∂w

∂x
+ y

∂w

∂y
+ z

∂w

∂z
= x

[
∂w

∂u

∂u

∂x
+

∂w

∂v

∂v

∂x

]
+ y

[
∂w

∂u

∂u

∂y
+

∂w

∂v

∂v

∂y

]
+ z

[
∂w

∂u

∂u

∂z
+

∂w

∂v

∂v

∂z

]

=
∂w

∂u

[
x

∂u

∂x
+ y

∂u

∂y
+ z

∂u

∂z

]
+

∂w

∂v

[
x

∂v

∂x
+ y

∂v

∂y
+ z

∂v

∂z

]

=
∂w

∂u

[
x

(
1

y

)
+ y

(−x

y2

)
+ 0

]
+

∂w

∂v

[
0 + y

(−z

y2

)
+ z

(
1

y

)]
= 0.

19. (a) f ◦ g = (3(s − 7t)5, e2s−14t) so

D(f ◦ g) =

[
15(s − 7t)4 −105(s − 7t)4

2e2s−14t −14e2x−14t

]
(b)

Df =

[
15x4

2e2x

]
=

[
15(s − 7t)4

2e2s−14t

]
and Dg =

[
1 −7

]
We can easily see that Df Dg = D(f ◦ g).

20. (a) f ◦ g =
(
(s + t2 + u3)2, cos 3(s + t2 + u3), ln (s + t2 + u3)

)
so

D(f ◦ g) =

⎡
⎣ 2(s + t2 + u3) 4t(s + t2 + u3) 3u2(s + t2 + u3)
−3 sin 3(s + t2 + u3) −6t sin 3(s + t2 + u3) −9u2 sin 3(s + t2 + u3)

1
s+t2+u3

2t
s+t2+u3

3u2

s+t2+u3

⎤
⎦

(b)

Df =

⎡
⎣ −3 sin 3x

1/x
1/x + 3 sin 3x

⎤
⎦ =

⎡
⎣ −3 sin 3(s + t2 + u3)

1/(s + t2 + u3)
1/(s + t2 + u3) + 3 sin 3(s + t2 + u3)

⎤
⎦

and
Dg =

[
1 2t 3u2

]
,

so that DfDg = D(f ◦ g).
21. (a) f ◦ g = (s + t)es−t so

D(f ◦ g) =
[
(s + t)es−t + es−t −(s + t)es−t + es−t

]
(b)

Df =
[
yex ex

]
=
[
(s + t)es−t es−t

]
and

Dg =

[
1 −1
1 1

]
,

so that
DfDg =

[
(s + t)es−t es−t

] [1 −1
1 1

]
= D(f ◦ g).
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22. (a) f ◦ g = (st)2 − 3(s + t2)2 = s2t2 − 3s2 − 6st2 − 3t4, so

D(f ◦ g) = [2st2 − 6s − 6t2 2s2t − 12st − 12t3].

(b) Df =
[

2x −6y
]

=
[

2st −6s − 6t2
]
, and Dg =

[
t s
1 2t

]
, so

Df Dg =
[

2st −6s − 6t2
] [ t s

1 2t

]
= [2st2 − 6s − 6t2 2s2t − 12st − 12t3].

23. (a) f ◦ g =

(
(s/t)s2t − s2t

s/t
,
s/t

s2t
+ s6t3

)
=

(
s3 − st2, 1

st2
+ s6t3

)
, so

D(f ◦ g) =

[
3s2 − t2 −2st

−1/(s2t2) + 6s5t3 −2/(st3) + 3s6t2

]
(b)

Df =

[
y + y

x2 x − 1
x

1
y

−x
y2 + 3y2

]
=

[
s2t + s2t

s2/t2
s
t
− t

s
1

s2t

−s/t

s4t2
+ 3s4t2

]
=

[
s2t + t3 s2−t2

st
1

s2t
− 1

s3t3
+ 3s4t2

]

and Dg =

[
1
t

− s
t2

2st s2

]
so

Df Dg =

[
s2t + t3 s2−t2

st
1

s2t
− 1

s3t3
+ 3s4t2

] [ 1
t

− s
t2

2st s2

]
=

[
3s2 − t2 −2st

−1
s2t2

+ 6s5t3 −2
st3

+ 3s6t2

]
.

24. (a) f ◦ g = ((t − 2)2(3t + 7) + (3t + 7)2t3, (t − 2)(3t + 7)t3, et3) so

D(f ◦ g) =

⎡
⎣ 45t4 + 168t3 + 156t2 − 10t − 16

15t4 + 4t3 − 42t2

3t2et3

⎤
⎦ .

(b)

D(f) =

⎡
⎣ 2xy x2 + 2yz y2

yz xz xy
0 0 ez

⎤
⎦

=

⎡
⎣ 2(t − 2)(3t + 7) (t − 2)2 + 2(3t + 7)t3 (3t + 7)2

(3t + 7)t3 (t − 2)t3 (t − 2)(3t + 7)

0 0 et3

⎤
⎦

and D(g) =

⎡
⎣ 1

3
3t2

⎤
⎦ so D(f)D(g) =

⎡
⎣ 45t4 + 168t3 + 156t2 − 10t − 16

15t4 + 4t3 − 42t2

3t2et3

⎤
⎦ .

25. (a) f ◦ g =
(
e2t sin t, et sin2 t, sin3 t + e3t,

)
so

D(f ◦ g) =

⎡
⎣ 2e2t sin t + e2t cos t

et sin2 t + 2et sin t cos t
3 sin2 t cos t + 3e3t

⎤
⎦

(b)

Df =

⎡
⎣ y2 2xy

2xy x2

3x2 3y2

⎤
⎦ =

⎡
⎣ e2t 2et sin t

2et sin t sin2 t
3 sin2 t 3e2t

⎤
⎦

and
Dg =

[
cos t
et

]
,
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so that

DfDg =

⎡
⎣ e2t 2et sin t

2et sin t sin2 t
3 sin2 t 3e2t

⎤
⎦ [cos t

et

]
= D(f ◦ g).

26. (a) f ◦ g =
(
(s + 2t + 3u)2 − stu, stu/(s + 2t + 3u), estu) so

D(f ◦ g) =

⎡
⎣2(s + 2t + 3u) − tu 4(s + 2t + 3u) − su 6(s + 2t + 3u) − st

tu(2t+3u)

(s+2t+3u)2
su(s+3u)

(s+2t+3u)2
st(s+2t)

(s+2t+3u)2

tuestu suestu stestu

⎤
⎦

(b)

Df =

⎡
⎣ 2x −1
−y/x2 1/x

0 ey

⎤
⎦ =

⎡
⎣ 2(s + 2t + 3u) −1
−stu/(s + 2t + 3u)2 1/(s + 2t + 3u)

0 estu

⎤
⎦

and

Dg =

[
1 2 3
tu su st

]
.

Again, we can see that DfDg = D(f ◦ g).
27. (a) f ◦ g = (st+ tu+ su, s3t3 − estu

2

) so

D(f ◦ g) =

[
t + u s + u s + t

3s2t3 − tu2estu2 3s3t2 − su2estu
2 −2stuestu

2

]
.

(b)

Df =

[
1 1 1

3x2 −zeyz −yeyz

]
=

[
1 1 1

3s2t2 −suestu2 −tuestu2
]

and Dg =

⎡
⎣ t s 0

0 u t
u 0 s

⎤
⎦ so DfDg =

[
t + u s + u s + t

3s2t3 − tu2estu
2

3s3t2 − su2estu
2 −2stuestu

2

]
.

28. This is a matter of seeing what we have to determine and which formula to use. We calculate D(f ◦ g)(1,−1, 3) as
Df(g(1,−1, 3))D(g(1,−1, 3)). The second piece is given in the exercise. For the first we calculate

Df(g(1,−1, 3)) =

[
2y 2x
3 −1

]∣∣∣∣
g(1,−1,3)

=

[
2y 2x
3 −1

]∣∣∣∣
(2,5)

=

[
10 4
3 −1

]
.

Then we can multiply the matrices to get the result

D(f ◦ g)(1,−1, 3) =

[
10 4
3 −1

] [
1 −1 0
4 0 7

]
=

[
26 −10 28
−1 −3 −7

]
.

29. (a) This is similar to Exercise 28.

D(f ◦ g)(1, 2) = Df(g(1, 2))Dg(1, 2) = Df(3, 5)Dg(1, 2)

=

[
1 1
3 5

] [
2 3
5 7

]
=

[
7 10

31 44

]

(b)

D(g ◦ f)(4, 1) = Dg(f(4, 1))Df(4, 1) = Dg(1, 2)Df(4, 1)

=

[
2 3
5 7

] [ −1 2
1 3

]
=

[
1 13
2 31

]
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30. We’ll start with the right hand side of the equation because we can easily calculate the partials of x and y with respect to r and
θ. (

∂z

∂r

)2

+
1

r2

(
∂z

∂θ

)2

=

(
∂z

∂x

∂x

∂r
+

∂z

∂y

∂y

∂r

)2

+
1

r2

(
∂z

∂x

∂x

∂θ
+

∂z

∂y

∂y

∂θ

)2

=

(
∂z

∂x

)2
[(

∂x

∂r

)2

+
1

r2

(
∂x

∂θ

)2
]

+

(
∂z

∂y

)2
[(

∂y

∂r

)2

+
1

r2

(
∂y

∂θ

)2
]

+ 2
∂z

∂x

∂z

∂y

[
∂y

∂r

∂x

∂r
+

1

r2

∂x

∂θ

∂y

∂θ

]

=

(
∂z

∂x

)2 [
cos2 θ +

1

r2
(r2 sin2 θ)

]
+

(
∂z

∂y

)2 [
sin2 θ +

1

r2
(r2 cos2 θ)

]

+ 2
∂z

∂x

∂z

∂y

[
sin θ cos θ +

1

r2
(−r sin θ)(r cos θ)

]
=

(
∂z

∂x

)2

+

(
∂z

∂y

)2

31. (a) From formula (10) in Section 2.5, we have

∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
and

∂

∂y
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ

Hence if z = f(x, y), then

∂2z

∂x2
=

∂

∂x

(
∂z

∂x

)
= cos θ

∂

∂r

(
∂z

∂x

)
− sin θ

r

∂

∂θ

(
∂z

∂x

)

= cos θ
∂

∂r

(
cos θ

∂z

∂r
− sin θ

r

∂z

∂θ

)
− sin θ

r

∂

∂θ

(
cos θ

∂z

∂r
− sin θ

r

∂z

∂θ

)
Now use the product rule:

∂2z

∂x2
= cos θ

(
cos θ

∂2z

∂r2
+

sin θ

r2

∂z

∂θ
− sin θ

r

∂2z

∂r∂θ

)

− sin θ

r

(
− sin θ

∂z

∂r
+ cos θ

∂2z

∂θ∂r
− cos θ

r

∂z

∂θ
− sin θ

r

∂2z

∂θ2

)

= cos2 θ
∂2z

∂r2
+

2 sin θ cos θ

r2

∂z

∂θ
− 2 sin θ cos θ

r

∂2z

∂r∂θ
+

sin2 θ

r

∂z

∂r
+

sin2 θ

r2

∂2z

∂θ2
.

Follow the same steps to calculate

∂2z

∂y2
=

∂

∂y

(
∂z

∂y

)
= sin θ

∂

∂r

(
∂z

∂y

)
+

cos θ

r

∂

∂θ

(
∂z

∂y

)

= sin θ
∂

∂r

(
sin θ

∂z

∂r
+

cos θ

r

∂z

∂θ

)
+

cos θ

r

∂

∂θ

(
sin θ

∂z

∂r
+

cos θ

r

∂z

∂θ

)

= sin2 θ
∂2z

∂r2
− 2 sin θ cos θ

r2

∂z

∂θ
+

2 sin θ cos θ

r

∂2z

∂θ∂r
+

cos2 θ

r

∂z

∂r
+

cos2 θ

r2

∂2z

∂θ2
.

(b) Adding the two equations above we easily see that

∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
.

32. Given Exercise 31, this is easy: We know ∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1

r

∂

∂r
+

∂

r2

∂2

∂θ2
. Since the z-coordinate means the same

thing in both Cartesian and cylindrical coordinates, the result follows.
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33. (a) The chain rule gives ∂w

∂ρ
=

∂w

∂r

∂r

∂ρ
+

∂w

∂θ

∂θ

∂ρ
+

∂w

∂z

∂z

∂ρ
for any appropriately differentiable function w. Now (6) of §1.7

gives z = ρ cos ϕ, r = ρ sin ϕ. Hence

∂w

∂ρ
= sin ϕ

∂w

∂r
+ 0 + cos ϕ

∂w

∂z
= sin ϕ

∂w

∂r
+ cos ϕ

∂w

∂z
.

Also
∂w

∂ϕ
= ρ cos ϕ

∂w

∂r
− ρ sin ϕ

∂w

∂z
from a similar chain rule computation.

From this, we have

ρ sin ϕ
∂w

∂ρ
+ cos ϕ

∂w

∂ϕ
=

(
ρ sin2 ϕ

∂w

∂r
+ ρ sin ϕ cos ϕ

∂w

∂z

)
+

(
ρ cos2 ϕ

∂w

∂r
− ρ cos ϕ sin ϕ

∂w

∂z

)

= ρ
∂w

∂r
.

Thus
∂w

∂r
= sin ϕ

∂w

∂ρ
+

cos ϕ

ρ

∂w

∂ϕ
or ∂

∂r
= sin ϕ

∂

∂ρ
+

cos ϕ

ρ

∂

∂ϕ
.

(Alternatively, consider formula (10) in this section with x = z, y = r, θ replaced by ϕ, and r replaced by ρ.)

(b) The cylindrical Laplacian is ∂2

∂r2
+

∂2

∂z2
+

1

r2

∂2

∂θ2
+

1

r

∂

∂r
. From z = ρ cos ϕ, r = ρ sin ϕ, we may treat z and r as if

they are Cartesian coordinates, so that

∂2

∂r2
+

∂2

∂z2
=

∂2

∂ρ2
+

1

ρ2

∂2

∂ϕ2
+

1

ρ

∂

∂ρ
(Cartesian/cylindrical)

Now we know ∂

∂r
from part (a). So, with r = ρ sin ϕ, we have

(
∂2

∂r2
+

∂2

∂z2

)
+

1

r2

∂2

∂θ2
+

1

r

∂

∂r
=

(
∂2

∂ρ2
+

1

ρ2

∂2

∂ϕ2
+

1

ρ

∂

∂ρ

)

+
1

ρ2 sin2 ϕ

∂2

∂θ2
+

1

ρ sin ϕ

(
sin ϕ

∂

∂ρ
+

cos ϕ

ρ

∂

∂ϕ

)

=
∂2

∂ρ2
+

1

ρ2

∂2

∂ϕ2
+

2

ρ

∂

∂ρ
+

1

ρ2 sin2 ϕ

∂2

∂θ2
+

cot ϕ

ρ2

∂

∂ϕ
as desired.

Exercises 34–36 puts the implicit differentiation techniques which the students learned in a previous course in the context of
the current discussion. This is one of those problems where it would be immediately clear if we were able to talk to each other. The
problem is explaining to you which derivative with respect to x is being considered. One solution is to introduce another variable.
You might want to use this as an example of why the author introduces the notation she does for Exercises 39–43. One other note
is that the results hold also for F (x, y) or F (x, y, z) being constant (not necessarily 0).

34. (a) View x and y as functions of t, where x = x(t) = t and y = y(t). Since F (x, y) = 0 we know that Ft(x, y) = 0. This
means that we know:

0 =
dF
dt

= Fx(x, y)
dx
dt

+ Fy(x, y)
dy
dt

.

But dx
dt

= 1 and dy
dt

=
dy
dx

so dy
dx

= −Fx(x, y)

Fy(x, y)
.

(b-i) If F (x, y) = x3 − y2 then Fx(x, y) = 3x2 and Fy(x, y) = −2y so dy
dx

= − 3x2

−2y
=

3x2

2y
.

(b-ii) y2 = x3 so y = x3/2 so dy
dx

=
3

2
x1/2. Multiply numerator and denominator by x3/2 to get the answer in

(b-ii) (b-i).
35. Here we’ll just use the formula from Exercise 34(a) where here F (x, y) = sin(xy) − x2y7 + ey .

dy
dx

= − y cos(xy) − 2xy7

x cos(xy) − 7x2y6 + ey
.
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The results of Exercise 36 are used in Exercises 41 and 43 in a nice way. None of them is very time consuming—it is worth
assigning all three.

36. (a) We have the same problem here with ambiguity about what is meant by the derivative with respect to x and y. Let
x = x(s, t) = s, y = y(s, t) = t, and z = z(s, t). Then

0 =
∂F

∂s
= Fx(x, y, z)

∂x

∂s
+ Fy(x, y, z)

∂y

∂s
+ Fz(x, y, z)

∂z

∂s
= Fx(x, y, z) + Fz(x, y, z)

∂z

∂x
.

Solving we get
∂z

∂x
= −Fx(x, y, z)

Fz(x, y, z)
.

An analogous calculation gives
∂z

∂y
= −Fy(x, y, z)

Fz(x, y, z)
.

(b-i) F (x, y, z) = xyz− 2 so by part (a):

∂z

∂x
= − yz

xy
= − z

x
and ∂z

∂y
= − xz

xy
= −z

y
.

(b-ii) z = 2/xy so
∂z

∂x
=

−2

x2y
and ∂z

∂y
=

−2

xy2
.

37. Use the equations from Exercise 36(a) for F (x, y, z) = x3z + y cos z + (sin y)/z = 0:

∂z

∂x
=

−3x2z

x3 − y sin z − (sin y)/z2
=

−3x2z3

x3z2 − yz2 sin z − sin y
and

∂z

∂y
=

− cos z − (cos y)/z

x3 − y sin z − (sin y)/z2
=

−z2 cos z − z cos y

x3z2 − yz2 sin z − sin y
.

Exercise 38 is a good example of why you can not just blindly apply formulas such as the chain rule without first checking that
all of the hypotheses are met.

38. (a) By definition

fx(0, 0) = lim
h→0

f(h, 0) − f(0, 0)

h
= lim

h→0

0

h
= 0, and

fy(0, 0) = lim
h→0

f(0, h) − f(0, 0)

h
= lim

h→0

0

h
= 0.

(b)

f ◦ x =

{ at

1 + a2
if t �= 0

0 if t = 0

therefore f ◦ x =
at

1 + a2
and so D(f ◦ x)(0) =

a

1 + a2
.

(c) By definition, D(f)(0, 0) = [fx(0, 0), fy(0, 0)]. We calculated these in part (a) to be 0 so

Df(0, 0)Dx(0) =
[

0 0
] [ 1

a

]
= 0.

The function f is not differentiable at the origin and so not all of the assumptions of the chain rule are met.

39. (a)
(

∂w

∂x

)
y,z

= 1,
(

∂w

∂y

)
x,z

= 7,
(

∂w

∂z

)
x,y

= −10,
(

∂w

∂x

)
y

= 1− 10(2x) = 1− 20x, and
(

∂w

∂y

)
x

= 7− 10(2y) =

7 − 20y.

(b)
(

∂w

∂x

)
y

=

(
∂w

∂x

)
y,z

(
∂x

∂x

)
+

(
∂w

∂y

)
x,z

(
∂y

∂x

)
+

(
∂w

∂z

)
x,y

(
∂z

∂x

)
. But ∂x

∂x
= 1 and ∂y

∂x
= 0 so

(
∂w

∂x

)
y

=(
∂w

∂x

)
y,z

+

(
∂w

∂z

)
x,y

(
∂z

∂x

)
.
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40.
(

∂w

∂x

)
y,z

= 3x2,

(
∂w

∂y

)
x,z

= 3y2,

(
∂w

∂z

)
x,y

= 3z2,

(
∂w

∂x

)
y

= 3x2 + 3z2(2) = 3x2 + 6(2x − 3y)2, and
(

∂w

∂y

)
x

=

3y2 + 3z2(−3) = 3y2 − 9(2x − 3y)2.

41.
(

∂s

∂z

)
x,y,w

= xw− 2z, so
(

∂s

∂z

)
x,w

=

(
∂s

∂z

)
x,y,w

+

(
∂s

∂y

)
x,z,w

(
∂y

∂z

)
x,w

.

To calculate
(

∂y

∂z

)
x,w

we can use the results of Exercise 36 with F (x, y, z, w) = xyw− y3z + xz:

(
∂y

∂z

)
x,w

= −Fz(x, y, z, w)

Fy(x, y, z, w)
= − −y3 + x

xw− 3y2z
.

So
(

∂s

∂z

)
x,w

= xw− 2z + (x2)

(
y3 − x

xw− 3y2

)
.

42. U = F (P, V, T ) and PV = kT.

(a)
(

∂U

∂T

)
P

=

(
∂U

∂T

)
P,V

+

(
∂U

∂V

)
P,T

(
∂V

∂T

)
= FT (P, V, T ) + FV (P, V, T )

(
k

P

)
.

(b)
(

∂U

∂T

)
V

=

(
∂U

∂T

)
P,V

+

(
∂U

∂P

)
V,T

(
∂P

∂T

)
= FT (P, V, T ) + FP (P, V, T )

(
k

V

)
.

(c)
(

∂U

∂P

)
V

=

(
∂U

∂P

)
V,T

+

(
∂U

∂T

)
P,V

(
∂T

∂P

)
= FP (P, V, T ) + FT (P, V, T )

(
V

k

)
.

43.
(

∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

=

(
−Fy(x, y, z)

Fx(x, y, z)

)(
−Fz(x, y, z)

Fy(x, y, z)

)(
−Fx(x, y, z)

Fz(x, y, z)

)
= −1.

44. In this case P = kT/V so (∂P/∂T )V = k/V . Similarly, V = kT/P so (∂V/∂P )T = −kT/P 2 and T = PV/k so
(∂T/∂V )P = P/k. So

(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

=

(
k

V

)(−kt

P 2

)(
P

k

)
=

−kTP
V P 2

=
−kT
VP

= −1.

The last equality holds since PV = kT.
45. It is easiest to use implicit differentiation and solve. For example, for the equation ax2 + by2 + cz2 − d = 0, hold z constant

and take the derivative with respect to y. You get 2ax(∂x/∂y)z +2by = 0. Solve this and get (∂x/∂y)z = −by/ax. Similarly
we get that (∂y/∂z)x = −cz/by and (∂z/∂x)y = −ax/cz. So

(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

=

(−by
ax

)(−cz
by

)(−ax
cz

)
= −1.

2.6 Directional Derivatives and the Gradient

1. (a) ∇f(x, y, z) · (−k) is the directional derivative of f(x, y, z) in the direction −k (i.e., the negative z direction).
(b) ∇f(x, y, z) · (−k) =

(
∂f
∂x

, ∂f
∂y

, ∂f
∂z

)
· (0, 0,−1) = − ∂f

∂z
.

In Exercises 2–8, the students should notice that the given vector u is not always a unit vector and that they may have to
normalize it first.

2. ∇f(x, y) = (ey cos x, ey sin x) so ∇f(π/3, 0) = (1/2,
√

3/2).

Duf(π/3, 0) = ∇f(π/3, 0) · (3,−1)/
√

10 =
3 −√

3

2
√

10
.

3. ∇f(x, y) = (2x − 6x2y,−2x3 + 6y2), so ∇f(2,−1) = (28,−10) and

Duf(2,−1) = (28,−10) · (1, 2)√
5

=
8√
5
.
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4. As noted above, here we have to normalize u so Du(f(a)) = ∇f(a) · u
‖u‖ .

∇f(x, y) =

( −2x

(x2 + y2)2
,

−2y

(x2 + y2)2

)
so ∇f(3,−2) = (1/169)(−6, 4) and

Duf(a) =

( −6

169
,

4

169

)
· (1,−1)√

2
=

−10

169
√

2
.

5. ∇f(x, y) = (ex − 2x, 0) so ∇f(1, 2) = (e − 2, 0) and

Duf(a) = (e − 2, 0) · (2, 1)√
5

=
2e − 4√

5
.

6. ∇f(x, y, z) = (yz, xz, xy) so ∇f(−1, 0, 2) = (0,−2, 0) and

Duf(a) = (0,−2, 0) · (−1, 0, 2)√
5

= 0.

7. ∇f(x, y, z) = −e−(x2+y2+z2)(2x, 2y, 2z) so ∇f(1, 2, 3) = −e−14(2, 4, 6) and

Duf(a) = −e−14(2, 4, 6) · (1, 1, 1)√
3

= −4
√

3e−14.

8. ∇f(x, y, z) =
(

ey

3z2+1
, xey

3z2+1
, −6xeyz

(3z2+1)2

)
so ∇f(2,−1, 0) = (e−1, 2e−1, 0) and

Duf(a) = (e−1, 2e−1, 0) · (1,−2, 3)√
14

=
−3

e
√

14
.

9. (a)

fx(0, 0) = lim
h→0

f(h, 0) − f(0, 0)

h
= lim

h→0

0 − 0

h
= 0.

fy(0, 0) = lim
h→0

f(0, h) − f(0, 0)

h
= lim

h→0

0 − 0

h
= 0.

(b)

D(u,v)f(0, 0) = lim
h→0

f(hu, hv) − 0

h
= lim

h→0

hu|hv|
h
√

h2u2 + h2v2

But (u, v) is a unit vector so this

= lim
h→0

hu|h||v|
h|h|(1)

= u|v|

for all unit vectors (u, v).
(c) The graph is shown below.

-1
-0.5

0
0.5 1x

-1
-0.5

00.51

y

-0.5

0

0.5

z

10. (a)

fx(0, 0) = lim
h→0

f(h, 0) − f(0, 0)

h
= lim

h→0

0 − 0

h
= 0.

fy(0, 0) = lim
h→0

f(0, h) − f(0, 0)

h
= lim

h→0

0 − 0

h
= 0.
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(b)

D(u,v)f(0, 0) = lim
h→0

f(hu, hv) − 0

h
= lim

h→0

(hu)(hv)
h
√

h2u2 + h2v2

But (u, v) is a unit vector so this

= lim
h→0

h2uv
h|h| = uv(sgn(h))

for all unit vectors (u, v) where sgn(h) is 1 for h ≥ 0 and −1 for h < 0. Unless u or v are zero, this limit doesn’t exist.
(c) The graph is shown below.
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11. The gradient direction for the function h is ∇h = (−6xy2,−6x2y).
(a) Head in the direction ∇h(1,−2) = (−24, 12). If you prefer your directions given by a unit vector, we normalize to

obtain:
∇h(1,−2)

‖∇h(1,−2)‖ =
(−24, 12)√
242 + 122

=
(−2, 1)√

5
.

(b) Head in a direction orthogonal to your answer for part (a): ± (1,2)√
5

.
12. fx(3, 7) = 3 and fy(3, 7) = −2 so the gradient is ∇f(3, 7) = (3,−2).

(a) To warm up we head in the direction of the gradient; this is the unit vector (3,−2)/
√

13.
(b) To cool off we head in the opposite direction; this is the unit vector (−3, 2)/

√
13.

(c) To maintain temperature we head in a direction orthogonal to the gradient, namely ±(2, 3)/
√

13.
13. We begin by heading east and keep heading towards lower levels while intersecting each level curve orthogonally. See the

solution given in the text.
14. We’re looking at the top half of this ellipsoid. The equation is f(x, y) = z =

√
4 − x2 − y2/4. For the path of steepest

descent, we look at the negative gradient

−∇f(x, y) = (1/2)(4 − x2 − y2/4)−1/2(2x, y/2).

This means that
dy
dx

=
y/2

2x
=

y

4x
.

This is the separable differential equation (4/y) dy = (1/x) dx or 4 ln y = ln x + c. Work the usual magic and get y4 = kx.
So the raindrops will follow curves of that form where z is constrained by the surface of the ellipsoid.

15. We want to head in the direction of the negative gradient. Since M(x, y) = 3x2 + y2 + 5000, the negative gradient is
−∇M(x, y) = (−6x,−2y). This means that

dy
dx

=
−2y

−6x
=

y

3x
.

This is the separable differential equation (3/y) dy = (1/x) dx or 3 ln y = ln x + c. Work the usual magic and get y3 = kx.
Substitute in the point (8, 6) to solve for k to end up with the path y3 = 27x.

For Exercises 16–22 we can use equations (5) and (6) from Section 2.6 in the text.

16. f(x, y, z) = x3 + y3 + z3 = 7 so ∇f(x, y, z) = (3x2, 3y2, 3z2) and ∇f(0,−1, 2) = (0, 3, 12). So the equation of the
tangent plane is:

0 = (0, 3, 12) · (x − 0, y + 1, z − 2) or y + 4z = 7.
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17. f(x, y, z) = zey cos x = 1 so ∇f(x, y, z) = (−zey sin x, zey cos x, ey cos x) and ∇f(π, 0,−1) = (0, 1,−1). So the
equation of the tangent plane is:

0 = (0, 1,−1) · (x − π, y, z + 1) or y − z = 1.

18. f(x, y, z) = 2xz + yz − x2y + 10 = 0 so ∇f(x, y, z) = (2x − 2xy, z − x2, 2x + y) and ∇f(1,−5, 5) = (20, 4,−3). So
the equation of the tangent plane is:

0 = (20, 4,−3) · (x − 1, y + 5, z − 5) or 20x + 4y − 3z = −15.

19. f(x, y, z) = 2xy2 − 2z2 + xyz so ∇f(x, y, z) = (2y2 + yz, 4xy+ xz, xy− 4z) and ∇f(2,−3, 3) = (9,−18,−18). So the
equation of the tangent plane is:

0 = (9,−18,−18) · (x − 2, y + 3, z − 3) or x − 2y − 2z = 2.

20. (a) First we use the formula (4) from Section 2.3 in the text: z = f(a, b)+fx(a, b)(x−a)+fy(a, b)(y−b). If x2−2y2+5xz =

7 then z = 7+2y2−x2

5x
= f(x, y). Calculate the two partial derivatives:

fx(x, y) =
−7 − 2y2 − x2

5x2
so fx(−1, 0) =

−8

5

and fy(x, y) =
4y

5x
so fy(−1, 0) = 0.

At (−1, 0,−6/5) formula (4) gives the equation of the tangent plane as

z =
−6

5
+

−8

5
(x + 1).

(b) Now we’ll use formula (6) from this section and calculate the gradient of f(x, y, z) = x2 − 2y2 + 5xz as ∇f(x, y, z) =
(2x + 5z,−4y, 5x) so ∇f(−1, 0,−6/5) = (−8, 0,−5) and so the equation for the plane is

0 = (−8, 0,−5) · (x + 1, y, z + 6/5) or − 8x − 5z = 14.

This agrees with the answer we found in part (a).
21. (a) First we use the formula (4) from Section 2.3 in the text: x = f(a, b)+fy(a, b)(y−a)+fz(a, b)(z−b). If x sin y+xz2 =

2eyz then x = 2eyz

sin y+z2 = f(y, z). Calculate the two partial derivatives:

fy(y, z) = 2eyz
z sin y + z3 − cos z

(sin y + z2)2
so fy(π/2, 0) = 0

and fz(y, z) = 2eyz
y sin y + yz2 − 2z

(sin y + z2)2
so fz(π/2, 0) = π.

At (2, π/2, 0) formula (4) gives the equation of the tangent plane as

x = 2 + πz.

(b) Now we’ll use formula (6) from this section and calculate the gradient of f(x, y, z) = x sin y+xz2−2eyz as ∇f(x, y, z) =
(sin y + z2,−x cos y − 2zeyz, 2xz− 2yeyz) so ∇f(2, π/2, 0) = (1, 0,−π) and so the equation for the plane is

0 = (1, 0,−π) · (x − 2, y − π/2, z) or x − 2 − πz = 0.

This agrees with the answer we found in part (a).
22. Using formula (6) we get that the gradient of f(x, y, z) = x3−2y2+z2 at (x0, y0, z0) is ∇f(x0, y0, z0) = (3x2

0,−4y0, 2z0).
For this to be perpendicular to the given line, (3x2

0,−4y0, 2z0) = k(3, 2,−√
2). This means that x2

0 = −2y0 and z0 =
−(

√
2/2)x2

0. Substituting this back into the equation of the surface, we get that x3
0 − 2x4

0/4 + x4
0/2 = 27 or x0 = 3. Our

point is, therefore (3,−9/2,−9
√

2/2).
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23. The tangent plane to the surface at a point (x0, y0, z0) is

0 = 18x0(x − x0) − 90y0(y − y0) + 10z0(z − z0).

For this to be parallel to x + 5y − 2z = 7, the vector

(18x0,−90y0, 10z0) = k(1, 5,−2).

This means that y0 = −x0 and z0 = (−18/5)x0. Substitute these back into the equation of the hyperboloid: 9x2 − 45y2 +
5z2 = 45 to get:

45 = 9x2
0 − 45x2

0 + 5(182/52)x2
0 therefore x0 = ±5/4.

This means that the points are (5/4,−5/4,−9/2) and (−5/4, 5/4, 9/2).
24. First note that (2, 1,−1) lies on both surfaces: 7 · 22 − 12 · 2− 5 · 1 = −1, 2 · 1(−1)2 = 2. The normal to the first surface at

(2, 1,−1) is given by (fx(2, 1), fy(2, 1),−1) where f(x, y) = 7x2−12x−5y2. This is ((14x−12)|(2,1),−10y|(2,1),−1) =
(16,−10,−1). The normal to the second surface at (2, 1,−1) is ∇F (2, 1,−1) where F (x, y, z) = xyz2. This is
(yz2, xz2, 2xyz)|(2,1,−1) = (1, 2,−4). We have

(16,−10,−1) · (1, 2,−4) = 16 − 20 + 4 = 0.

Since the normals are orthogonal, the tangent planes must be so as well.
25. The two surfaces are tangent at (x0, y0, z0) ⇔ the tangent planes at (x0, y0, z0) are the same ⇔ normal vectors at (x0, y0, z0)

are parallel (since the surfaces intersect at (x0, y0, z0)) ⇔ ∇F (x0, y0, z0) ×∇G(x0, y0, z0) = 0.
26. (a) S is the level set at height 0 of f(x, y, z) = x2 + 4y2 − z2 so ∇f = (2x, 8y,−2z) ⇒

∇f(3,−2,−5) = (6,−16, 10). Thus formula (6) gives the equation of the tangent plane as 6(x − 3) − 16(y + 2) +
10(z + 5) = 0 or 3x − 8y + 5z = 0.

(b) ∇f(0, 0, 0) = (0, 0, 0) so formula (6) cannot be used. Note that there’s no tangent plane at the origin, which is the vertex
of the cone (i.e., the surface is not “locally flat” there).

27. (a) For f(x, y, z) = x3 − x2y2 + z2,∇f(x, y, z) = (3x2 − 2xy2,−2x2y, 2z) so ∇f(2,−3/2, 1) = (3, 12, 2). Thus the
equation of the tangent plane is

3(x − 2) + 12(y + 3/2) + 2(z − 1) = 0 or 3x + 12y + 2z + 10 = 0.

(b) ∇f(0, 0, 0) = (0, 0, 0) so the gradient cannot be used as a normal vector. If we solve z = ±
√

y2x2 − x3 =

±x
√

y2 − x, we see that g(x, y) = x
√

y2 − x fails to be differentiable at (0, 0)—so there is no tangent plane there.

28. (a) 2x + 2y
dy
dx

= 0 so

dy
dx

∣∣∣∣
(−√

2,
√

2)

=
−x

y

∣∣∣∣
(−√

2,
√

2)

=
−√

2

−√
2

= 1.

The equation of the line is y −√
2 = x +

√
2.

(b) The equation of the tangent line is 0 = ∇f(x0, y0)·(x−x0, y−y0). Here f(x, y) = x2+y2 = 4 so ∇f(x, y) = (2x, 2y)
or ∇f(−√

2,
√

2) = (−2
√

2, 2
√

2). The equation of the tangent line is

0 = (−2
√

2, 2
√

2) · (x +
√

2, y −
√

2) or x − y = −2
√

2.

29. (a) 3y2 dy
dx

= 2x + 3x2 so dy
dx

∣∣∣∣
(1, 3

√
2)

=
5

(3)22/3
. The equation of the tangent line is

y − 3
√

2 =
5

(3)22/3
(x − 1).

(b) f(x, y) = y3 − x2 − x3 so ∇f(x, y) = (−2x− 3x2, 3y2) so ∇f(1, 3
√

2) = (−5, (3)22/3). The equation of the tangent
line is

0 = (−5, (3)22/3) · (x − 1, y − 3
√

2) or − 5x + (3)22/3y = 1.

30. (a) 5x4 + 2y + 2x
dy
dx

+ 3y2 dy
dx

= 0 so dy
dx

∣∣∣∣
(2,−2)

=
−76

16
=

−19

4
. The equation of the tangent line is

y + 2 =
−19

4
(x − 2).
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(b) f(x, y) = y3 − x2 − x3 so ∇f(x, y) = (5x4 + 2y, 2x + 3y2) so ∇f(2,−2) = (76, 16). The equation of the tangent
line is

0 = (76, 16) · (x − 2, y + 2) or 19x + 4y = 30.

31. If f(x, y) = x2 − y2 then ∇f(5,−4) = (10, 8) so the equations of the normal line are

x(t) = 10t + 5 and y(t) = 8t − 4 or 8x − 10y = 80.

32. If f(x, y) = x2 − x3 − y2 then ∇f(−1,
√

2) = (5, 2
√

2) so the equations of the normal line are

x(t) = 5t − 1 and y(t) = 2
√

2t −
√

2 or 2
√

2x − 5y = −7
√

2.

33. If f(x, y) = x3 − 2xy+ y5 then ∇f(2,−1) = (14, 1) so the equations of the normal line are

x(t) = 14t + 2 and y(t) = t − 1 or x − 14y = 16.

34. If f(x, y, z) = x3z + x2y2 + sin(yz) then

∇f(x, y, z) = (3x2 + 2xy2, 2x2y + z cos(yz), x3 + y cos(yz)).

(a) The plane is given by 0 = ∇f(−1, 0, 3) · (x + 1, y, z − 3) = 9(x + 1) + 3y − (z − 3) or 9x + 3y − z = −12.
(b) The normal line to the surface at (−1, 0, 3) is given by⎧⎨

⎩
x = 9t − 1
y = 3t
z = −t + 3.

35. Using the method above for f(x, y, z) = exy + ezx − 2eyz, we find that ∇f = (yexy + zexz, xexy − 2zeyz, xexz − 2yeyz) so
∇f(−1,−1,−1) = e(−2, 1, 1). So⎧⎨

⎩
x = −2et− 1
y = et− 1
z = et− 1

or, factoring out e,

⎧⎨
⎩

x = −2t − 1
y = t − 1
z = t − 1.

36. Remember in the equation of a plane 0 = v · (x − x0, y − y0, z − z0) that v is a vector orthogonal to the plane. We saw in
this section that we can use ∇f(x0, y0, z0) for v. This means that the equation of the line normal to a surface given by the
equation F (x, y, z) = 0 at a given point (x0, y0, z0) is

(x, y, z) = ∇F (x0, y0, z0)t + (x0, y0, z0).

37. The hypersurface is the level set at height −1 of the function f(x1, . . . , x5) = sin x1 + cos x2 + sin x3 + cos x4 + sin x5.

We find ∇f

(
π, π,

3π

2
, 2π, 2π

)
= (−1, 0, 0, 0, 1). Hence the tangent hyperplane has equation

−1(x1 − π) + 1(x5 − 2π) = 0 or x5 − x1 = π.

38. The surface is the level set at height n(n + 1)

2
of the function f(x1, . . . , xn) = x2

1 + 2x2
2 + · · · + nx2

n. We have ∇f =

(2x1, 4x2, 6x3, . . . , 2nxn) ⇒ ∇f(−1, . . . ,−1) = −2(1, 2, 3, . . . , n). An equation for the tangent hyperplane is thus

1(x1 + 1) + 2(x2 + 1) + 3(x3 + 1) + · · · + n(xn + 1) = 0

or
x1 + 2x2 + 3x3 + · · · + nxn +

n(n + 1)

2
= 0

39. Here f(x1, x2, . . . , xn) = x2
1 + x2

2 + · · · + x2
n so ∇f(x1, x2, . . . , xn) = (2x1, 2x2, . . . , 2xn). Using the techniques of this

section, the tangent hyperplane to the (n − 1)-dimensional sphere f(x1, x2, . . . , xn) = 1 at (1/
√

n, 1/
√

n, . . . , 1/
√

n,
−1/

√
n) is

0 = ∇f(1/
√

n, . . . , 1/
√

n,−1/
√

n) · (x1 − 1/
√

n, x2 − 1/
√

n, . . . , xn−1 − 1/
√

n, xn + 1/
√

n)

=
2√
n

(
x1 − 1√

n

)
+

2√
n

(
x2 − 1√

n

)
+ · · · + 2√

n

(
xn−1 − 1√

n

)
+

−2√
n

(
xn +

1√
n

)
or

0 = (x1 − 1/
√

n) + (x2 − 1/
√

n) + · · · + (xn−1 − 1/
√

n) − (xn + 1/
√

n) so
√

n = x1 + x2 + · · · + xn−1 − xn.
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40. F (x, y, z) = z2y3 + x2y = 2.
(a) We can write z = f(x, y) when Fz �= 0. Fz(x, y, z) = 2zy3 is not 0 when both z �= 0 and y �= 0.
(b) We can write x = f(y, z) when Fx �= 0. Fx(x, y, z) = 2xy is not 0 when both x �= 0 and y �= 0.
(c) We can write y = f(x, z) when Fy �= 0. Fy(x, y, z) = 3z2y2 + x2 is not 0 everywhere but on the y- or z-axis (i.e.,

except when x = 0 at the same time that either y = 0 or z = 0).

41. (a) ∂F

∂z
= xexz. This is non-zero whenever x �= 0. There we can solve for z to get

z =
ln(1 − sin xy− x3y)

x
.

(b) Looking only at points in S we only need to stay away from points in yz-plane (i.e., where x = 0).
(c) You shouldn’t then make the leap from your answer to part (b) that you can graph z =

ln(1 − sin xy− x3y)

x
for any values of x and y just so x �= 0. Your other restriction is that 1− sin xy− x3y > 0 as it is

the argument of the natural logarithm. A sketch that gives you an idea of the surface is:

-1
-0.5

0

0.5

1

x
-1

-0.5

0

0.5

1

y
-4
-2
0
2
4

z

Now the actual surface S includes the plane x = 0 since x = 0 satisfies the original equation: sin xy+ exz + x3y = 1. S
will actually look a bit like:

-2
-1

0
1

x

-1
-0.50

0.5
1y

-4

-2

0

2

4

z

42. The point of this problem is that since F (x, y) = c defines a curve C in R2 such that either fx(x0, y0) �= 0 or fy(x0, y0) �= 0
then by the implicit function theorem we can represent the curve near (x0, y0) as either the graph of a function x = g(y) or a
function y = g(x).

Exercise 43 poses a bit of a puzzle. Here we can write the equation of C as y = f(x) even though Fy is zero at the origin.
Why doesn’t this contradict the implicit function theorem? What “goes bad” in Exercise 43 is that we have a corner at the origin.
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You may also want to assign the students the same problem for the function F (x, y) = x − y3.

43. (a) F (0, 0) = 0 so the origin lies on the curve C. Fy(x, y) = 3y2 and so Fy(0, 0) = 0.
(b) We can write C as the graph of y = x2/3. The graph of C is

-1 -0.5 0.5 1
x

0.2

0.4

0.6

0.8

1

y

(c) So here we are with Fy(0, 0) = 0 but we can express the graph of C everywhere as y = x2/3. On second look we see
that C is not a C1 function—it has a corner at the origin—and so the implicit function theorem doesn’t apply.

44. (a) F (x, y) = xy+ 1 so Fy(x, y) = x and so we cannot solve F (x, y) = c for y when x = 0 or when c = 0(y) + 1 = 1. In
other words, level sets are unions of smooth curves in R2 except for c = 1.

(b) Here the function is F (x, y, z) = xyz + 1. Using a similar argument to that in part (a), Fz(x, y, z) = xy and this is only
0 when xy = 0. This means that we cannot solve F (x, y, z) = c for z when xy = 0 or when c = z(0) + 1 = 1. So level
sets of this family are unions of smooth surfaces in R3 except for level c = 1.

45. (a) G(−1, 1, 1) = F (−1 − 2 + 1,−1 − 1 + 3) = F (−2, 1) = 0.
(b) To invoke the implicit function theorem, we need to show that Gz(−1, 1, 1) �= 0.

Gz(−1, 1, 1) = Fu(−2, 1)
∂(x3 − 2y2 + z5)

∂z

∣∣∣∣
(−1,1,1)

+ Fv(−2, 1)
∂(xy− x2z + 3)

∂z

∣∣∣∣
(−1,1,1)

= (7)(5) + (5)(1) = 40 �= 0.

46. Let F1 = x2y2 − x1 cos y1 = 5 and F2 = x2 sin y1 + x1y2 = 2. Solving for y in terms of x means that we have to look at
the determinant

det

⎡
⎢⎢⎣

∂F1

∂y1

∂F1

∂y2

∂F2

∂y1

∂F2

∂y2

⎤
⎥⎥⎦ = det

[
x1 sin y1 x2

x2 cos y1 x1

]
= x2

1 sin y1 + x2
2 cos y1.

To see that you can solve for y1 and y2 in terms of x1 and x2 near (x1, x2, y1, y2) = (2, 3, π, 1), evaluate the determinant at
that point. We get −9. This is not 0 so you can, at least in theory, solve for the y’s in terms of the x’s.
To see that you can solve for y1 and y2 as functions of x1 and x2 near (x1, x2, y1, y2) = (0, 2, π/2, 5/2), evaluate the
determinant at that point. We get 0. We can not solve for the y’s in terms of the x’s.

47. (a) Let F1 = x2
1y

2
2 − 2x2y3 = 1, F2 = x1y

5
1 + x2y2 − 4y2y3 = −9, and F3 = x2y1 + 3x1y

2
3 = 12. Solving for y’s in

terms of x’s means that we have to look at the determinant

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂F1

∂y1

∂F1

∂y2

∂F1

∂y3

∂F2

∂y1

∂F2

∂y2

∂F2

∂y3

∂F3

∂y1

∂F3

∂y2

∂F3

∂y3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= det

⎡
⎢⎣ 0 2x2

1y2 −2x2

5x1y
4
1 x2 − 4y3 −4y2

x2 0 6x1y3

⎤
⎥⎦

= −60x4
1y

4
1y2y3 − 8x2

1x2y
2
2 + 2x3

2 − 8x2
2y3.

Evaluating this at the point (x1, x2, y1, y2, y3) = (1, 0,−1, 1, 2) results in −120 �= 0. This means that we can solve for
y1, y2, and y3 in terms of x1 and x2.
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(b) Take the partials of the three equations with respect to x1 to get⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y2
2 + 2x1y2

∂y2

∂x1
− 2x2

∂y3

∂x1
= 0

y5
1 + 5x1y

4
1

∂y1

∂x1
+ x2

∂y2

∂x1
− 4y3

∂y2

∂x1
− 4y2

∂y3

∂x1
= 0

x2
∂y1

∂x1
+ 3y2

3 + 6x1y3
∂y3

∂x1
= 0.

At the point (1, 0,−1, 1, 2) this system of equations becomes:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 + 2
∂y2

∂x1
= 0

−1 + 5
∂y1

∂x1
− 8

∂y2

∂x1
− 4

∂y3

∂x1
= 0

12 + 12
∂y3

∂x1
= 0.

Solving, we find that
∂y1

∂x1
=

−7

5
,
∂y2

∂x1
= −1

2
, and ∂y3

∂x1
= −1.

48. (a) We need to consider where the following determinant is non-zero.∣∣∣∣∣∣∣
∂F1/∂r ∂F1/∂θ ∂F1/∂z

∂F2/∂r ∂F2/∂θ ∂F2/∂z

∂F3/∂r ∂F3/∂θ ∂F3/∂z

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

cos θ −r sin θ 0

sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣∣ = r cos2 θ + r sin2 θ = r.

In other words, for any points for which r �= 0.
(b) This makes complete sense. When the radius is 0 then r and z completely determine the point. You get no extra infor-

mation from the θ component. Without the z coordinate, this is the standard problem when using polar coordinates in the
plane.

49. (a) As with Exercise 48, we need to consider where the same determinant is non-zero. In this case the determinant is∣∣∣∣∣∣∣
sin ϕ cos θ ρ cos ϕ cos θ −ρ sin ϕ sin θ

sin ϕ sin θ ρ cos ϕ sin θ ρ sin ϕ cos θ

cos ϕ −ρ sin ϕ 0

∣∣∣∣∣∣∣ = ρ2 sin ϕ cos2 ϕ + ρ2 sin3 ϕ = ρ2 sin ϕ.

In other words, for any points for which ρ �= 0 and for which sin ϕ �= 0.
(b) Again, this makes complete sense. When the radius is 0, then ρ completely determines the point as being the origin. When

sin ϕ = 0 you are on the z-axis so θ no longer contributes any information.

2.7 Newton’s Method

1. We begin by defining the function f(x, y) = (y2ex − 3, 2yex + 10y4). Then we have

Df(x, y) =

[
y2ex 2yex

2yex 2ex + 40y3

]
.

The inverse of this matrix is

[Df(x, y)]−1 =

⎡
⎢⎢⎣

2ex + 40y3

40y5ex − 2y2e2x

1

yex − 20y4

1

yex − 20y4

1

40y3 − 2ex

⎤
⎥⎥⎦ .

Hence the iteration expression
xk = xk−1 − [Df(xk−1)]

−1
f(xk−1)
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becomes (after some simplification usingMathematica)

xk =
xk−1y

2
k−1e

xk−1 − y2
k−1e

xk−1 + 10y5
k−1 − 60e−xk−1y3

k−1 − 20xk−1y
5
k−1 − 3

y2
k−1e

xk−1 − 20y5
k−1

yk =
y2

k−1e
xk−1 − 15y5

k−1 + 3

yk−1exk−1 − 20y4
k−1

.

Using initial vector (x0, y0) = (1,−1) and iterating the formulas above we obtain the following results:
k xk yk

0 1 −1
1 1.279707977 −0.911965173
2 1.302659547 −0.902966291
3 1.302942519 −0.902880458
4 1.302942538 −0.902880451
5 1.302942538 −0.902880451

Since the result appears to be stable to nine decimal places, we conclude that the approximate solution is (1.302942538,
−0.902880451).

2. (a) We obtain the following graph for the ellipses:

-2 -1 1 2 x

-2

-1

1

2

y

From this graph, we can estimate an intersection point in the first quadrant to be near to the point (1, 1).
(b) If (X, Y ) is an intersection point, then we must have{

3X2 + Y 2 = 7
X2 + 4Y 2 = 8

.

Because only even exponents appear, we also conclude that{
3(±X)2 + (±Y )2 = 7
(±X)2 + 4(±Y )2 = 8

.

Hence if (X, Y ) is an intersection point, then so are (−X, Y ), (X,−Y ), and (−X,−Y ).
(c) Using the function f(x, y) = (3x2 + y2 − 7, x2 + 4y2 − 8), we have

Df(x, y) =

[
6x 2y
2x 8y

]
=⇒ [Df(x, y)]−1 =

⎡
⎢⎢⎣

2

11x
− 1

22x

− 1

22x

3

22y

⎤
⎥⎥⎦ .

Hence the iteration expression in formula (6) becomes

xk =
11x2

k−1 + 20

22xk−1
, yk =

11y2
k−1 + 17

22yk−1
.
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Using initial vector (x0, y0) = (1, 1) and iterating the formulas above we obtain the following results:

k xk yk

0 1 1
1 1.409090909 1.272727273
2 1.349706745 1.243506494
3 1.348400358 1.243163168
4 1.348399725 1.243163121
5 1.348399725 1.243163121

This result appears to be stable to nine decimal places, so we conclude that the intersection point in the first quadrant is
approximately (1.348399725, 1.243163121). In view of part (b), the other intersection points must be (approximately)
(−1.348399725, 1.243163121), (1.348399725,−1.243163121), and (−1.348399725,−1.243163121).

(d) From the equation 3x2 + y2 = 7, we must have y2 = 7− 3x2. Substituting for y2 in the equation x2 + 4y2 = 8, we find
that

x2 + 4(7 − 3x2) = 8 ⇐⇒ 11x2 = 20 ⇐⇒ x = ±
√

20

11
≈ ±1.348399725

and

y = ±
√

17

11
≈ ±1.243163121.

3. (a) The graphs of the curves are as follows:

-1.5 -1 -0.5 0.5 1 1.5
x

-1

-0.5

0.5

1

y

From the graph, we estimate one intersection point near (1, 1/2), and a second near (−1/2,−3/4).
(b) Using the function f(x, y) = (x3 − 4y3 − 1, x2 + 4y2 − 2), we have

Df(x, y) =

[
3x2 −12y2

2x 8y

]
=⇒ [Df(x, y)]−1 =

⎡
⎢⎢⎣

1

3x2 + 3xy

y

2x2 + 2xy

− 1

12xy + 12y2

x

8xy + 8y2

⎤
⎥⎥⎦ .

Then the iteration expression in formula (6) becomes

xk =
4x3

k−1 + 3x2
k−1yk−1 − 4y3

k−1 + 6yk−1 + 2

6xk−1(xk−1 + yk−1)

yk =
−x3

k−1 + 12xk−1y
2
k−1 + 16y3

k−1 + 6xk−1 − 2

24yk−1(xk−1 + yk−1)
.

Using initial vector (x0, y0) = (1, 0.5) and iterating the formulas above we obtain the following results:

k xk yk

0 1 0.5
1 1.111111111 0.444444444
2 1.103968254 0.441964286
3 1.103931712 0.441965716
4 1.103931711 0.441965716
5 1.103931711 0.441965716
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The data imply that to nine decimal places there is an intersection point at (1.103931711, 0.441965716). Using initial
vector (x0, y0) = (−0.5,−0.75) and iterating, we find

k xk yk

0 −0.5 −0.75
1 −0.5 −0.666666667
2 −0.518518519 −0.657986111
3 −0.518214436 −0.65792361
4 −0.518214315 −0.657923613
5 −0.518214315 −0.657923613

Thus it appears that to nine decimal places there is an second intersection point at (−0.518214315,−0.657923613).
4. Let L denote limk→∞ xk. Then limk→∞ xk−1 = L and taking limits in (6), we have

L = L − [Df(L)]−1f(L).

Hence [Df(L)]−1f(L) = 0. Now multiply by Df(L) on the left to obtain Df(L)([Df(L)]−1f(L))Df(L)0 = 0 ⇔ Inf(L) =
0 ⇔ f(L) = 0.

5. (a)
k xk yk
0 −1 1
1 −1.3 1.7
2 −1.2653846 1.55588235
3 −1.2649112 1.54920772
4 −1.2649111 1.54919334
5 −1.2649111 1.54919334

This table suggests that xk → (−1.2649111, 1.54919334) ≈ (−
√

8/5,
√

12/5).
(b)

k xk yk
0 1 −1
1 1.3 −1.7
2 1.26538462 −1.558824
3 1.2649115 −1.5492077
4 1.26491106 −1.5491933
5 1.26491106 −1.5491933

Here xk → (
√

8/5,−
√

12/5) it seems.

k xk yk
0 −1 −1
1 −1.3 −1.7
2 −1.2653846 −1.555824
3 −1.2649112 −1.5492077
4 −1.2649111 −1.5491933
5 −1.2649111 −1.5491933

Here xk → (−
√

8/5,−
√

12/5).
(c) The results don’t seem too strange; each initial vector is in a different quadrant and the limit is an intersection point in the

same quadrant.
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6. (a) k xk yk
0 1.4 10
1 54.7 −317.452
2 28.0832917 −75583.381
3 14.8412307 −9364.2812
4 8.35050251 −1128.3294
5 5.34861164 −119.96986
6 4.2264792 −4.8602841
7 4.00886454 4.73583325
8 4.0001468 4.99959722
9 4 5

10 4 5
(b)

k xk yk
0 1.3 10
1 −105.35 641.7815
2 −52.041661 606283.635
3 −25.420779 75622.9747
4 −12.17662 9372.7823
5 −5.6848239 1132.95037
6 −2.6823677 124.108919
7 −1.5599306 8.94078154
8 −1.3422068 −0.6614827
9 −1.333348 −0.9255223

10 −1.3333333 −0.9259259
11 −1.3333333 −0.9259259

(c) (1.3, 10) is a good deal closer to (4, 5) than it is to (−1.3333333, −0.9259259).
(d) It seems surprising that, beginning with x0 = (1.3, 10), we found the limit we did, especially when x0 = (1.4, 10) causes

things to converge to (4, 5). This suggests that, when there are multiple solutions, it can be difficult to know to which
solution the initial vector will converge.

7. Formula (6) says xk+1 = xk − [Df(xk)]−1f(xk). But if xk solves (2) exactly, then f(xk) = 0. Thus xk+1 = xk −
[Df(xk)]−10 = xk. By the same argument xk = xk+2 = xk+3 = · · · .

8. Df(x, y) =

[
fx fy

gx gy

]
. By Exercise 36 of §1.6, [Df(x, y)]−1 = 1

fxgy−fygx

[
gy −fy

−gx fx

]
. If we evaluate at (xk−1, yk−1)

and calculate, we find that formula (6) tells us that

[
xk

yk

]
=

[
xk−1

yk−1

]
− 1

fxgy − fygx

[
gy −fy

−gx fx

] [
f
g

]
︸ ︷︷ ︸

all evaluated at (xk−1,yk−1)

.

Expanding and taking entries we obtain the desired formulas.

9. DF(x, y) = [4y cos(xy)+3x2, 4x cos(xy)+3y2], so we want to solve
{

4y cos xy+ 3x2 = 0
4x cos xy+ 3y2 = 0

. Using the result of Exercise

8, we have

xk =

6y2
k−1 cos(xk−1yk−1) + xk−1(6(x3

k−1 + 3y3
k−1) sin(xk−1yk−1)−

xk−1yk−1(9 + 8 sin 2xk−1yk−1))

2(2 − 9xk−1yk−1 + 2 cos(2xk−1yk−1) + 6(x3
k−1 + y3

k−1) sin(xk−1yk−1)−
4xk−1yk−1 sin(2xk−1yk−1))

yk =

6x2
k−1 cos(xk−1yk−1) + yk−1(6(3x3

k−1 + y3
k−1) sin(xk−1yk−1)−

xk−1yk−1(9 + 8 sin(2xk−1yk−1)))

2(2 − 9xk−1yk−1 + 2 cos(2xk−1yk−1) + 6(x3
k−1 + y3

k−1) sin(xk−1yk−1)

−4xk−1yk−1 sin(2xk−1yk−1))

(This was obtained using Mathematica to simplify.)
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Using initial vector (x0, y0) = (−1,−1) and iterating the formulas above we find

k xk yk

0 −1 −1
1 −0.9206484 −0.9206484
2 −0.9073724 −0.9073724
3 −0.9070156 −0.9070156
4 −0.9070154 −0.9070154
5 −0.9070154 −0.9070154 ← Here’s the approximate root.

10. (a) Here we’re trying to solve the system

⎧⎨
⎩

x2 + y2 + z2 = 4
x2 + y2 = 1
4y2 + z2 = 4.

Hence we define f(x, y, z) = (x2 + y2 + z2 − 4, x2 +

y2 − 1, 4y2 + z2 − 4).

Thus Df(x, y, z) =

⎡
⎣ 2x 2y 2z

2x 2y 0
0 8y 2z

⎤
⎦. It follows (see Exercise 37 of §1.6) that

[Df(x, y, z)]−1 =

⎡
⎢⎢⎢⎢⎢⎣

1

8x

3

8x
− 1

8x

− 1

8y

1

8y

1

8y
1

2z
− 1

2z
0

⎤
⎥⎥⎥⎥⎥⎦ .

Thus

⎡
⎣ xk

yk

zk

⎤
⎦ =

⎡
⎣ xk−1

yk−1

zk−1

⎤
⎦ − [Df(xk−1, yk−1, zk−1)]

−1

⎡
⎢⎣ x2

k−1 + y2
k−1 + z2

k−1 − 4

x2
k−1 + y2

k−1 − 1

4y2
k−1 + z2

k−1 − 4

⎤
⎥⎦.

This simplifies to give

xk =
xk−1

2
+

3

8xk−1

yk =
yk−1

2
+

1

8yk−1

zk =
zk−1

2
+

3

2zk−1

Newton’s method with x0 = (1, 1, 1) gives the following set of results
k xk yk zk

0 1 1 1
1 0.875 0.625 2
2 0.86607143 0.5125 1.75
3 0.86602541 0.50015244 1.73214286
4 0.8660254 0.50000002 1.73205081
5 0.8660254 0.5 1.73205081
6 0.8660254 0.5 1.73205081

With x0 = (1,−1, 1), we find
k xk yk zk

0 1 −1 1
1 0.875 −0.625 2
2 0.86607143 −0.5125 1.75
3 0.86602541 −0.5001524 1.73214286
4 0.8660254 −0.5 1.73205081
5 0.8660254 −0.5 1.73205081

(b) We solve

⎧⎨
⎩

x2 + y2 + z2 = 4
x2 + y2 = 1
4y2 + z2 = 4

by hand. First insert the second equation into the first: 1 + z2 = 4 ⇔ z = ±√
3. Use

this in the third equation 4y2 + 3 = 4 ⇔ y = ± 1
2

.
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Now use this in the second equation: x2 + 1
4

= 1 ⇔ x = ±
√

3
2

.
So we have 8 solutions:(√

3

2
,
1

2
,
√

3

)
,

(
−
√

3

2
,
1

2
,
√

3

)
,

(
−
√

3

2
,−1

2
,
√

3

)
,

(√
3

2
,−1

2
,
√

3

)
(√

3

2
,
1

2
,−

√
3

)
,

(
−
√

3

2
,
1

2
,−

√
3

)
,

(
−
√

3

2
,−1

2
,−

√
3

)
,

(√
3

2
,−1

2
,−

√
3

)

We found two of them above.

True/False Exercises for Chapter 2

1. False.
2. True.
3. False. (The range also requires v �= 0.)
4. False. (Note that f(i) = f(j).)
5. True.
6. False. (It’s a paraboloid.)
7. False. (The graph of x2 + y2 + z2 = 0 is a single point.)
8. True.
9. False.

10. False. (The limit does not exist.)
11. False. (lim(x,y)→(0,0) f(x, y) = 0 �= 2.)

12. False.
13. False.
14. True.
15. False. (∇f(x, y, z) = (0, cos y, 0).)

16. False. (It’s a 4 × 3 matrix.)
17. True.
18. False.
19. False. (The partial derivatives must be continuous.)
20. True.
21. False. (fxy �= fyx.)

22. False. (f must be of class C2.)
23. True. (Write the chain rule for this situation.)
24. True.
25. False. (The correct equation is 4x + y + 4z = 0.)
26. False. (The plane is normal to the given vector.)
27. True.
28. False. (The directional derivative equals −∂f/∂z.)
29. False.
30. True.

Miscellaneous Exercises for Chapter 2

1. (a) Calculate the determinant ∣∣∣∣∣∣∣
i j k
1 0 1

x1 x2 x3

∣∣∣∣∣∣∣ = (−x2, x1 − x3, x2).

More explicitly, the component functions are f1(x1, x2, x3) = −x2, f2(x1, x2, x3) = x1−x3, and f3(x1, x2, x3) = x2.
(b) The domain is all of R3 while the range restricts the first component to be the opposite of the last component. In other

words the range is the set of all vectors (a, b,−a).
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2. (a) It might help to see f explicitly first as(
(3,−2, 1) · (x, y, z)

(3,−2, 1) · (3,−2,−1)

)
(3,−2, 1) =

3x − 2y + z

14
(3,−2, 1).

(b) The domain is all of R3 and the range are vectors of the form (3a,−2a, a).
3. (a) The domain of f is {(x, y)|x ≥ 0 and y ≥ 0} ∪ {(x, y)|x ≤ 0 and y ≤ 0}. The range is all real numbers greater than or

equal to 0.
(b) The domain is closed. The quarter planes are closed on two sides because they include the axes.

4. (a) The domain of f is {(x, y)|x ≥ 0 and y > 0} ∪ {(x, y)|x ≤ 0 and y < 0}. The range is all real numbers greater than or
equal to 0.

(b) The domain is neither open nor closed. The quarter planes are closed on one side because they include the y-axis but they
don’t include the x-axis and so aren’t closed.

5.
f (x, y) Graph Level curves
1/(x2 + y2 + 1) D d
sin
√

x2 + y2 B e
(3y2 − 2x2)e−x2−2y2

A b
y3 − 3x2y E c
x2y2e−x2−y2

F a
ye−x2−y2

C f
6. (a) See below left.

-4 -2 0 2 4
-4

-2

0

2

4

-4
-2

0

2

4

x
-4

-2

0

2

4

y

2
3
4
5

z

(b) See above right.
7. First we’ll substitute x = r cos θ and y = r sin θ while noting that (x, y) → (0, 0) is equivalent to r → 0.

lim
(x,y)→(0,0)

yx2 − y3

x2 + y2
= lim

r→0

(r sin θ)(r2 cos2 θ) − (r3 sin3 θ)

r2 cos2 θ + r2 sin2 θ

= lim
r→0

r3(cos2 θ − sin2 θ) sin θ

r2

= lim
r→0

r cos 2θ sin θ = 0

8. (a) 2xy
x2 + y2

=
2r2 cos θ sin θ

r2
= 2 cos θ sin θ = sin 2θ. So

f(x, y) =

{
sin 2θ if r �= 0
0 if r = 0

.

(b) We’re looking for (x, y) such that f(x, y) = c. For −1 < c < 1 the level sets are pairs of radial lines symmetric about
θ = π/4.
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For example, if c = 1/2 then we are looking for θ such that sin 2θ = 1/2. In this case, θ = π/12, 5π/12, 13π/12, and
17π/12. So the level sets are the lines θ = π/12 and θ = 5π/12. These could also be written as θ = π/4 ± π/6.
For c = 1 the level set is the line θ = π/4, for c = −1 the level set is the line θ = 3π/4 and for |c| > 1 the level set is
the empty set.

(c) f is constant along radial lines, so the figure below just shows a ribbon corresponding to .4 < r < 1.

-1
-0.5

0
0.5

1
x

-0.5
0

0.5
1

y

-1

-0.5

0

0.5

1

z

-1

(d) lim(x,y)→(0,0) f(x, y) = limr→0 sin 2θ which doesn’t exist.
(e) Since the limit doesn’t exist at the origin, f couldn’t be continuous there. Also, f takes on every value between 1 and −1

in every open neighborhood of the origin.

Before assigning Exercise 9 you may want to ask the students if it is true that if a function F (x, y) is continuous in each variable
separately it is continuous. The calculations in Exercise 9 are fairly routine but the conclusion is very important.

9. g(x) = F (x, 0) ≡ 0 and so is continuous at x = 0 and h(y) = F (0, y) ≡ 0 and so is continuous at y = 0. Consider
p(x) = F (x, x) = 1 when x �= 0 and F (0, 0) = 0. Clearly, p(x) is not continuous at 0 so F (x, y) is not continuous at (0, 0).

10. (a) You can see as x gets closer and closer to 0 that 1/x2 gets larger and larger. More formally, for any N > 0, if 0 < |x| <
1/

√
N then 1/x2 > N .

(b) Here ‖(x, y) − (1, 3)‖ =
√

(x − 1)2 + (y − 3)2 so for any N > 0, if 0 < ‖(x, y) − (1, 3)‖ <
√

(2/N), then

2

(x − 1)2 + (y − 3)2
=

2

‖(x, y) − (1, 3)‖2
>

2

2/N
= N.

(c) The definition is analogous to that for above: limx→a f(x) = −∞ means that given any N < 0 there is some δ > 0 such
that if 0 < ‖x − a‖ < δ then f(a) < N .

(d) We are considering lim(x,y)→(0,0) so let’s restrict our attention to |x| < 1 and |y| < 1. For |x| < 1 we have

1 − x

xy4 − y4 + x3 − x2
=

−1

y4 + x2
.

For |y| < 1 we have y4 < y2 so
−1

y4 + x2
<

−1

y2 + x2
=

−1

‖(x, y)‖2
.

So for any N < 0 if 0 < ‖(x, y)‖ < min{1, 1/
√−N} then 1 − x

xy4 − y4 + x3 − x2
< N .

11. We read right from the table in the text:
(a) 15◦ F.
(b) 5◦ F.

12. (a) If the temperature of the air is 10◦ F we read off the chart that when the windspeed is 10 mph the windchill is −4; when
the windspeed is 15 mph the windchill is −7. Since we are looking to estimate when the windchill is −5 you might be
tempted to stop here and just conclude that the answer is between 10 mph and 15 mph (and you’d be correct) but we want
to say more. Our first estimate will just use linear interpolation (similar triangles) to get x

2
= 5

3
or the distance from 15 is

x = 10/3. We would then conclude that, to the nearest degree, the windspeed is 15 − 10/3 ≈ 12 mph.
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(b) Before you feel too good about your answer to part (a) you should notice further that when the windspeed is 20 the
windchill is −9 and when the windspeed is 25 the windchill is −11. In other words, the rate at which the windchill is
dropping is slowing slightly. In calculus terms, for the function f(s) = W (s mph, 30◦), f ′′(s) seems to be positive so
the curve is concave up. The line used to estimate in part (a) then probably lies above the curve and our guess of 12 mph
is, most likely, too high.

13. For the function W (s mph, t◦), we want to estimate

∂W

∂t

∣∣∣∣
(30 mph,35◦)

= lim
h→0

W (30, 35 + h) − W (30, 35)

h
.

We will use the slopes of the two secant lines:

W (30, 40) − W (30, 35)

5
=

28 − 22

5
= 1.2

W (30, 30) − W (30, 35)

−5
=

15 − 22

−5
= 1.4

We average them to get an estimate of 1.3.
14. We will use the same technique as in Exercise 13 and estimate the derivative with respect to windspeed by averaging the slopes

of the two secant lines.

W (20, 25) − W (15, 25)

5
=

11 − 13

5
= −0.4

W (10, 25) − W (15, 25)

−5
=

15 − 13

−5
= −0.4

so we average them to get an estimate of −0.4.
15. (a) Comparison with Exercise 11: With an air temperature of 25◦ F, windspeed of 10 mph,

W (10, 25) = 91.4 + (25 − 91.4)(0.474 + 0.304
√

10 − 0.203)

≈ 9.573 or 10◦ F

(as compared to 15◦ F in 11(a)).
If s = 20 mph, then W = −15◦ F if

91.4 + (t − 91.4)(0.474 + 0.304
√

20 − 0.406) = −15.

Hence t = 91.4 − 15 + 91.4

(0.474 + 0.304
√

20 − 0.406)
≈ 16.866 or 17◦ F (as compared to 5◦ F in 11(b)).

Comparison with Exercise 12: With W (s, t) = 91.4 + (t − 91.4)(.474 + .304
√

s − .0203s), we must solve

−5 = 91.4 + (10 − 91.4)(.474 + .304
√

s − .0203s)

or

−5 − 91.4

10 − 91.4
= .474 + .304

√
s − .0203s so that

1.18428 ≈ .474 + .304
√

s − .0203s or

0 ≈ .0203s − .304
√

s + .7102752

Now solve the quadratic:
√

s ≈ .304 ±√
.186391

.0406
. The two solutions are 8.39128 and 145.893.

(b) The windchill effect of windspeed appears to be greater in the Siple formula than that which may be inferred from the
table.

(c) For temperatures greater than 91.4 the model has the wind actually making the apparent temperature warmer than air tem-
perature. Physically, the model probably falls apart because between 91.4 and 106 you are too close to body temperature
for the wind to have much effect and if you are in temperatures much greater than 106 a breeze won’t replace a frosty
beverage. For winds below 4 mph, the effect is negligible and won’t be reflected in the model.
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16. Comparison with Exercise 13: We want to calculate Wt(30, 35). ∂W/∂t = 0.621 + 0.4275s0.16, so Wt(30, 35) = 0.621 +
(0.4275)300.16 ≈ 1.358 (this is close).
Comparison with Exercise 14: We want Ws(15, 25).

∂W/∂s = −35.75(0.16)s−0.84 + 0.4275(0.16)ts−0.84

= (−5.72 + 0.0684t)s−0.84

Ws(15, 25) = (−5.72 + 0.0684 · 25)15−0.84 ≈ −0.412 (again close).

17. (a) Pictured (left) are the pairs W1(s, 40) and W2(s, 40) and, on the right, the pairs W1(s, 5) and W2(s, 5).

20 40 60 80 100 120
s10

15

20

25

30

35

40

W1

W2

W(s,40)

20 40 60 80 100 120
s

-40

-30

-20

-10

10

W2

W1

W(s,5)

From these graphs, we see that windspeed depresses apparent temperature in the Siple formula much more than in the
National Weather Service Formula.

(b) Pictured (left) are the pairs W1(10, t) and W2(10, t) and, on the right, the pairs W1(30, t); and W2(30, t). Again we see
that the Siple formula results in lower apparent temperatures predicted, only the effect appears to be more of a constant
difference.

W2

W1

W(10,t)

-40 -20 20 40
t

-60
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-20

20
-40 -20 20 40

t

-120

-100

-80

-60

-40

-20

20

W2

W1

W(30,t)

(c) The surfaces z = W1(s, t) and z = W2(s, t) are pictured. Note that the Siple surface determined by W1 is more curved,
demonstrating a more nonlinear effect of windspeed.
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0
W2

18. The equation of the sphere is F (x, y, z) = x2 + y2 + z2 = 9 so ∇F = (2x, 2y, 2z) and the plane tangent to the sphere at (1,
2, 2) is 0 = (2, 4, 4) · (x − 1, y − 2, z − 2) or x + 2y + 2z = 9. This intersects the x-axis when y = 0 and z = 0 so x = 9.
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19. Without loss of generality we can locate the center of the sphere at the origin and so the equation of the sphere is F (x, y, z) =
x2 + y2 + z2 = r2 so ∇F = (2x, 2y, 2z) and the equation of the plane tangent to the sphere at P = (x0, y0, z0) is
0 = (2x0, 2y0, 2z0) ·(x−x0, y−y0, z−z0) or x0x+y0y+z0z = x2

0 +y2
0 +z2

0 . This is orthogonal to the vector (x0, y0, z0)
which is the vector from the center of the sphere to P .

20. Because we’re looking at a curve in the plane 2x−y = 1 we know the x and y components of the parametric equations. What
is left to determine is z. Substitute in 2x−1 for y in the equation of the surface to get z = 3x2 +x3/6−x4/8−4(2x−1)2 =
−5x2 + x3/6 − x4/8 + 4. We can now calculate the derivative ∂z/∂x = −10x + x2/2 − x3/2 and evaluate it at the point
(1, 1,−23/24) to get −10. Because the value of z is −23/24 when x = 1, this component of the tangent line is derived by
looking at z + 23/24 = −10(x − 1). So the parametric equations for the tangent line are (t, 2t − 1,−10t + 192/24).

21. (a) For the function f(x, y, z) = x2 + y2 − z2 = 0 we consider ∇f(x0) · (x− x0) = 0. Here we get (2(3), 2(−4),−2(5)) ·
(x − 3, y + 4, z − 5) = 0 or the equation is 6(x − 3) − 8(y + 4) − 10(z − 5) = 0.

(b) In general we get (2(a), 2(b),−2(c)) · (x−a, y−b, z−c) = 0. This amounts to 2a(x−a)+2b(y−b)−2c(z−c) = 0.
(c) Note that (0, 0, 0) is a solution so the plane passes through the origin.

22. Show that the two surfaces

S1 : z = xy and S2 : z =
3

4
x2 − y2

intersect perpendicularly at the point (2, 1, 2). First we see that 2 = 1(2) and 2 = (3/4)(4) − 1 so (2, 1, 2) is a point on both
surfaces. Rewrite the surfaces so that they are level sets of functions:

F1(x, y, z) = xy− z and F2(x, y, z) = z + y2 − 3

4
x2.

The gradients are normal to the tangent planes (see Section 2.6, Exercise 36), so we calculate the two gradients at the given
point: ∇F1(2, 1, 2) = (1, 2,−1) and ∇F2(2, 1, 2) = (−3, 2, 1) so

∇F1(2, 1, 2) · ∇F2(2, 1, 2) = 0.

So the two surfaces intersect perpendicularly at (2, 1, 2).
23. (a) As we have done before we find the plane tangent to the surface given by F (x, y, z) = z − x2 − 4y2 = 0 by formula (6):

0 = ∇F (1,−1, 5) · (x − 1, y + 1, z − 5) = (−2, 8, 1) · (x − 1, y + 1, z − 5)

or − 2x + 8y + z = −5.

(b) The line is parallel to a vector which is orthogonal to ∇F (1,−1, 5) = (−2, 8, 1) and with no component in the x
direction. So it is of the form (0, a, b) with (0, a, b) · (−2, 8, 1) = 0 so the line has the direction (0, 1,−8) and passes

through (1,−1, 5). The equations are

⎧⎨
⎩

x = 1
y = t − 1
z = −8t + 5.

24. We are assuming that the collar is fairly rigid so that it is maintaining a cylindrical shape throughout this process. We want
∂V

∂t
at t = t0. Since V = πr2h, ∂V

∂t
= 2πrhdr

dt
+ πr2 dh

dt
. We are given that the rate of change of the circumference at

t = t0 is −.2 in/min. This means

−.2 =
∂C

∂t

∣∣∣∣
t0

=
∂(2πr)

∂t

∣∣∣∣
t0

= 2π
dr
dt

∣∣∣∣
t0

.

We also know that at t = t0, 2πr = 18, h = 3, and dh
dt

= .1. Substituting into the equation above, we get:

∂V

∂t

∣∣∣∣
t0

= (18)(3)

(−.2

2π

)
+ π

(
18

2π

)2

(.1) =
−5.4

π
+

8.1

π
=

2.7

π
.

So the volume is increasing at t = t0.
25. First note that 0.2 deg C/day = 0.2 · 24 = 4.8 deg C/month. Then, with time measured in months, the chain rule tells us

dP
dt

=
∂P

∂S

dS
dt

+
∂P

∂T

dT
dt

.

c© 2012 Pearson Education, Inc.



144 Chapter 2 Differentiation in Several Variables

Here dS
dt

= −2, dT
dt

= 4.8. With P (S, T ) = 330S2/3T 4/5, we have

dP
dt

∣∣∣∣
(S=75,T=15)

= (220S−1/3T 4/5)|(75,15)(−2) + 264S2/3T−1/5|(75,15)(4.8)

= 220(75)−1/3(15)4/5(−2) + 264(75)2/3(15)−1/5(4.8)

= 12,201.4 units/month

(or 508.392 units/day)

26. We want to know du
dt

(t in weeks) when x = 80, y = 240, given that dx
dt

= 5 and dy
dt

= −15. The chain rule tells us

du
dt

=
∂u

∂x

dx
dt

+
∂u

∂y

dy
dt

= (0.002xe−0.001x2−0.00005y2

)
dx
dt

+ (0.0001ye−0.001x2−0.00005y2

)
dy
dt

Thus

du
dt

∣∣∣∣
x=80,y=240

= e(−0.001)802−0.00005(240)2 [(0.002)80 · 5 − (0.0001)240 · 15]

≈ 0.000041.

So the utility function is increasing ever so slightly.
27.

w = x2 + y2 + z2,

x = ρ cos θ sin ϕ,

y = ρ sin θ sin ϕ and

z = ρ cos ϕ

(a)

∂w

∂ρ
=

∂w

∂x

∂x

∂ρ
+

∂w

∂y

∂y

∂ρ
+

∂w

∂z

∂z

∂ρ

= 2x cos θ sin ϕ + 2y sin θ sin ϕ + 2z cos ϕ

= 2ρ cos2 θ sin2 ϕ + 2ρ sin2 θ sin2 ϕ + 2ρ cos2 ϕ

= 2ρ,

∂w

∂ϕ
=

∂w

∂x

∂x

∂ϕ
+

∂w

∂y

∂y

∂ϕ
+

∂w

∂z

∂z

∂ϕ

= 2xρ cos θ cos ϕ + 2yρ sin θ cos ϕ − 2zρ sin ϕ

= 2ρ2 cos2 θ cos ϕ sin ϕ + 2ρ2 sin2 θ cos ϕ sin ϕ − 2ρ2 cos ϕ sin ϕ

= 0, and

∂w

∂θ
=

∂w

∂x

∂x

∂θ
+

∂w

∂y

∂y

∂θ
+

∂w

∂z

∂z

∂θ

= −2xρ sin θ sin ϕ + 2yρ cos θ sin ϕ

= −2ρ2 cos θ sin θ sin2 ϕ + 2ρ2 cos θ sin θ sin2 ϕ

= 0.

(b) First substitute: w = x2 + y2 + z2 = (ρ cos θ sin ϕ)2 + (ρ sin θ sin ϕ)2 + (ρ cos ϕ)2 = ρ2. Now taking the derivatives
from part (a) is trivial: wρ = 2ρ, wϕ = 0, and wθ = 0.
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28. If w = f
(

x+y
xy

)
, let u = x+y

xy . So

x2 ∂w

∂x
− y2 ∂w

∂y
= x2 ∂w

∂u

∂u

∂x
− y2 ∂w

∂u

∂u

∂y

= x2 ∂w

∂u

( −y2

x2y2

)
− y2 ∂w

∂u

( −x2

x2y2

)
= 0.

29. (a) First use the chain rule to find ∂z

∂r
and ∂z

∂θ
:

∂z

∂r
=

∂z

∂x

∂x

∂r
+

∂z

∂y

∂y

∂r

=
∂z

∂x
(er cos θ) +

∂z

∂y
(er sin θ), and

∂z

∂θ
=

∂z

∂x

∂x

∂θ
+

∂z

∂y

∂y

∂θ

=
∂z

∂x
(−er sin θ) +

∂z

∂y
(er cos θ).

Now solve for ∂z

∂x
and ∂z

∂y
:

∂z

∂x
= e−r cos θ

∂z

∂r
− e−r sin θ

∂z

∂θ
, and

∂z

∂y
= e−r sin θ

∂z

∂r
+ e−r cos θ

∂z

∂θ
.

(b) Given the results for ∂z

∂x
and ∂z

∂y
in part (a), we compute:

∂2z

∂x2
=

∂

∂x

(
∂z

∂x

)
= e−r cos θ

∂

∂r

(
∂z

∂x

)
− e−r sin θ

∂

∂θ

(
∂z

∂x

)

= e−r cos θ
∂

∂r

(
e−r cos θ

∂z

∂r
− e−r sin θ

∂z

∂θ

)
− e−r sin θ

∂

∂θ

(
e−r cos θ

∂z

∂r
− e−r sin θ

∂z

∂θ

)

= e−r cos θ

(
−e−r cos θ

∂z

∂r
+ e−r cos θ

∂2z

∂r2
+ e−r sin θ

∂z

∂θ
− e−r sin θ

∂2z

∂r∂θ

)

− e−r sin θ

(
−e−r sin θ

∂z

∂r
+ e−r cos θ

∂2z

∂θ∂r
− e−r cos θ

∂z

∂θ
− e−r sin θ

∂2z

∂θ2

)

= e−2r

[
(sin2 θ − cos2 θ)

∂z

∂r
+ cos2 θ

∂2z

∂r2
+ 2 sin θ cos θ

∂z

∂θ
− 2 sin θ cos θ

∂2z

∂r∂θ
+ sin2 θ

∂2z

∂θ2

]
A similar calculation gives:

∂2z

∂y2
=

∂

∂y

(
∂z

∂y

)
= e−r sin θ

∂

∂r

(
∂z

∂y

)
+ e−r cos θ

∂

∂θ

(
∂z

∂y

)

= e−r sin θ
∂

∂r

(
e−r sin θ

∂z

∂r
+ e−r cos θ

∂z

∂θ

)
+ e−r cos θ

∂

∂θ

(
e−r sin θ

∂z

∂r
+ e−r cos θ

∂z

∂θ

)

= e−2r

[
(cos2 θ − sin2 θ)

∂z

∂r
+ sin2 θ

∂2z

∂r2
− 2 sin θ cos θ

∂z

∂θ
+ 2 sin θ cos θ

∂2z

∂r∂θ
+ cos2 θ

∂2z

∂θ2

]
.

Now add these to get:

∂2z

∂x2
+

∂2z

∂y2
= e−2r[(cos2 θ + sin2 θ)zθθ + (cos2 θ + sin2 θ)zrr] = e−2r[zθθ + zrr].
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30. (a) Consider w = f(x, y) = xy = ey ln x. Then d
du (u

u) can be calculated by taking the derivative and evaluating at the point
(u, u).

dw
du

=
∂w

∂x

dx
du

+
∂w

∂y

dy
du

= yxy−1 + ln xey ln x = u · uu−1 + (ln u) uu = uu(1 + ln u).

(b) Here x = sin t and y = cos t. So

dw
dt

=
∂w

∂x

dx
dt

+
∂w

∂y

dy
dt

= yxy−1 cos t + (ln x) ey ln x(− sin t) = cos2 t(sin t)cos t−1 − sin t ln(sin t) sin tcos t.

31. This is an extension of the preceding exercise. This time w = f(x, y, z) = xyz

. If x = u, y = u, and z = u we again
calculate

dw
du

=
∂w

∂x

dx
du

+
∂w

∂y

dy

du
+

∂w

∂z

dz
du

= yzxyz−1 + eyz ln x(z ln x)yz−1 + eez ln y ln x(ln x) ez ln y ln y

= uuu(uu−1) + uuu

(u ln u)uu−1 + uuu

(ln u)2uu = uuuuu

(1/u + ln u + (ln u)2).

32. With
r = ‖x‖ =

√
x2

1 + · · · + x2
n,

∂r

∂xi
=

xi√
x2

1 + · · · + x2
n

=
xi

r
.

The chain rule gives ∂f

∂xi
=

dg

dr

∂r

∂xi
= g′(r)

xi

r
By the product and chain rules:

∂2f

∂x2
i

=
∂

∂xi

(
g′(r)

xi

r

)
=

g′(r)
r

+ xi
d
dr

(
g′(r)

r

)
∂r

∂xi

=
1

r
g′(r) + xi

(
rg′′(r) − g′(r)

r2

)
xi

r

=
1

r
g′(r) + x2

i

(
g′′(r)

r2
− g′(r)

r3

)
.

Add these to find

∇2f =
n∑

i=1

∂2f

∂xi
2

=
n

r
g′(r) +

(
g′′(r)

r2
− g′(r)

r3

)
(x2

1 + · · · + x2
n)︸ ︷︷ ︸

=r2

=
n

r
g′(r) + g′′(r) − g′(r)

r

=
1

r
(n − 1)g′(r) + g′′(r).

33. (a)

∇2(∇2f(x, y)) =
∂2

∂x2

(
∂2f

∂x2
+

∂2f

∂y2

)
+

∂2

∂y2

(
∂2f

∂x2
+

∂2f

∂y2

)

=
∂4f

∂x4
+

∂4f

∂x2∂y2
+

∂4f

∂y2∂x2︸ ︷︷ ︸
these are equal−f is of class C4

+
∂4f

∂y4

= desired expression.

(b) Similar:

∇2(∇2f) =
∂2

∂x2
1

(
n∑

j=1

∂2f

∂x2
j

)
+ · · · + ∂2

∂x2
n

(
n∑

j=1

∂2f

∂xj

)

=
n∑

i=1

∂2

∂xi
2

(
n∑

j=1

∂2f

∂x2
j

)
=

n∑
i,j=1

∂4f

∂x2
i ∂x2

j

.
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34. Livinia is at (0, 0, 1) and T (x, y, z) = 10(xe−y2

+ ze−x2

)
(a) The unit vector in the direction from (0, 0, 1) to (2, 3, 1) is u = (2, 3, 0)/

√
13.

DuT = ∇T (0, 0, 1) · u = 10(1, 0, 1) · (2, 3, 0)/
√

13 = 20/
√

13 deg/cm.

(b) She should head in the direction of the negative gradient: (−1, 0,−1)/
√

2.
(c) (3)10(1, 0, 1) · (−1, 0,−1)/

√
2 = −30

√
2 deg/sec.

35. z = r cos 3θ
(a) z = r[cos θ cos 2θ − sin θ sin 2θ] = r[cos θ(cos2 θ − sin2 θ) − sin θ(2 sin θ cos θ)] so

z =
r3[cos3 θ − cos θ sin2 θ − 2 sin2 θ cos θ]

r2
=

x3 − 3xy2

x2 + y2
.

(b) Note that limr→0 r cos 3θ = 0 which is the value of the function at the origin. So yes, f(x, y) = z is continuous at the
origin.

(c) (i) fx =
(x2 + y2)(3x2 − 3y2) − (x3 − 3xy2)2x

(x2 + y2)2
=

x4 − 3y4 + 6x2y2

(x2 + y2)2
.

(ii) fy =
(x2 + y2)(−6xy) − (x3 − 3xy2)2y

(x2 + y2)2
=

−8x3y

(x2 + y2)2
.

(iii) fx(0, 0) = limh→0
f(h, 0) − f(0, 0)

h
= lim

h→0

h − 0

h
= 1.

(iv) fy(0, 0) = limh→0
f(0, h) − f(0, 0)

h
= lim

h→0

0 − 0

h
= 0.

(d) g(r, θ) = r cos 3θ so gr(r, θ) = cos 3θ. This is the directional derivative Duf .

(e) When (x, y) �= (0, 0), fy(x, y) =
−8x3y

x2 + y2
. In particular, when y = x, fy = −2. From part (c) fy(0, 0) = 0 so fy is

not continuous at the origin.
(f) Below are two sketches; the one on the left just shows a ribbon of the surface:
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36. (a) u = cos(x − t) + sin(x + t) − 2ez+t − (y − t)3 so
• ux = − sin(x − t) + cos(x + t) and uxx = − cos(x − t) − sin(x + t).
• uy = −3(y − t)2 and uyy = −6(y − t).
• uz = −2ez+t and uzz = −2ez+t.
• ut = sin(x − t) + cos(x + t) − 2ez+t + 3(y − t)2 and utt = − cos(x − t) − sin(x + t) − 2ez+t − 6(y − t).

We have, therefore, the result: uxx + uyy + uzz = utt.
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(b) u(x, y, z, t) = f1(x − t) + f2(x + t) + g1(y − t) + g2(y + t) + h1(z − t) + h2(z + t) so

• ux = (f1)x−t
∂(x − t)

∂x
+ (f2)x+t

∂(x + t)

∂x
= (f1)x−t + (f2)x+t so

• ∂2u

∂x2
=

∂2f1

∂(x − t)2
+

∂2f2

∂(x + t)2

• uy = (g1)y−t
∂(y − t)

∂y
+ (g2)y+t

∂(y + t)

∂y
= (g1)y−t + (g2)y+t so

• ∂2u

∂y2
=

∂2g1

∂(y − t)2
+

∂2g2

∂(y + t)2
.

• uz = (h1)z−t
∂(z − t)

∂z
+ (h2)z+t

∂(z + t)

∂z
= (h1)z−t + (h2)z+t so

• ∂2u

∂z2
=

∂2h1

∂(z − t)2
+

∂2h2

∂(z + t)2
.

• ut = (f1)x−t
∂(x − t)

∂t
+ (f2)x+t

∂(x + t)

∂t
+ (g1)y−t

∂(y − t)

∂t
+ (g2)y+t

∂(y + t)

∂t
+

(h1)z−t
∂(z − t)

∂t
+ (h2)z+t

∂(z + t)

∂t
so ut = −(f1)x−t + (f2)x+t − (g1)y−t + (g2)y+t − (h1)z−t

∂(z − t)

∂t
+

(h2)z+t
∂(z + t)

∂t
and

• utt = uxx + uyy + uzz.
37. F (tx, ty) = t3x3 + t3xy2 − 6t3y3 = t3F (x, y) so F is homogeneous of degree 3.
38. F (tx, ty, tz) = t3x3y − t4x2z2 + t8z8 so, no, F is not homogeneous.
39. F (tx, ty, tz) = t3zy2 − t3x3 + t3x2z = t3F (x, y, z) so yes F is homogeneous of degree 3.
40. F (tx, ty) = ety/tx = ey/x = F (x, y) so F is homogeneous of degree 0.

41. F (tx, ty, tz) =
t3x3 + t3x2y − t3yz2

t3xyz+ 7t3xz2
= F (x, y, z) so F is homogeneous of degree 0.

42. Make sure that the students realize (as in Exercises 40 and 41) that a function can be homogeneous and not be a polynomial.
In the special case that F is a polynomial, F is homogeneous when all of the terms are of the same degree.

43. F (tx1, tx2, . . . , txn) = tdF (x1, x2, . . . , xn) so that, by differentiating both sides with respect to t:

x1
∂F

∂x1
(tx1, . . . , txn) + · · · + xn

∂F

∂xn
(tx1, . . . , txn) = dtd−1F (x1, . . . , xn).

Now let t = 1 and we get the result:

x1
∂F

∂x1
+ · · · + xn

∂F

∂xn
= dF.

44. The conjecture is:
n∑

i1,...,ik=1

= xi1xi2 · · ·xik
Fxi1

xi2
···xik

=
d!

(d− k)!
F.

Although not asked in the text, a good exercise is to ask the students to establish the formula given in this exercise. Show that

∂

∂xi
[dF ] =

n∑
j=1

xj
∂2F

∂xi∂xj
+

∂F

∂xi
.

Then you can show

d2F = d
n∑

i=1

xi
∂F

∂xi
=

n∑
i,j=1

xixj
∂2F

∂xi∂xj
+ dF.

You can finish from there.
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Chapter 3

Vector-Valued Functions

3.1 Parametrized Curves and Kepler’s Laws

1. The graph is a line segment with slope −1/2 and y-intercept 3:

y

x
-3 -2 -1 1

1

2
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4

2. In this case y = 1/x and both x and y are positive:

y

x
1 2 3 4

1

2

3

4
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150 Chapter 3 Vector-Valued Functions

3. This is the spiral r = θ (note x = r cos θ and y = r sin θ):

x
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4. This is a lemniscate beginning and ending at the point (3, 0):
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x
-3 -2 -1 1 2 3

5. Although this is a curve in R3, because z ≡ 0 the curve lives in the xy-plane. It is the parabola y = 3x2 + 1:
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y

x

1
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6. It’s hard to see what this curve looks like in R3 (below left):
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so I have also projected it onto the three coordinate planes:
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For Exercises 7–10, the velocity is the derivative of position, the speed is the length of the velocity vector and the acceler-
ation is the derivative of the velocity vector.

7. x(t) = (3t − 5, 2t + 7) so velocity = v(t) = x′(t) = (3, 2) and speed = ‖v(t)‖ =
√

32 + 22 =
√

13. Finally,
acceleration = a(t) = x′′(t) = (0, 0).

8. x(t) = (5 cos t, 3 sin t) so velocity = v(t) = x′(t) = (−5 sin t, 3 cos t) and speed = ‖v(t)‖ =√
(−5 sin t)2 + (3 cos t)2 =

√
9 + 16 sin2 t. Acceleration = a(t) = x′′(t) = (−5 cos t,−3 sin t) = −x(t).

9. x(t) = (t sin t, t cos t, t2) so velocity = v(t) = x′(t) = (sin t + t cos t, cos t − t sin t, 2t) and speed = ‖v(t)‖ =√
sin2 t + 2t sin t cos t + t2 cos2 t + cos2 t − 2t sin t cos t + t2 sin2 t + 4t2 =

√
1 + 5t2. Finally, acceleration = a(t) =

x′′(t) = (2 cos t − t sin t,−2 sin t − t cos t, 2).

10. x(t) = (et, e2t, 2et) so velocity = v(t) = x′(t) = (et, 2e2t, 2et) and speed = ‖v(t)‖ =
√

5e2t + 4e4t = et
√

5 + 4e2t.
Finally, acceleration = a(t) = x′′(t) = (et, 4e2t, 2et).
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11. (a)

(b) To verify that the curve lies on the surface check that

x2

9
+

y2

16
=

9 cos2 πt

9
+

16 sin2 πt

16
= cos2 πt + sin2 πt = 1.

The z component just determines the speed traveling up the cylinder.
12. (a)

(b) To verify that the curve lies on the surface check that

x2 + y2 = t2 cos2 t + t2 sin2 t = t2(cos2 t + sin2 t) = t2 = z2.
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13. (a)

(b) To verify that the curve lies on the surface check that

x2 + y2 = t2 sin2 2t + t2 cos2 2t = t2(sin2 2t + cos2 2t) = t2 = z.

14. (a)

(b) To verify that the curve lies on the surface check that

x2 + y2 = 4 cos2 t + 4 sin2 t = 4(cos2 t + sin2 t) = 4.

In Exercises 15–18 use formulas (2) and (3) from the text. In each case we will need to calculate the position and velocity
at the given time.

15. x(t) = (te−t, e3t) so x(0) = (0, 1) and x′(t) = (e−t − te−t, 3e3t) so x′(0) = (1, 3). The equation of the tangent line at
t = 0 is l(t) = (0, 1) + (1, 3)t = (t, 1 + 3t).

16. x(t) = (4 cos t,−3 sin t, 5t) so x(π/3) = (2,−3
√

3/2, 5π/3) and x′(t) = (−4 sin t,−3 cos t, 5) so
x′(π/3) = (−2

√
3,−3/2, 5). The equation of the tangent line at t = π/3 is

l(t) = (2,−3
√

3/2, 5π/3) + (−2
√

3,−3/2, 5)(t − π/3).

17. x(t) = (t2, t3, t5) so x(2) = (4, 8, 32) and x′(t) = (2t, 3t2, 5t4) so x′(2) = (4, 12, 80). The equation of the tangent line at
t = 2 is

l(t) = (4, 8, 32) + (4, 12, 80)(t − 2) = (4t − 4, 12t − 16, 80t − 128).
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18. x(t) = (cos(et), 3 − t2, t) so x(1) = (cos e, 2, 1) and x′(t) = (−et sin(et),−2t, 1). Therefore, x′(1) = (−e sin e,−2, 1).
The equation of the tangent line at t = 1 is

l(t) = (cos e, 2, 1) + (−e sin e,−2, 1)(t − 1) = (cos e + e sin e − (e sin e)t, 4 − 2t, t).

19. (a) The sketch of x(t) = (t, t3 − 2t + 1) is:
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(b) x(2) = (2, 5) and since x′(t) = (1, 3t2 − 2) we get x′(2) = (1, 10). The equation of the line is then

l(t) = (2, 5) + (1, 10)(t − 2) = (t, 10t − 15).

x
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y

(c) Since x = t we see that y = f(x) = x3 − 2x + 1.
(d) So the equation of the tangent line at x = 2 is y − f(2) = f ′(2)(x − 2), where f is as in part (c). Substituting, we get

y − 5 = 10(x − 2) or y = 10x − 15. This is consistent with our answer for part (b).
20. From the first equation t = x/(v0 cos θ). Substitute this into the second equation to get

y =
(v0 sin θ)x

v0 cos θ
− 1

2
g

x2

(v0 cos θ)2
= (tan θ)x − g

2(v0 cos θ)2
x2.

This is of the form y = ax2 + bx and the graph is a parabola.
21. We know from the text that Roger is on the ground at t = 0 and t = 2v0 sin θ/g. By symmetry, Roger is at his maximum

height at t = v0 sin θ/g. For this exercise this is at time t = 100 sin 60◦/(32) = 25
√

3/16. The maximum height is found
by substituting into the equation for y:

y = (v0 sin θ)

(
25

√
3

16

)
− 1

2
(32)

(
25

√
3

16

)2

= (50
√

3)

(
25

√
3

16

)
− (625)(3)

16
=

(625)(3)

16

Roger’s maximum height is 117.1875 feet.
22. By formula (5) from the text, x = v2

0 sin 2θ/g. In this case we can say that 2640 = v2
0 sin 120◦/32. Solve this for

v0 =

√
(2640)(32)√

3/2
= 32

√
55

√
3 ≈ 312.329.
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23. We use the same formula as in Exercise 22 but now solve for θ. So, x = v2
0 sin 2θ/g becomes 1500 = 2502 sin 2θ/32 or

sin 2θ =
(1500)(32)

62500
=

96

125
.

There are two values of θ with 0 ≤ θ ≤ π/2 that satisfy this last equation. One is

θ = (1/2) sin−1(96/125) ≈ 0.43786 ≈ 25.088◦,

and the other is
θ = π/2 − (1/2) sin−1(96/125) ≈ 1.13294 ≈ 64.913◦.

24. This is similar to Example 6 from the text. We have the equation:

x(t) = −(1/2)gt2j + tv0 + x0j.

(a) Here the angle is given as 45◦ and the initial speed of the water is 7 m/s, therefore, v0 = 7(
√

2/2,
√

2/2). Also x0 is the
initial height of 1 m and gravity is about −9.8 m/s2. This means that

x(t) = −4.9t2j + 7(
√

2/2,
√

2/2)t + j =

(
7
√

2

2
t,−4.9t2 +

7
√

2

2
t + 1

)
.

We want to know the height when the x distance is 5 so first solve 7
√

2
2

t = 5 for t to get t = 10/(7
√

2). Substitute this
into our vertical equation to find that the height would be 1 so the answer is yes, Egbert gets wet.

(b) Here the idea is the same as in part (a). The initial speed of the water is 8 m/s and we don’t know the direction so
v0 = 8(u,

√
1 − u2) for some u between 0 and 1. So

x(t) = −4.9t2j + 8(u,
√

1 − u2)t + j = (8ut,−4.9t2 +
√

1 − u2t + 1).

We want the height when the horizontal distance is 5 or when t = 5/(8u). In that case, the height is −4.9(5/(8u))2 +
8
√

1 − u2(5/(8u)) + 1. For what values of u is this between 0 and 1.6? Consider the figure:

height

u
0.4 0.5 0.6 0.7 0.8 0.9

-0.5

0.5

1

1.5

2

Explore withMathematica or a graphing calculator and you will find the u values in the two intervals which correspond to
the correct heights. This gives the two approximate ranges for α as between 11.2◦ and 34.2◦ and as between 62.6◦ and 67.5◦.

25. We have x(2) =
(
e4, 8, 3

2

)
and x′(2) =

(
2e4, 10, 5

4

)
. If the rocket’s engines cease when t = 2, then the rocket will follow

the tangent line path
l(t) = x(2) + (t − 2)x′(2) =

(
e4(2t − 3), 10t − 12, 5

4
t − 1

)
.

For this path to reach the space station, we must have(
e4(2t − 3), 10t − 12,

5

4
t − 1

)
= (7e4, 35, 5).

Thus, in particular
e4(2t − 3) = 7e4 ⇔ 2t − 3 = 7 ⇔ t = 5.

However l(5) =
(
7e4, 38, 21

4

) �= (7e4, 35, 5). Hence the rocket does not reach the repair station.
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26. (a) We set x(t) = y(t) and solve for t:

(
t2 − 2,

t2

2
− 1

)
= (t, 5 − t2).

Comparing first components, we have t2 − 2 = t ⇔ t2 − t − 2 = 0 ⇔ t = −1, 2. Now x(−1) =
(−1,− 1

2

)
and

y(−1) = (−1, 4), so this is not a collision point. However, x(2) = (2, 1) = y(2). So the balls collide when t = 2 at the
point (2, 1).

(b) We have x′(2) = (4, 2), y′(2) = (1,−4). The angle between the paths is the angle between these tangent vectors,
which is

cos−1

[
x′(2) · y′(2)

‖x′(2)‖‖y′(2)‖
]

= cos−1 −4√
20

√
17

= cos−1 −2√
5
√

17
.

27. The calculation is fairly straightforward:

d
dt

(x · y) =
d
dt

(x1(t)y1(t) + x2(t)y2(t) + · · · + xn(t)yn(t))

= x′
1(t)y1(t) + x1(t)y

′
1(t) + x′

2(t)y2(t) + x2(t)y
′
2(t) + · · · + x′

n(t)yn(t) + xn(t)y′
n(t)

= [x′
1(t)y1(t) + x′

2(t)y2(t) + · · · + x′
n(t)yn(t)] + [x1(t)y

′
1(t) + x2(t)y

′
2(t) + · · · + xn(t)y′

n(t)]

= y · dx
dt

+ x · dy
dt

.

28. This is similar to Exercise 27:

d
dt

(x × y) =
d
dt

[(x2y3 − x3y2)i − (x1y3 − x3y1)j + (x1y2 − x2y1)k]

= (x′
2y3 − x′

3y2 + x2y
′
3 − x3y

′
2)i − (x′

1y3 − x′
3y1 + x1y

′
3 − x3y

′
1)j

+ (x′
1y2 − x′

2y1 + x1y
′
2 − x2y

′
1)k

= ([x′
2y3 − x′

3y2] + [x2y
′
3 − x3y

′
2])i − ([x′

1y3 − x′
3y1] + [x1y

′
3 − x3y

′
1])j

+ ([x′
1y2 − x′

2y1] + [x1y
′
2 − x2y

′
1])k

=
dx
dt

× y + x × dy
dt

.

29. You’re asked to show that if ‖x(t)‖ is constant, then x is perpendicular to dx/dt. If ‖x(t)‖ is constant, then d
dt
‖x(t)‖ ≡ 0. So

0 =
d
dt

‖x(t)‖ =
d
dt

√
x · x =

(
1

2
√

x · x

)(
2
dx
dt

· x
)

.

This means that dx
dt

· x = 0.
30. (a) ‖x(t)‖2 = cos2 t + cos2 t sin2 t + sin4 t = cos2 t + sin2 t(cos2 t + sin2 t) = 1.
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(b) This follows from Proposition 1.7 since ‖x(t)‖ ≡ 1. The exercise really wants you to calculate the velocity vector:
v = (− sin t,− sin2 t + cos2 t, 2 sin t cos t). Then v · x = 0.

(c) If x(t) is a path on the unit sphere, ‖x(t)‖ ≡ 1 so by Proposition 1.7 the position vector is perpendicular to its veloc-
ity vector.

31. (a) Computer graphs are shown for (i), (ii), (iii). The constant a affects the size (radius) of the rings; the constant b affects the
size (radius) of the coils; the constant ω affects the number of coils going around the ring.

(b) If x = (a + b cos ωt) cos t, y = (a + b cos ωt) sin t, then x2 + y2 = (a + b cos ωt)2, so that (
√

x2 + y2 − a)2 =
(a + b cos ωt − a)2 = b2 cos2 ωt. (Note a > b > 0.) Hence

(
√

x2 + y2 − a)2 + z2 = b2 cos2 ωt + b2 sin2 ωt = b2.
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32. The angle between x(t) and x′(t) is given by

θ = cos−1

(
x(t) · x′(t)

‖x(t)‖ ‖x′(t)‖
)

.

Thus we calculate

x
′(t) =

(
et(cos t − sin t), et(sin t + cos t)

)
;

x(t) · x
′(t) = e2t cos t(cos t − sin t) + e2t sin t(sin t + cos t) = e2t;

‖x(t)‖ =
√

e2t cos2 t + e2t sin2 t = et;

‖x′(t)‖ =
√

e2t(cos t − sin t)2 + e2t(sin t + cos t)2;

= et
√

cos2 t − 2 cos t sin t + sin2 t + sin2 t + 2 cos t sin t + cos2 t =
√

2 et.

Thus
θ = cos−1

(
e2t

(et)(
√

2et)

)
= cos−1 1√

2
=

π

4
.

33. (a) To have x(t1) = (t21, t
3
1 − t1) = (t22, t

3
2 − t2) = x(t2), we must have t21 = t22, so if t1 �= t2, then t1 = −t2. Then,

comparing the second components: t31 − t1 = −t31 + t1 ⇐⇒ 2t31 = 2t1. Since t1 �= 0 (otherwise t2 = 0 as well), we
must have t21 = 1. Thus x(1) = x(−1) = (1, 0).

(b) The velocity vector of the path is x′(t) = (2t, 3t2 − 1). Therefore, the corresponding tangent vectors at t = ±1 are
x′(−1) = (−2, 2) and x′(1) = (2, 2). Note that x′(−1) · x′(1) = 0. Since these tangent vectors are parallel to the
corresponding tangent lines, we see that the tangent lines must be perpendicular—so the angle they make is π/2.

34. (a) The slope is
t =

y − 0

x − (−1)
=

y

x + 1
.

Thus y = t(x + 1) is the equation for the line.
(b) Since we have y = t(x + 1), we may substitute this expression for y into the equation x2 + y2 = 1 for the circle. This

gives
x2 + t2(x + 1)2 = 1 ⇐⇒ (1 + t2)x2 + 2t2x + (t2 − 1) = 0.

We may use the quadratic formula with this last equation to solve for x in terms of t:

x =
−2t2 ±

√
4t4 − 4(t2 + 1)(t2 − 1)

2(t2 + 1)
=

−t2 ± 1

t2 + 1
.

Hence the two solutions are x = −1 (which was to be expected) and

x =
−t2 + 1

t2 + 1
=

1 − t2

1 + t2
.

(c) From y = t(x + 1) in part (a), we see that when x = −1, y = 0, and when x = (1 − t2)/(1 + t2),

y = t

(
1 − t2

1 + t2
+ 1

)
= t

(
(1 − t2) + (1 + t2)

1 + t2

)
=

2t

1 + t2
.

Hence the parametric equations are

x =
1 − t2

1 + t2
, y =

2t

1 + t2
.

(d) The parametrization misses the point (−1, 0), since to have y = 0 t must be zero, but then x = 1, not −1.
35. The distance between a point on the image and the origin is ‖x(t)‖ and this is minimized when t = t0. Thus the function

f(t) = ‖x(t)‖2 = x(t) · x(t)

is also minimized when t = t0. Hence

0 = f ′(t0) =
d
dt

(x(t) · x(t))

∣∣∣∣
t=t0

= x(t0) · x′(t0) + x′(t0) · x(t0)

= 2x(t0) · x′(t0).

Thus x(t0) and x′(t0) are orthogonal.
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3.2 Arclength and Differential Geometry

In Exercises 1–6 we are using Definition 2.1 to calculate the length of the given paths.
1. x(t) = (2t + 1, 7 − 3t) so x′(t) = (2,−3). The length of the path is then

L(x) =

∫ 2

−1

‖x′‖ dt =

∫ 2

−1

√
22 + (−3)2 dt =

∫ 2

−1

√
13 dt =

√
13t

∣∣2
−1

= 3
√

13.

2. x(t) = (t2, 2/3(2t + 1)3/2) so x′(t) = (2t, 2(2t + 1)1/2). The length of the path is then

L(x) =

∫ 4

0

√
(2t)2 + 4(2t + 1) dt =

∫ 4

0

√
4t2 + 8t + 4 dt = 2

∫ 4

0

|t + 1| dt

= 2

∫ 4

0

(t + 1) dt = 2(t2/2 + t)
∣∣4
0

= 24.

3. x(t) = (cos 3t, sin 3t, 2t3/2) so x′(t) = (−3 sin 3t, 3 cos 3t, 3t1/2). The length of the path is then

L(x) =

∫ 2

0

√
9 sin2 3t + 9 cos2 3t + 9t dt = 3

∫ 2

0

√
1 + t dt = 3

∫ 3

1

√
u du = 2u3/2

∣∣3
1

= 6
√

3 − 2.

4. x(t) = (7, t, t2) so x′(t) = (0, 1, 2t). The length of the path is then

L(x) =

∫ 3

1

√
1 + 4t2 dt = 2

∫ 3

1

√
1/4 + t2 dt =

[
t
√

1/4 + t2 + (1/4) ln(t +
√

1/4 + t2)
] ∣∣∣3

1

= 3

√
37

4
−
√

5

4
+

(
1

4

) [
ln(3 +

√
37/4) − ln(1 +

√
5/4)

]

=
3
√

37 −√
5

2
+

(
1

4

) [
ln

(
6 +

√
37

2 +
√

5

)]
≈ 8.2681459.

5. x(t) = (t3, 3t2, 6t) so x′(t) = (3t2, 6t, 6). The length of the path is then

L(x) =

∫ 2

−1

√
9t4 + 36t2 + 36 dt =

∫ 2

−1

√
9(t2 + 2)2 dt

=

∫ 2

−1

3(t2 + 2) dt =
(
t3 + 6t

) ∣∣∣2
−1

= 27.

6. x(t) = (ln (cos t), cos t, sin t) so x
′(t) =

(
− sin t

cos t
, sin t, cos t

)
. The length of the path is then

L(x) =

∫ π/3

π/6

√
sin2 t

cos2 t
+ sin2 t + cos2 t dt =

∫ π/3

π/6

√
sin2 t

cos2 t
+ 1 dt

=

∫ π/3

π/6

√
sin2 t + cos2 t

cos2 t
dt =

∫ π/3

π/6

1

cos t
dt =

∫ π/3

π/6

sec t dt

= ln | sec t + tan t|
∣∣∣π/3

π/6
= ln (2 +

√
3) − ln

(
2√
3

+
1√
3

)
= ln

(
2
√

3 + 3

3

)
.

7. x(t) = (ln t, t2/2,
√

2t) so x′(t) = (1/t, t,
√

2). The length of the path is then

L(x) =

∫ 4

1

√
1/t2 + t2 + 2 dt =

∫ 4

1

√
(1/t + t)2 dt =

∫ 4

1

(1/t + t) dt

= [ln t + t2/2]
∣∣4
1

= ln 4 + 8 − 1/2 = ln 4 + 15
2

.
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8. x(t) = (2t cos t, 2t sin t, 2
√

2t2) so x′(t) = (2 cos t − 2t sin t, 2 sin t + 2t cos t, 4
√

2t). The length of the path is then

L(x) =

∫ 3

0

√
4 cos2 t − 8t cos t sin t + 4t2 sin2 t + 4 sin2 t + 8t sin t cos t + 4t2 cos2 t + 32t2 dt

=

∫ 3

0

√
4 + 4t2 + 32t2 dt =

∫ 3

0

√
4 + 36t2 dt

= [t
√

1 + 9t2 + sinh−1(3t)/3]
∣∣3
0

= 3
√

82 + sinh−1(9)/3.

9. A sketch of the curve x(t) = (a cos3 t, a sin3 t) for 0 ≤ t ≤ 2π is:

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Because of the obvious symmetries we will compute the length of the portion of the curve in the first quadrant and multiply it
by 4:

L(x) = 4

∫ π/2

0

‖(−3a cos2 t sin t, 3a sin2 t cos t)‖ dt = 4

∫ π/2

0

√
9a2(cos4 t sin2 t + sin4 t cos2 t) dt

= 4

∫ π/2

0

√
9a2 sin2 t cos2 t(cos2 t + sin2 t) dt = 4

∫ π/2

0

3a sin t cos t dt = 6a sin2 t
∣∣π/2

0

= 6a.

10. If f is a continuously differentiable function then we can calculate the length of the curve y = f(x) between (a, f(a)) and (b,
f(b)) by viewing the curve as the path y(x) = (x, f(x)) so y′(x) = (1, f ′(x)), and so by Definition 2.1 the length is

L(y) =

∫ b

a

√
1 + [f ′(x)]2 dx.

11. Here f(x) = mx + b and f ′(x) = m so by Exercise 10, the length of the curve is

L =

∫ x1

x0

√
1 + m2 dt = (x1 − x0)

√
1 + m2.

A quick look at a sketch shows why this should be the case:
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x1-x0

mx1-mx0

If x1 > x0 then the horizontal distance is |x1 − x0| = x1 − x0 and the vertical distance is |mx1 − mx0| = |m|(x1 − x0).
By the Pythagorean theorem, the length of the hypotenuse is√

(x1 − x0)2 + (|m|(x1 − x0))2 =
√

(x1 − x0)2(m2 + 1) = (x1 − x0)
√

m2 + 1.

12. (a) x(t) = (a1t + b, a2t + b) so x′(t) = (a1, a2) so

L(x) =

∫ t1

t0

√
a2
1 + a2

2 dt = (t1 − t0)
√

a2
1 + a2

2.

(b) The equation of the line in Exercise 11 could be given as x(t) = (t, mt + b) in which case part (a) would tell us that the
length is (x1 − x0)

√
1 + m2.

(c) x(t) = at + b so x′(t) = a. Then

L(x) =

∫ t1

t0

‖a‖ dt = ‖a‖(t1 − t0).

This, of course, is the same as our answer in part (a).
13. (a) A sketch of x = |t − 1|i + |t|j,−2 ≤ t ≤ 2 is:

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

(b) Except for two points, the path is smooth (more than C1). In fact, the path is comprised of three line segments joined end
to end. In other words, on the open intervals −2 ≤ t < 0, 0 < t < 1, and 1 < t ≤ 2, the path x is C1. We say that the
path x is piecewise C1.

(c) We could figure out the length of each piece and add them together. In the process we will find that we’re working
too hard.

x(t) =

⎧⎪⎨
⎪⎩

(1 − t)i − tj −2 ≤ t ≤ 0

(1 − t)i + tj 0 < t ≤ 1

(t − 1)i + tj 1 < t ≤ 2

so x′(t) =

⎧⎪⎨
⎪⎩

(−1,−1) −2 ≤ t ≤ 0

(−1, 1) 0 < t ≤ 1

(1, 1) 1 < t ≤ 2

.

So we see that ‖x′(t)‖ ≡ √
2. This means that to calculate the length of the curve we don’t have to break up the integral

into three pieces:

L(x) =

∫ 2

−2

√
2 dt = 4

√
2.

c© 2012 Pearson Education, Inc.



162 Chapter 3 Vector-Valued Functions

14. (a) We have that
‖x(t)‖2 = e−2t cos2 t + e−2t sin2 t = e−2t.

Thus
lim

t→+∞
‖x(t)‖ = lim

t→+∞
e−t = 0.

Hence limt→+∞ x(t) = 0.
(b) We compute that x(t) = (−e−t cos t − e−t sin t, e−t cos t − e−t sin t). Hence

‖x′(t)‖ =
√

e−2t(− cos t − sin t)2 + e−2t(cos t − sin t)2

= e−t
√

cos2 t + 2 cos t sin t + sin2 t + cos2 t − 2 cos t sin t + sin2 t

=
√

2e−t.

Therefore, ∫ ∞

a

‖x′(t)‖ dt = lim
t→∞

∫ t

a

‖x′(τ)‖ dτ = lim
t→∞

∫ t

a

√
2e−τ dτ

= lim
t→∞

(
−
√

2e−t +
√

2e−a
)

=
√

2e−a.

(c) The integral in part (b) represents the length of the path that spirals into (0, 0) from the point x(a). The result of part (b)
shows that this arclength is always finite, regardless of a.

15. We use the polar/rectangular conversion equations x = r cos θ, y = r sin θ to define a path x(θ) = (f(θ) cos θ, f(θ) sin θ).
Then

x
′(θ) = (f ′(θ) cos θ − f(θ) sin θ, f ′(θ) sin θ + f(θ) cos θ),

which implies

‖x′(θ)‖ =
√

(f ′(θ) cos θ − f(θ) sin θ)2 + (f ′(θ) sin θ + f(θ) cos θ)2

=
√

f ′(θ)2 + f(θ)2,

after expansion and simplification. Hence L =
∫ β

α

√
f ′(θ)2 + f(θ)2 dθ, as desired.

16. (a) We’ll use the equation: s(t) =
∫ t

0
‖x′(τ)‖ dτ . For x(τ) = eaτ cos bτ i + eaτ sin bτ j + eaτ k the derivative is x′(τ) =

aeaτ (cos bτ, sin bτ, 1)+eaτ (−b sin bτ, b cos bτ, 0). Therefore the speed is given by ‖x′(τ)‖ =
√

a2e2aτ (2) + b2e2aτ =
eaτ

√
2a2 + b2. This means that

s(t) =

∫ t

0

eaτ
√

2a2 + b2 dτ =

√
2a2 + b2

a
eaτ

∣∣∣∣t
0

=

√
2a2 + b2

a
(eat − 1).

(b) Just solve the above for t:

t =

(
ln

[
as√

2a2 + b2
+ 1

])/
a.

For Problems 17–20, we’ll use

T =
x′(t)

‖x′(t)‖ , N =
dT/ dt

‖ dT/ dt‖ , and B = T × N.

Also
ds
dt

= ‖x′(t)‖, κ(t) =
‖ dT/ dt‖
ds/ dt

=

∥∥∥∥dTds
∥∥∥∥ , and dB

ds
=
dB/ dt
ds/ dt

= −τN.

You may want to ask your students to make a guess about τ before they do Exercises 18 and 20. The curves are planar—what
might that suggest about τ? Also see Section 3.6, Exercise 28.

17. x(t) = (5 cos 3t, 6t, 5 sin 3t) so x′(t) = (−15 sin 3t, 6, 15 cos 3t) and ‖x′(t)‖ =
√

225 + 36 =
√

261.

T = (1/
√

261)(−15 sin 3t, 6, 15 cos 3t)

= (1/
√

29)(−5 sin 3t, 2, 5 cos 3t).
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dT/dt = (1/
√

29)(−15 cos 3t, 0,−15 sin 3t) so

N = (− cos 3t, 0,− sin 3t),

B = T × N = (1/
√

29)(−2 sin 3t,−5, 2 cos 3t), and

κ =

∥∥∥∥ (1/
√

29)(−15 cos 3t, 0,−15 sin 3t)√
261

∥∥∥∥ =
‖(−5 cos 3t, 0,−5 sin 3t)‖

29
=

5

29
.

Finally,

τN =
(1/

√
29)(−6 cos 3t, 0,−6 sin 3t)√

261
=

(−2 cos 3t, 0,−2 cos 3t)

29
so

τ = − 2

29
.

18. x(t) = (sin t − t cos t, cos t + t sin t, 2) with t ≥ 0. So x′(t) = (t sin t, t cos t, 0) and ‖x′(t)‖ = |t| = t.

T =
(t sin t, t cos t, 0)

t
= (sin t, cos t, 0), and

N = (cos t,− sin t, 0), B = (0, 0,−1), and

κ =
‖(cos t,− sin t, 0)‖

t
=

1

t
.

Finally, dB/dt = 0 so τ = 0.
19. x(t) = (t, (1/3)(t + 1)3/2, (1/3)(1 − t)3/2) so x′(t) = (1, (1/2)(t + 1)1/2,−(1/2)(1 − t)1/2), and ‖x′(t)‖ =

√
3/2.

T =

√
2

3

(
1, 1

2

√
t + 1,− 1

2

√
1 − t

)
, and

N =

√
2/3(0, (1/4)(t + 1)−1/2, (1/4)(1 − t)−1/2)√

(2/3)(1/16)
(

1
t+1

+ 1
1−t

)
=

1√
2
(0,

√
1 − t,

√
t + 1), and

B =

√
1

3

(
1
2
(t + 1) + 1

2
(1 − t),−√

t + 1,
√

1 − t
)

=
1√
3
(1,−√

t + 1,
√

1 − t).

Also,

κ =
‖
√

2/3(0, (1/4)(t + 1)−1/2, (1/4)(1 − t)−1/2)‖√
3/2

=
1

3
√

2(1 − t2)
.

Finally,

dB
dt

=
1√
3

(
0,− 1

2
√

t + 1
,− 1

2
√

1 − t

)
so

dB
ds

=
1√
3

(
0,− 1

2
√

t + 1
,− 1

2
√

1 − t

)/√
3/2 = −τN.

Solving,
τ =

1

3
√

(1 − t2)
.

20. x(t) = (e2t sin t, e2t cos t, 1) so x′(t) = e2t(2 sin t + cos t, 2 cos t − sin t, 0), and ‖x′(t)‖ = e2t
√

5.

T =
(2 sin t + cos t, 2 cos t − sin t, 0)√

5
,

N =
(2 cos t − sin t,−2 sin t − cos t, 0)√

5
, and

B = (0, 0,−1).
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Also,

κ =
‖(2 cos t − sin t,−2 sin t − cos t, 0)‖

e2t
√

5
=

1

e2t
√

5
.

Finally, again we see that dB/dt = 0 so dB/ds = 0 and hence τ = 0.
21. (a) By formula (17): κ = ‖x′ × x′′‖

‖x′‖3 . Let y = f(x) and view the problem as sitting inside of R3. Then x = (x, f(x), 0), x′ =

(1, f ′(x), 0), and x′′ = (0, f ′′(x), 0). We calculate the cross product x′ × x′′ = (0, 0, f ′′(x)) so

κ =
‖(0, 0, f ′′(x))‖
‖(1, f ′(x), 0)‖3

=
|f ′′(x)|

[1 + (f ′(x))2]3/2
.

(b) If y = ln(sin x), then y′ = cos x/ sin x and y′′ = −1/ sin2 x. By our results for part (a),

κ =
| − 1/ sin2 x|

[1 + (cos2 x/ sin2 x)]3/2
= | sin x|.

22. (a) Formula (17) requires the use of the cross product, so we view this problem as sitting inside of R3. Let x = (x(s), y(s), 0).
Then x′ = (x′(s), y′(s), 0), and x′′ = (x′′(s), y′′(s), 0). By formula (17):

κ =
‖x′ × x′′‖
‖x′‖3

=
‖(0, 0, x′y′′ − x′′y′)‖
‖(x′(s), y′(s), 0)‖3

.

But the curve is parametrized by arclength so ‖(x′(s), y′(s), 0)‖ = 1 so κ = |x′y′′ − x′′y′|.
(b) Here x(s) = (1/2)(1 − s2) and y(s) = (1/2)(cos−1 s − s

√
1 − s2) so x′(s) = −s and y′(s) = −√

1 − s2 so
(x′(s))2 +(y′(s))2 = 1. So the curve is parametrized by arclength. We can then compute its curvature using the formula
from part (a):

κ = |x′y′′ − x′′y′| =

∣∣∣∣(−s)

( −s√
1 − s2

)
− (−1)

√
1 − s2

∣∣∣∣ =
1√

1 − s2
.

23. (a) The curvature is calculated to be
2

(cos2 t + 4 sin2 t)3/2
.

(b) The path is pictured below left while the corresponding curvature is plotted below right.
y

x
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t

24. (a) The curvature is calculated to be (with some simplification)

3(1 + cos t)

16 cos3(t/2)
.

(b) The path is pictured below left while the corresponding curvature is plotted below right.
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25. (a) The curvature is the same as in Exercise 24.
(b) The path is pictured below left while the corresponding curvature is plotted below right.
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26. (a) The curvature is calculated to be

√
2|7 sin t + sin 7t|

3(5 + cos 6t + 4 cos 8t)3/2
.

(b) The path is pictured below left while the corresponding curvature is plotted below right.
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For Exercises 27–32, calculate the tangential component s̈ and then subtract it from the length of the acceleration to obtain
the normal component.

27. x(t) = (t2, t) so x′(t) = (2t, 1) and x′′(t) = (2, 0). The speed is then ‖x′(t)‖ =
√

1 + 4t2 and so the tangential component
of acceleration is s̈ = 4t/

√
1 + 4t2. Since ‖a‖ = 2, ‖a‖2 − s̈2 = 4/(1 + 4t2), so the normal component of acceleration is

2/
√

1 + 4t2.
28. x(t) = (2t, e2t) so x′(t) = (2, 2e2t) and x′′(t) = (0, 4e2t). The speed is then ‖x′(t)‖ = 2

√
1 + e4t and so the tangential

component of acceleration is s̈ = 4e4t/
√

1 + e4t. Since ‖a‖ = 16e4t, ‖a‖2− s̈2 = 16e4t/(1+e4t), so the normal component
of acceleration is 4e2t/

√
1 + e4t.

29. x(t) = (et cos 2t, et sin 2t) so x′(t) = (et(cos 2t − 2 sin 2t), et(sin 2t + 2 cos 2t)) and x′′(t) = (et(−3 cos 2t − 4 sin 2t),
et(4 cos 2t − 3 sin 2t)). The speed is then ‖x′(t)‖ = et

√
5 and so the tangential component of acceleration is s̈ = et

√
5.

Since ‖a‖ = 5et, ‖a‖2 − s̈2 = 25e2t − 5e2t, so the normal component of acceleration is 2
√

5et.
30. x(t) = (4 cos 5t, 5 sin 4t, 3t) so x′(t) = (−20 sin 5t, 20 cos 4t, 3) and we also have that x′′(t) = (−100 cos 5t,−80 sin 4t, 0).

The speed is then ‖x′(t)‖ =
√

400 sin2 5t + 400 cos2 4t + 9 and so the tangential component of acceleration is

s̈ =
(−3200 cos 4t sin 4t + 4000 cos 5t sin 5t)√

400 sin2 5t + 400 cos2 4t + 9
.

Since ‖a‖ = 20
√

25 cos2 5t + 16 sin2 4t,

‖a‖2 − s̈2 = 10000 cos2 5t + 6400 sin2 4t − (3200 cos 4t sin 4t + 4000 cos 5t sin 5t)2

4(400 sin2 5t + 400 cos2 4t + 9)
,

so the normal component of acceleration is the square root of this last quantity.
31. x(t) = (t, t, t2) so x′(t) = (1, 1, 2t) and x′′(t) = (0, 0, 2). The speed is then ‖x′(t)‖ =

√
2 + 4t2 and so the tangential

component of acceleration is s̈ = 4t/
√

2 + 4t2. Since ‖a‖ = 2, ‖a‖2 − s̈2 = 4/(1 + 2t2), so the normal component of
acceleration is 2/

√
1 + 2t2.

32. x(t) = ((3/5)(1 − cos t), sin t, (4/5) cos t) so x′(t) = ((3/5) sin t, cos t, (−4/5) sin t) and x′′(t) =
((3/5) cos t,− sin t, (−4/5) cos t). The speed is then ‖x′(t)‖ = 1 and so the tangential component of acceleration is s̈ = 0.
Since ‖a‖ = 1, ‖a‖2 − s̈2 = 1, so the normal component of acceleration is 1.

33. (a) Tangential component:

s̈ =
dṡ
dt

=
d‖x′‖
dt

=
d
√

x′ · x′

dt
=

(
1

2
√

x′ · x′

)
(2x′ · x′′) =

x′ · x′′

‖x′‖ .

Normal component (using formula (17)):

κṡ2 =

(‖v × a‖
‖v‖3

)
‖v‖2 =

‖v × a‖
‖v‖ =

‖x′ × x′′‖
‖x′‖ .

(b) x(t) = (t + 2, t2, 3t) so x′(t) = (1, 2t, 3) and x′′(t) = (0, 2, 0). So by part (a), the tangential component of acceleration
is 4t/

√
10 + 4t2, and the normal component of acceleration is 2

√
10/

√
10 + 4t2.

34. Here x = (x, f(x), 0), x′ = (1, f ′(x), 0), and x′′ = (0, f ′′(x), 0). Further, you need to calculate ‖x′‖ =
√

1 + [f ′(x)]2,
x′ · x′′ = f ′(x)f ′′(x), and ‖x′ × x′′‖ = ‖(0, 0, f ′′(x))‖ = |f ′′(x)|. Substituting into the formulas from Exercise 33 gives us:

atang =
f ′(x)f ′′(x)√
1 + [f ′(x)]2

, and anorm =
|f ′′(x)|√

1 + [f ′(x)]2
.
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35. To establish the formula, first note that v × a = κṡ3B (see, for example, the calculation leading up to formula (17)) and
‖v × a‖ = κṡ3 = κ‖v‖3. So

(v × a) · a′

‖v × a‖2
=

κṡ3B · a′

κ2ṡ6
=

B · a′

κṡ3
.

Now, a(t) = s̈T + κṡ2N and by the Frenet equations N′(s) = −κT + τB. Since we are calculating the dot product of a′ with
B, the only piece that will survive is the coefficient of B, so

a′(t) = (something without B) + κṡ2N′(s)
ds
dt

= (something else without B) + κṡ3τB

and so, putting it all together,
(v × a) · a′

‖v × a‖2
=

κṡ3B · a′

κ2ṡ6
=

B · a′

κṡ3
=

B · κṡ3τB
κṡ3

= τ.

36. By equations (11) and (13) we have T′ = κN and B′ = −τN
Hence

−T′ · B′ = −(κN) · (−τN) = κτ N · N = κτ,

since N is a unit vector.
37. From formula (17) κ =

‖v × a‖
‖v‖3

= ‖x′ × x′′‖ since x must be a unit speed path as it is parametrized by arclength.

By Exercise 35,

τ =
(v × a) · a′

‖v × a‖2
=

(x′ × x′′) · x′′′

‖x′ × x′′‖2

Thus
κ2τ = ‖x′ × x′′‖2 ·

(
(x′ × x′′) · x′′′

‖x′ × x′′‖2

)
= (x′ × x′′) · x′′′.

38. (a) Really, there’s nothing much to show in this part—but it really helps you solve part (b). B is T × N so it is perpendicular
to the plane determined by them. In this case, we interpret that as B is perpendicular to the osculating plane. Make the
analagous observations for the other two cases.

(b) Example 9 gives us the formulas for T, N, and B. Using the result of part (a) we can use the perpendicular vector to write
down the equation of the plane. First, B is perpendicular to the osculating plane. So at t = t0 the osculating plane must
be of the form b sin t0(x − a cos t0) − b cos t0(y − a sin t0) + a(z − bt0) = 0. Similarly the rectifying plane can be
obtained from N as − cos t0(x − a cos t0) − sin t0(y − a sin t0) = 0. Finally, the normal plane is obtained from T as
−a sin t0(x − a cos t0) + a cos t0(y − a sin t0) + b(z − bt0) = 0.

39. We have ‖x − x0‖2 = (x − x0) · (x − x0) = a2. Thus ‖x − x0‖ = a, so x(t) lies on a sphere of radius a.
40. The normal plane to x at any point x(t) is the plane passing through x(t) and perpendicular to T(t). Thus the plane has

equation (x − x(t)) · T(t) = 0 (Here x(t) and T(t) are used as “constant” vectors.) Thus, using the product rule,

d
dt

(x(t) − x0) · (x(t) − x0) = 2(x(t) − x0) · x′(t).

Hence
0 = (x0 − x(t)) · T = −(x(t) − x0) · x′(t)

‖x′(t)‖ = − 1

‖x′(t)‖ (x(t) − x0) · x′(t)

Thus (x(t)− x0) · x′(t) = 0 for all t. Hence (x(t)− x0) · (x(t)− x0) = constant, which implies that we have a sphere curve.

41. We have T(t) =
(−2 sin 2t,−2 cos 2t,−2 sin t)√

4 + 4 sin2 t
.

Now we check that (x(t) − (1, 0, 0)) · T(t) = 0. This equation is

(cos 2t − 1,− sin 2t, 2 cos t) · (−2 sin 2t,−2 cos 2t,−2 sin t)√
4 + 4 sin2 t

=
1√

4 + 4 sin2 t
(−2 cos 2t sin 2t + 2 sin 2t + 2 sin 2t cos 2t + 4 cos t sin t)

= 0.
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42. By Exercise 27 of §1.4: (a × b) × c = (a · c)b − (b · c)a, so

T × B = T × (T × N) = −(T × N) × T = −[(T · T)N − (N · T)T] = −N

N × B = N × (T × N) = −(T × N) × N = −[(T · N)N − (N · N)T] = T

43.
‖w‖2 = w · w = (τT + κB) · (τT + κB) = τ2T · T + κτB · T + κτT · B + κ2B · B = τ2 + κ2

44. (a)
w × T = (τT + κB) × T = τ(T × T) + κ(B × T)

= κ(B × T) = κN by Exercise 42

= T′ by Frenet–Serret

w × N = (τT + κB) × N = τ(T × N) + κ(B × N)

= τB − κT by Exercise 42

= N′ by Frenet–Serret

w × B = (τT + κB) × B = τ(T × B) = −τN by Exercise 42

= B′ by Frenet–Serret

(b) T′ = w × T = (τT + κB) × T = κN by manipulations and Exercise 42. The other equations are similar.
45. w is a constant vector ⇔ w′(s) = 0. So

0 = w′(s) = τ ′T + τT′ + κ′B + κB′

= τ ′T + κ′B + τκN − κτN using Frenet–Serret

= τ ′T + κ′B.

T and B are always perpendicular—hence we can never have T = c B (or vice versa). Thus τ ′ = κ′ = 0 so τ, κ are constant
and nonzero because x′ × x′′ �= 0. Thus by Theorem 2.5 the path must be a helix. Conversely, having a helix implies constant
τ, κ so w′ ≡ 0. Thus w must be constant.

3.3 Vector Fields: An Introduction

The figures can be generated using Mathematica or Maple. The axes are in the ‘usual’ positions with the origin at the center. The
relative length of the shaft of the arrows corresponds to the length of the vectors. The students should then compare the results in
Exercises 1–3 and Exercises 4–6. The differences between the equations for the vector fields should be compared to the differences
in the resulting sketches.

1. F = yi − xj = (y,−x) is shown below left.
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2. F = xi − yj = (x,−y) is shown above right.

3. F = (−x, y) is shown below left.

4. F = (x, x2) is shown above right.

5. F = (x2, x) is shown below left.

6. F = (y2, y) is shown above right.

Now we are looking at sketches of vector fields in R3. These are harder to see. In most cases, I have also included a sketch
of a slice.
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7. F = 3i + 2j + k = (3, 2, 1) is constant. The figure on the right shows the slice in the xy-plane:
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8. F = (y,−x, 0). The figure on the right shows the slice in the xy-plane—compare this to Exercise 1:
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9. F = (0, z,−y); compare this to Exercise 8:
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10. F = (y,−x, 2). The figure on the right shows the slice in the xy-plane—compare this to Exercise 8:
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11. F = (y,−x, z). The figure on the right shows the slices in the z = 1 and z = −1 planes—compare this to Exercises 8 and 10:

-1

0

1

x

-1

0

1y
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z

12. F = (y,−x, z)/
√

x2 + y2 + z2 except at the origin. The figure on the right shows the slices in the z = 1 and z = −1
planes—compare this to Exercise 11 (they are the same except the vectors in this problem are all unit vectors—they may not
look like unit vectors because of the vertical components):
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13. The figure is below left.

14. The figure is above right.
15. The figure is below left.

16. The figure is above right.

In Exercises 17–19 we will show that x is a flow line of F using Definition 3.2, by showing x′(t) = F(x(t)).

17. x(t) = (x, y, z) = (sin t, cos t, 0) so x′(t) = (cos t,− sin t, 0) = (y,−x, 0) = F(x(t)). We can see below how the path, in
bold, is a flow line for the vector field we saw above in Exercise 8. The figure on the right is the xy-plane slice of the figure
on the left.
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18. x(t) = (x, y, z) = (sin t, cos t, 2t) so x′(t) = (cos t,− sin t, 2) = (y,−x, 2) = F(x(t)). Below we see the view from
almost directly above one “period” of the path.

The path, below in bold, is a flow line of the vector field we saw above in Exercise 10.
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19. x(t) = (x, y, z) = (sin t, cos t, e2t) so

x′(t) = (cos t,− sin t, 2e2t) = (y,−x, 2z) = F(x(t)).

The projection of this path onto the xy-plane is the same as that of the path in Exercise 18. The difference is that the rate at
which the path climbs is changing:
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20. If x(t) = (x, y) then x′(t) = F(x, y) = (−x, y). Consider x for a moment. This says that dx/dt = −x. The solution to this
is x = ce−t. Our initial condition is that x(0) = 2 so c = 2. Similarly, dy/dt = y so y = ket. The initial condition y(0) = 1
tells us that k = 1. The equation of the flow line is x(t) = (2e−t, et).

21. If x(t) = (x, y) then x′(t) = F(x, y) = (x2, y). As in Exercise 20, we know that y = ket and y(1) = e tells us that
k = 1. As for x, dx/dt = x2. This is a separable differential equation dx/x2 = dt. Integrating and solving for x gives us
x = −1/(t + c). From the initial condition x(1) = 1 we find that 1 = −1/(1 + c) or c = −2. The equation, therefore, of the
flow line is x(t) = (1/(2 − t), et).

22. If x(t) = (x, y, z) then x′(t) = F(x, y, z) = (2,−3y, z3). We see immediately that the x coordinate function must be linear
and of the form 2t+c. From the initial condition, this constant is 3 so x = 2t+3. As in Exercise 20, we know that y = ke−3t
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and y(0) = 5 tells us that k = 5. As for z, dz/dt = z3. This is a separable differential equation dz/z3 = dt. Integrating and
solving for z gives us z = 1/

√
−2(t + c). From the initial condition z(0) = 7 we find that 7 = 1/

√
(−2c) or c = −1/98.

The equation, therefore, of the flow line is x(t) = (2t + 3, 5e−3t, 7/
√

1 − 98t).
23. (a) For the function f(x, y, z) = 3x − 2y + z, ∇f = F so F is a gradient field.

(b) The equipotiential surfaces are those for which f (x, y, z) is constant. 3x − 2y + z = c. These are planes with normal
vector (3,−2, 1).

24. (a) For the function f(x, y, z) = x2 + y2 − 3z, ∇f = F so F is a gradient field.
(b) The equipotiential surfaces are those for which f (x, y, z) is constant. x2 + y2 − 3z = c is equivalent to z = (1/3)(x2 +

y2 − c). These are paraboloids with z intercept (0, 0,−c/3). A typical surface is:

25. Let x be a flow line of a gradient vector field F = ∇f and let G(t) = f(x(t)). We will show that G is an increasing function
of t by showing G′(t) ≥ 0. First, G′(t) = ∇f(x(t)) · x′(t) = F(x(t)) · x′(t) since F = ∇f .
Now we use the fact that x is a flow line of F:

F(x(t)) · x′(t) = x′(t) · x′(t) = ‖x′(t)‖2 ≥ 0.

For Exercises 26–28, verify that ∂
∂t

φ(x, t) = F(φ(x, t)) and φ(x, 0) = x.
26. First we see that φ(x, y, 0) =

(
x+y

2
e0 + x−y

2
e0, x+y

2
e0 + y−x

2
e0
)

= (x, y). Next,

∂

∂t
φ(x, y, t) =

(x + y

2
et − x − y

2
e−t,

x + y

2
et − y − x

2
e−t

)
= φ(y, x, t) = F(φ(x, y, t)).

27. First we see that φ(x, y, 0) = (y sin 0 + x cos 0, y cos 0 − x sin 0) = (x, y). Next,

∂

∂t
φ(x, y, t) = (y cos t − x sin t,−y sin t − x cos t)

= φ(y,−x, t) = F(φ(x, y, t)).

28. First we see that φ(x, y, z, 0) = (x cos 0 − y sin 0, y cos 0 + x sin 0, ze0) = (x, y, z). Next,

∂

∂t
φ(x, y, z, t) = (−2x sin 2t − 2y cos 2t,−2y sin 2t + 2x cos 2t,−ze−t)

= φ(−2y, 2x,−z, t) = F(φ(x, y, z, t)).

29. We are assuming that φ is a flow of F and that x(t) = φ(x0, t). Then

x′(t) =
∂

∂t
φ(x0, t) = F(φ(x0, t)) = F(x(t)).

The middle equality holds because φ is a flow of F.
30. Using the hint, we can apply the results of Exercise 29. If φ is a flow of the vector field F then for any fixed point x0 in X , the

map x(t) = φ(x0, t) is a flow line of F.
So φ(x0, s + t) is where we are if we flow for t + s seconds while φ(φ(x0, t), s) is where we are if we first flow for t seconds
and then we flow for s seconds. It should be clear that we end up the same place in either case. It is worth checking that your
students understand the idea behind the problem—the author of the text has taken great care to make sure that these symbols
make some physical sense to them.
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31. We know that ∂

∂t
φ(x, t) = F(φ(x, t)). So

∂

∂t
Dxφ(x, t) = Dx

(
∂

∂t
φ(x, t)

)
= DxF(φ(x, t)).

Now by the chain rule (Theorem 5.3):

DxF(φ(x, t)) = DF(φ(x, t))Dxφ(x, t).

3.4 Gradient, Divergence, Curl, and The Del Operator

For Exercises 1–6 calculate the divergence of F: div F = ∇ · F.

1. F = (x2, y2), so div F = ∇ · F =
∂F1

∂x
+

∂F2

∂y
= 2x + 2y.

2. F = (y2, x2), so div F = ∇ · F =
∂F1

∂x
+

∂F2

∂y
= 0 + 0 = 0.

3. F = (x + y, y + z, x + z), so div F = ∇ · F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
= 1 + 1 + 1 = 3.

4. F = (z cos(ey2

), x
√

z2 + 1, e2y sin 3x), so div F = ∇ · F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
= 0 + 0 + 0 = 0.

5. F = (x2
1, 2x2

2, . . . , nx2
n), so div F = ∇ · F =

∂F1

∂x1
+

∂F2

∂x2
+ · · · + ∂Fn

∂xn
= 2x1 + 4x2 + · · · + 2nxn.

6. F = (x1, 2x1, . . . , nx1), so div F = ∇ · F =
∂F1

∂x1
+

∂F2

∂x2
+ · · · + ∂Fn

∂xn
= 1 + 0 + · · · + 0 = 1.

For Exercises 7–11 calculate the curl of F: curl F = ∇× F.

7. curl F =

∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂
∂z

x2 −xey 2xyz

∣∣∣∣∣∣∣ = (2xz,−2yz,−ey).

8. curl F =

∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂
∂z

x y z

∣∣∣∣∣∣∣ = (0, 0, 0).

9. curl F =

∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂
∂z

x + yz y + xz z + xy

∣∣∣∣∣∣∣ = (x − x,−y + y, z − z) = (0, 0, 0).

10. curl F =

∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂
∂z

cos yz − x cos xz − y cos xy − z

∣∣∣∣∣∣∣
= (x(sin xz − sin xy), y(sin xy − sin yz), z(sin yz − sin xz)).

11. curl F =

∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂
∂z

y2z exyz x2y

∣∣∣∣∣∣∣ = (x2 − xyexyz, y2 − 2xy, yzexyz − 2yz).
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12. (a) We denote the vector field from Exercise 8 by F8 and sketch it below on the left. The figure on the right represents any
planar slice through the origin. Every point is being pushed outwards. If you imagine a twig caught in this body of water
and you think in terms of spherical coordinates, the change in position is an increase in ρ with no change to ϕ or θ.

(b) Note that F = xi+yj+zk√
x2+y2+z2

= F8√
x2+y2+z2

. At each point the direction of F is the same as that of F8 but F is made up of

unit vectors. As in part (a) we would argue that the motion of each point is in the direction of increasing ρ and so the curl
is again 0.

(c) In Exercise 24 below we’ll show that ∇× (fF) = f∇× F + ∇f × F. If you don’t like citing a future problem, you can
follow through the steps in Exercise 24 for this exercise. Note that we know from Exercise 8 that ∇× F8 = (0, 0, 0).

∇× F = ∇×
(

1√
x2 + y2 + z2

F8

)

=

(
1√

x2 + y2 + z2

)
∇× F8 +

[
∇
(

1√
x2 + y2 + z2

)]
× F8

= (0, 0, 0) − (x, y, z)

(x2 + y2 + z2)3/2
× F8

= − (x, y, z)

(x2 + y2 + z2)3/2
× (x, y, z) = (0, 0, 0).

13. (a) At each point “more is moving away than towards” so div F > 0 on all R2.
(b) At each point “more is moving towards than away” so div F < 0 on all R2.
(c) Here we have a mixed bag. At each point to the left of the y-axis “more is moving towards than away” and at each point to

the right of the y-axis “more is moving away than towards” so div F < 0 for x < 0,
div F > 0 for x > 0, and div F = 0 for x = 0.

(d) Again we have a mixed bag. At each point the above the x-axis “more is moving towards than away” and at each point
below the x-axis “more is moving away than towards” so div F < 0 for y > 0, div F > 0 for y < 0, and div F = 0 for
y = 0.
In Exercises 14 and 15, the student is asked to work examples of the results of Theorems 4.3 and 4.4. Exercise 16 has the

student prove Theorem 4.4.
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14. f(x, y, z) = x2 sin y + y2 cos z so ∇f = (2x sin y, x2 cos y + 2y cos z,−y2 sin z).

∇× (∇f) =

∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂
∂z

2x sin y x2 cos y + 2y cos z −y2 sin z

∣∣∣∣∣∣∣
= (−2y sin z + 2y sin z, 0 − 0, 2x cos y − 2x cos y) = (0, 0, 0).

15. F(x, y, z) = xyzi + ez cos xj + xy2z3k so

∇× F =

∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂
∂z

xyz ez cos x xy2z3

∣∣∣∣∣∣∣ = (2xyz3 + ez cos x,−y2z3 + xy, ez sin x − xz).

Finally we calculate

∇ · (∇× F) =
∂

∂x
(2xyz3 + ez cos x) +

∂

∂y
(−y2z3 + xy) +

∂

∂z
(ez sin x − xz)

= 2yz3 − ez sin x − 2yz3 + x + ez sin x − x = 0.

16. We want to show that ∇ · (∇× F) = 0.

∇ · (∇× F) =
∂

∂x

(
∂F3

∂y
− ∂F2

∂x

)
+

∂

∂y

(
∂F1

∂z
− ∂F3

∂x

)
+

∂

∂z

(
∂F2

∂x
− ∂F1

∂y

)

=
∂2F3

∂x∂y
− ∂2F2

∂x∂z
+

∂2F1

∂y∂z
− ∂2F3

∂y∂x
+

∂2F2

∂z∂x
− ∂2F1

∂z∂y
.

Finally, because F is of class C2, the mixed partials are equal and so this last quantity is 0.
17. This is a good warm-up.

∇rn =

(
i ∂

∂x
+ j ∂

∂y
+ k ∂

∂z

)
(x2 + y2 + z2)n/2 =

(n

2

)
(x2 + y2 + z2)(n−2)/2(2x, 2y, 2z)

= nrn−2(x, y, z) = nrn−2r.

18. This is similar to Exercise 17 as most of the derivative of the ln pulls out.

∇(ln r) = ∇(ln(x2 + y2 + z2)1/2) = 1
2
∇(ln(x2 + y2 + z2))

= 1
2

(
1

x2 + y2 + z2

)
(2x, 2y, 2z) =

(
1

r2

)
(x, y, z) =

r
r2

19. In this exercise and the next we’ll need to know that rnr = (x2 + y2 + z2)n/2(x, y, z).

∇ · (rnr) =
∂

∂x
[x(x2 + y2 + z2)n/2] +

∂

∂y
[y(x2 + y2 + z2)n/2] +

∂

∂z
[z(x2 + y2 + z2)n/2]

=
[
rn + x

(n

2

)
2x(x2 + y2 + z2)(n−2)/2

]
+
[
rn + y

(n

2

)
2y(x2 + y2 + z2)(n−2)/2

]
+
[
rn + z

(n

2

)
2z(x2 + y2 + z2)(n−2)/2

]
= [rn + nx2rn−2] + [rn + ny2rn−2] + [rn + nz2rn−2]

= 3rn + n(x2 + y2 + z2)rn−2 = 3rn + nr2rn−2 = 3rn + nrn = (n + 3)rn

20. Here

∇× (rnr) =

∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂
∂z

x(x2 + y2 + z2)n/2 y(x2 + y2 + z2)n/2 z(x2 + y2 + z2)n/2

∣∣∣∣∣∣∣
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Let’s begin by calculating the coefficient of i:

∂

∂y
[z(x2 + y2 + z2)n/2] − ∂

∂z
[y(x2 + y2 + z2)n/2]

= z(x2 + y2 + z2)(n−2)/2(2y) − y(x2 + y2 + z2)(n−2)/2(2z) = 0.

The calculation is the same for the coefficients of j and k.

Exercises 21 and 22 follow quickly from properties we explored in Chapter 1. The∇ seems to distribute over the sum because
the derivative of a sum is the sum of the derivatives. Exercises 23–25 are product rules.

21.

∇ · (F + G) =

n∑
i=1

∂

∂xi
(Fi + Gi) =

n∑
i=1

∂

∂xi
(Fi) +

n∑
i=1

∂

∂xi
(Gi) = ∇ · F + ∇ · G.

22. You can expand the first matrix below and see the result pretty quickly. On the other hand, you can use the result of Exercise
28 from Section 1.6 and the fact that d

dxi
(F + G) = d

dxi
(F ) + d

dxi
(G).

∇× (F + G) =

∣∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂
∂z

F1 + G1 F2 + G2 F3 + G3

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂
∂z

F1 F2 F3

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣

i j k
∂

∂x
∂

∂y
∂
∂z

G1 G2 G3

∣∣∣∣∣∣∣∣ = ∇× F + ∇× G.

23.

∇ · (fF) =
n∑

i=1

∂

∂xi
(fFi) =

n∑
i=1

(
∂f

∂xi
Fi + f

∂Fi

∂xi

)

=
n∑

i=1

(
∂f

∂xi
Fi

)
+

n∑
i=1

(
f

∂Fi

∂xi

)
= ∇(f) · F + f(∇ · F)

= f∇ · F + F · ∇f.

24.

∇× (fF) =

∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂
∂z

fF1 fF2 fF3

∣∣∣∣∣∣∣
=

[
∂

∂y
(fF3) − ∂

∂z
(fF2)

]
i −

[
∂

∂x
(fF3) − ∂

∂z
(fF1)

]
j +

[
∂

∂x
(fF2) − ∂

∂y
(fF1)

]
k

=

[
∂f

∂y
F3 − ∂f

∂z
F2 +

∂F3

∂y
f − ∂F2

∂z
f

]
i −

[
∂f

∂x
F3 − ∂f

∂z
F1 +

∂F3

∂x
f − ∂F1

∂z
f

]
j

+

[
∂f

∂x
F2 − ∂f

∂y
F1 +

∂F2

∂x
f − ∂F1

∂y
f

]
k = f∇× F + ∇f × F.
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25.

∇ · (F × G) =

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
· (F2G3 − F3G2, F3G1 − F1G3, F1G2 − F2G1)

=
∂F2

∂x
G3 + F2

∂G3

∂x
− ∂F3

∂x
G2 − F3

∂G2

∂x
+

∂F3

∂y
G1 + F3

∂G1

∂y
− ∂F1

∂y
G3 − F1

∂G3

∂y

+
∂F1

∂z
G2 + F1

∂G2

∂z
− ∂F2

∂z
G1 − F2

∂G1

∂z

= G1

(
∂F3

∂y
− ∂F2

∂z

)
− G2

(
∂F3

∂x
− ∂F1

∂z

)
+ G3

(
∂F2

∂x
− ∂F1

∂y

)
− F1

(
∂G3

∂y
− ∂G2

∂z

)

+ F2

(
∂G3

∂x
− ∂G1

∂z

)
− F3

(
∂G2

∂x
− ∂G1

∂y

)
= G · ∇ × F − F · ∇ × G.

26. We will use formulas (6) and (7) from the text. First we establish formula (3):

∇f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k

=

(
cos θ

∂f

∂r
− sin θ

r

∂f

∂θ

)
i +

(
sin θ

∂f

∂r
+

cos θ

r

∂f

∂θ

)
j +

∂f

∂z
k

=
∂f

∂r
(cos θi + sin θj) +

(
1

r

)
∂f

∂θ
(− sin θi + cos θj) +

∂f

∂z
k

=
∂f

∂r
er +

(
1

r

)
∂f

∂θ
eθ +

∂f

∂z
ez.

Now we establish formula (5). Again we need formulas (6) and (7). First use (6) to obtain: Frer + Fθeθ = (Fr cos θ −
Fθ sin θ)i + (Fr sin θ + Fθ cos θ)j.

∇× F =

∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂
∂z

Fx Fy Fz

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
i j k(

cos θ ∂
∂r

− sin θ
r

∂
∂θ

) (
sin θ ∂

∂r
+ cos θ

r
∂
∂θ

)
∂
∂z

(Fr cos θ − Fθ sin θ) (Fr sin θ + Fθ cos θ) Fz

∣∣∣∣∣∣∣
=

[(
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

)
Fz − ∂

∂z
(Fr sin θ + Fθ cos θ)

]
i

−
[(

cos θ
∂

∂r
− sin θ

r

∂

∂θ

)
Fz − ∂

∂z
(Fr cos θ − Fθ sin θ)

]
j

+

[(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
(Fr sin θ + Fθ cos θ)

−
(

sin θ
∂

∂r
+

cos θ

r

∂

∂θ

)
(Fr cos θ − Fθ sin θ)

]
k

=

[
1

r

∂

∂θ
Fz − ∂

∂z
Fθ

]
(cos θi + sin θj) −

[
∂

∂r
Fz − ∂

∂z
Fr

]
(− sin θi + cos θj)

+

[
∂

∂r
Fθ −

(
1

r

)
∂

∂θ
Fr

]
k
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=

[
1

r

∂

∂θ
Fz − ∂

∂z
Fθ

]
er −

[
∂

∂r
Fz − ∂

∂z
Fr

]
eθ +

[
∂

∂r
Fθ −

(
1

r

)
∂

∂θ
Fr

]
ez

=

∣∣∣∣∣∣∣
er eθ ez

∂
∂r

(
1
r

)
∂
∂θ

∂
∂z

Fr Fθ Fz

∣∣∣∣∣∣∣ =
1

r

∣∣∣∣∣∣∣
er reθ ez

∂
∂r

∂
∂θ

∂
∂z

Fr rFθ Fz

∣∣∣∣∣∣∣ .
27. We will need formula (9) from Section 1.7:⎧⎪⎨

⎪⎩
eρ = sin ϕ cos θi + sin ϕ sin θj + cos ϕk
eϕ = cos ϕ cos θi + cos ϕ sin θj − sin ϕk
eθ = − sin θi + cos θj.

From the chain rule, we have the following relations between rectangular and spherical differential operators:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂

∂ρ
= sin ϕ cos θ

∂

∂x
+ sin ϕ sin θ

∂

∂y
+ cos ϕ

∂

∂z

∂

∂ϕ
= ρ cos ϕ cos θ

∂

∂x
+ ρ cos ϕ sin θ

∂

∂y
− ρ sin ϕ

∂

∂z

∂

∂θ
= −ρ sin ϕ sin θ

∂

∂x
+ ρ sin ϕ cos θ

∂

∂y
.

Solving for ∂/∂x, ∂/∂y, and ∂/∂z:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂

∂x
= sin ϕ cos θ

∂

∂ρ
+

cos ϕ cos θ

ρ

∂

∂ϕ
− sin θ

ρ sin ϕ

∂

∂θ

∂

∂y
= sin ϕ sin θ

∂

∂ρ
+

cos ϕ sin θ

ρ

∂

∂ϕ
+

cos θ

ρ sin ϕ

∂

∂θ

∂

∂z
= cos ϕ

∂

∂ρ
− sin ϕ

ρ

∂

∂ϕ
.

Now we calculate the gradient:

∇f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k

=

(
sin ϕ cos θ

∂f

∂ρ
+

cos ϕ cos θ

ρ

∂f

∂ϕ
− sin θ

ρ sin ϕ

∂f

∂θ

)
i

+

(
sin ϕ sin θ

∂f

∂ρ
+

cos ϕ sin θ

ρ

∂f

∂ϕ
+

cos θ

ρ sin ϕ

∂f

∂θ

)
j +

(
cos ϕ

∂f

∂ρ
− sin ϕ

ρ

∂f

∂ϕ

)
k

=
∂f

∂ρ
(sin ϕ cos θi + sin ϕ sin θj + cos ϕk) +

(
1

ρ

)
∂f

∂ϕ
(cos ϕ cos θi + cos ϕ sin θj − sin ϕk)

+

(
1

ρ sin ϕ

)
∂f

∂θ
(− sin θi + cos θj) =

∂f

∂ρ
er +

(
1

ρ

)
∂f

∂ϕ
eϕ +

(
1

ρ sin ϕ

)
∂f

∂θ
eθ.

28. ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

(a) ∇ · ∇ =

(
∂

∂x
+

∂

∂y
+

∂

∂z

)
·
(

∂

∂x
+

∂

∂y
+

∂

∂z

)
=

∂

∂x

∂

∂x
+

∂

∂y

∂

∂y
+

∂

∂z

∂

∂z
=

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
= ∇2.

(b) We use ideas from Exercise 23:

∇2(fg) = ∇ · ∇(fg) = ∇ · ((∇f)g + f∇g) = (∇2f)g + ∇f · ∇g + ∇f · ∇g + f∇2g

= f∇2g + g∇2f + 2(∇f · ∇g).

(c) Again we use Exercise 23:

∇ · (f∇g − g∇f) = ∇f · ∇g + f∇2g −∇g · ∇f − g∇2f = f∇2g − g∇2f.
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29. f∇f =
(
f ∂f

∂x
, f ∂f

∂y
, f ∂f

∂z

)
hence

∇ · (f∇f) =
∂

∂x

(
f

∂f

∂x

)
+

∂

∂y

(
f

∂f

∂y

)
+

∂

∂z

(
f

∂f

∂z

)

=

(
∂f

∂x

)2

+ f
∂2f

∂x2
+

(
∂f

∂y

)2

+ f
∂2f

∂y2
+

(
∂f

∂z

)2

+ f
∂2f

∂z2

=

(
∂f

∂x

)2

+

(
∂f

∂y

)2

+

(
∂f

∂z

)2

+ f

(
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2

)
= ‖∇f‖2 + f∇2f.

30. Write F = M i + N j + Pk. Then

∇× F =

∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂
∂z

M N P

∣∣∣∣∣∣∣ = (Py − Nz)i + (Mz − Px)j + (Nx − My)k

and thus

∇× (∇× F) =

∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂
∂z

Py − Nz Mz − Px Nx − My

∣∣∣∣∣∣∣
= (Nxy − Myy − Mzz + Pxz)i + (Pyz − Nzz − Nxx + Myx)j

+ (Mzx − Pxx − Pyy + Nzy)k.

On the other hand,

∇(∇ · F) = ∇(Mx + Ny + Pz) = (Mxx + Nyx + Pzx)i + (Mxy + Nyy + Pzy)j + (Mxz + Nyz + Pzz)k

and

∇2F = (∇ · ∇)F =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
F

= (Mxx + Myy + Mzz)i + (Nxx + Nyy + Nzz)j + (Pxx + Pyy + Pzz)k

Hence,

∇(∇ · F) −∇2F = (Nyx + Pzx − Myy − Mzz)i + (Mxy + Pzy − Nxx − Nzz)j + (Mxz + Nyz − Pxx − Pyy)k

By assumption, F is of class C2 so Mxy = Myx, etc.
Thus we have shown: ∇× (∇× F) = ∇(∇ · F) −∇2F, as desired.

31. (a) Let G(t) = F(a + tv). Then

DvF(a) = lim
t→0

1

t
(F(a + tv) − F(a)) = lim

t→0

1

t
(G(t) − G(0))

= G′(0).

Thus

DvF(a) =
d
dt

F(a + tv)

∣∣∣∣
t=0

.

(b) d
dt

F(a + tv) = DF(a + tv) d
dt

(a + tv) = DF(a + tv)v. Now evaluate at t = 0 to get DvF(a) = DF(a)v.
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32. By definition,

DvF(a) = lim
h→0

1

h
(F(a + hv) − F(a))

= lim
h→0

1

h
(F1(a + hv) − F1(a), . . . , Fn(a + hv) − Fn(a))

= lim
h→0

(
F1(a + hv) − F1(a)

h
, . . . ,

Fn(a + hv) − Fn(a)

h

)

=

(
lim
h→0

F1(a + hv) − F1(a)

h
, . . . , lim

h→0

Fn(a + hv) − Fn(a)

h

)
= (DvF1(a), . . . , DvFn(a))

using Definition 6.1 of Chapter 2.
33. We use part (b) of Exercise 31 since F is evidently differentiable.

DF(x, y, z) =

⎡
⎣ 0 z y

z 0 x
y x 0

⎤
⎦ so DF(3, 2, 1) =

⎡
⎣ 0 1 2

1 0 3
2 3 0

⎤
⎦

D(i−j+k)/
√

3F(3, 2, 1) =

⎡
⎣ 0 1 2

1 0 3
2 3 0

⎤
⎦
⎡
⎣ 1/

√
3

−1/
√

3

1/
√

3

⎤
⎦ =

⎡
⎣ 1/

√
3

4/
√

3

−1/
√

3

⎤
⎦

34.

DvF(a) = DF(a)v =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦
⎡
⎣ v1

v2

v3

⎤
⎦ =

⎡
⎣ v1

v2

v3

⎤
⎦ = v.

In general if F = (x1, . . . , xn), then DF(a) = In (n × n identity matrix), so DvF(a) = DF(a)v = Inv = v.

True/False Exercises for Chapter 3

1. True.
2. False. (The path has unit speed.)
3. True.
4. False.
5. False. (There should be a negative sign in the second term on the right.)
6. False. (κ = ‖dT/ds‖, where s is arclength.)
7. True.
8. True.
9. False.

10. False. (dT/ds must be normalized to give N.)
11. True.
12. True.
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13. True.
14. False. (It’s a vector field.)
15. False. (It’s a scalar field.)
16. True.
17. True.
18. False. (It’s a scalar field.)
19. False. (It’s a meaningless expression.)
20. False. (F(x(t)) �= x′(t).)
21. True. (Check that F(x(t)) = x′(t).)
22. True. (Verify that ∇ · F = 0.)
23. False. (∇× F �= 0.)
24. False. (f must be of class C2.)
25. False. (Consider F = yi + xj.)
26. False. (The first term on the right needs a negative sign.)
27. True.
28. False. (∇× F �= 0.)

29. False. (∇ · (∇× F) �= 0.)

30. True.

Miscellaneous Exercises for Chapter 3

1. Here are the answers: (a) D (b) F (c) A

(d) B (e) C (f) E

Here’s some explanation: The formulas in (a) and in (f) are the only ones that keep x and y bounded (between −1 and 1), so
they must correspond to D and E. Note that in (a) x(0) = (0, 0), but the graph in E does not pass through the origin. Note that
in (c) x ≥ 1 and the only graph with that property is A. In (b) we see that x(−t) = (−t− sin 5t, t2 +cos 6t) = (−x(t), y(t)).
This means that the graph will be symmetric about the y-axis and the only plot that remains with this property is F. What
remains is to match the formulas in (d) and (e) with the graphs in B and C. This is easy: in (d) large positive values of t give
points in the first quadrant. The graph in C has no points in the first quadrant.

2. Answers: (a) E (b) F (c) C (d) B (e) A (f) D
Explanation: (a) Must have z between −1 and 1, but y can be arbitrarily large and positive.
(b) All three coordinates should be bounded (making the only choices B or F). The projection of the curve into the xy-plane

should be an astroid—giving choice F.
(c) This is an elliptical helix—so choice C.
(d) All three coordinates are between −1 and 1, so graph B.
(e) Note that x2 + y2 = 4t2 = 1

4
z2—thus the graph lies on a cone (so A).

(f) Only D remains, but note that we must have x ≥ 1.
3. First note that d

dt
‖x′(t)‖ = d

dt

√
x′(t) · x′(t) = (x′(t) · x′′(t))/‖x′(t)‖. So x has constant (non-zero) speed if and only if

d
dt
‖x′(t)‖ = 0 if and only if x′(t) · x′′(t) = 0 (i.e., its velocity and acceleration vectors are perpendicular).

4. (a) If we forget about gravity, the glasses travel along the tangent line to x at t = 90. We need the position along this tangent
line two seconds after we lose our glasses:

1(t) = x(90) + 2(x′(90)) = (−e3/2, 0, 80) + 2(−e3/2/60,−πe3/2/30, 0)

= (−31e3/2/30,−πe3/2/15, 80).

(b) The only component that changes when we factor in gravity is the height h(t) of the glasses at time t. We know that
gravity is h′′(t) = −32 ft/sec2. The initial vertical velocity is zero so h′(t) = −32t. We know that when the glasses
fall off they are 80 feet off the ground, so h(t) = −16t2 + 80 so h(2) = 16 and the position of the glasses two seconds
after they fall off is (−31e3/2/30,−πe3/2/15, 16).

5. The velocity is x′(t) =
(− sin(t − 1), 3t2,− 1

t2

)
so x′(1) = (0, 3,−1). At t = 1 the position is x(1) = (1, 0,−1). If we

define a surface by the equation f(x, y, z) = x3 + y3 + z3 − xyz = 0, then ∇f(x, y, z) = (3x2 − yz, 3y2 − xz, 3z2 − xy)
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so ∇f(1, 0,−1) = (3, 1, 3). In general this vector is normal to the tangent plane at (1, 0,−1) and by observation it is also
perpendicular to x′(1) so the curve is tangent to the surface when t = 1.

6. (a) We’ll convert distance to inches and then r = 240 − 3t while θ = 4πt.
(b) x = r cos θ and y = r sin θ so x(t) = (240 − 3t) cos 4πt and y(t) = (240 − 3t) sin 4πt.
(c) It takes Gregor 80 minutes to reach the center so

Distance =

∫ 80

0

√
[x′(t)]2 + [y′(t)]2 dt

=

∫ 80

0

√
[−3 cos 4πt − 4π(240 − 3t) sin 4πt]2 + [−3 sin 4πt + 4π(240 − 3t) cos 4πt]2 dt

=

∫ 80

0

√
9 + 16π2(240 − 3t)2 dt = 120638 inches ≈ 1.90401 miles.

7. For w = 0 we just get the line segment joining the points x1 and x2. As w increases the curve becomes more bent in the
direction of the control point.
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8. We see the same pattern as in Exercise 7.

x

y

-1 1 2 3 4

-1

1

2

3

9. (a) There’s nothing much to show. In the equations given in (1), at t = 0 all but the first terms in the numerator and
denominator disappear and you get (x(0), y(0)) = (x1, y1). At t = 1 all but the last terms in the numerator and
denominator disappear and you get (x(1), y(1)) = (x3, y3).
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(b) Here we get

x(1/2) =

(
x1/4 + wx2/2 + x3/4

(1 + w)/2
,
y1/4 + wy2/2 + y3/4

(1 + w)/2

)

=
1

1 + w

(x1 + x3

2
+ wx2,

y1 + y3

2
+ wy2

)
=

1

1 + w

[(x1 + x3

2
,
y1 + y3

2

)
+ (wx2, wy2)

]
=

1

1 + w

(x1 + x3

2
,
y1 + y3

2

)
+

w

1 + w
(x2, y2).

Note that for w ≥ 0, both 1/(1 + w) and w/(1 + w) are between 0 and 1 and sum to 1. This tells us that the point x(1/2) lies
on the line segment joining (x2, y2) to the midpoint of the line segment joining (x1, y1) to (x3, y3).

10. If you’re doing this by hand, first simplify the denominator in the expression for x(t) and y(t) by realizing the sum of
the first and last terms is 1. In other words, (1 − t)2 + 2wt(1 − t) + t2 = 2wt(1 − t). Crank it through and find that
x′(0) = 2 w(x2 − x1, y2 − y1) and x′(1) = 2 w(x3 − x2, y3 − y2).

Let l0 be the tangent line to the curve at x(0). Then

l0(t) = x(0) + tx′(0) = (x1, y1) + 2wt(x2 − x1, y2 − y1).

This cries out for us to check out t = 1/(2 w). We see that

l0(1/(2 w)) = (x1, y1) + (x2 − x1, y2 − y1) = (x2, y2).

Similarly, let l1 be the tangent line to the curve at x(1). Then

l1(t) = x(1) + tx′(1) = (x3, y3) + 2wt(x3 − x2, y3 − y2).

At t = −1/(2 w) we see that

l1(−1/(2 w)) = (x3, y3) − (x3 − x2, y3 − y2) = (x2, y2).

In other words, the point (x2, y2) is on both of the tangent lines.
11. (a) Use part (b) of Exercise 9.

a = ‖x(1/2) − (x2, y2)‖ =

∥∥∥∥ 1

1 + w

(x1 + x3

2
+ wx2,

y1 + y3

2
+ wy2

)
− (x2, y2)

∥∥∥∥
=

∥∥∥∥
(

1

2(1 + w)

)
(x1 − 2x2 + x3, y1 − 2y2 + y3)

∥∥∥∥
=

(
1

2(1 + w)

)√
(x1 − 2x2 + x3)2 + (y1 − 2y2 + y3)2

(b) This is a similar calculation.

b =
∥∥∥x(1/2) −

(x1 + x3

2
,
y1 + y3

2

)∥∥∥
=

∥∥∥∥ 1

1 + w

(x1 + x3

2
+ wx2,

y1 + y3

2
+ wy2

)
−
(x1 + x3

2
,
y1 + y3

2

)∥∥∥∥
=

∥∥∥∥
(

w

2(1 + w)

)
(−x1 + 2x2 − x3,−y1 + 2y2 − y3)

∥∥∥∥
=

(
w

2(1 + w)

)√
(x1 − 2x2 + x3)2 + (y1 − 2y2 + y3)2

(c) It’s kind of amazing, but

b

a
=

(
w

2(1+w)

)√
(x1 − 2x2 + x3)2 + (y1 − 2y2 + y3)2(

1
2(1+w)

)√
(x1 − 2x2 + x3)2 + (y1 − 2y2 + y3)2

= w.
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12. (a) Start with y′ = 2x. So y′(−2) = −4 and y′(2) = 4. The two tangent lines y − 4 = −4(x + 2) and y − 4 = 4(x − 2)
can be rewritten as y = −4x − 4 and y = 4x − 4. The point of intersection is (0,−4) and so, by Exercise 10, this is the
third control point.

(b) The deal here is that we are actually going to end up with y = x2 between x = −2 and x = 2. Because x(1/2) must be on
the line segment connecting the control point we found in (a) to the midpoint of the the line segment connecting the other
two control points, it must be on the y-axis. The only point on the parabola that satisfies this is the origin. The constant w
is the ratio of the distance between (0, 0) and (0, 4) and the distance between (0, 0) and (0,−4). In this case, w = 1.

(c) The Bézier parametrization is {
x(t) = −2(1 − t)2 + 2t2 = 4t − 2

y(t) = 4(1 − t)2 − 4(2t)(1 − t) + 4t2 = (4t − 2)2.

13. (a) We have x′(t) =
(
cos t,− sin t + 1

2
cot t

2
sec2 t

2

)
. Using the double angle formula, we have

1
2

cot
t

2
sec2 t

2
=

1

2 sin t
2

cos t
2

=
1

sin t
.

Hence x′(t) =
(
cos t, 1

sin t
− sin t

)
. Thus, x′(t) = (0, 0) if and only if t = π/2.

(b) The tangent line to the tractrix at the point x(t0) is given by l(s) = x(t0) + sx′(t0). This line crosses the y-axis when
x = 0 and if we explicitly compute the first component of l(s), we see that the condition for crossing is

sin t0 + s cos t0 = 0 ⇔ s = − tan t0.

The length of the segment we seek is given by

‖l(− tan t0) − x(t0)‖ = ‖x(t0) − tan t0x′(t0) − x(t0)‖
= | tan t0|‖x′(t0)‖.

Using the work from part (a), the length of the segment is

| tan t0|
√

cos2 t0 + (csc t0 − sin t0)2 = | tan t0|
√

cos2 t0 + csc2 t0 − 2 + sin2 t0

= | tan t0|
√

csc2 t0 − 1 = | tan t0|| cot t0| = 1.

14. (a) Now we have y′(r) = (er,
√

1 − e2r) by the fundamental theorem of calculus. So the tangent line at the point y(r0) is
m(s) = y(r0) + sy′(r0). This line crosses the y-axis when x = 0 ⇔ er0 + ser0 = 0 ⇔ s = −1. As in Exercise 13, we
compute ‖m(−1) − y(r0)‖ = ‖y(r0) − y′(r0) − y(r0)‖ = ‖y′(r0)‖ =

√
e2r0 + 1 − e2r0 = 1.

(b) Note that, for ρ < 0, the integrand
√

1 − e2ρ is positive. Hence for r < 0, the integral
∫ r

0

√
1 − e2ρ dρ is negative. Since

the exponential er varies between 0 and 1 as r varies from −∞ to 0, we see that y covers just the bottom half of the
tractrix.

15. If r = f(θ), then we may write x(θ) = (f(θ) cos θ, f(θ) sin θ). Hence v = x′(θ) = (f ′(θ) cos θ − f(θ) sin θ, f ′(θ) sin θ +
f(θ) cos θ) and ‖v‖ =

√
f ′(θ)2 + f(θ)2 =

√
r′2 + r2. Also

a = x′′(θ) = (f ′′(θ) cos θ − 2f ′(θ) sin θ − f(θ) cos θ, f ′′(θ) sin θ + 2f ′(θ) cos θ − f(θ) sin θ).

If we calculate v × a, we find (after same algebra)

v × a = (−f(θ)f ′′(θ) + 2f ′(θ)2 + f(θ)2)k = (r2 − rr′′ + 2r′2)k.

Hence, using formula (17), we have

κ =
‖v × a‖
‖v‖3

=
|r2 − rr′′ + 2r′2|

(r2 + r′2)3/2
.

16. For the lemniscate r2 = cos 2θ, so that, differentiating with respect to θ, we have 2rr′ = −2 sin 2θ. Hence

r′ = −1

r
sin 2θ so r′2 =

1

r2
sin2 2θ =

sin2 2θ

cos 2θ
.

Thus
r2 + r′2 = cos 2θ +

sin2 2θ

cos 2θ
=

1

cos 2θ
.
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Now, if we differentiate the equation rr′ = − sin 2θ, we obtain

rr′′ + r′2 = −2 cos 2θ.

From Exercise 15, we must compute κ =
|r2 − rr′′ + 2r′2|

(r2 + r′2)3/2
. The denominator is easy; for the numerator, we have

r2 − rr′′ + 2r′
2

= r2 − (rr′′ + r′
2
) + 3r′

2

= cos 2θ − (−2 cos 2θ) +
3 sin2 2θ

cos 2θ

= 3 cos 2θ +
3 sin2 2θ

cos 2θ
=

3

cos 2θ
.

Hence κ(θ) =
|3/ cos 2θ|

(1/ cos 2θ)3/2
= 3

√
cos 2θ.

17. (a) The involute of x(t) = (a cos t, a sin t) is y(t) = (a cos t, a sin t) − at(− sin t, cos t).
(b) The circle and involute are shown below.
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18. We actually can afford to be a bit sloppy. Look first at y′(t) = x′(t) − s′(t)T(t) − s(t)T′(t). By the fundamental theorem
of calculus, s′(t) = ‖x′(t)‖ so s′(t)T(t) = x′(t). So we can now say that y′(t) = −s(t)T′(t). But by the Frenet–Serret
formulas, T′(t) = s′(t)κN. This means that y′(t) = −s(t)s′(t)κN. In other words, the tangent vector to the involute is in
the opposite direction to the normal vector to the curve, so the unit tangent vector to the involute at t is the opposite of the unit
normal vector N(t) to the original path x.

19. (a) This first conclusion is pretty much by definition. Analytically,

‖y(t) − x(t)‖ = ‖x(t) − s(t)T(t) − x(t)‖ = ‖s(t)T(t)‖ = |s(t)|‖T(t)‖ = |s(t)| = s(t).

This last fact follows because s(t) ≥ 0. Finally we note that s(t) is the distance traveled from x(t0) to x(t) along the
underlying curve of x.

(b) We calculated the distance from x to y in part (a). We should also observe that this is the distance along the tangent line
to x at time t as it included the point x(t) and was in the direction T(t). The conclusion follows—it is as if you are
unwinding a taut string from around x: at each point y(t) is at a point in the direction of the tangent to x(t) of distance
equal to the distance already traveled along x. In other words, the distance is equal to the string already unraveled.

20. (a) The tangent vector is T = x′(t)/‖x′(t)‖ = (1, 2t)/
√

1 + 4t2. The normal vector is in the xy-plane perpendicular to T,
pointing in the direction that T is changing: N = (−2t, 1)/

√
1 + 4t2. We’ll use the formula (from Section 3.2):

κ =
‖x′ × x′′‖
‖x′‖3

=
‖(1, 2t, 0) × (0, 2, 0)‖

‖(1, 2t, 0)‖3
=

‖(0, 0, 2)‖
(1 + 4t2)3/2

=
2

(1 + 4t2)3/2
.

(b) The formula for the evolute is:

y(t) = x(t) +
1

κ
N(t) = (t + (1 + 4t2)(−t), t2 + (1 + 4t2)/2) = (−4t3, 3t2 + 1/2).
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(c) In the figure below, the evolute increases in the opposite direction as the parabola. We can see that because the parabola
is “straightening out” so the curvature is decreasing so 1/κ is increasing. The evolute is made up of points distance 1/κ
from the parabola in the normal direction.
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21. The curvature of a circle of radius a is κ = 1/a. Recall from high school geometry that a tangent to a circle at a given point
is perpendicular to a radial line at that point. If the normal vector is oriented inward, then the evolute consists of points of
distance equal to the radius of the circle in the direction of the center of the circle. In other words, the evolute of a circle is the
center of that circle. Analytically, this is e(t) = x(t) + aN(t).

22. (a) Using a computer we get that the evolute of the ellipse (a cos t, b sin t) is(
cos t

[
a − b(b2 cos2 t + a2 sin2 t)

|ab|
]

, cos t

[
b − a(b2 cos2 t + a2 sin2 t)

|ab|
])

.

(b) An example when a = 3 and b = 4 is shown below. As a gets close to b the ellipse approaches a circle and the evolute
shrinks to a point.
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23. You may initially get an ugly looking expression. After some coaxing and explicit help, your computer algebra system should

be able to help you to find that N(t) =
1√
2

(
sin t√

1 − cos t
,−√

1 − cos t

)
and κ =

1

2
√

2a
√

1 − cos t
, and to reduce the

formula for your evolute of a cycloid to (at + a sin t, a cos t − a). This is another cycloid.
24. Punch this intoMathematica and you will get(

2a cos t(1 + a cos t) − 2a3(1 + a2 + 2a cos t)(cos t + a cos 2t)

|a2 + 2a4 + 3a3 cos t| ,

2a sin t(1 + a cos t) − a2(1 + 2a cos t)(1 + a2 + 2a cos t)

|a2 + 2a4 + 3a3 cos t|
)

.
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25. Assume that x is a unit speed curve. To get the direction of the tangent, consider e′(t) = x′(t)+(−1/κ2)κ′N(t)+(1/κ)N′(t).
By the Frenet–Serret equations, N′(t) = −κT since x is a planar curve. So we see what remains is e′(t) = (−1/κ2)κ′N(t).
This tells us that the unit tangent vector to the evolute is the parallel to the unit normal vector to the original path.

26. First, κ = ‖v × a‖/‖v‖3. We know that v is a unit vector so ‖v‖3 = 1. This means that κ = ‖v × a‖ and also that the
tangential component of acceleration is d

dt
‖v‖ = 0 so v is perpendicular to a. Finally, this means that ‖v× a‖ = ‖v‖‖a‖ = 1.

27. (a) [x′(s)]2 + [y′(s)]2 = [cos g(s)]2 + [sin g(s)]2 = 1.
(b) v(s) = (cos g(s), sin g(s)) and a(s) = (−g′(s) sin g(s), g′(s) cos g(s)) so

κ =
‖v × a‖
‖v‖3

= ‖(0, 0, g′(s))‖ = |g′(s)|.

(c) We use the defining equations with g′(s) = κ(s).
(d) There is more than one solution. For s ≥ 0 we have κ = s therefore, g(s) = s2/2 so

x(s) =

∫ s

0

cos(t2/2) dt and y(s) =

∫ s

0

sin(t2/2) dt.

For s < 0, one solution corresponds to g(s) = −s2/2 because for s < 0, g′(s) = −s = |s|. By formula (8) in
Section 3.2, κ will always be non-negative, so we can also take g(s) = s2/2 for s < 0. Because cosine is an even
function and sine is an odd function, our two solutions are

x(s) =

∫ s

0

cos(t2/2) dt and y(s) = ±
∫ s

0

sin(t2/2) dt.

(e) The graph of the clothoid is shown below.
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28. (a) −τN = dB/ds so if τ ≡ 0 then B is constant.
(b) The velocity v(0) is in the tangent direction T, so T lies in the xy-plane. The acceleration a(0) has components in the

direction of T and N and since a(0) and T are in the xy-plane, so is N. The binormal vector B must be length one and
perpendicular to the plane containing T and N, so B = ±k.

(c) Combining the results from parts (a) and (b), we know that B ≡ k or B ≡ −k. It is always true that v · B = 0 and
a · B = 0. In this case that is equivalent to v · k = 0 and a · k = 0. But v(t) · k = (x′(t), y′(t), z′(t)) · (0, 0, 1) = z′(t).
We conclude that z′(t) is always zero so z(t) is constant. Since we assumed that z(0) = 0, z(t) ≡ 0 and the path remains
in the xy-plane.

(d) Look at the plane determined by v(0) and a(0). By part (b), B will be perpendicular to that plane. By part (a), B will
be constant. Part (c) shows that motion will always be orthogonal to the direction of B. It is harder to see in this case,
but we can translate the problem so that x(0) is the origin and rotate so that a(0) and v(0) are in the xy-plane, make our
conclusions then translate and rotate the solution curve back.
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29. Note that we may write x(s) = (x(s), y(s), 0), where s is the arclength parameter.

(a) T = (x′(s), y′(s), 0), so N =
T′(s)

‖T′(s)‖ =
1√

x′′2 + y′′2 (x′′(s), y′′(s), 0). (Hence κ =
√

x′′2 + y′′2.) Thus

B = T × N =

(
0, 0,

x′y′′ − x′′y′

κ

)
= (0, 0,±1)

because B must be a unit vector. Now B must vary continuously, so either B = (0, 0, 1) or (0, 0,−1)—but in either case,
it must be constant.

(b) B′(s) = −τN. B is constant (by part (a)), so B′(s) = 0. Thus, since N is never zero, we may conclude that τ ≡ 0.
30. We have 0 = κ =

∥∥ dT
ds

∥∥. Thus dT/ds = 0 so T must be a constant vector. Since x is parametrized by arclength, x′(s) = T is
constant. We may integrate to find:

x(s) =

∫ s

s0

x′(σ) dσ + x(s0) =

∫ s

s0

T dσ + x(s0) = (s − s0)T + x(s0)

= sT + (x(s0) − s0T),

which is of the form sa + b ⇒ straight line.
31. (a) The plan is to find the curvature of the strake by finding the curvature of the helix along the pipe. The radius r will be the

reciprocal of this curvature (since the curvature of a circle of radius r is 1/r). The path is x(t) = (a cos t, a sin t, ht/2π)
so x′(t) = (−a sin t, a cos t, h/2π) and x′′(t) = (−a cos t,−a sin t, 0).

κ =
‖(−a sin t, a cos t, h)/2π × (−a cos t,−a sin t, 0)‖

‖(−a sin t, a cos t, h/2π)‖3
=

‖((ah/2π) sin t,−(ah/2π) cos t, a2)‖
(a2 + [h/2π]2)3/2

=
a
√

h2/4π2 + a2

(a2 + [h/2π]2)3/2
=

a

a2 + h2/4π2
so r =

(a2 + h2/4π2)

a
.

(b) If a = 3 and h = 25 then r = (9 + 625/4π2)/3 ≈ 8.2771.

32. Since x(t) = (a cos t, a sin t, bt) is not parametrized by arclength, we may rewrite it as x(s) =

(
a cos s√

a2+b2
,

a sin s√
a2+b2

, bs√
a2+b2

)
where s =

√
a2 + b2 t is arclength (see Example 3 in §3.2). Following Example 9, we have

T(s) =

(
− a√

a2 + b2
sin

s√
a2 + b2

,
a√

a2 + b2
cos

s√
a2 + b2

,
b√

a2 + b2

)
.

So the tangent spherical image is a circle of radius a/
√

a2 + b2 in the plane z = b/
√

a2 + b2.

N(s) =

(
− cos s√

a2+b2
,− sin s√

a2+b2
, 0

)
; normal spherical image is a unit circle in the xy-plane.

B(s) =

(
b√

a2+b2
sin s√

a2+b2
,− b√

a2+b2
cos s√

a2+b2
, a√

a2+b2

)
. Thus the binormal spherical image is a circle of radius

b/
√

a2 + b2 in the plane z = a/
√

a2 + b2.
33. By Example 7 of §3.2 and Exercise 30: x is a straight-line path ⇔ κ = 0 =

∥∥ dT
ds

∥∥ ⇔ T is constant.
34. By Exercises 28 and 29, x is a plane curve ⇔ B is constant.
35. N′ = −κT + τB by the Frenet–Serret formula. Now for N to be defined κ �= 0, so if τ = 0, then N′ = −κT �= 0 (hence N is

not constant). If τ �= 0, then for N′ to be 0, T and B would have to be parallel, which they aren’t.
36. (a) x(t) = r(t) cos θ(t)i + r(t) sin θ(t)j + z(t)k = r(t)(cos θ(t)i + sin θ(t)j) + z(t)k = r(t)er + z(t)ez .

(b) We prepare for part (c) by calculating:

der

dt
= −θ′(t) sin θ(t)i + θ′(t) cos θ(t)j = θ′(t)eθ,

deθ

dt
= −θ′(t) cos θ(t)i − θ′(t) sin θ(t)j = −θ′(t)er, and

dez

dt
= 0
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(c) We use the results of parts (a) and (b) to calculate:

v(t) =
d
dt

x(t) =
d
dt

[r(t)er + z(t)ez]

= r′(t)er + r(t)
der

dt
+ z′(t)ez + z(t)

dez

dt
= r′(t)er + r(t)θ′(t)eθ + z′(t)ez, and

a(t) =
d
dt

[r′(t)er + r(t)θ′(t)eθ + z′(t)ez]

= r′′(t)er + r′(t)θ′(t)eθ + r′(t)θ′(t)eθ + r(t)θ′′(t)eθ − r(t)[θ′(t)]2er + z′′(t)ez

= (r′′(t) − r(t)[θ′(t)]2)er + (2r′(t)θ′(t) + r(t)θ′′(t))eθ + z′′(t)ez.

37. x(t) = (sin 2t,
√

2 cos 2t, sin 2t − 2)
(a) The loop first closes up when t = π so the length of the loop is

Length =

∫ π

0

√
[2 cos 2t]2 + [−2

√
2 sin 2t]2 + [2 cos 2t]2 dt =

∫ π

0

2
√

2 dt = 2π
√

2.

(b) By Definition 3.2, the path is a flow line if x′(t) = F(x(t)). Here

x′(t) = (2 cos 2t,−2
√

2 sin 2t, 2 cos 2t) and F(x(t)) = (
√

2 cos 2t,−2 sin 2t,
√

2 cos 2t).

So x is a flow line of the vector field
√

2F(x, y, z) =
√

2yi − 2
√

2xj +
√

2yk.
38. Poor Livinia, she’s been caught in an oven back in Chapter 2, and now here in Chapter 3 she’s still looking to get warm.

(a) We saw in Section 2.6 that the gradient is the direction of quickest increase. Livinia should head in a direction parallel to
the gradient. In other words, at each point she should travel in the direction k∇T so x′(t) = k∇T so x is a path of k∇T
for k ≥ 0.

(b) If T (x, y, z) = x2 − 2y2 + 3z2 then ∇T = (2x,−4y, 6z). We also know that the initial position is (2, 3,−1). This
means that x′ = 2x and x(0) = 2 so x(t) = 2e2kt. Similarly, y(t) = 3e−4kt and z(t) = −e6kt. So the equation of the
path is x(t) = (2e2kt, 3e−4kt,−e6kt).

39. F = u(x, y)i − v(x, y)j is an incompressible, irrotational vector field and so ∇ · F = 0 and ∇× F = 0.
(a) The Cauchy–Riemann equations follow immediately from the assumptions:

0 = ∇ · F =
∂u

∂x
− ∂v

∂y
, so

∂u

∂x
=

∂v

∂y
, and

0 = (∇× F) · k = −∂v

∂x
− ∂u

∂y
, so

∂u

∂y
= −∂v

∂x

(b) Take the partial derivative with respect to x of both sides of the equation: ∂u

∂x
=

∂v

∂y
:

∂2u

∂x2
=

∂

∂x

∂v

∂y
=

∂

∂y

∂v

∂x
= − ∂

∂y

∂u

∂y
= −∂2u

∂y2
.

An analogous calculation shows the result for v.
40. F is a gradient field so F = ∇f(x(t)). Also F = ma. From Section 3.3 we know that if x is a path on an equipotential surface

of F then f (x(t)) is constant so d
dt

f(x(t)) = 0. So

0 =
d
dt

f(x(t)) = ∇f · d
dt

x(t) = ma · v.

From Section 3.2 formulas (14) and (16), we see that

ma · v = m ṡ s̈ =
1

2
m
d
dt

(ṡ2).
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So, since the derivative of ṡ2 = 0, we conclude that ṡ2 is constant and hence ṡ is constant.
41. Using Section 3.1, Exercise 28:

dl
dt

=
d
dt

(x × mv) =
dx
dt

× mv + x × m
dv
dt

= v × mv + x × ma

= 0 + x × ma = M.

42. If F is a central force, then F is always parallel to x. Hence M = x × F = 0, By Exercise 41, M = dl
dt

so l must be constant.
43. Notice that ∇ × F = (0, 2e−x cos z, 0) �= 0. If F were a gradient field ∇f of class C2, then, by Theorem 4.3, ∇ × F =

∇× (∇f) = 0.
44. Note that ∇ · F = y2 + 1 + ez + x2ez > 0 for all (x, y, z) ∈ R3. But if F = ∇× G, then ∇ · F = ∇ · (∇× G) ≡ 0 for any

vector field G of class C2. Thus F �= ∇× G.
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Chapter 4

Maxima and Minima in Several Variables

4.1 Differentials and Taylor’s Theorem

In Exercises 1–7 we will first calculate f(x), f ′(x), . . . , f (k)(x) and f(a), f ′(a), . . . , f (k)(a). Then we’ll plug into the formula
for Taylor’s theorem in one variable (Theorem 1.1 in the text):

pk(x) = f(a) + f ′(a)(x − a) + · · · + f (k)(a)

k!
(x − a)k.

1. Here a = 0 and k = 4:
f(x) = e2x f(0) = 1

f (n)(x) = 2ne2x f (n)(0) = 2n

so

p4(x) = 1 + 2x +
4

2
x2 +

8

6
x3 +

16

24
x4

= 1 + 2x + 2x2 +
4

3
x3 +

2

3
x4.

2. Here a = 0 and k = 3:
f(x) = ln(1 + x) f(0) = 0

f ′(x) =
1

1 + x
f ′(0) = 1

f ′′(x) = − 1

(1 + x)2
f ′′(0) = −1

f ′′′(x) = −2

( −1

(1 + x)3

)
f ′′′(0) = 2,

so

p3(x) = 0 + x − 1

2
x2 +

2

6
x3

= x − 1

2
x2 +

1

3
x3.

3. Here a = 1 and k = 4:
f(x) =

1

x2
f(1) = 1

f ′(x) = − 2

x3
f ′(1) = −2

f ′′(x) =
6

x4
f ′′(1) = 6

f ′′′(x) = −24

x5
f ′′′(1) = −24

f ′′′′(x) =
120

x6
f ′′′′(1) = 120,
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so

p4(x) = 1 − 2(x − 1) +
6

2
(x − 1)2 − 24

6
(x − 1)3 +

120

24
(x − 1)4

= 1 − 2(x − 1) + 3(x − 1)2 − 4(x − 1)3 + 5(x − 1)4.

Students sometimes forget that the Taylor polynomial depends on the choice of a. Some texts include the parameter a in the
notation to stress this fact. A nice way to remind your students of this dependence on a is to either assign Exercises 4 and 5 or 6
and 7 together.

We’ll do the scratch work for both Exercises 4 and 5 together:

f(x) =
√

x f(1) = 1 f(9) = 3

f ′(x) =
1

2
√

x
f ′(1) =

1

2
f ′(9) =

1

6

f ′′(x) =
−1

4x3/2
f ′′(1) = −1

4
f ′′(9) = − 1

108

f ′′′(x) =
3

8x5/2
f ′′′(1) =

3

8
f ′′′(9) =

1

648
.

4. Here a = 1 and k = 3 so, using the work above:

p3(x) = 1 +
1

2
(x − 1) − 1

8
(x − 1)2 +

1

16
(x − 1)3.

5. Here a = 9 and k = 3 so, using the work above:

p3(x) = 3 +
1

6
(x − 9) − 1

216
(x − 9)2 +

1

3888
(x − 9)3.

We’ll do the scratch work for both Exercises 6 and 7 together:

f(x) = sin x f(0) = 0 f(π/2) = 1

f ′(x) = cos x f ′(0) = 1 f ′(π/2) = 0

f ′′(x) = − sin x f ′′(0) = 0 f ′′(π/2) = −1

f ′′′(x) = − cos x f ′′′(0) = −1 f ′′′(π/2) = 0

f ′′′′(x) = sin x f ′′′′(0) = 0 f ′′′′(π/2) = 1

f ′′′′′(x) = cos x f ′′′′′(0) = 1 f ′′′′′(π/2) = 0.

6. Here a = 0 and k = 5 so, using the work above:

p5(x) = x − x3

6
+

x5

120
.

7. Here a = π/2 and k = 5 so, using the work above:

p5(x) = 1 − (x − π/2)2

2
+

(x − π/2)4

24
.

Three notes:

• It makes sense to assign Exercises 8, 9, 16, and 21 together as they explore the same function. Exercise 14 is a higher-
dimensional analogue.

• In Exercises 8–15, we again do the preliminary calculations and then substitute into the formulas given in Theorem 1.3

p1(x) = f(a) + Df(a)(x − a)

c© 2012 Pearson Education, Inc.



Section 4.1. Differentials and Taylor’s Theorem 197

and Theorem 1.5

p2(x) = f(a) +
n∑

i=1

fxi
(a)(xi − ai) +

1

2

n∑
i,j=1

fxixj
(a)(xi − ai)(xj − aj)

= p1(x) +
1

2

n∑
i,j=1

fxixj
(a)(xi − ai)(xj − aj).

• Just as in the one-variable versions of Taylor’s theorem, note the lower degree polynomials are contained in the expres-
sions for the higher degree ones.

We’ll do the scratch work for both Exercises 8 and 9 together:

f(x, y) =
1

x2 + y2 + 1
f(0, 0) = 1 f(1,−1) = 1/3

fx(x, y) =
−2x

(x2 + y2 + 1)2
fx(0, 0) = 0 fx(1,−1) = −2/9

fy(x, y) =
−2y

(x2 + y2 + 1)2
fy(0, 0) = 0 fy(1,−1) = 2/9

fxx(x, y) =
6x2 − 2y2 − 2

(x2 + y2 + 1)3
fxx(0, 0) = −2 fxx(1,−1) = 2/27

fyy(x, y) =
6y2 − 2x2 − 2

(x2 + y2 + 1)3
fyy(0, 0) = −2 fyy(1,−1) = 2/27

fxy(x, y) =
8xy

(x2 + y2 + 1)3
fxy(0, 0) = 0 fxy(1,−1) = −8/27

8. a = (0, 0) so, using the work above:

p1(x) = f(0, 0) + Df(0, 0)x = 1 and

p2(x) = p1(x) +
1

2
(fxx(0, 0)x2 + 2fxy(0, 0)xy + fyy(0, 0)y2)

= 1 − x2 − y2.

9. a = (1,−1) so, using the work above:

p1(x) = f(1,−1) + Df(1,−1)(x − (1,−1)) =
1

3
+

[
−2

9

2

9

] [
x − 1
y + 1

]

=
1

3
− 2(x − 1)

9
+

2(y + 1)

9
and

p2(x) = p1(x) +
1

2
(fxx(1,−1)(x − 1)2 + 2fxy(1,−1)(x − 1)(y + 1) + fyy(1,−1)(y + 1)2)

=
1

3
− 2(x − 1)

9
+

2(y + 1)

9
+

(x − 1)2

27
− 8(x − 1)(y + 1)

27
+

(y + 1)2

27
.

10. Here a = (0, 0) and
f(x, y) = e2x+y f(0, 0) = 1

fx(x, y) = 2e2x+y fx(0, 0) = 2

fy(x, y) = e2x+y fy(0, 0) = 1

fxx(x, y) = 4e2x+y fxx(0, 0) = 4

fyy(x, y) = e2x+y fyy(0, 0) = 1

fxy(x, y) = 2e2x+y fxy(0, 0) = 2,
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so

p1(x) = f(0, 0) + Df(0, 0)x = 1 + 2x + y and

p2(x) = 1 + 2x + y +
1

2
(4x2 + 2(2)xy + y2)

= 1 + 2x + y + 2x2 + 2xy +
y2

2

11. Here a = (0, π) and

f(x, y) = e2x cos 3y f(0, π) = −1

fx(x, y) = 2e2x cos 3y fx(0, π) = −2

fy(x, y) = −3e2x sin 3y fy(0, π) = 0

fxx(x, y) = 4e2x cos 3y fxx(0, π) = −4

fyy(x, y) = −9e2x cos 3y fyy(0, π) = 9

fxy(x, y) = −6e2x sin 3y fxy(0, π) = 0,

so

p1(x) = −1 − 2x and

p2(x) = −1 − 2x +
1

2
(−4x2 + 9(y − π)2)

= −1 − 2x − 2x2 +
9

2
(y − π)2.

12. Here a = (0, 0, 2) and

f(x, y, z) = ye3x + ze2y f(0, 0, 2) = 2

fx(x, y, z) = 3ye3x fx(0, 0, 2) = 0

fy(x, y, z) = e3x + 2ze2y fy(0, 0, 2) = 5

fz(x, y, z) = e2y fy(0, 0, 2) = 1

fxx(x, y, z) = 9ye3x fxx(0, 0, 2) = 0

fxy(x, y, z) = 3e3x fxy(0, 0, 2) = 3 = fyx(0, 0, 2)

fxz(x, y, z) = 0 fxz(0, 0, 2) = 0 = fzx(0, 0, 2)

fyy(x, y, z) = 4ze2y fyy(0, 0, 2) = 8

fyz(x, y, z) = 2e2y fyz(0, 0, 2) = 2 = fzy(0, 0, 2)

fzz(x, y, z) = 0 fyy(0, 0, 2) = 0,

so

p1(x) = 2 + 5y + 1(z − 2) = 5y + z and

p2(x) = 5y + z +
1

2
(6xy + 8y2 + 4y(z − 2))

= y + z + 3xy + 4y2 + 2yz.
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13. Here a = (2,−1, 1) and

f(x, y, z) = xy − 3y2 + 2xz f(2,−1, 1) = −1

fx(x, y, z) = y + 2z fx(2,−1, 1) = 1

fy(x, y, z) = x − 6y fy(2,−1, 1) = 8

fz(x, y, z) = 2x fy(2,−1, 1) = 4

fxx(x, y, z) = 0 fxx(2,−1, 1) = 0

fxy(x, y, z) = 1 fxy(2,−1, 1) = 1 = fyx(2,−1, 1)

fxz(x, y, z) = 2 fxz(2,−1, 1) = 2 = fzx(2,−1, 1)

fyy(x, y, z) = −6 fyy(2,−1, 1) = −6

fyz(x, y, z) = 0 fyz(2,−1, 1) = 0 = fzy(2,−1, 1)

fzz(x, y, z) = 0 fyy(2,−1, 1) = 0,

so

p1(x) = −1 + 1(x − 2) + 8(y + 1) + 4(z − 1) = 1 + x + 8y + 4z and

p2(x) = 1 + x + 8y + 4z +
1

2
(2(x − 2)(y + 1) + 4(x − 2)(z − 1) − 6(y + 1)2)

= xy − 3y2 + 2xz.

Note that the second-order polynomial matches the original function exactly. This makes sense, since f is itself a polynomial
of degree two.

14. Here a = (0, 0, 0) and there is quite a bit of symmetry so we’ll only calculate:

f(x, y, z) =
1

x2 + y2 + z2 + 1
f(0, 0, 0) = 1

fx(x, y, z) =
−2x

(x2 + y2 + z2 + 1)2
fx(0, 0, 0) = 0 = fy(0, 0, 0) = fz(0, 0, 0)

fxx(x, y, z) =
6x2 − 2y2 − 2z2 − 2

(x2 + y2 + z2 + 1)3
fxx(0, 0, 0) = −2 = fyy(0, 0, 0) = fzz(0, 0, 0)

fxy(x, y) =
8xy

(x2 + y2 + z2 + 1)3
fxy(0, 0, 0) = 0 = fxz(0, 0, 0) = fyz(0, 0, 0)

so

p1(x) = 1 and

p2(x) = 1 +
1

2
(−2x2 − 2y2 − 2z2)

= 1 − x2 − y2 − z2.

15. Again a = (0, 0, 0) and there is quite a bit of symmetry so we’ll only calculate:

f(x, y, z) = sin xyz f(0, 0, 0) = 0

fx(x, y, z) = yz cos xyz fx(0, 0, 0) = 0 = fy(0, 0, 0) = fz(0, 0, 0)

fxx(x, y, z) = −y2z2 sin xyz fxx(0, 0, 0) = 0 = fyy(0, 0, 0) = fzz(0, 0, 0)

fxy(x, y) = z cos xyz − xyz2 sin xyz fxy(0, 0, 0) = 0 = fxz(0, 0, 0) = fyz(0, 0, 0)

so p1(x) = 0 and p2(x) = 0.

16. From Exercise 8 we can read off that the Hessian Hf(0, 0) =

[ −2 0
0 −2

]
.
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17. f(x, y) = cos x sin y
fx(x, y) = − sin x sin y fy(x, y) = cos x cos y

fxx(x, y) = − cos x sin y fyx(x, y) = − sin x cos y

fxy(x, y) = − sin x cos y fyy(x, y) = − cos x sin y
so

Hf
(π

4
,
π

3

)
=

⎡
⎣ −

√
6

4
−

√
2

4

−
√

2
4

−
√

6
4

⎤
⎦ .

18. f(x, y, z) =
z√
xy

fx(x, y, z) = − z

2x3/2y1/2
fy(x, y, z) = − z

2x1/2y3/2
fz(x, y, z) =

1√
xy

fxx(x, y, z) =
3z

4x5/2y1/2
fyx(x, y, z) =

z

4x3/2y3/2
fzx(x, y, z) = − 1

3x3/2y1/2

fxy(x, y, z) =
z

4x3/2y3/2
fyy(x, y, z) =

3z

4x1/2y5/2
fzy(x, y, z) = − 1

2x1/2y3/2

fxz(x, y, z) = − 1

2x3/2y1/2
fyz(x, y, z) = − 1

2x1/2y3/2
fzz(x, y, z) = 0

so

Hf(1, 2,−4) =

⎡
⎢⎢⎣

− 3√
2

− 1

2
√

2
− 1

2
√

2

− 1

2
√

2
− 3

4
√

2
− 1

4
√

2

− 1

2
√

2
− 1

4
√

2
0

⎤
⎥⎥⎦ .

19. f(x, y, z) = x3 + x2y − yz2 + 2z3

fx(x, y, z) = 3x2 + 2xy fy(x, y, z) = x2 − z2 fz(x, y, z) = −2yz + 6z2

fxx(x, y, z) = 6x + 2y fyx(x, y, z) = 2x fzx(x, y, z) = 0

fxy(x, y, z) = 2x fyy(x, y, z) = 0 fzy(x, y, z) = −2z

fxz(x, y, z) = 0 fyz(x, y, z) = −2z fzz(x, y, z) = −2y + 12z

so

Hf(1, 0, 1) =

⎡
⎣ 6 2 0

2 0 −2
0 −2 12

⎤
⎦ .

20. f(x, y, z) = e2x−3y sin 5z

fx(x, y, z) = 2e2x−3y sin 5z fy(x, y, z) = −3e2x−3y sin 5z fz(x, y, z) = 5e2x−3y cos 5z

fxx(x, y, z) = 4e2x−3y sin 5z fyx(x, y, z) = −6e2x−3y sin 5z fzx(x, y, z) = 10e2x−3y cos 5z

fxy(x, y, z) = −6e2x−3y sin 5z fyy(x, y, z) = 9e2x−3y sin 5z fzy(x, y, z) = −15e2x−3y cos 5z

fxz(x, y, z) = 10e2x−3y cos 5z fyz(x, y, z) = −15e2x−3y cos 5z fzz(x, y, z) = −25e2x−3y sin 5z

so

Hf(0, 0, 0) =

⎡
⎣ 0 0 10

0 0 −15
10 −15 0

⎤
⎦ .

For Exercises 21–25 you’ll need formula (10): p2(x) = f(a) + Df(a)h + (1/2)hTHf(a)h where h = x − a.

21. Use the work from Exercises 8 and 16:

p2(x) = f(0, 0) + Df(0, 0)x +
1

2
xT

[ −2 0
0 −2

]
x

= 1 +
1

2

[
x y

] [ −2 0
0 −2

] [
x
y

]
.
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22. Use the work from Exercise 11:

p2(x, y) = f(0, π) + Df(0, π)

[
x

y − π

]
+

1

2

[
x y − π

]
Hf(0, π)

[
x

y − π

]

= −1 +
[ −2 0

] [ x
y − π

]
+

1

2

[
x y − π

] [ −4 0
0 9

] [
x

y − π

]
.

23. Use the work from Exercise 12:

p2(x, y, z) = f(0, 0, 2) + Df(0, 0, 2)

⎡
⎣ x

y
z − 2

⎤
⎦ +

1

2

[
x y z − 2

]
Hf(0, 0, 2)

⎡
⎣ x

y
z − 2

⎤
⎦

= 2 +
[

0 5 1
] ⎡⎣ x

y
z − 2

⎤
⎦ +

1

2

[
x y z − 2

] ⎡⎣ 0 3 0
3 8 2
0 2 0

⎤
⎦
⎡
⎣ x

y
z − 2

⎤
⎦ .

24. Use the work from Exercise 19:

p2(x) = f(1, 0, 1) + Df(1, 0, 1)(x − (1, 0, 1)) +
1

2
(x − (1, 0, 1))T

[ −2 0
0 −2

]
(x − (1, 0, 1))

= 3 +
[

3 0 6
] ⎡⎣ x − 1

y
z − 1

⎤
⎦ +

1

2

[
x − 1 y z − 1

] ⎡⎣ 6 2 0
2 0 −2
0 −2 12

⎤
⎦
⎡
⎣ x − 1

y
z − 1

⎤
⎦ .

Exercises 25 and 26 are related and could be assigned together. To make it a cohesive single problem, you may want to tell the
students to use the function from Exercise 26 in place of the function given in Exercise 25.

25. The function is f(x1, x2, . . . , xn) = ex1+2x2+···+nxn .
(a) Df(x1, x2, . . . , xn) = ex1+2x2+···+nxn

[
1 2 · · · n

]
, and therefore Df(0, 0, . . . , 0) =

[
1 2 · · · n

]
.

Taking second derivatives and evaluating at the origin results in:

Hf(0, 0, . . . , 0) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 3 · · · n
2 4 6 · · · 2n
3 6 9 · · · 3n

...
...

...
. . . ...

n 2n 3n · · · n2

⎤
⎥⎥⎥⎥⎥⎥⎦ .

(c) Since (c) follows immediately from (a) we will skip (b) for a moment.

p2(x) = f(0, 0, . . . , 0) + Df(0, 0, . . . , 0)x +
1

2
xTHf(0, 0, . . . , 0)x

= 1 +
[

1 2 · · · n
]
⎡
⎢⎢⎢⎣

x1

x2

...
xn

⎤
⎥⎥⎥⎦ +

1

2

[
x1 x2 · · · xn

]
⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 3 · · · n
2 4 6 · · · 2n
3 6 9 · · · 3n

...
...

...
. . . ...

n 2n 3n · · · n2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1

x2

...
xn

⎤
⎥⎥⎥⎦ .

(b) Now we can read the answer to (b) right off of our answer to (c).

p1(x) = 1 + x1 + 2x2 + · · · + nxn and

p2(x) = 1 + x1 + 2x2 + · · · + nxn +
1

2

n∑
i,j=1

ijxixj .
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26. This is an extension of a special case of Exercise 25. Note that fxixjxk
(0, 0, 0) = ijk so

p3(x) = 1 + x + 2y + 3z +
1

2
(x2 + 4y2 + 9z2 + 4xy + 6xz + 12yz)

+
1

6
(x3 + 8y3 + 27z3 + 6x2y + 9x2z + 12xy2 + 36y2z + 27xz2 + 54yz2 + 36xyz).

27. Df(x, y, z) =
[

4x3 + 3x2y − z2 + 2xy + 3y x3 + 6y2 + x2 + 3x −2xz − 1
]

and

Hf(x, y, z) =

⎡
⎣ 12x2 + 6xy + 2y 3x2 + 2x + 3 −2z

3x2 + 2x + 3 12y 0
−2z 0 −2x

⎤
⎦ .

The only non-zero third derivatives are

fxxx(x, y, z) = 24x + 6y fxxy(x, y, z) = 6x + 2

fxzz(x, y, z) = −2 fyyy(x, y, z) = 12

and their permutations.

(a) Here a = (0, 0, 0) so f(0, 0, 0) = 2, Df(0, 0, 0) =
[

0 0 −1
]
, and Hf(0, 0, 0) =

⎡
⎣ 0 3 0

3 0 0
0 0 0

⎤
⎦.

p3(x) = 2 − z + 3xy +
1

6
(6x2y − 6xz2 + 12y3)

= 2 − z + 3xy + x2y − xz2 + 2y3.

(b) Here f(1,−1, 0) = −4,Df(1,−1, 0) =
[ −4 11 −1

]
, and Hf(1,−1, 0) =

⎡
⎣ 4 8 0

8 −12 0
0 0 −2

⎤
⎦.

p3(x) = −4 − 4(x − 1) + 11(y + 1) − z

+
1

2
[4(x − 1)2 + 16(x − 1)(y + 1) − 12(y + 1)2 − 2z2]

+
1

6
[18(x − 1)3 + 3(8)(x − 1)2(y + 1) − 3(2)(x − 1)z2 + 12(y + 1)3]

= −4 − 4(x − 1) + 11(y + 1) − z + 2(x − 1)2 + 8(x − 1)(y + 1) − 6(y + 1)2 − z2

+ 3(x − 1)3 + 4(x − 1)2(y + 1) − (x − 1)z2 + 2(y + 1)3.

Exercises 28 and 32 are used in Exercise 33 (a) and (b). From Definition 1.4, the total differential of f is

df(a, h) =
n∑

i=1

∂f

∂xi
(a) dxi.

28. f(x, y) = x2y3 so df(x, y, h) = 2xy3 dx + 3x2y2 dy.
29. f(x, y, z) = x2 + 3y2 − 2z3 so df(x, y, z, h) = 2x dx + 6y dy − 6z2 dz.
30. f(x, y, z) = cos(xyz) so df(x, y, z, h) = −yz sin(xyz) dx − xz sin(xyz) dy − xy sin(xyz) dz.
31. f(x, y, z) = ex cos y + ey sin z so df(x, y, z, h) = ex cos y dx + (−ex sin y + ey sin z) dy + ey cos z dz.
32. f(x, y, z) = 1/

√
xyz so df(x, y, z, h) = − 1

2
(xyz)−3/2(yz dx + xz dy + xy dz).

33. (a) Use the function from Exercise 28: f(x, y) = x2y3 with x = 7, y = 2, dx = .07, and dy = −.02. So

(7.07)2(1.98)3 ≈ 7223 + df((7, 2), (.07,−.02)) = 2(7)(23)(.07) + 3(72)(22)(−.02)

= −3.92.
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(b) Use the function from Exercise 32: f(x, y, z) = 1/
√

xyz with x = 4, y = 2, z = 2, dx = .1, dy = −.04,
and dz = .05. So

1√
(4.1)(1.96)(2.05)

≈ 1√
(4)(2)(2)

− 1

2
(16)−3/2(4(.1) + 8(−.04) + 8(.05))

=
1

4
− 1

128
(.48) = .24625.

(c) Here the function is f(x, y, z) = x cos(yz) with x = 1, y = π, z = 0, dx = .1, dy = −.03, and dz = .12. So

(1.1) cos((π − 0.03)(0.12)) ≈ 1 + (cos 0)(.1) − (π sin 0)(.12) = 1.1.

34. dg(x, y, z, h) = (3x2 − 2y + 2xz) dx + (−2x) dy + (x2 + 7) dz, so dg(1,−2, 1, h) = 9 dx− 2 dy + 8 dz. This means that
changes in x have the most effect.

35. Although students will probably solve this more formally, they should see that, intuitively, changes in the upper left entry are
multiplied by the largest number so that is the entry for which the value of the determinant is most sensitive.

36. r = 2, dr = .1, h = 3, and dh = .05.
(a) V = πr2h, so dV = 2πrh dr + πr2 dh = 2π(2)(3)(.1) + π(22)(.05) = 1.4π.
(b) S = 2πrh + 2πr2, so dS = (2πh + 4πr) dr + 2πr dh = (2π(3) + 4π(2))(.1) + 2π(2)(.05) = 1.6π.

37. Let x denote the diameter of the can, y the height. Then the volume V is given by

V = π
(x

2

)2

y =
π

4
x2y.

The change in volume, ΔV , that occurs when x and y are changed by small amounts dx and dy is given approximately by the
differential:

ΔV ≈ dV =
π

2
xy dx +

π

4
x2 dy.

When x = 5 and y = 12 this becomes

dV = π

(
30 dx +

25

4
dy

)
.

If x is decreased by 0.5 cm, so that dx = −0.5, then

dV = π

(
−15 +

25

4
dy

)
.

For dV to be zero (which represents approximately no change in volume), we see that

dy =
60

25
= 2.4 cm.

38. (a) The area A is given by

A =
1

2
ab sin θ, so dA =

1

2
b sin θ da +

1

2
a sin θ db +

1

2
ab cos θ dθ.

With a = 3, b = 4, and θ = π/3, this becomes

dA =
√

3 da +
3
√

3

4
db + 3 dθ.

Thus, at these values, the area is most sensitive to changes in the angle θ.
(b) We use the differential appearing in part (a):

ΔA ≈ dA =
√

3 da +
3
√

3

4
db + 3 dθ.

If the measurement of a is in error by at most 5%, then

|da| ≤ 0.05(3) = 0.15.

Similarly,
|db| ≤ 0.05(4) = 0.2 and |dθ| ≤ 0.02

(π

3

)
= 0.006π.
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Hence the maximum error that results in the calculated value of the area is

|dA| ≤
√

3(0.15) +
3
√

3

4
(0.2) + 0.02π ≈ 0.58245 cm2.

The percentage error that this represents is calculated as

|dA|
A

≤ 0.58245

3
√

3
≈ 0.112,

or 11.2%.
39. We are told that dr = dh and know that V = (1/3)πr2h. So dV = (2/3)πrh dr + (1/3)πr2dh = (28π/3) dr. Now we

want |dV | to be at most .2 so |dV | = (28π/3)|dr| ≤ .2 or |dr| ≤ .3/(14π) ≈ .0068209.
40. V = xyz where x = 3, y = 4, z = 2 and we assume that dx = dy = dz. So dV = (4)(2) dx + (3)(2) dy + (3)(4) dz =

26dx. We want |dV | ≤ .2 so |dx| ≤ .2/26 ≈ .00769. This is a percentage error of .2/24 = .8333%.
41. (a) We do the preliminary calculations:

f(x, y) = cos x sin y f(0, π/2) = 1

fx(x, y) = − sin x sin y fx(0, π/2) = 0

fy(x, y) = cos x cos y fy(0, π/2) = 0

fxx(x, y) = − cos x sin y fxx(0, π/2) = −1

fyy(x, y) = − cos x sin y fyy(0, π/2) = −1

fxy(x, y) = − sin x cos y fxy(0, π/2) = 0

So p2(x) = 1 − x2/2 − (y − π/2)2/2.
(b) We’ll just follow the estimate in Example 12 in the text: “since all partial derivatives of f will be the product of sines and

cosines and hence no larger than 1 in magnitude” and |h1| and |h2| are each no more than .3,

|R2(0, π/2, h1, h2)| ≤ 1

6
(|h1|3 + 3h2

1|h2| + 3|h1|h2
2 + |h2|3) ≤ 1

6
(8 · (0.3)3) = .036.

42. (a) We do the preliminary calculations:

f(x, y) = ex+2y f(0, 0) = 1

fx(x, y) = ex+2y fx(0, 0) = 1

fy(x, y) = 2ex+2y fy(0, 0) = 2

fxx(x, y) = ex+2y fxx(0, 0) = 1

fyy(x, y) = 4ex+2y fyy(0, 0) = 4

fxy(x, y) = 2ex+2y fxy(0, 0) = 2.

So p2(x) = 1 + x + 2y + x2/2 + 2xy + 2y2.
(b) This time each third derivative has a factor of ex+2y in it. Each derivative with respect to y brings out an additional factor

of two. Here |h1| and |h2| are no more than .1 and on our set ex+2y ≤ e.3 < 2. So

|R2(0, 0, h1, h2)| ≤ (2)
1

6
(|h1|3 + 6h2

1|h2| + 12|h1|h2
2 + 8|h2|3) ≤ 1

3
(27 · (0.1)3) = .009.

43. (a) The preliminary calculations for f(x, y) = e2x cos y are

f(x, y) = e2x cos y f(0, π/2) = 0

fx(x, y) = 2e2x cos y fx(0, π/2) = 0

fy(x, y) = −e2x sin y fy(0, π/2) = −1

fxx(x, y) = 4e2x cos y fxx(0, π/2) = 0

fxy(x, y) = −2e2x sin y fxy(0, π/2) = −2 = fyx(0, π/2)

fyy(x, y) = −e2x cos y fyy(0, π/2) = 0.
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Thus
p2(x, y, z) = −

(
y − π

2

)
+

1

2

(
−4x

(
y − π

2

))
=

π

2
− y − 2x

(
y − π

2

)
.

(b) The eight third-order partial derivatives are:

fxxx(x, y) = 8e2x cos y

fxxy(x, y) = −4e2x sin y = fxyx(x, y) = fyxx(x, y)

fxyy(x, y) = −2e2x cos y = fyxy(x, y) = fyyx(x, y)

fyyy(x, y) = e2x sin y,

Lagrange’s form of the remainder tells us that

∣∣∣R2

(
x, y, 0,

π

2

)∣∣∣ = 1

3!

∣∣∣∣∣∣
2∑

i,j,k=1

fxixjxk
(z)hihjhk

∣∣∣∣∣∣ ,
where z is a point on the line segment joining (0, π/2) and (x, y). Note that the exponential function e2x increases with
x and the sine and cosine have maximum values of 1. Thus

|fxxx(x, y)| ≤ 8e0.4,

and similar results apply to the other third-order partials. Hence∣∣∣R2

(
x, y, 0,

π

2

)∣∣∣ ≤ 1

6

(
8e0.4|h1|3 + 3 · 4e0.4|h1|2|h2| + 3 · 2e0.4|h1| |h2|2 + e0.4|h2|3

)
=

e0.4

6

(
8|h1|3 + 12|h1|2|h2| + 6|h1| |h2|2 + |h2|3

)
.

If |h1| ≤ 0.2 and |h2| ≤ 0.1, then

∣∣∣R2

(
x, y, 0,

π

2

)∣∣∣ ≤ e0.4

6
(8(0.008) + 12(0.004) + 6(0.002) + 0.001) ≈ 0.03108.

4.2 Extrema of Functions

1. f(x, y) = 4x + 6y − 12 − x2 − y2 so fx(x, y) = 4 − 2x, fy(x, y) = 6 − 2y, fxx(x, y) = −2, fxy(x, y) = 0, and
fyy(x, y) = −2.
(a) To find the critical point we will set each of the first partial derivatives equal to 0 and solve: fx(x, y) = 0 when 4−2x = 0

or when x = 2 and fy(x, y) = 0 when 6 − 2y = 0 or when y = 3. So f has a unique critical point at (2, 3).
(b) The increment

Δf = f(2 + Δx, 3 + Δy) − f(2, 3)

= 4(2 + Δx) + 6(3 + Δy) − 12 − (2 + Δx)2 − (3 + Δy)2

− (4(2) + 6(3) − 12 − 22 − 32) = −(Δx)2 − (Δy)2.

This tells us that little changes in x and/or y result in a decrease in the value of f . This means that f must have a local
maximum at (2, 3).

(c) The Hessian isHf(2, 3) =

[ −2 0
0 −2

]
so d1 = −2 and d2 = 4 so by the second derivative test, f has a local maximum

at (2, 3).
2. g(x, y) = x2 − 2y2 + 2x + 3 so gx(x, y) = 2x + 2, gy(x, y) = −4y, gxx(x, y) = 2, gxy(x, y) = 0, and gyy(x, y) = −4.

(a) To find the critical point we will set each of the first partial derivatives equal to 0 and solve: gx(x, y) = 0 when 2x+2 = 0
or when x = −1 and gy(x, y) = 0 when −4y = 0 or when y = 0. So g has a unique critical point at (−1, 0).
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(b) The increment

Δg = g(−1 + Δx, Δy) − g(−1, 0)

= (−1 + Δx)2 − 2(Δy)2 + 2(−1 + Δx) + 3 − ((−1)2 + 2(−1) + 3)

= (Δx)2 − 2(Δy)2.

This tells us that any changes in x result in an increase in the value of g and little changes in y result in a decrease in the
value of g. This means that f must have a saddle at (−1, 0).

(c) The Hessian is Hg(−1, 0) =

[
2 0
0 −4

]
so d1 = 2 and d2 = −8, so by the second derivative test, g has a saddle at

(−1, 0).

In Exercises 3–20, most of the mistakes will be algebra mistakes made in solving for the critical points. For Exercises 3–14,
you are using the familiar rule for the second derivative test at a point a = (a, b) where fx(a) = 0 = fy(a). The determinant of
the Hessian is often referred to as the discriminant:

D(a, b) = |Hf(a, b)| = fxx(a, b)fyy(a, b) − [fxy(a, b)]2.

The second derivative test (see Example 5) is then

• if D(a, b) > 0 and

if fxx(a, b) > 0 then f has a local minimum at (a, b)
if fxx(a, b) < 0 then f has a local maximum at (a, b)

• if D(a, b) < 0 then f has a saddle at (a, b).
• Otherwise the test tells us nothing.

In many calculus classes students never see the extension of this test to higher dimensions. In Exercises 15–20, the students will
need to use the R3 version of the second derivative test.

3. f(x, y) = 2xy − 2x2 − 5y2 + 4y − 3, so fx(x, y) = 2y − 4x and fy(x, y) = 2x− 10y + 4. At a critical point 2y − 4x = 0
so y = 2x. Also 4 = 10y − 2x = 10y − y = 9y so y = 4/9 and x = 2/9. So f has a critical point at (2/9, 4/9).

We easily calculate the Hessian Hf =
[ −4 2

2 −10

]
so d1 = −4 and d2 = 36. So f has a local maximum at (2/9, 4/9).

4. f(x, y) = ln(x2 + y2 + 1), so fx(x, y) =
2x

x2 + y2 + 1
and fy(x, y) =

2y

x2 + y2 + 1
. The only critical point of f is at the

origin.

The second derivatives are fxx(x, y) =
−2x2 + 2y2 + 2

(x2 + y2 + 1)2
, fyy(x, y) =

2x2 − 2y2 + 2

(x2 + y2 + 1)2
, and also

fxy(x, y) =
4xy

(x2 + y2 + 1)2
. At the origin, the Hessian Hf(0, 0) =

[
2 0
0 2

]
so d1 = 2 and d2 = 4. So f has a local

minimum at (0, 0).
5. f(x, y) = x2 + y3 − 6xy + 3x + 6y, so fx(x, y) = 2x − 6y + 3 and fy(x, y) = 3y2 − 6x + 6. At a critical point for f ,

2x = 6y − 3 and 0 = 3y2 − 6x + 6 so 0 = y2 − 2x + 2. Substituting, 0 = y2 − 6y + 5 = (y − 1)(y − 5). We have critical
points at (3/2, 1) and (27/2, 5).
The second derivatives are fxx(x, y) = 2, fyy(x, y) = 6y, and fxy(x, y) = −6. d1 = 2 and d2 = 12y − 36. In other words,
d1 is always positive and d2 is positive when y = 5 and negative when y = 1 so by the second derivative test f has a saddle
point at (3/2, 1) and f has a local minimum at (27/2, 5).

6. f(x, y) = y4 − 2xy2 + x3 − x, so fx(x, y) = −2y2 + 3x2 − 1 and fy(x, y) = 4y3 − 4xy = 4y(y2 − x). At a critical point
for f , y = 0 or y2 = x. If y = 0 then x = ±1/

√
3. If y2 = x then 0 = 3x2 − 2x− 1 = (3x + 1)(x− 1). This gives us that

x = 1 or x = −1/3 but x can’t be negative. So there are four critical points for f : (±1/
√

3, 0), and (1,±1).
The second derivatives are fxx(x, y) = 6x, fyy(x, y) = 12y2 − 4x, and fxy(x, y) = −4y. d1 = 6x and d2 = 8(9xy2 −
2y2 − 3x2). We’ll calculate di at each critical point to classify them:

Critical Point d1 d2 Classification
(1/

√
3, 0) 6/

√
3 −8 saddle

(−1/
√

3, 0) −6/
√

3 −8 saddle
(1,−1) 6 32 local minimum
(1, 1) 6 32 local minimum
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7. f(x, y) = xy +
8

x
+

1

y
, so fx(x, y) = y − 8

x2
and fy(x, y) = x− 1

y2
. At a critical point for f , x =

1

y2
and y =

8

x2
= 8y4

so 0 = y(8y3 − 1) so either y = 0 or y = 1/2. Since y = 0 is not in the domain of f , the only critical point of f is at (4, 1/2).

The second derivatives are fxx(x, y) =
16

x3
, fyy(x, y) =

2

y3
, and fxy(x, y) = 1. d1 =

16

x3
and d2 =

32

x3y3
− 1. At our

critical point both d1 and d2 are positive so (4, 1/2) is a local minimum.
8. f(x, y) = ex sin y so fx(x, y) = ex sin y and fy(x, y) = ex cos y. There are no values of x and y for which both first partials

are 0 so there are no critical points.
9. f(x, y) = e−y(x2 − y2), so fx(x, y) = 2xe−y and fy(x, y) = −e−y(x2 − y2 + 2y). At a critical point for f , x = 0 and

0 = −y2 + 2y = −y(y − 2) so the critical points of f are at (0, 0) and (0, 2).
The second derivatives are fxx(x, y) = 2e−y , fyy(x, y) = e−y(x2 − y2 + 4y − 2), and fxy(x, y) = −2xe−y . d1 > 0 and
d2(0, y) = −2e−2y(y2 − 4y + 2). In other words, d1 is always positive and d2 is negative when y = 0 and positive when
y = 2 so by the second derivative test f has a saddle point at (0, 0) and f has a local minimum at (0, 2).

10. f(x, y) = x + y − x2y − xy2, so fx(x, y) = 1− 2xy − y2 and fy(x, y) = 1− 2xy − x2. At a critical point for f , x2 = y2

so x = ±y. If x = y, then 0 = 1− 2xy − y2 = 1− 3x2 so x = y = ±1/
√

3. If x = −y, then 0 = 1− 2xy − y2 = 1 + y2

for which there are no real solutions. So the critical points for f are ±(1/
√

3, 1/
√

3).
The second derivatives are fxx(x, y) = −2y, fyy(x, y) = −2x, and fxy(x, y) = −2x − 2y. d1 = −2y and d2 =
−4x2 − 4xy − 4y2. At the critical points d2 is negative and d1 is non-zero so f has a saddle point at both ±(1/

√
3, 1/

√
3).

11. f(x, y) = x2 − y3 − x2y + y, so fx(x, y) = 2x − 2xy = 2x(1 − y) and fy(x, y) = −3y2 − x2 + 1. At a critical point for
f , either x = 0 or y = 1. When x = 0, y must be ±1/

√
3. No solution corresponds to y = 1, So the critical points for f are

(0,±1/
√

3).
The second derivatives are fxx(x, y) = 2 − 2y, fyy(x, y) = −6y, and fxy(x, y) = −2x. d1 = 2 − 2y and d2 =
−12y + 12y2 − 4x2. At (0,−1/

√
3), d1 is positive and d2 is positive so f has a local minimum at (0,−1/

√
3). At

(0, 1/
√

3), d1 is positive and d2 is negative so f has a saddle point at (0, 1/
√

3).
12. f(x, y) = e−x(x2 + 3y2), so fx(x, y) = (2x−x2 − 3y2)e−x and fy(x, y) = 6ye−x. From fy we see that at a critical point

for f , we must have y = 0. Plugging back into fx we conclude that there are critical points at (0, 0) and at (2, 0).
The second derivatives are fxx(x, y) = (2 − 4x + x2 + 3y2)e−x, fyy(x, y) = −6e−x, and fxy(x, y) = −6ye−x. d1 =
(2 − 4x + x2 + 3y2)e−x and d2 = 6e−2x(1 − 4x + x2 − 3y2). At (0, 0), d1 and d2 are positive so f has a local minimum
at (0, 0). At (2, 0), d1 and d2 are negative so f has a saddle point at (2, 0).

13. f(x, y) = 2x − 3y + ln xy, so fx(x, y) = 2 + 1/x and fy(x, y) = −3 + 1/y. The critical point is (−1/2, 1/3).
The second derivatives are fxx(x, y) = −1/x2, fyy(x, y) = −1/y2, and fxy(x, y) = 0. d1 = −1/x2 and d2 = 1/x2y2. At
(−1/2, 1/3), d1 is negative and d2 is positive so f has a local max at (−1/2, 1/3).

14. f(x, y) = cos x sin y, so fx(x, y) = − sin x sin y and fy(x, y) = cos x cos y. The critical points are of the form (nπ, π/2 +
mπ) and (π/2 + nπ, mπ) where m and n are integers.
The second derivatives are fxx(x, y) = − cos x sin y, fyy(x, y) = − cos x sin y, and fxy(x, y) = − sin x cos y. d1 =
− cos x sin y and d2 = cos2 x sin2 y − sin2 x cos2 y. At points of the form (nπ, π/2 + mπ), d1 alternates between negative
and positive values while d2 is positive so f has an alternating string of local maxs and mins at such points. At the point
(0, π/2), for example, f has a local max. At points of the form (π/2 + nπ, mπ), d1 = 0 and d2 is negative so such points
are saddle points.

15. f(x, y, z) = x2 − xy + z2 − 2xz + 6z, so fx(x, y, z) = 2x − y − 2z, fy(x, y, z) = −x and fz(x, y, z) = 2z − 2x + 6.
From the second equation, x = 0. From the third, then, z = −3 and from the first it follows that y = 6.
The second derivatives are fxx(x, y, z) = 2, fyy(x, y, z) = 0, fzz(x, y, z) = 2, fxy(x, y, z) = −1, fxz(x, y, z) = −2 and
fyz(x, y, z) = 0. d1 = 2, d2 = −1 and d3 = −2 so f has a saddle point at (0, 6,−3).

16. f(x, y, z) = (x2+2y2+1) cos z, so fx(x, y, z) = 2x cos z, fy(x, y, z) = 4y cos z and fz(x, y, z) = −(x2+2y2+1) sin z.
From the third equation, z = nπ. The other two equations imply that x and y both are 0. So the critical points are of the form
(0, 0, nπ).
The second derivatives are fxx(x, y, z) = 2 cos z, fyy(x, y, z) = 4 cos z, fzz(x, y, z) = −(x2+2y2+1) cos z, fxy(x, y, z) =
0, fxz(x, y, z) = −2x sin z and fyz(x, y, z) = −4y sin z. d1 = 2 cos z and d2 = 8 cos2 z. It is easier to calculate d3 at our
critical point. In this case d3(0, 0, nπ) = ∓8 while d1(0, 0, nπ) = ±2, d2 = 8. So f has saddle points at (0, 0, nπ).

17. f(x, y, z) = x2 + y2 + 2z2 + xz so fx(x, y, z) = 2x + z, fy(x, y, z) = 2y, and fz(x, y, z) = 4z + x. It is easy to see that
the only critical point is at the origin.

The Hessian is Hf =

⎡
⎣ 2 0 1

0 2 0
1 0 4

⎤
⎦ so d1 = 2, d2 = 4, and d3 = 14. By the second derivative test, f has a local minimum
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at (0, 0, 0).
18. f(x, y, z) = x3 + xz2 − 3x2 + y2 + 2z2 so fx(x, y, z) = 3x2 + z2 − 6x, fy(x, y, z) = 2y, and fz(x, y, z) = 2xz +

4z = 2z(x + 2). We see immediately that at a critical point of f , y = 0 and either z = 0 or x = −2. If z = 0 then
0 = 3x2 − 6x = 3x(x− 2) so x = 0 or x = 2. If x = −2 then z2 = −24 for which there are no real solutions. We conclude
that f has critical points at (0, 0, 0) and (2, 0, 0).

The Hessian is Hf =

⎡
⎣ 6x − 6 0 2z

0 2 0
2z 0 2x + 4

⎤
⎦ so Hf(x, 0, 0) =

⎡
⎣ 6x − 6 0 0

0 2 0
0 0 2x + 4

⎤
⎦. This makes it easier to calcu-

late d1(x, 0, 0) = 6x − 6, d2(x, 0, 0) = 2d1(x, 0, 0), and d3(x, 0, 0) = (2x + 4) d2. At (0, 0, 0) all three di’s are negative
and at (2, 0, 0) all three are positive. By the second derivative test, f has a saddle point at (0, 0, 0) and a local minimum at (2,
0, 0).

19. f(x, y, z) = xy + xz + 2yz +
1

x
so fx(x, y, z) = y + z − 1

x2
, fy(x, y, z) = x + 2z, and fz(x, y, z) = x + 2y. We see

immediately that at a critical point of f , y = z so both 2z = −x and 2z =
1

x2
so −x =

1

x2
so x = −1. Therefore, f has a

critical point at (−1, 1/2, 1/2).

The Hessian is Hf =

⎡
⎣ 2/x3 1 1

1 0 2
1 2 0

⎤
⎦ so d1(−1, 1/2, 1/2) = −2, d2(−1, 1/2, 1/2) = −1, and d3(−1, 1/2, 1/2) = 12.

This is the case of the second derivative test where the conditions are valid but neither of the first two cases holds so f has a
saddle point at (−1, 1/2, 1/2).

20. f(x, y, z) = ex(x2 − y2 − 2z2) so fx(x, y, z) = ex(x2 + 2x− y2 − 2z2), fy(x, y, z) = −2yex, and fz(x, y, z) = −4zex.
We see immediately that at a critical point of f , y = z = 0 and therefore 0 = x2 + 2x = x(x + 2). The two critical points of
f are (0, 0, 0) and (−2, 0, 0).

The Hessian is Hf =

⎡
⎣ ex(x2 + 4x + 2 − y2 − 2z2) −2yex −4zex

−2yex −2ex 0
−4zex 0 −4ex

⎤
⎦ so

Hf(x, 0, 0) =

⎡
⎣ ex(x2 + 4x + 2) 0 0

0 −2ex 0
0 0 −4ex

⎤
⎦ .

For (0, 0, 0), d1 > 0, d2 < 0, and d3 < 0 so f has a saddle at (0, 0, 0). For (−2, 0, 0), d1 < 0, d2 > 0, and d3 < 0 so f has a
local maximum at (−2, 0, 0).

21. (a) f(x, y) =
2y3 − 3y2 − 36y + 2

1 + 3x2
so fx(x, y) =

6x(2y3 − 3y2 − 36y + 2)

(1 + 3x2)
and fy(x, y) =

6(y2 − y − 6)

1 + 3x2

=
6(y − 3)(y + 2)

1 + 3x2
. From fy we see that either y = 3 or y = −2. Neither of these values makes fx = 0 so x = 0. The

critical points for f are (0,−2) and (0, 3).
(b)

Hf =

⎡
⎢⎢⎣

6(3x − 1)(3x + 1)(2y3 − 3y2 − 36y + 2)

(3x2 + 1)3
−36x(y − 3)(y + 2)

(3x2 + 1)2

−36x(y − 3)(y + 2)

(3x2 + 1)2
6(2y − 1)

3x2 + 1

⎤
⎥⎥⎦ and

Hf(0, y) =

[
−6(2y3 − 3y2 − 36y + 2) 0

0 6(2y − 1)

]
.

At (0,−2) we find that d1 < 0 and d2 > 0 so f has a local maximum at (0,−2). At (0, 3) we find that d1 > 0 and
d2 > 0 so f has a local minimum at (0, 3).

22. (a) f(x, y) = kx2 − 2xy + ky2 so fx(x, y) = 2kx − 2y and fy(x, y) = −2x + 2ky. We see that the origin is a critical

point for any value of k. The Hessian is
[

2k −2
−2 2k

]
so d1 = 2k and d2 = 4k2 − 4. For f to have a non-degenerate

local maximum or minimum d2 > 0 so k2 − 1 > 0 so either k > 1 or k < −1. If k > 1, then d1 > 0 and the origin is a
non-degenerate local minimum. If k < −1, then d1 < 0 and the origin is a non-degenerate local maximum.
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(b) g(x, y, z) = kx2 + kxz − 2yz − y2 + kz2/2 so gx(x, y, z) = 2kx + kz, gy(x, y, z) = −2z − 2y, and gz(x, y, z) =

kx − 2y + kz. The Hessian is

⎡
⎣ 2k 0 k

0 −2 −2
k −2 k

⎤
⎦. First note that d1 = 2k and d2 = −4k. These are of opposite signs

so a non-degenerate local minimum is not possible. For a non-degenerate local maximum we need d1 < 0 and d2 > 0 so
k < 0. We also need d3 = 2k(−k − 4) < 0 so k < −4. So we have a non-degenerate local maximum when k < −4.

23. If you think of this problem geometrically it should be reasonably straightforward. The slices through the origin where only
one variable is allowed to change are parabolas. They open up if the coefficient of the term containing that variable is positive
and down if it is negative. This tells you that if all of the coefficients are positive then we have a local minimum, if all of the
coefficients are negative then we have a local maximum, and if some are positive and some are negative then we have a saddle
point.
(a) f(x, y) = ax2 + by2 so fx(x, y) = 2ax and fy(x, y) = 2by. Since neither a nor b is 0, the critical point must be the

origin. The Hessian is Hf =

[
2a 0
0 2b

]
. The first condition is that d2 > 0 so 4ab > 0 so a and b are the same sign.

Also, d1 = 2a so when a and b are negative the origin is a local maximum and when a and b are positive the origin is a
local minimum.

(b) f(x, y) = ax2 + by2 + cz2 so fx(x, y, z) = 2ax, fy(x, y, z) = 2by and fz(x, y, z) = 2cz. Since none of a, b and c is

0, the critical point must be the origin. The Hessian is Hf =

⎡
⎣ 2a 0 0

0 2b 0
0 0 2c

⎤
⎦. Again, in either case d2 > 0 so 4ab > 0

so a and b are the same sign. Also, d1 = 2a and d3 = 8abc. In either case d1 and d3 must be the same sign. When a, b
and c are negative the origin is a local maximum and when a, b and c are positive the origin is a local minimum.

(c) Really the analysis is no harder, it is just harder to write down. The function is now f(x1, x2, . . . , xn) = a1x
2
1 + a2x

2
2 +

· · · + anx2
n. The first derivatives are fxi

(x1, x2, . . . , xn) = 2aixi. Because none of the ai is zero and all of the first
derivatives are 0, we conclude that the only critical point is at the origin. The Hessian is an n × n matrix with zeros
everywhere off of the main diagonal and the entry in position (i, i) is 2ai. We easily calculate di = 2ia1a2 . . . ai. As
above, d2 must be positive so both a1 and a2 are of the same sign. We could continue to argue that d4 = 4a3a4d2 so a3

and a4 must be of the same sign. In fact, we can continue that reasoning to say for k odd, ak and ak+1 must be of the
same sign. For f to have a local maximum d1 < 0 so a1 and a2 are both negative. Also, dk = 2akdk−1 and for k odd
dk < 0 so we can move up through the entries and argue that all of the ai’s must be negative. Similarly, for f to have a
local minimum all of the ai’s must be positive.

Note: In Exercises 24–27 we have used a computer algebra system. In fact, I’ve used Mathematica. In Exercise 24, I’ve
included a list of the relevant commands. These were adapted for each of the exercises.

24. We’ll use the following sequence of commands:

• f [x−, y−] = y4 − 2xy2 + x3 − x

• Solve [{D[f [x, y], x] == 0, D[f [x, y], y] == 0}]
• H = {{∂x,xf [x, y], ∂x,yf [x, y]}, {∂y,xf [x, y], ∂y,yf [x, y]}}
• MatrixForm [H/.{x → 1, y → −1}] (since (1,−1) is the critical point found in the second step)

This is how you define the function, solve ∇f = 0, create the Hessian and display it at the critical points.
In this case we get the following solutions to the simultaneous equations: (−1/3, ±i/

√
3), (1, ±1), and (±1/

√
3, 0). Let’s

examine the real-valued solutions.
At (1, 1) the Hessian is

[
6 −4

−4 8

]
. This means that d1 > 0 and d2 > 0 so (1, 1) is a local minimum.

At (1,−1) the Hessian is
[

6 4
4 8

]
. This means that d1 > 0 and d2 > 0 so (1,−1) is a local minimum.

At (−1/
√

3, 0) the Hessian is
[ −2

√
3 0

0 4/
√

3

]
. This means that d1 < 0 and d2 < 0 so (−1/

√
3, 0) is a saddle point.

At (1/
√

3, 0) the Hessian is
[

2
√

3 0

0 −4/
√

3

]
. This means that d1 < 0 and d2 < 0 so (1/

√
3, 0) is a saddle point.

25. The commands are the same as those outlined in Exercise 24. The critical points are (0, 0), (±
√

3/2, 0), and ±(1/
√

2,−1/
√

2).

At (0, 0) the Hessian is
[

0 −3
−3 −2

]
. This means that d1 = 0 and d2 < 0 so (0, 0) is a saddle point.
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At (±
√

3/2, 0) the Hessian is
[

0 6
6 −2

]
. Again, d1 = 0 and d2 < 0 so both (

√
3/2, 0) and (−

√
3/2, 0) are saddle

points.

At ±(1/
√

2,−1/
√

2) the Hessian is
[ −6 0

0 −2

]
. This means that d1 < 0 and d2 > 0 so both (1/

√
2,−1/

√
2) and

(−1/
√

2, 1/
√

2) are local maxima.
26. We need to slightly alter the commands from the previous two exercises. The command to find the roots specified by the three

first partials is now:
Solve [{D[f [x, y, z], x] == 0, D[f [x, y, z], y] == 0, D[f [x, y, z], z] == 0}].

We also need to change the specification of the Hessian to:

H = {{∂x,xf [x, y, z], ∂x,yf [x, y, z], ∂x,zf [x, y, z]},
{∂y,xf [x, y, z], ∂y,yf [x, y, z], ∂y,zf [x, y, z]},
{∂z,xf [x, y, z], ∂z,yf [x, y, z], ∂z,zf [x, y, z]}}

Finally, it will be helpful to use the computer to calculate the determinant. ForMathematica you type Det[M] where M is the
matrix for which you wish to calculate the determinant.

The critical points are at (1 − 2
√

2,−
√

2(4 −√
2),−

√
4 −√

2), (1 − 2
√

2,
√

2(4 −√
2),
√

4 −√
2),

(1 + 2
√

2,−
√

2(4 +
√

2),
√

4 +
√

2), (1 + 2
√

2,
√

2(4 +
√

2),−
√

4 +
√

2), and (0, 0, 0).

At (0, 0, 0) the Hessian is

⎡
⎣ −2 0 0

0 −2 1
0 1 −4

⎤
⎦. So d1 < 0, d2 > 0 and d3 < 0 so (0, 0, 0) is a local max.

At (1 − 2
√

2,−
√

2(4 −√
2),−

√
4 −√

2) the Hessian is

⎡
⎢⎢⎢⎣

−2
√

4 −√
2
√

2(4 −√
2)√

4 −√
2 −2 2

√
2√

2(4 −√
2) 2

√
2 −4

⎤
⎥⎥⎥⎦.

So, d1 = −2 < 0 and d2 =
√

2 > 0 and d3 = 64− 16
√

2 > 0 so (1− 2
√

2,−
√

2(4 −√
2),−

√
4 −√

2) is a saddle point.

At (1 − 2
√

2,
√

2(4 −√
2),
√

4 −√
2) the Hessian is

⎡
⎢⎢⎢⎣

−2 −
√

4 −√
2 −

√
2(4 −√

2)

−
√

4 −√
2 −2 2

√
2

−
√

2(4 −√
2) 2

√
2 −4

⎤
⎥⎥⎥⎦.

So, d1 = −2 < 0 and d2 =
√

2 > 0 and d3 = 64 − 16
√

2 > 0 so (1 − 2
√

2,
√

2(4 −√
2),
√

4 −√
2) is a saddle point.

At (1 + 2
√

2,−
√

2(4 +
√

2),
√

4 +
√

2) the Hessian is

⎡
⎢⎢⎢⎣

−2 −
√

4 +
√

2
√

2(4 +
√

2)

−
√

4 +
√

2 −2 −2
√

2√
2(4 +

√
2) −2

√
2 −4

⎤
⎥⎥⎥⎦.

So, d1 = −2 < 0 and d2 = −√
2 < 0 and d3 = 64 + 16

√
2 > 0 so (1 + 2

√
2,−
√

2(4 +
√

2),
√

4 +
√

2) is a saddle point.

At (1 + 2
√

2,
√

2(4 +
√

2),−
√

4 +
√

2) the Hessian is

⎡
⎢⎢⎢⎣

−2
√

4 +
√

2 −
√

2(4 +
√

2)√
4 +

√
2 −2 −2

√
2

−
√

2(4 +
√

2) −2
√

2 −4

⎤
⎥⎥⎥⎦.

So, d1 = −2 < 0 and d2 = −√
2 < 0 and d3 = 64 + 16

√
2 > 0 so (1 + 2

√
2,
√

2(4 +
√

2),−
√

4 +
√

2) is a saddle point.

27. The commands are extended as they were in Exercise 26. The critical points are (0, 0, 0, 0), (−√
2, 2

√
2, 1,−√

2), (
√

2, 2
√

2,
−1,−√

2), (−√
2,−2

√
2,−1,

√
2), and (

√
2,−2

√
2, 1,

√
2).

At (0, 0, 0, 0) the Hessian is

⎡
⎢⎢⎣

−2 0 0 0
0 0 0 1
0 0 −4 0
0 1 0 2

⎤
⎥⎥⎦. So d1 = −2 < 0, d2 = 0, d3 = 0, and d4 = −8 < 0, so (0, 0, 0, 0) is a

saddle point.
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At (−√
2, 2

√
2, 1,−√

2) the Hessian is

⎡
⎢⎢⎣

−2 −1 −2
√

2 0

−1 0
√

2 1

−2
√

2
√

2 −4 0
0 1 0 2

⎤
⎥⎥⎦. So d1 = −2 < 0, d2 = −1 < 0, d3 = 16 > 0,

and d4 = 32 > 0, so (−√
2, 2

√
2, 1,−√

2) is a saddle point.

At (
√

2, 2
√

2,−1,−√
2) the Hessian is

⎡
⎢⎢⎣

−2 1 −2
√

2 0

1 0 −√
2 1

−2
√

2 −√
2 −4 0

0 1 0 2

⎤
⎥⎥⎦. So d1 = −2 < 0, d2 = −1 < 0, d3 = 16 > 0,

and d4 = 32 > 0, so (
√

2, 2
√

2,−1,−√
2) is a saddle point.

At (−√
2,−2

√
2,−1,

√
2) the Hessian is

⎡
⎢⎢⎣

−2 1 2
√

2 0

1 0
√

2 1

2
√

2
√

2 −4 0
0 1 0 2

⎤
⎥⎥⎦. So d1 = −2 < 0, d2 = −1 < 0, d3 = 16 > 0, and

d4 = 32 > 0, so (−√
2,−2

√
2,−1,

√
2) is a saddle point.

At (
√

2,−2
√

2, 1,
√

2) the Hessian is

⎡
⎢⎢⎣

−2 −1 2
√

2 0

−1 0 −√
2 1

2
√

2 −√
2 −4 0

0 1 0 2

⎤
⎥⎥⎦. So d1 = −2 < 0, d2 = −1 < 0, d3 = 16 > 0, and

d4 = 32 > 0, so (
√

2,−2
√

2, 1,
√

2) is a saddle point.

28. We want to maximize V = xyz subject to the constraint 2xy + 2xz + 2yz = c. Solve the second equation for z =
c − 2xy

2x + 2y
and substitute to get

V (x, y) =
cxy − 2x2y2

2x + 2y
.

The derivatives are Vx = −y2(2x2 + 4xy − c)

2(x + y)2
and Vy = −x2(2y2 + 4xy − c)

2(x + y)2
. Since neither x nor y could be zero (we

wouldn’t have a box), a critical point of f occurs when both 2x2 +4xy−c = 0 and 2y2 +4xy−c = 0. Solving these together
we find that x2 = y2 and since x and y are positive we conclude that x = y. Substituting back in, 0 = 2x2 + 4xy − c =

2x2 + 4x2 − c = 6x2 − c so x = y =
√

c/6. z =
c − 2xy

2x + 2y
=

c − (c/3)

4
√

c/6
=
√

c/6. So our only critical point is when

the box is a cube. To conclude that this is a local maximum we see that d1 = −y2(c + 2y2)

(x + y)3
< 0 and at our critical point

d2 = −2x2y2(2x2 + 8xy + 2y2 − 3c)

(x + y)4
= −2x4(12x2 − 3c)

(2x)4
= −2c − 3c

8
> 0. So the largest rectangular box with fixed

surface area is a cube.
29. We will actually minimize the square of the distance (i.e., the sum of the squares of the differences in each direction):

D(x, y) = x2 + y2 + (3x − 4y − 24)2 so Dx(x, y) = 20x − 24y − 144 and Dy(x, y) = 34y − 24x + 192. Set
these equal to 0 and solve to get that the point on the plane closest to the origin is (36/13,−48/13,−12/13).

30. Again we will minimize the square of the distance. For points (x, y, z) on the surface we have z2 = 4−xy, so that the square
of the distance x2 + y2 + z2 = x2 + y2 + 4 − xy; thus we consider the function D(x, y) = x2 − xy + y2 + 4. We have
Dx(x, y) = 2x − y and Dy(x, y) = 2y − x. Set the partial derivatives equal to 0 and solve the system{

2x − y = 0
−x + 2y = 0

.

The only solution is (0, 0). This solution corresponds to the points (0, 0, 2) and (0, 0,−2) on the surface xy + z2 = 4. To see
that these points really do give the minimum distance, we rewrite D as

D(x, y) = x2 − xy + y2 + 4 =
(
x − y

2

)2

+
3y2

4
+ 4.

Thus we see that D(x, y) ≥ 4 for all (x, y) and D = 4 exactly when x = y = 0.
31. We solve {

Rx(x, y) = 8 − 2x + 2y = 0

Ry(x, y) = 6 − 4y + 2x = 0
.
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Adding the two equations gives 14 − 2y = 0 which implies that y = 7. Using this in the first equation gives 22 − 2x = 0 so
that x = 11. Hence (11, 7) is the unique critical point. A quick check with the Hessian

HR(11, 7) =

[−2 2
2 −4

]
reveals that d1 = −2, d2 = 8− 4 = 4, so this critical point yields a maximum value of R. (Note: we may rewrite the revenue
function as R(x, y) = 8x+6y− (x− y)2 − y2. From this it is clear that this critical point must be a global maximum.) Thus
you should manufacture 1100 units of model X and 700 units of model Y.

Exercises 32–39 force us to check values on the border of our region.

32. f(x, y) = x2 + xy + y2 − 6y so fx(x, y) = 2x + y and fy(x, y) = x + 2y − 6. At a critical point for f , y = −2x so
6 = x + 2y = −3x. Our only critical point is (−2, 4). We need to check the value of f at the critical point and along the
boundary of the region −3 ≤ x ≤ 3, 0 ≤ y ≤ 5.

• f(−2, 4) = −12,

• f(−3, y) = 9 − 9y + y2 has a minimum of −11.25 at y = 4.5 and a maximum of 9 at y = 0,

• f(3, y) = 9 − 3y + y2 has a minimum of 27/4 at y = 3/2 and a maximum of 19 at y = 5,

• f(x, 0) = x2 which has a minimum of 0 at x = 0 and a maximum of 9 at x = ±3,

• f(x, 5) = x2 + 5x − 5 has a minimum of −11.25 at x = −5/2 and a maximum of 19 at x = 3.

The absolute maximum is, therefore, 19 at (3, 5) and the absolute minimum is −12 at (−2, 4).
33. f(x, y, z) = x2 +xz−y2 +2z2 +xy +5x so fx(x, y, z) = 2x+y +z +5, fy(x, y, z) = x−2y, and fz(x, y, z) = x+4z.

At a critical point for f , x = 2y = −4z so −5 = 2x + y + z = −8z − 2z + z = −9z. Our only critical point is
(−20/9,−10/9, 5/9) which is not within our region. We need to check the value of f along the boundary of the region
−5 ≤ x ≤ 0, 0 ≤ y ≤ 3, 0 ≤ z ≤ 2. This consists of six two-dimensional faces, twelve one-dimensional edges and eight
vertices.

• f(x, 0, 0) = x2 + 5x has a minimum of −6.25 at x = −5/2 and a maximum of 0 at x = −5 or 0,

• f(x, 0, 2) = x2 + 7x + 8 has a minimum of −4.25 at x = −7/2 and a maximum of 8 at x = 0,

• f(x, 3, 0) = x2 + 8x − 9 has a minimum of 25 at x = −4 and a maximum of −9 at x = 0,

• f(x, 3, 2) = x2 + 10x − 1 has a minimum of −26 at x = −5 and a maximum of −1 at x = 0,

• f(−5, y, 0) = −y2 − 5y has a minimum of −24 at y = 3 and a maximum of 0 at y = 0,

• f(0, y, 0) = −y2 has a minimum of −9 at y = 3 and a maximum of 0 at y = 0,

• f(−5, y, 2) = −y2 − 5y − 2 has a minimum of −26 at y = 3 and a maximum of −2 at y = 0,

• f(0, y, 2) = 8 − y2 has a minimum of −1 at y = 3 and a maximum of 8 at y = 0,

• f(−5, 0, z) = 2z2 − 5z has a minimum of −25/8 at z = 5/4 and a maximum of 0 at z = 0,

• f(0, 0, z) = 2z2 has a minimum of 0 at z = 0 and a maximum of 8 at z = 2,

• f(−5, 3, z) = 2z2 − 5z − 24 has a minimum of −217/8 at z = 5/4 and a maximum of −24 at z = 0,

• f(0, 3, z) = 2z2 − 9 has a minimum of −9 at z = 0 and a maximum of −1 at z = 2.

You also must check for extrema on each face and at each vertex. When you do you find: The absolute maximum is 8 at (0, 0,
2) and the absolute minimum is −191/7 at (−32/7, 3, 8/7).

34. In a fit of compassion, the author of the text has not forced Livinia the housefly to walk around the metal plate in search of
the hottest and coldest points. The temperature is T (x, y) = 2x2 + y2 − y − 3 so Tx(x, y) = 4x and Ty(x, y) = 2y − 1.
We have a critical point for T at (0, 1/2) and T (0, 1/2) = 2.75. To check the temperature of the boundary we note that it is a
unit disk and so x = cos θ and y = sin θ. We can rewrite T (θ) = 2 cos2 θ + sin2 θ − sin θ + 3 = cos2 θ − sin θ + 4. Then
Tθ(θ) = −2 cos θ sin θ − cos θ = − cos θ(2 sin θ + 1). We, therefore, have critical points on the boundary when cos θ = 0
(so θ = π/2 or 3π/2) and when sin θ = −1/2 (so θ = 7π/6 or 11π/6). Checking the values we see that T (π/2) = 3,
T (3π/2) = 5 and T (7π/6) = T (11π/6) = 21/4. We conclude that the coldest spot on the plate is at (0, 1/2) where the
temperature is 11/4 and the two hottest spots are at (±√

3/2,−1/2) where the temperature is 21/4.
35. Because the function is “separable”, we can analyze it without calculus. The maximum value for f is 1 and the minimum value

for f is −1. The absolute maximum is achieved at (π/2, 0), (π/2, 2π), and (3π/2, π). The absolute minimum is achieved at
(3π/2, 0), (3π/2, 2π), and (π/2, π).
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36.

∂f

∂x
= −2 sin x

∂f

∂y
= 3 cos y

So “ordinary” critical points on {(x, y)|0 ≤ x ≤ 4, 0 ≤ y ≤ 3} are at
(
0, π

2

)
,
(
π, π

2

)
. (In fact,

(
π, π

2

)
is the only critical

point that’s actually in the interior of the rectangle.)
Now we look at the boundary of the rectangle:

f1(x) = f(x, 0) = 2 cos x f ′
1(x) = −2 sin x so critical points at (0, 0), (π, 0);

f2(x) = f(x, 3) = 2 cos x + 3 sin 3 f ′
2(x) = −2 sin x so critical points at (0, 3), (π, 3);

f3(y) = f(0, y) = 2 + 3 sin y f ′
3(y) = 3 cos y so critical point at

(
0, π

2

)
;

f4(y) = f(4, y) = 2 cos 4 + 3 sin y f ′
4(y) = 3 cos y so critical point at

(
4, π

2

)
.

Now we compare values:
(x, y) f(x, y) = 2 cos x + 3 sin y(
0, π

2

)
5(

π, π
2

)
1

(0, 0) 2
(π, 0) −2

(0, 3) 2 + 3 sin 3 ≈ 2.423

(π, 3) −2 + 3 sin 3 ≈ −1.577(
4, π

2

)
2 cos 4 + 3 ≈ 1.693

(4, 0) 2 cos 4 ≈ −1.307

(4, 3) 2 cos 4 + 3 sin 3 ≈ −0.884

Thus the absolute minimum occurs at (π, 0) and is −2. The absolute maximum occurs at
(
0, π

2

)
and is 5.

37. f(x, y) = 2x2 − 2xy + y2 − y + 3, so fx(x, y) = 4x − 2y and fy(x, y) = −2x + 2y − 1. At a critical point for f we have
y = 2x, so −2x + 4x − 1 = 0. Thus the only critical point is ( 1

2
, 1).

Now we need to consider the boundary of the region. It consists of three parts: (1) the horizontal line y = 0, where
0 ≤ x ≤ 2; (2) the vertical line x = 0, where 0 ≤ y ≤ 2; (3) the line x + y = 2 (or y = 2 − x), where 0 ≤ x ≤ 2. Thus we
compare

• f( 1
2
, 1) = 5

2
,

• f(x, 0) = 2x2 + 3 has a minimum of 3 at x = 0 and a maximum of 11 at x = 2,

• f(0, y) = y2 − y + 3 has a minimum of 11
4

at y = 1
2

and a maximum of 5 at y = 2,

• f(x, 2 − x) = 5x2 − 7x + 5 has a minimum of 51
20

at x = 7
10

and a maximum of 11 at x = 2

Thus the absolute minimum is 5
2

occurring at ( 1
2
, 1) and the absolute maximum is 11 occurring at (2, 0).

38. f(x, y) = x2y so fx(x, y) = 2xy and fy(x, y) = x2. Therefore the only ordinary critical point is (0, 0). The boundary of D
may be parametrized by x = 2 cos t, y =

√
3 sin t for 0 ≤ t < 2π. Thus

F (t) = f(2 cos t,
√

3 sin t) = 4
√

3 cos2 t sin t

and

F ′(t) = 4
√

3
(−2 cos t sin2 t + cos3 t

)
= 4

√
3 cos t

(−2(1 − cos2 t) + cos2 t
)

= 4
√

3 cos t(3 cos2 t − 2).

We see that F ′(t) = 0 when either cos t = 0 (in which case sin t = ±1) or cos t = ±
√

2/3 (in which case sin t = ±1/
√

3).
Thus, in addition to (0, 0), we need to consider six more points: (0,±√

3), (±2
√

2/3,±1). From the following table
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(x, y) f(x, y) = x2y

(0, 0) 0

(0,±√
3) 0(

±2
√

2√
3

, 1

)
8

3(
±2

√
2√
3

,−1

)
−8

3

we see that absolute minima occur at (2
√

2/3,−1) and (−2
√

2/3,−1) and absolute maxima at (2
√

2/3, 1) and (−2
√

2/3, 1).
39. The boundary of the closed ball is given by x2 + y2 − 2y + z2 +4z = 0. Completing the square, we find x2 + y2 − 2y +1+

z2 +4z +4 = 5 or x2 +(y− 1)2 +(z +2)2 = 5. (Note also that x2 + y2 − 2y + z2 +4z = x2 +(y− 1)2 +(z +2)2 − 5.)
The function f(x, y, z) = e1−x2−y2+2y−z2−4z has

fx(x, y, z) = −2xe1−x2−y2+2y−z2−4z = 0 when x = 0

fy(x, y, z) = (−2y + 2)e1−x2−y2+2y−z2−4z = 0 when y = 1

fz(x, y, z) = (−2z − 4)e1−x2−y2+2y−z2−4z = 0 when z = −2

So (0, 1,−2) is an interior critical point (the only one). Note that on the boundary x2 + y2 − 2y + z2 + 4z = 0, we have

f(x, y, z) = e1−0 = e

f(0, 1,−2) = e1−(−5) = e6 ← so absolute max is at (0, 1,−2).

The absolute minimum of e occurs at all points of the boundary. If we set w = x2+y2−2y+z2+4z, then f(x, y, z) = e1−w,
so that it’s clear that the minimum must occur when w = 0 (since w ≤ 0 defines the domain we are to consider). Likewise,
the maximum must occur at the center of the ball.

It’s good to take a step back and see that sometimes we can tell what type of critical point we have without using the tools
we’ve developed. In single-variable calculus, when the second derivative test failed to tell us anything we returned either to the
first derivative test or to an analysis of the function.

In Exercises 40–45, the exponents are all at least two so (see, for example, Section 2.4, Exercise 27) when the Hessian is
evaluated at the origin, all of the entries will be 0. The fact that Hf(0) = 0 means that the Hessian doesn’t provide us with any
information about the nature of the critical point at the origin. This is part (a) for Exercises 40–45. By a deleted neighborhood of
the origin, we will mean a neighborhood of the origin with the origin removed.

40. f(x, y) = x2y2: in every deleted neighborhood of the origin f(x, y) > 0 so f(0, 0) < f(x, y) for every point (x, y) near but
not equal to (0, 0) so f has a local minimum at the origin.

41. f(x, y) = 4 − 3x2y2: in every deleted neighborhood of the origin x2y2 > 0 so −3x2y2 < 0 so f(x, y) < 4 so f(0, 0) >
f(x, y) for every point (x, y) near but not equal to (0, 0) so f has a local maximum at the origin.

42. f(x, y) = x3y3: in every deleted neighborhood of the origin in quadrants I and III f(x, y) > 0 and in quadrants II and IV
f(x, y) < 0 so f has neither a minimum nor a maximum at the origin.

43. f(x, y, z) = x2y3z4: in every deleted neighborhood of the origin where y > 0, f(x, y, z) > 0; when y < 0, f(x, y, z) < 0
so f has neither a minimum nor a maximum at the origin.

44. f(x, y, z) = x2y2z4: in every deleted neighborhood of the origin f(x, y, z) > 0 so f(0, 0, 0) < f(x, y, z) for every point
(x, y, z) near but not equal to (0, 0, 0) so f has a local minimum at the origin.

45. f(x, y, z) = 2 − x4y4 − z4: in every deleted neighborhood of the origin x4y4 + z4 > 0 so f(x, y, z) < 2 so f(0, 0, 0) >
f(x, y, z) for every point (x, y, z) near but not equal to (0, 0, 0) so f has a local maximum at the origin.

46. f(x, y) = ex2+5y2

. Notice that eu is a monotone increasing function of u and x2 + 5y2 has a unique minimum at (0, 0). So
f has a local minimum at (0, 0) so f(0, 0) = 1 is a global minimum.

47. f(x, y, z) = e2−x2−2y2−3x4

. Notice that eu is a monotone increasing function of u and 2 − x2 − 2y2 − 3x4 has a unique
maximum of 2 at (0, 0, 0). So f has a local maximum at (0, 0, 0), so f(0, 0, 0) = e2 is a global maximum.

48. f(x, y) = x3 + y3 − 3xy + 7.
(a) The first partial derivatives are fx(x, y) = 3x2 − 3y and fy(x, y) = 3y2 − 3x so we have critical points at (0, 0) and (1,

1). At the origin we have a saddle point. For the behavior at (1, 1), d1(1, 1) = 6 and d2(1, 1) = 36 − 9 = 27. By the
second derivative test we have a local minimum.

(b) We know there are no global extrema. Look along the x-axis. The function is f(x, 0) = x3 + 7. As x → ∞ f increases
without bound and as x → −∞ f decreases without bound.
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49. There can’t be a global maximum because, for example, for fixed y, as x → 0+ the function grows without bound. fx(x, y) =

y − 1/x and fy(x, y) = x + 2 − 2/y so f has a critical point at (2, 1/2). From the Hessian
[

1/4 1
1 8

]
we see that there is

a local minimum at (2, 1/2) of 2 + ln 2. Note that fx(2, y) = y − 1/2.
We would like to now conclude that f has a unique critical point at (2, 1/2) which is a local minimum and hence it is
a global minimum—such a conclusion seems reasonable, but, as Exercise 52 will demonstrate, is not correct. Consider
fx(x, 1/2) = 1/2−1/x. For x > 2 this is positive and so f is increasing along this line. Now look at fy(x, y) = x+2−2/y
for x ≥ 2. When y > 1/2 this is positive and when 0 < y < 1/2 this is negative. So as we move vertically away from the
line y = 1/2 for x ≥ 2 we see that f is increasing. A similar analysis for the remaining regions shows that f has a global
minimum at (2, 1/2).

50. First we’ll determine the local extrema. We have fx(x, y, z) = 3x2 + 6x − 3z, fy(x, y, z) = 2yey2+1, and fz(x, y, z) =
2z − 3x. Thus the critical points are (0, 0, 0) and (−1/2, 0,−3/4). The Hessian is

Hf(x, y, z) =

⎡
⎣6x + 6 0 −3

0 (2 + 4y2)ey2+1 0
−3 0 2

⎤
⎦ .

Thus

Hf(0, 0, 0) =

⎡
⎣ 6 0 −3

0 2e 0
−3 0 2

⎤
⎦

whose sequence of principal minors is d1 = 6, d2 = 12e, d3 = 6e. Thus (0, 0, 0) yields a local minimum. In addition,

Hf
(− 1

2
, 0,− 3

4

)
=

⎡
⎣ 3 0 −3

0 2e 0
−3 0 2

⎤
⎦

whose sequence of principal minors is d1 = 3, d2 = 6e, d3 = −6e. Hence this critical point is a saddle point.
There are no global extrema. If we fix y and z both equal to zero, then f(x, 0, 0) = x3 + 3x2 + e. As x → +∞, the

expression x3 + 3x2 + e grows without bound and as x → −∞, it decreases without bound.
51. (a) We have

∂f

∂x
= −2

3
[(x − 1)(y − 2)]−1/3 (y − 2) = −2(y − 2)2/3

3(x − 1)1/3

∂f

∂y
= −2

3
[(x − 1)(y − 2)]−1/3 (x − 1) = −2(x − 1)2/3

3(y − 2)1/3
.

Note that ∂f/∂x is undefined when x = 1 and zero when y = 2 (and x �= 1). Similarly, ∂f/∂y is undefined when y = 2
and zero when x = 1 (and y �= 2). Hence the set of critical points consists of all points on the lines x = 1 and y = 2.
Note that these critical points are not isolated.

(b) The domain of f is all of R2; the expression [(x − 1)(y − 2)]2/3 is always nonnegative and is zero only when either
x = 1 or y = 2. Thus f(x, y) ≤ 3 for all (x, y) ∈ R2 and f(x, y) = 3 precisely when either x = 1 or y = 2. Hence
there are (global) maxima of 3 along these lines.

52. (a) Say that f has a local maximum at x0 and no other critical points. Assume that f(x0) is not the global maximum. Then
there exists a point x1 such that f(x1) > f(x0). By the extreme value theorem, on the closed interval with endpoints x0

and x1 there must be a global maximum and a global minimum somewhere on that closed interval. The global minimum
could not be at x0 since it is a local maximum. It could not be at x1, since f(x1) > f(x0). The global minimum must be
somewhere on the open interval and it must be at a critical point. This contradicts the assumption that there were no other
critical points. If instead the unique critical point of f were a local minimum, then just modify the argument appropriately.

(b) f(x, y) = 3yex − e3x − y3 so fx(x, y) = 3yex − 3e3x and fy(x, y) = 3ex − 3y2. Solving, y = 0 or y = 1, but y
can’t be 0 since ex = y2. The only critical point for f is at (0, 1) and f(0, 1) = 1. Also, d1(0, 1) = fxx(0, 1) = −6 and
d2(0, 1) = 27 so at (0, 1) f has a local maximum. Along the y-axis, f(0, y) = 3y − 1 − y3, so as y → −∞ we see that
f increases without bound.

53. (a) Let the local maxima occur at a < b. Consider f on [a, b]. By the extreme value theorem, f must attain both a maximum
and minimum somewhere on [a, b]. The minimum cannot occur at a or b since local maxima occur there. Hence there
must be some c is the open interval (a, b) that gives an absolute minimum on [a, b]—hence it must be at least a local
minimum on R.
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(b)
fx(x, y) = −2(xy2 − y − 1)y2

fy(x, y) = −2(xy2 − y − 1)(2xy − 1) − 4(y2 − 1)y

For fx = 0, either xy2−y−1 = 0 or y2 = 0 (so y = 0). If y = 0, then the fy = 0 equation becomes −2(−1)(−1) = 0,
which is false. Thus xy2 − y − 1 = 0 and the fy = 0 equation becomes −4y(y2 − 1) = 0. Since y �= 0, we must have
y2 − 1 = 0 or y = ±1. With y = 1 in the fx = 0 equation, we have −2(x − 2) = 0 ⇒ x = 2. With y = −1 in the
fx = 0 equation, we have −2(x + 1 − 1) = 0 so x = 0. So we have two critical points: (2, 1) and (0,−1). The Hessian
matrix is

Hf(x, y) =

[ −2y4 −2(4xy3 − 3y2 − 2y)
−2(4xy3 − 3y2 − 2y) −2(6x2y2 − 6xy − 2x + 1) − 4(3y2 − 1)

]
so

Hf(2, 1) =

[ −2 −6
−6 −26

]
sequence of minors is −2, 16 ⇒ local max;

Hf(0,−1) =

[ −2 2
2 −10

]
sequence of minors is −2, 16 ⇒ local max .

(c) Best left to a computer. Stay close to the critical points to see the surface details well.
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4.3 Lagrange Multipliers

1. The plane is given by 2x − 3y − z = 4. There will be only one critical point in each case. Geometrically, it cannot be a local
maximum because there will always be points nearby which are farther away. There is at least one point on the plane closest
to the origin so the single critical point will be at this point. You can also perform the second derivative test.
(a) We’ll minimize the square of the distance: D(x, y) = x2 + y2 + (2x − 3y − 4)2. The partials are Dx(x, y) =

10x − 12y − 16 and Dy(x, y) = 20y − 12x + 24. Set these equal to zero and solve simultaneously to find the critical
point (4/7,−6/7,−2/7).

(b) Minimize f(x, y, z) = x2 + y2 + z2 subject to the constraint g(x, y, z) = 2x − 3y − z = 4. We solve the system⎧⎪⎪⎨
⎪⎪⎩

2x = 2λ
2y = −3λ
2z = −λ
2x − 3y − z = 4.

We see that x = λ so y = −(3/2)x and z = −x/2. Substituting into the last equation: 2x + 9x/2 + x/2 = 4 so
x = 4/7 and our critical point is (4/7,−6/7,−2/7).

2. The function is f(x, y) = y subject to the constraint g(x, y) = 2x2 + y2 = 4. We solve the system⎧⎨
⎩

0 = 4λx
1 = 2λy
2x2 + y2 = 4.

From the first equation, λx = 0, but λ �= 0 since 2λy �= 0. Hence we must have x = 0, so y2 = 4; therefore the critical
points are (0,±2).
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3. The function is f(x, y) = 5x + 2y subject to the constraint g(x, y) = 5x2 + 2y2 = 14. We solve the system⎧⎨
⎩

5 = 10λx
2 = 4λy
5x2 + 2y2 = 14.

By either of the first two equations we see that λ �= 0. Together, the first two equations imply that x = y so 7x2 = 14 so the
critical points are ±(

√
2,
√

2).
4. The function is f(x, y) = xy subject to the constraint g(x, y) = 2x − 3y = 6. We solve the system⎧⎨

⎩
y = 2λ
x = −3λ
2x − 3y = 6.

If λ were 0, then both x and y would be 0 which would contradict the third equation. In short, λ �= 0. In that case, the first
two equations imply that x = −(3/2)y so −3y − 3y = 6 or y = −1. The critical point is at (3/2,−1).

5. The function is f(x, y, z) = xyz subject to the constraint g(x, y, z) = 2x + 3y + z = 6. We solve the system⎧⎪⎪⎨
⎪⎪⎩

yz = 2λ
xz = 3λ
xy = λ
2x + 3y + z = 6.

One possibility is that two of x, y, and z are zero. In this case the three possible critical points are (3, 0, 0),
(0, 2, 0), and (0, 0, 6). If none of x, y, and z is zero then the first two equations imply that x = (3/2)y, and the second
and third equations together imply that 3y = z. Hence, 3y + 3y + 3y = 6, so the final critical point is (1, 2/3, 2).

6. The function is f(x, y, z) = x2 + y2 + z2 subject to the constraint g(x, y, z) = x + y − z = 1. We solve the system⎧⎪⎪⎨
⎪⎪⎩

2x = λ
2y = λ
2z = −λ
x + y − z = 1.

We see immediately that x = y = −z, which implies that x + x + x = 1. Therefore, the critical point is (1/3, 1/3,−1/3).
7. The function is f(x, y, z) = 3 − x2 − 2y2 − z2 subject to the constraint g(x, y, z) = 2x + y + z = 2. We solve the system⎧⎪⎪⎨

⎪⎪⎩
−2x = 2λ
−4y = λ
−2z = λ
2x + y + z = 2.

Immediately we have λ = −x = −4y = −2z ⇐⇒ x = 4y = 2z. Thus x = 2z and y = z/2 so that the last equation of
the system becomes 4z + z/2 + z = 2 ⇐⇒ z = 4/11. Therefore, there is a unique critical point of

(
8
11

, 2
11

, 4
11

)
.

8. The function is f(x, y, z) = x6 + y6 + z6 subject to the constraint g(x, y, z) = x2 + y2 + z2 = 6. We solve the system⎧⎪⎪⎨
⎪⎪⎩

6x5 = 2λx
6y5 = 2λy
6z5 = 2λz
x2 + y2 + z2 = 6.

The first equation of the system implies either x = 0 or λ = 3x4. Similarly, the second equation implies either y = 0
or λ = 3y4 and the third equation implies either z = 0 or λ = 3z4. No more than two of x, y, or z can be zero, or
else the constraint x2 + y2 + z2 = 6 cannot be satisfied. Let us suppose that y = z = 0. Then x = ±√

6 from the
constraint. Hence (±√

6, 0, 0) are two of the critical points. Similarly, if x = z = 0, then we obtain (0,±√
6, 0) as additional

critical points, and if x = y = 0 we obtain (0, 0,±√
6). If just z = 0, then λ = 3x4 = 3y4, so x = ±y and the

constraint x2 + y2 + z2 = 6 implies 2x2 = 6 or x = ±√
3 and there are thus four more critical points (±√

3,±√
3, 0).

In a similar manner (±√
3, 0,±√

3) and (0,±√
3,±√

3) are critical points. Finally, if none of x, y, or z is zero, then
λ = 3x4 = 3y4 = 3z4, which implies x = ±y = ±z. Hence the last equation of the system implies that 3x2 = 6, so
x = ±√

2. Therefore, there are eight more critical points, namely (±√
2,±√

2,±√
2). Thus there are 26 critical points in

all.
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9. The function is f(x, y, z) = 2x+y2−z2 subject to the two constraints g1(x, y, z) = x−2y = 0 and g2(x, y, z) = x+z = 0.
We solve the system ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2 = λ + μ
2y = −2λ
−2z = μ
x = 2y
x = −z.

Solving, we see that 2 = λ + μ = −y − 2z = −x/2 + 2x = 3x/2. So the critical point is (4/3, 2/3,−4/3).
10. The function is f(x, y, z) = 2x + y2 + 2z subject to the two constraints g1(x, y, z) = x2 − y2 = 1 and g2(x, y, z) =

x + y + z = 2. We solve the system ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 = 2λx + μ
2y = −2λy + μ
2 = μ
x2 − y2 = 1
x + y + z = 2.

The third equation of the system implies that the first equation becomes 2λx = 0. Thus either λ = 0 or x = 0. If x = 0, the
fourth equation becomes −y2 = 1, which has no solution. If λ = 0, then the second equation becomes 2y = 2 ⇐⇒ y = 1.
Hence x2 = 2 in the fourth equation. Using the last equation, we see that (

√
2, 1, 1−√

2) and (−√
2, 1, 1+

√
2) are the only

critical points.
11. The function is f(x, y, z) = xy + yz subject to the two constraints g1(x, y, z) = x2 + y2 = 1 and g2(x, y, z) = yz = 1. We

solve the system ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y = 2λx
x + z = 2λy + μz
y = μy
x2 + y2 = 1
yz = 1.

The third equation of the system implies that either μ = 1 or y = 0. However, y cannot be zero from the last equation. Thus
μ = 1 and the second equation reduces to x = 2λy, and the first equation becomes y = 4λ2y. Thus either y = 0 (which we
reject) or λ = ±1/2. This in turn implies that x = ±y, and the fourth equation thus becomes 2x2 = 1, so that x = ±1/

√
2

and y = ±1/
√

2. Now z = 1/y from the last equation, so there are four critical points:(
1√
2
,

1√
2
,
√

2

)
,

(
1√
2
,− 1√

2
,−

√
2

)
,

(
− 1√

2
,

1√
2
,
√

2

)
,

(
− 1√

2
,− 1√

2
,−

√
2

)
.

12. The function is f(x, y, z) = x+y+z subject to the two constraints g1(x, y, z) = y2−x2 = 1 and g2(x, y, z) = x+2z = 1.
We solve the system ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 = −2λx + μ
1 = 2λy
1 = 2μ
y2 − x2 = 1
x + 2z = 1.

Solving, we see that μ = 1/2 and 2λ = 1/y so 1/2 = −2λx = −x/y or y = −2x. This means that 1 = y2 − x2 = 3x2, so
the critical points are (−1/

√
3, 2/

√
3, (3 +

√
3)/6) and (1/

√
3,−2/

√
3, (3 −√

3)/6).
13. (a) The function is f(x, y) = x2 + y subject to the constraint g(x, y) = x2 + 2y2 = 1. We solve the system⎧⎨

⎩
2x = 2xλ
1 = 4yλ
x2 + 2y2 = 1.

From the first equation, we see that either x = 0 or λ = 1. If λ = 1, then y = 1/4, so x = ±
√

7/8. If x = 0, then
y = ±

√
1/2. In short, the critical points are (±

√
7/8, 1/4) and (0,±

√
1/2).

(b) L(λ; x, y) = x2 + y − λ(x2 + 2y2 − 1) so

H(λ; x, y) =

⎡
⎣ 0 −2x −4y

−2x 2 − 2λ 0
−4y 0 −4λ

⎤
⎦ .
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So −d3 = −16y[x2 + 1/2 − 2y]. Substitute the critical points to find that there are local maxima at (±
√

7/8, 1/4) and
local minima at (0,±

√
1/2).

14. (a) The function is f(x, y, z, w) = x2 + y2 + z2 + w2 subject to the three constraints g1(x, y, z, w) = 2x + y + z =
1, g2(x, y, z, w) = x − 2z − w = −2 and g3(x, y, z, w) = 3x + y + 2w = −1. We solve the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x = 2λ + μ + 3ν
2y = λ + ν
2z = λ − 2μ
2w = −μ + 2ν
2x + y + z = 1
x − 2z − w = −2
3x + y + 2w = −1.

After a great deal of fussing we find that there is a critical point at 1

68
(−11, 15, 75,−25).

(b)

HL(λ, μ, ν, x, y, z, w) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −2 −1 −1 0
0 0 0 −1 0 2 1
0 0 0 −3 −1 0 −2

−2 −1 −3 2 0 0 0
−1 0 −1 0 2 0 0
−1 2 0 0 0 2 0

0 1 −2 0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We calculate −d7 = 628 and conclude that f has a local minimum at the critical point.

Note: For Exercises 15–19 the Mathematica code would be similar to that in Exercise 15.

15. Input the following three lines intoMathematica (or the equivalent into your favorite computer algebra system)

f = 3xy − 4z

g = 3x + y − 2xz

Solve [{D[f, x] == λD[g, x], D[f, y] == λD[g, y], D[f, z] == λD[g, z], 3x + y − 2x z == 1}]
The solutions are

• λ =
√

6, (x, y, z) = (
√

2/3, 1/2, (12 −√
6)/8) and

• λ = −√
6, (x, y, z) = (−

√
2/3, 1/2, (12 +

√
6)/8).

16. Use the same basic code you used in Exercise 15, allowing for two Lagrange multipliers. The solution is λ1 = 482/121,
λ2 = −107/121, (x, y, z) = (31, 29, 5)/11.

17. Many solutions are returned byMathematica. They are

• (0,−1, 0) for λ = −3/2

• (0, 1, 0) for λ = 3/2

• (−2/3,−2/3,−1/3) and (2/3,−2/3, 1/3) for λ = −4/3

• (−1, 0, 0) and (1, 0, 0) for λ = −1

• (0, 0,−1) and (0, 0, 1) for λ = 0 and

• (
√

11/2/8,−3/8,−3
√

11/2/8) and (−
√

11/2/8,−3/8, 3
√

11/2/8) for λ = 1/8.

18. The solutions given are

• (1,−1/2,±
√

3/2) for λ = −1

• ((−1 −√
5)/2, (−3 −√

5)/4,±i51/4/
√

2) for λ = (1 +
√

5)/2.

• ((1 −√
5)/2, (−3 +

√
5)/4,±51/4/

√
2) for λ = (1 −√

5)/2.

• (−i, i, 0) and (i,−i, 0) for λ = −2, and

• (−1,−1, 0) and (1, 1, 0) for λ = 2.

Note that several of the solutions are complex and, for the purposes of this discussion, can be discarded.

c© 2012 Pearson Education, Inc.



220 Chapter 4 Maxima and Minima in Several Variables

19. Here there are two solutions:
• (w, x, y, z) = ((1 −√

2)/2, 1/
√

2, 1/
√

2, (1 −√
2)/2) for λ1 = 2 − 1/

√
2, λ2 = 1 −√

2, and λ3 = 0, and
• (w, x, y, z) = ((1 +

√
2)/2,−1/

√
2,−1/

√
2, (1 +

√
2)/2) for λ1 = 2 + 1/

√
2, λ2 = 1 +

√
2, and λ3 = 0.

20. (a) We need to solve ⎧⎨
⎩

3x2 = λy
6y = λx
xy = −4

Substitute y = −4/x into the second equation to get λ = −24/x2. Substitute both of these into the right side of the first
equation to get x5 = −32 or x = 2. So y = −2 and λ = −6.

(b) The Hessian in this case is

⎡
⎣ 0 2 −2

2 12 6
−2 6 6

⎤
⎦. Following the rule for the second derivative test for constrained local

extrema, note that n = 2 and k = 1 so the only relevant term in sequence (1) is

(−1)1d3 = (−1)[(−2)(24) − 2(36)] = 120 > 0.

We conclude that there is a constrained local minimum at the point (2,−2).
(c) You can see from the figure below that there is a constrained local minimum at (2,−2) on the curve. This will be the

point at which the constraint curve is tangent to one of the level curves.

0 1 2 3 4
-4

-3

-2

-1

0

21. The symmetry of the problem suggests the answer, but we are maximizing f(x, y, z) = xyz subject to the constraint
g(x, y, z) = x + y + z = 18. We solve the system⎧⎪⎪⎨

⎪⎪⎩
yz = λ
xz = λ
xy = λ
x + y + z = 18.

None of the solutions that corresponds to one of x, y, and z being zero is a maximum. The solution we get is x = y = z, so
3x = 18, so the maximum product occurs at the point (6, 6, 6).

22. First, a sphere is a compact surface and the function f is continuous so, by the extreme value theorem, we know that both
a minimum and a maximum must be attained. We find the extrema of f(x, y, z) = x + y − z subject to the constraint
x2 + y2 + z2 = 81. We solve the system ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
1 = 2λx

1 = 2λy

−1 = 2λz

x2 + y2 + z2 = 81.
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We see that x = y = −z, so the critical points are (3
√

3, 3
√

3,−3
√

3) and (−3
√

3,−3
√

3, 3
√

3). By evaluating at
f(x, y, z) = x + y − z, we see that the first must yield a maximum of 9

√
3, and the second a minimum of −9

√
3.

23. This is a nice problem to assign because by this point some students are only checking boundary values. We are looking for
the maximum and minimum values of f(x, y) = x2 +xy+y2 constrained to be inside the closed disk g(x, y) = x2 +y2 ≤ 4.
First we find the critical points without paying attention to the constraint. The partial derivatives are fx(x, y) = 2x + y and
fy(x, y) = x + 2y so we have a critical point at the origin, and f(0, 0) = 0. Next we look for extrema of the function on the
boundary of the disk by solving the system ⎧⎨

⎩
2x + y = 2λx
x + 2y = 2λy
x2 + y2 = 4.

From the first two equations we see that x2 = y2 so x = ±y and x = ±√
2. Substituting, we find that the minimum is 0 at

the origin and the maximum is 6 at (
√

2,
√

2).
24. We are maximizing V (x, y, z) = xyz subject to the constraint g(x, y, z) = 2x + 2y + z ≤ 108. In this case, the maximum

must occur on the boundary because the only unconstrained critical point requires two of the coordinates to be zero—these
points are on the boundary and give the (degenerate) minimum solution of 0. We solve the system⎧⎪⎪⎨

⎪⎪⎩
yz = 2λ
xz = 2λ
xy = λ
2x + 2y + z = 108.

Since none of x, y, or z can be zero, we find that x = y = z/2, so 3z = 108 and the critical point is (18, 18, 36). So the
dimensions are 18” by 18” by 36”.

25. We are maximizing f(r, h) = πr2h subject to the constraint that g(r, h) = 2πrh + 2πr2 = c. We solve the system⎧⎨
⎩

2πrh = λ(2πh + 4πr)
πr2 = 2λπr
2πrh + 2πr2 = c.

Since r �= 0 the second equation implies that r = 2λ, so, substituting this into the first equation, we see that h = 2r. Hence,
the height should equal the diameter.

26. We are minimizing the cost which is C(r, h) = πr2 + 2(2πrh) + 5(2πr2) = 11πr2 + 4πrh subject to the constraint
g(r, h) = πr2h + (2/3)πr3 = 900π. We solve the system⎧⎨

⎩
22πr + 4πh = πλ(2rh + 2r2)
4πr = λπr2

πr2h + (2/3)πr3 = 900π.

As above, we see that 4 = λr so 22πr +4πh = (4π/r)(2rh+2r2) or 14r = 4h. Substituting, 900 = (7/2)r3 +(2/3)r3 =
(25/6)r3 so the radius is 6 feet and the height is 21 feet.

27. We wish to minimize M(x, y, z) = xz − y2 + 3x + 3 subject to the constraint g(x, y, z) = x2 + y2 + z2 = 9. We solve the
system ⎧⎪⎪⎨

⎪⎪⎩
z + 3 = 2λx
−2y = 2λy
x = 2λz
x2 + y2 + z2 = 9.

Either y = 0 or λ = −1. If y = 0, then z = −3 or 3/2 so we get (0, 0,−3) and (±3
√

3/2, 0, 3/2) as critical points. If
λ = −1, we find the critical points are (−2, 2, 1) and (−2,−2, 1). Comparing values of M , the minimum of −9 is attained
at either (−2, 2, 1) or (−2,−2, 1).

28. It’s easier to maximize the square of the area f(x, y, z) = s(s − x)(s − y)(s − z) subject to x + y + z = 2s (= P ), a
constant.

Thus ∇f = λ∇g (where g(x, y, z) = x + y + z) gives us the system:⎧⎪⎪⎨
⎪⎪⎩

−s(s − y)(s − z) = λ
−s(s − x)(s − z) = λ
−s(s − x)(s − y) = λ

x + y + z = 2s (0 < x, y, z ≤ s)
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Hence −s(s − y)(s − z) = −s(s − x)(s − z) = −s(s − x)(s − y). The first equality implies z = s or x = y. Note that
z = s means f = 0—so there’s zero area which cannot possibly be maximum. Thus x = y. From −s(s − x)(s − z) =

−s(s − x)(s − y) we similarly conclude that y = z. Hence x = y = z

(
=

2

3
s

)
gives us our critical point and corresponds

to having an equilateral triangle. Our constraint looks like a portion of a plane. The dark triangle in the figure below is the part

to be considered—it’s where f is ≥ 0. Therefore, the point
(

2

3
s,

2

3
s,

2

3
s

)
yields the maximum.

z

(0,0,2s)

(0,2s,0)(2s,0,0)

yx

29. A sphere centered at the origin has equation x2 +y2 +z2 = r2. Thus we want to maximize f(x, y, z) = x2 +y2 +z2 subject
to the constraint g(x, y, z) = 3x2 + 2y2 + z2 = 6. We can solve this using Lagrange multipliers, but we must make sure we
find an inscribed sphere. We consider the system⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2x = 6λx 1st equation gives x = 0 or λ = 1/3

2y = 4λy 2nd equation gives y = 0 or λ = 1/2

2z = 2λz 3rd equation gives z = 0 or λ = 1
3x2 + 2y2 + z2 = 6 (Note that we can’t have x = y = z = 0

and still satisfy the constraint.)

Thus if λ = 1/3, y = z = 0 and the constraint implies x = ±√
2. If λ = 1/2, x = z = 0 and y = ±√

3. Finally, if λ = 1,
then x = y = 0 and z = ±√

6. Comparing values, we have

f(±
√

2, 0, 0) = 2, f(0,±
√

3, 0) = 3, f(0, 0,±
√

6) = 6,

so that it’s tempting to say that the largest sphere has a radius of
√

6. However, such a sphere is not actually inscribed in the
ellipsoid. The largest sphere that actually remains inscribed in the ellipsoid has a radius of

√
2.
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30. This is just Exercise 1 with two constraints. We are minimizing f(x, y, z) = x2 + y2 + z2 with the constraints g1(x, y, z) =
2x + y + 3z = 9 and g2(x, y, z) = 3x + 2y + z = 6. We solve the system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2x = 2λ + 3μ

2y = λ + 2μ

2z = 3λ + μ

2x + y + 3z = 9

3x + 2y + z = 6.

Eliminate λ and μ and then solve to get a critical point at (1, 2/5, 11/5).
31. This is just Exercise 22 translated by (2, 5,−1). We are minimizing f(x, y, z) = (x − 2)2 + (y − 5)2 + (z + 1)2 with the

constraints g1(x, y, z) = x − 2y + 3z = 8 and g2(x, y, z) = 2z − y = 3. We solve the system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2(x − 2) = λ

2(y − 5) = −2λ − μ

2(z + 1) = 3λ + 2μ

x − 2y + 3z = 8

2z − y = 3.

Eliminate μ by combining the second and third equations and then substitute 2(x − 2) for λ. Solve to get a critical point at
(9/2, 2, 5/2).

32. We want to maximize and minimize the distance function
√

x2 + y2 + z2, but the task is equivalent to finding the extrema
of the square of the distance. Hence we find the extrema of f(x, y, z) = x2 + y2 + z2 subject to the two constraints that
g1(x, y, z) = x + y + z = 4 and g2(x, y, z) = x2 + y2 − z = 0. Note that f is continuous and the ellipse defined by the
constraints is compact, so the extreme value theorem guarantees that f has a global maximum and a global minimum on the
ellipse. From the Lagrange multiplier equation ∇f = λ1∇g1 + λ2∇g2, plus the constraints, we see that we must solve the
system ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2x = 2λ1x + λ2

2y = 2λ1y + λ2

2z = −λ1 + λ2

x + y + z = 4

x2 + y2 − z = 0.

The first two equations imply λ2 = 2x − 2λ1x = 2y − 2λ1y, so that 2x(1 − λ1) = 2y(1 − λ1). Hence either λ1 = 1 or
x = y. If λ1 = 1, then λ2 = 0 and the third equation becomes 2z = −1, so z = −1/2. The last two equations are thus
x + y − 1/2 = 4 and x2 + y2 + 1/2 = 0. However, there can be no real solutions to x2 + y2 = −1/2. Therefore, the case
that λ1 = 1 leads to no critical points.

If x = y, then the last two equations become 2x + z = 4 and 2x2 − z = 0. Hence z = 4 − 2x, so that 2x2 − z = 0 is
equivalent to 2x2 + 2x − 4 = 0, which has solutions x = −2, 1. Therefore our critical points are (−2,−2, 8) and (1, 1, 2).

Finally, note that f(−2,−2, 8) = 72 > f(1, 1, 2) = 6. Hence, in view of the initial observations above, (1, 1, 2) is the
point on the ellipse nearest the origin and (−2,−2, 8) the point farthest from the origin.

33. This is the same as Exercise 32 except that we are trying to find extrema for f(x, y, z) = z and the plane has the equation
g1(x, y, z) = x + y + 2z = 2. Again, using a computer algebra system we find that the lowest point is at (1/2, 1/2, 1/2) and
the highest is at (−1,−1, 2).

34. Minimize f(x, y, u, v) = (x−u)2+(y−v)2 subject to the two constraints: g1(x, y, u, v) = x2+2y2 = 1 and g2(x, y, u, v) =
u + v = 4. We solve the system ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(x − u) = 2λx

−2(x − u) = μ

2(y − v) = 2λy

−2(y − v) = μ

x2 + 2y2 = 1

u + v = 4.
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Solving you get two critical points (x, y, u, v) = (
√

2/3,
√

1/6, 2+
√

6/12, 2−√
6/12) for which the square of the distance

is 35/4 − 2
√

6 ≈ 3.85 and (x, y, u, v) = (−
√

2/3,−
√

1/6, 2 −√
6/12, 2 +

√
6/12) for which the square of the distance

is 35/4 + 2
√

6 ≈ 13.65. The minimum distance is
√

35/4 − 2
√

6 ≈ 1.96.
35. (a) f(x, y) = x + y with the constraint xy = 6 so we solve the system⎧⎪⎨

⎪⎩
1 = 2λy

1 = 2λx

xy = 6.

So x = y and the critical points are at ±(
√

6,
√

6).
(b) The constraint curve is not connected. There are two distinct components. Although (−√

6,−√
6) produces a local

maximum of −2
√

6 on its component, the value of the function at any point on the other component is greater. Similarly,
(
√

6,
√

6) produces a local minimum of 2
√

6 on its component, but the value of the function at any point on the other
component is less.

36. We use a Lagrange multiplier to find the maximum value of f(α, β, γ) = sin α sin β sin γ subject to the constraint that
α + β + γ = π. (Note that we also assume that each of α, β, γ must be strictly between 0 and π.) The system of equations to
consider is ⎧⎪⎪⎨

⎪⎪⎩
cos α sin β sin γ = λ
sin α cos β sin γ = λ
sin α sin β cos γ = λ
α + β + γ = π.

The first two equations imply that cos α sin β sin γ = sin α cos β sin γ This holds if either cos α sin β = sin α cos β or
sin γ = 0. However, if sin γ = 0, then γ is 0 or π which we have already ruled out. (Also, f would necessarily be zero and
clearly not maximized since any acute triangle will yield a positive value of f .) Hence

cos α sin β = sin α cos β ⇐⇒ sin α cos β − cos α sin β = 0 ⇐⇒ sin(α − β) = 0.

It follows that α = β. Similarly, the second and third equations together imply that sin α cos β sin γ = sin α sin β cos γ Thus
either sin α = 0 (which we reject) or

cos β sin γ = sin β cos γ ⇐⇒ sin β cos γ − cos β sin γ = 0 ⇐⇒ sin(β − γ) = 0.

Hence β = γ and so α = β = γ = π/3 using the last equation. Therefore, the maximum value of f is 3
√

3/8.
37. Let P have coordinates (x, y, z). The square of the distance from P to the origin is given by the function f(x, y, z) =

x2 + y2 + z2 and the coordinates of P must satisfy g(x, y, z) = c. Thus if f is maximized at P , then, since ∇g(x, y, z) is
given never to vanish, ∇f(x, y, z) = λ∇g(x, y, z) for some λ. If we write this out, we find

(2x, 2y, 2z) = λ∇g(x, y, z).

But
(2x, 2y, 2z) = 2(x, y, z) = 2

−−→
OP,

where
−−→
OP denotes the displacement vector from the origin to P . Therefore,

−−→
OP =

λ

2
∇g(x, y, z);

that is,
−−→
OP is parallel to ∇g. (Note that

−−→
OP must be nonzero if the distance from the origin to P is to be maximized.) Since

the gradient vector ∇g at P is known to perpendicular to the level set of g through P , the result follows.
38. This is a non-linear version of Exercise 30. Minimize f(x, y, z) = x2 + y2 + z2 subject to the constraints g1(x, y, z) =

x2 + y2 = 4 and g2(x, y, z) = 2x + 2y + z = 2. We solve the system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2x = 2λx + 2μ

2y = 2λy + 2μ

2z = μ

x2 + y2 = 4

2x + 2y + z = 2.

Solving we see that either x = y or λ = 1. If x = y then x = y = ±√
2 and z = 2 ∓ 4

√
2. The farthest point is

(−√
2,−√

2, 2 + 4
√

2). If λ = 1 then x = (1 ±√
7)/2, y = (1 ∓√

7)/2, and z = 0—these last two are the closest points.
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39. We want to find the extreme values of the function f(x, y) = x2 + y2 (the square of the distance from the point (x, y) to the
origin) subject to the constraint g(x, y) = 3x2 − 4xy + 3y2 = 50. (Note that there will be a global maximum and a global
minimum by the extreme value theorem since the ellipse is a compact set in R2.) We solve the system⎧⎨

⎩
2x = λ(6x − 4y)
2y = λ(−4x + 6y)
3x2 − 4xy + 3y2 = 50.

The first two equations together imply

1

λ
=

6x − 4y

2x
=

−4x + 6y

2y
⇐⇒ 3 − 2y

x
= 3 − 2x

y
⇐⇒ y2 = x2.

Thus y = ±x. If y = x, then the last equation becomes

3x2 − 4x2 + 3x2 = 50 ⇐⇒ x2 = 25 ⇐⇒ x = ±5.

Thus there are two critical points (5, 5) and (−5,−5). If y = −x, then the last equation becomes

3x2 + 4x2 + 3x2 = 50 ⇐⇒ x2 = 5 ⇐⇒ x = ±
√

5.

Hence there are two more critical points (
√

5,−√
5) and (−√

5,
√

5). Finally, we have

f(5, 5) = f(−5,−5) = 50 and f(
√

5,−
√

5) = f(−
√

5,
√

5) = 10,

so that (5, 5) and (−5,−5) are the points on the ellipse farthest from the origin and (
√

5,−√
5) and (−√

5,
√

5) are the points
nearest the origin.

40. (a) This follows immediately from the extreme value theorem. The constraint defines a quarter circle, including the endpoints,
which is a compact set in R2 and the function f(x, y) =

√
x+8

√
y is continuous whenever x and y are both nonnegative.

(b) The system we consider is

⎧⎪⎨
⎪⎩
(

1

2
√

x
,

8

2
√

y

)
= λ(2x, 2y)

x2 + y2 = 17

or

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2
√

x
= 2λx

4√
y

= 2λy

x2 + y2 = 17.

The first two equations of the system together imply that

2λ =
1

2x3/2
=

4

y3/2
=⇒ y3/2 = 8x3/2 =⇒ y = 4x.

Using this result in the last equation gives x2 + 16x2 = 17. Thus x = 1 since we only want x (and y) nonnegative. Thus
the only critical point we identify in this manner is (1, 4).

(c) Note that ∇f(x, y) is undefined if either x or y is zero. Given the constraint, this means that we should also consider the
points (

√
17, 0) and (0,

√
17). Comparing values, we have

• f(1, 4) = 17,
• f(

√
17, 0) = 4

√
17,

• f(0,
√

17) = 8 4
√

17 ≈ 16.24.
Hence (1, 4) yields the global maximum and (

√
17, 0) the global minimum on the quarter circle.

41. (a) The system is ⎧⎪⎨
⎪⎩

1 = λ(16x3 − 12x2)

0 = 2λy

y2 − 4x3 + 4x4 = 0.

The second equation implies that either y = 0 or λ = 0. But λ = 0 cannot satisfy the first equation, so y = 0. The last
equation implies 4x3(1 − x) = 0; thus x = 0 or 1. But x = 0 cannot satisfy the first equation. Thus the only solution to
the system is (1, 0).
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(b) The graph of the curve (known as the piriform) is shown in the figure below. From it, it’s clear that the maximum value
of f(x, y) = x occurs at (1, 0) and the minimum value at (0, 0).

x

y

0.2 0.4 0.6 0.8 1

-0.2

-0.6

-0.4

0.2

0.4

0.6

(c) Note that ∇g(x, y) = (16x3 − 12x2, 2y) = (0, 0) at (0, 0) (and at (3/4, 0)). (0, 0) is a point on the curve ((3/4, 0) is not).
It’s the singular point of the piriform and, although not a solution to the Lagrange multiplier system in part (a), it must be
considered as a possible site for extrema.

42. (a) The relevant Lagrange multiplier system to solve is⎧⎪⎪⎨
⎪⎪⎩

2x = 0
2y = 0
0 = λ
z = c

The obvious unique solution is (0, 0, c) with λ = 0.

(b) L(l; x, y, z) = x2 + y2 − l(z − c). With c as a constant and x1 = x, x2 = y, x3 = z, we have

HL(l; x, y, z) =

⎡
⎢⎢⎣

0 0 0 −1
0 2 0 0
0 0 2 0

−1 0 0 0

⎤
⎥⎥⎦ = HL(0; 0, 0, c).

The second derivative test asks us to calculate (−1)1d3 and (−1)1d4 or

−d3 = − det

⎡
⎣ 0 0 0

0 2 0
0 0 2

⎤
⎦ = 0; −d4 = − det

⎡
⎢⎢⎣

0 0 0 −1
0 2 0 0
0 0 2 0

−1 0 0 0

⎤
⎥⎥⎦ = −(−4) = 4.

Thus the second derivative test seems to suggest that we’ve found a saddle point.
(c) Now we let x1 = z, x2 = y, x3 = x and look at

HL(l; z, y, x) =

⎡
⎢⎢⎣

0 −1 0 0
−1 0 0 0

0 0 2 0
0 0 0 2

⎤
⎥⎥⎦ .
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In this case we find

−d3 = − det

⎡
⎣ 0 −1 0

−1 0 0
0 0 2

⎤
⎦ = −(−2) = 2 and

−d4 = − det

⎡
⎢⎢⎣

0 −1 0 0
−1 0 0 0

0 0 2 0
0 0 0 2

⎤
⎥⎥⎦ = −(−4) = 4.

This time the sound derivative test suggests a local minimum.
(d) Indeed, inspection tells us that the expression x2 +y2 attains a globalminimum at x = y = 0. So to satisfy the constraint

z = c, we see that (0, 0, c) yields a global minimum. The difference between the results of (b) and (c) can be explained
by looking at ∂g/∂x vs. ∂g/∂z: ∂g/∂x = 0, but ∂g/∂z = 1 �= 0.
In part (b), we did not satisfy the hypothesis of the second derivative test that the variables be ordered so that

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂g1

∂x1
(a) . . .

∂g1

∂xk
(a)

...
. . . ...

∂gk

∂x1
(a) . . .

∂gk

∂xk
(a)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
�= 0.

(The determinant in this situation is just ∂g/∂x.) In part (c), we did satisfy the hypothesis, since ∂g/∂z �= 0.
43. (a) In order for (λ, a) to be a solution of the constrained problem, (λ, a) must solve the system

⎧⎪⎨
⎪⎩ fxi

(a) =
k∑

j=1

λj(gj)xi
(a) for 1 ≤ i ≤ n

gj(a) = cj for 1 ≤ j ≤ k.

On the other hand, an unconstrained critical point for L must be where all first partials are zero. In other words, we
must have

Llj = 0, 1 ≤ j ≤ k and Lxj
= 0, 1 ≤ j ≤ n.

Upon explicit calculation of the partials these equations are:

{
flj (a) − (gj(a) − cj) = 0 for 1 ≤ j ≤ k, and
fxj

(a) −∑k
i=1 λi(gi)xj

(a) = 0 for 1 ≤ j ≤ n.

This is the same system as that for the constrained case.
(b) Calculate the Hessian in four blocks. All of the entries in the upper left k × k block are 0. This is because the entry

in position (i, j) is Llilj and the highest power of any li appearing in L is 1. The top right block with k rows and
n columns gives back the negative first partials of the constraint conditions because the entry in position (k + i, j) is
Lxilj = −(gj − cj)xi

= −(gj)xi
. The lower left block of n rows and k columns is just the transpose of this last block.

The lower right n × n block is such that the entry in position (k + i, k + j) = Lxixj
= (f −∑k

q=1 lqgq)xixj
. When λ

and a are substituted for l and x, the desired matrix is obtained.
44. We find extreme values of f(x1, . . . , xn, y1, . . . , yn) =

∑n
i=1 xiyi subject to the two constraints g1(x1, . . . , xn, y1, . . .,

yn) = x1
2 + · · ·+xn

2 = 1 and g2(x1, . . . , xn, y1, . . . , yn) = y1
2 + · · ·+yn

2 = 1. Thus we look at ∇f = λ1∇g1 +λ2∇g2
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together with the constraints to solve⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 = 2λ1x1

...
yn = 2λ1xn

⎫⎪⎬
⎪⎭

The first n equations (and the last) imply 1 =
∑

yi
2 = 4λ1

2
∑

xi
2

= 4λ1
2 · 1

so λ1 = ±1

2
.

x1 = 2λ2y1

...
xn = 2λ2yn

⎫⎪⎬
⎪⎭

The next n equations (and the next-to-last) imply 1 =
∑

xi
2 = 4λ2

2
∑

yi
2 = 4λ2

2

so λ2 = ±1

2
.

∑
xi

2 = 1∑
yi

2 = 1

Putting all the information together, we find that x = y (when λ1 = λ2 = 1
2

) and x = −y (when λ1 = λ2 = − 1
2

). When
x = y, f(x, y) =

∑
xi

2 = 1. When x = −y, f(x,−x) =
∑

(−xi
2) = −1. Though it takes a little bit of argumentation, the

hypersphere in Rn is compact—hence so is the product of hyperspheres in R2n(= Rn × Rn). Thus we find maximum and
minimum values of +1 and −1, respectively.

45. (a)
n∑

i=1

ui
2 = u1

2 + · · · + un
2 =

x1
2

(
√

xi
2)2

+
x2

2

(
√

xi
2)2

+ · · · + xn
2

(
√

xi
2)2

=

∑
xi

2∑
xi

2
= 1.

So u is an the unit hypersphere. The case for v is identical.
(b) By Exercise 44, we have −1 ≤∑n

i=1 uivi ≤ 1. Hence

−1 ≤
∑

i

⎛
⎝ xi√∑

j
x2

j

⎞
⎠
⎛
⎝ yi√∑

j
y2

j

⎞
⎠ ≤ 1

⇔−
√∑

j
x2

j

√∑
j
y2

j ≤
∑

i
xiyi ≤

√∑
j
x2

j

√∑
j
y2

i

⇔− ‖x‖‖y‖ ≤ x · y ≤ ‖x‖‖y‖
⇔ |x · y| ≤ ‖x‖‖y‖.

4.4 Some Applications of Extrema

1. This problem can be done using calculators or the following table to help with Proposition 4.1:

xi yi xi
2 xiyi

0 2 0 0
1 3 1 3
2 5 4 10
3 3 9 9
4 2 16 8
5 7 25 35
6 7 36 42

21 29 91 107

So m0 =
7(107) − (21)(29)

7(91) − (21)2
=

140

196
=

35

49
≈ .71428

and b0 =
(91)(29) − (21)(107)

7(91) − (21)2
=

392

196
=

98

49
= 2.

The equation of the least squares line is y = (35/49)x + 2.
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2. Again, using Proposition 4.1,

m =
2(x1y1 + x2y2) − (x1 + x2)(y1 + y2)

2(x2
1 + x2

2) − (x1 + x2)2
=

(x1 − x2)(y1 − y2)

(x1 − x2)2
=

y1 − y2

x1 − x2
.

b =
(x2

1 + x2
2)(y1 + y2) − (x1 + x2)(x1y1 + x2y2)

2(x2
1 + x2

2) − (x1 + x2)2
=

(x1y2 − x2y1)(x1 − x2)

(x1 − x2)2
=

x1y2 − x2y1

x1 − x2
.

You can check that (x1, y1) and (x2, y2) are both on the line

y =

(
y1 − y2

x1 − x2

)
x +

x1y2 − x2y1

x1 − x2
.

3. (a) As in the text, the function D(a, b) will be the sum of the squares of the differences between the observed y values and
the y values on the curve y = a/x + b. This means that

D(a, b) =
n∑

i=1

(yi − (a/xi + b))2.

(b) Make the substitution Xi = 1/xi and then fit the line y = aX + b to this transformed data using Proposition 4.1. We get

a =
n
∑

Xiyi −
(∑

Xi

) (∑
yi

)
n
∑

X2
i −

(∑
Xi

)2 and b =

(∑
X2

i

) (∑
yi

)
−
(∑

Xi

) (∑
Xiyi

)
n
∑

X2
i −

(∑
Xi

)2 .

Transform the data back, replacing Xi with 1/xi, then the curve of the form y = a/x + b that best fits the data has

a =
n
∑

yi/xi −
(∑

1/xi

) (∑
yi

)
n
∑

1/x2
i −
(∑

1/xi

)2 and b =

(∑
1/x2

i

) (∑
yi

)
−
(∑

1/xi

) (∑
yi/xi

)
n
∑

1/x2
i −
(∑

1/xi

)2 .

4. We’ll use the results of Exercise 3 and organize our sums with the following table:

1/xi yi 1/x2
i yi/xi

1 0 1 0
1/2 −1 1/4 −1/2

2 1 4 2
1/3 −1/2 1/9 −1/6

23/6 −1/2 193/36 8/6

So a =
4(8/6) − (23/6)(−1/2)

4(193/36) − (23/6)2
=

261

243
=

29

27

and b =
(193/36)(−1/2) − (23/6)(8/6)

4(193/36) − (23/6)2
= −561

486
= −187

162
.

The equation of the least squares curve of the desired form is y = 29/(27x) − 187/162.
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5. Again the function D(a, b, c) will be the sum of the squares of the differences between the observed y values and the y values
on the curve y = ax2 + bx + c. This means that

D(a, b, c) =
n∑

i=1

(yi − (ax2
i + bxi + c))2

=
n∑

i=1

y2
i + a2

n∑
i=1

x4
i + b2

n∑
i=1

x2
i + nc2 − 2a

n∑
i=1

x2
i yi − 2b

n∑
i=1

xiyi − 2c
n∑

i=1

yi

+ 2ab
n∑

i=1

x3
i + 2ac

n∑
i=1

x2
i + 2bc

n∑
i=1

xi so

Da(a, b, c) = 2a

n∑
i=1

x4
i − 2

n∑
i=1

x2
i yi + 2b

n∑
i=1

x3
i + 2c

n∑
i=1

x2
i ,

Db(a, b, c) = 2b
n∑

i=1

x2
i − 2

n∑
i=1

xiyi + 2a
n∑

i=1

x3
i + 2c

n∑
i=1

xi, and

Dc(a, b, c) = 2cn − 2
n∑

i=1

yi + 2a
n∑

i=1

x2
i + 2b

n∑
i=1

xi.

Set each of the partial derivatives equal to zero, move the term with coefficient −2 to the other side, and divide by 2 to get the
desired equations.

6. You may want to point out to the students that the independent variable x corresponds to hours of sleep because that is what
(in theory) Egbert can control.
(a) To get a line y = ax + b we’ll need

xi yi x2
i xiyi

8 85 64 680
8.5 72 72.25 612
9 95 81 855
7 68 49 476
4 52 16 208
8.5 75 72.25 637.5
7.5 90 56.25 675
6 65 36 390

58.5 602 446.75 4533.5
Using the formulas in Proposition 4.1 you’ll find that the least squares line is

y = (4204/607)x + (14935/607) ≈ 6.93x + 24.6.

(b) We will need some additional data:
xi x3

i x4
i x2

i yi

8 512 4096 5440
8.5 614.125 5220.0625 5202
9 729 6561 7695
7 343 2401 3332
4 64 256 832
8.5 614.125 5220.0625 5418.75
7.5 421.875 3164.0625 5062.5
6 216 1296 2340

58.5 3514.125 28214.1875 35322.25
Use the formulas given in Exercise 5 to obtain the system⎧⎨

⎩
28214.1875a + 3514.125b + 446.75c = 35322.25
3514.125a + 446.75b + 58.5c = 4533.5
446.75a + 58.5b + 8c = 602.
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Solve this system to get the following (approximate) quadratic:

y = −.192044054x2 + 9.42923983x + 17.02314387.

(c) Plugging 6.8 into the linear model predicts that Egbert will get 71.7, plugging 6.8 into the quadratic model predicts that
Egbert will get 72.26.

7. (a) We are required to show that F is a gradient (conservative) vector field. Clearly if V (x, y) = x2 + 2xy + 3y2 + x + 2y
then −∇V = (−2x − 2y − 1)i + (−2x − 6y − 2)j = F.

(b) We find equilibrium points of F when F = 0. Solve the system of equations{ −2x − 2y = 1
−2x − 6y = 2

and find one solution at (−1/4,−1/4). The Hessian is

HV =

[
2 2
2 6

]

so both d1 and d2 are positive so the equilibrium is stable.
8. Here V (x, y) = 2x2−8xy−y2 +12x−8y+12 so ∇V = −F = (4x−8y+12,−8x−2y−8). This is 0 at (−11/9, 8/9).

The Hessian is

HV =

[
4 −8

−8 −2

]
.

Note that d1 > 0 and d2 < 0 so the equilibrium at (−11/9, 8/9) is not stable.
9. Here V (x, y, z) = 3x2 + 2xy + z2 − 2yz + 3x + 5y − 10 so ∇V = −F = (6x + 2y + 3, 2x− 2z + 5,−2y + 2z). This is

0 at (−1, 3/2, 3/2). The Hessian is

HV =

⎡
⎣ 6 2 0

2 0 −2
0 −2 2

⎤
⎦ .

Note that d1 > 0, d2 < 0, and d3 > 0 so the equilibrium at (−1, 3/2, 3/2) is not stable.
10. (a) Here we are looking for constrained equilibria (as in Example 3 in the text). Our equation is F − ∇V = λ∇g where

g(x, y, z) = 2x2 + 3y2 + z2 = 1, F = −mgk, and V (x, y, z) = 2x. So our system of equations is⎧⎪⎪⎨
⎪⎪⎩

−2 = 4λx
0 = 6λy
−mg = 2λz
2x2 + 3y2 + z2 = 1.

Note from the first equation that λ �= 0 so by the second equation y = 0. From the third equation 2λ = −mg/z so
z = mgx. Substituting into the equation of the ellipsoid, 2x2 + m2g2x2 = 1 so x = ±1/

√
2 + m2g2. So our two

equilibria are at ±(1/
√

2 + m2g2, 0, mg/
√

2 + m2g2).
(b) Note the direction of the force is (−2, 0,−mg) so −(1/

√
2 + m2g2, 0, mg/

√
2 + m2g2) is a stable equilibrium.

11. Maximize R(x, y, z) = xyz2 − 25000x − 25000y − 25000z subject to the constraint x + y + z = 200000. Our system of
equations is ⎧⎪⎪⎨

⎪⎪⎩
yz2 − 25000 = λ
xz2 − 25000 = λ
2xyz − 25000 = λ
x + y + z = 200000.

The hidden condition is that all of the variables are non-negative. This means that we are finding a maximum on the triangular
portion of the plane that lies in the first octant. The maximum revenue will occur at a boundary point or at a critical point.
Along the boundary at least one of the variables is 0 and the revenue is at most 0 when at least one of x, y and z is 0. We will
see the value of R at the critical point is greater and therefore that it is our global maximum. Assume none of the variables is
zero. Then, from the first two equations, since z �= 0 then x = y. From the third equation paired with either of the first two we
see that z = 2x = 2y. Finally, since their sum is 200000 we find the solution (50000, 50000, 100000) is where the maximum
revenue occurs.
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12. This is similar to Example 4 from the text. We are maximizing U(x1, x2, x3) = x1x2 + 2x1x3 + x1x2x3 subject to the
constraint g(x1, x2, x3) = x1 + 4x2 + 2x3 = 90. Our system of equations is⎧⎪⎪⎨

⎪⎪⎩
x2 + 2x3 + x2x3 = λ
x1 + x1x3 = 4λ
2x1 + x1x2 = 2λ
x1 + 4x2 + 2x3 = 90.

The only solution of this system with all three of the xi’s non-negative is (33.0149, 6.37314, 15.7463). You can only order inte-
ger amounts, so experiment with the different ways of rounding to obtain a maximum at
(34, 6, 16).

13. We maximize the function B subject to the constraint 15x + 10y = 500. Using a Lagrange multiplier, we solve the system⎧⎨
⎩

8x = 15λ
2y = 10λ
15x + 10y = 500.

The first two equations imply that 5λ = 8
3
x = y. Using this in the constraint equation yields

15x +
80

3
x = 500 ⇐⇒ x = 12.

Thus (x, y) = (12, 32) is our only critical point. We should compare the yield B at this point with that at the boundary values
of
(

100
3

, 0
)

(all irrigation) and (0, 50) (all fertilizer). We have

B(12, 32) = 2200, B
(

100
3

, 0
)

= 5044.4, B(0, 50) = 3100.

Thus she should forgo the fertilizer entirely and simply irrigate the field.
14. (a) We maximize the given production function f subject to the constraint 8x+2y = 1000. Using a Lagrange multiplier, the

system we must consider is ⎧⎨
⎩

4y − 2 = 8λ
4x − 8 = 2λ
8x + 2y = 1000.

The first two equations of the system imply that

4λ = 8x − 16 = 2y − 1 =⇒ 8x = 2y + 15.

Using this in the last equation we have 4y + 15 = 1000 ⇐⇒ y = 985/4. Hence x = 1015/16. (Note that in the
constraint 8x + 2y = 1000, we must have 0 ≤ x ≤ 125 and 0 ≤ y ≤ 500. The endpoints (125, 0) and (0, 500) give
negative values for f and so (1015/16, 985/4) must yield the maximum value of f on the line segment described by the
constraints.) Hence the manufacturer should purchase 63.4375 lb of cashmere and 246.2516 lb of cotton. The ratio of
cotton to cashmere is 4

(
985
1015

) ≈ 3.88.
(b) Most of the essential features of the situation remain unchanged. The constraint equation becomes 8x + 2y = B, so that

the relevant system to solve is ⎧⎨
⎩

4y − 2 = 8λ
4x − 8 = 2λ
8x + 2y = B.

As before, 8x = 2y + 15 and, using this we find that

(x, y) =

(
B + 15

16
,
B − 15

4

)
is the critical point that maximizes f . Thus the ratio of cotton to cashmere should be

(B − 15)/4

(B + 15)/16
= 4

(
B − 15

B + 15

)
.

As B becomes very large, we have

lim
B→+∞

4

(
B − 15

B + 15

)
= lim

B→+∞
4 (1 − 15/B)

1 + 15/B
= 4,

which is the ratio of the cost of cashmere to that of cotton.
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15. (a) This is an example of the Cobb-Douglas production function with p = w = 1 (see Example 5 from the text). The only
critical point will be (K, L) = ((1/3)360000, (2/3)360000) = (120000, 240000).

(b) ∂Q/∂K = 20(L/K)2/3 and so at (120000, 240000), ∂Q/∂K = 20(2)2/3. On the other hand, ∂Q/∂L = 40(K/L)1/3

and so at (120000, 240000), ∂Q/∂L = 40(1/2)1/3. These quantities are equal at the critical point.
16. This time we are minimizing pK + wL = M subject to the constraint Q(K, L) = c. Our system of equations is⎧⎪⎪⎨

⎪⎪⎩
p = λ

∂Q

∂K

w = λ
∂Q

∂L
.

Since none of p, q, and λ is 0, we can divide the top equation by pλ, divide the bottom equation by qλ and the result is
immediate.

True/False Exercises for Chapter 4

1. True.
2. False. (The increment measures the change in the function.)
3. True.
4. True.
5. True.
6. False. (p2(x, y) = 1 − 3x + y + 3x2 + 2xy.)

7. False. (f is most sensitive to changes in y.)
8. False. (The result is true if f is of class C2.)
9. False.

10. True.
11. True.
12. False. (The set is not bounded.)
13. False. (Consider the function f(x, y) = x2 + y2.)
14. True. (This ball is compact.)
15. True.
16. False. (The point a might not be a critical point.)
17. False. (The point is not a critical point of the function.)
18. False. (The point (0, 0, 0) gives a local minimum.)
19. True.
20. True.
21. False. (The critical point is a saddle point.)
22. False. (A local extremum can occur where a partial derivative fails to exist.)
23. False. (Extrema may also occur at points where g = c and ∇g = 0.)
24. False. (Solutions to the system only give critical points.)
25. False. (You will have to solve a system of 7 equations in 7 unknowns.)
26. True.
27. True.
28. True.
29. False. (The equilibrium points are the critical points of the potential function.)
30. False. (This is only true at values of labor and capital that maximize the output.)

Miscellaneous Exercises for Chapter 4

1. If V = πr2h then dV = 2πrh dr + πr2dh, so in order for V to be equally sensitive to small changes in r and h, we must be
at a point (r0, h0) where 2πr0h0 ≈ πr2

0 so r0 = 2h0.
2. (a) If f(x1, x2, . . . , xn) = e−x2

1
−x2

2
−···−x2

n , then fxi
(x1, x2, . . . , xn) = −2xie

−x2

1
−x2

2
−···−x2

n and is 0 only when xi = 0.
So the only critical point is at the origin.

c© 2012 Pearson Education, Inc.



234 Chapter 4 Maxima and Minima in Several Variables

(b) If i �= j, then fxixj
(x1, x2, . . . , xn) = 4xixje

−x2

1
−x2

2
−···−x2

n , so fxixj
(0, 0, . . . , 0) = 0. Also fxixi

(x1, x2, . . . ,

xn) = (−2 + 4x2
i )e

−x2

1
−x2

2
−···−x2

n , so fxixi
(0, 0, . . . , 0) = −2. The Hessian is an n× n diagonal matrix with −2’s on

the main diagonal and 0’s everywhere else. It is easy to calculate di(0, 0, . . . , 0) = (−2)i and so by the second derivative
test, f has a local maximum at the origin.

3. We are asked to maximize the profit P (x, y) = (x− 2)(80− 100x + 40y) + (y − 4)(20 + 60x− 35y) = −100x2 + 40x−
35y2 + 80y + 100xy − 240. The partial derivatives are Px(x, y) = −200x + 100y + 40 and Py(x, y) = 100x− 70y + 80.
These are both zero at (27/10, 5). You can read the Hessian right off the first derivatives and you see that d1 = −200 < 0 and
d2 = 4000 > 0 so profit is maximized when you charge $2.70 for Mocha and $5 for Kona.

4. (a) Revenue is R(x, y, z) = 1000x(4 − 0.02x) + 1000y(4.5 − 0.05y) + 1000z(5 − 0.1z) = −20x2 + 4000x − 50y2 +
4500y − 100z2 + 5000z.

(b) When (x, y, z) = (6, 5, 4), the prices of brands X, Y and Z are, respectively, $3.88, $4.25, and $4.60, and when
(x, y, z) = (1, 3, 3), the prices are $3.98, $4.35, and $4.70. The difference is R(1, 3, 3) − R(6, 5, 4) = 31, 130 −
62, 930 = −31, 800. The revenue will decline by $31,800 if the prices are raised.

(c) The partial derivatives are Rx(x, y, z) = 4000 − 40x, Ry(x, y, z) = 4500 − 100y, and Rz(x, y, z) = 5000 − 200z.
Thus the critical point is (100, 45, 25) and hence the selling prices should be $2 for brand X , $2.25 for brand Y and $2.50
for brand Z.

5. We note that there must be both a (global) maximum and a minimum value of f because the constraint equation defines the
surface of a sphere, which is compact, and f is continuous, so that the extreme value theorem applies.
(a) We find the extrema of f(x, y, z) = x −√

3y subject to g(x, y, z) = x2 + y2 + z2 = 4. Using the Lagrange multiplier
method, we solve ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
1 = 2λx

−√
3 = 2λy

0 = 2λz

x2 + y2 + z2 = 4.

From the first equation, we must have λ �= 0, so from the third equation z = 0. Then the first two equations imply that
y = −√

3x. Thus, since x2 + 3x2 = 4, our critical points are ±(1,−√
3, 0). We evaluate f at these points to find that

we have a maximum of 4 at (1,−√
3, 0) and a minimum of −4 at (−1,

√
3, 0).

(b) Now we are looking at the function g(ϕ, θ) = f(2 sin ϕ cos θ, 2 sin ϕ sin θ, 2 cos ϕ) = 2 sin ϕ cos θ − 2
√

3 sin ϕ sin θ.
Thus gϕ(ϕ, θ) = 2 cos ϕ cos θ − 2

√
3 cos ϕ sin θ and gθ(ϕ, θ) = −2 sin ϕ sin θ − 2

√
3 sin ϕ cos θ so that we should

solve {
−2 sin ϕ(sin θ +

√
3 cos θ) = 0

2 cos ϕ(cos θ −√
3 sin θ) = 0.

Either ϕ = 0, π and cos θ =
√

3 sin θ (hence tan θ = 1/
√

3 so θ = π/6, 7π/6), or ϕ = π/2, 3π/2 and sin θ =
−√

3 cos θ (hence tan θ = −√
3 so θ = 2π/3, 5π/3). Note that these points are (using (x, y, z) = (2 sin ϕ cos θ,

2 sin ϕ sin θ, 2 cos ϕ)):

(ϕ, θ) =
(
0, π

6

) ⇐⇒ (x, y, z) = (0, 0, 2)

(ϕ, θ) =
(
0, 7π

6

) ⇐⇒ (x, y, z) = (0, 0, 2)

(ϕ, θ) =
(
π, π

6

) ⇐⇒ (x, y, z) = (0, 0,−2)

(ϕ, θ) =
(
π, 7π

6

) ⇐⇒ (x, y, z) = (0, 0,−2)

(ϕ, θ) =
(

π
2
, 2π

3

) ⇐⇒ (x, y, z) = (−1,
√

3, 0)

(ϕ, θ) =
(

π
2
, 5π

3

) ⇐⇒ (x, y, z) = (1,−
√

3, 0)

(ϕ, θ) =
(

3π
2

, 2π
3

) ⇐⇒ (x, y, z) = (−1,
√

3, 0)

(ϕ, θ) =
(

3π
2

, 5π
3

) ⇐⇒ (x, y, z) = (1,−
√

3, 0).

We obtain the same points as in part (a), plus the additional critical points (0, 0, 2) and (0, 0,−2), which are not global
extrema, since f(0, 0,±2) = 0.

6. (a) Here we are maximizing T (x, y, z) = 200xyz2 subject to the constraint g(x, y, z) = x2 + y2 + z2 = 1. Using the
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Lagrange multiplier method, we solve

⎧⎪⎪⎨
⎪⎪⎩

200yz2 = 2λx
200xz2 = 2λy
400xyz = 2λz
x2 + y2 + z2 = 1.

From the third equation, λ �= 0 so 2λ = 400xy so 2x2 = 2y2 = z2. From the last equation we see that 4x2 = 1 so
our critical points are the eight possible combinations of x = ±1/2, y = ±1/2 and z = ±1/

√
2. The temperature is a

maximum of 25 when the sign of x and y are the same. This is at the four points ±(1/2, 1/2,±1/
√

2).
7. (a) fx(x, y) = 2x(−3y + 4x2) while fy(x, y) = 2y − 3x2. From fx we see that either x = 0 or y = (4/3)x2. But from

the second equation y = (3/2)x2. So we conclude that the only solution is at (0, 0).

(b) fxx(x, y) = 6(−y + 4x2), fxy(x, y) = −6x, and fyy(x, y) = 2. At the origin, the Hessian is
[

0 0
0 2

]
and so the

determinant is 0 and the critical point is degenerate.
(c) If y = mx then the original equation becomes F (x) = m2x2 − 3mx3 + 2x4. We calculate F ′(x) = 2m2x − 9mx2 +

8x3 = 2x(m2 − 9mx/2 + 4x2). From the second derivative we see that F ′′(x) = 2m2 − 18mx + 24x2. This is
positive at x = 0 for all m �= 0 so there is a minimum for x = 0 along any line other than the two axes. When
m = 0, F ′(x) = 8x3 and so the first derivative test implies that there is a minimum at x = 0 when m = 0. Finally,
consider G(y) = f(0, y) = y2. This clearly has a minimum at y = 0. We’ve shown that along any line through the
origin, f has a minimum at (0, 0).

(d) Consider g(x) = f(x, 3x2/2) = (−x2/2)(x2/2) = −x4/4. From the derivative g′(x) = −x3 we see that g has a
maximum at x = 0 and hence f has a maximum at the origin when constrained to the given parabola. This means that
the origin is actually a saddle point for f .

(e) A portion of the surface is shown below.

x

y

z

8. (a) Here we are finding the critical points of f(x, y) = xy subject to the constraint g(x, y) = x2 + y2 − 1 = 0. So taking
the partials of f(x, y) = λg(x, y) along with the constraint we get the following system of equations.

⎧⎨
⎩

y = 2λx
x = 2λy
1 = x2 + y2.

The solutions correspond to λ = ±1/2 and are the four critical points (1/
√

2, 1/
√

2), (−1/
√

2, 1/
√

2), (1/
√

2,−1/
√

2),
and (−1/

√
2,−1/

√
2).

(b) Here is a contour plot of f(x, y) = xy along with the constraint curve x2 + y2 = 1 and the four critical points.
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(c) You can see from the figure that f is at its highest value along the constraint curve at two of the critical points and at
its lowest at two of the others. In particular, f has a constrained max at ±(1/

√
2, 1/

√
2) and has a constrained min at

±(1/
√

2,−1/
√

2).

9. (a) Here we are finding the critical points of f(x, y, z) = xy subject to the constraint g(x, y, z) = x2 + y2 + z2 − 1 = 0.
So taking the partials of f(x, y, z) = λg(x, y, z) along with the constraint we get the following system of equations.⎧⎪⎪⎪⎨

⎪⎪⎪⎩
y = 2λx

x = 2λy

0 = 2λz

1 = x2 + y2 + z2

This problem is very similar to Exercise 8 and so it is no surprise that we again get four critical points corresponding to
λ = ±1/2. They are (1/

√
2, 1/

√
2, 0), (−1/

√
2, 1/

√
2, 0), (1/

√
2,−1/

√
2, 0), and (−1/

√
2,−1/

√
2, 0). We also get

critical points at the two poles corresponding to λ = 0. These are at (0, 0,±1).
(b) Of course, it is harder to represent this situation than its lower-dimensional counterpart. Here are some level sets, the unit

sphere and the critical points.

-2

-1

0

1x -2

-1

0

1

2

y
-1

-0.5

0

0.5

1

z

2
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(c) The arguments that f has a constrained max at ±(1/
√

2, 1/
√

2, 0) and has a constrained min at ±(1/
√

2, −1/
√

2, 0)
are the same as in Exercise 8. The two poles must be saddle points. If you travel in a direction where y = x, f(x, y) is
increasing while if you travel in a direction where y = −x, f(x, y) is decreasing. So there are saddle points at (0, 0,±1).

10. From the diagram you can see that we are minimizing f(x, y) = (x+ y)y subject to the constraint that x2 + y2 = 1. Because
this is a physical problem, we can assume that x > 0 and y > 0. A look at the contour plot for f along with the constraint
curve lets us see that this solution will be a max.

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Our system of equations is ⎧⎨
⎩

y = 2λx
x + 2y = 2λy
1 = x2 + y2

Solving gives us one solution for which x and y are positive, namely x = (
√

2 +
√

2/2)(
√

2 − 1) and y = (
√

2 +
√

2/2).
The area of the rectangle is, therefore, (

√
2 + 1)/2.

11. Minimize f(x1, x2, . . . , xn) = x2
1+x2

2+· · ·+x2
n subject to the constraint g(x1, x2, . . . , xn) = a1x1+a2x2+· · ·+anxn = 1

where not all the ai’s are zero. We solve

{
2xi = aiλ for 1 ≤ i ≤ n
a1x1 + a2x2 + · · · + anxn = 1.

This means that our constrained critical point is at xi = aiλ/2 and 2/(a2
1+a2

2+· · ·+a2
n) = λ so xi = ai/(a2

1+a2
2+· · ·+a2

n).
So our minimum is

f(x1, x2, . . . , xn) = f

(
a1

a2
1 + a2

2 + · · · + a2
n

,
a2

a2
1 + a2

2 + · · · + a2
n

, . . . ,
an

a2
1 + a2

2 + · · · + a2
n

)

=

(
a1

a2
1 + a2

2 + · · · + a2
n

)2

+

(
a2

a2
1 + a2

2 + · · · + a2
n

)2

+ · · · +
(

an

a2
1 + a2

2 + · · · + a2
n

)2

=
1

a2
1 + a2

2 + · · · + a2
n

.

12. Minimize the function f(x1, x2, . . . , xn) = (a1x1 + a2x2 + · · · + anxn)2 subject to the constraint g(x1, x2, . . . , xn) =
x2

1 + x2
2 + · · · + x2

n = 1 where not all the ai’s are zero. We solve

{
2ai(a1x1 + a2x2 + · · · + anxn) = 2λxi for 1 ≤ i ≤ n, and
x2

1 + x2
2 + · · · + x2

n = 1.
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From the first equation, x2
i = (aixi/λ)(a1x1 + a2x2 + · · · + anxn), so

λ = a1x1(a1x1 + a2x2 + · · · + anxn) + a2x2(a1x1 + a2x2 + · · · + anxn) + · · ·
+ anxn(a1x1 + a2x2 + · · · + anxn)

= (a1x1 + a2x2 + · · · + anxn)2 so

xi =
ai

a1x1 + a2x2 + · · · + anxn
and finally,

n∑
i=1

x2
i =

n∑
i=1

a2
i

(a1x1 + a2x2 + · · · + anxn)2
= 1.

Now we can substitute back into the original equation:

f(x1, x2, . . . , xn) = f

(
a1

a1x1 + a2x2 + · · · + anxn
, . . . ,

an

a1x1 + a2x2 + · · · + anxn

)

=

(
a2
1 + a2

2 + · · · + a2
n

a1x1 + a2x2 + · · · + anxn

)2

=

(
a2
1 + a2

2 + · · · + a2
n

(a1x1 + a2x2 + · · · + anxn)2

)
(a2

1 + a2
2 + · · · + a2

n)

= a2
1 + a2

2 + · · · + a2
n.

13. Since the faces are parallel to the coordinate planes, we can reduce the problem to maximizing M(x, y, z) = xyz subject to
the constraint g(x, y, z) = x2 +2y2 +4z2 = 12, where x, y, and z are all positive. Here, by the symmetry of the problem, we
are maximizing the volume of one eighth of the box and therefore we will have the dimensions of the box itself by doubling
x, y, and z. We solve ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
yz = 2λx

xz = 4λy

xy = 8λz

x2 + 2y2 + 4z2 = 12.

So x2 = 2y2 = 4z2 and 12z2 = 12 so a critical point is (2,
√

2, 1). The dimensions of the box are twice these values so the
largest box is 4 × 2

√
2 × 2.

14. We are minimizing the cost of producing a sphere and a cylinder of equal radii with the given constraints. We also need to
convert 8000 gallons to 8000/7.480520 ≈ 1069.444 cubic feet. So minimize V (r, h) = 2πrh + 8πr2 subject to g(r, h) =
πr2h + (4/3)πr3 = 1069.444. We solve ⎧⎪⎨

⎪⎩
2πh + 16πr = λ(2πrh + 4πr2)

2πr = λ(πr2)

πr2h + (4/3)πr3 = 1069.444.

Physically, r cannot be zero, so by the second equation λ = 2/r and then by the first h = 4r and so by the third 1069.444 =
4πr3 + (4/3)πr3 = (16π/3)r3. Therefore, the best dimensions are r ≈ 3

√
63.8277 ≈ 3.9964 feet and h ≈ 15.9856 feet.

15. Minimize M(x, y, z) = x2 + y2 + z2 subject to x2 − (y − z)2 = 1. We solve⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2x = 2λx

2y = −2λ(y − z)

2z = 2λ(y − z)

x2 − (y − z)2 = 1.

Since the last equation implies that x �= 0, the first equation gives us that λ = 1, so y = z = 0 and thus x = ±1. The
minimum distance is, therefore, 1.
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16. Place the vertex of the cone at the North Pole (0, 0, a), with the axis of symmetry of the cone coinciding with the z-axis. The
height of the cone is h and the radius is r. We are maximizing V (r, h) = (1/3)πr2h subject to the constraint (h−a)2 +r2 =
a2 or g(h, a) = h2 − 2ha + r2 = 0. We solve ⎧⎪⎨

⎪⎩
(2/3)πrh = 2λr

(1/3)πr2 = 2λ(h − a)

h2 − 2ha + r2 = 0.

From the first equation we know λ �= 0 and πh/3 = λ. So substitute this into the second equation to find that r2 = 2h2−2ah.
Solve this with the third equation to find that h = 4a/3 and r = 2

√
2a/3.

17. We want to maximize V = xyz subject to bcx + acy + abz = abc.

corner (x,y,z)
on plane

z

yx

Thus we solve

{ ∇V = λ∇(bcx + acy + abz)
bcx + acy + abz = abc

or

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yz = λbc

xz = λac

xy = λab
x

a
+

y

b
+

z

c
= 1.

Hence λ =
yz

bc
=

xz

ac
=

xy

ab
.

yz

bc
=

xz

ac
⇔ z = 0 or y =

bc

ac
x =

b

a
x.

Now z = 0 makes V = 0, so this cannot possibly maximize. Thus y = (b/a)x. Now yz

bc
=

xy

ab
⇔ y = 0 (reject) or

z =
bc

ab
x or z =

c

a
x. Hence the constraint becomes

x

a
+

x

a
+

x

a
= 1 so x = a/3 ⇒ y = b/3 z = c/3.

18. We have V (x, y) = π
(x

2

)2

y =
π

4
x2y with πx + y ≤ 108.

(a) We maximize V subject to g(x, y) = πx + y = 108. Thus, with a Lagrange multiplier we solve⎧⎪⎪⎪⎨
⎪⎪⎪⎩

πxy

2
= πλ

πx2

4
= λ

πx + y = 108

.

The first two equations imply that λ =
xy

2
=

πx2

4
so that either x = 0 (which we reject) or y

2
=

πx

4
, so y =

πx

2
.

Thus, in the constraint we must have πx +
πx

2
= 108 so x =

2 · 108

3π
=

72

π
. Hence the maximizing dimensions are 72

π

′′

diameter, 36′′ length. (That these dimensions really do maximize volume may be seen from the following picture.)
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increasing
V

constraint line
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(b) Perhaps this is an easier method: πx + y = 108 ⇔ y = 108 − πx so v(x) = V (x, 108 − πx) =
πx2

4
(108 − πx)

defined on
[
0,

108

π

]
. Thus v′(x) =

π

4
(216x − 3πx2) so critical points are x = 0, 72

π
.

Compare values: v(0) = 0, v

(
72

π

)
> 0, v

(
108

π

)
= 0, so x = 72/π must give the absolute maximum.

19. The two equations are x = y/2 − 1 and x = y2. We will minimize the square of the distance between a point (x1, y1) on the
line and a point (x2, y2) on the parabola. Maximize f(y1, y2) = (y1/2 − 1 − y2

2)2 + (y2 − y1)
2. Take the first partials:

fy1
(y1, y2) =

5

2
y1 − 1 − y2

2 − 2y2 and

fy2
(y1, y2) = 4y2

2 − 2y1y2 + 6y2 − 2y1.

Set these equal to zero and solve to find the critical point at (y1, y2) = (5/8, 1/4). The minimal distance is therefore 3
√

5/8.

x

y

-1 1 2 3 4

-2

-1

1

2

3

20. (a) For each section the time is the distance divided by the rate and the hypotenuse is the altitude divided by the cosine of the
angle that is formed by the altitude and the hypotenuse. So

T (θ1, θ2) =
a

v1 cos θ1
+

b

v2 cos θ2
.
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(b) We are minimizing time subject to the constraint that the horizontal separation is constant: a tan θ1 + b tan θ2 = c. We
solve ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a sin θ1

v1 cos2 θ1
=

λa

cos2 θ1

b sin θ2

v2 cos2 θ2
=

λb

cos2 θ2

a tan θ1 + b tan θ2 = c.

The first two equations immediately give the result: sin θ1

sin θ2
=

v1

v2
.

21. We are minimizing the square of the distance f(x, y) = (x − x0)
2 + (y − y0)

2 subject to the constraint ax + by = d. We
solve ⎧⎪⎨

⎪⎩
2(x − x0) = aλ

2(y − y0) = bλ

ax + by = d.

Solving, we see that x = (aλ + 2x0)/2 and y = (bλ + 2y0)/2 so substituting for x and y in the third equation (a2 + b2)λ =
2(d − ax0 − by0). Also substituting for x and y in f we see that

f(x, y) =

(
aλ

2

)2

+

(
bλ

2

)2

=

(
a2 + b2

4

)
λ2 =

a2 + b2

4

(
2(d − ax0 − by0)

a2 + b2

)2

=
(d − ax0 − by0)

2

a2 + b2

so the distance D is the square root of this: D =
|ax0 + by0 − d|√

a2 + b2
.

22. This is very similar to Exercise 21. Minimize the square of the distance f(x, y, z) = (x − x0)
2 + (y − y0)

2 + (z − z0)
2

subject to the constraint ax + by + cz = d. We solve⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(x − x0) = aλ

2(y − y0) = bλ

2(z − z0) = cλ

ax + by + cz = d.

Solving, we see that x = (aλ + 2x0)/2, y = (bλ + 2y0)/2 and z = (cλ + 2z0)/2 so substituting for x, y and z in the fourth
equation (a2 + b2 + c2)λ = 2(d − ax0 − by0 − cz0). Also substituting for x, y and z in f we see that

f(x, y, z) =

(
a2 + b2 + c2

4

)
λ2 =

(d − ax0 − by0 − cz0)
2

a2 + b2

so the distance D is the square root of this: D =
|ax0 + by0 + cz0 − d|√

a2 + b2 + c2
.

23. (a) We solve ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2xy2z2 = 2λx

2x2yz2 = 2λy

2x2y2z = 2λz

x2 + y2 + z2 = a2.

If λ = 0, then at least one of x, y and z is 0 and this corresponds to a minimum. If λ �= 0, we see that, at a critical point,
x2 = y2 = z2, so 3x2 = a2 or x2 = a2/3. Therefore, at a critical point,

f(x, y, z) =

(
a2

3

)3

=
a6

27
.

(b) In part (a) we showed x2y2z2 ≤ (a2/3)3 = [(x2 + y2 + z2)/3]3 and so this result follows immediately.
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(c) We make the appropriate adjustments to parts (a) and (b) and maximize f(x1, x2, . . . , xn) = x2
1x

2
2 · · ·x2

n subject to
x2

1 + x2
2 + · · · + x2

n = a2. Because, as in part (a), the case λ = 0 corresponds to a minimum, we see that at a maximum
no xi is 0. So we solve {

2x2
1x

2
2 · · ·x2

n/xi = 2λxi for 1 ≤ i ≤ n

x2
1 + x2

2 + · · · + x2
n = a2.

At a maximum, x2
1 = x2

2 = · · · = x2
n, so x2

i = a2/n. Therefore, the maximum of f is (a2/n)n. So we conclude that
x2

1x
2
2 · · ·x2

n ≤ (a2/n)n = [(x2
1 + x2

2 + · · · + x2
n)/n]n. The result follows immediately.

(d) We found that f was maximized when x2
1 = x2

2 = · · · = x2
n so, since here we are assuming xi > 0 for all i, the equality

holds when x1 = x2 = · · · = xn.
24. (a)

∂f

∂xk
=

n∑
j=1

akj
xj +

n∑
i=1

aikxi =
n∑

j=1

(ajk + akj)xj

∂g

∂xk
= 2xk.

Thus the Lagrange multiplier system is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
j

(aj1 + a1j)xj = 2λx1

...∑
j

(ajn + anj)xj = 2λxn

x2
1 + · · · + x2

n = 1.

(b) Because A is symmetric, ajk = akj so the system becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
j

2a1jxj = 2λx1

...∑
j

2anjxj = 2λxn

x2
1 + · · · + x2

n = 1.

The first n equations come from ∇f = λ∇g and simplify to⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
j

a1jxj = λx1

...∑
j

anjxj = λxn.

Note that
∑
j

akjxj is the dot product of the kth row of A with x. So the n equations, taken together, express

Ax = λx.

(c)

f(x1, . . . , xn) = xT Ax = xT (λx) (x is an eigenvector)

= λ(xT x) = λx · x

= λ‖x‖2 = λ · 1,

since x is assumed to be a unit vector.
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25. (a) To set things up using Lagrange multipliers, we solve⎧⎪⎨
⎪⎩

2ax + 2by = 2λx

2bx + 2cy = 2λy

x2 + y2 = 1

⇔

⎧⎪⎨
⎪⎩

(a − λ)x + by = 0

bx + (c − λ)y = 0

x2 + y2 = 1.

In the last system, multiply the first equation by λ − c and the second by b, then add to obtain:

((a − λ)(λ − c) + b2)x = 0.

Now multiply the first equation by b and the second by λ − a, then add to get:

(b2 + (λ − a)(c − λ))y = 0.

Since x2 + y2 = 1, we cannot have both x and y equal to 0. Thus

b2 + (λ − a)(c − λ) = 0 ⇔ λ2 − (a + c)λ + ac − b2 = 0.

Hence

λ1, λ2 =
(a + c) ±

√
(a + c)2 − 4(ac − b2)

2
.

(b) Rewriting, λ1, λ2 =
(a + c) ±

√
(a − c)2 + 4b2

2
. (a − c)2 + 4b2 ≥ 0 so the eigenvalues are always real.

26. (a) λ1 = λ2 ⇔ (a − c)2 + 4b2 = 0 ⇔ a = c, b = 0 so f(x, y) = a(x2 + y2).
(b) The eigenvalues are the max and min values of f on the circle. If both are positive, then f has a positive minimum on the

circle; hence f must be positive on the entire circle.
(c) If both eigenvalues are negative, then f has a negative maximum on the circle—so f must be negative on the entire circle.

27. (a)

f(kx1, . . . , kxn) =

n∑
i,j=1

aij(kxi)(kxj) = k2
n∑

i,j=1

aijxixj

(b) Let u = x/‖x‖ when x �= 0. Then u is a point on the unit hypersphere. If f has a positive minimum on the hypersphere,
then f must be positive on the entire hypersphere. Hence, for x �= 0:

f(x) = f(ku) = k2f(u) > 0 (k = ‖x‖).

The case where f has a negative maximum on the hypersphere is similar.
(c) Clearly the converses of the results of part (b) hold (i.e., if f(x) > 0 for all x �= 0, then f is positive on the hypersphere

. . .). From Exercise 24, the minimum value of f is the smallest eigenvalue of A. Thus the quadratic form is positive
definite ⇔ f(x) > 0 for all x �= 0 ⇔ f is positive on the hypersphere ⇔ the smallest eigenvalue of A is positive ⇔ all
eigenvalues are positive. (The negative definite result is similar.)
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Chapter 5

Multiple Integration

5.1 Introduction: Areas and Volumes

1. ∫ 2

0

∫ 3

1

(x2 + y) dy dx =

∫ 2

0

(x2y + y2/2)

∣∣∣∣y=3

y=1

dx =

∫ 2

0

((3x2 + 9/2) − (x2 + 1/2)) dx

=

∫ 2

0

(2x2 + 4) dx = (2x3/3 + 4x)

∣∣∣∣2
0

= 40/3.

2. ∫ π

0

∫ 2

1

(y sin x) dy dx =

∫ π

0

(
y2

2
sin x

) ∣∣∣∣y=2

y=1

dx =

∫ π

0

(
(2 sin x) −

(
1

2
sin x

))
dx

=
3

2

∫ π

0

(sin x) dx = −3

2
(cos x)

∣∣∣∣π
0

=
3

2
+

3

2
= 3.

3. ∫ 4

−2

∫ 1

0

(xey) dy dx =

∫ 4

−2

(xey)

∣∣∣∣y=1

y=0

dx =

∫ 4

−2

(x(e − 1)) dx

=
x2

2
(e − 1)

∣∣∣∣4
−2

= (8 − 2)(e − 1) = 6(e − 1).

4. ∫ π/2

0

∫ 1

0

(ex cos y) dx dy =

∫ π/2

0

(ex cos y)

∣∣∣∣x=1

x=0

dy =

∫ π/2

0

((e − 1) cos y) dy

= (e − 1) sin y

∣∣∣∣π/2

0

= e − 1.

5. ∫ 2

1

∫ 1

0

(ex+y + x2 + ln y) dx dy =

∫ 2

1

∫ 1

0

(exey + x2 + ln y) dx dy =

∫ 2

1

(
exey +

x3

3
+ x ln y

) ∣∣∣∣x=1

x=0

dy

=

∫ 2

1

(
(e − 1)ey +

1

3
+ ln y

)
dy =

(
(e − 1)ey +

y

3
+ y ln y − y

) ∣∣∣∣2
1

= (e − 1)(e2 − e) +
1

3
+ 2 ln 2 − 1 = e3 − 2e2 + e − 2

3
+ 2 ln 2.

6. ∫ 9

1

∫ e

1

(
ln

√
x

xy

)
dx dy =

1

2

∫ 9

1

∫ e

1

(
ln x

xy

)
dx dy (treat y as a constant—use substitution)

=
1

2

∫ 9

1

(ln x)2

2y

∣∣∣∣x=e

x=1

dy =
1

2

∫ 9

1

(
1

2y

)
dy =

1

4
ln y

∣∣∣∣9
1

=
ln 9

4
.
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7. (a) Here we are fixing x and finding the area of the slices:

A(x) =

∫ 2

0

(x2 + y2 + 2) dy =

(
x2y +

y3

3
+ 2y

) ∣∣∣∣2
0

= 2x2 + 20/3.

Now we “add up the areas of these slices”:

V =

∫ 2

−1

A(x) dx =

∫ 2

−1

(2x2 + 20/3) dx =

(
2

3
x3 +

20

3
x

) ∣∣∣∣2
−1

=

(
16

3
+

40

3

)
−
(
−2

3
− 20

3

)
= 26.

(b) Now we fix y and find the area of the slices:

A(y) =

∫ 2

−1

(x2 + y2 + 2) dx =

(
x3

3
+ y2x + 2x

) ∣∣∣∣2
−1

=

(
8

3
+ 2y2 + 4

)
−
(
−1

3
− y2 − 2

)
= 9 + 3y2.

Adding up the area of these slices:

V =

∫ 2

0

A(y) dy =

∫ 2

0

(9 + 3y2) dy = (9y + y3)

∣∣∣∣2
0

= 26.

8. Here we are calculating:∫ 2

1

∫ 3

0

(x + 3y + 1) dx dy =

∫ 2

1

(
x2

2
+ 3yx + x

) ∣∣∣∣3
0

dy =

∫ 2

1

(
9

2
+ 9y + 3

)
dy

=

∫ 2

1

(
15

2
+ 9y

)
dy =

(
15

2
y +

9

2
y2

) ∣∣∣∣2
1

= (15 + 18) − (15/2 + 9/2) = 21.

9. Here we are calculating∫ 2

−1

∫ 1

0

(2x2 + y4 sin πx) dx dy =

∫ 2

−1

(
2

3
x3 − y4

π
cos πx

) ∣∣∣∣1
0

dy =

∫ 2

−1

(
2

3
+

2y4

π

)
dy

=

(
2

3
y +

2y5

5π

) ∣∣∣∣2
−1

=

(
4

3
+

64

5π

)
−
(
−2

3
− 2

5π

)
= 2 +

66

5π
.

10. This is the volume of the “rectangular box” bounded by the plane z = 2, the xy-plane, and the planes x = 1, x = 3, y = 0,
and y = 2. Here we could just calculate the volume of this 2 × 2 × 2 box as 8 without integrating—or

V =

∫ 2

0

∫ 3

1

2 dx dy =

∫ 2

0

2x

∣∣∣∣3
1

dy =

∫ 2

0

4 dy = 4y

∣∣∣∣2
0

= 8.

11. This is the volume of the region bounded by the paraboloid z = 16 − x2 − z2, the xy-plane, and the planes x = 1, x =
3, y = −2, and y = 2. The volume is

V =

∫ 3

1

∫ 2

−2

(16 − x2 − y2) dy dx =

∫ 3

1

(
16y − x2y − y3

3

) ∣∣∣∣2
−2

dx =

∫ 3

1

(
64 − 4x2 − 16

3

)
dx

=

(
64x − 4

3
x3 − 16

3
x

) ∣∣∣∣3
1

= (192 − 36 − 16) − (64 − 4/3 − 16/3) = 248/3.

12. This is the volume of the region bounded by z = sin x cos y, the xy-plane, and the planes x = 0, x = π, y = −π/2, and
y = π/2. The volume is

V =

∫ π/2

−π/2

∫ π

0

(sin x cos y) dx dy =

∫ π/2

−π/2

(− cos x cos y)

∣∣∣∣π
0

dy

= 2

∫ π/2

−π/2

cos y dy = 2 sin y

∣∣∣∣π/2

−π/2

= 4.

c© 2012 Pearson Education, Inc.



Section 5.2. Double Integrals 247

13. This is the volume of the region bounded by z = 4 − x2, the xy-plane, and the planes x = −2, x = 2, y = 0, and y = 5.
The volume is

V =

∫ 5

0

∫ 2

−2

(4 − x2) dx dy =

∫ 5

0

(4x − x3/3)

∣∣∣∣2
−2

dy =

∫ 5

0

((8 − 8/3) − (−8 + 8/3)) dy

=

∫ 5

0

32

3
dy =

32

3
y

∣∣∣∣5
0

= 160/3.

14. This is the volume of the region bounded by z = |x| sin πy, the xy-plane, and the planes x = −2, x = 3, y = 0, and y = 1.
The volume is

V =

∫ 3

−2

∫ 1

0

|x| sin πy dy dx =

∫ 3

−2

− |x|
π

cos πy

∣∣∣∣1
0

dx =

∫ 3

−2

2|x|
π
dx.

At this point we use the definition of absolute value to split this into two quantities:

V =

∫ 0

−2

− 2

π
x dx +

∫ 3

0

2

π
x dx = −x2

π

∣∣∣∣0
−2

+
x2

π

∣∣∣∣3
0

=
4

π
+

9

π
=

13

π
.

15. ∫ 5

−5

∫ 2

−1

(5 − |y|) dx dy =

∫ 5

−5

(5 − |y|)x
∣∣∣∣2
x=−1

dy

=

∫ 5

−5

(5 − |y|) · 3 dy = 150 − 3

∫ 5

−5

|y| dy

= 150 − 3

∫ 0

−5

(−y) dy − 3

∫ 5

0

y dy

= 150 +
3

2
y2

∣∣∣∣0
−5

− 3

2
y2

∣∣∣∣5
0

= 150 − 75

2
− 75

2
= 75.

The iterated integral gives the volume of the region bounded by the graph of z = 5−|y|, the xy-plane, and the planes x = −1,
x = 2, y = −5, y = 5. (The solid so described is a rectangular prism.)

16. We have V =

∫ b

a

∫ d

c

f(x, y) dy dx. Since 0 ≤ f(x, y) ≤ M , the solid bounded by y = f(x, y), the xy-plane, and the

planes x = a, x = b, y = c, y = d sits inside the rectangular block of height M and base bounded by x = a, x = b, y = c,
y = d. Hence V ≤ M(b − a)(d − c)

5.2 Double Integrals

1. Since the integrand f(x, y) = y3 + sin 2y is continuous, the double integral
∫∫

R
(y3 + sin 2y) dA exists by Theorem 2.4.

Now consider a Riemann sum corresponding to the double integral that we obtain by partitioning the rectangle [0, 3]× [−1, 1]
symmetrically with respect to the x-axis and by choosing test points cij in each subrectangle that are also symmetric with
respect to the x-axis. Then

S =
∑
i,j

f(cij) ΔAij =
∑
i,j

(y3
ij + sin 2yij) ΔAij

(where yij denotes the y-coordinate of cij) must be zero since the terms cancel in pairs because f(x,−y) = −f(x, y). When
we shrink the rectangles in the limit, we can arrange to preserve all the symmetry. Hence the limit under such restrictions must
be zero and thus the overall limit (which must exist in view of Theorem 2.4) must also be zero.

2. The integrand f(x, y) = x5 + 2y is continuous, so the double integral exists by Theorem 2.4. Consider a Riemann sum
corresponding to the double integral that we obtain by partitioning the rectangle [−3, 3] × [−2, 2] symmetrically with respect
to both coordinate axes and by choosing test points cij in each subrectangle that are also symmetric with respect to both axes.
Then

S =
∑
i,j

f(cij) ΔAij =
∑
i,j

(x5
ij + 2yij) ΔAij =

∑
i,j

x5
ij ΔAij +

∑
i,j

2yij ΔAij

must be zero since the terms in each sum will cancel in pairs (because (−x)5 = −x5 and 2(−y) = −2y). When we shrink
the rectangles in the limit, we can arrange to preserve all the symmetry. Hence the limit under such restrictions must be zero
and thus the overall limit (which must exist in view of Theorem 2.4) must also be zero.
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Note: you may want to discuss Exercise 3 (b) before assigning it, to get your students in the habit of looking critically at
problems before working on them.

3. (a) We are computing

∫ 2

−2

∫ 4−x2

0

x3 dy dx =

∫ 2

−2

x3y

∣∣∣∣4−x2

0

dx =

∫ 2

−2

(4x3 − x5) dx = (x4 − x6/6)

∣∣∣∣2
−2

= 0.

(b) The integrand is an odd function depending only on x and the region is symmetric about the y-axis. The students encounter
this situation when they looked at

∫ a

−a
x3 dx in first year calculus.

4.
∫ 1

0

∫ x3

0

3 dy dx =

∫ 1

0

3y

∣∣∣∣x
3

0

dx =

∫ 1

0

3x3 dx =
3

4
x4

∣∣∣∣1
0

=
3

4
. The region over which we are integrating is:

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

y

x

5.
∫ 2

0

∫ y2

0

y dx dy =

∫ 2

0

xy

∣∣∣∣y
2

0

dy =

∫ 2

0

y3 dy =
y4

4

∣∣∣∣2
0

= 4. The region over which we are integrating is:

1 2 3 4
x

0.5

1

1.5

2

y
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6.
∫ 2

0

∫ x2

0

y dy dx =

∫ 2

0

y2

2

∣∣∣∣x
2

0

dx =

∫ 2

0

x4

2
dx =

x5

10

∣∣∣∣2
0

=
32

10
=

16

5
. The region over which we are integrating is:

0.5 1 1.5 2

1

2

3

4
y

x

7.
∫ 3

−1

∫ 2x+1

x

xy dy dx =

∫ 3

−1

xy2

2

∣∣∣∣2x+1

x

dx =
1

2

∫ 3

−1

(3x3 + 4x2 + x) dx =
1

2

[
3

4
x4 +

4

3
x3 +

x2

2

] ∣∣∣∣3
−1

=
152

3
. The region

over which we are integrating is:

y

x
-1 1 2 3

2

4

6

8.
∫ 2

0

∫ x/2

x2/4

(x2 + y2) dy dx =

∫ 2

0

(
x2y +

y3

3

) ∣∣∣∣y=x/2

y=x2/4

dx

=

∫ 2

0

((
x3

2
+

x2

24

)
−
(

x4

4
+

x6

192

))
dx =

[
13

96
x4 − 1

20
x5 − 1

1344
x7

] ∣∣∣∣2
0

=
33

70
. The region over which we are inte-

grating is:

0.5 1 1.5 2
x

0.2

0.4

0.6

0.8

1

y

9.
∫ 4

0

∫ 2
√

y

0

x sin (y2) dx dy =

∫ 4

0

x2

2
sin (y2)

∣∣∣∣x=2
√

y

x=0

dy =

∫ 4

0

2y sin (y2) dy. Now let u = y2, so du = 2y dy. Then this
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integral becomes ∫ 16

0

sin u du = − cos u

∣∣∣∣16
0

= 1 − cos 16.

The region over which we are integrating is:

1 2 3 4 x

1

2

3

4
y

10.
∫ π

0

∫ sin x

0

y cos x dy dx =

∫ π

0

y2

2
cos x

∣∣∣∣sin x

0

dx =
1

2

∫ π

0

(sin2 x cos x) dx = (using the substitution u = sin x)

1

2

∫ x=π

x=0

u2 du =
sin3 x

6

∣∣∣∣π
0

= 0. The region over which we are integrating is:

0.5 1 1.5 2 2.5 3
x

0.2

0.4

0.6

0.8

1

y

Note: After you assign Exercises 11 and 12, together you can probe to see whether students see that they are the same.
This is a nice set-up for Section 5.3 where they will learn about interchanging the order of integration.

11.
∫ 1

0

∫ √
1−x2

−
√

1−x2

3 dy dx =

∫ 1

0

3y

∣∣∣∣
√

1−x2

−
√

1−x2

dx =

∫ 1

0

6
√

1 − x2 dx = (using the substitution x = sin t) = 3π/2. You can

also see that the region over which we are integrating is a half-circle of radius 1 so we have found the volume of the cylinder
over this region of height 3. This figure is:
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0.2 0.6 1

y

x

-1

-0.5

0.5

1

12. This is the same as Exercise 11 with the limits of integration reversed. The solution is again 3π/2.

13.
∫ 1

0

∫ ex

−ex

y3 dy dx =

∫ 1

0

y4

4

∣∣∣∣e
x

−ex

dx =

∫ 1

0

0 dx = 0. The region over which we are integrating is:

0.2 0.4 0.6 0.8 1

-3

-2

-1

1

2

3
y

x

14. For each square in the domain we need to estimate the height of the square and multiply it by the length times the width. For
our estimate we will choose the value of the height f(cij) in the lower right corner of the square in row i column j as our
height for the square. The heights are then:

4 5 6 7 8 9 9 10 9 9
4 5 6 7 8 9 10 11 10 9
4 5 6 7 8 9 10 10 10 9
4 5 6 7 8 8 9 9 9 9
4 5 6 7 7 8 8 8 8 8

Each box has a base of area 25 so the sum of the products of 25 times the heights is 92500. Of course, this answer depends on
what point in each box we chose for our estimate—your mileage may vary.
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15. A quick sketch of the region over which we are integrating helps us set up our double integral.

0.5 1 1.5 2

0.5

1

1.5

2

y

x

∫ 2

0

∫ 2−x

0

(1 − xy) dy dx =

∫ 2

0

(
y − xy2

2

)∣∣∣∣2−x

0

dx =

∫ 2

0

(2 − 3x + 2x2 − x3/2) dx

=

(
2x − 3

2
x2 +

2

3
x3 − x4

8

)∣∣∣∣2
0

= 4 − 6 + 16/3 − 2 = 4/3.

16. Again a sketch of the region over which we are integrating helps us set up our double integral. The top bounding curve is
y =

√
x and the bottom curve is y = 32x3.

-0.05 0.05 0.1 0.15 0.2 0.25
x

y

0.1

0.2

0.3

0.4

0.5

∫ 1/4

0

∫ √
x

32x3

3xy dy dx =

∫ 1/4

0

(
3xy2

2

)∣∣∣∣
√

x

32x3

dx =

∫ 1/4

0

(
3

2
x2 − 1536x7

)
dx

=

(
3

2
x2 − 192x8

)∣∣∣∣1/4

0

=
1

128
− 3

1024
=

5

1024
.
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17. We can easily determine the limits of integration from the sketch and/or by solving for where x+y = 2 intersects the parabola
y2 − 2y − x = 0.

-1 1 2 3

-1

-0.5

0.5

1

1.5

2

x

y

∫ 2

−1

∫ 2−y

y2−2y

(x + y) dx dy =

∫ 2

−1

(
x2

2
+ xy

)∣∣∣∣2−y

y2−2y

dy =

∫ 2

−1

(
−y4

2
+ y3 − y2

2
+ 2

)
dy

=

(
−y5

10
+

y4

4
− y3

6
+ 2y

)∣∣∣∣2
−1

=
99

20
.

18. The region D of integration has top boundary curve x = y3 and bottom boundary curve y = x2 and looks like:

0.2 0.4 0.6 0.8 1 x

0.2

0.4

0.6

0.8

1

y

Note that y = x2 may be expressed as x =
√

y since the region of interest lies in the first quadrant. Hence we have a type 2
elementary region and

∫∫
D

xy dA =

∫ 1

0

∫ √
y

y3

xy dx dy =

∫ 1

0

x2

2
y

∣∣∣∣x=
√

y

x=y3

dy =

∫ 1

0

(
y2

2
− y7

2

)
dy

=
1

2

(
1

3
y3 − 1

8
y8

) ∣∣∣∣1
0

=
5

48
.

Note that we may also set up this integral as
∫ 1

0

∫ 3
√

x

x2

xy dy dx.
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19. The region D is triangular, with top boundary the line y = x and looks like:

0.2 0.4 0.6 0.8 1 x

0.2

0.4

0.6

0.8

1

y

Viewing D as a type 1 region we have∫∫
D

ex2

dA =

∫ 1

0

∫ x

0

ex2

dy dx

=

∫ 1

0

xex2

dx =

∫ 1

0

1

2
eu du where u = x2

=
1

2
eu

∣∣∣∣1
0

=
1

2
(e − 1).

20. We see from the sketch that we need to divide the integral into two pieces. For 0 ≤ x ≤ 1/9 we see that x ≤ y ≤ 3 and for
1/9 ≤ x ≤ 1 we see that x ≤ y ≤ 1/

√
x.

0.2 0.4 0.6 0.8 1
x

0.5

1

1.5

2

2.5

3
y

∫∫
D

3y dA =

∫ 1/9

0

∫ 3

x

3y dy dx +

∫ 1

1/9

∫ 1/
√

x

x

3y dy dx

=

∫ 1/9

0

3

2
y2

∣∣∣∣∣
3

x

dx +

∫ 1

1/9

3

2
y2

∣∣∣∣∣
1/

√
x

x

dx

=

∫ 1/9

0

(
27

2
− 3

2
x2

)
dx +

∫ 1

1/9

(
3

2x
− 3

2
x2

)
dx
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=

(
27

2
x − 1

2
x3

)∣∣∣∣1/9

0

+

(
3

2
ln x − 1

2
x3

)∣∣∣∣1
1/9

=
3

2
− 1

2
− 3

2
ln(1/9) = 1 + ln 27.

21. From the sketch below we see that this is a fairly straightforward integral.

-2 -1 1 2

-2

2

4

6

y

x

∫∫
D

(x − 2y) dA =

∫ 2

−2

∫ x2+2

2x2−2

(x − 2y) dy dx

=

∫ 2

−2

(xy − y2)

∣∣∣∣x
2+2

2x2−2

dx =

∫ 2

−2

(3x4 − x3 − 12x2 + 4x) dx

= (3x5/5 − x4/4 − 4x3 + 2x2)

∣∣∣∣2
−2

= 192/5 − 64 = −128/5

22. From the sketch below we see that this integral needs to be done in two pieces.

x
0.25 0.5 0.75 1 1.25 1.5 1.75

0.5

1

1.5

2

2.5

3
y

∫∫
D

(x2 + y2) dA =

∫ 1

0

∫ 3x

x

(x2 + y2) dy dx +

∫ √
3

1

∫ 3/x

x

(x2 + y2) dy dx

=

∫ 1

0

(x2y + y3/3)

∣∣∣∣3x

x

dx +

∫ √
3

1

(x2y + y3/3)

∣∣∣∣3/x

x

dx

=

∫ 1

0

(32/3)x3 dx +

∫ √
3

1

(9/x3 + 3x − 4x3/3) dx = 8/3 + 10/3 = 6
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23. As in the proof of property 1 in the text, we note that the Riemann sum whose limit is

∫∫
R

cf dA is
n∑

i,j=1

cf(cij)ΔAij = c
n∑

i,j=1

f(cij)ΔAij → c

∫∫
R

f dA.

24.
∫∫

R

g dA =

∫∫
R

(f+[g−f ]) dA which, by property 1, equals
∫∫

R

f dA+

∫∫
R

[g−f ] dA. But g−f ≥ 0 so
∫∫

R

[g−f ] dA ≥

0 and so
∫∫

R

g dA ≥
∫∫

R

f dA.

25. Define f+ = max(f, 0) and f− = max(−f, 0). Note that both f+ and f− have only non-negative values. Then f =
f+ − f− and |f | = f+ + f−. Since f± ≤ |f | = f+ + f− we can see that |f | is Riemann integrable. Also we can use
property 2 to conclude that ∣∣∣∣

∫∫
R

f dA
∣∣∣∣ =
∣∣∣∣
∫∫

R

(f+ − f−) dA
∣∣∣∣ =
∣∣∣∣
∫∫

R

f+ dA −
∫∫

R

f− dA
∣∣∣∣

≤
∫∫

R

f+ dA +

∫∫
R

f− dA =

∫∫
R

|f | dA.

26. (a) Intuitively, the volume of a figure with constant height should be the area of the base times the height. In this case that is
just the area of the base. More formally, by Definition 2.3,

∫∫
D

1 dA = lim
all Δxi,Δyj→0

n∑
i,j=1

ΔxiΔyj .

We are assuming that D is an elementary region; let’s consider the case of a type 1 region, then we can rewrite the above
sum as

lim
all Δxi→0

n∑
i=1

(δ(ci) − γ(ci))Δxi =

∫ b

a

(δ(x) − γ(x)) dx = the area of D.

The proof is not much different for the other elementary regions.

(b) We integrate
∫∫

D

1 dA =

∫ a

−a

∫ √
a2−x2

−
√

a2−x2

dy dx = 2

∫ a

−a

√
a2 − x2 dx. We’ve seen this above in Exercises 11 and 12.

Let x = a sin t and integrate to get the desired result.
27. Using Exercise 26, the area is

∫∫
A

1 dA =

∫ 1

0

∫ x2

x3

1 dy dx =

∫ 1

0

(x2 − x3) dx

= (x3/3 − x4/4)

∣∣∣∣1
0

= 1/3 − 1/4 = 1/12.

28. Again using Exercise 26, the area is

∫∫
A

1 dA =

∫ √
5−2

0

∫ 1−2x−x2

2x

1 dy dx =

∫ √
5−2

0

(1 − 4x − x2) dx

= (x − 2x2 − x3/3)

∣∣∣∣
√

5−2

0

= (1/3)(10
√

5 − 22).

29. We integrate
∫ a

−a

∫ √
b2−b2x2/a2

−
√

b2−b2x2/a2

dy dx = 2

∫ a

−a

√
b2 − b2x2

a2
dx =

2b

a

(∫ a

−a

√
a2 − x2 dx

)
=

b

a
(πa2) = πab.

30. (a) For x ≥ 0 the curve x3 − x lies below the curve y = ax2 between 0 and their positive point of intersection x =

a +
√

a2 + 4

2
. So the area is given by

∫ (a+
√

a2+4)/2

0

∫ ax3

x3−x

dy dx.

c© 2012 Pearson Education, Inc.



Section 5.2. Double Integrals 257

(b) The graph of area against a is:

0.2 0.4 0.6 0.8 1 1.2 1.4
a

0.5

1

1.5

2
Area

The area is 1 at a ≈ .995.
31. The region looks like:

-1 -0.5 0.5 1 x

-1

-0.5

0.5

1

y

By symmetry, it’s enough to calculate the first quadrant area and double it. Thus

Total area = 2

∫ 1

0

∫ x1/5

x3

1 dy dx = 2

∫ 1

0

(
x1/5 − x3

)
dx

= 2

(
5

6
x6/5 − 1

4
x4

) ∣∣∣∣1
0

= 2

(
5

6
− 1

4

)
=

7

6
.
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32. The region in question looks like:

-1 -0.5 0.5 1 x

0.5

1

1.5

2

y

Note that the intersection point of y = −2x and y = 2 − x2 is (1 −√
3,−2 + 2

√
3). We use the y-axis to divide the region

into two type 1 subregions. Then

Area =

∫ 0

1−√
3

∫ 2−x2

−2x

1 dy dx +

∫ 1

0

∫ 2−x2

x

1 dy dx

=

∫ 0

1−√
3

(2 + 2x − x2) dx +

∫ 1

0

(2 − x − x2) dx

=

(
2x + x2 − x3

3

) ∣∣∣∣0
1−√

3

+

(
2x − x2

2
− x3

3

) ∣∣∣∣1
0

=
6
√

3 − 8

3
+

7

6
=

4
√

3 − 3

2
.

33. First, note that the integrand is continuous; hence the integral as the limit of Riemann sums must exist. Second, note that the
region D is symmetric with respect to the x-axis. Next, note that we can break up the integral as

∫∫
D

(y3 + ex2

sin y + 2) dA =

∫∫
D

y3 dA +

∫∫
D

ex2

sin y dA +

∫∫
D

2 dA.

Consider first
∫∫

D
y3 dA and note that the integrand, y3, is an odd function. Hence, in a Riemann sum, we can arrange to

partition any rectangle that contains D in such a way that for every subrectangle above the x-axis (i.e., where y > 0), there is
a corresponding “mirror image” subrectangle—with the same area—below the x-axis (where y < 0). Then the “test points”
in each pair of subrectangles may be chosen to have opposite y-coordinates. (See the figure below.)
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(3, 0)
x

y

For each subrectangle 
in the partition..., 

...there is another 
subrectangle with 
the same area, 
symmetrically 
placed with respect 
to the x-axis. 

(0, 3)

x + y = 3

x – y = 3

The Riemann sum corresponding to this partition will be∑
i,j

y3
ij ΔAij = 0,

since the terms of the sum will cancel in pairs. Thus, even when we take the limit of this sum as ΔAij → 0, we still obtain
zero. Therefore, we conclude that

∫∫
D

y3 dA = 0. Using a similar argument, we find that
∫∫

D
ex2

sin y dA = 0 as well.
Hence ∫∫

D

(y3 + ex2

sin y + 2) dA =

∫∫
D

y3 dA +

∫∫
D

ex2

sin y dA +

∫∫
D

2 dA

= 0 + 0 + 2

∫∫
D

dA = 2(area of D)

= 2(9) = 18.

34. First, note that the integrand is continuous; hence the integral as the limit of Riemann sums must exist. Second, note that the
region D is symmetric with respect to the y-axis. Next, note that we can break up the integral as∫∫

D

(2x3 − y4 sin x + 2) dA =

∫∫
D

2x3 dA −
∫∫

D

y4 sin x dA +

∫∫
D

2 dA.

Consider first
∫∫

D
2x3 dA and note that the integrand, 2x3, is an odd function. Hence, in a Riemann sum, we can arrange to

partition any rectangle that contains D in such a way that for every subrectangle to the right of the y-axis (i.e., where x > 0),
there is a corresponding “mirror image” subrectangle—with the same area—to the left of the y-axis (where x < 0). Then the
“test points” in each pair of subrectangles may be chosen to have opposite x-coordinates. (See the figure below.)

For each subrectangle 
in the partition,

there is another 
subrectangle with 
the same area, 
symmetrically 
placed with respect 
to the y-axis.

x

y

x2 + y2 = 9

(0, 3)

(3, 0)
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The Riemann sum corresponding to this partition will be

∑
i,j

2x3
ij ΔAij = 0,

since the terms of the sum will cancel in pairs. Thus, even when we take the limit of this sum as ΔAij → 0, we still obtain
zero. Therefore, we conclude that

∫∫
D

2x3 dA = 0. Using a similar argument, we find that
∫∫

D
y4 sin x dA = 0 as well.

Hence

∫∫
D

(2x3 − y4 sin x + 2) dA =

∫∫
D

2x3 dA −
∫∫

D

y4 sin x dA +

∫∫
D

2 dA

= 0 + 0 + 2

∫∫
D

dA = 2(area of D)

= 2

(
9π

2

)
= 9π.

35. The volume is given by
∫∫

D
(24− 2x− 6y) dA, where D is the region in the xy-plane bounded by y = 4−x2, y = 4x−x2,

and the y-axis. Now D is a type 1 region that looks like:

1 2 3 4 x

1

2

3

4
y

Thus the volume is

∫ 1

0

∫ 4−x2

4x−x2

(24 − 2x − 6y) dy dx =

∫ 1

0

[
(24 − 2x)y − 3y2] ∣∣∣∣y=4−x2

y=4x−x2

dx

=

∫ 1

0

[
(24 − 2x)(4 − 4x) − 3(4 − x2)2 + 3(4x − x2)2

]
dx

=

∫ 1

0

[
8(x2 − 13x + 12) − 24x3 + 72x2 − 48

]
dx

=

∫ 1

0

[
80x2 − 24x3 − 104x + 48

]
dx =

50

3
.

36. The volume is given by
∫∫

D
(x2 + 6y2) dA, where D is the region in the xy-plane bounded by y = x and y = x2 − x. This

region D looks like:
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0.5 1 1.5 2 x

0.5

1

1.5

2

y

Therefore, the volume is∫ 1

0

∫ x

x2−x

(x2 + 6y2) dy dx =

∫ 2

0

[
x2(2x − x2) + 2

(
x3 − (x2 − x)3

)]
dx

=

∫ 2

0

[−2x6 + 6x5 − 7x4 + 6x3] dx

=

(
−2

7
x7 + x6 − 7

5
x5 +

3

2
x4

) ∣∣∣∣2
0

=
232

35
.

37. The graphs of y = x2 − 10 and y = 31− (x− 1)2 intersect at x = −4 and x = 5 with the graph of y = x2 − 10 lying below
the graph of y = 31 − (x − 1)2 on this interval.∫ 5

−4

∫ 31−(x−1)2

x2−10

(4x + 2y + 25) dy dx =

∫ 5

−4

(4xy + y2 + 25y)

∣∣∣∣31−(x−1)2

x2−10

dx

=

∫ 5

−4

(−12x3 − 78x2 + 330x + 1800) dx

= (−3x4 − 26x3 + 165x2 + 1800x)

∣∣∣∣5
−4

= 11664.

38. (a) This is a special case of the region over which we integrated in Exercise 26 (b). The integral is∫ 2

−2

∫ √
4−x2

−
√

4−x2

(x2 − y2 + 5) dy dx.

(b) You can use your favorite computer algebra system. UsingMathematica, enter the command:

Integrate[Integrate[x2 − y2 + 5, {y,−Sqrt[4 − x2], Sqrt[4 − x2]}], {x,−2, 2}] or

Integrate[x2 − y2 + 5, {x,−2, 2}, {y,−Sqrt[4 − x2], Sqrt[4 − x2]}] and get the answer 20π.
39. By symmetry we see that the volume is four times the volume of the piece over the first quadrant (x, y ≥ 0). In this region

|x| = x and |y| = y so the volume is

4

∫ 2

0

∫ 2−x

0

(2 − x − y) dy dx = 4

∫ 2

0

(2y − xy − y2/2)

∣∣∣∣2−x

0

dx = 4

∫ 2

0

(2 − 2x + x2/2) dx

= 4(2x − x2 + x3/6)

∣∣∣∣2
0

= 16/3.

The results demonstrated in Exercises 40 and 41 are arrived at easily but worth seeing. In Exercise 40 we have the dream
situation where the double integral of a product can be split into the product of integrals. We quickly see that this only works
in a very special case. In Exercise 41 we examine a function where

∫∫
f dy dx exists but

∫∫
f dA does not.
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40. (a) The function h(x, y) = f(x)g(y) satisfies the conditions of Theorem 2.6 (Fubini’s theorem) on [a, b] × [c, d]. So:∫∫
R

f(x)g(y) dA =

∫ b

a

∫ d

c

f(x)g(y) dy dx.

For emphasis, we rewrite this last integral with parentheses and, since f(x) does not depend on y, we have:∫ b

a

(∫ d

c

f(x)g(y) dy
)
dx =

∫ b

a

f(x)

(∫ d

c

g(y) dy
)
dx.

But
∫ d

c

g(y) dy is constant so we can pull it out of this last integral to get the result:

∫ b

a

f(x)

(∫ d

c

g(y) dy
)
dx =

(∫ d

c

g(y) dy
)(∫ b

a

f(x) dx
)

.

(b) If D is an elementary region we can perform the first step above, if D is not an elementary region, there’s not much we
can do. For example, if D is a type 1 region, D = {(x, y)|γ(x) ≤ y ≤ δ(x), a ≤ x ≤ b} then∫∫

R

f(x)g(y) dA =

∫ b

a

(∫ δ(x)

γ(x)

f(x)g(y) dy

)
dx =

∫ b

a

f(x)

(∫ δ(x)

γ(x)

g(y) dy

)
dx.

41. (a) If x is rational, then
∫ 2

0

f(x, y) dy =

∫ 2

0

1 dy = 2. If x is irrational, then
∫ 2

0

f(x, y) dy =

∫ 1

0

0 dy +

∫ 2

1

2 dy = 2.

(b) Using our answer from part (a),
∫ 1

0

∫ 2

0

f(x, y) dy dx =

∫ 1

0

2 dx = 2.

(c) If cij has a rational x coordinate, then f(cij) = 1 and so the Riemann sum will converge to the area of the region, which
is 2.

(d) In this case f(cij) = 1 for our points in the region [0, 1]× [0, 1] and f(cij) = 2 for our points in the region [0, 1]× [1, 2].
In short, the Riemann sums will converge to (1)(1) + (2)(1) = 3.

(e) As we saw in parts (c) and (d), the Riemann sum does not have a well defined limit and so f fails to be integrable on R,
even though in part (b) we actually computed the iterated integral.

5.3 Changing The Order of Integration

This is a good section in which to encourage students to explore with a computer system.
1. (a) ∫ 2

0

∫ 2x

x2

(2x + 1) dy dx =

∫ 2

0

(2x + 1)(2x − x2) dx =

∫ 2

0

(−2x3 + 3x2 + 2x) dx

=

(
−x4

2
+ x3 + x2

) ∣∣∣∣2
0

= 4.

(b) The region of integration is bounded above by y = 2x and below by y = x2:

0.5 1 1.5 2
x

1

2

3

4
y
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(c)

∫ 4

0

∫ √
y

y/2

(2x + 1) dx dy =

∫ 4

0

(x2 + x)

∣∣∣∣
√

y

y/2

dy =

∫ 4

0

(
−y2

4
+

y

2
+

√
y

)
dy

=

(
−y3

12
+

y2

4
+

2y3/2

3

)∣∣∣∣4
0

= 4.

Note: In Exercises 2–9, most students will find the biggest challenge in reversing the order of integration (the topic of this
section). You may want to suggest that they reverse the order of integration in all of the exercises, but that they evaluate both
iterated integrals only in Exercises 7–9.

2. The region of integration is:

0.2 0.4 0.6 0.8 1
x

y

0.2

0.4

0.6

0.8

1

∫ 1

0

∫ x

0

(2 − x − y) dy dx =

∫ 1

0

(2x − 3x2/2) dx = 1/2 and

∫ 1

0

∫ 1

y

(2 − x − y) dx dy =

∫ 1

0

3

2
(y2 − 2y + 1) dy = 1/2.

3. The region of integration is:

x
0.5 1 1.5 2

1

2

3

4

y
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∫ 2

0

∫ 4−2x

0

y dy dx =

∫ 2

0

(2x2 − 8x + 8) dx = 16/3 and

∫ 4

0

∫ 2−y/2

0

y dx dy =

∫ 4

0

(−y2/2 + 2y) dy = 16/3.

4. The region of integration is:

x
1 2 3 4

0.5

1

1.5

2

y

∫ 2

0

∫ 4−y2

0

x dx dy =

∫ 2

0

(
(4 − y2)2

2

)
dy = 128/15 and

∫ 4

0

∫ √
4−x

0

x dy dx =

∫ 4

0

(x
√

4 − x) dx = 128/15.

5. The region of integration is:

0.5 1 1.5 2 2.5 3
x

2

4

6

8

y

∫ 9

0

∫ 3

√
y

(x + y) dx dy =

∫ 9

0

1

2
(−2y3/2 + 5y + 9) dy = 891/20 and

∫ 3

0

∫ x2

0

(x + y) dy dx =

∫ 9

0

(x4/2 + x3) dx = 891/20.

c© 2012 Pearson Education, Inc.



Section 5.3. Changing The Order of Integration 265

6. The region of integration is:

0.5 1 1.5 2 2.5 3

5

10

15

20
y

x

∫ 3

0

∫ ex

1

2 dy dx =

∫ 3

0

(2ex − 2) dx = 2e3 − 8 and

∫ e3

1

∫ 3

ln y

2 dx dy =

∫ 3

0

(6 − 2 ln y) dy = 2e3 − 8.

7. The region of integration is:

0.5 1 1.5 2
x

0.2

0.4

0.6

0.8

1

y

∫ 1

0

∫ 2y

y

ex dx dy =

∫ 1

0

(e2y − ey) dy =
1

2
(e2 − 2e + 1) and

∫ 1

0

∫ x

x/2

ex dy dx +

∫ 2

1

∫ 1

x/2

ex dy dx =

∫ 1

0

(xex/2) dy +

∫ 2

1

(ex − xex/2) dy =
1

2
+

e2

2
− e.
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8. The region of integration is:

0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8

1

y

x

∫ π/2

0

∫ cos x

0

sin x dy dx =

∫ π/2

0

(cos x sin x) dx = 1/2 and

∫ 1

0

∫ cos−1 y

0

sin x dx dy =

∫ 1

0

(1 − y) dy = 1/2.

9. The region of integration is:

-2 -1 1 2

0.5

1

1.5

2

y

x

∫ 2

0

∫ √
4−y2

−
√

4−y2

y dx dy =

∫ 2

0

(2y
√

4 − y2) dy = 16/3 and

∫ 2

−2

∫ √
4−x2

0

y dy dx =

∫ 2

−2

(−x2/2 + 2) dx = 16/3.

10. The limits of integration describe a region D bounded on the top by the line y = −x and on the bottom by the parabola
y = x2 − 2, as shown in the figure.

-2 -1.5 -1 -0.5 0.5 1

-2

-1

1

2
y

x
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To reverse the order of integration we must divide D into two regions by the line y = −1. Then the original integral is
equivalent to the sum ∫ −1

−2

∫ √
y+2

−√
y+2

(x − y) dx dy +

∫ 2

−1

∫ −y

−√
y+2

(x − y) dx dy

The first of these integrals is ∫ −1

−2

∫ √
y+2

−√
y+2

(x − y) dx dy =

∫ −1

−2

−2y
√

y + 2 dy

=

∫ 1

0

−2(u − 2)
√

u du = −2

∫ 1

0

(u3/2 − 2u1/2) du

= −2

(
2

5
u5/2 − 4

3
u3/2

) ∣∣∣∣1
0

= −2

(
2

5
− 4

3

)
=

28

15
.

The second integral is ∫ 2

−1

∫ −y

−√
y+2

(x − y) dx dy =

∫ 2

−1

(
1

2
y2 − 1

2
(y + 2) + y2 − y

√
y + 2

)
dy

=

(
1

2
y3 − 1

4
y2 − y

) ∣∣∣∣2
−1

−
∫ 2

−1

y
√

y + 2 dy =
3

4
−
∫ 4

1

(u − 2)
√

u du

=
3

4
−
(

2

5
u5/2 − 4

3
u3/2

) ∣∣∣∣4
1

=
3

4
− 64

5
+

32

3
+

2

5
− 4

3

= −139

60
.

Thus the final answer is 28

15
− 139

60
= − 9

20
.

11. The limits of integration describe a region D bounded on the left by x = y − 4 and on the right by the parabola x = 4y − y2.

x

-1

1

2

3

4

-4 -2 2 4

y

To reverse the order of integration, divide D into two regions by the line x = 0 (the y-axis). The original integral is equiva-
lent to ∫ 0

−5

∫ x+4

2−√
4−x

(y + 1) dy dx +

∫ 4

0

∫ 2+
√

4−x

2−√
4−x

(y + 1) dy dx

=

∫ 0

−5

(
1

2
(x + 4)2 + (x + 4) − 1

2
(2 −√

4 − x)2 − 2 +
√

4 − x

)
dx

+

∫ 4

0

(
1

2
(2 +

√
4 − x)2 + (2 +

√
4 − x) − 1

2
(2 −√

4 − x)2 − (2 −√
4 − x)

)
dx
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=

∫ 0

−5

(
6 + 3

√
4 − x +

11

2
x2 +

1

2
x2

)
dx +

∫ 4

0

6
√

4 − x dx

=
241

12
+ 32 =

625

12
.

12. The limits of integration of the first integral describe the triangular region D1 bounded on top by y = x:

0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1

y

The limits of integration of the second integral describe the triangular region D2 bounded by y = 2 − x:

0.25 0.5 0.75 1 1.25 1.5 1.75 2
x

y

0.2

0.4

0.6

0.8

1

Taken together, we obtain the triangular region D below

x

y

0.2

0.4

0.6

0.8

1

0.25 0.5 0.75 1 1.25 1.5 1.75 2

Reversing the order of integration, we find that the sum of the integrals equals∫ 1

0

∫ 2−y

y

sin x dx dy =

∫ 1

0

(− cos(2 − y) + cos y) dy

= (sin(2 − y) + sin y)

∣∣∣∣1
0

= sin 1 + sin 1 − sin 2

= 2 sin 1 − sin 2.
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13. The limits of integration of the first integral describe the region D1 bounded on the left by the x-axis, on the right by x =
√

y/3
(or, equivalently, by y = 3x2) and on top by x = 8.

0.25 0.5 0.75 1 1.25 1.5

2

4

6

8

x

y

The limits of integration of the second integral describe the region D2 bounded on the bottom by y = 8, on the left by
x =

√
y − 8 (which is equivalent to y = x2 + 8), and on the right by x =

√
−y/3.

0.25 0.5 0.75 1 1.25 1.5 1.75 2
x

2

4

6

8

10

12
y

Together, D1 and D2 give the full region D of integration.

x

y

0.25 0.5 0.75 1 1.25 1.5 1.75 2

2

4

6

8

10

12

When we reverse the order of integration, the sum of integrals is equal to

∫ 2

0

∫ x2+8

3x2

y dy dx =

∫ 2

0

1

2
((x2 + 8)2 − 9x4) dx

=
1

2

∫ 2

0

(−8x4 + 16x2 + 64) dx

=
1

2

(
−256

5
+

128

3
+ 128

)
=

896

15
.
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14. We reverse the order of integration:

∫ 1

0

∫ 3

3y

cos x2 dx dy =

∫ 3

0

∫ x/3

0

cos x2 dy dx =

∫ 3

0

(y cos x2)

∣∣∣∣x/3

0

dx

=
1

3

∫ 3

0

x cos x2 dx =
sin x2

6

∣∣∣∣3
0

=
sin 9

6
.

15. We reverse the order of integration:∫ 1

0

∫ 1

y

x2 sin xy dx dy =

∫ 1

0

∫ x

0

x2 sin xy dy dx =

∫ 1

0

(−x cos xy)

∣∣∣∣x
0

dx

=

∫ 1

0

(x − x cos x2) dx =
1

2
(x2 − sin x2)

∣∣∣∣1
0

=
1

2
(1 − sin 1).

16. We reverse the order of integration:∫ π

0

∫ π

y

sin x

x
dx dy =

∫ π

0

∫ x

0

sin x

x
dy dx =

∫ π

0

y sin x

x

∣∣∣∣x
0

dx =

∫ π

0

(sin x) dx = − cos x

∣∣∣∣π
0

= 2.

17. We reverse the order of integration:

∫ 3

0

∫ 9−x2

0

xe3y

9 − y
dy dx =

∫ 9

0

∫ √
9−y

0

xe3y

9 − y
dx dy =

∫ 9

0

x2e3y

2(9 − y)

∣∣∣∣
√

9−y

0

dy

=

∫ 9

0

(e3y/2) dx = (e3y/6)

∣∣∣∣9
0

=
e27 − 1

6
.

18. We reverse the order of integration:

∫ 2

0

∫ 1

y/2

e−x2

dy dx =

∫ 1

0

∫ 2x

0

e−x2

dy dx =

∫ 1

0

e−x2

y

∣∣∣∣2x

0

dx

=

∫ 1

0

(2xe−x2

) dx = (−e−x2

)

∣∣∣∣1
0

= 1 − 1

e
.

Note: It’s kind of interesting to see, in Exercises 19–21, that order of integration matters to us and to computer algebra systems.

19. (a) After churning for a while the program returned a sum of terms that included Bessel functions, Gamma functions and
other non-trivial and non-elightening results.

(b) You would use integration by parts twice and then substitute back in to eliminate the integral.

(c) In a blink of an eye you get
∫ 1

0

∫ 2y

0

y2 cos xy dx dy = (1/4)(1 − cos 2).

20. (a) Again, the program thought for a while and warned that inverse functions were being used and that values could be lost
for multivalued inverses. This time, however, it did come up with the correct answer of (1/4)(1 − cos 81).

(b) The calculation
∫ 9

0

∫ √
y

0

x sin y2 dx dy resulted in the same answer, but the solution came much more quickly.

21. (a) The software did nothing more than typeset the integral and leave it unevaluated.

(b) This timeMathematica quickly calculated the integral
∫ π/2

0

∫ sin x

0

ecos xdy dx = e − 1.

5.4 Triple Integrals

In Exercises 1–3, use Theorem 4.5, Fubini’s Theorem, to integrate in the most convenient order. Exercise 4 asks the students to
reconsider what happened in Exercise 1. Exercise 3 is a nice opportunity to look back at a result from Section 5.2.
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1. If we integrate with respect to x first, the integral simplifies:∫∫∫
[−1,1]× [0,2]× [1,3]

xyz dV =

∫ 3

1

∫ 2

0

∫ 1

−1

xyz dx dy dz =

∫ 3

1

∫ 2

0

x2yz

2

∣∣∣∣1
−1

dy dz

=

∫ 3

1

∫ 2

0

0 dy dz = 0.

2. Here order doesn’t matter.∫∫∫
[0,1]× [0,2]× [0,3]

(x2 + y2 + z2) dV =

∫ 1

0

∫ 2

0

∫ 3

0

(x2 + y2 + z2) dz dy dx

=

∫ 1

0

∫ 2

0

(
x2z + y2z +

z3

3

) ∣∣∣∣3
0

dy dx

=

∫ 1

0

∫ 2

0

(3x2 + 3y2 + 9) dy dx

=

∫ 1

0

(3x2y + y3 + 9y)

∣∣∣∣2
0

dx

=

∫ 1

0

(6x2 + 26) dx

= (2x3 + 26x)

∣∣∣∣1
0

= 28.

3. You could work this out as in Exercise 2, or suggest to your students that they could extend the result they established in
Exercise 40 of Section 5.2:∫∫∫

[1,e]× [1,e]× [1,e]

(
1

xyz

)
dV =

(∫ e

1

1

x
dx
)(∫ e

1

1

y
dy
)(∫ e

1

1

z
dz
)

=

(∫ e

1

1

x
dx
)3

=

(
ln x

∣∣∣∣e
1

)3

= 13 = 1.

4. This works for the same reason that Exercise 1 simplified. We are integrating an odd function of z on an interval that is

symmetric in the z coordinate and so, since
∫ 3

−3

z dz = 0, the triple integral will also be 0.

5. ∫ 2

−1

∫ z2

1

∫ y+z

0

3yz2 dx dy dz =

∫ 2

−1

∫ z2

1

3xyz2

∣∣∣∣y+z

0

dy dz = 3

∫ 2

−1

∫ z2

1

(y2z2 + yz3) dy dz

= 3

∫ 2

−1

(
y3z2

3
+

y2z3

2

) ∣∣∣∣z
2

1

dz = 3

∫ 2

−1

(
z8

3
+

z7

2
− z3

2
− z2

3

)
dz

= 3

(
z9

27
+

z8

16
− z4

8
− z3

9

) ∣∣∣∣2
−1

=
1539

16
.

6. ∫ 3

1

∫ z

0

∫ xz

1

(x + 2y + z) dy dx dz =

∫ 3

1

∫ z

0

(xy + y2 + zy)

∣∣∣∣xz

1

dx dz

=

∫ 3

1

∫ z

0

(x2z + x2z2 + xz2 − x − z − 1) dx dz

=

∫ 3

1

(
x3z

3
+

x3z2

3
+

x2z2

2
− x2

2
− xz − x

) ∣∣∣∣z
0

dz

=

∫ 3

1

(
z5

3
+

5z4

6
− 3z2

2
− z

)
dz =

574

9
.
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7. ∫ 1

0

∫ 2y

1+y

∫ y+z

z

z dx dz dy =

∫ 1

0

∫ 2y

1+y

xz

∣∣∣∣y+z

z

dz dy

=

∫ 1

0

∫ 2y

1+y

yz dz dy =

∫ 1

0

(yz2/2)

∣∣∣∣2y

1+y

dy

=

∫ 1

0

(
3y3

2
− y2 − y

2

)
dy = − 5

24
.

8. (a) This is a higher-dimensional analogue of Exercise 26 from Section 5.2. Again the idea would be that if we were in four-
dimensional space that a figure of constant height would have volume equal to the volume of the base multiplied by the
height. In this case that would be just the volume of the base. Somehow this is a lot less physically appealing or intuitive.
By Definition 4.3, ∫∫∫

W

1 dA = lim
all Δxi,Δyj ,Δzk→0

n∑
i,j,k=1

ΔxiΔyjΔzk.

The intuition follows from examining the formula above on the right. This converges to the volume of W . More formally,
we are assuming that W is an elementary region; let’s consider the case of a type 1 region, then we can rewrite the sum
above as

lim
all Δxi,Δyj→0

n∑
i,j=1

ΔxiΔyj(ψ(cij) − ϕ(cij)) = lim
all Δxi→0

n∑
i=1

Δxi

(∫ δ(ci)

γ(ci)

(ψ(y) − ϕ(y)) dy

)

=

∫ b

a

∫ δ(ci)

γ(ci)

(ψ(y) − ϕ(y)) dy dx = volume of W.

The proof is not much different for the other elementary regions.
(b) Work out that the equation of the circle where the two paraboloids intersect is x2 + y2 = 9/2 so

Volume =

∫ 3/
√

2

−3/
√

2

∫ √
9/2−x2

−
√

9/2−x2

∫ 9−x2−y2

x2+y2

1 dz dy dx

=

∫ 3/
√

2

−3/
√

2

∫ √
9/2−x2

−
√

9/2−x2

(9 − 2x2 − 2y2) dy dx

=

∫ 3/
√

2

−3/
√

2

([
12 − 8

3
x2

]√
9

2
− x2

)
dx

=

(√
9

2
− x2

[
15x

2
− 2x3

3

]
+

81

4
arcsin

[√
2x

3

]) ∣∣∣∣3/
√

2

−3/
√

2

=
81π

4
.

9. Of course there are other ways to calculate the volume of the sphere.

Volume =

∫ a

−a

∫ √
a2−x2

−
√

a2−x2

∫ √
a2−x2−y2

−
√

a2−x2−y2

1 dz dy dx =

∫ a

−a

∫ √
a2−x2

−
√

a2−x2

2
√

a2 − x2 − y2 dy dx

=

∫ a

−a

(
y
√

a2 − x2 − y2 − (a2 − x2) arcsin

[
y√

a2 − x2

]) ∣∣∣∣
√

a2−x2

−
√

a2−x2

dx

= π

∫ a

−a

(a2 − x2) dx = π(a2x − x3/3)

∣∣∣∣a
−a

=
4πa3

3
.

10. The students have seen this as the volume of a solid of revolution. We’ll orient the cone so that the vertex is down at the origin
and the axis is along the z-axis. Then the horizontal cross sections are circles of radius rz/h. This simplifies the following
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computation:

Volume =

∫ h

0

∫ rz/h

−rz/h

∫ √
(rz/h)2−x2

−
√

(rz/h)2−x2

dy dx dz =

∫ h

0

π
r2

h2
z2 dz =

1

3
πr2h.

11. ∫ 1

0

∫ 2

−2

∫ y2

0

(2x − y + z) dz dy dx =

∫ 1

0

∫ 2

−2

(
2xz − yz +

z2

2

) ∣∣∣∣y
2

0

dy dx

=

∫ 1

0

∫ 2

−2

(2xy2 − y3 + y4/2) dy dx

=

∫ 1

0

(
2xy3

3
− y4

4
+

y5

10

) ∣∣∣∣2
−2

dx

=

∫ 1

0

(
32x

3
+

64

10

)
dx

=

(
16x2

3
+

32

5
x

) ∣∣∣∣1
0

=
176

15
.

12. ∫ 1

−1

∫ √
1−x2

−
√

1−x2

∫ 2−x−z

0

y dy dz dx =

∫ 1

−1

∫ √
1−x2

−
√

1−x2

(
y2

2

) ∣∣∣∣2−x−z

0

dz dx

=

∫ 1

−1

∫ √
1−x2

−
√

1−x2

((2 − x − z)2/2) dz dx

=

∫ 1

−1

(
1

3

√
1 − x2(2x2 − 12x + 13)

)

=

(√
1 − x2

(
2x3 − 16x2 + 25x + 16

12

)
+

9

4
arcsin x

) ∣∣∣∣1
−1

=
9π

4
.

13. Here
∫ 3

−3

∫ 9

x2

∫ 9−y

0

8 xyz dz dy dx = 0, because we are integrating an odd function in x over an interval that is symmetric

in x (see Exercises 1 and 4).
14. ∫ 3

0

∫ 3

x

∫ √
9−y2

0

z dz dy dx =

∫ 3

0

∫ 3

x

z2

2

∣∣∣∣
√

9−y2

0

dy dx

=

∫ 3

0

∫ 3

x

((9 − y2)/2) dy dx

=

∫ 3

0

(−y3 + 27y

6

) ∣∣∣∣3
x

dx

=

∫ 3

0

(
x3 − 27x + 54

6

)
dx =

81

8
.

15. Here we are again integrating a polynomial. The only difficulty is in the set up:∫ 1

0

∫ 2−2x

0

∫ 3−3x−3y/2

0

(1 − z2) dz dy dx =
1

10
.

16. Again, the set up and solution are: ∫ 2

0

∫ √
4−x2

0

∫ 4

x2+y2

3x dz dy dx =
64

5
.
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17. ∫ 3

0

∫ 3−x

0

∫ √
3−x2/3

−
√

3−x2/3

(x + y) dz dy dx =

∫ 3

0

∫ 3−x

0

(2(x + y)
√

3 − x2/3) dy dx

=

∫ 3

0

((9 − x2)
√

3 − x2/3) dx

=

(√
3 − x2/3

(
45x − 2x3

8

)
+

81
√

3

8
arcsin(x/3)

) ∣∣∣∣3
0

=
81

√
3π

16
.

18. ∫ 2

−2

∫ √
1−x2/4

−
√

1−x2/4

∫ x+2

0

z dz dy dx =

∫ 2

−2

∫ √
1−x2/4

−
√

1−x2/4

((x + 2)2/2) dy dx

=

∫ 2

−2

((x + 2)2
√

1 − x2/4) dx

=

(
3x3 + 16x2 + 18x − 64

12

√
1 − x2/4 + 5 arcsin(x/2)

) ∣∣∣∣2
−2

= 5π.

19.
∫ 1

0

∫ y

y2

∫ y

0

(4x + y) dz dx dy =

∫ 1

0

∫ y

y2

(4x + y)y dx dy =

∫ 1

0

(3y3 − 2y5 − y4) dy

=

[
3

4
y4 − 1

3
y6 − 1

5
y5

] ∣∣∣∣1
0

=
13

60
.

20. The surfaces z = x2 + 2y2 and z = 6 − x2 − y2 intersect where

x2 + 2y2 = 6 − x2 − y2 ⇐⇒ 2x2 + 3y2 = 6.

Since we are only interested in the first octant part of the solid, the shadow of the solid in the xy-plane is the region bounded
by the ellipse 2x2 + 3y2 = 6 and the coordinate axes in the first quadrant. Thus we calculate:∫ √

3

0

∫ √
2−2x2/3

0

∫ 6−x2−y2

x2+2y2

x dz dy dx =

∫ √
3

0

∫ √
2−2x2/3

0

x(6 − 2x2 − 3y2) dy dx

=

∫ √
3

0

[
(6x − 2x3)

√
2 − 2

3
x2 − x

(
2 − 2

3
x2

)3/2
]

dx

=

∫ √
3

0

2x

(
2 − 2

3
x2

)3/2

dx =

∫ 0

2

−3

2
u3/2 du,

where u = 2 − 2

3
x2,

=

∫ 2

0

3

2
u3/2 du =

3

5
u5/2

∣∣∣∣2
0

=
12

√
2

5
.

21. The volume is given by∫∫∫
W

1 dV =

∫ 2

0

∫ 2−x

0

∫ 4−x2

0

1 dz dy dx

=

∫ 2

0

∫ 2−x

0

(4 − x2) dy dx =

∫ 2

0

(4 − x2)(2 − x) dx

=

∫ 2

0

(x3 − 2x2 − 4x + 8) dx =

(
x4

4
− 2x3

3
− 2x2 + 8x

) ∣∣∣∣2
0

=
20

3
.
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22. The volume is

∫∫∫
W

1 dV =

∫ 3

−3

∫ √
9−x2

0

∫ 6−2y

0

1 dz dy dx =

∫ 3

−3

∫ √
9−x2

0

(6 − 2y) dy dx

=

∫ 3

−3

[
6
√

9 − x2 − (9 − x2)
]

dx =

∫ 3

−3

6
√

9 − x2 dx +

∫ 3

−3

(x2 − 9) dx

=

∫ 3

−3

6
√

9 − x2 dx +

(
x3

3
− 9x

) ∣∣∣∣3
−3

=

∫ 3

−3

6
√

9 − x2 dx − 36.

For the remaining integral, let x = 3 sin θ so that dx = 3 cos θ dθ. Then

∫ 3

−3

6
√

9 − x2 dx =

∫ π/2

−π/2

6(3 cos θ)3 cos θ dθ = 27

∫ π/2

−π/2

(1 + cos 2θ) dθ

= 27

(
θ +

1

2
sin 2θ

) ∣∣∣∣π/2

−π/2

= 27π.

(Alternatively, we could have recognized this integral as six times the area of a semicircle of radius 3, or 6(π · 32/2) = 27π.)
Hence the total volume is 27π − 36.

23. ∫ 1

−1

∫ √
(1−y2)/2

−
√

(1−y2)/2

∫ 2−y2

4x2+y2

dz dx dy =

∫ 1

−1

∫ √
(1−y2)/2

−
√

(1−y2)/2

(2 − 4x2 − 2y2) dx dy

=

∫ 1

−1

(
4
√

2

3
(y2 − 1)

√
1 − y2

)
dy

=
π√
2
.

24.

∫ a

−a

∫ √
a2−x2

−
√

a2−x2

∫ √
a2−x2

−
√

a2−x2

dz dy dx =

∫ a

−a

∫ √
a2−x2

−
√

a2−x2

(2
√

a2 − x2) dy dx

=

∫ a

−a

4(a2 − x2) dx

=
16a3

3
.
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25. The region looks like a wedge of cheese:

The five other forms are:

∫ 1

−1

∫ 1

y2

∫ 1−x

0

f(x, y, z) dz dx dy =

∫ 1

0

∫ √
x

−√
x

∫ 1−x

0

f(x, y, z) dz dy dx

=

∫ 1

0

∫ 1−x

0

∫ √
x

−√
x

f(x, y, z) dy dz dx

=

∫ 1

0

∫ 1−z

0

∫ √
x

−√
x

f(x, y, z) dy dx dz

=

∫ 1

−1

∫ 1−y2

0

∫ 1−z

y2

f(x, y, z) dx dz dy

=

∫ 1

0

∫ √
1−z

−√
1−z

∫ 1−z

y2

f(x, y, z) dx dy dz.

26. The five other forms are:

∫ 1

0

∫ 1

0

∫ x2

0

f(x, y, z) dz dx dy =

∫ 1

0

∫ 1

0

∫ x2

0

f(x, y, z) dz dy dx

=

∫ 1

0

∫ 1

0

∫ 1

√
z

f(x, y, z) dx dz dy

=

∫ 1

0

∫ 1

0

∫ 1

√
z

f(x, y, z) dx dy dz

=

∫ 1

0

∫ x2

0

∫ 1

0

f(x, y, z) dy dz dx

=

∫ 1

0

∫ 1

√
z

∫ 1

0

f(x, y, z) dy dx dz.
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27. The five other forms are: ∫ 2

0

∫ x

0

∫ y

0

f(x, y, z) dz dy dx =

∫ 2

0

∫ 2

y

∫ y

0

f(x, y, z) dz dx dy

=

∫ 2

0

∫ x

0

∫ x

z

f(x, y, z) dy dz dx

=

∫ 2

0

∫ 2

z

∫ x

z

f(x, y, z) dy dx dz

=

∫ 2

0

∫ y

0

∫ 2

y

f(x, y, z) dx dz dy

=

∫ 2

0

∫ 2

z

∫ 2

y

f(x, y, z) dx dy dz.

28. (a) The solid W is bounded below by the surface z = 5x2, above by the paraboloid z = 36 − 4x2 − 4y2, on the left by the
xz-plane (i.e., y = 0), and in back by the yz-plane (i.e., x = 0). The solid is shown below.

0 1 2 3

y

10

0

20

30

z

2 1.5 0.5
x

(b) The shadow of the solid in the xy-plane is a quarter of the ellipse 9x2 + 4y2 = 36 (obtained by finding the intersection
curve of z = 5x2 and z = 36 − 4x2 − 4y2.) The shadow looks like:

0.5 1 1.5 2

0.5

1

1.5

2

2.5

3

y

x

Using the shadow region to reverse the order of integration between x and y, we find that the original integral is equiva-
lent to ∫ 3

0

∫ 1

3

√
36−4y2

0

∫ 36−4x2−4y2

5x2

2 dz dx dy.
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(c) In this case, we need to consider the shadow of W in the xz-plane.

0.25 0.5 0.75 1 1.25 1.5 1.75 2
x

z

5

10

15

20

25

30

35

This region is bounded on the left by x = 0, on the bottom by z = 5x2, and on top by z = 36 − 4x2 (the section by
y = 0). Now the full solid W is bounded in the y-direction by y = 0 and y =

1

2

√
36 − 4x2 − z (the latter is just the

paraboloid surface). Hence the desired iterated integral is

∫ 2

0

∫ 36−4x2

5x2

∫ 1

2

√
36−4x2−z

0

2 dy dz dx.

(d) Here we use the same shadow in the xz-plane as in part (c), only to integrate with respect to x before integrating with
respect to z will require dividing the shadow into two regions by the line z = 20. (Equivalently, we are dividing the solid
W into two solids by the plane z = 20.) This is why we need a sum of integrals. They are

∫ 20

0

∫ √
z/5

0

∫ 1

2

√
36−4x2−z

0

2 dy dx dz +

∫ 36

20

∫ 1

2

√
36−z

0

∫ 1

2

√
36−4x2−z

0

2 dy dx dz.

(e) To integrate with respect to x first, we need to divide W in a very different manner. The shadow in the yz-plane shows
a region bounded on the left by y = 0 and above by z = 36 − 4y2 (the section of the paraboloid by x = 0). However,
the curve of intersection of the surfaces z = 5x2 and z = 36 − 4x2 − 4y2 with x eliminated yields the equation

z = 20 − 20y2

9
. It is along this curve that we must divide the yz-shadow and thus the integrals. (Note: This curve is just

the shadow of the intersection curve of the two surfaces projected into the yz-plane.)

5

10

15

20

25

30

35
z

0.5 1 1.5 2 2.5 3
y

Thus the desired sum of integrals is

∫ 3

0

∫ 20−20y2/9

0

∫ √
z/5

0

2 dx dz dy +

∫ 3

0

∫ 36−4y2

20−20y2/9

∫ 1

2

√
36−4y2−z

0

2 dx dz dy.

29. (a) The solid W is bounded below by the paraboloid z = x2 + 3y2, above by the surface z = 4 − y2 and in back by the
plane y = 0. The solid is shown below.
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0
0.25
0.5
0.75
1

y

0

3

4

z

1

2

-2-1012
x

(b) The shadow of W in the xy-plane is half of the region inside the ellipse x2 + 4y2 = 4 (the half with y ≥ 0). It may be
obtained by finding the intersection curve of z = x2 + 3y2 and z = 4 − y2 and eliminating z. The shadow looks like

x
-2 -1 1 2

0.2
0.4
0.6
0.8

1
y

Using the shadow to reverse the order of integration between x and y, we find that the original integral is equivalent to

∫ 1

0

∫ 2
√

1−y2

−2
√

1−y2

∫ 4−y2

x2+3y2

(x3 + y3) dz dx dy.

(c) We need to consider the shadow of W in the yz-plane.

0.2 0.4 0.6 0.8 1
y

1

2

3

4
z

The region is bounded on the left by y = 0, on the bottom by z = 3y2 (the section by x = 0) and on the top by z = 4−y2.
The full solid W is bounded in the x-direction by the paraboloid z = x2 + 3y2, which must be expressed in terms of x as
x = ±

√
z − 3y2. Putting all this information together, we find the desired iterated integral is

∫ 1

0

∫ 4−y2

3y2

∫ √
z−3y2

−
√

z−3y2

(x3 + y3) dx dz dy.
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(d) Here we use the same shadow in the yz-plane as in part (c), only to integrate with respect to y before integrating with
respect to z requires dividing the shadow into two regions by the line z = 3. (Equivalently, we are dividing the solid W
by the plane z = 3.) This is why we need a sum of integrals. They are

∫ 3

0

∫ √
z/3

0

∫ √
z−3y2

−
√

z−3y2

(x3 + y3) dx dy dz +

∫ 4

3

∫ √
4−z

0

∫ √
z−3y2

−
√

z−3y2

(x3 + y3) dx dy dz.

(e) To integrate with respect to y first, we need to divide W in a different manner. The shadow in the xz-plane shows a region
bounded by z = x2 (the section of the paraboloid by y = 0) and z = 4. However, the curve of intersection of the surfaces
z = x2 +3y2 and z = 4−y2 with y eliminated yields the equation z = x2

4
+3. It is along this curve that we must divide

the xz-shadow and thus the integrals. (Note: This curve is just the shadow of the intersection curve of the two surfaces
projected into the xz-plane.)

x
-2 -1 1 2

1

2

3

4
z

Thus the desired sum of integrals is

∫ 2

−2

∫ (x2/4)+3

x2

∫ √
(z−x2)/3

0

(x3 + y3) dy dz dx +

∫ 2

−2

∫ 4

(x2/4)+3

∫ √
4−z

0

(x3 + y3) dy dz dx.

5.5 Change of Variables

1. (a)

T(u, v) =

[
3 0
0 −1

] [
u
v

]
.

(b) In this case we can see by inspection that the transformation stretches by 3 in the horizontal direction and reflects without
a stretch in the vertical direction. Therefore the image D = T(D∗) where D∗ is the unit square is the rectangle [0, 3] ×
[−1, 0].

2. (a) This is similar to the map in Example 4 with a scaling factor of 1/
√

2. We can also rewrite

T(u, v) =

⎡
⎢⎢⎣

1√
2

− 1√
2

1√
2

1√
2

⎤
⎥⎥⎦
[

u
v

]
.

This is a rotation matrix (the determinant is 1 so there is no stretching) which rotates the unit square counterclockwise by
45◦ leaving the vertex at the origin in place.

(b) We rewrite

T(u, v) =

⎡
⎢⎢⎣

1√
2

1√
2

1√
2

− 1√
2

⎤
⎥⎥⎦
[

u
v

]
.

This is a rotation followed by a reflection. You can apply Proposition 5.1 and see where T maps each of the vertices to
completely determine the image of the unit square. You will see that the vertices (0, 0), (1, 0), (1, 1), and (1, 0) are mapped
to (0, 0), (1/

√
2, 1/

√
2), (

√
2, 0), and (1/

√
2,−1/

√
2).
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3. Again, since T has non-zero determinant, we can apply Proposition 5.1 and see where T maps each of the vertices. We
conclude that T maps D∗ to the parallelogram whose vertices are: (0, 0), (11, 2), (4, 3), and (15, 5).

4. We are trying to determine the entries a, b, c, and d in the expression:

T(u, v) =

[
a b
c d

] [
u
v

]
.

Since T(0, 0) = (0, 0) we know that the motion is not a translation. Also T(0, 5) = (4, 1) so b = 4/5 and d = 1/5. Now
T(1, 2) = (1,−1) so a = −3/5 and c = −7/5. We check with the remaining vertex: T(−1, 3) = (3, 2).

T(u, v) =

[ −3/5 4/5
−7/5 1/5

] [
u
v

]
.

5. As noted in the text, we have a result for R3 that is analogous to Proposition 5.1, so as in Exercises 3 and 2 (b) we can just
compute the images of the vertices of W∗. We conclude that W∗ maps to the parallelepiped with vertices: (0, 0, 0), (3, 1, 5),
(−1,−1, 3), (0, 2,−1), (2, 0, 8), (3, 3, 4), (−1, 1, 2), and (2, 2, 7).

6. You can see that T(u, v) = (u, uv) is not one-one on D∗ by observing that all points of the form (0, v) get mapped to the
origin under T. In fact, you can imagine the map by picturing the left vertical side of the unit square being shrunk down to a
point at the origin. The image is the triangle:

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

y

x

7. This map should be a happy memory for the students:

(x, y, z) = T(ρ, ϕ, θ) = (ρ sin ϕ cos θ, ρ sin ϕ sin θ, ρ cos ϕ)

is familiar from their work with spherical coordinates.
(a) This is the unit ball: D = {(x, y, z)|x2 + y2 + z2 ≤ 1}.
(b) This is the portion of the unit ball in the first octant: D = {(x, y, z)|x2 + y2 + z2 ≤ 1, x, y, z ≥ 0}.
(c) You can think of this as the region from part (b) with the portion corresponding to 0 ≤ ρ < 1/2 removed. It is the

portion in the first octant of the shell 1/2 unit thick around a sphere of radius 1/2: D = {(x, y, z)|1/4 ≤ x2 + y2 + z2 ≤
1, x, y, z ≥ 0}.

8. (a)
∫ 1

0

∫ (y/2)+2

y/2

(2x − y) dx dy =

∫ 1

0

(x2 − xy)

∣∣∣∣(y/2)+2

y/2

dy =

∫ 1

0

4 dy = 4. A sketch of D is shown below.

(b) We again can apply Proposition 5.1 and see that the vertices are mapped: (0, 0) → (0, 0), (2, 0) → (4, 0), (1/2, 1) →
(0, 1), and (5/2, 1) → (4, 1) so D∗ is [0, 4] × [0, 1].

(c) First note that
∂(u, v)

∂(x, y)
= det

[
2 −1
0 1

]
= 2 so ∂(x, y)

∂(u, v)
=

1

2
.

Then, using the change of variables theorem,

∫ 1

0

∫ (y/2)+2

y/2

(2x − y) dx dy =

∫ 1

0

∫ 4

0

u(1/2) du dv =

∫ 1

0

u2

4

∣∣∣∣4
0

du =

∫ 1

0

4 dv = 4.
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0.5 1 1.5 2 2.5
x

y

0.2

0.4

0.6

0.8

1

9. First,
∂(u, v)

∂(x, y)
= det

[
1 0

−1 2

]
= 2 so ∂(x, y)

∂(u, v)
=

1

2
.

Also we can rewrite x5(2y − x)e(2y−x)2 = u5vev2

, and the transformed region is [0, 2] × [0, 2] so∫ 2

0

∫ (x/2)+1

x/2

x5(2x − y)e(2x−y)2 dy dx =

∫ 2

0

∫ 2

0

u5vev2

(1/2) du dv =
16

3

∫ 2

0

vev2

dv =
8

3
(e4 − 1).

10. The original region D is sketched below left. The transformation u = x + y and v = x − 2y maps D to the region D∗

sketched below right.

0.2 0.4 0.6 0.8 1
x

0.2

0.4

0.6

0.8

1

y

0.2 0.4 0.6 0.8 1
u

0.2

0.4

0.6

0.8

1

v

We may find ∂(x, y)/∂(u, v) in two ways. First, solving for x and y in terms of u and v, we have

x =
2u + v

3
, y =

u − v

3
.

Thus
∂(x, y)

∂(u, v)
= det

[
2/3 1/3
1/3 −1/3

]
= −2

9
− 1

9
= −1

3
.

Alternatively, we may calculate
∂(u, v)

∂(x, y)
= det

[
1 1
1 −2

]
= −2 − 1 = −3.

Therefore, ∂(x, y)/∂(u, v) = (∂(u, v)/∂(x, y))−1 = −1/3.
Using the change of variables theorem, our integral becomes

∫ 1

0

∫ u

0

1

3

(
u1/2

v1/2

)
dv du =

∫ 1

0

2

3
u1/2v1/2

∣∣∣∣∣
u

0

du =

∫ 1

0

2

3
u du =

u2

3

∣∣∣∣∣
1

0

=
1

3
.

11. Here the problem cries out to you to let u = 2x + y and v = x − y. Once you’ve made that move you can easily figure that
∂(x, y)/∂(u, v) = −1/3 and that the new region is [1, 4] × [−1, 1]. So the integral is∫ 4

1

∫ 1

−1

u2ev(1/3) dv du =
1

3

∫ 4

1

u2ev

∣∣∣∣1
−1

du = (e − e−1)
u3

9

∣∣∣∣4
1

= 7(e − e−1).
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12. If we sketch the region we get the square:

x
0.5 1 1.5 2 2.5 3

y

-2

-1.5

-1

-0.5

0.5

1

The transformation we use is u = 2x + y − 3 and v = 2y − x + 6 so ∂(x, y)/∂(u, v) = 1/5 and the transformed region is
the square:

-3 -2 -1 1 2
u

1

2

3

4

5

6
v

Our integral is ∫ 6

1

∫ 2

−3

u2

5v2
du dv =

1

15

∫ 6

1

u3

v2

∣∣∣∣2
−3

dv =
7

3

∫ 6

1

v−2 dv =
7

3

(
−1

v

)∣∣∣∣6
1

=
35

18
.

Note: In Exercises 13–17 the Jacobian for the change of variables is r. Assign Exercise 16 so that your students appreciate
the role of the extra r.

13.
∫ 1

−1

∫ √
1−x2

−
√

1−x2

3 dy dx =

∫ 2π

0

∫ 1

0

3r dr dθ =

∫ 2π

0

3

2
dθ = 3π.

14.
∫ 2

0

∫ √
4−x2

0

dy dx =

∫ π/2

0

∫ 2

0

r dr dθ =

∫ π/2

0

2 dθ = π.

15.
∫ 2π

0

∫ 3

0

r4 dr dθ =

∫ 2π

0

r5

5

∣∣∣∣3
0

dθ =

∫ 2π

0

243

5
dθ =

486π

5
.

16.
∫ a

−a

∫ √
a2−y2

0

ex2+y2

dx dy =

∫ π/2

−π/2

∫ a

0

rer2

dr dθ =

∫ π/2

−π/2

1

2
er2

∣∣∣∣∣
a

0

dθ =

∫ π/2

−π/2

1

2
(ea2 − 1)dθ = π(ea2 − 1)/2.
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17.
∫ 3

0

∫ x

0

dy dx√
x2 + y2

=

∫ π/4

0

∫ 3 sec θ

0

dr dθ =

∫ π/4

0

3 sec θ dθ = 3 ln(sec θ+tan θ)|π/4
0 = ln(1+

√
2)−ln 1 = ln(1+

√
2).

18. This is a job for polar coordinates. The given disk has boundary circle with equation x2 + (y − 1)2 = 1. In polar coordinates
this equation becomes

r2 cos2 θ + (r sin θ − 1)2 = 1 ⇔ r2 cos2 θ + r2 sin2 θ − 2r sin θ + 1 = 1

⇔ r2 = 2r sin θ.

Factoring out r, the boundary circle has equation r = 2 sin θ. In fact, this circle is completely traced by letting θ vary from 0
to π. Thus the region D inside the disk is given by

D = {(r, θ)|r ≤ 2 sin θ, 0 ≤ θ ≤ π}.

Hence ∫∫
D

1√
4 − x2 − y2

dA =

∫ π

0

∫ 2 sin θ

0

1√
4 − r2

r dr dθ

=

∫ π

0

−1

2
(2
√

4 − r2)

∣∣∣∣2 sin θ

0

dθ = −
∫ π

0

(
√

4 − 4 sin2 θ − 2) dθ

= −2

∫ π

0

√
cos2 θ dθ +

∫ π

0

2 dθ

= −2

(∫ π/2

0

cos θ dθ +

∫ π

π/2

(− cos θ) dθ

)
+ 2π

= −2
[
sin

π

2
− sin 0 − sin π + sin

π

2

]
+ 2π

= −4 + 2π = 2π − 4.

19. The region in question looks like

x

y

(1,1)

(1,-1)(-1,-1)

(-1,1)

We find
∫∫

D

y2dA =

∫∫
square

y2dA −
∫∫

disk

y2dA

∫∫
square

y2 dA =

∫ 1

−1

∫ 1

−1

y2 dx dy =

∫ 1

−1

2y2 dy =
2

3
y3

∣∣∣∣1
−1

=
4

3∫∫
disk

y2 dA =

∫ 2π

0

∫ 1

0

r2 sin2 θ · r dr dθ =

∫ 2π

0

1

4
sin2 θ dθ

=
1

8

∫ 2π

0

(1 − cos 2θ) dθ =
1

8

(
θ − 1

2
sin 2θ

) ∣∣∣∣2π

0

=
π

4
.
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Thus ∫∫
D

y2 dA =
4

3
− π

4
=

16 − 3π

12
.

20. A sketch of the rose is shown below. One leaf means that 0 ≤ θ ≤ π/2. The area of one leaf is

∫ π/2

0

∫ sin 2θ

0

r dr dθ =
1

2

∫ π/2

0

sin2 2θ dθ =
1

16
(4θ − sin 4θ)

∣∣∣∣∣
π/2

0

=
π

8
.

The total area is then four times this, or π/2.

-0.75 -0.5 -0.25 0.25 0.5 0.75

-0.75

-0.5

-0.25

0.25

0.5

0.75

y

x

21. If n is odd, the polar equation r = a cos nθ determines an n-leafed rose. Half of one of the n leaves is traced as θ varies from
0 to π/(2n). Hence the total area enclosed is

∫∫
D

1 dA = 2n

∫ π/(2n)

0

∫ a cos nθ

0

r dr dθ = 2n

∫ π/(2n)

0

1

2
(a cos nθ)2 dθ

= na2

∫ π/(2n)

0

cos2 nθ dθ =
na2

2

∫ π/(2n)

0

(1 + cos 2nθ) dθ

=
na2

2

(
θ +

1

2n
sin 2nθ

) ∣∣∣∣π/(2n)

0

=
πa2

4
.

If n is even, then the equation r = a cos nθ determines a rose with 2n leaves. Half of one of these 2n leaves is again
traced as θ varies from 0 to π/(2n). The total area enclosed is

∫∫
D

1 dA = 2(2n)

∫ π/(2n)

0

∫ a cos nθ

0

r dr dθ.

Since this is just twice the previous iterated integral, there is no reason to recompute; the result is πa2/2.
In each case the answer depends only on a, not the specific value of n other than its parity.

22. The circles r = 2a cos θ and r = 2a sin θ are both of radius a with respective centers at (a, 0) and (0, a) (in Cartesian
coordinates). The region in question looks like:
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a 2 a
x

a

2 a

y

The circles intersect where 2a cos θ = 2a sin θ ⇐⇒ θ = π/4 (also at the origin where r = 0). By symmetry, we have

Area =

∫∫
D

1 dA = 2

∫ π/4

0

∫ 2a sin θ

0

r dr dθ

=

∫ π/4

0

(2a sin θ)2 dθ =

∫ π/4

0

2a2(1 − cos 2θ) dθ

= 2a2

(
θ − 1

2
sin 2θ

) ∣∣∣∣π/4

0

=
πa2

2
− a2 =

(π − 2)a2

2
.

23. We sketch the graphs of the cardioid r = 1 − cos θ and the circle r = 1:

x

y

-2 -1.5 -1 -0.5 0.5 1

-1

-0.5

0.5

1

The two curves intersect when 1 − cos θ = 1 which is when cos θ = 0 so the two points of intersection are (r, θ) = (1, π/2)
and (1, 3π/2). The region between the two graphs is where π/2 ≤ θ ≤ 3π/2. The area is∫ 3π/2

π/2

∫ 1−cos θ

1

r dr dθ =

∫ 3π/2

π/2

(
cos2 θ

2
− cos θ

)
dθ

=
1

8
(2θ − 8 sin θ + sin 2θ)

∣∣∣∣3π/2

π/2

= 2 +
π

4
.
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24. We want the area “inside” the spiral shown below. The area is

∫ 2π

0

∫ 3θ

0

r dr dθ =

∫ 2π

0

9

2
θ2 dθ =

3

2
θ3

∣∣∣∣2π

0

= 12π3.

-10 -5 5 10 15

-10

-5

5

y

x

25. The integral is

∫ π

π/3

∫ 1

0

r cos r2 dr dθ =
1

2

∫ π

π/3

sin r2

∣∣∣∣∣
1

0

dθ =
1

2
sin 1

∣∣∣∣π
π/3

=
π

3
(sin 1).

26.
∫∫

D

sin (x2 + y2) dA =

∫ π/2

0

∫ 3

1

sin (r2) · r dr dθ

=

∫ π/2

0

(− 1
2

cos (r2)
) ∣∣∣∣r=3

r=1

dθ =

∫ π/2

0

1
2
(cos 1 − cos 9) dθ =

π

4
(cos 1 − cos 9).

27. Two of the edges of the unit square are given by x = 1 (or r = 1/ cos θ in polar coordinates) and by y = 1 (i.e., by
r = 1/ sin θ). We need to divide the square along the θ = π/4 line, and use a sum of integrals:

1

1
r � 1�sin Θ

r � 1�cos Θ

1

1
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Thus

∫∫
D

x√
x2 + y2

dA =

∫ π/4

0

∫ 1/ cos θ

0

r cos θ

r
· r dr dθ +

∫ π/2

π/4

∫ 1/ sin θ

0

r cos θ dr dθ

=

∫ π/4

0

1

2 cos2 θ
· cos θ dθ +

∫ π/2

π/4

1

2 sin2 θ
· cos θ dθ

=

∫ π/4

0

1

2
sec θ dθ +

∫ θ=π/2

θ=π/4

1

2(sin θ)2
d(sin θ)

=
1

2
ln |sec θ + tan θ|

∣∣∣∣π/4

0

− 1

2 sin θ

∣∣∣∣π/2

π/4

=
1

2
ln (

√
2 + 1) − 1

2
ln 1 − 1

2
+

√
2

2
=

1

2
(ln (

√
2 + 1) +

√
2 − 1).

28.
∫ 3

−3

∫ √
9−x2

−
√

9−x2

∫ 3

√
x2+y2

ez√
x2 + y2

dz dy dx =

∫ 2π

0

∫ 3

0

∫ 3

r

ez

r
· r dz dr dθ

=

∫ 2π

0

∫ 3

0

(e3 − er) dr dθ =

∫ 2π

0

(3e3 − e3 + 1) dθ = 2π(2e3 + 1).

29.
∫ 1

−1

∫ √
1−y2

−
√

1−y2

∫ 4−x2−y2

0

ex2+y2+z dz dx dy =

∫ 2π

0

∫ 1

0

∫ 4−r2

0

er2+z r dz dr dθ

=

∫ 2π

0

∫ 1

0

(rer2 · ez)

∣∣∣∣z=4−r2

z=0

dr dθ =

∫ 2π

0

∫ 1

0

rer2
(
e4−r2 − 1

)
dr dθ

=

∫ 2π

0

∫ 1

0

(
e4r − rer2

)
dr dθ =

∫ 2π

0

(
e4

2
− e

2
+

1

2

)
dθ = π(e4 − e + 1).

30. Since B is a ball we will use spherical coordinates:

∫∫∫
B

dV√
x2 + y2 + z2 + 3

=

∫ 2π

0

∫ π

0

∫ 2

0

ρ2 sin ϕ√
ρ2 + 3

dρ dϕ dθ

=

∫ 2π

0

∫ π

0

([√
7 − 3

2
arcsinh(2/

√
3)

]
sin ϕ

)
dϕ dθ

=

∫ 2π

0

(2
√

7 − 3 arcsinh(2/
√

3)) dθ

= 4
√

7π − 6π arcsinh(2/
√

3) which is the same as the text’s solution

= (4
√

7 − 6 ln(2 +
√

7) + 3 ln 3)π.

31. Here we will use cylindrical coordinates:

∫∫∫
W

(x2 + y2 + 2z2) dV =

∫ 2

−1

∫ 2π

0

∫ 2

0

r(r2 + 2z2) dr dθ dz

=

∫ 2

−1

∫ 2π

0

(4z2 + 4) dθ dz

=

∫ 2

−1

(8πz2 + 8π) dz = 48π.
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32. We use cylindrical coordinates:

∫∫∫
W

z√
x2 + y2

dV =

∫ 2π

0

∫ 3

0

∫ 12

2r2−6

z

r
· r dz dr dθ

=

∫ 2π

0

∫ 3

0

1

2

(
144 − (2r2 − 6)2

)
dr dθ =

∫ 2π

0

∫ 3

0

(54 + 12r2 − 2r4) dr dθ

=

∫ 2π

0

(
54r + 4r3 − 2

5
r5

) ∣∣∣∣3
0

dθ = 2π

(
864

5

)
=

1728π

5
.

33. Again we use cylindrical coordinates:

Volume =

∫∫∫
W

1 dV =

∫ 2π

0

∫ b

0

∫ √
a2−r2

0

r dz dr dθ

=

∫ 2π

0

∫ b

0

r
√

a2 − r2 dr dθ =

∫ 2π

0

∫ a2−b2

a2

−1

2

√
u du dθ

where u = a2 − r2,

=

∫ 2π

0

∫ a2

a2−b2

1

2

√
u du dθ =

∫ 2π

0

1

3

(
a3 − (a2 − b2)3/2

)
dθ

=
2π

3

[
a3 − (a2 − b2)3/2

]
.

34. It is natural to use spherical coordinates.

∫∫∫
W

dV√
x2 + y2 + z2

=

∫ 2π

0

∫ π

0

∫ b

a

(ρ sin ϕ) dρ dϕ dθ

=
1

2

∫ 2π

0

∫ π

0

((b2 − a2) sin ϕ) dϕ dθ

=

∫ 2π

0

(b2 − a2) dθ = 2π(b2 − a2).

35. Once again we use spherical coordinates.

∫∫∫
W

√
x2 + y2 + z2 ex2+y2+z2

dV =

∫ 2π

0

∫ π

0

∫ b

a

(ρ3eρ2

sin ϕ) dρ dϕ dθ

=
1

2

∫ 2π

0

∫ π

0

([(1 − a2)ea2

+ (b2 − 1)eb2 ] sin ϕ) dϕ dθ

=

∫ 2π

0

((1 − a2)ea2

+ (b2 − 1)eb2) dθ

= 2π((1 − a2)ea2

+ (b2 − 1)eb2).
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36. We use spherical coordinates:

∫∫∫
W

(x + y + z) dV =

∫ π/2

0

∫ π/2

0

∫ b

a

(ρ sin ϕ cos θ + ρ sin ϕ sin θ + ρ cos ϕ)ρ2 sin ϕ dρ dϕ dθ

=

∫ π/2

0

∫ π/2

0

b4 − a4

4

(
sin2 ϕ(cos θ + sin θ) + sin ϕ cos ϕ

)
dϕ dθ

=
b4 − a4

4

∫ π/2

0

[
(cos θ + sin θ)

(
1

2
ϕ − 1

4
sin 2ϕ

)
+

1

2
sin2 ϕ

] ∣∣∣∣ϕ=π/2

ϕ=0

dθ

=
b4 − a4

4

∫ π/2

0

(
π

4
(cos θ + sin θ) +

1

2

)
dθ

=
b4 − a4

4

[
π

4
(sin θ − cos θ) +

1

2
θ

] ∣∣∣∣π/2

0

=
b4 − a4

8

[π
2

(1 + 1) +
π

2

]
=

3π(b4 − a4)

16
.

37. We use spherical coordinates, in which case the cone z =
√

3x2 + 3y2 has equation

ρ cos ϕ =
√

3ρ sin ϕ ⇐⇒ tan ϕ =
1√
3

⇐⇒ ϕ =
π

6
.

The sphere x2 + y2 + z2 = 6z has spherical equation

ρ2 = 6ρ cos ϕ ⇐⇒ ρ = 6 cos ϕ.

Thus

∫∫∫
W

z2 dV =

∫ 2π

0

∫ π/6

0

∫ 6 cos ϕ

0

(ρ2 cos2 ϕ) · ρ2 sin ϕ dρ dϕ dθ

=

∫ 2π

0

∫ π/6

0

65

5
cos7 ϕ sin ϕ dϕ dθ =

∫ 2π

0

(
−7776

40
cos8 ϕ

) ∣∣∣∣ϕ=π/6

ϕ=0

dθ

=

∫ 2π

0

972

5

(
1 − 81

256

)
dθ =

972

5

(
175

128

)
π =

8505π

32
.

38. We are integrating over a cone with vertex at the origin and base the disk at height 6 with radius 3. We will use cylindrical
coordinates.

∫∫∫
W

(2 +
√

x2 + y2) dV =

∫ 3

0

∫ 2π

0

∫ 6

2r

r(2 + r) dz dθ dr

=

∫ 3

0

∫ 2π

0

(−2r3 + 2r2 + 12r) dθ dr

=

∫ 3

0

(2π(−2r3 + 2r2 + 12r)) dr = 63π.

You should assign one of Exercises 39 or 40 so that your students see the benefits of using another coordinate system even
when it is not explicitly called for. You might want to stress that the symmetries of the problem are what lead you, in this case,
to choose cylindrical coordinates. Exercise 41 is fun because students will be tempted to use spherical coordinates—life is much
easier if they use cylindrical coordinates.
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39. We will use cylindrical coordinates.

∫∫∫
W

dV =

∫ 1

0

∫ 2π

0

∫ √
10−2r2

−
√

10−2r2

r dz dθ dr

=

∫ 1

0

∫ 2π

0

(2r
√

10 − 2r2) dθ dr

=

∫ 1

0

(4πr
√

10 − 2r2) dr

=
4π

3
(5
√

10 − 8
√

2).

40. We will again use cylindrical coordinates.

∫∫∫
W

dV =

∫ 2

0

∫ 2π

0

∫ 9−r2

0

r dz dθ dr

=

∫ 2

0

∫ 2π

0

(9r − r3) dθ dr

=

∫ 2

0

(18πr − 2πr3) dr

= 28π.

41. We will again use cylindrical coordinates.

∫∫∫
W

(2 + x2 + y2) dV =

∫ 5

3

∫ 2π

0

∫ √
25−z2

0

(2 + r2)r dr dθ dz

=

∫ 5

3

∫ 2π

0

(
z4

4
− 27z2

2
+

725

4

)
dθ dz

=

∫ 5

3

(
2π

[
z4

4
− 27z2

2
+

725

4

])
dz =

656π

5
.

42. You can draw a million pictures, but the easiest way to visualize this is by taking an apple corer and a potato and cutting in
the three orthogonal directions. This will provide you with a model that the students can hold and pass around to aid their
discussion. They can easily identify symmetries and cut the model along the coordinate planes to set up the integral.
If you do this and look in the first octant, you will see a seam along the line y = x. If we split the integral along this line we
will have 1/16 of the desired volume. Using cylindrical coordinates this means that 0 ≤ θ ≤ π/4 and the cylinder with axis
of symmetry the z-axis gives us that 0 ≤ r ≤ a. The hard one to see is z, but because we are only looking at the wedge on
one side of θ = π/4 we need only worry about one other cylinder so 0 ≤ z ≤

√
a2 − r2 cos2(θ).

So the volume is

V = 16

∫ π/4

0

∫ a

0

∫ √
a2−r2 cos2(θ)

0

r dz dr dθ = 8a3(2 −
√

2).

5.6 Applications of Integration

Exercises 1–9 concern average value.
1. (a) Let’s assume a 30-day month.

[f ]avg =
1

30

∫ 30

0

I(x) dx =
1

30

∫ 30

0

(
75 cos

πx

15
+ 80

)
dx

=
1

30

(
1125

π
sin

πx

15
+ 80x

) ∣∣∣∣30
0

= 2400/30 = 80 cases.

c© 2012 Pearson Education, Inc.



292 Chapter 5 Multiple Integration

(b) Here the 2 cents will be a constant that pulls through the integral so the average holding cost is just 2 cents times the
average daily inventory, or $1.60.

2. We will divide the integral by the area:

[f ]avg =
1

(2π)(4π)

∫ 2π

0

∫ 4π

0

sin2 x cos2 y dy dx =
1

8π2

∫ 2π

0

(
sin2 x

4
(sin 2y + 2y)

) ∣∣∣∣4π

0

dx

=
1

8π2

∫ 2π

0

(2π sin2 x) dx =
1

8π2

(π

2
(2x − sin 2x)

) ∣∣∣∣2π

0

=
2π2

8π2
=

1

4
.

3. Again we will divide the integral by the area:

[f ]avg =
1

1/2

∫ 1

0

∫ 1−x

0

e2x+y dy dx = 2

∫ 1

0

(e2x+y)

∣∣∣∣1−x

0

dx

= 2

∫ 1

0

(ex+1 − e2x) dx = (2e1+x − e2x)

∣∣∣∣1
0

= e2 − 2e + 1.

4. Here we are finding the average over a ball of volume 4π/3. We’ll integrate using cylindrical coordinates because z appears
explicitly in the integrand.

[g]avg =
1

4π/3

∫ 1

−1

∫ 2π

0

∫ √
1−z2

0

rez dr dθ dz =
3

4π

∫ 1

−1

∫ 2π

0

(
ez

2
(1 − z2)

)
dθ dz

=
3

4π

∫ 1

−1

(πez(1 − z2)) dz =
3

4π

4π

e
=

3

e
.

5. (a) We are told that in the 2 × 2 × 2 cube centered at the origin, T (x, y, z) = c(x2 + y2 + z2). The average temperature of
the cube is

[T ]avg =
c

8

∫ 1

−1

∫ 1

−1

∫ 1

−1

(x2 + y2 + z2) dx dy dz =
c

8

∫ 1

−1

∫ 1

−1

(2z2 + 2y2 + 2/3) dy dz

=
c

8

∫ 1

−1

(4z2 + 8/3) dz =
c

8
(8) = c.

(b) T (x, y, z) = c when x2 + y2 + z2 = 1 so the temperature is equal to the average temperature on the surface of the unit
sphere.

6. The region looks like

x

y

(1,1)

(1,-1)(-1,-1)

(-1,1)

and the area of it is 22 − π = 4 − π. Hence the average value is

1

4 − π

∫∫
D

(x2 + y2) dA =
1

4 − π

[∫∫
D1

(x2 + y2) dA −
∫∫

D2

(x2 + y2) dA
]

,
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where D1 denotes the square and D2 the disk.∫∫
D1

(x2 + y2) dA =

∫ 1

−1

∫ 1

−1

(x2 + y2) dx dy =

∫ 1

−1

(
1

3
x3 + y2x

)∣∣∣∣1
x=−1

dy

=

∫ 1

−1

(
2

3
+ 2y2

)
dy =

(
2

3
y +

2

3
y3

)∣∣∣∣1
−1

=
4

3
+

4

3
=

8

3∫∫
D2

(x2 + y2) dA =

∫ 2π

0

∫ 1

0

r2 · r dr dθ =

∫ 2π

0

1

4
dθ =

π

2

Therefore the average value is

1

4 − π

(
8

3
− π

2

)
=

16 − 3π

24 − 6π
=

3π − 16

6π − 24
≈ 1.2766.

7. The volume of W is 8 − 4

3
x =

24 − 4π

3
. Thus the average value is

3

24 − 4π

∫∫∫
W

(x2 + y2 + z2) dV =
3

24 − 4π

(∫∫∫
W1

(x2 + y2 + z2) dV

−
∫∫∫

W2

(x2 + y2 + z2) dV
)

where W1 denotes the cube and W2 the ball. Using Cartesian coordinates to integrate over W1 and spherical coordinates to
integrate over W2, this may be calculated as

3

24 − 4π

(∫ 1

−1

∫ 1

−1

∫ 1

−1

(x2 + y2 + z2) dz dy dx −
∫ 2π

0

∫ π

0

∫ 1

0

ρ4 sin ϕ dρ dϕ dθ
)

=
3π − 30

5π − 30
.

-1
-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

x

y

z

8. We are looking for the average value of the minimum of x and y in the 6 × 6 box. This is 1/36 times the sum of the average
value for x in the region where x ≤ y and the average value for y in the region where y ≤ x. Because of the symmetry, the
average value can be calculated by doubling the result for either region and dividing by 36:

[Time]avg =
2

36

∫ 6

0

∫ x

0

y dy dx =
1

18

∫ 6

0

x2

2
dx

=
1

18

(
x3

6

)∣∣∣∣6
0

= 2.
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9. This is an extension of Exercise 8. The domain is [0, 6] × [0, 6] × [0, 6]. This time there is six-fold symmetry so we will
calculate the average value for z in the region where z ≤ y ≤ x and multiply by 6 and then divide by 63 which is the volume
of the domain.

[Time]avg =
6

216

∫ 6

0

∫ x

0

∫ y

0

z dz dy dx =
1

36

∫ 6

0

∫ x

0

y2

2
dy dz

=
1

36

∫ 6

0

x3

6
dx =

1

36

(
x4

24

)∣∣∣∣6
0

= 3/2.

So with three train lines the average wait is 90 seconds.
Exercises 10–24 concern centers of mass. We use the formula:

Center of mass =

∫ b

a

xδ(x) dx∫ b

a

δ(x) dx

and its variants.

10. (a) The curve y = 8 − 2x2 intersects the x-axis at ±2. So∫ 2

−2

∫ 8−2x2

0

c dy dx = c

∫ 2

−2

(8 − 2x2) dx = c (8x − 2x3/3)

∣∣∣∣2
−2

= 64c/3

My =

∫ 2

−2

∫ 8−2x2

0

cx dy dx = c

∫ 2

−2

(8x − 2x3) dx = c (4x2 − x4/2)

∣∣∣∣2
−2

= 0 and

Mx =

∫ 2

−2

∫ 8−2x2

0

cy dy dx = (c/2)

∫ 2

−2

(8 − 2x2)2dx = c

(
2

5
x5 − 16

3
x3 + 32x

) ∣∣∣∣2
−2

= 1024c/15

So x̄ = 0 and ȳ =
1024c/15

64c/3
= 16/5.

(b) Again, we see the symmetry with respect to x so x̄ = 0. The following integrals are straightforward so we leave out the
details, but

ȳ =

∫ 2

−2

∫ 8−2x2

0

3cy2 dy dx

∫ 2

−2

∫ 8−2x2

0

3cy dy dx
=

32768c/35

1024c/5
= 32/7.

11. We assume that the plate has uniform density and place it so that the center of the straight border is at the origin and the
semicircle is symmetric with respect to the y-axis. Once again this means that x̄ = 0.

ȳ =

∫ a

−a

∫ √
a2−x2

0

cy dy dx

πa2c/2
=

2a3c/3

πa2c/2
=

4a

3π
.

12. First calculate
M =

∫ 2

0

∫ 2x

x2

(1 + x + y) dy dx =
24

5

My =

∫ 2

0

∫ 2x

x2

[x(1 + x + y)] dy dx =
28

5

Mx =

∫ 2

0

∫ 2x

x2

[y(1 + x + y)] dy dx =
328

35

Thus,

x̄ =
28/5

24/5
= 7/6 and ȳ =

328/35

24/5
= 41/21.
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13. Again we first calculate

M =

∫ 9

0

∫ √
x

0

(xy) dy dx =
243

2

My =

∫ 9

0

∫ √
x

0

(x2y) dy dx =
6561

8

Mx =

∫ 9

0

∫ √
x

0

(xy2) dy dx =
1458

7

so

x̄ =
6561/8

243/2
= 27/4 and ȳ =

1458/7

243/2
= 12/7.

14. We’ll take δ to be 1. A look at the figure below tells us again that x̄ = 0. We’ll use polar integrals to calculate ȳ.

-1 -0.5 0.5 1
x

y

-2

-1.5

-1

-0.5

We first calculate M =

∫ 2π

0

∫ 1−sin θ

0

r dr dθ =
3π

2
and Mx =

∫∫
D

y dA =

∫ 2π

0

∫ 1−sin θ

0

r2 sin θ dr dθ =
−5π

4
, so

ȳ =
−5π/4

3π/2
= −5/6.

15. We first calculate

M =

∫ π/3

0

∫ 4 cos θ

0

r dr dθ =
√

3 +
4π

3

My =

∫∫
D

x dA =

∫ π/3

0

∫ 4 cos θ

0

r2 cos θ dr dθ =
7√
3

+
8π

3
and

Mx =

∫∫
D

y dA =

∫ π/3

0

∫ 4 cos θ

0

r2 sin θ dr dθ = 5,

so x̄ =
7
√

3 + 8π

3
√

3 + 4π
and ȳ =

15

3
√

3 + 4π
.
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16. The region is a slice of pie:

0.5 1 1.5 2 2.5 3
x

0.5

1

1.5

2

y

Total mass M =

∫∫
D

δ dA =

∫ π/4

0

∫ 3

0

(4 − r)r dr dθ =

∫ π/4

0

(
2r2 − 1

3
r3

) ∣∣∣∣3
r=0

=

∫ π/4

0

(18 − 9) dθ =
9π

4

My =

∫∫
D

xδ dA =

∫ π/4

0

∫ 3

0

(4r2 − r3) cos θ dr dθ =

∫ π/4

0

(
36 − 81

4

)
cos θ dθ

=
63

4
√

2

Mx =

∫∫
D

yδ dA =

∫ π/4

0

∫ 3

0

(4r2 − r3) sin θ drdθ =

∫ π/4

0

(
36 − 81

4

)
sin θ dθ

=
63

8
(2 −

√
2)

Thus

x̄ =
My

M
=

63

4
√

2
· 4

9π
=

7
√

2

2π

ȳ =
Mx

M
=

63(2 −√
2)

8

4

9π
=

7(2 −√
2)

2π
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17. The region in question looks as follows:

0.5 1 1.5 2
x

-1

-0.5

0.5

1

y

Total mass M =

∫∫
D

δ dA =

∫ 2π

0

∫ 1+cos θ

0

r2dr dθ

=

∫ 2π

0

1

3
(1 + cos θ)3dθ

=

∫ 2π

0

1

3
(1 + 3 cos θ + 3 cos2 θ + cos3 θ) dθ =

5π

3

My =

∫∫
D

xδ dA =

∫ 2π

0

∫ 1+cos θ

0

r3 cos θ dr dθ =

∫ 2π

0

1

4
(1 + cos θ)4 cos θ dθ

=
7π

4
(after some effort!)

Mx =

∫∫
D

yδ dA =

∫ 2π

0

∫ 1+cos θ

0

r3 sin θ dr dθ

=

∫ 2π

0

1

4
(1 + cos θ)4 sin θ dθ = −1

4

∫ 2

2

u4du = 0

(It’s also possible to see this from symmetry.) Thus

x̄ =
7π

4
· 3

5π
=

21

20
, ȳ = 0.

18. Because the volume of the tetrahedron is 1, we can find the centroid by calculating:

x̄ =

∫ 1

0

∫ 2−2x

0

∫ 3−3y/2−3x

0

x dz dy dx =
1

4

ȳ =

∫ 1

0

∫ 2−2x

0

∫ 3−3y/2−3x

0

y dz dy dx =
1

2
and,

z̄ =

∫ 1

0

∫ 2−2x

0

∫ 3−3y/2−3x

0

z dz dy dx =
3

4
.
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19. (a) First calculate:

M =

∫ 2

−1

∫ 1

−1

∫ 3

3y2

dz dy dx = 12

Myz =

∫ 2

−1

∫ 1

−1

∫ 3

3y2

x dz dy dx = 6

Mxz =

∫ 2

−1

∫ 1

−1

∫ 3

3y2

y dz dy dx = 0

Mxy =

∫ 2

−1

∫ 1

−1

∫ 3

3y2

z dz dy dx =
108

5
.

This means that (x̄, ȳ, z̄) = (1/2, 0, 9/5).
(b) Next we calculate the center of mass with the given density function.

M =

∫ 2

−1

∫ 1

−1

∫ 3

3y2

(z + x2) dz dy dx =
168

5

Myz =

∫ 2

−1

∫ 1

−1

∫ 3

3y2

x(z + x2) dz dy dx =
129

5

Mxz =

∫ 2

−1

∫ 1

−1

∫ 3

3y2

y(z + x2) dz dy dx = 0

Mxy =

∫ 2

−1

∫ 1

−1

∫ 3

3y2

z(z + x2) dz dy dx =
2376

35
.

This means that (x̄, ȳ, z̄) = (43/56, 0, 99/49).

Note that in Exercises 20–22, the symmetry with respect to the z-axis implies that x̄ = 0 and ȳ = 0. We only explicitly set up
all of the integrals in the solution of Exercise 20.
20. First calculate:

M =

∫ 3

0

∫ 2π

0

∫ √
18−r2

r2/3

r dz dθ dr = 36
√

2π − 63π

2

Myz =

∫ 3

0

∫ 2π

0

∫ √
18−r2

r2/3

r cos θ dz dθ dr = 0

Mxz =

∫ 3

0

∫ 2π

0

∫ √
18−r2

r2/3

r sin θ dz dθ dr = 0

Mxy =

∫ 3

0

∫ 2π

0

∫ √
18−r2

r2/3

rz dz dθ dr =
189π

4
.

This means that (x̄, ȳ, z̄) =

(
0, 0,

21

2(8
√

2 − 7)

)
.

21. As noted above, x̄ = 0 and ȳ = 0. First calculate:

M =

∫ 5/2

0

∫ 2π

0

∫ 9−r2

3r2−16

rdz dθ dr =
625π

8

Mxy =

∫ 5/2

0

∫ 2π

0

∫ 9−r2

3r2−16

rz dz dθ dr = −10625π

96

This means that (x̄, ȳ, z̄) =

(
0, 0,−17

12

)
.
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22. Note first that, by symmetry, the centroid must lie along the z-axis, so x̄ = ȳ = 0. Since the density is to be assumed constant,
we may take it to be equal to 1. Then we have

z̄ =

∫∫∫
W

z dV∫∫∫
W

dV
.

We use cylindrical coordinates to calculate the integrals. Thus the cone has cylindrical equation z = 2r and the sphere
r2 + z2 = 25. These surfaces intersect where r2 + 4r2 = 25, or, equivalently, where r =

√
5. Hence

∫∫∫
W

dV =

∫ 2π

0

∫ √
5

0

∫ √
25−r2

2r

r dz dr dθ =

∫ 2π

0

∫ √
5

0

(√
25 − r2 − 2r

)
r dr dθ

=

∫ 2π

0

(
−1

2
· 2

3
(25 − r2)3/2 − 2

3
r3

)∣∣∣∣r=
√

5

r=0

dθ

=

(
−50

√
5

3
+

125

3

)
(2π) =

(250 − 100
√

5)π

3
.

Also,

∫∫∫
W

z dV =

∫ 2π

0

∫ √
5

0

∫ √
25−r2

2r

zr dz dr dθ =

∫ 2π

0

∫ √
5

0

1

2

(
25 − r2 − 4r2) r dr dθ

=
1

2

∫ 2π

0

∫ √
5

0

(
25r − 5r3) dr dθ =

1

2

∫ 2π

0

(
125

2
− 125

4

)
dθ =

125π

4
.

Therefore,

z̄ =
125π/4

(250 − 100
√

5)π/3
=

15

8(5 − 2
√

5)
≈ 3.55.

23. By symmetry x̄ = ȳ = z̄. z̄ is easiest to find. Volume of W is 1

8

(
4

3
πa3

)
=

πa3

6
.

00.25
0.5

0.75
1

x

0
0.25

0.5
0.75

1y

0

0.25

0.5

0.75

1

z

Thus

z̄ =
6

πa3

∫∫∫
W

z dV =
6

πa3

∫ π/2

0

∫ π/2

0

∫ a

0

ρ cos ϕ · ρ2 sin ϕ dρ dϕ dθ

=
6

πa3

∫ π/2

0

∫ π/2

0

a4

4
cos ϕ sin ϕ dϕ dθ =

3a

2π

∫ π/2

0

1

2
dθ

=
3a

8
.
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24. If we put the bottom of the cylinder in the xy-plane, then δ(x, y, z) = (h − z)2.

x

y

z

Therefore the total mass is

M =

∫∫∫
W

δ dV =

∫ 2π

0

∫ a

0

∫ h

0

(h − z)2r dz dr dθ

=

∫ 2π

0

∫ a

0

−1

3
(h − z)3

∣∣∣∣h
z=0

r dr dθ

=

∫ 2π

0

∫ a

0

h3

3
r dr dθ =

πh3a2

3
.

x̄ = ȳ = 0 by symmetry, so we compute

Mxy =

∫∫∫
W

zδ dV =

∫ 2π

0

∫ a

0

∫ h

0

z(h − z)2r dz dr dθ

=

∫ 2π

0

∫ a

0

∫ h

0

(h2z − 2hz2 + z3)r dz dr dθ =

∫ 2π

0

∫ a

0

r · 1

12
h4 dr dθ =

πh4a2

12
.

Thus
z̄ =

πh4a2

12
· 3

πh3a2
=

h

4
.

25. (a) By symmetry we can see that the moment of inertia about each of the coordinate axes is the same.

Ix = Iy = Iz =

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0

(y2 + z2) dz dy dx =
1

30
.

(b) Again, by symmetry we see that the radius of gyration about each of the coordinate axes is the same. We calculate

M =

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0

dz dy dx =
1

6
.

Then rx = ry = rz =

√
1/30

1/6
= 1/

√
5.

26. By symmetry we can see that the moment of inertia about each of the coordinate axes is the same

Ix = Iy = Iz =

∫ 2

0

∫ 2

0

∫ 2

0

(y2 + z2)(x + y + z + 1) dz dy dx = 96.

Again, by symmetry we see that the radius of gyration about each of the coordinate axes is the same. We calculate

M =

∫ 2

0

∫ 2

0

∫ 2

0

(x + y + z + 1) dz dy dx = 32.
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Then rx = ry = rz =

√
96

32
=

√
3.

27. (a) The problem cries out to be solved using cylindrical coordinates. For Iz this means that the x2 + y2 in the integrand is
r2 so

Iz =

∫ 3

0

∫ 2π

0

∫ 9

r2

2zr3 dz dθ dr =
6561π

4
and

M =

∫ 3

0

∫ 2π

0

∫ 9

r2

2zr dz dθ dr = 486π, so

rz =
3
√

3

2
√

2
.

(b) This time

Iz =

∫ 3

0

∫ 2π

0

∫ 9

r2

r4 dz dθ dr =
8748π

35
and

M =

∫ 3

0

∫ 2π

0

∫ 9

r2

r2 dz dθ dr =
324π

5
, so

rz =
3
√

3√
7

.

28. Although it may be tempting to move to spherical coordinates, it is nice to have a z-coordinate so we will stay with cylindrical
coordinates.
(a)

Iz =

∫ a

0

∫ 2π

0

∫ √
a2−r2

−
√

a2−r2

r3c dz dθ dr =
8πca5

15
and

M =

∫ a

0

∫ 2π

0

∫ √
a2−r2

−
√

a2−r2

rc dz dθ dr =
4πca3

3
so

rz = a

√
2

5
.

(b)

Iz =

∫ a

0

∫ 2π

0

∫ √
a2−r2

−
√

a2−r2

r3(r2 + z2) dz dθ dr =
8πa7

21
and

M =

∫ a

0

∫ 2π

0

∫ √
a2−r2

−
√

a2−r2

r(r2 + z2) dz dθ dr =
4πa5

5
so

rz = a

√
10

21
.

(c)

Iz =

∫ a

0

∫ 2π

0

∫ √
a2−r2

−
√

a2−r2

r5 dz dθ dr =
32πa7

105
and

M =

∫ a

0

∫ 2π

0

∫ √
a2−r2

−
√

a2−r2

r3 dz dθ dr =
8πδa5

15
so

rz =
2a√

7
.
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29.

Ix =

∫∫
D

y2δ dA =

∫ 1

−1

∫ 3

x2+2

y2(x2 + 1) dy dx

=

∫ 1

−1

(
9 − 1

3
(x2 + 2)3

)
(x2 + 1) dx =

∫ 1

−1

1

3
(19 + 7x2 − 18x4 − 7x6 − x8) dx

=
1

3

(
38 +

14

3
− 36

5
− 2 − 2

9

)
=

1496

135

-1 -0.5 0.5 1

0.5

1

1.5

2

2.5

3

x

y

30.

Iz =

∫∫
[0,2]× [0,1]

(x2 + y2)δ dA =

∫ 2

0

∫ 1

0

(x2 + y2)(1 + y) dy dx

=

∫ 2

0

∫ 1

0

(x2 + y2 + x2y + y3) dy dx =

∫ 2

0

(
x2 +

1

3
+

1

2
x2 +

1

4

)
dx

=
8

3
+

2

3
+

4

3
+

1

2
=

31

6

31. The only adjustment in the formula for Ix is because we are using the square of the distance from the line y = 3 and not the
formula given in text which squares the distance from the x-axis. This is a straightforward application of formula (8).

Iy=3 =

∫ 2

−2

∫ √
4−x2

−
√

4−x2

(x2(3 − y)2)) dy dx =
116π

3
.

What follows is preliminary work for Exercises 32–34. You should probably assign all three together.
We will be calculating

V (0, 0, r) = −
∫∫∫

W

Gmδ(x, y, z) dV√
x2 + y2 + (z − r)2

.

In this special case, W is the shell bound by spheres centered at the origin of radii a and b where a < b. The volume of W is
therefore 4π(b3 − a3)/3. The density is assumed to be constant and so the density is mass divided by volume, so

δ =
M

[4π(b3 − a3)/3]
=

3M

4π(b3 − a3)
.
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So

V (0, 0, r) = −Gmδ

∫∫∫
W

dV√
x2 + y2 + (z − r)2

= − 3GmM

4π(b3 − a3)

∫∫∫
W

dV√
x2 + y2 + (z − r)2

= − 3GmM

4π(b3 − a3)

∫ 2π

0

∫ b

a

∫ π

0

ρ2 sin ϕ√
ρ2 + r2 − 2rρ cos ϕ

dϕ dρ dθ

= − 3GmM

4π(b3 − a3)

∫ 2π

0

∫ b

a

[(ρ

r

)√
ρ2 + r2 − 2rρ cos ϕ

] ∣∣∣∣π
ϕ=0

dρ dθ

= − 3GmM

4π(b3 − a3)

∫ 2π

0

∫ b

a

[(ρ

r

)
(|ρ + r| − |ρ − r|)

]
dρ dθ.

Our final note before proceeding to Exercises 32–34 is that(ρ

r

)
(|ρ + r| − |ρ − r|) =

{
2ρ if ρ ≥ r, and
2ρ2/r if ρ < r.

32. See preliminary work above. When r ≥ b, then in the range a ≤ ρ ≤ b, we have that ρ ≤ r, so

V (0, 0, r) = − 3GmM

4π(b3 − a3)

∫ 2π

0

∫ b

a

2ρ2

r
dρ dθ

= − 3GmM

4π(b3 − a3)

∫ 2π

0

2ρ3

3r

∣∣∣∣b
a

dθ

= − 3GmM

4π(b3 − a3)

∫ 2π

0

2(b3 − a3)

3r
dθ

= −GmM

2πr

∫ 2π

0

dθ = −GmM

r
.

33. See preliminary work above. When r ≤ a, then in the range a ≤ ρ ≤ b, we have that ρ ≥ r, so

V (0, 0, r) = − 3GmM

4π(b3 − a3)

∫ 2π

0

∫ b

a

2ρ dρ dθ

= − 3GmM

4π(b3 − a3)

∫ 2π

0

(b2 − a2) dθ

=
−3GmM(b2 − a2)

2(b3 − a3)
.

What is striking about this result is that V (0, 0, r) is independent of r. Therefore, since F = −∇V , we see that there is no
gravitational force.

34. (b) Students might consider the connection before they explicitly find it in part (a). If a < r < b, then we have a combination
of the two cases dealt with in Exercises 32 and 33. For a ≤ ρ ≤ r, we are in a case similar to Exercise 32, and for
r ≤ ρ ≤ b we are in a case similar to Exercise 33.

(a) We must break the integral at ρ = r:

V (0, 0, r) = − 3GmM

4π(b3 − a3)

∫ 2π

0

∫ r

a

2ρ2

r
dρ dθ − 3GmM

4π(b3 − a3)

∫ 2π

0

∫ b

r

2ρ dρ dθ

= − 3GmM

4π(b3 − a3)

∫ 2π

0

2(r3 − a3)

3r
dθ − 3GmM

4π(b3 − a3)

∫ 2π

0

(b2 − r2) dθ

= − 3GmM

2(b3 − a3)

(
2(r3 − a3)

3r

)
− 3GmM

2(b3 − a3)
(b2 − r2)

= − GmM

2r(b3 − a3)
(3b2r − 2a3 − r3).
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5.7 Numerical Approximations of Multiple Integrals

1. (a) We let Δx =
3.1 − 3

2
= 0.05, Δy =

2.1 − 1.5

3
= 0.2. Thus, using formula (6) with f(x, y) = x2 − 6y2, we have

T2,3 =
(0.05)(0.2)

4
[f(3, 1.5) + f(3, 2.1) + f(3.1, 1.5) + f(3.1, 2.1)

+ 2 (f(3, 1.7) + f(3, 1.9) + f(3.05, 1.5) + f(3.05, 2.1) + f(3.1, 1.7) + f(3.1, 1.9))

+ 4 (f(3.05, 1.7) + f(3.05, 1.9))]

= −0.621375

(b)
∫ 3.1

3

∫ 2.1

1.5

(x2 − 6y2) dy dx =

∫ 3.1

3

(x2y − 2y3)

∣∣∣∣y=2.1

y=1.5

dx =

∫ 3.1

3

[
0.6x2 − 2(2.13 − 1.53)

]
dx

=
[
0.2x3 − 2(2.13 − 1.53)x

] ∣∣∣∣3.1

3

= 0.2(3.13 − 33) − 0.2(2.13 − 1.53) = −0.619

2. (a) We let Δx =
3.3 − 3

2
= 0.15, Δy =

3.3 − 3

3
= 0.1. Thus, using formula (6) with f(x, y) = xy2, we have

T2,3 =
(0.15)(0.1)

4
[f(3, 3) + f(3, 3.3) + f(3.3, 3) + f(3.3, 3.3)

+ 2 (f(3, 3.1) + f(3, 3.2) + f(3.15, 3) + f(3.15, 3.3) + f(3.3, 3.1) + f(3.3, 3.2))

+ 4 (f(3.15, 3.1) + f(3.15, 3.2))]

= 2.81563

(b)
∫ 3.3

3

∫ 3.3

3

xy2 dy dx =

∫ 3.3

3

x

3
y3

∣∣∣∣y=3.3

y=3

dx =

∫ 3.3

3

x

3

(
3.33 − 33) dx = 2.979

∫ 3.3

3

x dx

=

[
2.979

2
x2

] ∣∣∣∣3.3

3

=
2.979

2
(3.32 − 32) = 2.81516

3. (a) We let Δx =
2.2 − 2

2
= 0.1, Δy =

1.6 − 1

3
= 0.2. Thus, using formula (6) with f(x, y) = x/y, we have

T2,3 =
(0.1)(0.2)

4
[f(2, 1) + f(2, 1.6) + f(2.2, 1) + f(2.2, 1.6)

+ 2 (f(2, 1.2) + f(2, 1.4) + f(2.1, 1) + f(2.1, 1.6) + f(2.2, 1.2) + f(2.2, 1.4))

+ 4 (f(2.1, 1.2) + f(2.1, 1.4))]

= 0.19825

(b)
∫ 2.2

2

∫ 1.6

1

x

y
dy dx =

∫ 2.2

2

x ln y

∣∣∣∣y=1.6

y=1

dx =

∫ 2.2

2

x · ln (1.6) dx

=

[
ln (1.6)

2
x2

] ∣∣∣∣2.2

2

=
ln 1.6

2
(2.22 − 22) = 0.42 ln (1.6) = 0.197402

4. (a) We let Δx =
1.4 − 1

2
= 0.2, Δy =

4.3 − 4

3
= 0.1. Thus, using formula (6) with f(x, y) =

√
x +

√
y, we have

T2,3 =
(0.2)(0.1)

4
[f(1, 4) + f(1, 4.3) + f(1.4, 4) + f(1.4, 4.3)

+ 2 (f(1, 4.1) + f(1, 4.2) + f(1.2, 4) + f(1.2, 4.3) + f(1.4, 4.1) + f(1.4, 4.2))

+ 4 (f(1.2, 4.1) + f(1.2, 4.2))]

= 0.375666
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(b)
∫ 1.4

1

∫ 4.3

4

(√
x +

√
y
)

dy dx =

∫ 1.4

1

(√
xy +

2

3
y3/2

) ∣∣∣∣y=4.3

y=4

dx

=

∫ 1.4

1

(0.3
√

x + 0.61111318) dx =
0.6

3

(
(1.4)3/2 − 1

)
+ (0.61111318)(0.4) = 0.375746

5. (a) We let Δx =
1.1 − 1

2
= 0.05, Δy =

0.6 − 0

3
= 0.2. Thus, using formula (6) with f(x, y) = ex+2y , we have

T2,3 =
(0.05)(0.2)

4
[f(1, 0) + f(1, 0.6) + f(1.1, 0) + f(1.1, 0.6)

+ 2 (f(1, 0.2) + f(1, 0.4) + f(1.05, 0) + f(1.05, 0.6) + f(1.1, 0.2) + f(1.1, 0.4))

+ 4 (f(1.05, 0.2) + f(1.05, 0.4))]

= 0.336123

(b)
∫ 1.1

1

∫ 0.6

0

ex+2y dy dx =

∫ 1.1

1

∫ 0.6

0

exe2y dy dx =

∫ 1.1

1

ex

(
1

2
e2y

) ∣∣∣∣y=0.6

y=0

dx

=

∫ 1.1

1

(
e1.2 − 1

2

)
ex dx =

e1.2 − 1

2
(e1.1 − 1) = 0.331642

6. (a) We let Δx =
0.2 − 1

2
= 0.1, Δy =

π/3 − π/6

3
=

π

18
. Thus, using formula (6) with f(x, y) = x cos y, we have

T2,3 =
(0.1)(π/18)

4
[f(0, π/6) + f(0, π/3) + f(0.2, π/6) + f(0.2, π/3)

+ 2 (f(0, 2π/9) + f(0, 5π/18) + f(0.1, π/6) + f(0.1, π/3)

+ f(0.2, 2π/9) + f(0.2, 5π/18))

+ 4 (f(0.1, 2π/9) + f(0.1, 5π/18))]

= 0.00730192

(b)
∫ 0.2

0

∫ π/3

π/6

x cos y dy dx =

∫ 0.2

0

x sin y

∣∣∣∣y=π/3

y=π/6

dx =

∫ 1/5

0

(√
3 − 1

2

)
x dx

=

√
3 − 1

100
= 0.00732051

Note that in all of the solutions to Exercises 7–12 below, the rectangle R = [a, b] × [c, d] is partitioned as in the figure below
and the Simpson’s rule approximations S2,2 may be written as

S2,2 =
Δx Δy

9

2∑
j=0

2∑
i=0

wijf(xi, yj),

where

wij =

⎧⎪⎨
⎪⎩

1 if (xi, yj) is one of the four vertices of R;
4 if (xi, yj) is a point on an edge of R, but not a vertex;
16 if (xi, yj) is a point in the interior of R.

(a, c)
1

1 1

1

16
44

4

4
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7. (a) We let Δx =
0.1 − (−0.1)

2
= 0.1, Δy =

0.3 − 0

2
= 0.15. Hence, with f(x, y) = y4 − xy2, we have

S2,2 =
(0.1)(0.15)

9
[f(−0.1, 0) + f(−0.1, 0.3) + f(0.1, 0) + f(0.1, 0.3)

+ 4 (f(−0.1, 0.15) + f(0, 0) + f(0, 0.3) + f(0.1, 0.15)) + 16f(0, 0.15)]

= 0.00010125

(b)
∫ 0.1

−0.1

∫ 0.3

0

(
y4 − xy2) dy dx =

∫ 0.1

−0.1

(
1
5
y5 − 1

3
xy3) ∣∣∣∣y=0.3

y=0

dx

=

∫ 0.1

−0.1

(0.000486 − 0.009x) dx =
(
0.000486x − 0.0045x2) ∣∣∣∣0.1

−0.1

= 0.0000972

8. (a) We let Δx =
0.1 − 0

2
= 0.05, Δy =

2 − 1

2
= 0.5. Hence, with f(x, y) = 1/(1 + x2), we have

S2,2 =
(0.05)(0.5)

9
[f(0, 1) + f(0, 2) + f(0.1, 1) + f(0.1, 2)

+ 4 (f(0, 1.5) + f(0.05, 1) + f(0.05, 2) + f(0.1, 1.5)) + 16f(0.05, 1.5)]

= 0.0996687

(b)
∫ 0.1

0

∫ 2

1

1

1 + x2
dy dx =

∫ 0.1

0

1

1 + x2
dx = tan−1 x

∣∣∣∣0.1

0

= tan−1 0.1 = 0.0996687

(Note that this agrees to seven decimal places with our answer in part (a).)

9. (a) We let Δx =
1.1 − 1

2
= 0.05, Δy =

0.6 − 0

2
= 0.3. Hence, with f(x, y) = ex+2y , we have

S2,2 =
(0.05)(0.3)

9
[f(1, 0) + f(1, 0.6) + f(1.1, 0) + f(1.1, 0.6)

+ 4 (f(1, 0.3) + f(1.05, 0) + f(1.05, 0.6) + f(1.1, 0.3)) + 16f(1.05, 0.3)]

= 0.331871

(b) In part (b) of Exercise 5 we calculated
∫ 1.1

1

∫ 0.6

0

ex+2y dy dx to be 0.331642.

10. (a) We let Δx =
π/4 − 0

2
=

π

8
, Δy =

π/2 − π/4

2
=

π

8
. Hence, with f(x, y) = sin 2x cos 3y, we have

S2,2 =
(π/8)(π/8)

9
[f(0, π/4) + f(0, π/2) + f(π/4, π/4) + f(π/4, π/2)

+ 4 (f(0, 3π/8) + f(π/8, π/4) + f(π/8, π/2) + f(π/4, 3π/8)) + 16f(π/8, 3π/8)]

= −0.288808

(b)
∫ π/4

0

∫ π/2

π/4

sin 2x cos 3y dy dx =

∫ π/4

0

1

3
sin 2x sin 3y

∣∣∣∣y=π/2

y=π/4

dx

=

∫ π/4

0

−
(

2 +
√

2

6

)
sin 2x dx =

2 +
√

2

12
cos 2x

∣∣∣∣π/4

0

=
2 +

√
2

12
(0 − 1) = −2 +

√
2

12
= −0.284518
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11. (a) We let Δx = Δy =
π/4 − 0

2
=

π

8
. Hence, with f(x, y) = sin (x + y), we have

S2,2 =
(π/8)(π/8)

9
[f(0, 0) + f(0, π/4) + f(π/4, 0) + f(π/4, π/4)

+ 4 (f(0, π/8) + f(π/8, 0) + f(π/8, π/4) + f(π/4, π/8)) + 16f(π/8, π/8)]

= 0.414325

(b)
∫ π/4

0

∫ π/4

0

sin (x + y) dy dx =

∫ π/4

0

− cos (x + y)

∣∣∣∣y=π/4

y=0

dx

=

∫ π/4

0

(
− cos

(
x +

π

4

)
+ cos x

)
dx =

[
sin x − sin

(
x +

π

4

)] ∣∣∣∣π/4

0

=
√

2 − 1 = 0.414214

12. (a) We let Δx =
1.1 − 1

2
= 0.05, Δy =

π/4 − 0

2
=

π

8
. Hence, with f(x, y) = ex cos y, we have

S2,2 =
(0.05)(π/8)

9
[f(1, 0) + f(1, π/4) + f(1.1, 0) + f(1.1, π/4)

+ 4 (f(1, π/8) + f(1.05, 0) + f(1.05, π/4) + f(1.1, π/8)) + 16f(1.05, π/8)]

= 0.202178

(b)
∫ 1.1

0

∫ π/4

0

ex cos y dy dx =

∫ 1.1

0

ex sin y

∣∣∣∣y=π/4

y=0

dx =

∫ 1.1

0

√
2

2
ex dx

=

√
2

2

(
e1.1 − e

)
= 0.202151

13. (a) The paraboloid is a portion of the graph of f(x, y) = 4 − x2 − 3y2. We have ∂f/∂x = −2x, ∂f/∂y = −6y so that the
surface area integral we desire is ∫ 1

0

∫ 1

0

√
4x2 + 36y2 + 1 dy dx.

(b) We let Δx = Δy =
1 − 0

4
= 0.25. With g(x, y) =

√
4x2 + 36y2 + 1, we have

T4,4 =
(0.25)(0.25)

4
[g(0, 0) + g(0, 1) + g(1, 0) + g(1, 1)

+ 2 (g(0, 0.25) + g(0, 0.5) + g(0, 0.75) + g(0.25, 0) + g(0.25, 1) + g(0.5, 0)

+ g(0.5, 1) + g(0.75, 0) + g(0.75, 1) + g(1, 0.25) + g(1, 0.5) + g(1, 0.75))

+ 4 (g(0.25, 0.25) + g(0.25, 0.5) + g(0.25, 0.75) + g(0.5, 0.25) + g(0.5, 0.5)

+ g(0.5, 0.75) + g(0.75, 0.25) + g(0.75, 0.5) + g(0.75, 0.75))]

= 3.52366

14. (a) We let Δx =
1.5 − 1

2
= 0.25, Δy =

2 − 1.4

4
= 0.15. Then

T2,4 =
(0.25)(0.15)

4
[ln (2 + 1.4) + ln (2 + 2) + ln (3 + 1.4) + ln (3 + 2)

+ 2 (ln (2 + 1.55) + ln (2 + 1.7) + ln (2 + 1.85) + ln (2.5 + 1.4) + ln (2.5 + 2)

+ ln (3 + 1.55) + ln (3 + 1.7) + ln (3 + 1.85))

+ 4 (ln (2.5 + 1.55) + ln (2.5 + 1.7) + ln (2.5 + 1.85))]

= 0.429161
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(b) We have
∂2

∂x2
ln (2x + y) = − 4

(2x + y)2
and ∂2

∂y2
ln (2x + y) = − 1

(2x + y)2
.

The maximum magnitude of both of these expressions on the rectangle [1, 1.5] × [1.4, 2] occurs at (1, 1.4). Hence, from
Theorem 7.3, we have that

|E2,4| ≤ (0.5)(0.6)

12

(
(0.25)2 · 4

(2 + 1.4)2
+ (0.15)2 · 1

(2 + 1.4)2

)
= 0.00589317.

Thus the actual value of the integral lies between 0.428572 and 0.42975.
(c) With Δx and Δy as in part (a), we have

S2,4 =
(0.25)(0.15)

9
[ln (2 + 1.4) + ln (2 + 2) + ln (3 + 1.4) + ln (3 + 2)

+ 2 (ln (2 + 1.7) + ln (3 + 1.7)) + 4 (ln (2 + 1.55) + ln (2 + 1.85)

+ ln (2.5 + 1.4) + ln (2.5 + 2) + ln (3 + 1.55) + ln (3 + 1.85))

+ 8 ln (2.5 + 1.7) + 16 (ln (2.5 + 1.55) + ln (2.5 + 1.85))]

= 0.429552

(d) We have
∂4

∂x4
ln (2x + y) = − 96

(2x + y)4
and ∂4

∂y4
ln (2x + y) = − 6

(2x + y)4

and, as in part (b), the maximum magnitude of both of these expressions on [1, 1.5] × [1.4, 2] occurs at (1, 1.4). Hence,
from Theorem 7.4, we have that

|E2,4| ≤ (0.5)(0.6)

180

(
(0.25)4 · 96

(2 + 1.4)4
+ (0.15)4 · 6

(2 + 1.4)4

)
= 6.36068 × 10−6.

Hence the actual value of the integral lies between 0.429546 and 0.429559.
15. To answer the question, we compare the errors of the respective methods as given in Theorems 7.3 and 7.4.

First we consider the error E4,4 associated with the trapezoidal rule approximation T4,4. In this case we have

Δx =
1.4 − 1

4
= 0.1 and Δy =

0.7 − 0.5

4
= 0.05.

In addition,
∂2

∂x2
ln (xy) = − 1

x2
and ∂2

∂y2
ln (xy) = − 1

y2
.

Theorem 7.3 says that there exist points (ζ1, η1) and (ζ2, η2) in the rectangle [1, 1.4] × [0.5, 0.7] such that

E4,4 = − (1.4 − 1)(0.7 − 0.5)

12

[
(0.1)2

(
− 1

ζ2
1

)
+ (0.05)2

(
− 1

η2
2

)]

=
(0.4)(0.2)

12

[
(0.1)2

ζ2
1

+
(0.05)2

η2
2

]
.

Now 1 ≤ ζ1 ≤ 1.4 and 0.5 ≤ η2 ≤ 0.7 so that, if we choose ζ1 = 1.4 and η2 = 0.7, we can make the value in the brackets
as small as possible; hence E4,4 ≥ 0.000068027.

Next we consider the error E2,2 associated with the Simpson’s rule approximation S2,2. Hence we have

Δx =
1.4 − 1

2
= 0.2 and Δy =

0.7 − 0.5

2
= 0.1;

also
∂4

∂x4
ln (xy) = − 6

x4
and ∂4

∂y4
ln (xy) = − 6

y4
.
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Theorem 7.4 says that there exist points (ζ1, η1) and (ζ2, η2) in [1, 1.4] × [0.5, 0.7] such that

E2,2 = − (1.4 − 1)(0.7 − 0.5)

180

[
(0.2)4

(
− 6

ζ4
1

)
+ (0.1)4

(
− 6

η4
2

)]

=
(0.4)(0.2)

30

[
(0.2)4

ζ4
1

+
(0.1)4

η4
2

]
.

By choosing ζ1 = 1 and η2 = 0.5 we make the expression as large as possible; hence E2,2 ≤ 8.53 × 10−6. Since the
maximum possible error using Simpson’s rule is less than the minimum possible error using the trapezoidal rule, we see that
S2,2 will be more accurate than T4,4.

16. We calculate the error En,n associated with the trapezoidal rule approximation Tn,n. Note first that

∂2

∂x2

(
ex2+2y

)
= (4x2 + 2)ex2+2y and ∂2

∂y2

(
ex2+2y

)
= 4ex2+2y.

The maximum values of these expressions on the rectangle [0, 0.2] × [−0.1, 0.1] both occur at the point (0.2, 0.1) and are,
respectively, (2.16)e0.24 and 4e0.24. Also note that in calculating Tn,n, we have Δx = Δy = 0.2/n. Thus, from Theorem
7.3, we have that

|En,n| ≤ (0.2)(0.2)

12

[(
0.2

n

)2

(2.16)e0.24 +

(
0.2

n

)2 (
4e0.24)] =

(0.2)4(6.16)e0.24

12n2
.

For this last expression to be at most 10−4, we must have

(0.2)4(6.16)e0.24

12n2
≤ 10−4 ⇐⇒ n2 ≥ 104(0.2)4(6.16)e0.24

12
⇐⇒ n > 3.23.

Hence, since n must be an integer, we should take n to be at least 4.
17. (a) We have

∂2

∂x2

(
ex−y) =

∂2

∂y2

(
ex−y) = ex−y.

The maximum value of ex−y on [0, 0.3] × [0, 0.4] is e0.3−0 = e0.3. Furthermore, in computing the approximation Tn,n

we have Δx = 0.3/n and Δy = 0.4/n. Thus Theorem 7.3 implies that

|En,n| ≤ (0.3)(0.4)

12

[(
0.3

n

)2

e0.3 +

(
0.4

n

)2

e0.3

]
=

(0.3)(0.4)(0.5)2e0.3

12n2
.

For this expression to be at most 10−5, we must have

(0.3)(0.4)(0.5)2e0.3

12n2
≤ 10−5 ⇐⇒ n2 ≥ 105(0.3)(0.4)(0.5)2e0.3

12
⇐⇒ n > 18.37.

Thus we should take n to be at least 19.
(b) In this case, we use Theorem 7.4. First note that we have

∂4

∂x4

(
ex−y) =

∂4

∂y4

(
ex−y) = ex−y,

so that, as in part (a), the maximum value of ex−y on [0, 0.3]× [0, 0.4] is e0.3. Moreover, in computing the approximation
S2n,2n, we have Δx = 0.3/(2n) and Δy = 0.4/(2n). Therefore, Theorem 7.4 implies that

|E2n,2n| ≤ (0.3)(0.4)

180

[(
0.3

2n

)4

e0.3 +

(
0.4

2n

)4

e0.3

]
=

(0.3)(0.4)((0.3)4 + (0.4)4)e0.3

180 · 16n4
.

For this expression to be at most 10−5, we must have

(0.3)(0.4)((0.3)4 + (0.4)4)e0.3

180 · 16n4
≤ 10−5 ⇐⇒ n4 ≥ 105(0.3)(0.4)((0.3)4 + (0.4)4)e0.3

180 · 16

⇐⇒ n > 0.659.

Thus, since n must be an integer, we must have n at least 1; that is, S2,2 will give an approximation with the desired
accuracy.
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18. (a) Let Δx =
2 − 0

2
= 1, Δy =

3 − 0

2
= 1.5. With f(x, y) = 3x + 5y, we have

T2,2 =
1(1.5)

4
[f(0, 0) + f(0, 3) + f(2, 0) + f(2, 3)

+ 2 (f(0, 1.5) + f(1, 0) + f(1, 3) + f(2, 1.5)) + 4f(1, 1.5)] = 63.

(b)
∫ 2

0

∫ 3

0

(3x + 5y) dy dx =

∫ 2

0

(
3xy + 5

2
y2) ∣∣∣∣y=3

y=0

dx =

∫ 2

0

(
9x + 45

2

)
dx

=
(

9
2
x2 + 45

2
x
) ∣∣∣∣2

0

= 63.

This is exactly the same result as in part (a).
(c) Note that, for all (x, y), we have

∂2

∂x2
(3x + 5y) =

∂2

∂y2
(3x + 5y) = 0.

Hence Theorem 7.3 shows that the error term E2,2 must be zero. Hence it’s no surprise that the results in parts (a) and (b)
are the same.

19. (a) Let Δx =
0 − (−1)

2
= 0.5, Δy =

1/2 − 0

2
= 0.25. With f(x, y) = x3y3, we have

S2,2 =
(0.5)(0.25)

9

[
f(−1, 0) + f(−1, 1

2
) + f(0, 0) + f(0, 1

2
)

+ 4
(
f(−1, 1

4
) + f(− 1

2
, 0) + f(− 1

2
, 1

2
) + f(0, 1

4
)
)

+ 16f(− 1
2
, 1

4
)
]

= −0.00390625

(b)
∫ 0

−1

∫ 1/2

0

x3y3 dy dx =

∫ 0

−1

x3

4
y4

∣∣∣∣y=1/2

y=0

dx =

∫ 0

−1

x3

64
dx =

x4

256

∣∣∣∣0
−1

= − 1

256
.

(c) The answers in parts (a) and (b) turn out to be the same. Note that, for all (x, y), we have

∂4

∂x4

(
x3y3) =

∂4

∂y4

(
x3y3) = 0.

Hence Theorem 7.4 shows that the error term E2,2 must be zero.

20. We let Δx =
0 − (−1)

3
= 1

3
, so that x0 = −1, x1 = − 2

3
, x2 = − 1

3
, x3 = 0. Then Δy(x) =

2 − (−x)

3
=

x + 2

3
so that

Δy(−1) = 1
3

=⇒ y0(x0) = 1, y1(x0) = 4
3
, y2(x0) = 5

3
, y3(x0) = 2

Δy(− 2
3
) = 4

9
=⇒ y0(x1) = 2

3
, y1(x1) = 10

9
, y2(x1) = 14

9
, y3(x1) = 2

Δy(− 1
3
) = 5

9
=⇒ y0(x2) = 1

3
, y1(x2) = 8

9
, y2(x2) = 13

9
, y3(x2) = 2

Δy(0) = 2
3

=⇒ y0(x3) = 0 , y1(x3) = 2
3
, y2(x3) = 4

3
, y3(x3) = 2

This information is pictured in the figure below.
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Therefore, using f(x, y) = x3 + 2y2, we have

T3,3 =
(1/3)(1/3)

4

[
f(−1, 1) + 2f(−1, 4

3
) + 2f(−1, 5

3
) + f(−1, 2)

]
+

(1/3)(4/9)

4

[
2f(− 2

3
, 2

3
) + 4f(− 2

3
, 10

9
) + 4f(− 2

3
, 14

9
) + 2f(− 2

3
, 2)
]

+
(1/3)(5/9)

4

[
2f(− 1

3
, 1

3
) + 4f(− 1

3
, 8

9
) + 4f(− 1

3
, 13

9
) + 2f(− 1

3
, 2)
]

+
(1/3)(2/3)

4

[
f(0, 0) + 2f(0, 2

3
) + 2f(0, 4

3
) + f(0, 2)

]
= 4.97119

(Note that the exact answer is 24/5 = 4.8.)

21. We let Δx =
π/4 − 0

3
=

π

12
, so that x0 = 0, x1 = π

12
, x2 = π

6
, x3 = π

4
. Then Δy(x) =

cos x − sin x

3
, so that

Δy(0) = 1
3

=⇒ y0(x0) = 0, y1(x0) = 1
3
, y2(x0) = 2

3
, y3(x0) = 1

Δy
(

π
12

)
= 1

3
√

2
(by use of the half-angle formula)

=⇒ y0(x1) = sin
(

π
12

)
, y1(x1) = sin

(
π
12

)
+ 1

3
√

2
,

y2(x1) = sin
(

π
12

)
+ 2

3
√

2
, y3(x1) = sin

(
π
12

)
+ 1√

2

Δy
(

π
6

)
=

√
3−1
6

=⇒ y0(x2) = 1
2
, y1(x2) =

√
3+2
6

, y2(x2) = 2
√

3+1
6

, y3(x2) =
√

3
2

Δy
(

π
4

)
= 0 =⇒ partition points not needed.

This information is pictured in the figure below.
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Thus, using f(x, y) = 2x cos y + sin2 x, we have

T3,3 =
(π/12)(1/3)

4

[
f(0, 0) + 2f(0, 1

3
) + 2f(0, 2

3
) + f(0, 1)

]

+
(π/12)(1/(3

√
2))

4

[
2f( π

12
, sin π

12
) + 4f( π

12
, sin π

12
+ 1

3
√

2
)

+ 4f( π
12

, sin π
12

+ 2

3
√

2
) + 2f( π

12
, cos π

12
)
]

+
(π/12)((

√
3 − 1)/6)

4

[
2f(π

6
, 1

2
) + 4f(π

6
,
√

3+2
6

) + 4f(π
6
, 2

√
3+1
6

) + 2f(π
6
,
√

3
2

)
]

= 0.190978

(This approximation turns out to be rather low.)

22. Let Δx =
0.3 − 0

3
= 0.1, so that x0 = 0, x1 = 0.1, x2 = 0.2, x3 = 0.3. Then Δy(x) =

2x − x

3
=

x

3
so that

Δy(0) = 0 =⇒ partition points not needed;

Δy(0.1) =
0.1

3
=⇒ y0(x1) = 0.1, y1(x1) = 0.13, y2(x1) = 0.16, y3(x1) = 0.2

Δy(0.2) =
0.2

3
=⇒ y0(x2) = 0.2, y1(x2) = 0.26, y2(x2) = 0.3, y3(x2) = 0.4

Δy(0.3) = 0.1 =⇒ y0(x3) = 0.3 , y1(x3) = 0.4, y2(x3) = 0.5, y3(x1) = 0.6

Then, using f(x, y) = xy − x2, we have

T3,3 =
(0.1)(0.1/3)

4

[
2f(0.1, 0.1) + 4f(0.1, 0.13) + 2f(0.1, 0.16) + 2f(0.1, 0.2)

]
+

(0.1)(0.2/3)

4

[
2f(0.2, 0.2) + 4f(0.2, 0.26) + 4f(0.2, 0.3) + 2f(0.2, 0.4)

]
+

(0.1)(0.1)

4
[f(0.3, 0.3) + 2f(0.3, 0.4) + 2f(0.3, 0.5) + f(0.3, 0.6)]

= 0.001125

(Note that the actual value is 0.0010125.)
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23. Let Δx =
π/3 − 0

3
=

π

9
, so that x0 = 0, x1 = π

9
, x2 = 2π

9
, x3 = π

3
. Then Δy(x) =

sin x − 0

3
=

1

3
sin x, so that

Δy(0) = 0 =⇒ partition points not needed;

Δy
(

π
9

)
= 1

3
sin π

9
=⇒ y0(x1) = 0, y1(x1) = 1

3
sin π

9
, y2(x1) = 2

3
sin π

9
, y3(x1) = sin π

9

Δy
(

2π
9

)
= 1

3
sin 2π

9
=⇒ y0(x2) = 0, y1(x2) = 1

3
sin 2π

9
, y2(x2) = 2

3
sin 2π

9
, y3(x2) = sin 2π

9

Δy
(

π
3

)
=

√
3

6
=⇒ y0(x3) = 0, y1(x3) =

√
3

6
, y2(x3) =

√
3

3
, y3(x3) =

√
3

2

Thus, using f(x, y) = x/
√

1 − y2, we have

T3,3 =
(π

9
)( 1

3
sin π

9
)

4

[
2f(π

9
, 0) + 4f(π

9
, 1

3
sin π

9
) + 4f(π

9
, 2

3
sin π

9
) + 2f(π

9
, sin π

9
)
]

+
(π

9
)( 1

3
sin 2π

9
)

4

[
2f(π

9
, 0) + 4f( 2π

9
, 1

3
sin 2π

9
) + 4f( 2π

9
, 2

3
sin 2π

9
) + 2f( 2π

9
, sin 2π

9
)
]

+
(π/9)(

√
3/6)

4

[
f(π

3
, 0) + 2f(π

3
,
√

3
6

) + 2f(π
3
,
√

3
3

) + f(π
3
,
√

3
2

)
]

= 0.412888

(This actual value is π3/81 ≈ 0.382794, so our approximation is not especially good here.)

24. We must first let Δy =
π − 1

3
, so that y0 = 1, y1 = π+2

3
, y2 = 2π+1

3
, y3 = π. Then Δx(y) =

y − 0

3
=

y

3
, so that

Δx(1) = 1
3

=⇒ x0(y0) = 0, x1(y0) = 1
3
, x2(y0) = 2

3
, x3(y0) = 1

Δx
(

π+2
3

)
= π+2

9
=⇒ x0(y1) = 0, x1(y1) = π+2

9
, x2(y1) = 2π+4

9
, x3(y1) = π+2

3

Δx
(

2π+1
3

)
= 2π+1

9
=⇒ x0(y2) = 0, x1(y2) = 2π+1

9
, x2(y2) = 4π+2

9
, x3(y2) = 2π+1

3

Δx(π) = π
3

=⇒ x0(y3) = 0, x1(y3) = π
3
, x2(y3) = 2π

3
, x3(y3) = π

Thus, using f(x, y) = sin x, we have

T3,3 =
(π−1

3
)( 1

3
)

4

[
f(0, 1) + 2f( 1

3
, 1) + 2f( 2

3
, 1) + f(1, 1)

]

+
(π−1

3
)(π+2

9
)

4

[
2f(0, π+2

3
) + 4f(π+2

9
, π+2

3
) + 4f( 2π+4

9
, π+2

3
) + 2f(π+2

3
, π+2

3
)
]

+
(π−1

3
)( 2π+1

9
)

4

[
2f(0, 2π+1

3
) + 4f( 2π+1

9
, 2π+1

3
) + 4f( 4π+2

9
, 2π+1

3
) + 2f( 2π+1

3
, 2π+1

3
)
]

+
(π−1

3
)(π

3
)

4

[
f(0, π) + 2f(π

3
, π) + 2f( 2π

3
, π) + f(π, π)

]
= 2.78757

(This actual value is sin 1 + π − 1 ≈ 2.98306, so this result is quite rough.)

25. We let Δy =
1.6 − 1

3
= 0.2, so that y0 = 1, y1 = 1.2, y2 = 1.4, y3 = 1.6. Then Δx(y) =

2y − y

3
=

y

3
, so that

Δx(1) = 1
3

=⇒ x0(y0) = 1, x1(y0) = 4
3
, x2(y0) = 5

3
, x3(y0) = 2

Δx(1.2) = 0.4 =⇒ x0(y1) = 1.2, x1(y1) = 1.6, x2(y1) = 2, x3(y1) = 2.4

Δx(1.4) = 0.46 =⇒ x0(y2) = 1.4, x1(y2) = 1.86, x2(y2) = 2.3, x3(y2) = 2.8

Δx(1.6) = 0.53 =⇒ x0(y3) = 1.6, x1(y3) = 2.13, x2(y3) = 2.6, x3(y3) = 3.2
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Thus, using f(x, y) = ln (xy), we have

T3,3 =
(0.2)(0.3)

4

[
f(1, 1) + 2f( 4

3
, 1) + 2f( 5

3
, 1) + f(2, 1)

]
+

(0.2)(0.4)

4
[2f(1.2, 1.2) + 4f(1.6, 1.2) + 4f(2, 1.2) + 2f(2.4, 1.2)]

+
(0.2)(0.46)

4

[
2f(1.4, 1.4) + 4f(1.86, 1.4) + 4f(2.3, 1.4) + 2f(2.8, 1.4)

]
+

(0.2)(0.53)

4

[
f(1.6, 1.6) + 2f(2.13, 1.6) + 2f(2.6, 1.6) + f(3.2, 1.6)

]
= 0.724061

(This actual value is closer to 0.724519.)
26. (a) We have

∫∫
R

L dA =

∫ b

a

∫ d

c

(Ax + By + C) dy dx =

∫ b

a

[
(Ax + C)y + 1

2
By2] ∣∣∣∣y=d

y=c

dx

=

∫ b

a

[
(Ax + C)(d − c) + 1

2
B(d2 − c2)

]
dx

= (d − c)

∫ b

a

[
Ax + C + 1

2
B(c + d)

]
dx

= (d − c)
[

1
2
A(b2 − a2) +

(
C + 1

2
B(c + d)

)
(b − a)

]
= (b − a)(d − c)

[
1
2
A(a + b) + 1

2
B(c + d) + C

]
=

(b − a)(d − c)

4
[2A(a + b) + 2B(c + d) + 4C] .

(Note that we drew out factors along the way.) The average of the values of L taken at the vertices of R is

1

4
[L(a, c) + L(a, d) + L(b, c) + L(b, d)]

=
1

4
[(Aa + Bc + C) + (Aa + Bd + C) + (Ab + Bc + C) + (Ab + Bd + C)]

=
1

4
[2A(a + b) + 2B(c + d) + 4C] .

If we multiply this expression by (b−a)(d− c), which is the area of R, we obtain the expression for
∫∫

R
L dA calculated

above.
(b) To calculate T1,1, note that Δx = b − a, Δy = d − c, so that x0 = a, x1 = b, y0 = c, y1 = d and formula (6) becomes

T1,1 =
(b − a)(d − c)

4
[f(a, c) + f(a, d) + f(b, c) + f(b, d)]

= (area of R) · (average of values of f on vertices of R).

(c) By part (b), the approximation T1,1 to
∫∫

Rij
f dA is

Δx Δy

4
[f(xi−1, yj−1) + f(xi−1, yj) + f(xi, yj−1) + f(xi, yj)] .
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Thus
∫∫

R

f dA =

n∑
j=1

m∑
i=1

∫∫
Rij

f dA is approximated by

n∑
j=1

m∑
i=1

Δx Δy

4
[f(xi−1, yj−1) + f(xi−1, yj) + f(xi, yj−1) + f(xi, yj)]

=
Δx Δy

4

[
n∑

j=1

m∑
i=1

f(xi−1, yj−1) +
n∑

j=1

m∑
i=1

f(xi−1, yj)

+
n∑

j=1

m∑
i=1

f(xi, yj−1) +
n∑

j=1

m∑
i=1

f(xi, yj)

]

=
Δx Δy

4

[
f(x0, y0) +

n−1∑
j=1

f(x0, yj) +

m−1∑
i=1

f(xi, y0) +

n−1∑
j=1

m−1∑
i=1

f(xi, yj)

+ f(x0, yn) +

n−1∑
j=1

f(x0, yj) +

m−1∑
i=1

f(xi, yn) +

n−1∑
j=1

m−1∑
i=1

f(xi, yj)

+ f(xm, y0) +

n−1∑
j=1

f(xm, yj) +

m−1∑
i=1

f(xi, y0) +

n−1∑
j=1

m−1∑
i=1

f(xi, yj)

+ f(xm, yn) +

n−1∑
j=1

f(xm, yj) +

m−1∑
i=1

f(xi, yn) +

n−1∑
j=1

m−1∑
i=1

f(xi, yj)

]

=
Δx Δy

4

[
f(x0, y0) + 2

m−1∑
i=1

f(xi, y0) + f(xm, x0)

+ 2

n−1∑
j=1

f(x0, yj) + 4

n−1∑
j=1

m−1∑
i=1

f(xi, yj) + 2

n−1∑
j=1

f(xm, yj)

+ f(x0, yn) + 2

m−1∑
i=1

f(xi, yn) + f(xm, yn)

]

= Tm,n.

True/False Exercises for Chapter 5

1. False. (Not all rectangles must have sides parallel to the coordinate axes.)
2. True.
3. True.
4. True.
5. False. (Let f(x, y) = x, for example.)
6. True.
7. False. (The integral on the right isn’t even a number!)
8. True.
9. True.

10. False. (It’s a type 1 region.)
11. True.
12. True.
13. False. (The value of the integral is 3.)
14. True. (Use symmetry.)
15. True.
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16. False. (The y part of the integrand gives a nonzero value.)
17. True. (The inner integral with respect to z is zero because of symmetry.)
18. False. (The triple integral of y is zero because of symmetry, but not the triple integral of x.)
19. True.
20. False. (The area is 30 square units.)
21. False. (The integrals are opposites of one another.)
22. True.
23. False. (A factor of r should appear in the integrand.)
24. True.
25. False. (A factor of ρ is missing in the integrand.)
26. True.
27. True.

28. False. (The centroid is at
(

0, 0,
1

4
h

)
.)

29. True.
30. True.

Miscellaneous Exercises for Chapter 5

1. First let’s split the integrand:

∫∫∫
B

(z3 + 2) dV =

∫∫∫
B

z3dV +

∫∫∫
B

2 dV =

∫∫∫
B

z3dV + 2

∫∫∫
B

dV.

Here B is the ball of radius 3 centered at the origin. The integral of an odd function of z over a region which is symmetric
with respect to z is 0. The other integral is twice the volume of a sphere of radius 3 so

∫∫∫
B

(z3 + 2) dV = 2

(
4

3
π33

)
= 72π.

2. As in Exercise 1 we see that our integrand is the sum of odd functions in x and y and a constant which we are integrating over
a region which is symmetric with respect to x and y. Our answer will be −3 times the volume of the hemisphere of radius 2.
In symbols,

V =

∫∫∫
W

(x3 + y − 3) dV = −3

∫∫∫
W

dV = −3

(
1

2

)(
4

3
π23

)
= −16π.

3. (a) We’ll use the bounds given for z in both integrals and just reverse the order of integration for x and y. We are integrating
over the ellipse:

-2 -1.5 -1 -0.5 0.5 1 1.5 2

-3

-2

-1

1

2

3

x

y
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∫∫∫
W

3 dV =

∫ 3

−3

∫ √
3−y2/3

0

∫ 9−x2

2x2+y2

3 dz dx dy and

=

∫ √
3

0

∫ √
9−3x2

−
√

9−3x2

∫ 9−x2

2x2+y2

3 dz dy dx.

(b) Using Mathematica, the result was (81
√

3π)/4 in either order.
4. First follow the hint (noting that x′ and y′ are just dummy variables) and write

F (x, y) =

∫ x

a

g(x′, y) dx′ where g(x′, y) =

∫ y

c

f(x′, y′) dy′.

By the fundamental theorem of calculus,

∂F

∂x
=

∂

∂x

∫ x

a

g(x′, y) dx′ = g(x, y).

Also, again by the fundamental theorem,

∂2F

∂y∂x
=

∂

∂y
[g(x, y)] =

∂

∂y

∫ y

c

f(x, y′) dy′ = f(x, y).

By Fubini’s theorem, ∫ x

a

∫ y

b

f(x′, y′) dy′dx′ =

∫ y

c

∫ x

a

f(x′, y′) dx′dy′.

As above, write
F (x, y) =

∫ y

c

h(x, y′) dy′ where h(x, y′) =

∫ x

a

f(x′, y′) dx′.

Proceeding as above we see that
∂F

∂y
= h(x, y) and ∂2F

∂x∂y
= f(x, y).

5. I think the given form is the easiest to integrate:

∫ 2π

0

∫ 1

0

∫ √
9−r2

0

r dz dr dθ =

∫ 2π

0

∫ 1

0

r
√

9 − r2 dr dθ

=

∫ 2π

0

(
9 − 16

√
2

3

)
dθ

= 2π

(
9 − 16

√
2

3

)
.

(a) In Cartesian coordinates, z doesn’t really change and for the outer two limits, we are integrating over a unit circle so our
answer is ∫ 1

−1

∫ √
1−x2

−
√

1−x2

∫ √
9−x2−y2

0

dz dy dx.

(b) The solid is the intersection of the top half of a sphere of radius 3 centered at the origin and a cylinder of radius 1 with
axis of symmetry the z-axis. In spherical coordinates this means that we have to split the integral into two pieces: one
that corresponds to the spherical cap and one that corresponds to the straight sides. The “cone” of intersection is when
ϕ = sin−1 1/3. For the integral that corresponds to the “straight sides”, 0 ≤ r ≤ 1. In spherical coordinates that is
0 ≤ ρ sin ϕ ≤ 1 or 0 ≤ ρ ≤ csc ϕ. The integrals are, therefore,∫ 2π

0

∫ sin−1 1/3

0

∫ 3

0

ρ2 sin ϕ dρ dϕ dθ +

∫ 2π

0

∫ π/2

sin−1 1/3

∫ csc ϕ

0

ρ2 sin ϕ dρ dϕ dθ.

6. (a) This solid is similar to that in Exercise 5. It is the intersection of a cylinder over the circle of radius 2 with center (0, 2)
(i.e., x2 = 4y − y2) and the plane x = 0 with caps on either end that are portions of the sphere of radius 4 centered at the
origin (z = ±

√
16 − x2 − y2).
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(b) In cylindrical coordinates, −√
16 − r2 ≤ z ≤ √

16 − r2 and we are above the first quadrant so 0 ≤ θ ≤ π/2. Since
x2 + y2 = 4y, r2 = 4r sin θ so in the first quadrant, r = 4 sin θ. The volume is therefore

V =

∫ π/2

0

∫ 4 sin θ

0

∫ √
16−r2

−
√

16−r2

r dz dr dθ =

∫ π/2

0

∫ 4 sin θ

0

2r
√

16 − r2 dr dθ

=

(
128

3

)∫ π/2

0

(1 − cos3 θ) dθ =
64

9
(3π − 4).

Exercises 7 and 8 are a good lesson in the advantage of choosing the right coordinate system in which to work. This simple
problem in Cartesian coordinates is a pain using either cylindrical or spherical coordinates.

7. Orient the cube so that a vertex is at the origin and the edges that meet at that vertex lie along the x-, y- and z-axes so that the
cube is in the first octant. We’ll double the volume of half of the cube. In this case 0 ≤ z ≤ a, 0 ≤ θ ≤ π/4 and the only
difficulty is with r. The radius varies from 0 to the line x = a. In cylindrical coordinates x = r cos θ so r = a sec θ and our
limits for r are 0 ≤ r ≤ a sec θ. The volume is

V = 2

∫ a

0

∫ π/4

0

∫ a sec θ

0

r dr dθ dz =

∫ a

0

∫ π/4

0

a2 sec2 θ dθ dz =

∫ a

0

a2 dz = a3.

The above calculation wouldn’t change much if you followed the hint in the text and placed the center of the cube at the origin.
In this case you would have 1/8 of the figure in the first octant and you would be calculating the volume of a cube with sides
a/2.

8. We again orient the cube so that a vertex is at the origin and the edges that meet at that vertex lie along the x-, y- and z-
axes so that the cube is in the first octant. As in Exercise 7 we will double the volume of half of the cube corresponding to
0 ≤ θ ≤ π/4. We will have to split the integral into two pieces: the piece in which ρ is bounded by the top of the cube (z = a
or ρ = a sec ϕ) and the piece in which ρ is bounded by the side of the cube (x = a or ρ = a csc ϕ sec θ). The boundary value
of ϕ depends on θ. Set a = ρ cos ϕ equal to a = ρ sin ϕ cos θ and solve to obtain ϕ = cot−1 cos θ. So the volume is

V = 2

∫ π/4

0

∫ cot−1 cos θ

0

∫ a sec ϕ

0

ρ2 sin ϕ dρ dϕ dθ + 2

∫ π/4

0

∫ π/2

cot−1 cos θ

∫ a csc ϕ sec θ

0

ρ2 sin ϕ dρ dϕ dθ

= 2

(
a3

6
+

a3

3

)
= a3.

Exercises 9–17 are examples where a change of variables helps. Exercise 14 depends on Exercise 11 and together they are
much less difficult than they may first appear.

9. Here we will let u = x − 2y and v = x + y. We calculate

∂(u, v)

∂(x, y)
=

∣∣∣∣ 1 −2
1 1

∣∣∣∣ = 3 so ∂(x, y)

∂(u, v)
= 1/3.

The three boundary lines x + y = 1, x = 0, and y = 0 correspond to v = 1, 2v = −u, and u = v. We have all of the pieces
to assemble our integral:

∫∫
D

cos

(
x − 2y

x + y

)
dA =

∫ 1

0

∫ v

−2v

1

3
cos
(u

v

)
du dv =

∫ 1

0

v

3
sin
(u

v

)∣∣∣∣v
−2v

du

=

∫ 1

0

v

3
(sin 1 − sin(−2)) dv =

v2

6
(sin 1 + sin 2)

∣∣∣∣1
0

=
1

6
(sin 1 + sin 2).

10. Let u = y3 and v = x + 2y. Then 0 ≤ u ≤ 216, 0 ≤ v ≤ 1, and

∂(u, v)

∂(x, y)
=

∣∣∣∣ 0 3y2

1 2

∣∣∣∣ = −3y2 = −3u2/3 so ∂(x, y)

∂(u, v)
= − 1

3u2/3
.
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Then ∫ 6

0

∫ 1−2y

−2y

y3(x + 2y)2e(x+2y)3 dx dy =

∫ 216

0

∫ 1

0

( u

3u2/3
v2ev3

)
dv du

=

∫ 216

0

∫ 1

0

(
1

3
u1/3v2ev3

)
dv du

=

∫ 216

0

(
1

9
u1/3ev3

)∣∣∣∣1
v=0

du

=

∫ 216

0

(
1

9
u1/3(e − 1)

)
du

=

(
1

9

(
3

4
u4/3

)
(e − 1)

)∣∣∣∣216
0

= 108(e − 1).

11. (a) As we’ve seen before, we can write the integral as
∫ a

−a

∫ b
√

1−x2/a2

−b
√

1−x2/a2

dy dx.

(b) When we scale by letting x = ax̄ and y = bȳ, the ellipse is transformed into the unit circle E∗ in the x̄ȳ-plane. To rewrite

the integral we also quickly calculate that ∂(x, y)/∂(x̄, ȳ) = ab. The transformed integral is
∫ 1

−1

∫ √
1−x̄2

−
√

1−x̄2

ab dȳ dx̄.

(c) Because we are integrating over a unit circle, we transform to polar coordinates (o.k., really we do it because the text tells
us to): ∫ 1

−1

∫ √
1−x̄2

−
√

1−x̄2

ab dȳ dx̄ =

∫ 2π

0

∫ 1

0

abr dr dθ =

∫ 2π

0

1

2
ab dθ =

1

2
ab(2π) = π ab.

12. (a) With u = 2x − y, v = x + y, we see u + v = 3x so x =
u + v

3
which implies y =

2v − u

3
. Substituting these

expressions into the equation for the ellipse, we obtain

13
(u + v

3

)2

+ 14
(u + v

3

)(2v − u

3

)
+ 10

(
2v − u

3

)2

= 9.

Expanding and simplifying, we find
u2

9
+ v2 = 1.

(b) Area =

∫∫
E

1 dA =

∫∫
E

1 dx dy =

∫∫
E∗

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv where E∗ denotes the corresponding ellipse in the uv-plane

given above. Now ∂(x, y)

∂(u, v)
= det

[
1/3 1/3
2/3 −1/3

]
= −1

3
so

Area =

∫∫
E∗

1

3
du dv =

1

3
(area of E∗) =

1

3
(π · 3 · 1) = π using the result of part (c) of Exercise 11.

13. With u = x − y, v = x + y we find that x =
u + v

2
, y =

v − u

2
. Substituting these expressions into the equation for E,

we find
5
(u + v

2

)2

+ 6
(u + v

2

) ( v − u

2

)
+ 5
( v − u

2

)2

= 4,

which simplifies to
u2

4
+ v2 = 1.

The area of ellipse E∗ in the uv-plane is 2π. The area of the original ellipse E is∫∫
E

1 dA =

∫∫
E

dx dy =

∫∫
E∗

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv =

∫∫
E∗

∣∣∣∣det
[

1/2 1/2
−1/2 1/2

]∣∣∣∣ du dv
=

∫∫
E∗

∣∣∣∣12
∣∣∣∣ du dv =

1

2
area of E∗ =

1

2
(2π) = π.
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14. We follow the steps in Exercise 11, inserting the same letters for ease in locating the corresponding parts.
(a) First we write the integral in Cartesian coordinates as

∫ a

−a

∫ b
√

1−x2/a2

−b
√

1−x2/a2

∫ c
√

1−x2/a2−y2/b2

−c
√

1−x2/a2−y2/b2
dz dy dx.

(b) We now scale the variables using x = ax̄, y = bȳ, and z = cz̄. Note that the ellipsoid E is transformed into the unit
sphere E∗ and that ∂(x, y, z)/∂(x̄, ȳ, z̄) = abc. The transformed integral is:

∫ 1

−1

∫ √
1−x̄2

−
√

1−x̄2

∫ √
1−x̄2−ȳ2

−
√

1−x̄2−ȳ2

abc dz̄ dȳ dx̄.

(c) Because we are integrating over a unit sphere, we will transform to spherical coordinates:

∫ 1

−1

∫ √
1−x̄2

−
√

1−x̄2

∫ √
1−x̄2−ȳ2

−
√

1−x̄2−ȳ2

abc dz̄ dȳ dx̄ =

∫ 2π

0

∫ 1

0

∫ π

0

abc ρ2 sin ϕ dϕ dρ dθ

=

∫ 2π

0

∫ 1

0

(− cos ϕ(abc)ρ2)

∣∣∣∣π
0

dρ dθ =

∫ 2π

0

∫ 1

0

(2abc ρ2) dρ dθ

=

∫ 2π

0

2

3
abc dθ =

4

3
πabc.

15. If you didn’t first sketch the region you may be tempted to use the numerator and denominator of the integrand as your new
variables. The diamond-like shape is bounded on two sides by the hyperbolas x2 − y2 = 1 and x2 − y2 = 4 and on the other
two sides by the ellipses x2/4 + y2 = 1 and x2/4 + y2 = 4.

0.5 1 1.5 2 2.5 3 3.5 4

0.25

0.5

0.75

1

1.25

1.5

1.75

2

We, therefore, make the change of variables u = x2 − y2 and v = x2/4 + y2. Then

∂(u, v)

∂(x, y)
=

∣∣∣∣ 2x −2y
x/2 2y

∣∣∣∣ = 5xy so ∂(x, y)

∂(u, v)
= 1/(5xy).

The integral greatly simplifies:

∫∫
D

xy

y2 − x2
dA =

∫ 4

1

∫ 4

1

(
xy

−u

1

5xy

)
du dv = −1

5

∫ 4

1

∫ 4

1

1

u
du dv

= −1

5

∫ 4

1

ln 4 dv = −3

5
ln 4.
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16. The region D is bounded on the left and right by x2 − y2 = 1 and x2 − y2 = 9 and on the bottom and top by xy = 1 and
xy = 4. It looks like

0.5 1 1.5 2 2.5 3 3.5 4
x

0.5

1

1.5

2

2.5

3
y

This suggests we try the change of variables u = x2 − y2, v = xy. Then

∂(u, v)

∂(x, y)
= det

[
2x −2y
y x

]
= 2(x2 + y2)

so that
∂(x, y)

∂(u, v)
=

1

2(x2 + y2)
.

Moreover, the region D* in the uv-plane corresponding to D is

1 9

1

4

v

u

Thus, using the change of variables theorem, we have

∫∫
D

(x2 + y2)ex2−y2

dA =

∫∫
D∗

1

2
eu du dv =

∫ 4

1

∫ 9

1

1

2
eu du dv

=

∫ 4

1

1

2
(e9 − e) dV =

3

2
(e9 − e).

17. The region D is bounded on the bottom and top by y = 1 and y = 2 and on the left and right by xy = 1 and xy = 4; the
region looks like the following figure.

c© 2012 Pearson Education, Inc.



322 Chapter 5 Multiple Integration

x

y

1 2 3 4

0.5

1

1.5

2

2.5

3

With this in mind, we try the change of variables u = xy, v = y. Then

∂(u, v)

∂(x, y)
= det

[
y x
0 1

]
= y = v =⇒ ∂(x, y)

∂(u, v)
=

1

v
.

Moreover, the region D∗ in the uv-plane corresponding to D is the rectangle [1, 4] × [1, 2]:

1 4
u

1

2

v

The change of variables theorem tells us that∫∫
D

1

x2y2 + 1
dA =

∫∫
D∗

1

u2 + 1
· 1

v
du dv =

∫ 4

1

∫ 2

1

1

u2 + 1
· 1

v
dv du

=

∫ 4

1

ln 2

u2 + 1
du = ln 2

(
tan−1 u

∣∣∣∣4
1

)

= ln 2
(
tan−1 4 − π

4

)
.

18. (a) Follow the same steps as in defining the double and triple integrals.
• Define a partition of B = [a, b] × [c, d] × [p, q] × [r, s] of order n to be four collections of partition points that

break up B into a union of n4 subboxes. See Definition 4.1 and add that r = w0 < w1 < · · · < wn = s and
Δwl = wl − wl−1.

• Define a Riemann sum. For a function f defined on B, partition B as above and let cijkl be any point in the subbox

Bijkl = [xi−1, xi] × [yj−1, yj ] × [zk−1, zk] × [wl−1, wl].

• The Riemann sum of f on B corresponding to the partition is

S =

n∑
i,j,k,l=1

f(cijkl)ΔxiΔyjΔzkΔwl =

n∑
i,j,k,l=1

f(cijkl)ΔVijkl.

• Define the quadruple integral of f on B, written∫∫∫∫
B

f(x, y, z, w) dV =

∫∫∫∫
B

f(x, y, z, w) dx dy dz dw

to be ∫∫∫∫
B

f(x, y, z, w) dV = lim
all Δxi,Δyj ,Δzk,Δwl→0

n∑
i,j,k,l=1

f(cijkl)ΔxiΔyjΔzkΔwl.
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• We extend the definition to compact non-box regions W by defining the function fext which is f everywhere in W
and is 0 everywhere else. Then if B is a box containing W we can define∫∫∫∫

W

fdV =

∫∫∫∫
B

fextdV.

• As in the cases of the double and triple integrals, Fubini’s theorem allows us to evaluate the integral as an iterated
integral.

(b) We calculate: ∫∫∫∫
W

(x + 2y + 3z − 4w) dV =

∫ 2

0

∫ 3

−1

∫ 4

0

∫ 2

−2

(x + 2y + 3z − 4w) dw dz dy dx

= 4

∫ 2

0

∫ 3

−1

∫ 4

0

(x + 2y + 3z) dz dy dx

= 4

∫ 2

0

∫ 3

−1

(4x + 8y + 24) dy dx

= 4

∫ 2

0

(16x + 32 + 96) dx = 64

∫ 2

0

(x + 8) dx

= 64(2 + 16) = 1152.

19. (a) We are just generalizing what we’ve done to set up the area of a circle or the volume of a sphere (more recently see
Exercises 11 and 14 from this section). Here our integral is:

∫ a

−a

∫ √
a2−x2

−
√

a2−x2

∫ √
a2−x2−y2

−
√

a2−x2−y2

∫ √
a2−x2−y2−z2

−
√

a2−x2−y2−z2

dw dz dy dx.

(b) You should get π2a2/4.
(c) For n = 5 you should get 8π2a5/15, and for n = 6 you should get π3a6/6. If you include the cases for n = 2 and

n = 3 you may begin to see a pattern for the even exponents. If n is even, the volume of the n-sphere of radius a is
πn/2an/(n/2)!. Fitting in the odd terms looks really hard and the pattern shouldn’t occur to any of your students.
In fact, the general formula depends on the Gamma function which is beyond what we would expect the students to
know at this point. For kicks, the volume of the n-sphere of radius a is

πn/2an

Γ((n/2) + 1)
.

Note that the volume of an n-sphere of radius a decreases to 0 as n increases.
20. Let x1 = ax̄1, x2 = ax̄2, . . . , xn = ax̄n. Then, by substitution,

B = {(x1, . . . , xn) | x2
1 + · · · + x2

n ≤ a2}
= {(x̄1, . . . , x̄n) | (ax̄1)

2 + · · · + (ax̄n)2 ≤ a2}
= {(x̄1, . . . , x̄n) | x̄2

1 + · · · + x̄2
n ≤ 1},

which is the unit ball in (x̄1, . . . , x̄n)-coordinates. The Jacobian of this change of variables is

∂(x1, . . . , xn)

∂(x̄1, . . . , x̄n)
= det

⎡
⎢⎢⎢⎣

a 0 · · · 0
0 a · · · 0
...

...
. . .

...
0 0 · · · a

⎤
⎥⎥⎥⎦ = an.

Hence
Vn(a) =

∫
· · ·
∫

B

1 dx1 · · · dxn =

∫
· · ·
∫

U

an dx̄1 · · · dx̄n = Cnan.
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21. (a) Since a point (x1, . . . , xn) in B satisfies the inequality x2
1+· · ·+x2

n ≤ a2, a point in B of the form (x1, x2, 0, . . . , 0)
must have x2

1 + x2
2 + 0 · · · + 0 ≤ a2. Thus (x1, x2), considered as a point in R2, satisfies x2

1 + x2
2 ≤ a2, so that

(x1, x2) lies in the disk of radius a in R2.
(b) The point (x1, x2, 0, . . . , 0) in B described in part (a) has coordinates that relate to polar coordinates (r, θ) by

x2
1 + x2

2 = r2 ≤ a2. Hence any point (r, θ, x3, . . . , xn) in B lying over the specific point (r, θ) in the disk must
satisfy r2 + x2

3 + · · · + x2
n ≤ a2 ⇐⇒ x2

3 + · · · + x2
n ≤ a2 − r2. Hence the coordinates (x3, . . . , xn) fill out an

(n − 2)-dimensional ball of radius
√

a2 − r2.
(c) If D denotes the radius a disk centered at the origin, then, from part (b), we have

Vn(a) =

∫
· · ·
∫

B

dx1 · · · dxn =

∫∫
D

Vn−2

(√
a2 − r2

)
dx1 dx2

=

∫ 2π

0

∫ a

0

Vn−2

(√
a2 − r2

)
r dr dθ.

22. By the previous exercise, we have

Vn(a) =

∫ 2π

0

∫ a

0

Vn−2

(√
a2 − r2

)
r dr dθ

=

∫ 2π

0

∫ a

0

Cn−2

(
a2 − r2)(n−2)/2

r dr dθ from Exercise 20,

= Cn−2

∫ 2π

0

∫ 0

a2

u(n−2)/2 (− 1
2

du
)

dθ

=
Cn−2

2

∫ 2π

0

2

n
un/2

∣∣∣∣a
2

u=0

dθ

=
2π

n
Cn−2a

n.

Now Vn−2(a) = Cn−2a
n−2, so we have

Vn(a) =

(
2π

n
a2

) (
Cn−2a

n−2) =

(
2π

n
a2

)
Vn−2(a).

23. (a) The one-dimensional ball of radius a consists of points in R described as

{x1 ∈ R | x2
1 ≤ a2} = {x1 ∈ R | −a ≤ x1 ≤ a} = [−a, a].

The one-dimensional volume of this “ball” is the length of the interval; thus V1(a) = 2a. The two-dimensional ball
of radius a consists of points (x1, x2) ∈ R2 such that x2

1 + x2
2 ≤ a2. Such points form a disk of radius a, so the

two-dimensional volume of this disk is its area; hence V2(a) = πa2.
(b) By repeatedly using the recursive formula in Exercise 22, we have

Vn(a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
2π

n
a2

)(
2π

n − 2
a2

)
· · ·
(

2π

4
a2

)
V2(a) if n is even,

(
2π

n
a2

)(
2π

n − 2
a2

)
· · ·
(

2π

1
a2

)
V1(a) if n is odd.

In the expressions for Vn(a) above, there are n
2
− 1 factors appearing before V2(a) when n is even and n−1

2
factors
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appearing before V1(a) when n is odd. Hence, using the results of part (a), we have

Vn(a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2(n/2)−1π(n/2)−1
(
a2
)(n/2)−1

πa2

n(n − 2) · · · 4 if n is even

2(n−1)/2π(n−1)/2
(
a2
)(n−1)/2

2a

n!!
if n is odd

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2n/2πn/2
(
a2
)n/2

n(n − 2) · · · 4 · 2 if n is even

2(n+1)/2π(n−1)/2
(
a2
)(n−1)/2

a

n!!
if n is odd

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2n/2πn/2an

2(n/2) · 2 ((n/2) − 1) · 2 ((n/2) − 2) · · · (2 · 1)
if n is even

2(n+1)/2π(n−1)/2an

n!!
if n is odd

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

πn/2an

(n/2)!
if n is even

2(n+1)/2π(n−1)/2an

n!!
if n is odd.

24. (a) To obtain the mass we compute the following integral (which is straightforward so the details are omitted):

M =

∫ 2π

0

∫ π

0

∫ 4

3

((.12ρ2)ρ2 sin ϕ) dρ dϕ dθ = 74.976π ≈ 235.5440508g.

(b) Because the shell is sealed, the volume is V = (4/3)π(43) = 256π/3 cm3, so the mass of that volume of water is
greater, and so the shell would float.

(c) If the core of the shell fills with water, then the volume that the shell has to displace is V = (4/3)π(43 − 33) =
(4/3)π(37). The water for that volume would have mass of about 155 grams so the shell would sink.

25. When you average the height of the hemisphere of radius a, first you integrate∫ 2π

0

∫ a

0

zr dr dθ =

∫ 2π

0

∫ a

0

r
√

a2 − r2 dr dθ =
2

3
πa3.

For the average height, we divide this by the area of the region over which we are integrating:

(2/3)πa3

πa2
=

2

3
a.

We now solve to see which values of r correspond to this height: (2/3)a =
√

a2 − r2 when (4/9)a2 = a2 − r2, which
is when r =

√
5a/3. Therefore, the pole can be installed at most

√
5a/3 from the center of the floor of the dome.

26. (a) By the fundamental theorem of calculus

d
dy

∫ y

c

G(y′) dy′ = G(y) so d
dy

∫ y

c

∫ b

a

fy(x, y′) dx dy′ =

∫ b

a

fy(x, y) dx.

(b) On the other hand, by Fubini’s theorem,

d
dy

∫ y

c

∫ b

a

fy(x, y′) dx dy′ =
d
dy

∫ b

a

∫ y

c

fy(x, y′) dy′dx

=
d
dy

∫ b

a

(f(x, y) − f(x, c)) dx =
d
dy

∫ b

a

f(x, y) dx.

Combine parts (a) and (b) to obtain the desired results.
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27. (a)

I(ε, δ) =

∫ 1−ε

ε

∫ 1−δ

δ

1√
xy
dy dx =

∫ 1−ε

ε

2√
x

(
√

1 − δ −
√

δ) dx

= 4(
√

1 − ε −√
ε)(

√
1 − δ −

√
δ)

(b) lim
(ε,δ)→(0,0)

I(ε, δ) = 4 · 1 · 1 = 4

28. For 0 < ε <
1

2
, 0 < δ <

1

2
we consider I(ε, δ) =

∫∫
Dε,δ

1

x + y
dA where Dε,δ = [ε, 1 − ε] × [δ, 1 − δ]. Then

I(ε, δ) =

∫ 1−ε

ε

∫ 1−δ

δ

1

x + y
dy dx =

∫ 1−ε

ε

ln(x + y)

∣∣∣∣1−δ

y=δ

dx

=

∫ 1−ε

ε

(ln(x + 1 − δ) − ln(x + δ)) dx.

Using integration by parts, we find that
∫

ln u du = u ln u − u + C so that

I(ε, δ) = [(x + 1 − δ) ln(x + 1 − δ) − (x + 1 − δ) − (x + δ) ln(x + δ) + (x + δ)|1−ε
x=ε

= (2 − ε − δ) ln(2 − ε − δ) − (2 − ε − δ) − (1 − ε + δ) ln(1 − ε + δ)

+ (1 − ε + δ) − (ε + 1 − δ) ln(ε + 1 − δ) + (ε + 1 − δ)

+ (ε + δ) ln(ε + δ) − (ε + δ).

To evaluate lim
(ε,δ)→(0+,0+)

I(ε, δ) we first note that, by l’Hôpital’s rule,

lim
u→0+

u ln u = lim
u→0+

ln u

1/u
= lim

u→0+

1/u

−1/u2
= − lim

u→0+

u = 0.

Thus (ε + δ) ln(ε + δ) → 0 as (ε, δ) → (0+, 0+). The other terms in the expression have evident limits so that

lim
(ε,δ)→(0+,0+)

I(ε, δ) = 2 ln 2 − 2 − ln 1 + 1 − ln 1 + 1 + 0 − 0 = 2 ln 2.

29. For 0 < ε < 1
2

, 0 < δ < 1
2

, let Dε,δ = [ε, 1 − ε] × [δ, 1 − δ] and consider

I(ε, δ) =

∫∫
Dε,δ

x

y
dA =

∫ 1−δ

δ

∫ 1−ε

ε

x

y
dx dy

=

∫ 1−δ

δ

(
1
2
− ε
)

y
dy =

(
1

2
− ε

)
(ln(1 − δ) − ln δ).

Note that lim
(ε,δ)→(0,0)

I(ε, δ) = −∞ since 1
2
− ε and ln(1 − δ) remain finite, but ln δ → −∞. Thus the improper integral

does not converge.

In Exercises 30 and 31 the students will need integration by parts and l’Hôpital’s rule.

30. ∫∫
D

ln
√

x2 + y2 dA = lim
ε→0

∫∫
Dε

ln
√

x2 + y2 dA = lim
ε→0

∫ 2π

0

∫ 1

ε

r ln r dr dθ

= lim
ε→0

∫ 2π

0

[
r2

2
ln r − r2

4

] ∣∣∣∣1
ε

dθ = lim
ε→0

∫ 2π

0

[
−1

4
− ε2

2
ln ε +

ε2

4

]
dθ

= lim
ε→0

2π

[
−1

4
− ε2

2
ln ε +

ε2

4

]
= −π/2.
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31. Define Bε = {(x, y, z)|ε ≤ x2 + y2 + z2 ≤ 1}. Then∫∫∫
B

ln
√

x2 + y2 + z2 dV = lim
ε→0

∫∫∫
Bε

ln
√

x2 + y2 + z2 dV

= lim
ε→0

∫ 2π

0

∫ 1

ε

∫ π

0

((ln ρ)ρ2 sin ϕ) dϕ dρ dθ

= lim
ε→0

∫ 2π

0

∫ 1

ε

((2ρ2 ln ρ)) dρ dθ

= lim
ε→0

∫ 2π

0

((2/3)ρ3 ln ρ − 2ρ3/9)

∣∣∣∣1
ε

dθ

= lim
ε→0

2π

(
−2

9
− 2ε3

3
ln ε +

2ε3

9

)
= −4π/9.

32. (a)

I(a, b) =

∫ a

1

∫ b

1

1

x2y3
dy dx =

∫ a

1

− 1

2y2x2

∣∣∣∣b
y=1

dx

=

∫ a

1

(
1

2
− 1

2b2

)
1

x2
dx =

(
1

2
− 1

2b2

)(
1 − 1

a

)

(b) As a, b → ∞, I(a, b) → 1

2
.

33. Let Da,b = [1, a] × [1, b] and consider, for p, q = 1,

I(a, b) =

∫∫
Da,b

1

xpyq
dA =

∫ b

1

∫ a

1

1

xpyq
dx dy

=

∫ b

1

1

(1 − p)yqxp−1

∣∣∣∣a
x=1

dy =
1

1 − p

(
1

ap−1
− 1

)∫ b

1

1

yq
dy

=
1

(1 − p)(1 − q)

(
1

ap−1
− 1

)(
1

bq−1
− 1

)
.

If p > 1, q > 1 then as a, b → ∞, I(a, b) → 1
(1−p)(1−q)

= 1
(p−1)(q−1)

, so the integral converges in this case. If p < 1,
then 1/ap−1 → ∞. Similarly if q < 1, 1/bp−1 → ∞.
If p = 1, q = 1, then

∫ b

1

∫ a

1
1

xyq dx dy = ln a
(

1
1−q

) (
1

bq−1 − 1
)
. This becomes infinite as a, b → ∞. Similarly, if

q = 1, p = 1, I(a, b) becomes infinite as a, b → ∞. If p = q = 1, then I(a, b) = ln a ln b → ∞ as a, b → ∞.
To summarize: the integral converges if and only if p > 1 and q > 1—in which case the value of the integral is
1/(p − 1)(q − 1).

34. (a) We use polar coordinates to make the evaluation. Let

I(a) =

∫∫
Da

(1 + x2 + y2)−2 dA =

∫ 2π

0

∫ a

0

(1 + r2)−2r dr dθ

= 2π

(
1

2

)
(−(1 + r2)−1)

∣∣∣∣a
r=0

= −π

(
1

1 + a2
− 1

)

= π

(
1 − 1

1 + a2

)
.

lima→∞ I(a) = π. Thus the integral converges.

(b) Let I(a) =

∫∫
Da

(1 + x2 + y2)pdA =

∫ 2π

0

∫ a

0

(1 + r2)pr dr dθ. If p = −1, then

I(a) =
π

p + 1
((1 + a2)p+1 − 1).
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Now lima→∞(1 + a2)p+1 is finite (and equals 0) just in case p + 1 < 0 or p < −1. In such case, the integral

converges and its value is − π

p + 1
. If p = −1, then I(−1) =

∫ 2π

0

∫ a

0

r

1 + r2
dr dθ = π ln(1 + a2) → ∞ as

a → ∞. So the integral converges if and only if p < −1.
35. Consider

I(a) =

∫∫∫
Ba

1

(1 + x2 + y2 + z2)3/2
dV =

∫ 2π

0

∫ π

0

∫ a

0

ρ2 sin ϕ

(1 + ρ2)3/2
dρ dϕ dθ

=

∫ a

0

∫ 2π

0

∫ π

0

ρ2

(1 + ρ2)3/2
sin ϕ dϕ dθ dρ =

∫ a

0

4π · ρ2

(1 + ρ2)3/2
dρ

Now let ρ = tan u so dρ = sec2 u du. Then

I(a) = 4π

∫ tan−1 a

0

tan2 u · sec2 u du
sec3 u

= 4π

∫ tan−1 a

0

sin2 u

cos u
du

= 4π

∫ tan−1 a

0

1 − cos2 u

cos u
du = 4π

∫ tan−1 a

0

(sec u − cos u) du

= 4π(ln | sec u + tan u| − sin u)

∣∣∣∣tan
−1 a

0

= 4π

(
ln(
√

a2 + 1 + a) − a

a2 + 1

)
.

Since lim
a→∞

I(a) = ∞ the integral does not converge.
36. Consider

I(a) =

∫∫∫
Ba

e−
√

x2+y2+z2

dV =

∫ 2π

0

∫ π

0

∫ a

0

e−ρ · ρ2 sin ϕ dρ dϕ dθ

=

∫ a

0

∫ 2π

0

∫ π

0

e−ρρ2 sin ϕ dϕ dθ dρ = 4π

∫ a

0

ρ2e−ρ dρ

Now use integration by parts twice: First let u = ρ2 and dv = e−ρdρ. Then

I(a) = 4π

(
−ρ2e−ρ

∣∣∣∣a
0

+ 2

∫ a

0

ρe−ρdρ

)
= −4πa2e−a + 8π

∫ a

0

ρe−ρdρ.

Now let u = ρ and dv = e−ρdρ so that

I(a) = −4πa2e−a + 8π

(
−ρe−ρ|a0 +

∫ a

0

e−ρ dρ
)

= −4πa2e−a − 8πae−a − 8πe−a + 8π.

lim
a→∞

I(a) = 8π, so the integral converges and has value 8π.

The importance of Exercise 37 can not be overemphasized. The students have come from a course where they learned one
technique of integration after another. They also learned some numerical methods (at least a brief introduction to Riemann
sums, the trapezoid rule and Simpson’s rule). In a way Exercise 37 is the payoff—it is a chance to mention:

• Until now they couldn’t calculate ∫∞
−∞ e−x2

dx. The fact that you need the tools of multivariable calculus (or complex
analysis) is pretty cool.

• They still can’t calculate ∫ b

a
e−x2

dx. There is a need for numerical methods to calculate a function as common as the
bell curve (with a constant that stretches in the vertical direction and another constant that stretches in the horizontal
direction, this is the normal curve). Many will encounter this function in a course on statistics and use the tables; they
should know that this is because we can’t find the definite integral over a general finite interval.

• The technique is pretty and unexpected and is one of the tricks that they should see some time in their mathematical
training. The problem is surprisingly straightforward once someone shows you the trick.
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37. (a)
∫ 1

−1

e−x2

dx is finite since e−x2

is bounded on [−1, 1]. Since 0 ≤ e−x2 ≤ 1/x2 on both [1,∞) and (−∞,−1] and

the improper integrals
∫ ∞

1

(1/x2) dx and
∫ −1

−∞
(1/x2) dx converge, we see that

∫ ∞

1

e−x2

dx and
∫ −1

−∞
e−x2

dx

both converge. Hence
∫ ∞

−∞
e−x2

dx =

∫ −1

−∞
e−x2

dx +

∫ 1

−1

e−x2

dx +

∫ ∞

1

e−x2

dx converges.

(b) We have

I2 =

(∫ ∞

−∞
e−x2

dx
)(∫ ∞

−∞
e−x2

dx
)

=

(∫ ∞

−∞
e−x2

dx
)(∫ ∞

−∞
e−y2

dy
)

=

∫ ∞

−∞

∫ ∞

−∞
e−x2

e−y2

dx dy =

∫∫
R2

e−x2−y2

dA.

(c) We’ll use polar coordinates.

∫∫
Da

e−x2−y2

dA =

∫ 2π

0

∫ a

0

e−r2 · r dr dθ = −1

2

∫ 2π

0

(e−a2 − 1) dθ

= π(1 − e−a2

)

(d) Note that, as a → ∞, the disk Da fills out more and more of R2. Thus lim
a→∞

∫∫
Da

e−x2−y2

dA =∫∫
R2

e−x2−y2

dA = I2.

(e) Putting everything together:
I2 = lim

a→∞
π(1 − e−a2

) = π.

Thus I =
∫∞
−∞ e−x2

dx =
√

π.
38. (a) First, clearly f(x) ≥ 0. And second, by symmetry,∫ ∞

−∞
e−2|x| dx = 2

∫ ∞

0

e−2x dx = −e−2x

∣∣∣∣∞
0

= 1.

(b) We will reduce the calculations in Egbert’s problem by recentering.

P (250 ≤ x ≤ 350) =

∫ 350

250

1

2
e−|x−300| dx = 2

∫ 350

300

1

2
e−(x−300) dx

=

∫ 50

0

e−x dx = −e−x

∣∣∣∣50
0

= 1 − e−50.

39. (a) Since 2x + y

140
≥ 0 on [0, 5] × [0, 4], f(x, y) ≥ 0 for all (x, y). Now

∫∫
R2

f(x, y) =

∫ 4

0

∫ 5

0

2x + y

140
dx dy =

1

140

∫ 4

0

(25 + 5y) dy =
1

140

(
25y +

5

2
y2

) ∣∣∣∣4
0

=
1

140
(100 + 40) = 1.

(b) Since f(x, y) = 0 for x < 0 or y < 0,

Prob(x ≤ 1, y ≤ 1) = Prob((x, y) ∈ [0, 1] × [0, 1]) =

∫ 1

0

∫ 1

0

2x + y

140
dx dy

=
1

140

∫ 1

0

(1 + y) dy =
1

140

(
1 +

1

2

)
=

3

280
≈ 0.0107.
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40. (a) Since ye−x−y ≥ 0 for y ≥ 0 (note the exponential term is strictly positive), we have that f(x, y) ≥ 0 for all (x, y).
Now we check ∫∫

R2

ye−x−y dA =

∫ ∞

0

∫ ∞

0

ye−ye−x dx dy

=

∫ ∞

0

ye−y dy

= (−ye−y − e−y)

∣∣∣∣∞
0

= 1.

(b) Prob(x + y ≤ 2) = Prob((x, y) ∈ D) where D is the triangular region bounded by x = 0, y = 0 and x + y = 2.

0.5 1 1.5 2

0.5

1

1.5

2

y

x

Thus the desired probability is∫ 2

0

∫ 2−x

0

ye−ye−x dy dx =

∫ 2

0

(−ye−y − e−y)|2−x
0 e−x dx

=

∫ 2

0

((x − 2)ex−2 − ex−2 + 1)e−x dx =

∫ 2

0

((x − 2)e−2 − e−2 + e−x) dx

= 1 − 5e−2.

41. First, we know that C ≥ 0. Second,

1 =

∫ ∞

−∞

∫ ∞

−∞
Ce−a|x|−b|y| dx dy = 4

∫ ∞

0

∫ ∞

0

Ce−ax−by dx dy

= 4C

[∫ ∞

0

e−ax dx
] [∫ ∞

0

e−by dy
]

= 4C

[
−1

a
e−ax

∣∣∣∣∞
0

] [
−1

b
e−by

∣∣∣∣∞
0

]
=

4C

ab
.

So C = ab/4.
42. Note that if C ≥ 0, then f(x, y) ≥ 0 for all x since a and b are nonnegative. Thus we calculate

∫∫
R2

f(x, y) dA =

∫ 1

0

∫ 1

0

C(ax + by) dx dy = C

∫ 1

0

(
1

2
a + by

)
dy

= C

(
1

2
a +

1

2
b

)
= C

(
a + b

2

)
.

For this to equal 1, we must have C =
2

a + b
.
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43. (a) If C ≥ 0, then f(x, y) ≥ 0 for all (x, y). Thus we calculate∫∫
R2

f(x, y) dA =

∫ b

0

∫ a

0

C xy dx dy = C

∫ b

0

a2

2
y dy

= C
a2b2

4
.

For this to equal 1 we must have C =
4

a2b2
.

(b) Prob(bx − ay ≥ 0) is the probability that a point (x, y) falls below the line y =
b

a
x. Since f is zero outside the

rectangle [0, a] × [0, b], we see that the desired probability is the same as the probability Prob((x, y) ∈ D) where
D is the triangular region shown below.

a
x

b

y

This last probability is calculated as∫∫
D

fdA =

∫ a

0

∫ (b/a)x

0

4

a2b2
xy dy dx

=

∫ a

0

4

a2b2
x · 1

2

(
b

a
x

)2

dx =

∫ a

0

2

a4
x3 dx

=
1

2a4
x4

∣∣∣∣a
0

=
1

2
.

44. We are integrating over the triangle where 0 ≤ x + y ≤ 60. The integral is fairly straightforward so the details are
omitted:

1

250

∫ 60

0

∫ 60−x

0

e−x/50e−y/5 dy dx = − 1

50

∫ 60

0

(e−x/50[e−12+x/5 − 1]) dx

= 1 − 10

9
e−6/5 +

1

9
e−12 ≈ .665340.

45. We use polar coordinates:

∫ 1/2

−1/2

∫ √
(1/4)−x2

−
√

(1/4)−x2

1

π
e−x2−y2

dy dx =

∫ 2π

0

∫ 1/2

0

(
1

π
re−r2

)
dr dθ

=

∫ 2π

0

(
1

π

(
1

2

)
(1 − e−1/4)

)
dθ

= 1 − e−1/4 ≈ .22199.

46. The joint density function of the components is

F (x, y) = f(x) · f(y) =

⎧⎨
⎩

1

(2000)2
e−(x+y)/2000 if x ≥ 0, y ≥ 0

0 otherwise.

c© 2012 Pearson Education, Inc.



332 Chapter 5 Multiple Integration

So we want Prob(x ≤ 2000, y ≤ 2000) =

∫ 2000

0

∫ 2000

0

1

20002
e−x/2000e−y/2000dx dy

=
1

(2000)2

∫ 2000

0

−2000e−x/2000

∣∣∣∣2000
0

e−y/2000 dy

=
1

2000

∫ 2000

0

(
1 − 1

e

)
e−y/2000 dy =

(
1 − 1

e

)2

.

47. Formula (8) in Section 5.6 is I =

∫∫
W

d2δ(x, y, z) dV . If we choose the coordinates so that the center of mass is at the

origin, then
∫∫∫

W

xδ(x, y, z) dV = 0 and
∫∫∫

W

yδ(x, y, z) dV = 0. We can also choose the coordinates so that L̄ is

the z-axis. L is a line parallel to the z-axis distance h away, so L is the line corresponding to x = a and y = b where
a2 + b2 = h2. Then

IL̄ =

∫∫∫
W

(x2 + y2)δ(x, y, z) dV

and

IL =

∫∫∫
W

(x2 + y2 + h2 − 2ax − 2by)δ(x, y, z) dV =

∫∫∫
W

(x2 + y2 + h2)δ(x, y, z) dV

so

IL − IL̄ =

∫∫∫
W

h2δ(x, y, z) dV = h2

∫∫∫
W

δ(x, y, z) dV = h2M.

48. (a) With Δx = (b − a)/m and Δy = (d − c)/n, we have

Tm,n =
ΔxΔy

4

[
f(a, c) + 2

m−1∑
i=1

f(xi, c) + f(b, c)

+ 2

n−1∑
j=1

f(a, yj) + 4

n−1∑
j=1

m−1∑
i=1

f(xi, yj) + 2

n−1∑
j=1

f(b, yj)

+ f(a, d) + 2

m−1∑
i=1

f(xi, d) + f(b, d)

]
.

Now f(x, y) = F (x), so the formula above becomes

Tm,n =
ΔxΔy

4

[
F (a) + 2

m−1∑
i=1

F (xi) + F (b)

+ 2

n−1∑
j=1

F (a) + 4

n−1∑
j=1

m−1∑
i=1

F (xi) + 2

n−1∑
j=1

F (b)

+ F (a) + 2

m−1∑
i=1

F (xi) + F (b)

]
.

Note that the terms in
∑n−1

j=1 F (a) do not depend on j; hence
∑n−1

j=1 F (a) = (n − 1)F (a). Similarly, we have
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∑n−1

j=1

∑m−1
i=1 F (xi) = (n − 1)

∑m−1
i=1 F (xi). Therefore,

Tm,n =
ΔxΔy

4

[
F (a) + 2

m−1∑
i=1

F (xi) + F (b)

+ 2(n − 1)F (a) + 4(n − 1)

m−1∑
i=1

F (xi) + 2(n − 1)F (b)

+ F (a) + 2

m−1∑
i=1

F (xi) + F (b)

]

=
ΔxΔy

4

[
2nF (a) + 4n

m−1∑
i=1

F (xi) + 2nF (b)

]

=
ΔxΔy

4
(2n)

[
F (a) + 2

m−1∑
i=1

F (xi) + F (b)

]
.

Since Δy = (d − c)/n, we thus have

Tm,n =
Δx

2

(
d − c

2n

)
(2n)

[
F (a) + 2

m−1∑
i=1

F (xi) + F (b)

]

= (d − c)
Δx

2

[
F (a) + 2

m−1∑
i=1

F (xi) + F (b)

]

= (d − c)Tm,

using the formula for the trapezoidal rule approximation Tm of the definite integral
∫ b

a
F (x) dx.

(b) We proceed in a similar manner. With Δx = (b − a)/(2m) and Δy = (d − c)/(2n), we have

S2m,2n =

ΔxΔy

9

[
F (a) + 2

m−1∑
i=1

F (x2i) + 4

m∑
i=1

F (x2i−1) + F (b)

+ 2

n−1∑
j=1

F (a) + 4

n−1∑
j=1

m−1∑
i=1

F (x2i) + 8

n−1∑
j=1

m∑
i=1

F (x2i−1) + 2

n−1∑
j=1

F (b)

+ 4
n∑

j=1

F (a) + 8
n∑

j=1

m−1∑
i=1

F (x2i) + 16
n∑

j=1

m∑
i=1

F (x2i−1) + 4
n∑

j=1

F (b)

+ F (a) + 2

m−1∑
i=1

F (x2i) + 4
m∑

i=1

F (x2i−1) + F (b)

]
.

Again, we note that the terms in
∑n−1

j=1 F (a) do not depend on j so that
∑n−1

j=1 F (a) = (n − 1)F (a). In a similar
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manner, we have
∑n−1

j=1

∑m−1
i=1 F (x2i) = (n − 1)

∑m−1
i=1 F (x2i), etc. Thus,

S2m,2n =

ΔxΔy

9

[
F (a) + 2

m−1∑
i=1

F (x2i) + F (b)

+ 2(n − 1)F (a) + 4(n − 1)

m−1∑
i=1

F (x2i)

+ 8(n − 1)
m∑

i=1

F (x2i−1) + 2(n − 1)F (b)

+ 4nF (a) + 8n

m−1∑
i=1

F (x2i) + 16n
m∑

i=1

F (x2i−1) + 4nF (b)

+ F (a) + 2

m−1∑
i=1

F (x2i) + 4

m∑
i=1

F (x2i−1) + F (b)

]

=
ΔxΔy

9

[
6nF (a) + 12n

m−1∑
i=1

F (x2i) + 24n
m∑

i=1

F (x2i−1) + 6nF (b)

]

=
ΔxΔy

9
(6n)

[
F (a) + 2

m−1∑
i=1

F (x2i) + 4
m∑

i=1

F (x2i−1) + F (b)

]
.

Since Δy = (d − c)/(2n), we have that

S2m,2n =
Δx

3

(
d − c

6n

)
(6n)

[
F (a) + 2

m−1∑
i=1

F (x2i) + 4

m∑
i=1

F (x2i−1) + F (b)

]

= (d − c)
Δx

3

[
F (a) + 2

m−1∑
i=1

F (x2i) + 4
m∑

i=1

F (x2i−1) + F (b)

]

= (d − c)S2m,

using the formula for the Simpson’s rule approximation S2m of the definite integral
∫ b

a
F (x) dx.

49. With Δx = (b − a)/m and Δy = (d − c)/n, the trapezoidal rule approximation to
∫∫

[a,b]×[c,d]
f(x)g(y) dA =
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a

∫ d

c
f(x)g(y) dy dx is

Tm,n =
ΔxΔy

4

[
f(a)g(c) + 2

m−1∑
i=1

f(xi)g(c) + f(b)g(c)

+ 2

n−1∑
j=1

f(a)g(yj) + 4

n−1∑
j=1

m−1∑
i=1

f(xi)g(yj) + 2

n−1∑
j=1

f(b)g(yj)

+ f(a)g(d) + 2

m−1∑
i=1

f(xi)g(d) + f(b)g(d)

]

=
ΔxΔy

4

[
g(c)

(
f(a) + 2

m−1∑
i=1

f(xi) + f(b)

)

+ 2f(a)

n−1∑
j=1

g(yj) + 4

(
n−1∑
j=1

g(yj)

)(
m−1∑
i=1

f(xi)

)
+ 2f(b)

n−1∑
j=1

g(yj)

+ g(d)

(
f(a) + 2

m−1∑
i=1

f(xi) + f(b)

)]

=
ΔxΔy

4

[(
f(a) + 2

m−1∑
i=1

f(xi) + f(b)

)(
g(c) + 2

n−1∑
j=1

g(yj) + g(d)

)]

= Tm(f)Tn(g),

where Tm(f) denotes the trapezoidal rule approximation to
∫ b

a
f(x) dx and Tn(g) the trapezoidal rule approximation to∫ d

c
f(y) dy.

c© 2012 Pearson Education, Inc.



336 Chapter 5

c© 2012 Pearson Education, Inc.



Chapter 6

Line Integrals

6.1 Scalar and Vector Line Integrals

1. (a) x′(t) = (−3, 4) and ‖x′(t)‖ = 5 so by Definition 1.1,

∫
x
f ds =

∫ 2

0

(x + 2y)(5) dt = 5

∫ 2

0

[(2 − 3t) + (8t − 2)] dt = 5

∫ 2

0

5t dt =
25

2
t2
∣∣∣∣2
0

= 50.

(b) x′(t) = (− sin t, cos t) and ‖x′(t)‖ = 1 so by Definition 1.1,∫
x
f ds =

∫ π

0

(x + 2y)(1) dt =

∫ π

0

[cos t + 2 sin t] dt = [sin t − 2 cos t]|π0 = 4.

For Exercises 2–7 we will use Definition 1.1. For each calculate x′, ‖x′‖, and f(x).

2. ∫
x
f ds =

∫ 2

0

[(t)(2t)(3t)
√

12 + 22 + 32] dt = 6
√

14

∫ 2

0

t3dt =
6
√

14

4
t4
∣∣∣∣2
0

= 24
√

14.

3.

∫
x
f ds =

∫ 3

1

[
t + t3/2

t + t3/2

√
1 + 1 +

9

4
t

]
dt =

∫ 3

1

√
2 +

9

4
t dt =

8

27

(
2 +

9

4
t

)3/2
∣∣∣∣∣
3

1

= (35
√

35 − 17
√

17)/27.

4. ∫
x
f ds =

√
16 + 9

∫ 2π

0

(3 cos 4t + cos 4t sin 4t + 27t3) dt = 5

∫ 2π

0

(
3 cos 4t +

1

2
sin 8t + 27t3

)
dt

= 5

(
3

4
sin 4t − 1

16
cos 8t +

27

4
t4
) ∣∣∣∣2π

0

= 540π4.

5. ∫
x

f ds =

∫ 5

0

e2t

e4t

√
17e2t dt =

∫ 5

0

√
17 dt = 5

√
17.

6. ∫
x

f ds =

∫ 1

0

2t · 2 dt +

∫ 2

1

(3t − 1) · 3 dt +

∫ 3

2

(2t + 1) · 2 dt

= 2t2
∣∣∣1
0

+

(
9

2
t2 − 3t

) ∣∣∣2
1

+
(
2t2 + 2t

) ∣∣∣3
2

= 2 +
21

2
+ 12 =

49

2
.

7. ∫
x
f ds =

∫ 1

0

[(2t − t)
√

1 + 4t2] dt +

∫ 3

1

(2 − 1 + 2t2 − 4t + 2) dt

= (53/2 − 1)/12 + 22/3 = (53/2 + 87)/12.
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For Exercises 8–16 we will use Definition 1.2.

8. ∫
x

F · ds =

∫ 1

0

(2t + 1, t, 3t − 1) · (2, 1, 3) dt =

∫ 1

0

(14t − 1) dt = (7t2 − t)

∣∣∣∣1
0

= 6.

9. ∫
x

F · ds =

∫ π/2

0

(2 − cos t, sin t) · (cos t, sin t) dt =

∫ π/2

0

(2 cos t − cos2 t + sin2 t) dt

= (2 sin t − (sin 2t)/2)

∣∣∣∣π/2

0

= 2.

10. ∫
x

F · ds =

∫ 1

0

(2t + 1, t + 2) · (2, 1) dt =

∫ 1

0

(5t + 4) dt =

(
5

2
t2 + 4t

)∣∣∣∣1
0

=
13

2
.

11. ∫
x

F · ds =

∫ 1

−1

(t3 − t2, t11) · (2t, 3t2) dt

=

∫ 1

−1

(2t4 − 2t3 + 3t13) dt =

(
2

5
t5 − 1

2
t4 +

3

14
t14
)∣∣∣∣1

−1

=
4

5
.

12. ∫
x

F · ds =

∫ 2π

0

(3 cos t, 6 cos t sin t, 30t cos t sin t) · (−3 sin t, 2 cos t, 5) dt

=

∫ 2π

0

(−9 cos t sin t + 12 cos2 t sin t + 150t cos t sin t) dt

=

∫ 2π

0

−9 cos t sin t dt +

∫ 2π

0

12 cos2 t sin t dt +

∫ 2π

0

75t sin 2t dt.

In the first two integrals, let w = cos t; in the last integrate by parts. Thus∫
x

F · ds =

(
9

2
cos2 t − 4 cos3 t − 75

2
t cos 2t +

75

4
sin 2t

)∣∣∣∣2π

0

= 0 − 0 − 75π + 0 = −75π.

13. ∫
x

F · ds =

∫ 1

0

(−3(t2 + t), 2t + 1, 3e2t) · (2, 2t + 1, et) dt

=

∫ 1

0

(−2t2 − 2t + 1 + 3e3t) dt =
(

2
3
t3 − t2 + t + e3t) ∣∣∣∣1

0

=
2

3
− 1 + 1 + e3 − 1 =

3e3 − 5

3
.

14. ∫
x

F · ds =

∫ 1

−1

(t, 3t2,−2t3) · (1, 6t, 6t2) dt =

∫ 1

−1

(t + 18t3 − 12t5) dt = 0.

15. ∫
x

F · ds =

∫ 4π

0

(t, sin2 t, 2t) · (− sin t, cos t, 1/3) dt =

∫ 4π

0

(−t sin t + sin2 t cos t + 2t/3) dt

=

(
t cos t − sin t +

sin3 t

3
+

t2

3

) ∣∣∣∣4π

0

=
12π + 16π2

3
.
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16. ∫
x

F · ds =

∫ 1

0

(t2 cos t3, t sin t3, t3 sin t6) · (1, 2t, 3t2) dt =

∫ 1

0

(t2 cos t3 + 2t2 sin t3 + 3t5 sin t6) dt

=

(
sin t3

3
− 2 cos t3

3
− cos t6

2

) ∣∣∣∣1
0

=
7 − 7 cos 1 + 2 sin 1

6
.

Assign at least one of Exercises 17 and 19 so that the students are exposed to the notation before they encounter Green’s
theorem in the next section.

17.
∫

x
x dy − y dx =

∫ π

0

[3(cos 3t)2 + 3(sin 3t)2] dt = 3

∫ π

0

dt = 3π.

18.
∫

x
F · ds =

∫ 2

0

(2t, 1, 0) · (1, 6t, 0) dt =

∫ 2

0

8t dt = 16.

19. The good news is: there is a ton of cancellation.∫
x

x dx + y dx
(x2 + y2)3/2

=

∫ 2π

0

e2t cos 3t(2e2t cos 3t − 3e2t sin 3t) + e2t sin 3t(2e2t sin 3t + 3e2t cos 3t)

(e4t cos2 3t + e4t sin2 3t)3/2
dt

=

∫ 2π

0

2e−2t dt = −e−2t

∣∣∣∣2π

0

= 1 − e−4π.

20. Note that x = (t, 2
√

t) and x′ = (1, t−1/2), so∫
C

3y ds =

∫ 9

1

6t1/2

√
1 +

1

t
dt = 40

√
10 − 8

√
2.

21. (a) ∫
x

F · ds =

∫ 1

0

(2t2, t2 − t) · (1, 2t) dt =

∫ 1

0

2t3 dt =
1

2
.

∫
y

F · ds =

∫ 1/2

0

(2 − 8t + 8t2, 4t2 − 2t) · (−2, 8t − 4) dt

=

∫ 1/2

0

(32t3 − 48t2 + 24t − 4) dt = −1

2
.

(b) The path y is an orientation-reversing reparametrization of x.
22. We write the path as x(t) = (t + 1,−4t + 1, 2t + 1), 0 ≤ t ≤ 1. This means that x′(t) = (1,−4, 2), therefore

Work =

∫
C

F · ds =

∫ 1

0

((1 + t)2(1 − 4t) − 4(1 + 2t) + 2(2(1 + t) − (1 − 4t))) dt

=

∫ 1

0

(−4t3 − 7t2 + 2t − 1)

∣∣∣∣1
0

= −10

3
.

23. First we organize the information we need for each of the four paths (each is for 0 ≤ t ≤ 1).

i xi x′
i(t) F(xi(t)) · x′

i(t)
1 (1 − 2t, 1, 3) (−2, 0, 0) −2(486 − 3(1 − 2t))
2 (−1, 1 − 2t, 3) (0,−2, 0) −2(−1)
3 (−1 + 2t,−1, 3) (2, 0, 0) 2(486 − 3(1 − 2t))
4 (1,−1 + 2t, 3) (0, 2, 0) 2(−1)

So

Work =

∫
C

F · ds =
4∑

i=1

∫
xi

F(xi(t)) · x′
i(t) dt

=

∫ 1

0

(−2(486 − 3(1 − 2t))) dt +

∫ 1

0

(2) dt +

∫ 1

0

(2(486 − 3(1 − 2t))) dt +

∫ 1

0

(−2) dt

= 0.
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24. The path is x(t) = (2t + 1, 4t + 1), 0 ≤ t ≤ 1. The integral is

∫
C

(x2 − y) dx + (x − y2) dy =

∫ 1

0

[4t2(2) + (−16t2 − 6t)(4)] dt

=

∫ 1

0

(−56t2 − 24t) dt = −92

3
.

25. The curve C looks like

0.5 1 1.5 2 2.5 3
x

0.2

0.4

0.6

0.8

1

y

Then
∫

C

x2y dx − (x + y) dy =

∫
C1

+

∫
C2

+

∫
C3

+

∫
C4

• C1 is the segment from (0, 0) to (3, 0), given as x(t) = (t, 0), 0 ≤ t ≤ 3 ⇒ x′(t) = (1, 0).

Then
∫

C1

=

∫ 3

0

0 dt − t · 0 = 0.

• C2 is the segment from (3, 0) to (3, 1), given by x(t) = (3, t), 0 ≤ t ≤ 1 ⇒ x′(t) = (0, 1).

Then
∫

C2

=

∫ 1

0

0 − (3 + t) dt =

(
−3t − 1

2
t2
) ∣∣∣∣1

0

= −7/2.

• C3 is the segment from (3, 1) to (1, 1), given by x(t) = (3 − t, 1), 0 ≤ t ≤ 2 ⇒ x′(t) = (−1, 0).

Then
∫

C3

=

∫ 2

0

(3 − t)2(−1) dt − (4 − t) · 0 =
1

3
(3 − t)3

∣∣∣∣2
0

=
1

3
(1 − 27) = −26

3
.

• C4 is the segment from (1, 1) to (0, 0), given by x(t) = (1 − t, 1 − t), 0 ≤ t ≤ 1 ⇒ x′(t) = (−1,−1).

∫
C4

=

∫ 1

0

[(1 − t)3(−1) + (2 − 2t)] dt =

(
1

4
(1 − t)4 + 2t − t2

) ∣∣∣∣1
0

= 2 − 1 − 1

4
=

3

4
.

So
∫

C

= −7

2
− 26

3
+

3

4
= −137

12
.

26. Parametrize C as x(t) = (t2, t3), −1 ≤ t ≤ 1, so that x′(t) = (2t, 3t2). Then

∫
C

x2y dx − xy dy =

∫ 1

−1

(t7(2t) − t5(3t2)) dt =

∫ 1

−1

(2t8 − 3t7) dt =

(
2

9
t9 − 3

8
t8
)∣∣∣∣1

−1

=
4

9
.

27. Parametrize C as x(t) = (3 − t, (3 − t)2), 0 ≤ t ≤ 3, so that the parabola is oriented correctly. Then

∫
C

y dx − x dy =

∫ 3

0

[
(3 − t)2(−1) − (3 − t)(−2(3 − t))

]
dt

=

∫ 3

0

(3 − t)2 dt = − 1
3
(3 − t)3

∣∣∣3
0

= 9.
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28. We parametrize C in two parts: x(t) = (t,−t) for −2 ≤ t ≤ 0 and x(t) = (t, t) for 0 ≤ t ≤ 1. Therefore,∫
C

(x − y)2 dx + (x + y)2 dy =

∫ 0

−2

((2t)2 + 0) dt +

∫ 1

0

(0 + (2t)2) dt

=

∫ 1

−2

4t2 dt =
4

3
t3
∣∣∣1
−2

= 12.

29. In order to obtain the correct direction, we parametrize C as x(t) = (2 sin t, 2 cos t), 0 ≤ t ≤ π. Then∫
C

xy2 dx − xy dy =

∫ π

0

[
(8 sin t cos2 t)(2 cos t) − (4 sin t cos t)(−2 sin t)

]
dt

=

∫ π

0

[
16 cos3 t sin t + 8 sin2 t cos t

]
dt

= −4 cos4 t +
8

3
sin3 t

∣∣∣π
0

= −4 − (−4) = 0.

30. We parametrize the circle as x(t) = (4 cos t, 4 sin t), 0 ≤ t ≤ 2π. Then the circulation is given by∫
x

F · ds =

∫ 2π

0

(16 cos2 t − 4 sin t, 16 cos t sin t + 4 cos t) · (−4 sin t, 4 cos t) dt

=

∫ 2π

0

(−64 cos2 t sin t + 16 sin2 t + 64 cos2 t sin t + 16 cos2 t) dt

=

∫ 2π

0

16 dt = 32π.

31. The path is x(t) = (4t + 1, 2t + 1,−t + 2), 0 ≤ t ≤ 1. The integral is∫
C

yz dx − xz dy + xy dz =

∫ 1

0

[4(−2t2 + 3t + 2) − 2(−4t2 + 7t + 2) − (8t2 + 6t + 1)] dt

=

∫ 1

0

[−8t2 − 8t + 3] dt = −11

3
.

32. We must parametrize C. Along the cylinder we may take x = 2 cos t, y = 2 sin t. Then z = x2 so we have z = 4 cos2 t. The
curve is traced once as t varies from 0 to 2π, so we have∫

C

z dx + x dy + y dz =

∫ 2π

0

[(4 cos2 t)(−2 sin t) + (2 cos t)(2 cos t) + (2 sin t)8 cos t(− sin t)] dt

=

∫ 2π

0

(8 cos2 t(− sin t) + 2(1 + cos 2t) − 16 sin2 t cos t) dt

=

(
8

3
cos3 t + 2t + sin 2t − 16

3
sin3 t

)∣∣∣∣2π

0

= 4π.

33. Using formula (3) in §6.1, we have ∫
x

T · ds =

∫
x
(T · T) ds =

∫
x
1 ds = length of x.

34. Of course it’s left to Becky Thatcher to figure out that the path is x(t) = (5 cos t, 5 sin t), 0 ≤ t ≤ π/2, so the area of one
side of the fence is ∫

C

(10 − x − y) ds =

∫ π/2

0

5(10 − 5 cos t − 5 sin t) dt = 25[π − 2] ≈ 28.54 ft2.

35. (a) The force that Sisyphus is applying is 50x′(t)/‖x′(t)‖. The path is given as x(t) = (5 cos 3t, 5 sin 3t, 10t) and so
x′(t) = (−15 sin 3t, 15 cos 3t, 10) and ‖x′(t)‖ =

√
325. The total work done is∫ 10

0

50x′(t)
‖x′(t)‖ · x′(t) dt =

∫ 10

0

50‖x′(t)‖ dt =

∫ 10

0

50
√

325 dt = 2500
√

13 ft-lb.
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(b) This time the 75 pounds is applied straight down. The total work done is∫ 10

0

(0, 0, 75) · (−15 sin 3t, 15 cos 3t, 10) dt =

∫ 10

0

750 dt = 7500 ft-lb.

36. The force is applied in the direction of (24, 32− 14t). Force is applied in the opposite direction to the tension. The total work
done is ∫ 1

0

25
(24, 32 − 14t)√

242 + (32 − 14t)2
· (0,−14) dt = −(7)(25)

∫ 1

0

32 − 14t√
400 − 224t + 49t2

dt = −250 ft-lb.

37. The path is x(t) = (t, f(t)), a ≤ t ≤ b, and x′(t) = (1, f ′(t)). Since F = yi,∫
C

F · ds =

∫ b

a

(f(t), 0) · (1, f ′(t)) dt =

∫ b

a

f(t) dt.

38. We take the sphere to be of radius c, so that x2 + y2 + z2 = c2. Begin with the hint and take the derivative with respect to t of
[x(t)]2 + [y(t)]2 + [z(t)]2 = c2. Divide the result by 2 to obtain: x(t)x′(t) + y(t)y′(t) + z(t)z′(t) = 0. Now we are ready
to calculate the integral. ∫

x
F · ds =

∫ b

a

(x(t), y(t), z(t)) · (x′(t), y′(t), z′(t)) dt

=

∫ b

a

(x(t)x′(t) + y(t)y′(t) + z(t)z′(t)) dt

=

∫ b

a

0 dt = 0.

39. If x is a parametrization of C, then formula (3) of §6.1 gives
∫

C

∇f · ds =

∫
x
(∇f · T) ds, where T = x′(t)/‖x′(t)‖. But T

is tangent to C and ∇f is perpendicular to level sets of f (including C), so ∇f · T = 0, and thus the integral must be zero.

40. (a) We have ds
dt

= v(s), so dt =
ds

v(s)
. Hence the total time for the trip is

∫
dt =

∫
ds

v(s)
= 2

∫ 20

0

ds
2s + 20

(where l’ve

used symmetry) = ln(2s + 20)
∣∣20
0

= ln 60 − ln 20 = ln 3 ≈ 1.0986 hours or 65.92 min.
(b) On a semicircular path you can travel at a maximum constant speed of 60 mph. You must do so for 20π miles, so the trip

will take 20π

60
= π/3 ≈ 1.047 hrs or 62.83 min.

(c) Traveling through the center of Cleveland (as in part (a)) will take

2

∫ 20

0

ds
s2/16 + 25

= 2

∫ 20

0

16 ds
s2 + 202

= 32

∫ π/4

0

20 sec2 θ dθ
202 sec2 θ

=
32

20

∫ π/4

0

dθ =
8

5
· π

4
=

2π

5
≈ 1.2566 hrs or 75.40 min.

Going around Cleveland will take 20π

50
=

2π

5
—same time!

41. (a) Newton’s second law gives ma = q(E + v × B). Take the dot product with v: ma · v = q(E · v + (v × B) · v) = qE · v
since v × B ⊥ v.

(b)

Work =

∫
x

E · ds =

∫ b

a

E(x(t)) · x′(t) dt =

∫ b

a

E(x(t)) · v(t) dt

=

∫ b

a

ma(t) · v(t) dt by part (a).

If the path has constant speed, then ‖v(t)‖ is constant. Hence v·v is constant so that d

dt
(v·v) = 0 ⇔ 2a·v = 0 ⇔ a·v = 0.

Therefore the integrand of the work integral is zero.
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42. (a) In this case all Δxk = Δx =
1

4
, while Δy1 =

1

16
, Δy2 =

3

16
, Δy3 =

5

16
, Δy4 =

7

16
. Then

T4 =

[
03 + 2

(
1

16

)3

+ 2

(
1

4

)3

+ 2

(
9

16

)3

+ 13

]
1/4

2

+

(
−02 −

(
1

4

)2
)

1/16

2
+

(
−
(

1

4

)2

−
(

1

2

)2
)

3/16

2
+

(
−
(

1

2

)2

−
(

3

4

)2
)

5/16

2

+

(
−
(

3

4

)2

− 12

)
7/16

2
= −2675

8192
≈ −0.326538.

(b) With y = x2 we have dy = 2x dx so that∫
C

y3 dx − x2 dy =

∫ 1

0

(x2)3 dx − x2(2x dx) =

∫ 1

0

(x6 − 2x3) dx

=

(
1

7
x7 − 1

2
x4

)∣∣∣∣1
0

= −5/14 = −0.357143.

43. (a) We have x0 = (0, 0, 0), x1 =

(
1

4
,
1

2
,
3

4

)
, x2 =

(
1

2
, 1,

3

2

)
, x3 =

(
3

4
,
3

2
,
9

4

)
, x4 = (1, 2, 3). Then all Δxk =

1

4
,

Δyk =
1

2
, Δzk =

3

4
. Then

T4 =

(
0 + 2 · 3

8
+ 2 · 3

2
+ 2 · 27

8
+ 6

)
1/4

2
+ (0 + 2 · 1 + 2 · 2 + 2 · 3 + 4)

1/2

2

+

(
0 + 2 · 1

32
+ 2 · 1

4
+ 2 · 27

32
+ 2

)
3/4

2
=

245

32
= 7.65625.

(b) Parametrize C as

⎧⎨
⎩

x = t
y = 2t, 0 ≤ t ≤ 1.
z = 3t

Then

∫
C

yz dx + (x + z) dy + x2y dz =

∫ 1

0

(6t2 + 4t · 2 + 2t3 · 3) dt

=

(
2t3 + 4t2 +

3

2
t4
)∣∣∣∣1

0

=
15

2
= 7.5.

44. (a) We have: Δx1 = 1, Δx2 = 0, Δx3 = 1, Δx4 = Δx5 = Δx6 = Δx7 = 0, Δx8 = −1;
Δy1 = 3, Δy2 = 1, Δy3 = Δy4 = 0, Δy5 = −1, Δy6 = 0, Δy7 = −1, Δy8 = 0;
Δz1 = 0, Δz2 = 1, Δz3 = Δz4 = 1, Δz5 = 0, Δz6 = Δz7 = −1, Δz8 = 0. Then

T8 = (0 + 0)
Δx1

2
+ (0 + 1)

Δx2

2
+ (1 + 2)

Δx3

2
+ (2 + 2)

Δx4

2
+ (2 + 2)

Δx5

2

+ (2 + 3)
Δx6

2
+ (3 + 4)

Δx7

2
+ (4 + 4)

Δx8

2
+ (0 + 1)

Δy1

2

+ (1 + 1)
Δy2

2
+ (1 + 1)

Δy3

2
+ (1 + 2)

Δy4

2
+ (2 + 3)

Δy5

2

+ (3 + 3)
Δy6

2
+ (3 + 3)

Δy7

2
+ (3 + 3)

Δy8

2

+ (1 + 2)
Δz1

2
+ (2 + 2)

Δz2

2
+ (2 + 2)

Δz3

2
+ (2 + 2)

Δz4

2
+ (2 + 3)

Δz5

2
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+ (3 + 3)
Δz6

2
+ (3 + 3)

Δz7

2
+ (3 + 4)

Δz8

2

=
3

2
+ (−4) +

3

2
+ 1 +

(
−5

2

)
+ (−3) + 2 + 2 + 2 + (−3) + (−3) = −11

2
.

(b) Now
Δx1 = x2 − x0 = 1 Δy1 = 4 Δz1 = 1
Δx2 = x4 − x2 = 1 Δy2 = 0 Δz2 = 2
Δx3 = x6 − x4 = 0 Δy3 = −1 Δz3 = −1
Δx4 = x8 − x6 = −1 Δy4 = −1 Δz4 = −1

Then

T4 = (0 + 1)
Δx1

2
+ (1 + 2)

Δx2

2
+ (2 + 3)

Δx3

2
+ (3 + 4)

Δx4

2

+ (0 + 1)
Δy1

2
+ (1 + 2)

Δy2

2
+ (2 + 3)

Δy3

2
+ (3 + 3)

Δy4

2

+ (1 + 2)
Δz1

2
+ (2 + 2)

Δz2

2
+ (2 + 3)

Δz3

2
+ (3 + 4)

Δz4

2

=
1

2
+

3

2
+

(
−7

2

)
+ 2 +

(
−5

2

)
+ (−3) +

3

2
+ 4 +

(
−5

2

)
+

(
−7

2

)

= −11

2
.

6.2 Green’s Theorem

1. M(x, y) = −x2y and N(x, y) = xy2.
• For the line integral the path is x(t) = (2 cos t, 2 sin t), 0 ≤ t ≤ 2π.∮

∂D

M dx + N dy =

∫ 2π

0

(−8 cos2 t sin t, 8 cos t sin2 t) · (−2 sin t, 2 cos t) dt

= 32

∫ 2π

0

sin2 t cos2 t dt

= (4t − sin 4t)

∣∣∣∣2π

0

= 8π.

• For the area calculation, we use polar coordinates:∫∫
D

(Nx − My) dA =

∫∫
D

(y2 + x2) dA =

∫ 2π

0

∫ 2

0

r3 dr dθ

=

∫ 2π

0

4 dθ = 8π.

2. M(x, y) = x2 − y and N(x, y) = x + y2.
• For the line integral, the path is split into four pieces, in each case 0 ≤ t ≤ 1: x1(t) = (2t, 0), x2(t) = (2, t),

x3(t) = (2 − 2t, 1), and x4(t) = (0, 1 − t).∮
∂D

M dx + N dy =

∫ 1

0

[2(4t2) + (2 + t2) − 2(4t2 − 8t + 3) − (t2 − 2t + 1)] dt

=

∫ 1

0

[18t − 5] dt = 4.

• The area calculation is straightforward:∫∫
D

(Nx − My) dA =

∫∫
D

2 dA =

∫ 1

0

∫ 2

0

2 dx dy = 4.
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3. M(x, y) = y and N(x, y) = x2.

• For the line integral, the path is again split into four pieces, in each case 0 ≤ t ≤ 1: x1(t) = (1 − 2t, 1), x2(t) =
(−1, 1 − 2t), x3(t) = (−1 + 2t,−1), and x4(t) = (1,−1 + 2t).∮

∂D

M dx + N dy =

∫ 1

0

[−2(1) + −2(1) + 2(−1) + 2(1)] dt

=

∫ 1

0

−4 dt = −4.

• The area calculation is again straightforward:∫∫
D

(Nx − My) dA =

∫∫
D

(2x − 1) dA =

∫ 1

−1

∫ 1

−1

(2x − 1) dx dy =

∫ 1

−1

−2 dy = −4.

4. M(x, y) = 2y and N(x, y) = x.

• For the line integral, the path is split into two pieces: x1(t) = (a cos t, a sin t), 0 ≤ t ≤ π, and x2(t) = (−a + 2at, 0),
0 ≤ t ≤ 1. ∮

∂D

M dx + N dy =

∫ π

0

(2a sin t, a cos t) · (−a sin t, a cos t) dt +

∫ 1

0

a(0) dt

= a2

∫ π

0

(−2 sin2 t + cos2 t) dt = a2

∫ π

0

(−2 + 3 cos2 t) dt = −πa2

2
.

• We’ll use polar coordinates for the area calculation:∫∫
D

(Nx − My) dA =

∫∫
D

(1 − 2) dA =

∫ π

0

∫ a

0

−r dr dθ =

∫ π

0

−a2

2
dθ = −πa2

2
.

5. M(x, y) = 3y and N(x, y) = −4x.

• For the line integral, the path is x(t) = (2 cos t,
√

2 sin t), 0 ≤ t ≤ 2π.∮
∂D

M dx + N dy =

∫ 2π

0

[
(3
√

2 sin t)(−2 sin t) − (8 cos t)(
√

2 cos t)
]

dt

=

∫ 2π

0

(
−6

√
2 sin2 t − 8

√
2 cos2 t

)
dt

= −2
√

2

∫ 2π

0

(
3 sin2 t + 4 cos2 t

)
dt = −2

√
2

∫ 2π

0

(
3 + cos2 t

)
dt

= −2
√

2

∫ 2π

0

(
3 + 1

2
(1 + cos 2t)

)
dt

= −2
√

2

(
7

2
t +

1

4
sin 2t

) ∣∣∣∣2π

0

= −14
√

2π.

• For the double integral calculation, we have:∫∫
D

(Nx − My) dA =

∫∫
D

(−4 − 3) dA = −7

∫∫
D

dA

= −7 · (area of D) = −7 · 2 ·
√

2 = −14
√

2π.

(See Example 3 in §6.2.) Alternatively, we can let x = 2u, y =
√

2v so that the ellipse x2 + 2y2 = 4 transforms to
u2 + v2 = 1. The Jacobian of this transformation is

∂(x, y)

∂(u, v)
= det

[
2 0

0
√

2

]
= 2

√
2.
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Then, using the change of variables theorem from §5.5,

−7

∫∫
D

dA = −7

∫∫
D∗

2
√

2 du dv = −14
√

2 · (area of D∗) = −14
√

2π,

since D∗ is just the unit disk.
6. M(x, y) = x2y + x and N(x, y) = y3 − xy2.

• In order to make the line integral calculation along the boundary of D, we need two parametrized paths:

x1(t) = (3 cos t, 3 sin t), 0 ≤ t ≤ 2π and x2(t) = (2 cos t, 2 sin t), 0 ≤ t ≤ 2π.

Note, however, that the path x2 goes counterclockwise, which is the wrong orientation for Green’s theorem. We must
take this into account and compute∮

∂D

(x2y + x) dx + (y3 − xy2) dy

=

∫
x1

(x2y + x) dx + (y3 − xy2) dy −
∫
x2

(x2y + x) dx + (y3 − xy2) dy.

Thus we calculate∫
x1

(x2y + x) dx + (y3 − xy2) dy

=

∫ 2π

0

[
(27 cos2 t sin t + 3 cos t)(−3 sin t) + (27 sin3 t − 27 cos t sin2 t)(3 cos t)

]
dt

=

∫ 2π

0

(−162 cos2 t sin2 t − 9 cos t sin t + 81 sin3 t cos t
)

dt

=

∫ 2π

0

(
−81

2
(1 + cos 2t)(1 − cos 2t) − 9 cos t sin t + 81 sin3 t cos t

)
dt

=

∫ 2π

0

(
−81

2
(1 − cos2 2t) − 9 cos t sin t + 81 sin3 t cos t

)
dt

=

∫ 2π

0

(
−81

2
+

81

4
(1 + cos 4t) − 9 cos t sin t + 81 sin3 t cos t

)
dt

=

(
−81

4
t +

81

16
sin 4t − 9

2
sin2 t +

81

4
sin4 t

) ∣∣∣∣2π

0

= −81π

2
.

Similarly, we have∫
x2

(x2y + x) dx + (y3 − xy2) dy

=

∫ 2π

0

[
(8 cos2 t sin t + 2 cos t)(−2 sin t) + (8 sin3 t − 8 cos t sin2 t)(2 cos t)

]
dt

=

∫ 2π

0

(−32 cos2 t sin2 t − 4 cos t sin t + 16 sin3 t cos t
)

dt

=

∫ 2π

0

(−8(1 + cos 2t)(1 − cos 2t) − 4 cos t sin t + 16 sin3 t cos t
)

dt

=

∫ 2π

0

(−8(1 − cos2 2t) − 4 cos t sin t + 16 sin3 t cos t
)

dt

=

∫ 2π

0

(−8 + 4(1 + cos 4t) − 4 cos t sin t + 16 sin3 t cos t
)

dt

=
(−4t + sin 4t − 2 sin2 t + 4 sin4 t

) ∣∣∣2π

0
= −8π.
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Therefore, ∮
∂D

(x2y + x) dx + (y3 − xy2) dy = −81π

2
+ 8π = −65π

2
.

• For the double integral calculation, making use of polar coordinates, we have:∫∫
D

(Nx − My) dA =

∫∫
D

(−y2 − x2) dA =

∫ 2π

0

∫ 3

2

−r2 · r dr dθ

=

∫ 2π

0

− 1
4
(34 − 24) dθ = −π

2
(81 − 16) = −65π

2
.

7. (a) By Green’s theorem, we have∮
C

y2 dx + x2 dy =

∫∫
D

[
∂

∂x
(x2) − ∂

∂y
(y2)

]
dA =

∫ 1

0

∫ 1

0

(2x − 2y) dx dy

=

∫ 1

0

(x2 − 2xy)

∣∣∣∣1
x=0

dy =

∫ 1

0

(1 − 2y) dy = (y − y2)

∣∣∣∣1
0

= 0.

(b) Our path is made up of four straight-line pieces with 0 ≤ t ≤ 1 on each: x1(t) = (t, 0) (so dx = dt, dy = 0),
x2(t) = (1, t) (so dx = 0, dy = dt), x3(t) = (1 − t, 1) (so dx = −dt, dy = 0), and x4(t) = (0, 1 − t) (so dx = 0,
dy = −dt). Therefore,∮

C

y2 dx + x2 dy =

∫
x1

+

∫
x2

+

∫
x3

+

∫
x4

=

∫ 1

0

(0 + t2(0)) dt +

∫ 1

0

(t2(0) + 1) dt

+

∫ 1

0

(1(−1) + (1 − t)2(0)) dt +

∫ 1

0

((1 − t)2(0) + 0) dt

= 0 + 1 − 1 + 0 = 0.

8. M(x, y) = 3xy and N(x, y) + 2x2.

• For the line integral, the path is split into four pieces: x1(t) = (0,−2t), x2(t) = (2t,−2), and x3(t) = (2,−2 + 2t),
with 0 ≤ t ≤ 1, and x4(t) = (cos t + 1, sin t) with 0 ≤ t ≤ π. So∮

C

F · ds =

∫ 1

0

[−2(0) + 2(−12t) + 2(8)] dt +

∫ π

0

[−3 sin2 t(cos t + 1) + 2 cos t(cos t + 1)2] dt

=

∫ 1

0

[−24t + 16] dt +

∫ π

0

[2 cos t + 4 cos2 t + 2 cos3 t − 3 sin2 t − 3 cos t sin2 t] dt

= 4 + π/2.

• If D is the region bounded by C, then∮
C

F · ds =

∫∫
D

(4x − 3x) dA =

∫∫
D

x dA

=

∫ 0

−2

∫ 2

0

x dx dy +

∫ π

0

∫ 1

0

r(r cos θ + 1) dr dθ

=

∫ 0

−2

2 dy +

∫ π

0

[
1

3
cos θ +

1

2

]
dθ = 4 + π/2.

9. Note that the curve is oriented clockwise so the square lies on the right side of the curve.∮
C

(x2 − y2) dx + (x2 + y2) dy = −
∫ 1

0

∫ 1

0

(2x + 2y) dy dx = −
∫ 1

0

(2x + 1) dx = −2.
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10. As we saw in Section 6.1, Work =
∮

C
F · ds. If D is the ellipse x2 + 4y2 = 4 and its boundary is C, then by Green’s theorem

∮
C

(4y − 3x, x − 4y) · ds =

∫∫
D

(1 − 4) dA =

∫ 2

−2

∫ √
1−x2/4

−
√

1−x2/4

−3 dy dx

=

∫ 2

−2

[
−6
√

1 − x2/4
]
dx = −6π.

For Exercises 11, 12, 14, 15, 16 we will calculate the area of a region using formula (1):

area of D =
1

2

∮
∂D

−y dx + x dy.

11. By formula (1), the area is 1

2

∮
∂R

−y dx + x dy. We can work this out, as in the case of Exercises 2 and 3, by enumerating the

paths along the four sides and calculating the integral. We can, however, eliminate a lot of work by first noting that dy = 0
along both horizontal parts of the path and that x = 0 along the left vertical portion of the path. Also, dx = 0 along both
vertical parts of the path and y = 0 along the bottom portion. So

1

2

∮
∂R

−y dx + x dy =
1

2

[∫ a

0

b dx +

∫ b

0

a dy
]

= ab.

12. One arch of the cycloid is produced from t = 0 to t = 2π.

x

1

2

y

pa 2pa
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Because of the orientation shown,

Area =
1

2

∮
C

y dx − x dy =
1

2

∫
C1

+
1

2

∫
C2

.

1

2

∫
C1

=
1

2

∫ 2π

0

(a(1 − cos t) · a(1 − cos t) − a(t − sin t) · a sin t) dt

=
a2

2

∫ 2π

0

((1 − cos t)2 − t sin t + sin2 t) dt =
a2

2

∫ 2π

0

(1 − 2 cos t + cos2 t − t sin t + sin2 t) dt

=
a2

2

∫ 2π

0

(2 − 2 cos t − t sin t) dt =
a2

2
(2t − 2 sin t + t cos t − sin t)

∣∣∣∣2π

0

=
a2

2
(4π + 2π) = 3πa2.

13. By Green’s theorem:

∮
C

(x4y5 − 2y) dx + (3x + x5y4) dy = −
∫∫

D

((3 + 5x4y4) − (5x4y4 − 2)) dA

= −
∫∫

D

5 dA = −5 · area of D = −5(2 + 3 + 4) = −45.

(Note the minus sign because of the orientation of the curve.)
14. A sketch of a hypocycloid with a = 1 is:

-1 -0.5 0.5 1
x

-1

-0.5

0.5

1
y

Let D be the interior of the hypocycloid and let C be the bounding curve traced by the path
x(t) = (a cos3 t, a sin3 t). Then by Green’s theorem,

∫∫
D

dy dx =
1

2

∮
∂D

−y dx + x dy =

∫ 2π

0

[a sin3 t(3a cos3 t sin t) + a cos3 t(3a sin2 t cos t)] dt

=
3a2

2

∫ 2π

0

(cos2 t sin4 t + cos4 t sin2 t) dt =
3πa2

8
.
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15. (a) Shown below are three views of the curve x(t) = (1 − t2, t3 − t).

-1.5 -1 -0.5 0.5 1
x

-1.5

-1

-0.5

0.5

1

1.5

y

0.2 0.4 0.6 0.8 1
x

-0.4

-0.2

0.2

0.4

y

0.2 0.4 0.6 0.8 1
x

0.1

0.2

0.3

y

The figure on the top left is for −3 ≤ t ≤ 3, the top right figure is for −1 ≤ t ≤ 1, and the figure on the bottom is for
−1 ≤ t ≤ 0. The first gives a feel for the curve, the second isolates the closed portion of the curve and the third gives us
the orientation: that as t increases from −1 to 1 the path moves clockwise.

(b) We again must make an adjustment because the path moves clockwise. The area is

1

2

∮
∂D

−y dx + x dy = −
∫ 1

−1

[(t3 − t)(2t) + (1 − t2)(3t2 − 1)] dt

=

∫ 1

−1

(t4 − 2t2 + 1) dt =
8

15
.

16. In this exercise, we are finding the area of the region D that is outside the ellipse and inside the circle.
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-4 -2 2 4
x

-4

-2

2

4

y

We need to orient the boundary curve C so that the path travels counterclockwise around the circle and clockwise around the
ellipse. We split this path into two pieces, each with 0 ≤ t ≤ 2π, x1(t) = (5 cos t, 5 sin t) and x2(t) = (3 cos t,−2 sin t).
By Green’s theorem,∫∫

D

dA =
1

2

∮
∂D

−y dx + x dy

=
1

2

∫ 2π

0

[(−5 sin t)(−5 sin t) + (5 cos t)(5 cos t)] dt

+
1

2

∫ 2π

0

[(2 sin t)(−3 sin t) + (3 cos t)(−2 cos t)] dt

=
1

2

∫ 2π

0

25 dt +
1

2

∫ 2π

0

(−6) dt = 19π.

17. It is easier if we work from the line integral to the double integral. By Green’s theorem,∮
∂D

x dy =

∫∫
D

(
∂x

∂x

)
dA =

∫∫
D

dA = Area of D.

Similarly, also by Green’s theorem,

−
∮

∂D

y dx = −
∫∫

D

(
−∂y

∂y

)
dA =

∫∫
D

dA = Area of D.

Note: Assign Exercises 17 and 18 together to point out that the students cannot mix the two line integrals given in Exercise 17.
The quadrilateral in Exercise 18 has one vertical side and one horizontal side so there is a temptation to use the integral with a dx
in it along the vertical side and the integral with a dy in it along the horizontal side so that they disappear. You must choose one or
the other for the entire problem.

18. We’ll use the results of Exercise 17. If we use the formula
∮

∂D
x dy, then for the side connecting (1, 1) to (−1, 1), since there

is no change in y, this integral is 0. Therefore,

Area of D =

∮
C

x dy =

∫ 1

0

((2 − t)(2) + 1(−1) + 0 + (−1 + 3t)(−1)) dt =

∫ 1

0

(4 − 5t) dt =
3

2
.

19. The area inside the polygon may be computed from

1

2

∮
C

−y dx + x dy.

The key is to parametrize the boundary C of the polygon. This may be done in n line segment pieces. For k = 1, . . . , n − 1,
the line segment from (ak, bk) to (ak+1, bk+1) is

xk(t) = ((ak+1 − ak)t + ak, (bk+1 − bk)t + bk), 0 ≤ t ≤ 1,
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while the last segment from (an, bn) to (a1, b1) is

xn(t) = ((a1 − an)t + an, (b1 − bn)t + bn), 0 ≤ t ≤ 1.

Thus, for k = 1, . . . , n − 1, we have

1

2

∫
xk

− y dx + x dy

=
1

2

∫ 1

0

[((bk − bk+1)t − bk)(ak+1 − ak) + ((ak+1 − ak)t + ak)(bk+1 − bk)] dt

=
1

2

∫ 1

0

[(bk − bk+1)(ak+1 − ak)t − bk(ak+1 − ak)

+ (ak+1 − ak)(bk+1 − bk)t + ak(bk+1 − bk)] dt

=
1

2

∫ 1

0

(−ak+1bk + akbk + akbk+1 − akbk) dt

=
1

2

∫ 1

0

(−ak+1bk + akbk+1) dt =
1

2
(−ak+1bk + akbk+1) =

1

2

∣∣∣∣ ak bk

ak+1 bk+1

∣∣∣∣ .
For the last segment, the calculation is very similar, so we abbreviate the steps:

1

2

∫
xk

− y dx + x dy

=
1

2

∫ 1

0

[((bn − b1)t − bn)(a1 − an) + ((a1 − an)t + an)(b1 − bn)] dt

=
1

2

∫ 1

0

(−a1bn + anb1) dt =
1

2
(−a1bn + anb1) =

1

2

∣∣∣∣an bn

a1 b1

∣∣∣∣ .
Adding the results of these calculations, we obtain

1

2

∮
C

−y dx + x dy =
1

2

(∣∣∣∣a1 b1

a2 b2

∣∣∣∣+
∣∣∣∣a2 b2

a3 b3

∣∣∣∣+ · · · +
∣∣∣∣an−1 bn−1

an bn

∣∣∣∣+
∣∣∣∣an bn

a1 b1

∣∣∣∣
)

,

as desired.
20. (a) Using the hint, we see that ‖x(t)‖2 = a2 when

((a + 1) cos t − cos (a + 1)t)2 + ((a + 1) sin t − sin (a + 1)t)2 = a2.

Expanding and simplifying the left side gives

(a + 1)2+1 − 2(a + 1) cos t cos (a + 1)t − 2(a + 1) sin t sin (a + 1)t = a2

⇐⇒ 2a + 2 − 2(a + 1) (cos t cos (a + 1)t + sin t sin (a + 1)t) = 0

⇐⇒ cos t cos (a + 1)t + sin t sin (a + 1)t = 1.

Using the subtraction formula for cosine, this last equation becomes

cos (a + 1)t − t = 1 ⇐⇒ cos at = 1 ⇐⇒ t =
2πn

a
.

The graphs for of the epicycloids for a = 5 and a = 6 are shown.
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-6 -4 -2 2 4 6 x
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a � 6

(b) When a is an integer larger than 1, the epicycloid traces its complete image once for t in [0, 2π). To compute the enclosed
area, we use the line integral 1

2

∮
C
−y dx + x dy. Thus the area is

1

2

∫ 2π

0

[((a + 1) sin t − sin (a + 1)t) (−(a + 1) sin t + (a + 1) sin (a + 1)t)

+ ((a + 1) cos t − cos (a + 1)t) ((a + 1) cos t − (a + 1) cos (a + 1)t)] dt

=
1

2

∫ 2π

0

[
(a + 1)2 − ((a + 1) + (a + 1)2

)
(cos (a + 1)t cos t + sin (a + 1)t sin t)

+ (a + 1)] dt

=
(a + 1)

2

∫ 2π

0

[(a + 1) − (a + 2) (cos (a + 1)t cos t + sin (a + 1)t sin t) + 1] dt

=
(a + 1)(a + 2)

2

∫ 2π

0

[1 − (cos (a + 1)t cos t + sin (a + 1)t sin t)] dt

after expansion and some simplification. Next we use the subtraction formula for cosine:

Area =
(a + 1)(a + 2)

2

∫ 2π

0

(1 − cos at) dt

=
(a + 1)(a + 2)

2

(
t − 1

a
sin at

) ∣∣∣2π

0
= π(a + 1)(a + 2).

(Note that we used the fact that a is an integer when evaluating the final integral.)
(c) The area of the fixed circle is πa2. Thus

lim
a→∞

π(a + 1)(a + 2)

πa2
= lim

a→∞

(
1 +

1

a

)(
1 +

2

a

)
= 1.

Hence, in the limit, the epicycloid’s area approaches that of the fixed circle.
21. By Green’s theorem,

∮
C

5y dx − 3x dy =

∫∫
D

(−3 − 5) dA =

∫∫
D

−8 dA = −8(area of D),
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where D is the region in the plane enclosed by the cardioid. We may evaluate the double integral using polar coordinates.∫∫
D

−8 dA = −8

∫ 2π

0

∫ 1−sin θ

0

r dr dθ

= −8

∫ 2π

0

1
2
r2
∣∣∣r=1−sin θ

r=0
dθ = −4

∫ 2π

0

(1 − sin θ)2 dθ

= −4

∫ 2π

0

(1 − 2 sin θ + sin2 θ) dθ = −4

∫ 2π

0

(
1 − 2 sin θ + 1

2
(1 − cos 2θ)

)
dθ

= −4
(

1
2
θ + 2 cos θ − 1

4
sin 2θ

) ∣∣∣2π

0
= −12π.

22. (a) Note that we have
∂

∂x

y

x2 + y2
= − 2xy

x2 + y2
=

∂

∂y

x

x2 + y2
.

Therefore, Green’s theorem implies that, for the region D enclosed by C∮
C

x dx + y dy

x2 + y2
= ±
∫∫

D

(
− 2xy

x2 + y2
−
(
− 2xy

x2 + y2

))
dA = ±

∫∫
D

0 dA = 0.

(The ± sign is due to the fact that we do not know the orientation of C, not that it ultimately matters.)
(b) Green’s theorem does not apply since M and N are not defined at the origin, which is in the region D enclosed by C.
(b) If C1 and C2 both enclose the origin and don’t cross or touch, then one of the curves must lie entirely inside the other.

Let’s assume that C2 lies inside C1. Together, C1 and C2 make up the boundary of a region D that does not contain the
origin. Thus we may apply Green’s theorem to D and its boundary:

0 =

∫∫
D

(
∂

∂x

y

x2 + y2
− ∂

∂y

x

x2 + y2

)
dA =

∮
∂D

x dx + y dy

x2 + y2

=

∮
C1

x dx + y dy

x2 + y2
−
∮

C2

x dx + y dy

x2 + y2
.

Hence the desired result follows. Note that the orientation of ∂D requires a counterclockwise orientation on the outer
curve, but a clockwise orientation on the inner curve.

(c) Find a circle C′ of some small radius a so that C′ lies entirely inside C and is oriented the same way that C is. Then,
from part (c), we know that ∮

C

x dx + y dy

x2 + y2
=

∮
C′

x dx + y dy

x2 + y2
.

We may evaluate this last integral using the parametrization x(t) = (a cos t, a sin t), 0 ≤ t ≤ 2π. Thus∮
C′

x dx + y dy

x2 + y2
= ±
∫ 2π

0

(a cos t)(−a sin t) + (a sin t)(a cos t)

a2
= ±
∫ 2π

0

0 dt = 0.

(Once again the ± sign is due to the fact that we do not know the actual orientation of C′.)
23. (a) By the divergence theorem:∮

C

(2yi − 3xj) · n ds =

∫∫
D

[(2y)x + (−3x)y] dA =

∫∫
D

0 dA = 0.

(b) For direct computation, n = (cos θ, sin θ) and x = cos θ and y = sin θ. Therefore,

F · n = (2y,−3x) · (cos θ, sin θ) = 2 cos θ sin θ − 3 cos θ sin θ = − cos θ sin θ = −1

2
sin 2θ.

Then ∮
C

F · n ds = −1

2

∫ 2π

0

sin 2θ dθ = 0.
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24. Similar to what was done in the proof of the divergence theorem, we will calculate the line integral
∮

∂D

F · T ds along a C1

segment of ∂D. Recall that T(t) = x′(t)/‖x′(t)‖.∫ b

a

(F(x(t)) · T(t)) ‖x′(t)‖ dt =

∫ b

a

(F(x(t)) · x′(t)) dt

=

∫ b

a

((M(x(t), y(t)) x′(t) + N(x(t), y(t)) y′(t)) dt =

∫
x
M dx + N dy.

We extend this result to the entire curve and apply Green’s theorem.∮
∂D

F · T ds =

∮
∂D

M dx + N dy =

∫∫
D

(Nx − My) dA.

25. By Green’s Theorem, if D is the region bounded by C,∮
C

3x2y dx + x3 dy =

∫∫
D

(3x2 − 3x2) dA = 0.

(Note that in this case the orientation of C is not important as −(3x2 − 3x2) = 3x2 − 3x2.)
26. If C is oriented as required and D is the region bounded by C, then by Green’s Theorem,∮

C

−y3 dx + (x3 + 2x + y) dy =

∫∫
D

(3x2 + 2 + 3y2) dA > 0.

27. Let δ = 1 if C is oriented counterclockwise and δ = −1 if C is oriented clockwise. Let D be the region bounded by C. Then
by Green’s Theorem,∮

C

(x2y3 − 3y) dx + x3y2 dy = δ

∫∫
D

(3x2y2 − 3x2y2 + 3) dA = 3δ (the area of the rectangle).

28.

Flux =

∮
C

(r · n) ds =

∫ b

a

(xi + yj) · y′i − x′j√
x′2 + y′2

√
x′2 + y′2 dt

=

∫ b

a

(
x
dy
dt

− y
dx
dt

)
dt =

∫
C

−y dx + x dy

=

∫∫
D

(1 − (−1)) dA by Green’s theorem

=

∫∫
D

2 dA = 2 · (area inside C).

29. We have u∇v =

(
u

∂v

∂x
, u

∂v

∂y

)
so that

∮
C

(u∇v) · ds =

∮
C

u
∂v

∂x
dx + u

∂v

∂y
dy

=

∫∫
D

(
∂

∂x

(
u

∂v

∂y

)
− ∂

∂y

(
u

∂v

∂x

))
dA by Green’s theorem

=

∫∫
D

(
∂u

∂x

∂v

∂y
+ u

∂2v

∂x ∂y
− ∂u

∂y

∂v

∂x
− u

∂2v

∂y ∂x

)
dA

=

∫∫
D

(
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

)
dA since v is of class C2

=

∫∫
D

∂(u, v)

∂(x, y)
dA.
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30. Let D be the region bounded by C. By Green’s theorem,∮
C

∂f

∂y
dx − ∂f

∂x
dx = −

∫∫
D

(
∂2f

∂y2
+

∂2f

∂x2

)
dA = −

∫∫
D

0 dA = 0.

31. First,
∮

∂D

∂f

∂n
ds =

∮
∂D

∇f · n ds =

∮
∂D

(
∂f

∂x
i +

∂f

∂y
j
)

· n ds. You can continue the calculation or note that this is the

same computation done in the proof of the divergence theorem with F = M i + N j =
∂f

∂x
i +

∂f

∂y
j. Therefore, applying

Green’s theorem, ∮
∂D

∂f

∂n
ds =

∮
∂D

−∂f

∂y
dx +

∂f

∂x
dy =

∫∫
D

(
∂2f

∂x2
+

∂2f

∂y2

)
dA =

∫∫
D

∇2f dA.

6.3 Conservative Vector Fields

1. (a) Let C be the path parametrized by x(t) = (t, t, t) with 0 ≤ t ≤ 1. Then∫
C

z2 dx + 2y dy + xz dz =

∫ 1

0

(t2 + 2t + t2) dt = 2

∫ 1

0

(t2 + t) dt =
5

3
.

(b) Let x(t) = (t, t2, t3) with 0 ≤ t ≤ 1. Then∫
C

z2 dx + 2y dy + xz dz =

∫ 1

0

(t6 + 2t2(2t) + t4(3t2)) dt = 4

∫ 1

0

(t6 + t3) dt =
11

7
.

(c) Parts (a) and (b) show that line integrals are not path-independent. By Theorem 3.3, therefore, F is not conservative.
2. (a) Let C be the path parameterized by x(t) = (t2, t3, t5) with 0 ≤ t ≤ 1. Then∫

C

F · ds =

∫ 1

0

(2t5, t4 + t10, 2t8) · (2t, 3t2, 5t4) dt =

∫ 1

0

(7t6 + 13t12) dt = 2.

(b) Let C be comprised of the two paths: x1(t) = (t, 0, 0) and x2(t) = (1, t, t) each with 0 ≤ t ≤ 1. The integral along x1

is easily seen to be zero (y, z, and dx are all identically zero along x1). We have that∫
C

F · ds =

∫ 1

0

(2t, 1 + t2, 2t) · (0, 1, 1) dt = 2.

(c) Obviously the fact that our answers to parts (a) and (b) are the same is not enough to convince us that F is conservative.
We can, however, easily see that F = ∇ (x2y + yz2) so F is conservative.

In Exercises 3–9, we will check to see whether F = M i + N j is conservative by checking to see whether ∂N/∂x = ∂M/∂y
(formula (1)).

3. ∂N

∂x
= yexy �= ex+y =

∂M

∂y
, so F is not conservative.

4. ∂N

∂x
= 2x cos y =

∂M

∂y
, so F is conservative. We want to find f where F = ∇f(x, y). We find that the indefinite integral

of 2x sin y with respect to x is x2 sin y. To see whether any adjustments need to be made, we check to make certain that
∂

∂y
(x2 sin y) = x2 cos y. It does, so we conclude that f(x, y) = ∇(x2 sin y).

5. ∂N

∂x
= 3x2 sin y +

1 − x2y2

(1 + x2y2)2
�= −3x2 sin y +

1 − x2y2

(1 + x2y2)2
=

∂M

∂y
, so F is not conservative.

6. ∂N

∂x
=

2xy

(1 + x2)2
=

∂M

∂y
, so F is conservative. F = ∇

(
x2y2

2(1 + x2)

)
.

7. Note that ∂

∂y
(e−y − y sin(xy)) = −e−y − sin xy − xy cos xy =

∂

∂x
(−xe−y − x sin xy). Since the domain of F is all of

R2, the vector field is conservative. Thus F = ∇f , so ∂f

∂x
= e−y − y sin xy ⇒ f(x, y) = xe−y + cos xy + g(y) for some

g. Hence ∂f

∂y
= −xe−y − x sin xy + g′(y) = −xe−y − x sin xy so g′(y) = 0. Thus f(x, y) = xe−y + cos xy + C is a

potential for any C.
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8. ∂N

∂x
= 12xy − y �= 12xy + 6y =

∂M

∂y
, so F is not conservative.

9. ∂N

∂x
= 12xy =

∂M

∂y
, so F is conservative. F = ∇ (3x2y2 − x3 + 1

3
y3
)
.

In Exercises 10–18, we will check to see whether F = M i + N j + Pk is conservative by checking whether ∇× F = 0. This
amounts to checking whether ∂N/∂x = ∂M/∂y, ∂P/∂x = ∂M/∂z, and ∂P/∂y = ∂N/∂z. We also need to check that the
domain of F is simply-connected. This last condition is only an issue in Exercise 16.

10. ∇× F = (6x2 − 2yz − 6x2z2 − 2y) i + (3xyz2 − 2z − 12xy) j + (3xz3 − x) i �= 0. Hence F is not conservative.
11. We see that ∂N/∂x = 4xz3 − 2x = ∂M/∂y, ∂P/∂x = 12xyz2 = ∂M/∂z, and ∂P/∂y = 6x2z2 + 2y = ∂N/∂z. Thus

F is conservative. F = ∇ (2x2yz3 − x2y + y2z
)
.

12. ∇× F = (2xexyz + 2x2yzexyz)i − (2zexyz + 2xyz2exyz)k �= 0. Hence F is not conservative.
13. We see that ∂N/∂x = 1 = ∂M/∂y, ∂P/∂x = 0 = ∂M/∂z, and ∂P/∂y = cos yz − yz sin yz = ∂N/∂z. So F is

conservative. F = ∇(x2 + xy + sin yz).
14. Here, ∂N/∂x = 0 �= 1 = ∂M/∂y, so F is not conservative.
15. We see that ∂N/∂x = ex cos y = ∂M/∂y, ∂P/∂x = 0 = ∂M/∂z, and ∂P/∂y = 0 = ∂N/∂z. So F is conservative.

F = ∇(ex sin y + z3 + 2z).
16. We see that ∂N/∂x = 0 = ∂M/∂y, ∂P/∂x = 0 = ∂M/∂z, and ∂P/∂y = 2z/y = ∂N/∂z. So F is conservative in each of

the simply-connected regions on which it is defined: {(x, y, z)|y > 0} and {(x, y, z)|y < 0}. On each, F = ∇(x3 +z2ln|y|).
17. We see that ∂N/∂x = ze−yz + exyz(xyz2 + z) = −∂M/∂y, so F is not conservative.
18. We see that, for G, ∂N/∂x = 2x = ∂M/∂y, ∂P/∂x = 0 = ∂M/∂z, and ∂P/∂y = 2y = ∂N/∂z. So G = (2xy, x2 +

2yz, y2) is conservative and G = ∇(x2y + y2z). We know, therefore, that F is not conservative because the wording
of the problem assured us that exactly one of F and G was conservative. It may be more satisfying to verify that for F,
∂M/∂y = 2xyz3 while ∂N/∂x = 4xy. These are different so F is not conservative.

19. (a) We have, for i = 1, . . . , n, that fxi
(x) = 0 for all x in the domain of f . Taking these results one at a time, we have

fx1
(x) = 0 =⇒ f is a function of x2, . . . , xn only.

fx2
(x) = 0 =⇒ in addition f is a function of x3, . . . , xn only.

...

Continuing in this way, we see that f must be independent of all variables, and so must be a constant function.
(b) We have ∇g = ∇h = F. Consider f = g − h. Then

∇f = ∇g −∇h = F − F = 0.

Therefore, by part (a), f = g − h is constant.
20. For F to be conservative, we must have

∂M

∂y
=

∂

∂y
(x sin y − y cos x) = sin y + y sin x.

Thus
M(x, y) = − cos y + 1

2
y2 sin x + u(x),

where u is any C1 function of x.

21. For F to be conservative, we must have ∂N

∂x
=

∂

∂y
(ye2x + 3x2ey) = e2x + 3x2ey . Thus N(x, y) =

1

2
e2x + x3ey + u(y)

where u is any C1 function of y.
22. Note that the constant function g(x) = 0 is a trivial solution. Otherwise, we must have

∂

∂y

[
(xex + y2)g(x)

]
=

∂

∂x
[xyg(x)] .

Thus means that

2yg(x) = yg(x) + xyg′(x) ⇐⇒ g′(x)

g(x)
=

1

x
.
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Integrating this last equation, we have

ln |g(x)| = ln |x| + C or ln

∣∣∣∣g(x)

x

∣∣∣∣ = C.

Exponentiating, we have ∣∣∣∣g(x)

x

∣∣∣∣ = k,

where k = eC . Thus g(x) = ±kx. If we allow k to be completely arbitrary (i.e., positive, negative, or zero), then we may
simply say g(x) = kx for any constant k gives a solution.

23. For F to be conservative, we must have ∇× F = 0. Thus we demand

0 = ∇× F =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
x3y − 3x2z N(x, y, z) 2yz − x3

∣∣∣∣∣∣
= (2z − Nz) i + (−3x2 + 3x2) j + (Nx − x3)k.

From this, we see that N must satisfy ∂N/∂x = x3 and ∂N/∂z = 2z. The first equation implies that N(x, y, z) =
1
4
x4 + g(y, z), and so 2z = ∂N/∂z = ∂g/∂z, which in turn implies that g(y, z) = z2 + h(y). From here it is easy to check

that the curl condition above is satisfied when N(x, y, z) = 1
4
x4 + z2 + h(y), where h is any function of class C1 defined on

a simply-connected domain.
24. For F to be conservative, we must have ∇× F = 0. Thus we impose

0 = ∇× F =

∣∣∣∣∣∣∣∣
i j k
∂

∂x

∂

∂y

∂

∂z
3x2 + 3y2z sin xz ay cos xz + bz 3xy2 sin xz + 5y

∣∣∣∣∣∣∣∣
= (6xy sin xz + 5 + axy sin xz − b)i

+ (3y2 sin xz + 3xy2z cos xz − 3y2 sin xz − 3xy2z cos xz)j

+ (−ayz sin xz − 6yz sin xz)k.

From this, it is easy to see that only the choices a = −6, b = 5 will work. Moreover, the resulting vector field is clearly
defined on all of R3 (a simply-connected region), so the vanishing of the curl is enough to guarantee that F is conservative.

25. (a) As above we check that ∂N/∂x = 0 = ∂M/∂y, ∂P/∂x = 0 = ∂M/∂z, and ∂P/∂y = cos y cos z = ∂N/∂z. So F is
conservative. F = ∇(x3/3 + sin y sin z).

(b) By Theorem 3.3,∫
x

F · ds = f(x(1)) − f(x(0)) = f(2, e, e2) − f(1, 1, 1) = 7/3 + sin e sin(e2) − sin2 1.

26. Since (7y − 5x)x = −5 = (3x − 5y)y, F = (3x − 5y)i + (7y − 5x)j is conservative and the integral is path independent.
We’ll integrate along the path x(t) = (4t + 1,−t + 3) for 0 ≤ t ≤ 1.∫

C

(3x − 5y) dx + (7y − 5x) dy =

∫ 1

0

[4(3(4t + 1) − 5(−t + 3)) − ((7(−t + 3) − 5(4t + 1))] dt

=

∫ 1

0

(95t − 64) dt = −33

2
.

Using Theorem 3.3, ∫
C

(3x − 5y) dx + (7y − 5x) dy = f(5, 2) − f(1, 3), where F = ∇f.

In this case, f(x, y) = 3x2/2 − 5xy + 7y2/2. Therefore,∫
C

(3x − 5y) dx + (7y − 5x) dy =

(
3

2
(25) − 5(5)(2) +

7

2
(4)

)
−
(

3

2
(1) − 5(1)(3) +

7

2
(9)

)
= −33

2
.
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27. Here
∂

∂x

(
y√

x2 + y2

)
= − xy

(x2 + y2)3/2
=

∂

∂y

(
x√

x2 + y2

)
.

So F is conservative so long as we restrict the domain. Our domain must be simply-connected and must contain the upper half
of the circle of radius 2 centered at the origin. Our domain also must not contain the origin as F is not defined at the origin. We
can choose, for example, the upper half disk of radius 3 centered at the origin minus the upper half disk of radius one centered
at the origin. This “semi-annular” region meets all of our conditions. Therefore, the given integral is path independent. We’ll
integrate along the path x(t) = (2 cos t, 2 sin t), 0 ≤ t ≤ π. The integral∫

C

x dy + y dx√
x2 + y2

=

∫ π

0

4 cos2 t − 4 sin2 t

4 cos2 t + 4 sin2 t
dt =

∫ π

0

cos 2t dt =
sin 2t

2

∣∣∣∣π
0

= 0.

Using Theorem 3.3, and the fact that F = ∇f where f(x, y) =
√

x2 + y2,∫
C

x dy + y dx√
x2 + y2

= f(−2, 0) − f(2, 0) =
√

(−2)2 + 0 −
√

22 + 0 = 0.

28. This time we check that three pairs of partial derivatives are equal:

∂

∂x
(2x + z) = 2 =

∂

∂y
(2y − 3z)

∂

∂x
(y − 3x) = −3 =

∂

∂z
(2y − 3z)

∂

∂y
(y − 3z) = 1 =

∂

∂z
(2x + z).

We conclude that F is conservative, because the domain of F is all of R3. The given integral, therefore, is path independent.
We’ll integrate along the paths x1(t) = (0, t, t), 0 ≤ t ≤ 1, and x2(t) = (t, t + 1, 2t + 1), 0 ≤ t ≤ 1. The integral∫

C

(2y − 3z) dx + (2x + z) dy + (y − 3x) dz

=

∫ 1

0

(0(−t) + 1(t) + 1(t)) dt +

∫ 1

0

((−4t − 1) + (4t + 1) + 2(−2t + 1)) dt

=

∫ 1

0

2t dt +

∫ 1

0

(−4t + 2) dt = 1 + 0 = 0.

Using Theorem 3.3, and the fact that F = ∇f where f(x, y, z) = 2xy − 3xz + yz, we obtain∫
C

(2y − 3z) dx + (2x + z) dy + (y − 3x) dz = f(1, 2, 3) − f(0, 0, 0) = 1.

In Exercises 29–32, to determine the work, we need to calculate line integrals of the form
∫

C
F ·ds, where C is an appropriate

curve from A to B. To do this, we use the result of Theorem 3.3, since all of the vector fields in these exercises are conservative.

29. A potential function for F is easily calculated to be f(x, y) = x3y − xy2. Thus, for any curve C from (0, 0) to (2, 1) the
work is ∫

C

F · ds = f(2, 1) − f(0, 0) = 6 − 0 = 6.

30. A potential function for F is f(x, y) = 2x3/2y. Thus the work is

f(9, 1) − f(1, 2) = 54 − 4 = 50.

31. A potential function for F is f(x, y, z) = x2yz − xy2z3. Therefore, the work is

f(6, 4, 2) − f(1, 1, 1) = −480 − 0 = −480.

32. A potential function for F is f(x, y, z) = x2y cos z. Hence the work is

f(2, 3, 0) − f(1, 1, π/2) = 12 − 0 = 12.
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33. (a) We’ll check to see where Nx = My .

∂

∂x

(
x2 + 1

y3

)
=

2x

y3
=

∂

∂y

(
x + xy2

y2

)
,

therefore, F is conservative on each of the two simply-connected sets on which it is defined. More precisely, F is conser-
vative on {(x, y)|y > 0} and on {(x, y)|y < 0}.

(b) The scalar potential is f(x, y) =
x2 + x2y2 + 1

2y2
.

(c) As the particle moves from (0, 1) to (1, 1) along the parabola y = 1 + x − x2 we note that y > 0 and so the path lies
entirely in one of the simply-connected regions. We can, therefore, apply Theorem 3.3 and calculate the work done as
f(1, 1) − f(0, 1) = 3/2 − 1/2 = 1.

34. (a) We need to check that three pairs of partial derivatives are equal:

∂

∂x
(x + g(y) + z) = 1 =

∂

∂y
(f(x) + y + z)

∂

∂x
(x + y + h(z)) = 1 =

∂

∂z
(f(x) + y + z)

∂

∂y
(x + y + h(z)) = 1 =

∂

∂z
(x + g(y) + z).

(b) F = ∇φ(x, y, z) where, for constants a, b, and c,

φ(x, y, z) = xy + xz + yz +

∫ x

a

f(t) dt +

∫ y

b

g(t) dt +

∫ z

c

h(t) dt.

(c) Using Theorem 3.3,∫
C

F · ds = φ(x1, y1, z1) − φ(x0, y0, z0)

= x1y1 − x0y0 + x1z1 − x0z0 + y1z1 − y0z0 +

∫ x1

x0

f(t) dt +

∫ y1

y0

g(t) dt +

∫ z1

z0

h(t) dt.

35. (a) F is conservative since F = ∇f where f(x, y, z) = sin(x2 + xz) + cos(y + yz).
(b) Since we have a potential function,∫

x
F · ds =

∫
x
∇f · ds = f(x(1)) − f(x(0))

= f(1, 1, π − 1) − f(0, 0, 0) = −2.

36. (a) G = F + xj, where F is given in Exercise 35. Now ∇× G = ∇× F + ∇× (xj) = k �= 0, so G is not conservative.
(b) Here we have that ∫

x
G · ds =

∫
x
(F + xj) · ds =

∫
x

F · ds +

∫
x
xj · ds.

From Exercise 35, we have that
∫

x
F · ds = −2, so

∫
x

G · ds = −2 +

∫ 1

0

(0, t3, 0) ·
(

3t2, 2t, π − π

2
cos

πt

2

)
dt

= −2 +

∫ 1

0

2t4 dt = −2 + 2/5 = −8

5
.

37. You could check that F is conservative by confirming that ∇× F = 0 on any simply-connected region that misses the origin.
It is, however, easy enough to find the scalar potential for F is f(x, y, z) = GMm(x2 + y2 + z2)−1/2. So the work done by
F as a particle of mass m moves from x0 to x1 is

f(x1, y1, z1) − f(x0, y0, z0) =
GMm√

x2
1 + y2

1 + z2
1

− GMm√
x2

0 + y2
0 + z2

0

= GMm

(
1

‖x1‖ − 1

‖x0‖
)

.
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True/False Exercises for Chapter 6

1. True.
2. False. (The value is 2.)
3. False. (The integral is negative.)
4. True.
5. False. (The integral is 0.)
6. True.
7. False. (There is equality only up to sign.)
8. False.
9. True.

10. True.
11. True.
12. False. (∇f is everywhere normal to C.)
13. True.
14. False. (The work is at most 3 times the length of C.)
15. False. (The line integral could be ± ∫

C
‖F‖ ds, depending on whether F points in the same or the opposite direction as C.)

16. True. (Just use Green’s theorem.)
17. False. (Let F = yi − xj and consider Green’s theorem.)
18. True. (Use the divergence theorem in the plane.)
19. False. (Under appropriate conditions, the integral is f(B) − f(A).)
20. True.
21. True.
22. False. (There’s a negative sign missing.)
23. False. (For the vector field to be conservative, the line integral must be zero for all closed curves, not just a particular one.)
24. True.
25. False. (The vector field (ex cos y sin z, ex sin y sin z, ex cos y cos z) is not conservative.)
26. False. (F must be of class C1 on a simply-connected region.)
27. False. (The domain is not simply-connected.)
28. True.
29. False. (f is only defined up to a constant.)
30. True.

Miscellaneous Exercises for Chapter 6

1. Partition the curve into n pieces each of length Δsk = (length of C)/n. The right side of the given formula is just our
calculation of arclength for a rectifiable curve: ∫

C
f ds

length of C
=

∫
C

f ds∫
C
ds

.

Now, if on the kth sub-interval we choose any ck, then on the interval f(x) ≈ f(ck). Therefore,

lim
n→∞

(
1

n

n∑
k=1

f(ck)

)
= lim

n→∞

n∑
k=1

f(ck)

n
=

limn→∞
∑n

k=1 f(ck)Δsk

length of C
=

∫
C

f ds
length of C

.

For each value of n we are calculating an average of n values of f at points on the curve. As n grows large, if this limit exists,
it is reasonable to define it as the average value of f along C.

2. Here f(x(t)) = 2 + 2t2, and ‖x′(t)‖ =
√

2. Therefore,

[f ]avg =

∫
C

f ds∫
C
ds

=

∫ 3π

0
((2t2 + 2)

√
2) dt∫ 3π

0

√
2 dt

=
2

3π

∫ 3π

0

(t2 + 1) dt =
2

3π
(9π3 + 3π) = 6π2 + 2.
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3. We may parametrize the semicircle as x(t) = (a cos t, a sin t), where 0 ≤ t ≤ π. Therefore, ‖x′(t)‖ = a. The length of the
semicircle is πa and so the average y-coordinate may be found by calculating

1

πa

∫ π

0

a sin t · a dt =
a

π

∫ π

0

sin t dt =
2a

π
.

4. Calculate [z]avg as

∫
C

z ds

length of C . The total length of C is just the sum of the lengths of four straight segments:

2 + 1 +
√

4 + 0 + 1 +
√

1 + 1 + 1 = 3 +
√

5 +
√

3.

Now
∫

C
z ds =

∫
C1

z ds + · · · + ∫
C4

z ds, but z is clearly zero on two of the four segments.
The segment C3 joining (2, 1, 0) and (0, 1, 1) may be parametrized as

x(t) = (1 − t)(2, 1, 0) + t(0, 1, 1), 0 ≤ t ≤ 1

= (2 − 2t, 1, t).

Thus x′(t) = (−2, 0, 1) and ‖x′(t)‖ =
√

5. Therefore,∫
C3

z ds =

∫ 1

0

t ·
√

5 dt =

√
5

2
.

The segment C4 joining (0, 1, 1) and (1, 0, 2) may be parametrized as

x(t) = (1 − t)(0, 1, 1) + t(1, 0, 2), 0 ≤ t ≤ 1

= (t, 1 − t, t + 1).

Thus x′(t) = (1,−1, 1) and ‖x′(t)‖ =
√

3. Hence∫
C4

z ds =

∫ 1

0

(t + 1)
√

3 dt =
√

3

(
t2

2
+ t

) ∣∣∣∣1
0

=
3
√

3

2
.

Putting all this together, we find

[z]avg =

√
5/2 + 3

√
3/2

3 +
√

5 +
√

3
=

√
5 + 3

√
3

2(3 +
√

5 +
√

3)
≈ 0.5333.

5. The curve may be parametrized as x(t) = (
√

5 cos t, sin t, 2 sin t), 0 ≤ t ≤ 2π. Then ‖x′(t)‖
=
√

(−√
5 sin t)2 + (cos t)2 + (2 cos t)2 =

√
5 so the length of C is

∫ 2π

0

√
5 dt = 2π

√
5. Now

∫
C

f ds =

∫ 2π

0

(4 sin2 t +
√

5 cos t · esin t)
√

5 dt

=
√

5

∫ 2π

0

(2(1 − cos 2t) +
√

5 esin t · cos t) dt

=
√

5(2t − sin 2t +
√

5 esin t)

∣∣∣∣2π

0

=
√

5(4π +
√

5 − 0 + 0 −
√

5)

= 4π
√

5.

Hence [f ]avg =
4
√

5π

2
√

5π
= 2.

6. (a) For the total mass we integrate the density along the curve:∫
C

(3 − y) ds =

∫ π

0

2(3 − 2 sin t) dt = 6π − 8.
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(b) The density depends only on y and the wire is symmetric with respect to x so x̄ = 0 (if you write out the formula you’ll
see that the numerator is an integral of an odd function of x over a curve that is symmetric with respect to x). Also, since
z ≡ 0, we quickly conclude that z̄ = 0. What remains is to calculate

ȳ =

∫
C

yδ(x, y, z) ds∫
C

δ(x, y, z) ds
=

∫ π

0
(2 sin t(3 − 2 sin t)2) dt

6π − 8
=

24 − 4π

6π − 8
=

12 − 2π

3π − 4
.

7. Locate the wire in the first quadrant of the xy-plane. Then the center is at
(

a√
2
, a√

2

)
and δ(x, y, z) = (x−

a√
2

)2

+
(
y − a√

2

)2

. From symmetry considerations, we must have x = y. Now parametrize the quarter circle as

{
x = a cos t
y = a sin t, 0 ≤ t ≤ π/2.

Then ‖x′(t)‖ = a. We have

M =

∫
C

δ ds =

∫ π/2

0

((
a cos t − a√

2

)2

+

(
a sin t − a√

2

)2
)

a dt

= a3

∫ π/2

0

(
cos2 t −

√
2 cos t +

1

2
+ sin2 t −

√
2 sin t +

1

2

)
dt

= a3

∫ π/2

0

(2 −
√

2 cos t −
√

2 sin t) dt = (π − 2
√

2)a3

Myz =

∫
C

xδ ds =

∫ π/2

0

a cos t

((
a cos t − a√

2

)2

+

(
a sin t − a√

2

)2
)

· a dt

= a4

∫ π/2

0

cos t(2 −
√

2 cos t −
√

2 sin t) dt = a4

∫ π/2

0

(
2 cos t −

√
2

2
(1 + cos 2t) −

√
2 sin t cos t

)
dt

= a4

(
2 sin t −

√
2

2
t −

√
2

4
sin 2t −

√
2

2
sin2 t

) ∣∣∣∣π/2

0

= a4

(
2 −

√
2π

4
− 0 −

√
2

2
− 0

)

=

(
8 −√

2π − 2
√

2

4

)
a4.

Hence

x̄ = ȳ =
(8 −√

2π − 2
√

2)a4

4

/
(π − 2

√
2)a3 =

(
8 −√

2π − 2
√

2

4(π − 2
√

2)

)
a.

8. (a) By symmetry x̄ = ȳ = 0 and z̄ = 8π.
(b) ‖x′‖ =

√
9 + 16 = 5; δ(x, y, z) = x2 + y2 + z2. Hence the mass of the wire is

M =

∫
x
δ ds =

∫ 4π

0

(9 + 16t2) · 5 dt =
20π

3
(27 + 256π2)

x̄ =
1

M

∫
x
xδ ds =

1

M

∫ 4π

0

3 cos t(9 + 16t2) · 5 dt =
1

M
· 1920π

ȳ =
1

M

∫
x
yδ ds =

1

M

∫ 4π

0

3 sin t(9 + 16t2) · 5 dt =
1

M
(−3840π2)

z̄ =
1

M

∫
x
zδ ds =

1

M

∫ 4π

0

4t(9 + 16t2) · 5 dt =
1

M
(160π2)(9 + 128π2).
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Thus

x̄ =
3 · 1920π

20π(27 + 256π2)
=

288

27 + 256π2
≈ 0.112781

y =
3(−3840π2)

20π(27 + 256π2)
= − 576π

27 + 256π2
≈ −0.708625

z =
3 · 160π2(9 + 128π2)

20π(27 + 256π2)
=

24π(9 + 128π2)

27 + 256π2
≈ 37.5662.

9. (a) Parametrize the wire as x(t) = (2 cos t, 2 sin t), 0 ≤ t ≤ π. Then ‖x′‖ = 2 and

Iy =

∫
C

x2δ ds =

∫ π

0

4 cos2 t(3 − 2 sin t) · 2 dt

=

∫ π

0

(24 cos2 t − 16 cos2 t sin t) dt =

∫ π

0

(12(1 + cos 2t) + 16 cos2 t(− sin t)) dt

= 12π +
16

3
(−1) − 16

3
(1) = 12π − 32

3
=

36π − 32

3
.

(b) The square of the distance between a point on the wire and the z-axis is x2 + y2. Thus Iz =
∫

C
(x2 + y2)δ(x, y, z) ds.

Using the given information,

Iz =

∫ π

0

4 · (3 − 2 sin t)2 dt = 8(3π − 4) = 24π − 32.

The total mass was found in Exercise 6 to be 6π − 8. Hence the radius of gyration is

rz =

√
24π − 32

6π − 8
= 2.

10. Parametrize the curve as x(t) =

(
t,

t

2
+ 2

)
,−2 ≤ t ≤ 2. Then ‖x′‖ =

√
5

2
and

Ix =

∫
C

y2δ ds =

∫ 2

−2

(
t

2
+ 2

)2 (
t

2
+ 2

)
·
√

5

2
dt =

√
5

∫ 2

−2

(
t

2
+ 2

)3

· 1

2
dt

=
√

5

∫ 3

1

u3 du =

√
5

4
u4

∣∣∣∣3
1

= 20
√

5

M =

∫
C

δ ds =

∫ 2

−2

(
t

2
+ 2

) √
5

2
dt =

√
5

2

(
1

4
t2 + 2t

) ∣∣∣∣2
−2

= 4
√

5

Hence

rx =
√

Ix/M =

√
20

√
5

4
√

5
=

√
5.

11. We use x as parameter so x(t) = (t, t2), 0 ≤ t ≤ 2, and ‖x′‖ =
√

1 + 4t2. Then

Ix =

∫
C

y2δ ds =

∫ 2

0

t4 · t
√

1 + 4t2 dt =

∫ 2

0

t5
√

1 + 4t2 dt.
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Now let 2t = tan θ so dt =
1

2
sec2 θ dθ. Then

Ix =

∫ tan−1 4

0

1

32
tan5 θ sec θ

(
1

2
sec2 θ dθ

)

=
1

64

∫ tan−1 4

0

tan4 θ sec2 θ(sec θ tan θ dθ)

=
1

64

∫ tan−1 4

0

(sec2 θ − 1)2 sec2 θ(sec θ tan θ dθ)

=
1

64

∫ tan−1 4

0

(sec6 θ − 2 sec4 θ + sec2 θ) d(sec θ)

=
1

64

(
1

7
sec7 θ − 2

5
sec5 θ +

1

3
sec3 θ

) ∣∣∣∣tan
−1 4

0

=
1

64

(
1

7
177/2 − 2

5
175/2 +

1

3
173/2 − 1

7
+

2

5
− 1

3

)

=
7769

√
17 − 1

840
≈ 38.1326.

We also have

M =

∫
C

δ ds =

∫ 2

0

t
√

1 + 4t2 dt =
1

8
· 2

3
(1 + 4t2)3/2

∣∣∣∣2
0

=
1

12
(173/2 − 1) ≈ 5.75773.

Hence

rx =

√
Ix

M
=

√
7769

√
17 − 1

840
· 12

17
√

17 − 1
=

√
7769

√
17 − 1

1190
√

17 − 70

≈ 2.57349.

12. (a) Ix =
∫

C
(y2 + z2)δ(x, y, z) ds, Iy =

∫
C

(x2 + z2)δ(x, y, z) ds, Iz =
∫

C
(x2 + y2)δ(x, y, z) ds

(b) For the given parametrization, ‖x′‖ =
√

9 + 16 = 5.

Ix = 5δ

∫ 4π

0

(9 sin2 t + 16t2) dt = 5δ

∫ 4π

0

(
9

2
(1 − cos 2t) + 16t2

)
dt

= 5δ

(
18π +

1024π3

3

)
=

10π(27 + 512π2)δ

3

Iy = 5δ

∫ 4π

0

(9 cos2 t + 16t2) dt = 5δ

∫ 4π

0

(
9

2
(1 + cos 2t) + 16t2

)
dt

=
10π(27 + 512π2)δ

3

Iz = 5δ

∫ 4π

0

9 dt = 180πδ

Now M =

∫
C

δ ds =

∫ 4π

0

5δ dt = 20δ. Thus

rx = ry =

√
π(27 + 512π2)

6
, rz =

√
180πδ

20δ
= 3

√
π.
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13. We may parametrize the segment as x(t) = (1 − t)(−1, 1, 2) + t(2, 2, 3), 0 ≤ t ≤ 1, or x(t) = (3t − 1, t + 1, t + 2). Then
‖x′‖ =

√
9 + 1 + 1 =

√
11.

Iz =

∫
C

(x2 + y2)δ ds =

∫ 1

0

[(3t − 1)2 + (t + 1)2][1 + (t + 2)2] ·
√

11 dt

=
√

11

∫ 1

0

(10t4 + 36t3 + 36t2 − 12t + 10) dt =
√

11(2t5 + 9t4 + 12t3 − 6t2 + 10t)

∣∣∣∣1
0

=
√

11(2 + 9 + 12 − 6 + 10) = 27
√

11

M =

∫
C

δ ds =

∫ 1

0

(1 + (t + 2)2)
√

11 dt =
√

11

(
t +

1

3
(t + 2)3

) ∣∣∣∣1
0

=
√

11

(
1 + 9 − 8

3

)
=

22
√

11

3
.

Hence rz =
√

Iz/M =

√
81

22
=

9
√

22

22
.

Exercises 14, 15, and 23 explore polar versions of results we’ve seen in this Chapter.

14. (a) The path is
x(θ) = (f(θ) cos θ, f(θ) sin θ).

Using the product rule, we find that

x′(θ) = (f ′(θ) cos θ − f(θ) sin θ, f ′(θ) sin θ + f(θ) cos θ).

The length of x′(θ) is a straightforward calculation:

‖x′(t)‖ =
√

(f ′(θ) cos θ − f(θ) sin θ)2 + (f ′(θ) sin θ + f(θ) cos θ)2 =
√

(f ′(θ))2 + (f(θ))2.

We conclude that the arclength of the curve between (f(a), a) and (f(b), b) is∫
C

ds =

∫
x(θ)

‖x′(θ)‖ dθ =

∫ b

a

√
(f(θ))2 + (f ′(θ))2 dθ.

(b) The sketch of r = sin2(θ/2) is

-1 -0.8 -0.6 -0.4 -0.2
x

-0.6

-0.4

-0.2

0.2

0.4

0.6

y
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The length is∫ 2π

0

√
sin4(θ/2) + sin2(θ/2) cos2(θ/2) dθ =

∫ 2π

0

sin(θ/2) dθ = −2(−1 − 1) = 4.

15. (a)
∮

C
g(x, y) ds =

∫
x(θ)

g(x(θ))‖x′(θ)‖ dθ =

∫ b

a

g(f(θ) cos θ, f(θ) sin θ)
√

(f(θ))2 + (f ′(θ))2 dθ.

(b) We’ll use the formula from part (a).∫
C

g ds =

∫ 2π

0

([(e3θ cos θ)2 + (e3θ sin θ)2 − 2(e3θ cos θ)]
√

e6θ + 9e6θ) dθ

=

∫ 2π

0

([e6θ − 2e3θ cos θ]
√

10e3θ) dθ

=

√
10

333
(37e18π − 108e12π + 71).

In this text κ is always non-negative. In cases where the curvature is signed, differential geometers are often interested in the

total squared curvature:
∫

C

κ2 ds.

16. In Section 3.2 it was shown that
κ =

‖v × a‖
‖v‖3

.

Here v = x′ and a = x′′. So

K =

∫
C

κ ds =

∫ b

a

(‖v × a‖
‖v‖3

‖x′‖
)
dt =

∫ b

a

(‖v × a‖
‖v‖2

)
dt.

17. We use the results of Exercise 16:

K =

∫ 10π

0

‖(−3 sin t, 3 cos t, 4) × (−3 cos t,−3 sin t, 0)‖
‖(−3 sin t, 3 cos t, 4)‖2

dt

=

∫ 10π

0

‖(−12 sin t,−12 cos t, 9)‖
25

dt =

∫ 10π

0

3

5
dt = 6π.

18. We use the results of Exercise 16 with x(t) = (t, At2, 0):

K =

∫ b

a

‖(1, 2At, 0) × (0, 2A, 0)‖
‖(1, 2At, 0)‖2

dt =

∫ b

a

‖(0, 0, 2A)‖
1 + 4A2t2

dt

=

∫ b

a

2A

1 + 4A2t2
dt = tan−1(2At)

∣∣∣∣b
a

= tan−1(2Ab) − tan−1(2Aa).

19. We parameterize the ellipse by the path x(t) = (a cos t, b sin t, 0) for 0 ≤ t ≤ 2π. Then, using Exercise 16,

K =

∫ 2π

0

‖(−a sin t, b cos t, 0) × (−a cos t,−b sin t, 0)‖
‖(−a sin t, b cos t, 0)‖2

dt =

∫ 2π

0

‖(0, 0, ab)‖
a2 sin2 t + b2 cos2 t

dt

=

∫ 2π

0

ab

a2 sin2 t + b2 cos2 t
dt = 2π.

This verifies Fenchel’s Theorem for the given ellipse. This final integral was calculated using Mathematica. With work it can
also be done by hand.

20. (a) By Fenchel’s theorem (see Exercise 19), we know that for C (a simple, closed C1 curve in R3), K ≥ 2π, so

K =

∫
C

κ ds ≥ 2π.
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But 0 ≤ κ ≤ 1/a, therefore

K =

∫
C

κ ds ≤
∫

C

1

a
ds =

1

a

∫
C

ds =
L

a
.

Putting these two inequalities together we see that

L

a
≥ K ≥ 2π so L ≥ 2πa.

(b) To conclude that L = 2πa we would need both of the preliminary inequalities to be equalities. As we saw in Exercise
19, we have K = 2π when C is also a plane convex curve. Also, as we saw above, K = L/a when κ = 1/a. Together,
these two conditions imply that C is a circle of radius a.

21. The work done is∫
x

F · ds =

∫ 1

0

(sin(t3), cos(−t2), t4) · (3t2,−2t, 1) dt =

∫ 1

0

(3t2 sin(t3) − 2t cos(−t2) + t4) dt

= (− cos(t3) + sin(−t2) + t5/5)

∣∣∣∣1
0

= 6/5 − cos 1 − sin 1.

22. The first thing to note is that we are traversing the path in the wrong direction to apply Green’s theorem. If C1 is the triangular
path described in the problem from the origin, to (0, 1), to (1, 0), back to the origin, then let C2 be the path traversed in the
opposite direction and let D be the region bounded by C1 and C2. Then∮

C1

x2y dx + (x + y)y dy = −
∮

C2

x2y dx + (x + y)y dy = −
∫∫

D

(y − x2) dA

= −
∫ 1

0

∫ 1−x

0

(y − x2) dy dx = −
∫ 1

0

(y2/2 − x2y)

∣∣∣∣1−x

0

= −
∫ 1

0

(
1

2
− x − x2

2
+ x3

)
dx = −1

2

(
x − x2 − x3

3
+

x4

2

)∣∣∣∣1
0

= − 1

12
.

23. In Section 6.2 we saw that Green’s theorem implied the formula

Area =
1

2

∮
∂D

−y dx + x dy.

In general the boundary ∂D of the region D consists of the curve r = f(θ), which may be parametrized by x(θ) =
(x(θ), y(θ)) = (f(θ) cos θ, f(θ) sin θ), and possibly straight line segments along θ = a and θ = b. The line θ = a
may be parametrized by y(r) = (x(r), y(r)) = (r cos a, r sin a) and the line θ = b may be parametrized similarly. Note that,
along the straight segment C1 given by θ = a, we have

1

2

∫
C1

−y dx + x dy =
1

2

∫ f(a)

0

(−r sin a cos a + r cos a sin a) dr = 0.

An identical result holds for the straight segment C2 given by θ = b. Therefore, the area of D may be evaluated by computing
the line integral over the path x described above:

Area =
1

2

∫
x
−y dx + x dy

=
1

2

∫ b

a

((−f(θ) sin θ)(f ′(θ) cos θ − f(θ) sin θ)

+ (f(θ) cos θ)(f ′(θ) sin θ + f(θ) cos θ)) dθ

=
1

2

∫ b

a

(f(θ))2 dθ.

24. By Green’s theorem, if D is the region with C = ∂D,∮
C

f(x) dx + g(y) dy =

∫∫
D

(
∂

∂x
(g(y)) − ∂

∂y
(f(x))

)
dx dy =

∫∫
D

0 dx dy = 0.
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25. We begin by applying Green’s theorem (here D has constant density δ):

1

2 · area of D

∮
∂D

x2 dy =
1

2 · area of D

∫∫
D

2x dx dy =

∫∫
D

x dx dy∫∫
D

dx dy

=

∫∫
D

x δ dx dy∫∫
D

δ dx dy
= x̄.

Similarly,

1

area of D

∮
∂D

xy dy =
1

area of D

∫∫
D

y dx dy =

∫∫
D

y dx dy∫∫
D

dx dy

=

∫∫
D

y δ dx dy∫∫
D

δ dx dy
= ȳ.

For the second pair of formulas, we proceed in an entirely similar manner with Green’s theorem.

− 1

area of D

∮
∂D

xy dx = − 1

area of D

∫∫
D

−x dx dy

=
1

area of D

∫∫
D

x dx dy =

∫∫
D

x dx dy∫∫
D

dx dy

=

∫∫
D

x δ dx dy∫∫
D

δ dx dy
= x̄.

Also,

− 1

2 · area of D

∮
∂D

y2 dx = − 1

2 · area of D

∫∫
D

−2y dx dy

=
1

area of D

∫∫
D

y dx dy =

∫∫
D

y δ dx dy∫∫
D

δ dx dy
= ȳ.

26. Along the bottom of the triangle, dy is zero and along the left side x is zero, so the first pair of line integrals in Exercise 25
must be zero except along the side connecting (1, 0) to (0, 2). Parametrize this side by x(t) = (1 − t, 2t) with 0 ≤ t ≤ 1.
Note also that the area of the triangle is 1. Using the results of Exercise 25, we have

x̄ =
1

2

∮
∂D

x2 dy =
1

2

∫ 1

0

(1 − t)22 dt =

∫ 1

0

(t2 − 2t + 1) dt

=
1

3
− 1 + 1 =

1

3

and

ȳ =

∮
∂D

xy dy =

∫ 1

0

(1 − t)(2t)2 dt = 2

∫ 1

0

(−2t2 + 2t) dt

= 2

(
−2

3
+ 1

)
=

2

3
.
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27. The region in question looks like:

x

y

The area of this region is
36π − π − π = 34π.

Using the result of Exercise 25, we calculate

x̄ =
1

2 · area of D

∮
∂D

x2 dy and ȳ = − 1

2 · area of D

∮
∂D

y2 dx

(other computations are possible).
We may parametrize the outer boundary of the region by

x(t) = (6 cos t, 6 sin t), 0 ≤ t ≤ 2π

and the inner two circles by

y(t) = (4 + sin t, cos t), 0 ≤ t ≤ 2π and

z(t) = (sin t − 2, cos t + 2), 0 ≤ t ≤ 2π.

Hence

x̄ =
1

68π

∮
∂D

x2 dy

=
1

68π

[∫ 2π

0

36 cos2 t · 6 cos t dt +

∫ 2π

0

(sin t + 4)2(− sin t) dt +

∫ 2π

0

(sin t − 2)2(− sin t) dt
]

=
1

68π

[∫ 2π

0

216(1 − sin2 t) cos t dt −
∫ 2π

0

(sin3 t + 8 sin2 t + 16 sin t) dt

−
∫ 2π

0

(sin3 t − 4 sin2 t + 4 sin t) dt
]

=
1

68π

[∫ 2π

0

216(1 − sin2 t) cos t dt −
∫ 2π

0

(2 sin3 t + 4 sin2 t + 20 sin t) dt

]

=
1

68π

[
(216 sin t − 72 sin3 t)

∣∣∣∣2π

0

−
∫ 2π

0

(2(1 − cos2 t) sin t + 2(1 − cos 2t) + 20 sin t) dt

]
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=
1

68π

[
0 +

(
2 cos t − 2

3
cos3 t − 2t + sin 2t + 20 cos t

) ∣∣∣∣2π

0

]

=
1

68π
(−4π) = − 1

34

and

ȳ = − 1

68π

∮
∂D

y2 dx = − 1

68π

[∫ 2π

0

36 sin2 t · (−6 sin t) dt +

∫ 2π

0

cos2 t · cos t dt +

∫ 2π

0

(cos t + 2)2 cos t dt

]

= − 1

68π

[∫ 2π

0

216(1 − cos2 t)(− sin t) dt +

∫ 2π

0

cos3 t dt +

∫ 2π

0

(cos3 t + 4 cos2 t + 4 cos t) dt

]

= − 1

68π

[
(216 cos t − 72 cos3 t)

∣∣∣∣2π

0

+

∫ 2π

0

(2(1 − sin2 t) cos t + 2(1 + cos 2t) + 4 cos t) dt

]

= − 1

68π

[
0 +

(
2 sin t − 2

3
sin3 t + 2t + sin 2t + 4 sin t

) ∣∣∣∣2π

0

]

= − 1

68π
[4π] = − 1

34
.

28. We can write f∇g as (f∂g/∂x, f∂g/∂y). Now apply the divergence theorem and collect the appropriate terms.∮
C

f∇g · n ds =

∫∫
D

(
∂

∂x

(
f

∂g

∂x

)
+

∂

∂y

(
f

∂g

∂y

))
dA

=

∫∫
D

(
∂f

∂x

∂g

∂x
+ f

∂2g

∂x2
+

∂f

∂y

∂g

∂y
+ f

∂2g

∂y2

)
dA

=

∫∫
D

([
∂f

∂x

∂g

∂x
+

∂f

∂y

∂g

∂y

]
+

[
f

∂2g

∂x2
+ f

∂2g

∂y2

])
dA

=

∫∫
D

(∇f · ∇g + f∇2g) dA.

29. Apply the results of Exercise 28 to both parts of the line integral.∮
C

(f∇g − g∇f) · n ds =

∮
C

f∇g · n ds −
∮

C

g∇f · n ds

=

∫∫
D

(f∇2g + ∇f · ∇g) dA −
∫∫

D

(g∇2f + ∇g · ∇f) dA

=

∫∫
D

(f∇2g − g∇2f) dA

30. With f(x, y) ≡ 1 in Green’s first identity, we have ∇f ≡ 0, so∫∫
D

(f∇2g + ∇f · ∇g) dA =

∫∫
D

∇2g dA =

∮
∂D

∇g · n ds =

∮
∂D

∂g

∂n
ds.

But if g is harmonic, ∇2g = 0, so
∮

∂D

∂g

∂n
ds = 0.

31. Now use Green’s first identity with f = g and f harmonic to obtain
∫∫

D
(∇f · ∇f) dA =

∮
C

(f∇f · n) ds. Since C = ∂D

and ∇f · n =
∂f

∂n
, the desired result follows.

32. If f is zero on the boundary of D, then Exercise 31 implies that 0 =

∮
∂D

f
∂f

∂n
ds =

∫∫
D

∇f · ∇f dA. But ∇f · ∇f =

‖∇f‖2 ≥ 0. Thus the right integral is of a nonnegative, continuous integrand. For it to be zero, the integrand must be
identically zero. That is, ∇f · ∇f vanishes an D. We conclude that ∇f is zero on D and so f must be constant. Since
f(x, y) = 0 on ∂D and f is constant on D, we must have f ≡ 0 on D.

c© 2012 Pearson Education, Inc.



372 Chapter 6 Line Integrals

33. Let f = f1 − f2. Then since f1 = f2 on ∂D, f = 0 on ∂D. Also f is harmonic if f1 and f2 are. Hence, by Exercise 32,
f ≡ 0 on D so f1 = f2 on D.

34. (a) Exercise 37 from Section 6.3 is a particularly nice example of a nontrivial radially symmetric vector field because there is
a compelling physical reason for the field F to be radially symmetric. There F is the gravitational force field of a mass M
on a particle of mass m.

F = − GMm

(x2 + y2 + z2)3/2
(xi + yj + zk) = − GMm

(x2 + y2 + z2)

(xi + yj + zk)

‖(xi + yj + zk)‖ = −GMm

ρ2
eρ.

(b) Apply the formula for the curl in spherical coordinates found in Theorem 4.6 in Chapter 3.

∇× F =
1

ρ2 sin ϕ

∣∣∣∣∣∣∣
eρ ρ eϕ ρ sin ϕ eθ

∂/∂ρ ∂/∂ϕ ∂/∂θ

f(ρ) 0 0

∣∣∣∣∣∣∣ =
(

0, 0,
1

ρ
eθ

∣∣∣∣∣ ∂/∂ρ ∂/∂ϕ

f(ρ) 0

∣∣∣∣∣
)

= (0, 0, 0).

When students get to complex analysis and learn to integrate around poles, texts often refer to their experience with Green’s
theorem in multivariable calculus. At least one of Exercises 35 and 36 should be assigned so that this reference might ring a bell.

35. (a) The boundary is in two pieces which we separately parametrize as x1(θ) = (cos θ, sin θ) and x2(θ) = (a cos θ,−a sin θ),
each for 0 ≤ θ ≤ 2π. The line integral is then∮

C

−y

x2 + y2
dx +

x

x2 + y2
dy =

∫ 2π

0

(sin2 θ + cos2 θ) dθ +

∫ 2π

0

(
−a2 sin2 θ

a2
− a2 cos2 θ

a2

)
dθ

=

∫ 2π

0

(1 − 1) dθ = 0.

The double integral is∫∫
D

[
∂

∂x

(
x

x2 + y2

)
− ∂

∂y

( −y

x2 + y2

)]
dx dy =

∫∫
D

[ −x2 + y2

(x2 + y2)2
+

−y2 + x2

(x2 + y2)2

)
dx dy

=

∫∫
D

0 dx dy = 0.

Thus the conclusion of Green’s theorem holds for F in the given annular region.
(b) This time the line integral is only taken over the outer boundary and so∮

C

−y

x2 + y2
dx +

x

x2 + y2
dy = 2π.

The same cancellation takes place in the double integral as in part (a), so∫∫
D

[
∂

∂x

(
x

x2 + y2

)
− ∂

∂y

( −y

x2 + y2

)]
dx dy = 0.

The problem is that F is not defined at the origin.
(c) Let D be the region so that ∂D consists of the given curve C oriented counterclockwise and also the curve Ca, the circle

of radius a centered at the origin oriented clockwise. Then F is defined everywhere in the region D. Green’s theorem
holds so ∮

C

−y

x2 + y2
dx +

x

x2 + y2
dy +

∮
Ca

−y

x2 + y2
dx +

x

x2 + y2
dy =

∮
C∪Ca

−y

x2 + y2
dx +

x

x2 + y2
dy

=

∫∫
D

(
∂

∂x

(
x

x2 + y2

)
− ∂

∂y

( −y

x2 + y2

))
dx dy = 0, but

∮
Ca

−y

x2 + y2
dx +

x

x2 + y2
dy = −2π. Therefore,

∮
C

−y

x2 + y2
dx +

x

x2 + y2
dy = 2π.
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36. (a)

∇× F =

∣∣∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z

− y

x2 + y2

x

x2 + y2
0

∣∣∣∣∣∣∣∣ = (0, 0, 0).

(b) Here the path is x(θ) = (cos θ, sin θ) for 0 ≤ θ ≤ 2π. Then∮
C

F · ds =

∫ 2π

0

((− sin θ)(− sin θ) + (cos θ)(cos θ)) dθ =

∫ 2π

0

dθ = 2π.

(c) We saw in part (b) that the line integral around a closed path is not zero, so F cannot be conservative on its domain.
(d) The conditions are not met for the theorem as the domain of F is not a simply-connected region.

37. (a) By the divergence theorem, the flux∫
C

F · n ds =

∫ 1

0

∫ 5

0

(
∂

∂x
[ey] +

∂

∂y
[x4]

)
dy dx = 0.

(b) Again, by the divergence theorem, the flux∫
C

F · n ds =

∫∫
D

(
∂

∂x
[f(y)] +

∂

∂y
[f(x)]

)
dy dx = 0.

38. Over the path x(t), ∫
x

F · ds =

∫
x
ma · ds =

∫ b

a

mx′′(t) · x′(t) dt = m

∫ b

a

1

2

d
dt

[x′(t) · x′(t)] dt

=
1

2
m‖x′(t)‖2

∣∣∣∣b
a

=
1

2
m[v(b)]2 − 1

2
m[v(a)]2.

39. We’ll first replace F with −∇V and apply Theorem 3.3.∫
x

F · ds =

∫
x
−∇V · ds = −V (B) + V (A),

where A = x(a) and B = x(b). However, in Exercise 38 we showed that∫
x

F · ds =
1

2
m[v(b)]2 − 1

2
m[v(a)]2.

Therefore,

−V (B) + V (A) =
1

2
m[v(b)]2 − 1

2
m[v(a)]2, or

V (A) +
1

2
m[v(a)]2 = V (B) +

1

2
m[v(b)]2.

We see, therefore, that the sum of the potential and kinetic energies of the particle remains constant.
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Chapter 7

Surface Integrals and Vector Analysis

7.1 Parametrized Surfaces

1. (a) To find a normal vector we calculate

Ts(s, t) = (2s, 1, 2s) so Ts(2,−1) = (4, 1, 4)

Tt(s, t) = (−2t, 1, 3) so Tt(2,−1) = (2, 1, 3).

Then a normal vector is
N(2,−1) = Ts(2,−1) × Tt(2,−1) = (−1,−4, 2).

(b) We find an equation for the tangent plane using

0 = N(2,−1) · (x − (3, 1, 1)) = (−1,−4, 2) · (x − (3, 1, 1)) = −x + 3 − 4y + 4 + 2z − 2.

This is equivalent to x + 4y − 2z = 5.
2. First we figure that since 2 sin t = 1, either t = π/6 or 5π/6. Since 2 cos t < 0 we know that t = 5π/6. Then we can see

that sin s =
√

2/2 so s = π/4. Next, find a normal vector to the surface at the given point by calculating

Ts(s, t) = (−(5 + 2 cos t) sin s, (5 + 2 cos t) cos s, 0) and

Tt(s, t) = (−2 sin t cos s,−2 sin t sin s, 2 cos t) so

N(s, t) = Ts(s, t) × Tt(s, t) = 2(5 + 2 cos t)(cos s cos t, sin s cos t, sin t). Therefore,

N(π/4, 5π/6) =

√
3 − 5√

2
(
√

3,
√

3,−
√

2).

We calculate an equation for the tangent plane by writing N · (x − (x0, y0, z0)) = 0 or, equivalently in this case,

0 = (
√

3,
√

3,−
√

2) ·
(

x −
(

5 −√
3√

2
,
5 −√

3√
2

, 1

))
or

√
3x +

√
3y −

√
2z = 5

√
6 − 4

√
2.

3. Since x = es at x = 1, we know that s = 0. Also since z = 2e−s + t, when z = 0 and s = 0, we have t = −2. As above
we calculate,

Ts(s, t) = (es, 2t2e2s,−2e−s) and Tt(s, t) = (0, 2te2s, 1).

Thus, N(0,−2) = Ts(0,−2) × Tt(0,−2) = (1, 8,−2) × (0,−4, 1) = (0,−1,−4). Then an equation of the tangent plane
is 0 = N(0,−2) · (x − (1, 4, 0)) = (0,−1,−4) · (x − (1, 4, 0)). We can simplify this to y + 4z = 4.

4. (a) Ts(s, t) = (2s cos t, 2s sin t, 1) so Ts(−1, 0) = (−2, 0, 1). Also, Tt(s, t) = (−s2 sin t, s2 cos t, 0) so Tt(−1, 0) =
(0, 4, 0). Therefore, N(−1, 0) = (−2, 0, 1) × (0, 4, 0) = (−4, 0,−8).

(b) An equation of the tangent plane is (−4, 0,−8) · (x − (1, 0,−1)) = 0. This simplifies to x + 2z = −1.
(c) Note that the x-component of X is s2 cos t and the y-component is s2 sin t and the z-component is a function of s. We

can eliminate the t by looking at x2 + y2. So without much work we have found that an equation for the image of X is
x2 + y2 − z4 = 0.

5. (a) Using Mathematica and the command:

ParametricPlot3D[{s, s∧2 + t, t∧2}, {s,−2, 2}, {t,−2, 2}, AxesLabel → {x,y,z}],

we obtain the image
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-2
-1

0
1

2
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-2

0

4

0

1

2

3

4

z

2

6

y

(b) To determine whether the surface is smooth we need to calculate N. First, Ts(s, t) = (1, 2s, 0), and Tt(s, t) = (0, 1, 2t)
so N = Ts × Tt = (4st,−2t, 1). We conclude that N �= 0 for any (s, t) so N is smooth.

(c) If (s, s2 + t, t2) = (1, 0, 1), then s = 1 and t = −1. So N(1,−1) = (−4, 2, 1) and an equation of the tangent plane at
this point is (−4, 2, 1) · (x − (1, 0, 1)) = 0 or more simply, 4x − 2y − z = 3.

6. In Exercise 1, x = s2 − t2, y = s + t, and so if we note that x = (s + t)(s − t) = y(s − t), then x/y = s − t. This
allows us to solve for s and t separately: 2s = y + x/y and 2t = y − x/y. This means that z = s2 + 3t can be written as
z = (y + x/y)2/4 + 3(y − x/y).

7. (a) For the surface, we have X(s, t) = (s cos t, s sin t, s2), where s ≥ 0 and 0 ≤ t ≤ 2π. This means that Ts(s, t) =
(cos t, sin t, 2s) and Tt(s, t) = (−s sin t, s cos t, 0). Then a normal vector is given by N = Ts × Tt = (−2s2 cos t,
−2s2 sin t, s). This means that the surface is smooth except when s = 0. In other words, S is smooth (as a parametrized
surface) except at the origin. Note that the point (1,

√
3, 4) = X(2, π

3
). Thus N(2, π

3
) = (−8 cos π

3
,−8 sin π

3
, 2) =

(−4,−4
√

3, 2) and thus an equation of the tangent plane is given by (−4,−4
√

3, 2)·(x − 1, y − √
3, z − 4) = 0 or,

equivalently, by 2x + 2
√

3y − z = 4.
(b) See the figure below and note that z = x2 + y2 so we see that S is a paraboloid.

-2
0

2

x

-2

0

2y

0

2

4

6

8

z

(c) Again, z = x2 + y2.
(d) Part (a) above takes care of every point except the origin. At the origin N = 0, but we easily see that the tangent plane
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there is the horizontal plane z = 0. Thus smoothness in the sense defined in Section 7.1 depends on the parametrization
as well as the geometry of the underlying surface.

8. Really there’s not much to show. You know that if the image of the parametrized surface is to be an ellipsoid, you need
a(2 sin s cos t)2 + b(3 sin s sin t)2 + c(cos s)2 = 1. So a = 1/4, b = 1/9, and c = 1. Therefore the image satisfies
x2

4
+

y2

9
+ z2 = 1.

9. For t = t0, X(s, t0) = ((a + b cos t0) cos s, (a + b cos t0) sin s, b sin t0). So z is constant and x2 + y2 = (a + b cos t0)
2.

This is a circle of radius a + b cos t0 centered at (0, 0, b sin t0).
10. (a) When θ = π/3, the r-coordinate curve is given by (r/2, r

√
3/2, π/3) where r ≥ 0. This is the ray y =

√
3x where

x ≥ 0 and z = π/3. In general, the r-coordinate curve when θ = θ0 is a ray in the z = θ0 plane. The solution is simpler
than the following four cases make it seem. If cos θ0 �= 0 then y = (tan θ0)x where x ≥ 0 if cos θ0 > 0 and x ≤ 0 if
cos θ0 < 0. If cos θ0 = 0, then the ray is x = 0 with y ≥ 0 if sin θ0 > 0 and y ≤ 0 if sin θ0 < 0.

(b) When r = 1 the θ-coordinate curve is the helix (cos θ, sin θ, θ). In general, when r = r0 the θ-coordinate curve is the
helix (r0 cos θ, r0 sin θ, θ).

(c) You can see that the helicoids are made up of the helices that are the θ-coordinate curves.

11. (a) First we consider the sphere as the graph of the function f(x, y) =
√

4 − (x − 2)2 − (y + 1)2. The partial derivatives are

fx =
−(x − 2)√

4 − (x − 2)2 − (y + 1)2
fy =

−(y + 1)√
4 − (x − 2)2 − (y + 1)2

.

So fx(1, 0,
√

2) = 1/
√

2 and fy(1, 0,
√

2) = −1/
√

2. By Theorem 3.3 of Chapter 2, z = f(a, b) + fx(a, b)(x − a) +
fy(a, b)(y − b). In this case, this is z =

√
2 + (1/

√
2)(x − 1) − (1/

√
2)y, or equivalently, −x + y +

√
2z = 1.

(b) Now we look at the sphere as a level surface of F (x, y, z) = (x − 2)2 + (y + 1)2 + z2. The gradient ∇F (x, y, z) =
2(x − 2, y + 1, z) and, therefore, ∇F (1, 0,

√
2) = (−2, 2, 2

√
2). By formula (5) of Section 2.6, the tangent plane is

given by
0 = ∇F (1, 0,

√
2) · (x − (1, 0,

√
2)) = (−2, 2, 2

√
2) · (x − (1, 0,

√
2)).

This too is equivalent to −x + y +
√

2z = 1.
(c) Now we’ll use the results of this section. Considering the z-component, we see 2 cos s =

√
2 so cos s =

√
2/2.

Considering the y- and x-components, 2 sin s sin t = 1 and sin s cos t = −1. Thus we have that s = π/4 and t = 3π/4.
Also Ts(s, t) = (2 cos s cos t, 2 cos s sin t,−2 sin s) and Tt(s, t) = (−2 sin s sin t, 2 sin s cos t, 0). A normal vector to
the sphere at the specified point is

N(π/4, 3π/4) = Ts(π/4, 3π/4) × Tt(π/4, 3π4) = (−1, 1,−
√

2) × (−1,−1, 0) = (−
√

2,
√

2, 2).

The tangent plane is given by (−√
2,
√

2, 2) · (x − (1, 0,
√

2)) = 0 which is also equivalent to −x + y +
√

2z = 1.
12. The sphere of radius 3 is parametrized as X(s, t) = (3 cos s sin t, 3 sin s sin t, 3 sin t), where 0 ≤ s < 2π and 0 ≤ t ≤ π. To

obtain the lower hemisphere, we need the z-coordinate to be nonpositive. Thus we may use the same expression for X(s, t),
only with 0 ≤ s < 2π and π/2 ≤ t ≤ π.

13. We may let x = 2 cos s, z = 2 sin s, and y = t, where 0 ≤ s < 2π, to parametrize the entire, infinitely long cylinder.
To obtain the desired finite cylinder, we just let D = {(s, t) | 0 ≤ s ≤ 2π, −1 ≤ t ≤ 3} and define X : D → R3,
X(s, t) = (2 cos s, t, 2 sin s).
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14. Note that the region we are describing is the part of the plane having equation 5x+10y +2z = 10, or z = 5− 5
2
x− 5y lying

in the first octant. The projection of the triangle in the xy-plane is the triangular region

{(x, y) | x ≥ 0, y ≥ 0, 5x + 10y ≤ 10} =
{

(x, y) | 0 ≤ y ≤ 1 − x

2
, 0 ≤ x ≤ 2

}
.

(This was found by setting z = 0 in the equation for the plane.) Hence the desired surface may be parametrized as X : D →
R3, X(s, t) =

(
s, t, 5 − 5

2
s − 5t

)
, where D =

{
(s, t) | 0 ≤ t ≤ 1 − s

2
, 0 ≤ s ≤ 2

}
.

15. If we rewrite the equation for the hyperboloid as z2 = x2 + y2 + 1, then we see that we must have z = ±
√

x2 + y2 + 1.
Therefore, the hyperboloid may be parametrized with two maps as X1 : R2 → R3, X1(s, t) =

(
s, t,

√
s2 + t2 + 1

)
and

X2 : R2 → R3, X2(s, t) =
(
s, t,−√

s2 + t2 + 1
)
.

16. (a) X(1,−1) = (1,−1,−1) and we have Ts = (3s2, 0, t), Tt = (0, 3t2, s). Hence the normal at (1, −1, −1), which is
when s = 1, t = −1, is N(1,−1) = Ts(1,−1) × Tt(1,−1) = (3, 0,−1) × (0, 3, 1) = (3,−3, 9). So an equation for
the tangent plane is

3(x − 1) − 3(y + 1) + 9(z + 1) = 0 or x − y + 3z = −1.

(b) In general we have that the standard normal is given by

N(s, t) = Ts × Tt =

∣∣∣∣∣∣
i j k

3s2 0 t
0 3t2 s

∣∣∣∣∣∣ = (−3t3,−3s3, 9s2t2).

Note that N = 0 when s = t = 0, i.e., at (0, 0, 0). So the surface fails to be smooth there.
(c) A computer graph is shown.
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z

-1

(d) With x = s3, y = t3, z = st, 3
√

xy =
3
√

s3t3 = st = z. Sometimes a computer will graph z = 3
√

xy for points only
where x and y are nonnegative (or sometimes where xy ≥ 0).

17. (a) y2z = t2 · s2 = (st)2 = x2

(b) The standard normal is

N(s, t) = Ts × Tt = (t, 0, 2s) × (s, 1, 0)

=

∣∣∣∣∣∣
i j k
t 0 2s
s 1 0

∣∣∣∣∣∣ = (−2s, 2s2, t).

So N = 0 when s = t = 0, i.e., at (0, 0, 0). At this point X fails to be smooth.
(c) A computer graph is shown.
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(d) X(s1, t1) = X(s2, t2) when s1t1 = s2t2, t1 = t2, s2
1 = s2

2. Thus if t1 = t2 = 0 and s1 = ±s2 we get the same
image—i.e., X(s, 0) = X(−s, 0) = (0, 0, s2). Thus the positive z-axis (which lies on the image of X) is not uniquely
determined.

(e) Note that (2, 1, 4) = X(2, 1). From work in part (b), N(2, 1) = (−4, 8, 1) so an equation for the tangent plane is
−4(x − 2) + 8(y − 1) + 1(z − 4) = 0 or −4x + 8y + z = 4.

(f) (0, 0, 1) = X(−1, 0) = X(1, 0).
N(−1, 0) = (2, 2, 0) N(1, 0) = (−2, 2, 0)

So the corresponding tangent planes have equations x + y = 0 and x − y = 0 respectively.
(If you look at the graph in part (c), you can see two parts of the surface intersecting, so this makes sense.)

18. Here we generalize the results of parts (a) and (c) of Exercise 11. If we view S as the graph of a function f (x, y) then we can
apply formula (4) of Section 2.3:

z = f(a, b) + fx(a, b)(x − a) + fy(a, b)(y − b).

We can rewrite this equation as 0 = (fx(a, b), fy(a, b),−1) · (x − (a, b, f(a, b))), where a = x(s0, t0), b = y(s0, t0),
and f(a, b) = z(s0, t0). In other words, we are also considering S to be a surface that is parametrized by X(s, t) =
(x(s, t), y(s, t), z(s, t)) and so, using the Chain Rule,

Ts(s, t) = (xs(s, t), ys(s, t), fx(x, y)xs(s, t) + fy(x, y)ys(s, t)) and

Tt(s, t) = (xt(s, t), yt(s, t), fx(x, y)xt(s, t) + fy(x, y)yt(s, t)).

We calculate the normal vector N by taking the cross product Ts × Tt and simplifying to obtain

N(s, t) = [xt(s, t)ys(s, t) − xs(s, t)yt(s, t)](fx(x, y), fy(x, y),−1).

So an equation of the tangent plane at (s0, t0) is N · (x − X(s0, t0)) = 0 which in this case is

[xt(s0, t0)ys(s0, t0) − xs(s0, t0)yt(s0, t0)](fx(a, b), fy(a, b),−1) · (x − (a, b, f(a, b))) = 0 or

(fx(a, b), fy(a, b),−1) · (x − (a, b, f(a, b))) = 0.

So we see that in this case the results of the two methods agree.
19. (a) To find an equation for the tangent plane to a surface described by the equation y = g(x, z) at the point (a, g(a, c), c) we

basically permute the case detailed in the text and in Exercise 18 to obtain either

(gx(a, c),−1, gz(a, c)) · (x − (a, g(a, c), c)) = 0 or

gx(a, c)(x − a) − (y − g(a, c)) + gz(a, c)(z − c) = 0.

(b) Similarly, an equation for the tangent plane to a surface described by the equation x = h(y, z) at the point (h(b, c), b, c)
is either

(−1, hy(b, c), hz(b, c)) · (x − (h(b, c), b, c)) = 0 or

−(x − h(b, c)) + hy(b, c)(y − b) + hz(b, c)(z − c) = 0.
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20. We have X : D → R3 and by Definition 3.8 of Chapter 2, the linear approximation is given by

x = X(s0, t0) + DX(s0, t0)

[
s − s0

t − t0

]
.

Here DX(s0, t0) is the matrix

DX(s0, t0) =

⎡
⎣ xs(s0, t0) xt(s0, t0)

ys(s0, t0) yt(s0, t0)
zs(s0, t0) zt(s0, t0)

⎤
⎦ = [(Ts(s0, t0))

T (Tt(s0, t0))
T ].

Thus the tangent plane to the surface is given by

(x, y, z) = X(s0, t0) + [(Ts(s0, t0))
T (Tt(s0, t0))

T ]

[
s − s0

t − t0

]
= X(s0, t0) + Ts(s0, t0)(s − s0) + Tt(s0, t0)(t − t0).

21. By Exercise 20,

(x, y, z) = (1, 0, 1) +

⎡
⎣ 1 0

2 1
0 −2

⎤
⎦ [

s − 1
t + 1

]

(x, y, z) = (s, 2s + t − 1,−2t − 1).

We check this against our result for Exercise 5(c):

4x − 2y − z = 4s − 2(2s + t − 1) − (−2t − 1) = 3.

22. In Exercise 3 we parametrized a cylinder of radius a and height h by X(s, t) = (a cos s, a sin s, t) for 0 ≤ t ≤ h and
0 ≤ s < 2π. Then Ts(s, t) = (−a sin s, a cos s, 0), Tt(s, t) = (0, 0, 1), and Ts(s, t) × Tt(s, t) = (a cos s, a sin s, 0).
Then, by formula (6), the surface area of S is

∫ 2π

0

∫ h

0

||Ts(s, t) × Tt(s, t)|| dt ds =

∫ 2π

0

∫ h

0

a dt ds = 2πah.

23. As in Exercise 22 we need to calculate ||Ts(s, t) × Tt(s, t)||. We have that X(s, t) = (s + t, s − t, s) for −1 ≤ s ≤ 1
and −√

1 − s2 ≤ t ≤ √
1 − s2. Therefore, Ts(s, t) = (1, 1, 1), Tt(s, t) = (1,−1, 0), Ts(s, t) × Tt(s, t) = (1, 1,−2)

and ||Ts(s, t) × Tt(s, t)|| =
√

6. So we are integrating
√

6 over the unit disk in the st-plane. Therefore, the surface area of

X(D) =

∫∫
D

√
6 dt ds =

√
6π.

24. For the parametrization of the helicoid, X(r, θ) = (r cos θ, r sin θ, θ) so Tr(r, θ) = (cos θ, sin θ, 0), Tθ(r, θ) = (−r sin θ,
r cos θ, 1), Tr(r, θ)×Tθ(r, θ) = (sin θ,− cos θ, r) and ||Tr(r, θ)×Tθ(r, θ)|| =

√
1 + r2. Then the surface area of n “turns”

of the helicoid is

∫ 2πn

0

∫ 1

0

√
1 + r2 dr dθ =

∫ 2πn

0

1

2
[
√

2 + sinh−1(1)] dθ =

∫ 2πn

0

1

2
[
√

2 + ln(
√

2 + 1)] dθ

= [
√

2 + ln(
√

2 + 1)]πn.

25. A quick look at the figure below shows a cutaway of a quarter of the xz-plane intersection of the cylindrical hole of radius b
bored in a sphere of radius a. The height of the hole is 2

√
a2 − b2. The top half of the ring is the region swept out by the

portion of the diagram containing the letter ‘h’.
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x

z

a
h

b

If X(s, t) = (a sin s cos t, a sin s sin t, a cos s), then Ts(s, t) = (a cos s cos t, a cos s sin t,−a sin s), Tt(s, t) =
(−a sin s sin t, a sin s cos t, 0), Ts(s, t) × Tt(s, t) = a2 sin s(sin s cos t, sin s sin t, cos s) and ||Ts(s, t) × Tt(s, t)|| =
a2 sin s. Notice that the angle s made with the z-axis has lower limit cos−1(h/a) = cos−1(

√
a2 − b2/a) and upper limit

π/2. So the surface area is

2

∫ 2π

0

∫ π/2

cos−1(
√

a2−b2/a)

a2 sin s ds dt = 2

∫ 2π

0

a2

(√
a2 − b2

a

)
dt = 4πa

√
a2 − b2.

26. The parametrization of the paraboloid is X(s, t) = (s cos t, s sin t, 9 − s2) where 0 ≤ t ≤ 2π and 0 ≤ s ≤ 3. So
Ts(s, t) = (cos t, sin t,−2s), Tt(s, t) = (−s sin t, s cos t, 0), Ts(s, t)×Tt(s, t) = (2s2 cos t, 2s2 sin t, s), and ||Ts(s, t)×
Tt(s, t)|| = s

√
4s2 + 1. The surface area is then

∫ 2π

0

∫ 3

0

s
√

4s2 + 1 ds dt =
1

12

∫ 2π

0

[
(1 + 4s2)3/2]∣∣3

0
dt =

π

6
(373/2 − 1).

27. We’ll parametrize the surface by X(s, t) = (s cos t, s sin t, 2s2) for 0 ≤ t ≤ 2π and 1 ≤ s ≤ 2. So Ts(s, t) =
(cos t, sin t, 4s), Tt(s, t) = (−s sin t, s cos t, 0), Ts(s, t) × Tt(s, t) = (4s2 cos t, 4s2 sin t, s), and ||Ts(s, t) × Tt(s, t)|| =
s
√

16s2 + 1. So the surface area is

∫ 2π

0

∫ 2

1

s
√

16s2 + 1 ds dt =
1

48

∫ 2π

0

(653/2 − 173/2) dt =
π

24
(653/2 − 173/2).

28. (a) First we use the parametrization X(s, t) = (s, t, a − s − t) and calculate Ts(s, t) = (1, 0,−1), Tt(s, t) = (0, 1,−1),
Ts(s, t) × Tt(s, t) = (1, 1, 1) and ||Ts(s, t) × Tt(s, t)|| =

√
3. The surface area is then the integral of

√
3 over the disk

of radius a, which is
∫∫

D

√
3 ds dt =

√
3πa2.

(b) To use formula (9), we view the surface as z = f(x, y) = a − x − y, so fx(x, y) = −1 and fy(x, y) = −1. Therefore,
formula (9) gives the surface area as

∫∫
D

√
(−1)2 + (−1)2 + 1 dx dy =

∫∫
D

√
3 dx dy =

√
3πa2.

29. We have z = f(x, y) and f2
x + f2

y = a so, by formula (9), the surface area is

∫∫
D

√
f2

x + f2
y + 1 dx dy =

∫∫
D

√
a + 1 dx dy =

√
a + 1(area of D).
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30. (a) Here is a sketch of the surface for z ≥ 1.

x

y

z

(b) We can calculate the volume under the infinite funnel by disks:∫ ∞

1

π

z2
dz = lim

b→∞
−π

z

∣∣∣b
1

= π.

(c) To calculate the surface area, we’ll parametrize the funnel as X(s, t) =

(
s cos t, s sin t,

1

s

)
, where 0 < s ≤ 1

and 0 ≤ t < 2π. Then Ts(s, t) =

(
cos t, sin t,− 1

s2

)
, Tt(s, t) = (−s sin t, s cos t, 0), Ts(s, t) × Tt(s, t) =(

1

s
cos t,

1

s
sin t, s

)
and ||Ts(s, t) × Tt(s, t)|| =

√
1

s2
+ s2. Therefore, using tables or a computer algebra system,

we see that the surface area is given by

∫ 2π

0

∫ 1

0

√
1

s2
+ s2 ds dt = lim

a→0+

∫ 2π

0

∫ 1

0

√
1

s2
+ s2 ds dt

π lim
a→0+

[
√

2 − ln(
√

2 + 1) − (
√

a4 + 1 − ln(1 +
√

1 + a4) + ln(a2))].

Each term in this last expression possesses a finite limit except ln(a2). Since lima→0+ ln(a2) = −∞, we see that the
surface area is infinite.

31. The first octant portion of the intersection is shown below.

a

x

a
y

a

z
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Note that 1/16 of the total surface area is that of the graph of z =
√

a2 − x2 lying over the triangular region bounded by
y = x, x = a, and y = 0.

a
x

a
y

For z =
√

a2 − x2, ∂z

∂x
= − x√

a2 − x2
and ∂z

∂y
= 0. Hence

Surface area = 16

∫ a

0

∫ x

0

√
x2

a2 − x2
+ 0 + 1 dy dx = 16

∫ a

0

x

√
x2 + a2 − x2

a2 − x2
dx

= 16

∫ a

0

ax√
a2 − x2

dx.

Let u = a2 − x2 so du = −2x dx. Then

Surface area = −8a

∫ 0

a2

du√
u

= 8a

∫ a2

0

u−1/2 du = 8a · 2u1/2

∣∣∣∣a
2

0

= 16a2.

32. We have

⎧⎨
⎩

x = r cos θ
y = r sin θ (r, θ) ∈ D
z = f(r, θ)

. Therefore,

Tr =

(
cos θ, sin θ,

∂f

∂r

)
, Tθ =

(
−r sin θ, r cos θ,

∂f

∂θ

)
.

So

N(r, θ) = Tr × Tθ =

(
sin θ

∂f

∂θ
− r cos θ

∂f

∂r
,−r sin θ

∂f

∂r
− cos θ

∂f

∂θ
, r cos2 θ + r sin2 θ

)
.

Hence

||N||2 = sin2 θ

(
∂f

∂θ

)2

− 2r sin θ cos θ
∂f

∂r

∂f

∂θ
+ r2 cos2 θ

(
∂f

∂r

)2

+ cos2 θ

(
∂f

∂θ

)2

+ 2r sin θ cos θ
∂f

∂r

∂f

∂θ
+ r2 sin2 θ

(
∂f

∂r

)2

+ r2

=

(
∂f

∂θ

)2

+ r2

((
∂f

∂r

)2

+ 1

)
.

Thus we have

||N|| = r

√
1

r2

(
∂f

∂θ

)2

+

(
∂f

∂r

)2

+ 1 and
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Surface area =
∫∫

D

r

√
1

r2

(
∂f

∂θ

)2

+

(
∂f

∂r

)2

+ 1 dr dθ, using formula (6) in §7.1.

33. We have

⎧⎨
⎩

x = f(ϕ, θ) sin ϕ cos θ
y = f(ϕ, θ) sin ϕ sin θ
z = f(ϕ, θ) cos ϕ

from spherical/Cartesian conversions. From this,

Tϕ = (fϕ sin ϕ cos θ + f cos ϕ cos θ, fϕ sin ϕ sin θ + f cos ϕ sin θ, fϕ cos ϕ − f sin ϕ)

Tθ = (fθ sin ϕ cos θ − f sin ϕ sin θ, fθ sin ϕ sin θ + f sin ϕ cos θ, fθ cos ϕ).

After some careful computation and using cos2 α + sin2 α = 1, we find N(ϕ, θ) = Tϕ × Tθ = (ffθ sin θ −
ffϕ sin ϕ cos ϕ cos θ + f2 sin2 ϕ cos θ, f2 sin2 ϕ sin θ − ffϕ sin ϕ cos ϕ sin θ − ffθ cos θ, f2 sin ϕ cos ϕ + ffϕ sin2 ϕ).
After still more computation, one finds ||N||2 = (ffθ)

2 + (ffϕ)2 sin2 ϕ + f4 sin2 ϕ, so that using formula (6) in §7.1,

Surface area =

∫∫
D

√
(ffθ)2 + (ffϕ)2 sin2 ϕ + f4 sin2 ϕ dϕ dθ

=

∫∫
D

f(ϕ, θ)
√

f2
θ + sin2 ϕ(fϕ + f2) dϕ dθ.

7.2 Surface Integrals

Many of your students will apply the formulas and techniques introduced in this section by first finding a parametrization for the
given surface. In many cases, as was shown in the text, if they examine the geometry of the surface, an easier solution might present
itself. In several of the solutions below, each approach is outlined.

1. We will use Definition 2.1 to calculate the integral:
∫∫

X
f dS =

∫∫
D

f(X(s, t))||Ts ×Tt|| ds dt. Here X(s, t) = (s, s+ t, t),

Ts(s, t) = (1, 1, 0), Tt(s, t) = (0, 1, 1), N(s, t) = Ts(s, t)×Tt(s, t) = (1,−1, 1), and ||N(s, t)|| =
√

3. Also, f(X(s, t)) =
s2 + (s + t)2 + t2 = 2(s2 + st + t2). So

∫∫
X
(x2 + y2 + z2) dS = 2

√
3

∫ 2

0

∫ 1

0

(s2 + st + t2) ds dt = 2
√

3

∫ 2

0

(
1

3
+

t

2
+ t2

)
dt

= 2
√

3

(
2

3
+ 1 +

8

3

)
=

26√
3
.

2. (a) Since X(s, t) = (s + t, s − t, st), we can calculate Ts(s, t) = (1, 1, t), Tt(s, t) = (1,−1, s), N(s, t) = Ts(s, t) ×
Tt(s, t) = (s+ t, t−s,−2), and ||N(s, t)|| =

√
2s2 + 2t2 + 4. Using polar coordinates in the double integral, we obtain

∫∫
X

4 dS =

∫∫
D

4
√

2s2 + 2t2 + 4 ds dt =

∫ π/2

0

∫ 1

0

4r
√

2r2 + 4 dr dθ

=
2

3

∫ π/2

0

[6
√

6 − 8] dθ =
π

3
[6
√

6 − 8].

(b) By Definition 2.2,
∫∫

X
F · dS =

∫∫
D

F(X(s, t)) · N(s, t) ds dt. Here F(X(s, t)) = (s + t, s − t, st) and so, from part

(a), we know that N(s, t) = (s + t, t − s,−2). This means that F · N = (s + t)2 − (s − t)2 − 2st = 2st. Therefore,

∫∫
X

F · dS =

∫∫
D

2st ds dt =

∫ 1

0

∫ √
1−t2

0

2st ds dt

=

∫ 1

0

(s2t)
∣∣√1−t2

0
dt =

∫ 1

0

(t − t3) dt =

(
t2

2
− t4

4

) ∣∣∣∣1
0

=
1

4
.

3. We need to calculate
∫∫

X
F · dS. The surface is given by a level set of f(x, y, z) = 2x− 2y + z. Since ∇f = (2,−2, 1), the
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Section 7.2. Surface Integrals 385

upward-pointing unit normal is 1

3
(2,−2, 1). So, since 2x − 2y + z = 2,

∫∫
X

F · dS =
1

3

∫∫
S

(x, y, z) · (2,−2, 1) dS =
1

3

∫∫
S

(2x − 2y + z) dS

=
1

3

∫∫
S

(2)dS =
2

3

∫∫
S

dS =
2

3
||N||(area of D) = 2(area of D).

Here D is the “shadow” of S in the xy-plane. D is a right triangle in the xy-plane with legs each of length 1. Hence

∫∫
X

F · dS = 2(area of D) = (2)((1/2)(1)(1)) = 1.

4. (a) You can easily verify that both X and Y parametrize the surface z = 3x2 + 3y2 for 0 ≤ x2 + y2 ≤ 4. The major
difference is that X covers the surface once while Y covers the surface twice.

(b) For X, the standard normal N is

(cos t, sin t, 6s) × (−s sin t, s cos t, 0) = (−6s2 cos t,−6s2 sin t, s)

so

∫∫
X
(yi − xj + z2k) · dS =

∫ 2π

0

∫ 2

0

(s sin t,−s cos t, 9s4) · (−6s2 cos t,−6s2 sin t, s) ds dt

=

∫ 2π

0

∫ 2

0

9s5 ds dt =

∫ 2π

0

9s6

6

∣∣∣∣2
0

dt =

∫ 2π

0

96 dt = 192π.

For Y, the standard normal N is

(2 cos t, 2 sin t, 24s) × (−2s sin t, 2s cos t, 0) = (−48s2 cos t,−48s2 sin t, 4s)

so

∫∫
Y
(yi − xj + z2k) · dS =

∫ 4π

0

∫ 1

0

(2s sin t,−2s cos t, 144s4) · (−48s2 cos t,−48s2 sin t, 4s) ds dt

=

∫ 4π

0

∫ 1

0

576s5 ds dt =

∫ 4π

0

576s6

6

∣∣∣∣1
0

dt =

∫ 4π

0

96 dt = 384π.

As noted in part (a), the integral over Y should be twice the integral over X since they both parametrize the same space
but Y covers the space twice.

5. We will parametrize the six faces of the cube as follows (in each case −2 ≤ s, t ≤ 2):

i X(s, t) for Si face

1 (s, t, 2) top
2 (s, t,−2) bottom
3 (s, 2, t) right
4 (s,−2, t) left
5 (2, s, t) front
6 (−2, s, t) back

Note that in each case ||N(s, t)|| = 1, so
∫∫

Si

[x(s, t)]2||N(s, t)|| ds dt =

∫∫
Si

[x(s, t)]2ds dt for 1 ≤ i ≤ 6. Also,
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386 Chapter 7 Surface Integrals and Vector Analysis∫∫
Si

[x(s, t)]2 ds dt =

∫ 2

−2

∫ 2

−2

s2 ds dt for i = 1, 2, 3, 4 and
∫∫

Si

[x(s, t)]2 ds dt =

∫ 2

−2

∫ 2

−2

4 ds dt for i = 5, 6. Then

∫∫
S

x2 dS =

6∑
i=1

∫∫
Si

[x(s, t)]2||N(s, t)|| ds dt

= 4

∫ 2

−2

∫ 2

−2

s2 ds dt + 2

∫ 2

−2

∫ 2

−2

4 ds dt

= 4

∫ 2

−2

s3

3

∣∣∣∣2
−2

dt + 8

∫ 2

−2

s
∣∣2
−2
dt

= 4

∫ 2

−2

16

3
dt + 8

∫ 2

−2

4 dt =
256

3
+ 128 =

640

3
.

6. We parametrize the lateral surface of the cylinder by X(s, t) = (a cos s, a sin s, t) where 0 ≤ s ≤ 2π and 0 ≤ t ≤ h.
So we have Ts(s, t) = (−a sin s, a cos s, 0), Tt(s, t) = (0, 0, 1), N(s, t) = Ts(s, t) × Tt(s, t) = (a cos s, a sin s, 0), and
||N(s, t)|| = a. So∫∫

S

(x2 + y2) dS =

∫ 2π

0

∫ h

0

(a2 cos2 s + a2 sin2 s)a dt ds =

∫ 2π

0

∫ h

0

a3 dt ds = 2πha3.

A quicker approach is to note that on the cylinder x2 + y2 = a2, so∫∫
S

(x2 + y2) dS =

∫∫
S

a2 dS = a2 · area of S = a2(2πah) = 2πha3.

7. (a) Because x2 + y2 + z2 = a2 on the surface,∫∫
S

(x2 + y2 + z2) dS = a2(surface area of S) = 4πa4.

(b) Here we note that by part (a) ∫∫
S

x2 dS +

∫∫
S

y2 dS +

∫∫
S

z2 dS = 4πa4

and by the symmetries of the sphere∫∫
S

x2 dS =

∫∫
S

y2 dS =

∫∫
S

z2 dS. So
∫∫

S

y2 dS = 4πa4/3.

8. (a) The sphere is symmetric about the plane x = 0. Hence
∫∫

S

x dS = 0 as for each small piece of the sphere with coordinate

x > 0 (and x ≤ a), there is a corresponding piece with coordinate x < 0. Hence contributions in an appropriate Riemann
sum will cancel.

(b) For x2 + y2 + z2 = a2 the outward unit normal is given by n =
xi + yj + zk

a
. Thus∫∫

S

F · dS =

∫∫
S

F · n dS =

∫∫
S

1

a
(x + y + z) dS

=
1

a

(∫∫
S

x dS +

∫∫
S

y dS +

∫∫
S

z dS
)

= 0

since each surface integral is zero via reasoning as in part (a).

9. (a) We parametrize the cylinder as

⎧⎨
⎩

x = 2 cos t
y = 2 sin t
z = s

0 ≤ t < 2π, −2 ≤ s ≤ 2.

Then

||Ts × Tt|| = ||(0, 0, 1) × (−2 sin t, 2 cos t, 0)|| = ||(−2 cos t,−2 sin t, 0)||
= 2.
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Hence ∫∫
S

(z − x2 − y2) dS =

∫ 2π

0

∫ 2

−2

(s − 4) · 2 ds dt =

∫ 2π

0

(s2 − 8s)

∣∣∣∣2
s=−2

dt

=

∫ 2π

0

−32 dt = −64π.

(b)
∫∫

S

(z − x2 − y2) dS =

∫∫
S

z dS −
∫∫

S

(x2 + y2) dS. S is symmetric about the z = 0 plane and x2 + y2 = 4 on S.

Hence
∫∫

S

z dS = 0 and −
∫∫

S

(x2 + y2) dS = −
∫∫

S

4 dS = −4 · (surface area of S) = −4(4π · 4) = −64π.

The following calculations are useful for Exercises 10–18. Let’s parametrize the surface of the cylinder in three pieces:
• S1 = the lateral surface, X(s, t) = (3 cos s, 3 sin s, t) for 0 ≤ s ≤ 2π and 0 ≤ t ≤ 4.
• S2 = the bottom surface, X(s, t) = (t cos s, t sin s, 0) for 0 ≤ s ≤ 2π and 0 ≤ t ≤ 3.
• S3 = the top surface, X(s, t) = (t cos s, t sin s, 4) for 0 ≤ s ≤ 2π and 0 ≤ t ≤ 3.

For S1, Ts(s, t) = (−3 sin s, 3 cos s, 0), Tt(s, t) = (0, 0, 1), Ts(s, t)×Tt(s, t) = (3 cos s, 3 sin s, 0), and ||Ts(s, t)×Tt(s, t)|| =
3. For both S2 and S3, Ts(s, t) = (−t sin s, t cos s, 0), Tt(s, t) = (cos s, sin s, 0), Ts(s, t) × Tt(s, t) = (0, 0,−t), and
||Ts(s, t) × Tt(s, t)|| = t. Because we are orienting with outward normals, N(s, t) = (0, 0,−t) on S2 and N(s, t) = (0, 0, t) on
S3.

In Exercises 10–13 we use Definition 2.1:
∫∫

X
f dS =

∫∫
D

f(X(s, t)))||N(s, t)|| ds dt. And we’ll break down the integral as∫∫
S

=

∫∫
S1

+

∫∫
S2

+

∫∫
S3

.

10.
∫∫

S

z dS =

∫ 2π

0

∫ 4

0

3t dt ds +

∫ 2π

0

∫ 3

0

0 dt ds +

∫ 2π

0

∫ 3

0

4t dt ds = 48π + 36π = 84π.

11.
∫∫

S

y dS =

∫ 4

0

∫ 2π

0

9 cos s ds dt + 2

∫ 3

0

∫ 2π

0

t2 cos s ds dt = 0 + 0 = 0. Alternatively, you could notice that we are

integrating an odd function of y over a region that is symmetric with respect to y.

12.
∫∫

S

xyz dS =

∫ 4

0

∫ 2π

0

27t cos s sin s ds dt +

∫ 3

0

∫ 2π

0

0 ds dt +

∫ 3

0

∫ 2π

0

4t3 cos s sin s ds dt = 0. Use the substitution

u = sin s. Again, alternatively, you could use a symmetry argument. We are again integrating an odd function of y over a
region that is symmetric with respect to y.

13. ∫∫
S

x2 dS =

∫ 4

0

∫ 2π

0

27 cos2 s ds dt + 2

∫ 3

0

∫ 2π

0

t3 cos2 s ds dt

= 27

∫ 4

0

[
s

2
+

1

9
sin 2s

]∣∣∣∣2π

0

dt + 2

∫ 3

0

t3
[

s

2
+

1

4
sin 2s

]∣∣∣∣2π

0

dt = 27

∫ 4

0

π dt + 2

∫ 3

0

πt3 dt

= 108π +
81π

2
=

297π

2
.

For Exercises 14–18, we use Definition 2.2:
∫∫

X
F · dS =

∫∫
X

F · n dS =

∫∫
D

F(X(s, t)) · N(s, t) ds dt. For another way

of solving these exercises, recall from Section 2.6, that if S is a surface in R3 defined by an equation of the form f(x, y, z) = c,
then if x0 ∈ X , the gradient vector ∇f(x0) is a vector normal to the plane tangent to S at x0. Therefore the unit normal to S1 (a
surface given by x2 + y2 = 9) is n = (xi + yj)/3, while the unit normal to S2 is −k and the unit normal to S3 is k.

14. ∫∫
S

(xi + yj) · dS =

∫ 4

0

∫ 2π

0

(3 cos s, 3 sin s, 0) · (3 cos s, 3 sin s, 0) ds dt

+

∫ 3

0

∫ 2π

0

(t cos s, t sin s, 0) · (0, 0,−t) ds dt +

∫ 3

0

∫ 2π

0

(t cos s, t sin s, 0) · (0, 0, t) ds dt

=

∫ 4

0

∫ 2π

0

9 ds dt = 72π.
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A different approach would be to observe that as the unit normals for S2 and S3 are ±k then F · n = 0 on S2 and S3. On S1

the unit normal is (xi + yj)/3 So F · n = (x2 + y2)/3 = 9/3 = 3. Therefore we obtain,
∫∫

S1

F · n dS = 3(area of S1) =

3(2π(3)(4)) = 72π.
15. ∫∫

S

(zk) · dS =

∫ 4

0

∫ 2π

0

(0, 0, t) · (3 cos s, 3 sin s, 0) ds dt +

∫ 3

0

∫ 2π

0

(0, 0, 0) · (0, 0,−t) ds dt

+

∫ 3

0

∫ 2π

0

(0, 0, 4) · (0, 0, t) ds dt =

∫ 3

0

∫ 2π

0

4t ds dt =

∫ 3

0

8πt dt = 36π.

A different approach would have been to notice that, since the unit normal vector to the lateral surface S1 has no k component,∫∫
S1

zk · dS = 0. Also, z = 0 on S2 so
∫∫

S2

zk · dS = 0. Finally, z = 4 on S3 and therefore

∫∫
S

zk · dS =

∫∫
S3

zk · dS =

∫∫
S3

4k · k dS =

∫∫
S3

4 dS = 4 · (area of S3) = 4(π32) = 36π.

16. ∫∫
S

(y3i) · dS =

∫ 4

0

∫ 2π

0

(27 sin3 s, 0, 0) · (3 cos s, 3 sin s, 0) ds dt

+

∫ 3

0

∫ 2π

0

(t3 sin3 s, 0, 0) · (0, 0,−t) ds dt +

∫ 3

0

∫ 2π

0

(t3 sin3 s, 0, 0) · (0, 0, t) ds dt

= 81

∫ 4

0

∫ 2π

0

sin3 s cos s ds dt =
81

4

∫ 4

0

sin4 s

∣∣∣∣2π

0

dt = 0.

Again, a careful student should have noticed that there is no k component and so the integrals over S2 and S3 are each 0.
17. ∫∫

S

(−yi + xj) · dS =

∫ 4

0

∫ 2π

0

(27 sin3 s, 0, 0) · (3 cos s, 3 sin s, 0) ds dt

+

∫ 3

0

∫ 2π

0

(t3 sin3 s, 0, 0) · (0, 0,−t) ds dt +

∫ 3

0

∫ 2π

0

(t3 sin3 s, 0, 0) · (0, 0, t) ds dt

= 81

∫ 4

0

∫ 2π

0

sin3 s cos s ds dt =
81

4

∫ 4

0

sin4 s

∣∣∣∣2π

0

dt = 0.

Again, a careful student should have noticed that there is no k component and so the integrals over S2 and S3 are each 0.
Therefore, a different approach would be to calculate∫∫

S

(−yi + xj) · dS =

∫∫
S1

(−yi + xj) · (xi + yj)/3 dS =

∫∫
S1

0 dS = 0.

18. ∫∫
S

(x2i) · dS =

∫ 4

0

∫ 2π

0

(9 cos2 s, 0, 0) · (3 cos s, 3 sin s, 0) ds dt

+

∫ 3

0

∫ 2π

0

(t2 cos2 s, 0, 0) · (0, 0,−t) ds dt +

∫ 3

0

∫ 2π

0

(t2 cos2 s, 0, 0) · (0, 0, t) ds dt

= 27

∫ 4

0

∫ 2π

0

cos3 s ds dt = 27

∫ 4

0

∫ 2π

0

(1 − sin2 s) cos s ds dt = 27

∫ 4

0

[sin s − (sin3 s)/3]

∣∣∣∣2π

0

dt = 0.

Again, a careful student should have noticed that there is no k component and so the integrals over S2 and S3 are each 0.
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We calculate the flux from
∫∫

S

F · n dS =

∫∫
S

F(X(s, t)) · N(s, t) ds dt. For Exercises 19–22 we have that

X(ϕ, θ) = (a sin ϕ cos θ, a sin ϕ sin θ, a cos ϕ) for 0 ≤ θ < 2π and 0 ≤ ϕ ≤ π,

Tϕ(ϕ, θ) = (a cos ϕ cos θ, a cos ϕ sin θ,−a sin ϕ),

Tθ(ϕ, θ) = (−a sin ϕ sin θ, a sin ϕ cos θ, 0), and

N(ϕ, θ) = Tϕ(ϕ, θ) × Tθ(ϕ, θ) = (a2 sin2 ϕ cos θ, a2 sin2 ϕ sin θ, a2 cos ϕ sin ϕ)

= a2 sin ϕ(sin ϕ cos θ, sin ϕ sin θ, cos ϕ).

19.

∫∫
S

(yj) · n dS =

∫ 2π

0

∫ π/2

0

(0, a sin ϕ sin θ, 0) · (a2 sin2 ϕ cos θ, a2 sin2 ϕ sin θ, a2 cos ϕ sin ϕ) dϕ dθ

=

∫ 2π

0

∫ π/2

0

(a3 sin3 ϕ sin2 θ) dϕ dθ = a3

∫ 2π

0

∫ π/2

0

(1 − cos2 ϕ) sin ϕ sin2 θ dϕ dθ

= a3

∫ 2π

0

[
− cos ϕ +

cos3 ϕ

3

]∣∣∣∣π/2

0

sin2 θ dϕ dθ =
2a3

3

∫ 2π

0

sin2 θ dθ

=
2a3

3

∫ 2π

0

1 − cos 2θ

2
dθ =

2a3

3

[
θ

2
− sin 2θ

4

]∣∣∣∣2π

0

=
2πa3

3
.

20.

∫∫
S

(yi − xj) · n dS

=

∫ 2π

0

∫ π/2

0

(a sin ϕ sin θ,−a sin ϕ cos θ, 0) · (a2 sin2 ϕ cos θ, a2 sin2 ϕ sin θ, a2 cos ϕ sin ϕ) dϕ dθ

= a3

∫ 2π

0

∫ π/2

0

(sin3 ϕ sin θ cos θ − sin3 ϕ cos θ sin θ) dϕ dθ = 0.

Actually it is simpler not to resort to the parametrization. Since n = (xi+yj+zk)/a for the sphere we see that (yi−xj)·n = 0

and so
∫∫

S

(yi − xj) · n dS = 0.

21.

∫∫
S

(−yi + xj − k) · n dS = −
∫∫

S

k · n dS −
∫∫

S

(yi − xj) · n dS

= −
∫∫

S

k · n dS (since, by Exercise 20,

∫∫
S

(yi − xj) · n dS = 0)

= −
∫ 2π

0

∫ π/2

0

(0, 0, 1) · (a2 sin2 ϕ cos θ, a2 sin2 ϕ sin θ, a2 cos ϕ sin ϕ) dϕ dθ

= −a2

∫ 2π

0

∫ π/2

0

(cos ϕ sin ϕ) dϕ dθ = −a2

∫ 2π

0

sin2 ϕ

2

∣∣∣∣π/2

0

dθ

= −a2

2

∫ 2π

0

dθ = −πa2.
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22. ∫∫
S

(x2i + xyj + xzk) · n dS

=

∫ π/2

0

∫ 2π

0

[(a2 sin2 ϕ cos2 θ, a2 sin2 ϕ cos θ sin θ, a2 cos ϕ sin ϕ cos θ)

· (a2 sin2 ϕ cos θ, a2 sin2 ϕ sin θ, a2 cos ϕ sin ϕ)] dθ dϕ

= a4

∫ π/2

0

∫ 2π

0

(sin4 ϕ cos3 θ + sin4 ϕ cos θ sin2 θ + cos2 ϕ sin2 ϕ cos θ) dθ dϕ

= a4

∫ π/2

0

∫ 2π

0

(sin4 ϕ cos θ + sin2 ϕ cos2 ϕ cos θ) dθ dϕ

= a4

∫ π/2

0

∫ 2π

0

(sin2 ϕ cos θ) dθ dϕ = a4

∫ π/2

0

[sin2 ϕ sin θ]

∣∣∣∣2π

0

dθ = 0.

A different approach would be to see that∫∫
S

(x2i + xyj + xzk) · n dS =

∫∫
S

x(xi + yj + zk) · xi + yj + zk
a

dS

=

∫∫
S

x
a2

a
dS = a

∫∫
S

x dS.

The integrand is an odd function of x which is being integrated over a region which is symmetric with respect to x; therefore∫∫
S

(x2i + xyj + xzk) · n dS = 0.

23. We have Ts = (cos t, sin t, 0) and Tt = (−s sin t, s cos t, 1), so that the standard normal is

N = Ts×Tt =

∣∣∣∣∣∣
i j k

cos t sin t 0
−s sin t s cos t 1

∣∣∣∣∣∣ = sin t i − cos t j + sk.

Therefore, the flux of F is given by

∫∫
S

F · dS =

∫ 2π

0

∫ 2

0

F(X(s, t)) · N(s, t) ds dt

=

∫ 2π

0

∫ 2

0

(
s sin t, s cos t, t3

)
· (sin t,− cos t, s) ds dt

=

∫ 2π

0

∫ 2

0

(
s(sin2 t − cos2 t) + st3

)
ds dt

=

∫ 2π

0

∫ 2

0

(
st3 − s cos 2t

)
ds dt =

∫ 2π

0

(
1
2
s2t3 − 1

2
s2 cos 2t

)∣∣2
s=0

dt

=

∫ 2π

0

(
2t3 − 2 cos 2t

)
dt =

(
1
2
t4 − sin 2t

)∣∣2π

0
= 8π4.

24. We may parametrize the cone by X(s, t) = (s cos t, s sin t, s), where −2 ≤ s ≤ 1, 0 ≤ t ≤ 2π. Then the standard normal

Ts×Tt =

∣∣∣∣∣∣
i j k

cos t sin t 1
−s sin t s cos t 0

∣∣∣∣∣∣ = −s cos t i − s sin t j + sk

points the wrong way. (It points upward when z = s > 0 and downward when z = s < 0.) Thus we take N to be
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s cos t i + s sin t j − sk. Then

∫∫
S

F · dS =

∫ 2π

0

∫ 1

−2

(
2s cos t, 2s sin t, s2)

· (s cos t, s sin t,−s) ds dt

=

∫ 2π

0

∫ 1

−2

(
2s2 sin2 t + 2s2 cos2 t − s3) ds dt

=

∫ 2π

0

∫ 1

−2

(
2s2 − s3) ds dt =

39π

2
.

25. The surface z = g(x, y) = yex has upward normal N = −gx(x, y) i − gy(x, y) j + k = −yex i − ex j + k. Therefore, the
flux of F = y3z i − xy j + (x + y + z)k is given by

∫∫
S

F · dS =

∫ 1

0

∫ 1

0

(
y4ex,−xy, x + y + yex)

· (−yex,−ex, 1) dy dx

=

∫ 1

0

∫ 1

0

(−y5e2x + yxex + x + y + yex) dy dx

=

∫ 1

0

∫ 1

0

(− 1
6
e2x + 1

2
xex + x + 1

2
+ 1

2
ex) dx

=
(− 1

12
e2x + 1

2
(xex − ex) + 1

2
x2 + 1

2
x + 1

2
ex)∣∣1

0

= 13
12

− 1
12

e2 + 1
2
e.

26. The tetrahedron has four triangular faces; we must consider surface integrals over each of them and then add the results.

x

z

y

z = 3 – (3/2)yz = 3 – 3x

y = 2 – 2x

(0,0,3)

(0,2,0)
(1,0,0)

The top slanted face is the first octant part of the plane through the points (1, 0, 0), (0, 2, 0), (0, 0, 3). This plane has
equation 6x + 3y + 2z = 6, or z = 3 − 3x − 3

2
y and upward normal N = (3, 3/2, 1). The “shadow” of this region

in the xy-plane is the triangular region {(x, y, 0) | 0 ≤ y ≤ 2 − 2x, 0 ≤ x ≤ 1}; the shadow in the yz-plane is
{(0, y, z) | 0 ≤ z ≤ 3 − 3

2
y, 0 ≤ y ≤ 2}; the shadow in the xz-plane is {(x, 0, z) | 0 ≤ z ≤ 3 − 3x, 0 ≤ x ≤ 1}. These

three shadow regions determine the other three faces of the tetrahedron.
Now we calculate. For the top face S1, we have z = 3 − 3x − 3

2
y, so that

∫∫
S1

F · dS =

∫ 1

0

∫ 2−2x

0

(
x2, 12 − 12x − 6y, y − x

)
·

(
3, 3

2
, 1

)
dy dx

=

∫ 1

0

∫ 2−2x

0

(
3x2 + 18 − 19x − 8y

)
dy dx

=

∫ 1

0

(
(3x2 − 19x + 18)(2 − 2x) − 4(2 − 2x)2

)
dx

= 2

∫ 1

0

(−3x3 + 22x2 − 37x + 18 − 8(1 − x)2
)

dx =
41

6
.
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The bottom face S2 is the portion of the plane z = 0 over the triangular region {(x, y, 0) | 0 ≤ y ≤ 2− 2x, 0 ≤ x ≤ 1}.
To have an overall outward normal, we must take the normal here to be N = −k. Therefore, with z = 0, we have∫∫

S2

F · dS =

∫ 1

0

∫ 2−2x

0

(
x2, 0, y − x

)
· (0, 0,−1) dy dx

=

∫ 1

0

∫ 2−2x

0

(x − y) dy dx

=

∫ 1

0

(
x(2 − 2x) − 1

2
(2 − 2x)2

)
dx =

∫ 1

0

(
2x − 2x2 − 2(1 − x)2

)
dx

=
(
x2 − 2

3
x3 + 2

3
(1 − x)3

)∣∣1
0

= −1

3
.

The left face S3 is the portion of the plane y = 0 over the triangular region {(x, 0, z) | 0 ≤ z ≤ 3− 3x, 0 ≤ x ≤ 1}. To
have an overall outward normal, we must here take the normal to be N = −j. Therefore, with y = 0, we have∫∫

S3

F · dS =

∫ 1

0

∫ 3−3x

0

(
x2, 4z,−x

)
· (0,−1, 0) dz dx

=

∫ 1

0

∫ 3−3x

0

−4z dz dx

=

∫ 1

0

−2(3 − 3x)2 dx = −6.

Finally, the right face S4 is the portion of the plane x = 0 over the triangular region {(0, y, z) | 0 ≤ z ≤ 3 − 3
2
y, 0 ≤

y ≤ 2}. For an overall outward normal, we must take the normal to be N = −i. Therefore, with x = 0, we have∫∫
S4

F · dS =

∫ 2

0

∫ 3−(3/2)y

0

(0, 4z,−x) · (−1, 0, 0) dz dy

=

∫ 2

0

∫ 3−(3/2)y

0

0 dz dy = 0.

Thus our final result is∫∫
S

F · dS =

∫∫
S1

F · dS +

∫∫
S2

F · dS +

∫∫
S3

F · dS +

∫∫
S4

F · dS

=
41

6
− 1

3
− 6 + 0 =

1

2
.

27. (a) Below left is just the portion of S for 0 ≤ z ≤ 2 so that you can more clearly see the funnel shape. Below right is a sketch
of S.

(b) For the cylindrical portion of S, X(s, t) = (cos s, sin s, t) for 0 ≤ s < 2π and 0 ≤ t ≤ 1. In that case Ts(s, t) =
(− sin s, cos s, 0), Tt(s, t) = (0, 0, 1), Ts(s, t)×Tt(s, t) = (cos s, sin s, 0) and so the outward pointing unit normal for
this portion is n = (cos s, sin s, 0) = xi + yj.
For the conical portion of S, X(s, t) = (t cos s, t sin s, t) for 0 ≤ s < 2π and 1 ≤ t ≤ 9. In that case Ts(s, t) =
(−t sin s, t cos s, 0), Tt(s, t) = (cos s, sin s, 1), Ts(s, t) × Tt(s, t) = (t cos s, t sin s,−t) and so the outward pointing
unit normal for this portion is n = (1/

√
2)(cos s, sin s,−1) = (1/

√
2)((x/z)i + (y/z)j − k).
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(c)

∫∫
S

F · dS =

∫∫
S

(−yi + xj + zk) · dS =

∫ 2π

0

∫ 9

1

(−t sin s, t cos s, t) · (t cos s, t sin s,−t) dt ds

+

∫ 2π

0

∫ 1

0

(− sin s, cos s, t) · (cos s, sin s, 0) dt ds =

∫ 2π

0

∫ 9

1

−t2 dt ds +

∫ 2π

0

∫ 1

0

0 dt ds

=

∫ 2π

0

− t3

3

∣∣∣∣9
1

ds =

∫ 2π

0

[
−729

3
+

1

3

]
ds = −1456π

3
.

28. We know that the heat flux density H = −k∇T = −k(2x, 2y, 6z−12). On the ground k = 3 and X(s, t) = (t cos s, t sin s, 0)
for 0 ≤ t ≤ 2 and 0 ≤ s ≤ 2π. Also, Ts(s, t) = (−t sin s, t cos s, 0), Tt(s, t) = (cos s, sin s, 0) and so N(s, t) = (0, 0,−t).
Along the glass we have k = 1 and X(s, t) = (t cos s, t sin s, 8 − 2t2) for 0 ≤ t ≤ 2 and 0 ≤ s ≤ 2π. Also,
Ts(s, t) = (−t sin s, t cos s, 0), Tt(s, t) = (cos s, sin s,−4t) and therefore N(s, t) = (−4t2 cos s,−4t2 sin s,−t). The
outward normal must be −N(s, t) = (4t2 cos s, 4t2 sin s, t).

∫∫
S

H · dS =

∫∫
S1

H · dS +

∫∫
S2

H · dS

=

∫ 2π

0

∫ 2

0

−3(2t cos s, 2t sin s,−12) · (0, 0,−t) dt ds

−
∫ 2π

0

∫ 2

0

(2t cos s, 2t sin s, 36 − 12t2) · (4t2 cos s, 4t2 sin s, t) dt ds

=

∫ 2π

0

∫ 2

0

−36t dt ds +

∫ 2π

0

∫ 2

0

(−8t3 − 36t + 12t3) dt ds

=

∫ 2π

0

∫ 2

0

(4t3 − 72t) dt ds =

∫ 2π

0

[t4 − 36t2]

∣∣∣∣2
0

ds

=

∫ 2π

0

[16 − 144] ds = −256π.

29. (a) A sketch of the surface for a = 2 usingMathematica is:

(b) At t = 0 we have that sin t = sin 2t = 0 and so the s-coordinate curve is given by (x, y, z) = (a cos s, a sin s, 0). This
is a circle of radius a in the xy-plane.

(c) A computer algebra system would help the following calculation. It is not difficult; it is just very easy to drop a term here
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or there.

Ts(s, t) =

(
cos s

[
−1

2
sin

s

2
sin t − 1

2
cos

s

2
sin 2t

]
− sin s

[
a + cos

s

2
sin t − sin

s

2
sin 2t

]
,

sin s

[
−1

2
sin

s

2
sin t − 1

2
cos

s

2
sin 2t

]
+ cos s

[
a + cos

s

2
sin t − sin

s

2
sin 2t

]
,

1

2
cos

s

2
sin t − 1

2
sin

s

2
sin 2t

)
, so

Ts(s, 0) = (−a sin s, a cos s, 0).

Tt(s, t) =
(
cos s

[
cos

s

2
cos t − 2 cos 2t sin

s

2

]
, sin s

[
cos

s

2
cos t − 2 cos 2t sin

s

2

]
,

2 cos
s

2
cos 2t + cos t sin

s

2

)
so

Tt(s, 0) =
(
cos s

[
cos

s

2
− 2 sin

s

2

]
, sin s

[
cos

s

2
− 2 sin

s

2

]
, 2 cos

s

2
+ sin

s

2

)
.

Calculate the cross product Ts(s, 0) × Tt(s, 0) to obtain

N(s, 0) =
(
a cos s

[
2 cos

s

2
+ sin

s

2

]
, a sin s

[
2 cos

s

2
+ sin

s

2

]
, 2a sin

s

2
− a cos

s

2

)
.

We note that
X(0, 0) = (a, 0, 0) = X(2π, 0)

but
N(0, 0) = (2a, 0,−a) while N(2π, 0) = (−2a, 0, a).

When you travel around the s-coordinate curve at t = 0 once, you find that the normal vector is now pointing in the
opposite direction. The conclusion is that the Klein bottle cannot be orientable.

7.3 Stokes’s and Gauss’s Theorems

Exercises 1–4 are similar to Example 1 from the text. Recall from Section 2.6 that if S is a surface in R3 defined by an equation of
the form f(x, y, z) = c, then if x0 ∈ X , the gradient vector ∇f(x0) is a vector normal to the plane tangent to S at x0.

1. Calculate

∇× F =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
xz yz x2 + y2

∣∣∣∣∣∣ = (2y − y)i + (−2x + x)j = yi − xj.

By symmetry we can see that the integral will be zero; however, let’s follow the instructions. View the surface as a level set at
height 1 of f(x, y, z) = x2 + y2 + 5z Then N = ∇f = 2xi + 2yj + 5k. So,∫∫

S

∇× F · dS =

∫∫
D

(yi − xj) · (2xi + 2yj + 5k) dx dy

=

∫∫
D

(2xy − 2xy) dx dy = 0.

On the other hand, ∂S consists of C = {(x, y, z)|x2+y2 = 1 and z = 0} which we parametrize by x(t) = (cos t, sin t, 0). Then,∮
∂S

F · ds =

∫ 2π

0

F(x(t)) · x′(t) dt =

∫ 2π

0

(0, 0, 1) · (− sin t, cos t, 0) dt = 0.

These two answers agree.
2. S is a helicoid. We begin by calculating

∇× F =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
z x y

∣∣∣∣∣∣ = i + j + k.
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We calculated a normal vector in Exercise 24 of Section 7.1: N = (sin t,− cos t, s). So,

∫∫
S

∇× F · dS =

∫∫
D

(i + j + k) · (sin ti − cos tj + sk) dt ds

=

∫ 1

0

∫ π/2

0

(sin t − cos t + s) dt ds =

∫ 1

0

π

2
s ds

=
π

4
s2
∣∣∣1
0

=
π

4
.

On the other hand, ∂S consists of four pieces which we parametrize by x1(s) = (s, 0, 0) for 0 ≤ s ≤ 1, x2(t) =
(cos t, sin t, t) for 0 ≤ t ≤ π/2, x3(s) = (0, 1− s, π/2) for 0 ≤ s ≤ 1, and x4(t) = (0, 0, π/2− t) for 0 ≤ t ≤ π/2. Then,

∮
∂S

F · ds =

∫ 1

0

(0, s, 0) · (1, 0, 0) ds +

∫ π/2

0

(t, cos t, sin t) · (− sin t, cos t, 1) dt

+

∫ 1

0

(π/2, 0, 1 − s) · (0,−1, 0) ds +

∫ π/2

0

(π/2 − t, 0, 0) · (0, 0,−1) dt

=

∫ 1

0

0 ds +

∫ π/2

0

(−t sin t + cos2 t + sin t) dt +

∫ 1

0

0 ds +

∫ π/2

0

0 dt

=
π

4
.

These two answers agree.
3. We see that

∇× F =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
x y z

∣∣∣∣∣∣ = 0 so
∫∫

S

∇× F · dS = 0.

On the other hand, ∂S consists of C = {(x, y, z)|y2+z2 = 16 and x = 0} which we parametrize by x(t) = (0, 4 cos t, 4 sin t)
for 0 ≤ t ≤ 2π. Then,

∮
∂S

F · ds =

∫ 2π

0

F(x(t)) · x′(t) dt =

∫ 2π

0

(0, 4 cos t, 4 sin t) · (0,−4 sin t, 4 cos t) dt = 0.

These two answers agree.
4. For S,

∇× F =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
2y − z x + y2 − z 4y − 3x

∣∣∣∣∣∣ = (4 − (−1))i + (3 − 1)j + (1 − 2)k = 5i + 2j − k.

If we parametrize S by X(s, t) = (2 cos s sin t, 2 sin s sin t, 2 cos t), a downward normal vector is given by N = (4 cos s sin2 t,
4 sin s sin2 t, 4 sin t cos t). So,

∫∫
S

∇× F · dS =

∫∫
D

(5i + 2j − k) · (4 cos s sin2 ti + 4 sin s sin2 tj + 4 sin t cos tk) ds dt

=

∫ π

π/2

∫ 2π

0

(20 cos s sin2 ti + 8 sin s sin2 tj − 4 sin t cos tk) ds dt

=

∫ π

π/2

(4π sin(2t)) dt = 4π.

On the other hand, ∂S consists of C = {(x, y, z)|y2+z2 = 4 and z = 0} which we parametrize by x(t) = (2 cos t,−2 sin t, 0).
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Then,

∮
∂S

F · ds =

∫ 2π

0

F(x(t)) · x′(t) dt

=

∫ 2π

0

(−4 sin t, 2 cos t + 4 sin2 t,−8 sin t − 6 cos t) · (−2 sin t,−2 cos t, 0) dt

=

∫ 2π

0

(8 sin2 t − 4 cos2 t − 8 sin2 t cos t) dt

=

∫ 2π

0

(8 − 6(1 + cos 2t) − 8 sin2 t cos t) dt

=

∫ 2π

0

(2 − 6 cos 2t − 8 sin2 t cos t) dt = 4π.

These two answers agree.
5. Stokes’s Theorem implies that we don’t need to be concerned that S is defined as the union of S1 and S2 if we choose the

calculation along the boundary. Then ∂S is parametrized by x(t) = (3 cos t, 3 sin t, 0) where 0 ≤ t ≤ 2π, and so

∮
∂S

F · ds =

∫ 2π

0

F(x(t)) · x′(t) dt

=

∫ 2π

0

(27 cos3 ti + 37 sin7 tj) · (−3 sin t, 3 cos t, 0) dt

= −34

∫ 2π

0

cos3 t sin t dt + 38

∫ 2π

0

sin7 t cos t dt = 0.

6. Note that ∇ · F = 3 so

∫∫∫
D

∇ · F dV = 3

∫∫∫
D

dV = 3

∫ 3

−3

∫ √
9−x2

−
√

9−x2

(9 − x2 − y2) dy dx

= 3

∫ 3

−3

4

3
(9 − x2)3/2 dx =

243π

2
.

On the other hand, the boundary of D is in two pieces: S1 = the disk at height z = 0 and S2 = the portion of the
paraboloid about the xy-plane. Parametrize S1 by X1(s, t) = (t cos s, t sin s, 0) for 0 ≤ s ≤ 2π and 0 ≤ t ≤ 3. Then
N1(s, t) = (0, 0,−t). Also parametrize S2 by X2(s, t) = (t cos s, t sin s, 9−t2). Then N2(s, t) = (2t2 cos s, 2t2 sin s, t). So

∫
©
∫

S

F · dS =

∫∫
S1

F · dS +

∫∫
S2

F · dS

=

∫ 2π

0

∫ 3

0

(t cos s, t sin s, 0) · (0, 0,−t) dt ds

+

∫ 2π

0

∫ 3

0

(t cos s, t sin s, 9 − t2) · (2t2 cos s, 2t2 sin s, t) dt ds

=

∫ 2π

0

∫ 3

0

(9t + t3) dt ds =

∫ 2π

0

[
9t2

2
+

t4

4

] ∣∣∣∣3
0

ds

=

∫ 2π

0

243

4
ds =

243π

2
.

These two answers agree.
7. Here ∇ · F = 0 so

∫∫∫
D
∇ · F dV = 0. As for the integral over the surface, because the normal vectors of each of the three
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opposite pairs of sides are equal and opposite, everything will cancel. So

∫
©
∫

S

F · dS

=

∫∫
top

(y − x, y − 1, x − y) · (0, 0, 1) dS +

∫∫
bottom

(y − x, y − (−1), x − y) · (0, 0,−1) dS

+

∫∫
front

(y − 1, y − z, 1 − y) · (1, 0, 0) dS +

∫∫
back

(y − (−1), y − z,−1 − y) · (−1, 0, 0) dS

+

∫∫
right

(1 − x, 1 − z, x − 1) · (0, 1, 0) dS +

∫∫
left

(−1 − x,−1 − z, x − (−1)) · (0,−1, 0) dS

=

∫∫
top

(x − y) dS +

∫∫
bottom

(y − x) dS +

∫∫
front

(−1) dS +

∫∫
back

(−1) dS

+

∫∫
right

(1) dS +

∫∫
left

(1) dS = 0.

These two answers agree.
8. Note that ∇ · F = 2x + 2 so

∫∫∫
D

∇ · F dV = 2

∫∫∫
D

(x + 1) dV

= 2

∫ 2

−2

∫ √
4−x2

−
√

4−x2

∫ 5

x2+y2+1

(x + 1) dz dy dx

= 2

∫ 2

−2

∫ √
4−x2

−
√

4−x2

[(x + 1)(4 − x2 − y2)] dy dx

=
8

3

∫ 2

−2

[(x + 1)(4 − x2)3/2] dx =
8

3
(6π) = 16π.

On the other hand, the boundary of D can be split into two pieces: the flat top piece S1 and the surface of the paraboloid
S2. A parametrization of S1 is X1(s, t) = (t cos s, t sin s, 5) for 0 ≤ s ≤ 2π and 0 ≤ t ≤ 2. Then a normal vector is
N1(s, t) = (0, 0, t). A parametrization of S2 is X2(s, t) = (t cos s, t sin s, t2 + 1) for 0 ≤ s ≤ 2π and 0 ≤ t ≤ 2. Then a
normal vector is N2(s, t) = (2t2 cos s, 2t2 sin s,−t). So,

∫
©
∫

S

F · dS =

∫∫
S1

F · dS +

∫∫
S2

F · dS

=

∫ 2π

0

∫ 2

0

(t2 cos2 s, t sin s, 5) · (0, 0, t) dt ds

+

∫ 2π

0

∫ 2

0

(t2 cos2 s, t sin s, t2 + 1) · (2t2 cos s, 2t2 sin s,−t) dt ds

=

∫ 2π

0

∫ 2

0

(2t4 cos3 s + 2t3 sin2 s − t3 + 4t) =

∫ 2π

0

[
8 +

64 cos3 s

5
− 4 cos 2s

]
ds = 16π.

These two answers agree.

9. Since ∂

∂x

(
x√

x2 + y2 + z2

)
=

y2 + z2

(x2 + y2 + z2)3/2
we see that

∇ · F =
2(x2 + y2 + z2)

(x2 + y2 + z2)3/2
=

2√
x2 + y2 + z2

, and
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D

∇ · F dV =

∫∫∫
D

2√
x2 + y2 + z2

dV =

∫ 2π

0

∫ π

0

∫ b

a

2

ρ
(ρ2 sin ϕ) dρ dϕ dθ

=

∫ 2π

0

∫ π

0

∫ b

a

(2ρ sin ϕ) dρ dϕ dθ =

∫ 2π

0

∫ π

0

[ρ2 sin ϕ]

∣∣∣∣b
a

dϕ dθ

= (b2 − a2)

∫ 2π

0

∫ π

0

sin ϕ dϕ dθ = (b2 − a2)

∫ 2π

0

2 dθ = 4π(b2 − a2).

On the other hand the boundary consists of two pieces: S1 is the sphere of radius a and S2 is the sphere of radius b. Parametrize
S1 by X1(s, t) = (a sin s cos t, a sin s sin t, a cos s) for 0 ≤ s ≤ π and 0 ≤ t ≤ 2π. Then a normal vector is N1(s, t) =
−a2 sin s(sin s cos t, sin s sin t, cos s). A similar calculation for S2 yields N2(s, t) = b2 sin s(sin s cos t, sin s sin t, cos s).
Note that N1 is oriented pointing inward and N2 is oriented pointing outward. Then,∫

©
∫

S

F · dS =

∫∫
S1

F · dS +

∫∫
S2

F · dS

=

∫ 2π

0

∫ π

0

1

a
((a sin s cos t, a sin s sin t, a cos s) · [−a2 sin s(sin s cos t, sin s sin t, cos s)] ds dt

+

∫ 2π

0

∫ π

0

1

b
(b sin s cos t, b sin s sin t, b cos s) · [b2 sin s(sin s cos t, sin s sin t, cos s)] ds dt

=

∫ 2π

0

∫ π

0

[−a2 sin s] ds dt +

∫ 2π

0

∫ π

0

[b2 sin s] ds dt

=

∫ 2π

0

[−2a2] dt +

∫ 2π

0

[2b2] dt = 4π(b2 − a2).

These two answers agree.
10. For Stokes’s theorem we assume that S is a bounded, piecewise smooth, oriented surface in R3. To specialize to Green’s

theorem we must further assume that S is in the xy-plane. In each case we assume that the boundary C = ∂S consists of
finitely many simple, closed curves which are oriented so that S is on the left as you traverse C. In each case, F is a vector field
of class C1 whose domain includes S. In general, this would mean that F(x, y, z) = m(x, y, z)i + n(x, y, z)j + p(x, y, z)k
but because S is planar we assume that F is independent of z and that its k-component is identically zero. In other words, we
take F(x, y, z) = M(x, y)i + N(x, y)j. Then∫∫

S

(
∂N

∂x
− ∂M

∂y

)
dx dy =

∫∫
S

∇× F · dS.

But by Stokes’s theorem, ∫∫
S

∇× F · dS =

∮
∂S

F · ds.

Then, by the formula for the differential form of the line integral given in Section 6.1,∮
∂S

F · ds =

∫
C

M dx + N dy.

And so we get Green’s theorem from Stokes’s theorem.
11. Begin by calculating

∇× F =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
2xyz + 5z ex cos(yz) x2y

∣∣∣∣∣∣ = (x2 + exy sin(yz))i + 5j + (ex cos(yz) − 2xz)k.

As in Example 2, we see that this looks difficult, but that Stokes’s theorem implies that∫∫
S

∇× F · dS =

∫∫
S1

∇× F · dS
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where S and S1 have the same boundary. So let S1 be the disk in the y = 1 plane bounded by the circle x2 + z2 = 9. The
rightward pointing unit normal to S1 is (0, 1, 0) and so∫∫

S

∇× F · dS =

∫∫
S1

∇× F · dS

=

∫∫
S1

((x2 + exy sin(yz))i + 5j + (ex cos(yz) − 2xz)k) · (0, 1, 0) dS

=

∫∫
S1

5 dS = 5(area of S1) = 5(π32) = 45π.

12. The boundary of S is the ellipse 4x2 + y2 = 4 in the z = 0 plane. By Stokes’s theorem∫∫
S

∇× F · dS =

∮
∂S

F · dS =

∫∫
S′

∇× F · dS

where S′ is any piecewise smooth, orientable surface with ∂S′ = ∂S (subject to appropriate orientation). One computes that

∇× F =

∣∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z

x3 ey2

zexy

∣∣∣∣∣∣∣ = xzexyi − yzexyj.

This has no k-component. So let us take for S′ the portion of the z = 0 plane inside the ellipse. Hence n = k so that∫∫
S′

∇× F · dS =

∫∫
S′

(xzexyi − yzexyj) · k dS

=

∫∫
S′

0 dS = 0.

13. (a) By the double angle formula we have z = sin 2t = 2 sin t cos t = 2xy.

(b)
∮

C

(y3 + cos x) dx + (sin y + z2) dy + x dz =

∮
C

F · ds where F = (y3 + cos x)i + (sin y + z2)j + xk. By Stokes’s

theorem we may calculate the line integral by evaluating
∫∫

S

∇× F · dS where S is the portion of z = 2xy bounded by

C. (Note that S lies over the unit disk in the xy-plane.) Now ∇×F = −4xyi− j− 3y2k = −2zi− j− 3y2k on S. Note
that the orientation of C is compatible with an upward orientation of S. So we may take for normal

n =
−2yi − 2xj + k√

4x2 + 4y2 + 1
(unit normal of S).

Hence
∫∫

S
∇× F · dS =

∫∫
D

(8xy2 + 2x − 3y2) dx dy (D = unit disk in xy-plane).
Now use polar coordinates, so that the integral becomes∫ 2π

0

∫ 1

0

(8r3 sin2 θ cos θ + 2r cos θ − 3r2 sin2 θ)r dr dθ

=

∫ 2π

0

(
8

5
sin2 θ cos θ +

2

3
cos θ − 3

4

(
1

2
(1 − cos 2θ)

))
dθ

=

(
8

15
sin3 θ +

2

3
sin θ − 3

8
θ +

3

16
sin 2θ

) ∣∣∣∣2π

0

= −3π

4
.

14. First note that ∇×F =
(
xzex cos yz, 3x2yz2 − (1 + x)ex sin yz, 2xy − x2z3

)
. Stokes’s theorem implies∫∫

S

∇× F · dS =

∮
∂S

F · ds =

∫∫
S′

∇× F · dS,

where S′ is the top face (z = a) of the cube, oriented by downward normal −k. This gives∫∫
S′

∇× F · dS =

∫ a

−a

∫ a

−a

(2xy − a3x2)(−1) dx dy

=

∫ a

−a

(
a3

3
x3 − yx2

)∣∣∣∣a
x=−a

dy =

∫ a

−a

2a6

3
dy =

4a7

3
.
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15. Note that the path lies in the plane x = y. Thus, by Stokes’s theorem

Work =

∮
C

F · ds =

∫∫
S

∇× F · dS,

where S is the triangular part of the plane x = y enclosed by C. The configuration looks as follows:

x

y

z

(1,1,1)

(0,0,2)

(0,0,0)

Thus S is given by ⎧⎨
⎩

x = s
y = s
z = t

,

where s ≤ t ≤ 2 − s and 0 ≤ s ≤ 1. The appropriate normal vector to S is

N = Ts×Tt =

∣∣∣∣∣∣
i j k

1 1 0
0 0 1

∣∣∣∣∣∣ = i − j.

Direct calculation reveals that ∇×F = (xy + x2z)i + (xy − 2xyz)j − (xz + yz)k, so that∫∫
S

∇× F · dS =

∫ 1

0

∫ 2−s

s

(∇× F)(s, s, t) · N dt ds

=

∫ 1

0

∫ 2−s

s

(s2 + s2t, s2 − 2s2t,−2st) · (1,−1, 0) dt ds

=

∫ 1

0

∫ 2−s

s

3s2t dt ds =

∫ 1

0

3

2
s2t2

∣∣∣∣2−s

t=s

ds

=

∫ 1

0

3

2
s2 ((2 − s)2 − s2) ds =

3

2

∫ 1

0

(
4s2 − 4s3) ds

=
3

2

(
4

3
− 1

)
=

1

2
.

16. Let F = (3 cos x + z)i + (5x − ey)j − 3y k. Then, by Stokes’s theorem∮
C

(3 cos x + z) dx + (5x − ey) dy − 3y dz =

∮
C

F · ds =

∫∫
S

∇× F · dS,

where S is the portion of the plane 2x− 3y + 5z = 17 enclosed by C, oriented consistently with the orientation of C. A unit
normal to S is given by n = (2,−3, 5)/

√
38 and

∇× F =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
3 cos x + z 5x − ey −3y

∣∣∣∣∣∣ = (−3, 1, 5).
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Therefore, we have ∮
C

(3 cos x+z) dx + (5x − ey) dy − 3y dz

= ±
∫∫

S

(−3, 1, 5) ·

(2,−3, 5)√
38

dS = ±
∫∫

S

−6 − 3 + 25√
38

dS

= ± 16√
38

(area of S) = ± 16√
38

(area inside C),

where the ± sign depends on the orientation of C.
17. The key to this problem is to recall that the volume of a solid region W may be calculated using a surface integral:

Volume of W =
1

3

∫
©
∫

∂W

(x i + y j + zk) · dS.

Now we calculate. The top of the solid is bounded by the paraboloid given by z = 9 − x2 − y2; if we write X1(x, y) =
(x, y, 9 − x2 − y2), then the standard (upward) normal is given by N1 = (2x, 2y, 1). The bottom of the solid is bounded
by the paraboloid given by z = 3x2 + 3y2 − 16; if we write X2(x, y) = (x, y, 3x2 + 3y2 − 16), then the standard
normal is given by (−6x,−6y, 1). However, to put top and bottom surfaces S1 and S2 together to give ∂W a consistent,
outward-pointing normal, we need to take N2 = (6x, 6y,−1) for the correct orientation. Now the paraboloids intersect when
3x2 + 3y2 − 16 = 9 − x2 − y2, or when x2 + y2 = 25/4; hence we have that ∂W = S1 ∪ S2, where S1 and S2 are the
respective portions of the top and bottom paraboloids with x- and y-coordinates in the disk D = {(x, y) | x2 + y2 ≤ 25/4}.
Thus, with F = x i + y j + zk, we have∫

©
∫

∂W

F · dS =

∫∫
S1

F · dS +

∫∫
S2

F · dS.

For the top boundary, we have∫∫
S1

F · dS =

∫∫
D

F(X1(x, y)) · N1(x, y) dx dy

=

∫∫
D

(x, y, 9 − x2 − y2) · (2x, 2y, 1) dx dy

=

∫∫
D

(
x2 + y2 + 9

)
dx dy.

This last integral is most easily calculated using polar coordinates. Therefore,∫∫
S1

F · dS =

∫∫
D

(
x2 + y2 + 9

)
dx dy

=

∫ 5/2

0

∫ 2π

0

(
r2 + 9

)
r dθ dr = 2π

(
1

4
r4 +

9

2
r2

) ∣∣∣∣5/2

0

=
2425π

32
.

We make similar calculations for the bottom boundary:∫∫
S2

F · dS =

∫∫
D

F(X2(x, y)) · N2(x, y) dx dy

=

∫∫
D

(x, y, 3x2 + 3y2 − 16) · (6x, 6y,−1) dx dy

=

∫∫
D

(
3x2 + 3y2 + 16

)
dx dy =

∫ 5/2

0

∫ 2π

0

(
3r2 + 16

)
r dθ dr

= 2π

(
3

4
r4 + 8r2

) ∣∣∣∣5/2

0

=
5075π

32
.
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Hence

Volume of W =
1

3

(∫∫
S1

F · dS +

∫∫
S2

F · dS

)

=
1

3

(
2425π

32
+

5075π

32

)
=

625π

8
.

18. S is the portion of the “bell” surface for which z = e1−x2−y2

and z ≥ 1. Take S2 to be the disk in the plane z = 1 bounded
by the circle x2 + y2 = 1. Then S

⋃
S2 is the boundary of a solid V . S is oriented with an upward pointing normal and S2 is

oriented with a downward pointing normal.

∇ · F = 0 so
∫∫∫

V

∇ · F dV = 0.

Also, ∫∫
S2

F · dS =

∫∫
S2

(x, y, 2 − 2z) · (0, 0,−1) dS =

∫∫
S2

(2z − 2) dS.

But along S2, z = 1, so
∫∫

S2

(2z − 2) dS =

∫∫
S2

(2 − 2) dS = 0. So

∫∫
S

F · dS =

∫∫∫
V

∇ · F dV −
∫∫

S2

F · dS = 0 − 0 = 0.

19. Let X : D → R3, X(u, v) = (x(u, v), y(u, v), z(u, v)) parametrize S and (u(t), v(t)), a ≤ t ≤ b parametrize ∂D so that
X(u(t), v(t)) parametrizes ∂S. (Note the assumption that ∂D can be parametrized by a single path—this is not a problem.)
Write F as M i + N j + Pk. We need to show that

(∗)
∮

∂S

(M i + N j + Pk) · ds =

∫∫
S

(
∂P

∂y
− ∂N

∂z
,
∂M

∂z
− ∂P

∂x
,
∂N

∂x
− ∂M

∂y

)
· dS.

Consider the line integral in (∗). We may write it in differential form as
∮

∂S

M dx + N dy + Pdz. Consider, for the moment,

just the piece
∮

∂S

M dx. By the chain rule, dx

dt
=

∂x

∂u

du

dt
+

∂x

∂v

dv

dt
. Hence,

∮
∂S

M dx =

∫ b

a

M(X(u(t), v(t))

(
∂x

∂u

du
dt

+
∂x

∂v

dv

dt

)
dt =

∫
∂D

M ◦ X∂x

∂u
du + M ◦ X∂x

∂v
dv.

The last line integral in just an integral in the uv-plane and so we may apply Green’s theorem to find∮
∂S

M dx =

∫∫
D

[
∂

∂u

(
M ◦ X∂x

∂v

)
− ∂

∂v

(
M ◦ X∂x

∂u

)]
du dv.

We need to apply the chain rule again, along with the product rule:

∂

∂u

(
M ◦ X∂x

∂v

)
=

(
∂M

∂x

∂x

∂u
+

∂M

∂y

∂y

∂u
+

∂M

∂z

∂z

∂u

)
∂x

∂v
+ M ◦ X ∂2x

∂u ∂v

∂

∂v

(
M ◦ X∂x

∂u

)
=

(
∂M

∂x

∂x

∂v
+

∂M

∂y

∂y

∂v
+

∂M

∂z

∂z

∂v

)
∂x

∂u
+ M ◦ X ∂2x

∂v ∂u
.

Since the exercise allows us to assume that X is of class C2, the mixed partials are equal: ∂2x

∂u∂v
=

∂2x

∂v∂u
. Therefore, our

double integral becomes, after cancellation,

(∗∗)
∫∫

D

[
∂M

∂y

(
∂x

∂v

∂y

∂u
− ∂x

∂u

∂y

∂v

)
+

∂M

∂z

(
∂x

∂v

∂z

∂u
− ∂x

∂u

∂z

∂v

)]
du dv.

Now consider the surface integral in (∗). Using the parametrization X, and calculating the normal, we have that it is equal to∫∫
D

(Py − Nz, Mz − Px, Nx − My) · (yuzv − yvzu, zuxv − zvxu, xuyv − xvyu) du dv.
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Next, calculate the dot product and isolate just those terms that contain M . Then the piece of the surface integral in (∗) that
involves just M is ∫∫

D

[
∂M

∂z

(
∂z

∂u

∂x

∂v
− ∂z

∂v

∂x

∂u

)
− ∂M

∂y

(
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

)]
du dv.

This is the same as the double integral in (∗∗).
In an entirely analogous way, we may show that

∮
∂S

N dy and
∮

∂S
Pdz are equal to the remaining pieces of the surface

integral in (∗), completing the proof.

20. We will calculate
∫∫∫

V

∇ · F dV for the closed cube and then subtract
∫
©
∫

S2

F · dS where S2 is the bottom. Orient all of the

faces of the cube with an outward pointing normal. In particular this means that the normal to S2 is downward pointing.∫∫∫
V

∇ · F dV =

∫ 1

0

∫ 1

0

∫ 1

0

(2xzex2

+ 3 − 7yz6) dx dy dz

=

∫ 1

0

∫ 1

0

[zex2

+ 3x − 7xyz6]

∣∣∣∣x=1

x=0

dy dz =

∫ 1

0

∫ 1

0

[ez − z + 3 − 7yz6] dy dz

=

∫ 1

0

[
ezy − zy + 3y − 7

2
y2z6

] ∣∣∣∣y=1

y=0

dz =

∫ 1

0

[
ez − z + 3 − 7

2
z6

]
dz

=

[
z2

2
e − z2

2
+ 3z − 1

2
z7

] ∣∣∣∣1
0

=
e

2
+ 2.

Also,
∫
©
∫

S2

F · dS =

∫ 1

0

∫ 1

0

(0, 3y, 2) · (0, 0,−1) dy dx =

∫ 1

0

∫ 1

0

(−2) dy dx = −2. Therefore,

∫∫
S

F · dS =
( e

2
+ 2

)
− (−2) =

e

2
+ 4.

21. (a) If F = fa, then

∇ · F =
∂

∂x
(fa1) +

∂

∂y
(fa2) +

∂

∂z
(fa3)

= a1
∂f

∂x
+ a2

∂f

∂y
+ a3

∂f

∂z

=

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
· (a1, a2, a3) = ∇f · a.

(b) With F = f i, we may apply Gauss’s theorem:∫
©
∫

S

F · dS =

∫∫∫
D

∇ · F dV.

The left side is ∫
©
∫

S

F · dS =

∫
©
∫

S

(F · n) dS =

∫
©
∫

S

(f i) · n) dS =

∫
©
∫

S

(fn1) dS.

Using part (a) with a = i, the right side is∫∫∫
D

∇ · F dV =

∫∫∫
D

∇f · i dV =

∫∫∫
D

∂f

∂x
dV.

Similarly, with a = j, we have ∫
©
∫

S

F · dS =

∫
©
∫

S

(f j) · n) dS =

∫
©
∫

S

(fn2) dS

and ∫∫∫
D

∇ · F dV =

∫∫∫
D

∇f · j dV =

∫∫∫
D

∂f

∂y
dV.

Finally, with a = k we obtain ∫
©
∫

S

(fn3) dS =

∫∫∫
D

∂f

∂z
dV.
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(c) Using part (b),

∫
©
∫

S

fn dS =

(∫
©
∫

S

fn1 dS,

∫
©
∫

S

fn2 dS,

∫
©
∫

S

fn3 dS

)

=

(∫∫∫
D

∂f

∂x
dV,

∫∫∫
D

∂f

∂y
dV,

∫∫∫
D

∂f

∂z
dV

)
=

∫∫∫
D

∇f dV.

22. Using the previous exercise, we have

B = −
∫
©
∫

∂D

pn dS

= −
∫∫∫

D

∇p dV = −
∫∫∫

D

δgk dV = −
(∫∫∫

D

1 dV

)
(δgk)

= −(volume of D)(δgk) = −(mass of liquid displaced)(gk)

= −(weight of liquid displaced)k.

Note that the negative sign is correct—the buoyant force should point upwards and it does, since the z-axis is oriented down.
23. The proof is outlined in the proof of Theorem 3.5 of Chapter 6. One direction has already been proved in Theorem 4.3 of

Chapter 3. There it was established that if F = ∇f , then ∇ × F = 0. Now suppose that ∇ × F = 0. We show that then∮
C

F ·ds = 0 where C is any piecewise C1, simple closed curve in R ⊆ R3. The idea is to “fill in C”, that is, to find a surface

S ⊆ R whose boundary is C. Since R is simply-connected, this is possible. If we orient S consistently with C, then we may
apply Stokes’s theorem to conclude

∮
C

F · ds =

∫∫
S

∇× F · dS =

∫∫
S

0 · dS = 0.

This shows, among other things, that F has path-independent integrals over curves in R. Therefore, by Theorem 3.3 of
Chapter 6, F = ∇f for some function f on R.

24. (a) Note that the boundary of D is made up of two components:

• S5 = the sphere centered at the origin of radius 5 oriented with outward pointing normal and

• S7 = the sphere centered at the origin of radius 7 oriented with outward pointing normal.

Then by Gauss’s theorem

∫∫∫
D

∇ · F dV =

∫
©
∫

S7

F · dS −
∫
©
∫

S5

F · dS = (7a + b) − (5a + b) = 2a.

(b) By Theorem 4.4 of Section 3.4, ∇ · (∇ × G) = 0. So if D is the solid sphere centered at the origin with radius r then,
since F = ∇× G,

ar + b =

∫
©
∫

Sr

F · dS (next apply Gauss’s theorem)

=

∫∫∫
D

∇ · F dV =

∫∫∫
D

∇ · (∇× G) dV = 0.

Therefore ar + b = 0 for all values of r. We conclude that a = b = 0.

25. (a) If f(x, y, z) = ln(x2 + y2 + z2) then ∇f(x, y, z) =
2xi + 2yj + 2zk
x2 + y2 + z2

=
2xi + 2yj + 2zk

a2
on S. Also, the unit

normal to the sphere that points away from the origin is n(x, y, z) =
2xi + 2yj + 2zk√
4(x2 + y2 + z2)

=
2xi + 2yj + 2zk

2a
=
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xi + yj + zk
a

. So,

∫∫
S

∂f

∂n
dS =

∫∫
S

∇f · n dS

=

∫∫
S

2xi + 2yj + 2zk
x2 + y2 + z2

· xi + yj + zk
a

dS

=

∫∫
S

2

a
dS =

2

a
(surface area of S)

=
2

a

(
4πa2

8

)
= πa.

(b) First calculate that ∇ · (∇f) =
2

x2 + y2 + z2
. We’ll use spherical coordinates to integrate.

∫∫∫
D

∇ · (∇f) dV =

∫∫∫
D

2

x2 + y2 + z2
dV =

∫ π/2

0

∫ π/2

0

∫ a

0

(
2

ρ2

)
ρ2 sin ϕ dρ dϕ dθ

= 2

∫ π/2

0

∫ π/2

0

∫ a

0

sin ϕ dρ dϕ dθ = 2a

∫ π/2

0

∫ π/2

0

sin ϕ dϕ dθ

= 2a

∫ π/2

0

dθ = πa.

(c) By Gauss’s theorem,
∫∫∫

D

∇ · (∇f) dV =

∫
©
∫

∂D

(∇f) · dS. The boundary of D consists of four pieces: S, the surface

from part (a); Sx, the intersection of D and the plane x = 0; Sy , the intersection of D and the plane y = 0; and Sz , the

intersection of D and the plane z = 0. On Sx we know that ∇f(0, y, z) =
2yj + 2zk
y2 + z2

and n = (−1, 0, 0) so

∫∫
Sx

∇f · dS =

∫∫
Sx

∇f · n dS =

∫∫
Sx

0 dS = 0.

A similar analysis gives us
∫∫

Sy
∇f · dS = 0 and

∫∫
Sz

∇f · dS = 0. Therefore,

∫∫∫
D

∇ · (∇f) dV =

∫
©
∫

∂D

(∇f) · dS =

∫∫
S

∇f · dS =

∫∫
S

∂f

∂n
dS.

26. By Gauss’s theorem,
∫∫∫

D

∇ · (∇f)dV =

∫
©
∫

∂D

(∇f) · dS. Here the boundary of D consists of finitely many piecewise

smooth, closed orientable surfaces Si. By assumption,
∫
©
∫

Si

(∇f) · dS = 0 and so
∫∫∫

D

∇ · (∇f)dV = 0. This is true for

any solid D, so ∇ · (∇f) = 0. As we saw earlier in the text ∇ · (∇f) =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
. So f is harmonic.

27. We will shrink the region D specified in the problem down to a point P . The volume decreases monotonically as we shrink
the solid. Let DV be the shrunken version of D which is the solid of volume V and let SV = ∂DV for 0 ≤ V ≤ the volume
of D. Then, by Gauss’s theorem, ∫

©
∫

SV

F · dS =

∫∫∫
DV

∇ · F dV.

By the mean value for triple integrals, there exists a QV ∈ DV so that∫∫∫
DV

∇ · F dV =

∫∫∫
DV

∇ · F(QV ) dV = ∇ · F(QV )(volume of D).

So
lim

V →0

1

V

∫
©
∫

SV

F · dS = lim
V →0

∇ · F(QV ) = ∇ · F(P ) = div F(P ).
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28. The six faces of the cube S are given by planes with equations

x = x0 ± a

2
(front and back), y = y0 ± a

2
(right and left), z = z0 ± a

2
(top and bottom).

The respective outward unit normal vectors to these faces are ±i, ±j, ±k.
From Exercise 27, we have that the divergence of F at P may be computed as

div F(P ) = lim
V →0

1

V

∫
©
∫

S

F · dS = lim
a→0+

1

a3

∫
©
∫

S

F · dS.

To calculate
∫
©
∫

S

F · dS, we add the contributions of the six surface integrals over each of the six square faces. Consider first

just the integrals over the faces given by x = x0 + a
2

and x = x0 − a
2

. These integrals contribute

∫∫
front

F · dS +

∫∫
back

F · dS =

∫∫
front

(F · i) dS +

∫∫
back

(F · (−i)) dS

=

∫∫
front

F1 dS +

∫∫
back

−F1 dS.

The faces are parametrized as

front: X1(y, z) =
(
x0 + a

2
, y, z

)
back: X2(y, z) =

(
x0 − a

2
, y, z

)
,

where (y, z) varies over the square D =
[
y0 − a

2
, y0 + a

2

]× [
z0 − a

2
, z0 + a

2

]
. Hence

∫∫
front

F1 dS +

∫∫
back

−F1 dS =

∫∫
X1

F1 dS +

∫∫
X2

−F1 dS

=

∫∫
D

F1

(
x0 + a

2
, y, z

)
dy dz +

∫∫
D

−F1

(
x0 − a

2
, y, z

)
dy dz

=

∫∫
D

[
F1

(
x0 + a

2
, y, z

) − F1

(
x0 − a

2
, y, z

)]
dy dz.

By the mean value theorem for double integrals, there is a point (y1, z1) ∈ D such that

∫∫
D

[
F1

(
x0 + a

2
, y, z

) − F1

(
x0 − a

2
, y, z

)]
dy dz

=
[
F1

(
x0 + a

2
, y1, z1

) − F1

(
x0 − a

2
, y1, z1

)]
(area of D)

= a2 [F1

(
x0 + a

2
, y1, z1

) − F1

(
x0 − a

2
, y1, z1

)]
.

In a similar manner, the two surface integrals over the faces given by y = y0 + a
2

and y = y0 − a
2

contribute

a2 [F2

(
x2, y0 + a

2
, z2

) − F1

(
x2, y0 − a

2
, z2

)]
to

∫
©
∫

S

F · dS, where (x2, z2) is a suitable point in the square
[
x0 − a

2
, x0 + a

2

] × [
z0 − a

2
, z0 + a

2

]
. And, finally, the two

surface integrals over the faces given by z = z0 + a
2

and z = z0 − a
2

contribute

a2 [F3

(
x3, y3, z0 + a

2

) − F1

(
x3, y3, z0 − a

2

)]
,

where (x3, y3) is a suitable point in the square
[
x0 − a

2
, x0 + a

2

]× [
y0 − a

2
, y0 + a

2

]
.
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Putting all of this together, we have

div F(P ) = lim
a→0+

1

a3

∫
©
∫

S

F · dS

= lim
a→0+

1

a3

{
a2 [F1

(
x0 + a

2
, y1, z1

) − F1

(
x0 − a

2
, y1, z1

)]
+ a2 [F2

(
x2, y0 + a

2
, z2

) − F1

(
x2, y0 − a

2
, z2

)]
+ a2 [F3

(
x3, y3, z0 + a

2

) − F1

(
x3, y3, z0 − a

2

)]}

= lim
a→0+

F1

(
x0 + a

2
, y1, z1

) − F1

(
x0 − a

2
, y1, z1

)
a

+ lim
a→0+

F2

(
x2, y0 + a

2
, z2

) − F1

(
x2, y0 − a

2
, z2

)
a

+ lim
a→0+

F3

(
x3, y3, z0 + a

2

) − F1

(
x3, y3, z0 − a

2

)
a

.

Note that as a → 0+, each of the square faces shrinks down to the point P (x0, y0, z0). In particular, we have (y1, z1) →
(y0, z0), (x2, z2) → (x0, z0), and (x3, y3) → (x0, y0). Thus, using the remark about partial derivatives, we see that the sum
of the limits above is

∂F1

∂x
(x0, y0, z0) +

∂F2

∂y
(x0, y0, z0) +

∂F3

∂z
(x0, y0, z0),

as desired.
29. (a) F = Frer + Fθeθ + Fzez . The area of the top face is

(Δθ/2π)[π(r + Δr/2)2 − π(r − Δr/2)2] = (Δθ/2)(2rΔr) = rΔθΔr.

Therefore, ∫∫
top

F · dS =

∫∫
top

F · n dS =

∫∫
top

F · ez dS =

∫∫
top

Fz dS

≈ Fz(r, θ, z + Δz/2)(area of top) = Fz(r, θ, z + Δz/2)rΔθΔr.

The calculation for the bottom face is similar. The differences are that the normal vector points down and Fz is evaluated
at a different point. The result is that∫∫

bottom

F · dS ≈ −Fz(r, θ, z − Δz/2)rΔθΔr.

The area of the outer face is
(Δz)(Δθ/2π)[2π(r + Δr/2)] = ΔθΔz(r + Δr/2).

Therefore, ∫∫
outer

F · dS =

∫∫
outer

F · n dS =

∫∫
outer

F · er dS =

∫∫
outer

Fr dS

≈ Fr(r + Δr/2, θ, z)(area of outer) = Fr(r + Δr/2, θ, z)(r + Δr/2)ΔθΔz.

The calculation for the inner face is similar. The differences are that the normal vector points inward, Fr is evaluated at a
different point, and the area of the face is slightly different. The result is that∫∫

inner

F · dS ≈ −Fr(r − Δr/2, θ, z)(r − Δr/2)ΔθΔz.

The area of either the left or right face is just ΔrΔz. Therefore, the integral along the left face (looking from the origin
out at the solid) is ∫∫

left

F · dS =

∫∫
left

F · n dS =

∫∫
left

F · eθ dS =

∫∫
left

Fθ dS

≈ Fθ(r, θ + Δθ/2, z)(area of left) = Fθ(r, θ + Δθ/2, z)ΔrΔz.
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The calculation for the right face is similar. The differences are that the normal vector points the opposite direction and
Fθ is evaluated at a different point. The result is that∫∫

right

F · dS ≈ −Fθ(r, θ − Δθ/2, z)ΔrΔz.

We sum these to obtain∫
©
∫

S

F · dS ≈ Fz(r, θ, z + Δz/2)rΔθΔr − Fz(r, θ, z − Δz/2)rΔθΔr

+ Fr(r + Δr/2, θ, z)(r + Δr/2)ΔθΔz − Fr(r − Δr/2, θ, z)(r − Δr/2)ΔθΔz

+ Fθ(r, θ + Δθ/2, z)ΔrΔz − Fθ(r, θ − Δθ/2, z)ΔrΔz.

(b) To calculate the divergence using the results of Exercise 27 we will divide the answer to part (a) by V ≈ rΔθΔrΔz
and take the limit as V → 0. Two notes before the calculation: 1) We can replace ≈ with = because in the limit our
approximation assumptions are true and 2) in evaluating each of the limits we use the remark given in the text at the end
of Exercise 28 (although you may want to break the argument of the middle limit down further to see what is going on).

div F(P ) = lim
V →0

1

V

∫
©
∫

S

F · dS

= lim
V →0

[
Fz(r, θ, z + Δz/2)rΔθΔr − Fz(r, θ, z − Δz/2)rΔθΔr

rΔθΔrΔz

]

+ lim
V →0

[
Fr(r + Δr/2, θ, z)(r + Δr/2)ΔθΔz − Fr(r − Δr/2, θ, z)(r − Δr/2)ΔθΔz

rΔθΔrΔz

]

+ lim
V →0

[
Fθ(r, θ + Δθ/2, z)ΔrΔz − Fθ(r, θ − Δθ/2, z)ΔrΔz

rΔθΔrΔz

]

= lim
Δz→0

[
Fz(r, θ, z + Δz/2) − Fz(r, θ, z − Δz/2)

Δz

]

+ lim
Δr→0

[
Fr(r + Δr/2, θ, z)(r + Δr/2) − Fr(r − Δr/2, θ, z)(r − Δr/2)

rΔr

]

+ lim
Δθ→0

[
Fθ(r, θ + Δθ/2, z) − Fθ(r, θ − Δθ/2, z)

rΔθ

]

=

[
∂Fz

∂z
+

1

r

∂

∂r
(rFr) +

1

r

∂Fθ

∂θ

] ∣∣∣∣
P

.

30. Follow the steps from Exercise 29. This time F = Fρeρ + Fθeθ + Fϕeϕ. Again, for each face,
∫∫

S
F · dS is approximately

the product of the component of F in the normal direction evaluated at the center point of the face and the area of that face. So
summing up we have that∫

©
∫

S

F · dS ≈ Fϕ(ρ, θ, ϕ + Δϕ/2)ρ sin(ϕ + Δϕ/2)ΔθΔρ − Fϕ(ρ, θ, ϕ − Δϕ/2)ρ sin(ϕ − Δϕ/2)ΔθΔρ

+ Fρ(ρ + Δρ/2, θ, ϕ)(ρ + Δρ/2)2 sin ϕΔθΔϕ − Fρ(ρ − Δρ/2, θ, ϕ)(ρ − Δρ/2)2 sin ϕΔθΔϕ

+ Fθ(ρ, θ + Δθ/2, ϕ)ρΔρΔϕ − Fθ(ρ, θ − Δθ/2, ϕ)ρΔρΔϕ.

Divide through by V ≈ ρ2 sin ϕΔρΔθΔϕ and simplify to obtain

1

V

∫
©
∫

S

F · dS ≈
[

Fϕ(ρ, θ, ϕ + Δϕ/2) sin(ϕ + Δϕ/2) − Fϕ(ρ, θ, ϕ − Δϕ/2) sin(ϕ − Δϕ/2)

ρ sin ϕΔϕ

]

+

[
Fρ(ρ + Δρ/2, θ, ϕ)(ρ + Δρ/2)2 − Fρ(ρ − Δρ/2, θ, ϕ)(ρ − Δρ/2)2

ρ2Δρ

]

+

[
Fθ(ρ, θ + Δθ/2, ϕ) − Fθ(ρ, θ − Δθ/2, ϕ)

ρ sin ϕΔθ

]
.
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Take the limit as V → 0 to conclude

div F(P ) = lim
V →0

1

V

∫
©
∫

S

F · dS

= lim
Δϕ→0

[
Fϕ(ρ, θ, ϕ + Δϕ/2) sin(ϕ + Δϕ/2) − Fϕ(ρ, θ, ϕ − Δϕ/2) sin(ϕ − Δϕ/2)

ρ sin ϕΔϕ

]

+ lim
Δρ→0

[
Fρ(ρ + Δρ/2, θ, ϕ)(ρ + Δρ/2)2 − Fρ(ρ − Δρ/2, θ, ϕ)(ρ − Δρ/2)2

ρ2Δρ

]

+ lim
Δθ→0

[
Fθ(ρ, θ + Δθ/2, ϕ) − Fθ(ρ, θ − Δθ/2, ϕ)

ρ sin ϕΔθ

]

=

[
1

ρ sin ϕ

∂

∂ϕ
(sin ϕFϕ) +

1

ρ2

∂

∂ρ
(ρ2Fρ) +

1

ρ sin ϕ

∂Fθ

∂θ

] ∣∣∣∣
P

.

31. Let F, P , n, S and C be as described in the text. As in Exercise 27, we will assume that C shrinks down to the point P so that
the area of the surface bounded decreases monotonically. We will then refer to SA and CA as the surface and bounding curve
that corresponds to area A. Then by Stokes’s theorem,∮

CA

F · ds =

∫∫
SA

∇× F · dS =

∫∫
SA

(∇× F · n) dS.

By the mean value theorem for surface integrals, there is some point QA ∈ SA such that∫∫
SA

(∇× F · n) dS = (∇× F(QA) · n)(area of SA) = (∇× F(QA) · n) A.

Therefore,

lim
A→0

1

A

∮
CA

F · ds = lim
A→0

1

A
[(∇× F(QA) · n)A] = lim

A→0
(∇× F(QA) · n)

= n · (∇× F(P )) = n · curl F(P ).

32. (a) By Exercise 31, ez · curl F(P ) = limA→0
1

A

∮
CA

F · ds. Here A ≈ rΔrΔθ.

∮
CA

F · ds ≈ −Fr

(
r, θ +

Δθ

2
, z

)
Δr − Fθ

(
r − Δr

2
, θ, z

)(
r − Δr

2

)
Δθ

+ Fr

(
r, θ − Δθ

2
, z

)
Δr + Fθ

(
r +

Δr

2
, θ, z

)(
r +

Δr

2

)
Δθ.

Therefore,

ez · curl F(P ) = lim
A→0

1

A

∮
CA

F · ds

= lim
Δθ→0

[
−Fr

(
r, θ + Δθ

2
, z

) − Fr

(
r, θ − Δθ

2
, z

)
rΔθ

]

+ lim
Δr→0

[
Fθ

(
r + Δr

2
, θ, z

) (
r + Δr

2

) − Fθ

(
r − Δr

2
, θ, z

) (
r − Δr

2

)
rΔr

]

= −1

r

∂Fr

∂θ
+

1

r

∂

∂r
(rFθ).

(b) Again by Exercise 31, er · curl F(P ) = limA→0
1

A

∮
CA

F · ds. Here A ≈ r Δz Δθ.

∮
CA

F · ds ≈ Fz

(
r, θ +

Δθ

2
, z

)
Δz − Fθ

(
r, θ, z +

Δz

2

)
r Δθ

− Fz

(
r, θ − Δθ

2
, z

)
Δz + Fθ

(
r, θ, z − Δz

2

)
r Δθ.
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Therefore,

er · curl F(P ) = lim
A→0

1

A

∮
CA

F · ds

= lim
Δθ→0

[
Fz

(
r, θ + Δθ

2
, z

) − Fz

(
r, θ − Δθ

2
, z

)
rΔθ

]

+ lim
Δz→0

[
−Fθ

(
r, θ, z + Δz

2

) − Fθ

(
r, θ, z − Δz

2

)
Δz

]

=
1

r

∂Fz

∂θ
− ∂Fθ

∂z
.

(c) Again by Exercise 31, eθ · curl F(P ) = limA→0
1

A

∮
CA

F · ds. Here A = ΔrΔz.

∮
CA

F · ds ≈ Fz

(
r − Δr

2
, θ, z

)
Δz + Fr

(
r, θ, z +

Δz

2

)
Δr

− Fz

(
r +

Δr

2
, θ, z

)
Δz − Fr

(
r, θ, z − Δz

2

)
Δr.

Therefore,

eθ · curl F(P ) = lim
A→0

1

A

∮
CA

F · ds

= lim
Δr→0

[
−Fz

(
r + Δr

2
, θ, z

) − Fz

(
r − Δr

2
, θ, z

)
Δr

]

+ lim
Δz→0

[
Fr

(
r, θ, z + Δz

2

) − Fr

(
r, θ, z − Δz

2

)
Δz

]

= −∂Fz

∂r
+

∂Fr

∂z
.

The final conclusion is just a matter of putting the three pieces together and checking that the sum agrees with the
determinant given.

33. This is similar to Exercise 32. By Exercise 31, eρ · curl F(P ) = limA→0
1

A

∮
CA

F · ds. Here A ≈ ρ2 sin ϕΔϕΔθ.

∮
CA

F · ds = −Fϕ

(
ρ, θ +

Δθ

2
, ϕ

)
ρΔϕ − Fθ

(
ρ, θ, ϕ − Δϕ

2

)
ρ sin

(
ϕ − Δϕ

2

)
Δθ

+ Fϕ

(
ρ, θ − Δθ

2
, ϕ

)
ρΔϕ + Fθ

(
ρ, θ, ϕ +

Δϕ

2

)
ρ sin

(
ϕ +

Δϕ

2

)
Δθ.

Therefore,

eρ · curl F(P ) = lim
A→0

1

A

∮
CA

F · ds

= lim
Δθ→0

[
−Fϕ

(
ρ, θ + Δθ

2
, ϕ

) − Fϕ

(
ρ, θ − Δθ

2
, ϕ

)
ρ sin ϕΔθ

]

+ lim
Δϕ→0

[
Fθ

(
ρ, θ, ϕ + Δϕ

2

)
sin

(
ϕ + Δϕ

2

) − Fθ

(
ρ, θ, ϕ − Δϕ

2

)
sin

(
ϕ − Δϕ

2

)
ρ sin ϕΔϕ

]

=
1

ρ sin ϕ

[
−∂Fϕ

∂θ
+

∂

∂ϕ
(sin ϕFθ)

]
.
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Again, by Exercise 31, eθ · curl F(P ) = limA→0
1

A

∮
CA

F · ds. Here A ≈ ρΔϕΔρ.

∮
CA

F · ds = Fϕ

(
ρ +

Δρ

2
, θ, ϕ

)(
ρ +

Δρ

2

)
Δϕ − Fρ

(
ρ, θ, ϕ +

Δϕ

2

)
Δρ

− Fϕ

(
ρ − Δρ

2
, θ, ϕ

)(
ρ − Δρ

2

)
Δϕ + Fρ

(
ρ, θ, ϕ − Δϕ

2

)
Δρ.

Therefore,

eθ · curl F(P ) = lim
A→0

1

A

∮
CA

F · ds

= lim
Δρ→0

[
Fϕ

(
ρ + Δρ

2
, θ, ϕ

) (
ρ + Δρ

2

) − Fϕ

(
ρ − Δρ

2
, θ, ϕ

) (
ρ − Δρ

2

)
ρΔρ

]

+ lim
Δϕ→0

[
−Fρ

(
ρ, θ, ϕ + Δϕ

2

) − Fρ

(
ρ, θ, ϕ − Δϕ

2

)
ρΔϕ

]

=
1

ρ

[
∂

∂ρ
(ρFϕ) − ∂Fρ

∂ϕ

]
.

Again, by Exercise 31, eϕ · curl F(P ) = limA→0
1

A

∮
CA

F · ds. Here A ≈ ρ sin ϕΔρΔθ.

∮
CA

F · ds = Fθ

(
ρ − Δρ

2
, θ, ϕ

)(
ρ − Δρ

2

)
sin ϕΔθ + Fρ

(
ρ, θ +

Δθ

2
, ϕ

)
Δρ

− Fθ

(
ρ +

Δρ

2
, θ, ϕ

)(
ρ +

Δρ

2

)
sin ϕΔθ − Fρ

(
ρ, θ − Δθ

2
, ϕ

)
Δρ.

Therefore,

eϕ · curl F(P ) = lim
A→0

1

A

∮
CA

F · ds

= lim
Δρ→0

[
−−Fθ

(
ρ + Δρ

2
, θ, ϕ

) (
ρ + Δρ

2

)
+ Fθ

(
ρ − Δρ

2
, θ, ϕ

) (
ρ − Δρ

2

)
ρΔρ

]

+ lim
Δθ→0

[
Fρ

(
ρ, θ + Δθ

2
, ϕ

) − Fρ

(
ρ, θ − Δθ

2
, ϕ

)
ρ sin ϕΔθ

]

=
1

ρ

[
− ∂

∂ρ
(ρFθ) +

1

sin ϕ

∂Fρ

∂θ

]
.

Again, the final conclusion is just a matter of assembling the pieces above and checking that the sum agrees with the determi-
nant.

34. We use the results of Exercises 27 and 31:

div F(P ) = lim
V →0

1

V

∫
©
∫

S

F · dS

n · curl F(P ) = lim
A→0

1

A

∮
C

F · ds.

The vector fields to be considered are planar, so the divergence results should actually be interpreted as

div F(P ) = lim
A→0

1

A

∮
C

(F · n) ds.

(See the discussion regarding two-dimensional flux in Section 6.2.) Here n is the outward unit normal to C that lies in the plane.
We need to find the four fields for which the divergence is identically zero. Intuitively, you can see in figures (b) and (e) by
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looking at symmetric neighborhoods of the center point that at the center point the divergence is not zero. We will be more
precise than that. For the curl result, we need only take n to be the unit vector pointing up out of the plane of the vector field.
Using these results, we may categorize the vector fields by drawing appropriate paths.

(a) Draw a rectangular path C with sides parallel to the x- and y-axes (see below left). Along such a path,
∮

C

F · ds �= 0,

since the path is tangent to the vector field along vertical segments and F has different magnitudes along these segments.
The integrals along the horizontal segments will be equal and opposite. This will be true in the limit, so curl F �= 0. On

the other hand,
∮

C

(F · n)ds = 0 because F · n vanishes on vertical parts of C and has opposite sign on the two horizontal

segments. Therefore, div F = 0.

C1

C2
C2C1

(b) Draw a path contained in the upper right quarter of the diagram that is a “polar rectangle” (see above center). In other
words, we draw the path so that two of the sides are tangent to the vector field (one in the same direction, one in the
opposite direction) and the remaining two sides are sides each of whose distance to the center of the figure is constant.

Note that once the path is oriented, the segments labelled C1 and C2 will receive “opposite” orientations. Here
∣∣∣∣
∫

C1

(F ·

n) ds

∣∣∣∣ >

∣∣∣∣
∫

C2

(F · n) ds

∣∣∣∣ and
∣∣∣∣
∫

(F · n) ds

∣∣∣∣ = 0 along the radial segments. Therefore, div F �= 0. On the other hand,∫
C1

F ·ds =

∫
C2

F ·ds = 0, since F is perpendicular to C1 and C2. However, F ·T has opposite signs on the radial pieces

so
∮

C

F · ds =

∮
C

(F · T)ds = 0. Hence curl F = 0.

(c) Again our path will be a polar rectangle (see above right). This time orient the path clockwise and picture the center of
the coordinate system to be at the center of the right border of the figure. Denote the left-most, “vertical” side C1 and the
right-most, “vertical” side C2. Orient the path either way. C1 and C2 will receive “opposite” orientations. The idea here

is that
∫

C1

F ·ds is cancelled by
∫

C2

F ·ds because the integral of the smaller magnitude of F along the longer segment C1

is balanced by the integral of the larger magnitude of F along the shorter segment C2. Integrals along the other segments

are 0 because F is perpendicular to those segments. Hence, curl F = 0. The path is also arranged so
∮

C

(F · n) ds = 0. It

is zero along C1 and C2 and cancels on the other segments. Hence, div F = 0.
(d) Again choose a polar rectangle for our path (see below left). This time picture the center of the coordinate system to be at

the center of the left border of the figure. What makes this different from the vector field in (c) is that here ||F|| is constant.

For this reason,
∮

C

F · ds �= 0 and, therefore, curl F �= 0. On the other hand, div F = 0 for the same reasons as in part (c).

(e) Let our path be an oriented circle centered at the center of the figure (see below center). It is clear that
∮

C

(F · n)ds �= 0

and therefore div F �= 0. Likewise,
∮

C

F · ds �= 0, so curl F �= 0.
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C2 C1

(f) Well, by elimination we must have div F = 0 and curl F = 0. For the divergence argument, choose a rectangular path
in the upper right quarter of the diagram with two sides parallel to and symmetric about the diagonal from the lower left
corner to the upper right corner of the diagonal. For the curl argument, use a rectangular path with sides parallel to the
coordinate axes (see above right).

7.4 Further Vector Analysis; Maxwell’s Equations

1. Notice the similarities between this exercise and Exercise 28 in the Miscellaneous Exercises for Chapter 6. By Gauss’s theorem
(Theorem 3.3), ∫

©
∫

∂D

f∇g · dS =

∫∫∫
D

∇ · (f∇g) dV.

By the product rule,∫∫∫
D

∇ · (f∇g) dV =

∫∫∫
D

(∇f · ∇g + f∇2g) dV =

∫∫∫
D

(∇f · ∇g) dV +

∫∫∫
D

(f∇2g) dV.

2. Let f ≡ 1 in Green’s first formula. Then ∇f = 0 so the first term in Green’s first formula is 0, so∫∫∫
D

∇2g dV =

∫
©
∫

S

∇g · dS.

We assumed that g is harmonic so ∇2g = 0. Also we know that S = ∂D. Therefore, by the definition of the normal derivative,

0 =

∫
©
∫

∂D

∇g · dS =

∫
©
∫

∂D

(∇g · n) dS =

∫
©
∫

∂D

∂g

∂n
dS.

3. (a) Using Green’s first formula with f = g, we obtain∫∫∫
D

∇f · ∇f dV +

∫∫∫
D

f∇2f dV =

∫
©
∫

S

f∇f · dS.

We are assuming that f is harmonic, so the second integral on the left side is 0. Therefore,∫∫∫
D

∇f · ∇f dV =

∫
©
∫

∂D

f∇f · dS =

∫
©
∫

∂D

f(∇f · n) dS =

∫
©
∫

∂D

f
∂f

∂n
dS.

(b) If f = 0 on the boundary of D, then part (a) implies that

0 =

∫
©
∫

∂D

f
∂f

∂n
dS =

∫∫∫
D

∇f · ∇f dV.

But ∇f · ∇f = ||∇f ||2 ≥ 0. So the right-hand integral was of a non-negative, continuous integrand. For this to be zero,
the integrand must have been identically zero. In other words, ∇f · ∇f is zero on D. We conclude that ∇f is zero on D
and so f is constant on D. Since f(x, y, z) = 0 on ∂D and f is constant on D, we must have that f ≡ 0 on D.

4. Use the hint and consider f = f1 − f2. Then, since f1 = f2 on ∂D, we have that f = 0 on ∂D. Note that if f1 and f2 are
harmonic on D, then f is harmonic on D. Therefore, by Exercise 3(b), f ≡ 0 on all of D so f1 = f2 on D.
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5. (a) Using the hint we see that the rate of fluid flowing into W is
∫∫∫

W

∂ρ

∂t
dV and the rate of fluid flowing out of W is∫

©
∫

S

ρF · dS. Hence we have
∫
©
∫

S

ρF · dS = −
∫∫∫

W

∂ρ

∂t
dV . Also, by Gauss’s theorem, we have

∫∫∫
W

∇ · (ρF)dV =∫
©
∫

S

ρF · dS; therefore
∫∫∫

W

∇ · (ρF)dV = −
∫∫∫

W

∂ρ

∂t
dV . Finally, as in the arguments in the text, we point out that

the equation ∫∫∫
R

∇ · (ρF) dV = −
∫∫∫

R

∂ρ

∂t
dV

holds for any solid region R ⊆ W by the same argument. Thus, by shrinking R to a point, we can conclude ∇ · (ρF) =

−∂ρ

∂t
.

(b) From (14) in the text, the current density field J is ρv. Therefore,
∫∫∫

W

∂ρ

∂t
dV represents the current flowing into W and∫

©
∫

S

J · dS represents the current flowing out of W (across S). Hence, the same argument as that given in part (a) shows

that ∇ · J = −∂ρ

∂t
.

6. We are given that the total heat leaving D per unit time is −
∫∫∫

D

σρ
∂T

∂t
dV . This is equal to the flux

∫
©
∫

S

H · dS which, by

the definition of H, is the same as
∫
©
∫

S

−k∇T · dS. By Gauss’s theorem, we have
∫
©
∫

S

−k∇T · dS =

∫∫∫
D

−k∇ · ∇TdV .

Therefore, −
∫∫∫

D

σρ
∂T

∂t
dV =

∫∫∫
D

−k∇ ·∇TdV . Since D is arbitrary, shrink it to a point to conclude that −σρ
∂T

∂t
=

−k∇ · ∇T or σρ
∂T

∂t
= k∇ · ∇T .

7. We know from the argument in Exercise 6 that −
∫∫∫

D

σρ
∂T

∂t
dV =

∫∫∫
D

−∇· (k∇T )dV . Use the product rule to conclude

that this equals
∫∫∫

D

−(∇k · ∇T + k∇2T )dV . As before, shrink to a point to conclude σρ
∂T

∂t
= k∇2T + ∇k · ∇T .

8. This is immediate from the heat equation since ∂T/∂t = 0 and σ, ρ, k are constants.
9. (a) ∫

©
∫

∂D

H · dS =

∫
©
∫

∂D

−k∇T · dS =

∫∫∫
D

∇ · (−k∇T ) dV by Gauss’s theorem

= −k

∫∫∫
D

∇2T dV = 0 by Exercise 8.

(b) By part (a), there can be no net inflow or outflow of heat. Thus, heat must be flowing into D from the inner (hotter) sphere
and out of D through the outer sphere at the same rate.

10. (a) Since w = T1 − T2,∇2w = ∇2(T1 − T2). But T1 and T2 each satisfy the heat equation given in the exercise, so

∇2w = ∇2(T1 − T2) =
∂T1

∂t
− ∂T2

∂t
=

∂

∂t
(T1 − T2) =

∂w

∂t
.

So w satisfies the heat equation. Now for (x, y, z) ∈ D we have

w(x, y, z, 0) = T1(x, y, z, 0) − T2(x, y, z, 0) = α(x, y, z) − α(x, y, z) = 0.

So the first condition holds. Also for all (x, y, z) ∈ ∂D and t ≥ 0 we see

w(x, y, z, t) = T1(x, y, z, t) − T2(x, y, z, t) = φ(x, y, z, t) − φ(x, y, z, t) = 0.

So w satisfies the second condition.
(b) We take the derivative

E′(t) =
d
dt

[
1

2

∫∫∫
D

w2 dV
]

=
1

2

∫∫∫
D

∂

∂t
(w2) dV =

∫∫∫
D

w
∂w

∂t
dV.
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From part (a) we know that w satisfies the heat equation so∫∫∫
D

w
∂w

∂t
dV =

∫∫∫
D

w∇2w dV.

Using Green’s first formula with f = g = w, we have∫∫∫
D

w∇2w dV =

∫
©
∫

∂D

w∇w · dS −
∫∫∫

D

∇w · ∇w dV = −
∫∫∫

D

∇w · ∇w dV

since we showed in part (a) that w ≡ 0 on ∂D. Thus, E′(t) = − ∫∫∫
D
||∇w||2dV ≤ 0.

(c) In part (a) we showed that w(x, y, z, 0) = 0 on D. Therefore,

E(0) =
1

2

∫∫∫
D

[w(x, y, z, 0)]2 dV = 0.

Now E(t) is the integral of a non-negative integrand so E(t) ≥ 0. On the other hand, from part (b) we know that E is
nonincreasing. Therefore, E is a nonincreasing, nonnegative function such that E(0) = 0. Hence E(t) = 0 for all t ≥ 0.

(d) By part (c),
∫∫∫

D
w2dV = 0 for all t ≥ 0. Since w2 ≥ 0, we must have [w(x, y, z, t)]2 = 0 for all (x, y, z) ∈ D

and t ≥ 0. Therefore w(x, y, z, t) = 0 for all (x, y, z) ∈ D and t ≥ 0. Hence T1(x, y, z, t) = T2(x, y, z, t) for all
(x, y, z) ∈ D and t ≥ 0.

11. From Ampère’s law we have J =
1

μ0
∇× B − ε0

∂E
∂t

. Therefore,

∇× J =
1

μ0
∇ · (∇× B) − ε0∇ · ∂E

∂t
= −ε0∇ · ∂E

∂t

= −ε0
∂

∂t
(∇ · E) = −ε0

∂

∂t

(
ρ

ε0

)
by Gauss’s law,

= −∂ρ

∂t
.

12. We find where ∇ · E = 0.
∇ · E =

∂

∂x
(x3 − x) +

∂

∂y

(
1

4
y3

)
+

∂

∂z

(
1

9
z3 − 2z

)
.

So ∇ · E = 3x2 + 3
4
y2 + 1

3
z2 − 3. This is zero for points on the ellipsoid x2 + y2

4
+ z2

9
= 1.

13. First we check that ∇ · F = 0 wherever F is defined (i.e., away from the origin):

∇ · F = k

(
∂

∂x

x

(x2 + y2 + z2)3/2
+

∂

∂y

y

(x2 + y2 + z2)3/2
+

∂

∂z

z

(x2 + y2 + z2)3/2

)

= k

(
(x2 + y2 + z2)3/2 − 3x2(x2 + y2 + z2)1/2

(x2 + y2 + z2)3/2
+

(x2 + y2 + z2)3/2 − 3y2(x2 + y2 + z2)1/2

(x2 + y2 + z2)3/2

+
(x2 + y2 + z2)3/2 − 3z2(x2 + y2 + z2)1/2

(x2 + y2 + z2)3/2

)
.

Multiply numerator and denominator by (x2 + y2 + z2)1/2:

∇ · F =
k

(x2 + y2 + z2)7/2

(
3(x2 + y2 + z2)2 − 3x2(x2 + y2 + z2) − 3y2(x2 + y2 + z2)

− 3z2(x2 + y2 + z2)

)

=
k(x2 + y2 + z2)

(x2 + y2 + z2)7/2
(3(x2 + y2 + z2) − 3x2 − 3y2 − 3z2) ≡ 0.

Thus, by Gauss’s theorem,
∫
©
∫

S

F · dS =

∫∫∫
D

∇ ·F dV = 0 if S = ∂D and S does not enclose the origin. If S does enclose

the origin, let D be the solid region between S and a small sphere Sb of radius b that encloses the origin and is inside S (as in
Figure 7.54). Then

0 =

∫∫∫
D

∇ · F dV =

∫
©
∫

S

F · dS −
∫
©
∫

Sb

F · dS
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where S and Sb are both oriented by outward normals.

Hence
∫
©
∫

S

F · dS =

∫
©
∫

Sb

F · dS =

∫
©
∫

Sb

kx
||x||3 · 1

b
x dS (outward normal n to Sb is 1

b
x)

=

∫
©
∫

Sb

k||x||2
b||x||3 dS =

∫
©
∫

Sb

kb2

b4
dS (||x|| = b on Sb)

=
k

b2
· (surface area of Sb) =

k

b2
(4πb2) = 4πk.

14. (a) We may write E(x) = Eρ(x)eρ + Eϕ(x)eϕ + Eθ(x)eθ . The field of a point charge at the origin must be symmetric about
the origin. Thus Eϕ = Eθ = 0, so E(x) = Eρ(x)eρ = E(x)eρ. Once again, by symmetry, E(x) must be constant on any
sphere centered at the origin, so E can only depend on ρ. Hence E(x) = E(ρ)eρ.

(b) We have

∫
©
∫

S

E(ρ)eρ · dS =

∫
©
∫

S

E · dS from part (a),

=

∫∫∫
D

∇ · E dV using Gauss’s theorem,

=

∫∫∫
D

ρ

ε0
dV using Gauss’s law,

=
q

ε0
by definition of ρ and q.

(c) We have
∫
©
∫

S

E(ρ)eρ·dS =

∫
©
∫

S

E(ρ)eρ·n dS =

∫
©
∫

S

E(ρ)eρ·eρ dS =

∫
©
∫

S

E(ρ) dS. Since, by part (b),
∫
©
∫

S

E(ρ)eρ·dS =

q

ε0
, we have

∫
©
∫

S

E(ρ) dS =
q

ε0
.

(d) By part (c), q/ε0 =

∫
©
∫

S

E(ρ) dS. But, obviously, ρ is constant on the sphere of radius a and so on that sphere q/ε0 =∫
©
∫

S

E(ρ) dS = E(a) · 4πa2. Thus we see that E(ρ) = q/(4πε0ρ
2). Hence,

E(x) =
q

4πε0ρ2
eρ =

q

4πε0||x||2
x
||x|| =

q

4πε0

x
||x||3 as desired.

15. (a) This is just a straightforward calculation. Write F = M i + N j + Pk. Then

∇× F =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
M N P

∣∣∣∣∣∣ = (Py − Nz)i + (Mz − Px)j + (Nx − My)k

and

∇× (∇× F) =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
Py − Nz Mz − Px Nx − My

∣∣∣∣∣∣
= (Nxy − Myy − Mzz + Pxz)i + (Pyz − Nzz − Nxx + Myx)j

+ (Mzx − Pxx − Pyy + Nzy)k.
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On the other hand,

∇(∇ · F) = ∇(Mx + Ny + Pz)

= (Mxx + Nyx + Pzx)i + (Mxy + Nyy + Pzy)j + (Mxz + Nyz + Pzz)k

and (∇ · ∇)F =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
F

= (Mxx + Myy + Mzz)i + (Nxx + Nyy + Nzz)j + (Pxx + Pyy + Pzz)k.

Hence, ∇(∇ · F) −∇2F = (Nyx + Pzx − Myy − Mzz)i + (Mxy + Pzy − Nxx − Nzz)j

+ (Mxz + Nyz − Pxx − Pyy)k.

By assumption F is of class C2 and so the mixed partials are equal; thus we have the result:

∇× (∇× F) = ∇(∇ · F) −∇2F.

(b) First we show that E satisfies the wave equation.

∇2E = ∇(∇ · E) −∇× (∇× E) from part (a),

= ∇
(

ρ

ε0

)
−∇×

(
−∂B

∂t

)
using Gauss’s and Faraday’s laws,

=
1

ε0
∇ρ +

∂

∂t
(∇× B)

=
1

ε0
∇ρ +

∂

∂t

(
μ0J + ε0 μ0

∂E
∂t

)
using Ampère’s law

= 0 + ε0μ0
∂2E
∂t2

since there are no charges or currents (so ρ ≡ 0 and J ≡ 0).

Thus ∇2E = k
∂2E
∂t2

where k = ε0 μ0.
Next we show that B satisfies the wave equation.

∇2B = ∇(∇ · B) −∇× (∇× B) from part (a),

= 0 −∇×
(

μ0 J + ε0 μ0
∂E
∂t

)
using Maxwell’s equations,

= −ε0 μ0∇× ∂E
∂t

since J ≡ 0 (no currents),

= −ε0 μ0
∂

∂t
(∇× E)

= −ε0 μ0
∂

∂t

(
−∂B

∂t

)
from Faraday’s law,

= ε0 μ0
∂2B
∂t2

.

So ∇2B = k
∂2B

∂t2
where k = ε0 μ0.
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(c) By part (a),

∇(∇ · E) − (∇ · ∇)E = ∇× (∇× E)

= ∇×
(
−∂B

∂t

)
by Faraday’s law,

= − ∂

∂t
(∇× B)

= − ∂

∂t

[
μ0J + ε0μ0

∂E
∂t

]
by Ampère’s law,

= −μ0
∂

∂t

[
J + ε0

∂E
∂t

]
.

(d) Again from part (a),

∇2E = ∇(∇ · E) −∇× (∇× E)

= 0 −∇× (∇× E) by Gauss’s law and the fact that ρ = 0,

= μ0
∂J
∂t

+ ε0μ0
∂2E
∂t2

from the argument in part (c).

16. Start with the non-static version of Ampère’s law.

∇ · (∇× B) = ∇ ·
(

μ0 J + μ0ε0
∂E
∂t

)
= ∇ · (μ0J) + ∇ ·

(
μ0ε0

∂E
∂t

)

= −μ0
∂ρ

∂t
+ μ0ε0∇ · ∂E

∂t
from the continuity equation

= −μ0
∂ρ

∂t
+ μ0

∂ρ

∂t
from Gauss’s law

= 0.

17. (a) From Ampère’s law in the static case, ∇×B−μ0J must be 0 when J does not depend on time. Otherwise, the difference
must depend on time. If F1 is a time-varying vector field then ∂F1/∂t �= 0. If, on the other hand, F1 does not depend on
time, then ∂F1/∂t = 0. Hence, if we take ∇× B − μ0J = ∂F1/∂t, then we will have an equation that is valid in both
the static and the non-static cases.

(b) This is similar to our calculation in Exercise 16.

∇ · (∇× B) = ∇ · (μ0J) + ∇ · ∂F1

∂t
= −μ0

∂ρ

∂t
+ ∇ · ∂F1

∂t
from the continuity equation

= −μ0ε0∇ · ∂E
∂t

+ ∇ · ∂F1

∂t
from Gauss’s law.

So to have ∇ · (∇× B) = 0 we conclude that μ0ε0∇ · ∂E
∂t

= ∇ · ∂F1

∂t
.

(c) If ∇ · ∂F1

∂t
= μ0 ε0∇∂E

∂t
, then by part (b),

∂F1

∂t
= μ0ε0

∂E
∂t

+ F2 where ∇ · F2 = 0.

Therefore the most general formulation is

∇× B = μ0J + μ0ε0
∂E
∂t

+ F2.

18. We first show that E satisfies the telegrapher’s equation. From Exercise 15(d) we know that

∇2E = μ0
∂J
∂t

+ ε0μ0
∂2E
∂t2

,
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but here J = σE, so

∇2E = μ0σ
∂E
∂t

+ ε0μ0
∂2E
∂t2

.

Next we show that B satisfies the telegrapher’s equation. Now,

∇2B = ∇(∇ · B) −∇× (∇× B) from Exercise 15(a)

= 0 −∇×
(

μ0 J + ε0 μ0
∂E
∂t

)
by Maxwell’s equations,

= −∇×
(

μ0σE + ε0 μ0
∂E
∂t

)

= −μ0σ(∇× E) − ε0μ0
∂

∂t
(∇× E)

= −μ0σ

(
−∂B

∂t

)
− ε0μ0

∂

∂t

(
−∂B

∂t

)
by Faraday’s law,

= μ0σ
∂B
∂t

+ ε0μ0
∂2B
∂t2

.

19. Since P = E × B,∫
©
∫

S

P · dS =

∫
©
∫

S

(E × B) · dS

=

∫∫∫
D

∇ · (E × B) dV by Gauss’s theorem,

=

∫∫∫
D

(B · (∇× E) − E · (∇× B)) dV

=

∫∫∫
D

[
−B · ∂B

∂t
− E ·

(
μ0J + ε0μ0

∂E
∂t

)]
dV from Faraday and Ampère’s laws.

Since B and E are both assumed to be constant in time, ∂B
∂t

=
∂E
∂t

= 0. Therefore, we get the desired result:∫
©
∫

S

P · dS =

∫∫∫
D

−μ0E · J dV.

20. (a) If r = (r1, r2, r3) and x = (x, y, z),

E(r) =
1

4πε0

∫∫∫
D

ρ(x)
r − x

||r − x||3 dV

=
1

4πε0

(∫∫∫
D

ρ(x, y, z)
r1 − x

||r − x||3 dV,

∫∫∫
D

ρ(x, y, z)
r2 − y

||r − x||3 dV,

∫∫∫
D

ρ(x, y, z)
r3 − z

||r − x||3 dV
)

.

(b) Look at the first component of E. (The arguments for the other two components are similar.) We have∣∣∣∣ρ(x, y, z)

4πε0

r1 − x

||r − x||3
∣∣∣∣ ≤ |ρ(x, y, z)|

4πε0

||r − x||
||r − x||3 ≤ K

||r − x||2

where K may be taken to be the maximum value of |ρ| on D divided by 4πε0. Thus,∣∣∣∣ 1

4πε0

∫∫∫
D

ρ(x, y, z)
r1 − x

||r − x||3 dV
∣∣∣∣ ≤

∫∫∫
D

K

||r − x||2 dV.

(c) Use spherical coordinates with r as the origin so that the spherical coordinate ρ is ||r − x||. Then∫∫∫
D

K

||r − x||2 dV =

∫∫∫
D

K

ρ2
ρ2 sin ϕ dρ dϕ dθ =

∫∫∫
D

K sin ϕ dρ dϕ dθ.

Note that K sin ϕ is a bounded, continuous integrand. Since D is a bounded region, this last integral must converge.
Hence, by the remarks in the exercise, the original triple integral must converge.
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21. We are given B(r) =
μ0

4π

∫∫∫
D

J × r − x
||r − x||3 dV . Now,

∣∣∣∣∣∣
i j k

J1 J2 J3

r1 − x r2 − y r3 − z

∣∣∣∣∣∣ = [(r3 − z)J2 − (r2 − y)J3] i + [(r1 − x)J3 − (r3 − z)J1] j

+ [(r2 − y)J1 − (r1 − x)J2] k.

Hence the first component of the triple integral for B is

μ0

4π

∫∫∫
D

(
J2

r3 − z

||r − x||3 − J3
r2 − y

||r − x||3
)
dV.

(The other components are of the same form.) Note that each term in the integrand is of the form described in Exercise 20.
Thus, using the arguments in Exercise 20, each component integral of B must converge.

True/False Exercises for Chapter 7

1. True.
2. False. (Note that the parametrization only gives y ≥ 3.)
3. True. (Let u = s3 and v = tan t.)
4. False. (The standard normal vanishes when s or t is zero.)
5. False. (The limits of integration are not correct.)
6. True. (Use symmetry.)
7. False. (The value of the integral is 24.)
8. True. (Use symmetry.)
9. True.

10. True. (F · n = 0.)

11. False. (The integral has value 32π.)
12. True.
13. False. (The value is 0.)
14. True.
15. False. (The surface must be connected.)
16. False. (Consider the Möbius strip.)
17. True. (The result follows from Stokes’s theorem.)
18. False. (The value is the same only up to sign.)
19. True. (Use Gauss’s theorem.)
20. True. (Apply Gauss’s theorem.)
21. False. (Gauss’s theorem implies that the integral is at most twice the surface area.)
22. False.
23. True.
24. True.
25. False. (Should be the flux of the curl of F.)
26. True. (This is what Gauss’s theorem says.)
27. True. (Apply Green’s first formula.)
28. False. (The negative sign is incorrect.)
29. False. (f is determined up to addition of a harmonic function.)
30. False. (Only if S doesn’t enclose the origin.)

Miscellanenous Exercises for Chapter 7

1. Here are the matches:

(a) C (b) E (c) A

(d) D (e) F (f) B
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Brief reasons:
(c) The projection of X into the xy-plane, for fixed s, is a circle centered at the origin of radius 2 + cos s.
(b) Note that x2 + y2 = z2, so we have a conical surface.
(a) Since y = s, the intersection of the surface with the plane y = 0 is the parametrized curve x = −t3, y = 0, z = −t2 or

z = −x2/3, y = 0, which is a cuspidal curve.
(d) Let t = π/2. Then x = 0, y = s, z = sin s. So the intersection of the surface by the x = 0 plane is a sinusoidal curve.
(f) For constant values of s we have a helix, so the surface should be a helicoid.
(e) By elimination, this must correspond to F.

2. (a) Consider all the lines through (0, 0, 1). Either such a line is tangent to the sphere, or else it passes through another point
of the sphere S. The lines tangent to S at (0, 0, 1) fill out the tangent plane z = 1. All the other lines therefore have
“slope vectors” with nonzero k-components. Hence they intersect the z = 0 plane somewhere. Thus any line joining (0,
0, 1) and (s, t, 0) intersects S at a point other than (0, 0, 1).

(b) The line joining (0, 0, 1) and (s, t, 0) is given parametrically by

y(u) = (1 − u)(0, 0, 1) + u(s, t, 0) = (us, ut, 1 − u).

To see where the line intersects the sphere, we insert the parametric equations

⎧⎨
⎩

x = us
y = ut
z = 1 − u

into the equation for S and

solve for u. Thus:

(us)2 + (ut)2 + (1 − u)2 = 1 ⇔ u2(s2 + t2 + 1) − 2u + 1 = 1

⇔ u((s2 + t2 + 1)u − 2) = 0.

So either u = 0 (which corresponds to (0, 0, 1)) or u =
2

s2 + t2 + 1
. For this second value of u, we may define X(s, t) as

X(s, t) = y
(

2

s2 + t2 + 1

)
=

(
2s

s2 + t2 + 1
,

2t

s2 + t2 + 1
, 1 − 2

s2 + t2 + 1

)

=

(
2s

s2 + t2 + 1
,

2t

s2 + t2 + 1
,
s2 + t2 − 1

s2 + t2 + 1

)
.

(c) Check that the coordinates of X(s, t) satisfy the equation for S, i.e., that(
2s

s2 + t2 + 1

)2

+

(
2t

s2 + t2 + 1

)2

+

(
s2 + t2 − 1

s2 + t2 + 1

)2

=
4s2 + 4t2 + s4 + t4 + 2s2t2 − 2s2 − 2t2 + 1

(s2 + t2 + 1)2

=
s4 + t4 + 2s2t2 + 2s2 + 2t2 + 1

(s2 + t2 + 1)2
=

(s2 + t2 + 1)2

(s2 + t2 + 1)2
≡ 1.

Note that there are no values for s and t so that X(s, t) = (0, 0, 1). (To see thus, look at the first two coordinates—we
must have s = t = 0. But then X(0, 0) = (0, 0,−1)). Hence the parametrization misses the north pole.

3. (a) If we use cylindrical coordinates x = r cos θ, y = r sin θ, z = z, then the equation x2+y2−z2 = 1 becomes r2−z2 = 1
or, since r ≥ 0, r =

√
z2 + 1. Hence the desired parametrization is X(z, θ) = (

√
z2 + 1 cos θ,

√
z2 + 1 sin θ, z) where

z ∈ R and 0 ≤ θ ≤ 2π.
(b) Modify the cylindrical coordinate substitution by letting x = ar cos t, y = br sin t, z = cs. Substitution into the equation

for the hyperboloid yields r2 − s2 = 1 so r =
√

s2 + 1. Hence a parametrization is X(s, t) = (a
√

s2 + 1 cos t,
b
√

s2 + 1 sin t, cs), where s ∈ R and 0 ≤ t ≤ 2π.
(c) Substitute the parametric equations for l1 into the left side of the equation for the hyperboloid:

a2(x0 − y0t)
2

a2
+

b2(x0t + y0)
2

b2
− c2t2

c2
= x2

0 − 2x0y0t + y2
0t2 + x2

0t
2 + 2x0y0t + y2

0 − t2

= x2
0 + y2

0 + (x2
0 + y2

0)t2 − t2

= 1 + t2 − t2 = 1,

since x2
0 + y2

0 = 1. Thus l1 lies on the hyperboloid. The calculation for l2 is similar.

c© 2012 Pearson Education, Inc.



422 Chapter 7 Surface Integrals and Vector Analysis

(d) The plane tangent to the hyperboloid at the point (ax0, by0, 0) is given by

∇F (ax0, by0, 0) · (x − ax0, y − by0, 0) = 0 where F =
x2

a2
+

y2

b2
− z2

c2
.

That is, the tangent plane is

(∗) x0

a
(x − ax0) +

y0

b
(y − by0) = 0.

If we substitute the parametric equations for l1 into the left side of (∗), we find

x0

a
(a(x0 − y0t) − ax0) +

y0

b
(b(x0t + y0) − by0) = −x0y0t + y0x0t = 0

for all t. Therefore, the line l1 lies in the plane. A similar calculation can be made for l2.
4. Reconsider the parametrization from Exercise 3(a), X(z, θ) = (

√
z2 + 1 cos θ,

√
z2 + 1 sin θ, z) where z ∈ R and 0 ≤ θ ≤

2π. Then we have,

Tz =

(
z√

z2 + 1
cos θ,

z√
z2 + 1

sin θ, 1

)
,

Tθ = (−
√

z2 + 1 sin θ,
√

z2 + 1 cos θ, 0).

Thus Tz × Tθ = (−
√

z2 + 1 cos θ,−
√

z2 + 1 sin θ, z),

so that ||Tz × Tθ|| =
√

(z2 + 1) + z2 =
√

2z2 + 1.

Therefore,

Surface area =

∫ 2π

0

∫ a

−a

√
2z2 + 1 dz dθ = π(

√
2 ln(

√
2a2 + 1 +

√
2a) + 2a

√
2a2 + 1).

(Let tan u =
√

2z in the z-integral.)
5. (a) This is similar to Exercise 3(b). First, consider a variant of spherical coordinates: x = aρ cos θ sin ϕ, y = bρ sin θ sin ϕ,

and z = cρ cos ϕ. If we set ρ = 1, we get the desired parametrization: x = a sin ϕ cos θ, y = b sin θ sin ϕ, and
z = c cos ϕ where 0 ≤ ϕ ≤ π and 0 ≤ θ ≤ 2π.

(b) Here we have

Tϕ = (a cos ϕ cos θ, b cos ϕ sin θ,−c sin ϕ) and

Tθ = (−a sin ϕ sin θ, b sin ϕ cos θ, 0).

Therefore,

N = Tϕ × Tθ = (bc sin2 ϕ cos θ, ac sin2 ϕ sin θ, ab cos ϕ sin ϕ) and

||N|| = b2c2 sin4 ϕ cos2 θ + a2c2 sin4 ϕ sin2 θ + a2b2 cos2 ϕ sin2 ϕ.

Therefore,

Surface area =

∫ 2π

0

∫ π

0

√
b2c2 sin4 ϕ cos2 θ + a2c2 sin4 ϕ sin2 θ + a2b2 cos2 ϕ sin2 ϕ dϕ dθ.

c© 2012 Pearson Education, Inc.



Miscellanenous Exercises for Chapter 7 423

In the special case where a = b = c, we find that

Surface area =

∫ 2π

0

∫ π

0

a2
√

sin4 ϕ cos2 θ + sin4 ϕ sin2 θ + cos2 ϕ sin2 ϕ dϕ dθ

= a2

∫ 2π

0

∫ π

0

√
sin4 ϕ + cos2 ϕ sin2 ϕ dϕ dθ

= a2

∫ 2π

0

∫ π

0

√
sin2 ϕ dϕ dθ

= a2

∫ 2π

0

∫ π

0

sin ϕ dϕ dθ

= a2

∫ 2π

0

(− cos ϕ)

∣∣∣∣π
0

dθ

= a2

∫ 2π

0

2 dθ = 4πa2.

6. (a) The t-coordinate curve is (s0, f(s0) cos t, f(s0) sin t), which is a circle of radius |f(s0)| in the x = s0 plane. That is,
the radius of this cross-sectional circle depends on f(s0).

(b) Ts = (1, f ′(s) cos t, f ′(s) sin t) and Tt = (0,−f(s) sin t, f(s) cos t), so N = Ts × Tt = (f(s)f ′(s),
−f(s) cos t,−f(s) sin t). Thus ||N|| =

√
[f(s)]2[f ′(s)]2 + [f(s)]2 = |f(s)|

√
[f ′(s)]2 + 1. So

Surface area =

∫ 2π

0

∫ b

a

|f(x)|
√

[f ′(x)]2 + 1 dx dt

=

∫ b

a

∫ 2π

0

|f(x)|
√

[f ′(x)]2 + 1 dt dx

= 2π

∫ b

a

|f(x)|
√

[f ′(x)]2 + 1 dx.

7. (a) This should remind students of when they were using washer and shell methods for surfaces of revolution. Of course,
here we are finding a surface area and not volume. If you look at the specific value s = s0 then, since we are revolving
around the y-axis, we are sweeping out a circle of radius s0 in the plane y = f(s0). Therefore, a parametrization is
X(s, t) = (s cos t, f(s), s sin t), a ≤ s ≤ b, 0 ≤ t ≤ 2π. Compare this with Exercise 6(a).

(b) Using the parametrization in (a), Ts = (cos t, f ′(s), sin t) and Tt = (−s sin t, 0, s cos t). Therefore, N = Ts × Tt =
(sf ′(s) cos t,−s, sf ′(s) sin t), so ||N|| =

√
s2[f ′(s)]2 + s2. Hence

Surface area =

∫ b

a

∫ 2π

0

√
s2[f ′(s)]2 + s2 dt ds

= 2π

∫ b

a

s
√

[f ′(s)]2 + 1 ds

= 2π

∫ b

a

x
√

[f ′(x)]2 + 1 dx

by changing the variable of integration. Compare this result with that of Exercise 6(b).
8. (a) It would be helpful for you to first draw a picture. The surface is the curve z = f(x) in the xz-plane extended so that the

derivative in the y direction is identically zero (i.e., we’re dragging the curve in the y direction). Then S1, the portion of S
lying over D, may be parametrized as X(x, y) = (x, y, f(x)), (x, y) ∈ D. Then Tx = (1, 0, f ′(x)) and Ty = (0, 1, 0),
so that N = Tx × Ty = (−f ′(x), 0, 1), and so ||N|| =

√
1 + [f ′(x)]2. Hence,

Surface area =

∫∫
D

√
1 + [f ′(x)]2 dx dy =

∫∫
D

√
1 + [f ′(x)]2 dA.

Since s(x) =

∫ x

a

√
1 + [f ′(t)]2 dt, then, by the fundamental theorem of calculus, we have that s′(x) =

√
1 + [f ′(x)]2.

Thus the surface area is
∫∫

D

s′(x) dA.
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(b) From Green’s theorem,
∮

C

s(x) dy =

∫∫
D

s′(x) dA, which, by part (a), is the surface area.

(c) Here we are working a specific example of what we worked out in part (a). The rectangle D is [1, 3]× [−2, 2]. Using part

(a), we compute the surface area as
∫∫

D

s′(x) dA. Now s′(x) =
√

1 + [f ′(x)]2 where z = f(x) =
x3

3
+

1

4x
, and so

f ′(x) = x2 − 1

4x2
. Therefore,

1 + [f ′(x)]2 = 1 +

(
x4 − 1

2
+

1

16x4

)
= x4 +

1

2
+

1

16x4
=

(
x2 +

1

4x2

)2

.

Hence,

Surface area =

∫∫
D

√
1 + [f ′(x)]2 dA =

∫∫
D

√(
x2 +

1

4x2

)2

dA

=

∫ 2

−2

∫ 3

1

(
x2 +

1

4x2

)
dx dy =

∫ 2

−2

(
1

3
x3 − 1

4x

)∣∣∣∣3
x=1

dy

=

∫ 2

−2

(
9 − 1

12
− 1

3
+

1

4

)
dy =

∫ 2

−2

53

6
dy =

106

3
.

9. (a) The surface integral
∫∫

S

fdS, roughly speaking, represents the “sum” of all the values of f on S. The area of S is a

measure of the size of S. So the quotient can be thought of as the “total” amount of f divided by the size of the region
being sampled.

(b) Parametrize the sphere as X(s, t) = (7 cos s sin t, 7 sin s sin t, 7 cos t), 0 ≤ s ≤ 2π, 0 ≤ t ≤ π. Then, following
Example 11 in Section 7.1, ||Ts×Tt|| = 49 sin t. Note that, on the surface S, the temperature T (x, y, z) = x2+y2−3z =
49 − z2 − 3z. As a result, we can calculate

∫∫
S

T (x, y, z) dS =

∫ 2π

0

∫ π

0

(49 − 49 cos2 t − 21 cos t)49 sin t dt ds

= 49

∫ 2π

0

(
−49 cos t +

49

3
cos3 t +

21

2
cos2 t

)∣∣∣∣π
0

ds

= 49

∫ 2π

0

(
49(2) − 49

3
(2) +

21

2
(1 − 1)

)
ds =

(49)2(4)(2π)

3
.

Now, since the surface area of a sphere of radius 7 is 4π(49), we have

[T ]avg =

∫∫
S

T (x, y, z) dS
surface area

=
(49)2(4)(2π)

3

1

4π(49)
=

98

3
.

10. The surface area of the cylinder is 2π · 2 · 3 = 12π. If we parametrize the surface as

⎧⎨
⎩

x = 2 cos t
y = 2 sin t 0 ≤ t < 2π, 0 ≤ s ≤ 3
z = s
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then ||Ts × Tt|| = 2. Hence

[f ]avg =
1

12π

∫∫
S

f dS =
1

12π

∫ 3

0

∫ 2π

0

(4es cos2 t − 4s sin2 t) · 2 dt ds

=
1

3π

∫ 3

0

∫ 2π

0

[es(1 + cos 2t) − s(1 − cos 2t)] dt ds

=
1

3π

∫ 3

0

(
es

(
t +

1

2
sin 2t

)
− s

(
t − 1

2
sin 2t

)) ∣∣∣∣2π

t=0

ds

=
1

3π

∫ 3

0

(2πes − 2πs) ds =
2

3

∫ 3

0

(es − s) ds

=
2

3

(
es − 1

2
s2

) ∣∣∣∣3
0

=
2

3

(
e3 − 9

2
− 1

)
=

2e3 − 11

3
.

11. The cone looks as follows.

-2
0

2

x

-2

0

2y

-2

0

2

4

6

z

The upper nappe has a height of 6 and radius of 3; the lower nappe has a height of 2 and a radius of 1. Hence the total surface
area is

π · 1 ·
√

5 + π · 3 · 3
√

5 = 10
√

5π.

Next, parametrize the surface as

⎧⎨
⎩

x = s cos t
y = s sin t
z = 2s

with −1 ≤ s ≤ 3, 0 ≤ t < 2π. Then

||N|| = ||Ts × Tt|| = ||(−2s cos t,−2s sin t, s)|| =
√

5 |s|.
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Therefore,

[f ]avg =
1

10
√

5π

∫∫
S

f dS =
1

10
√

5π

∫ 2π

0

∫ 3

−1

(s2 − 3)
√

5|s| ds dt

=
1

10π

∫ 3

−1

∫ 2π

0

(s2 − 3)|s| dt ds

=
1

10π

∫ 3

−1

2π(s2 − 3)|s| ds =
1

5

[∫ 0

−1

(s2 − 3)(−s) ds +

∫ 3

0

(s2 − 3)s ds
]

=
1

5

[(
−1

4
s4 +

3

2
s2

) ∣∣∣∣0
−1

+

(
1

4
s4 − 3

2
s2

) ∣∣∣∣3
0

]

=
1

5

(
1

4
− 3

2
+

81

4
− 27

2

)
=

11

10
.

12. The total mass is
∫∫

X
δ dS. For the helicoid, Ts = (cos t, sin t, 0) and Tt = (−s sin t, s cos t, 1). Then N = Ts × Tt =

(sin t,− cos t, s) and ||N|| =
√

1 + s2. Hence,

Total mass =

∫∫
X

√
x2 + y2 dS

=

∫ 4π

0

∫ 1

0

√
(s cos t)2 + (s sin t)2

√
1 + s2 ds dt

=

∫ 4π

0

∫ 1

0

s
√

1 + s2 ds dt

= 4π

(
1

2
· 2

3
(1 + s2)3/2

)∣∣∣∣1
s=0

=
4π

3
(2
√

2 − 1).

13. By the symmetry of the surface, we must have x̄ = ȳ = z̄. We compute z̄ explicitly. Since δ is constant, it will cancel from
the center of mass integrals:

z̄ =

∫∫
S

zδ dS∫∫
S

δ dS
=

δ
∫∫

S
z dS

δ
∫∫

S
dS

=

∫∫
S

z dS
surface area of S

.

The surface area of the first octant portion of a sphere of radius a is 1

8
(4πa2) =

1

2
πa2. Therefore, z̄ =

2

πa2

∫∫
S

z dS.

We may parametrize the first octant portion of the sphere as X(ϕ, θ) = (a sin ϕ cos θ, a sin ϕ sin θ, a cos ϕ), 0 ≤ ϕ ≤ π/2,
0 ≤ θ ≤ π/2. Hence,

Tϕ = (a cos ϕ cos θ, a cos ϕ sin θ,−a sin ϕ),

Tθ = (−a sin ϕ sin θ, a sin ϕ cos θ, 0).

Therefore,
N = (a2 sin2 ϕ cos θ, a2 sin2 ϕ sin θ, a2 sin ϕ cos θ) and ||N|| = a2 sin ϕ.

Thus,

z̄ =
2

πa2

∫ π/2

0

∫ π/2

0

(a cos ϕ)a2 sin ϕ dϕ dθ

=
2a3

πa2

∫ π/2

0

∫ π/2

0

cos ϕ sin ϕ dϕ dθ

=
2a

π

∫ π/2

0

(
1

2
sin2 ϕ

) ∣∣∣∣π/2

ϕ=0

dθ

=
2a

π

∫ π/2

0

1

2
dθ =

a

π
· π

2
=

a

2
.
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14. A quick sketch should convince you that, by symmetry, x̄ = 0 and ȳ =
a

2
. The equation for the surface may be written as

z =
√

a2 − x2, so that ∂z

∂x
= − x√

a2 − x2
and ∂z

∂y
= 0. Then

dS =

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dx dy =

√
1 +

x2

a2 − x2
dx dy =

√
a2

a2 − x2
dx dy.

Hence,

z̄ =

∫∫
S

zδ dS∫∫
S

δ dS
=

∫∫
S

z dS∫∫
S
dS

=

∫∫
S

z dS
πa2

,

since the surface area of half a cylinder is πa2. Now we calculate

z̄ =
1

πa2

∫∫
S

z dS =
1

πa2

∫ a

0

∫ a

−a

√
a2 − x2

√
a2

a2 − x2
dx dy

=
1

πa2

∫ a

0

∫ a

−a

a dx dy =
a

πa2
(2a2) =

2a

π
.

15. By symmetry x̄ = ȳ = 0, so we only need to calculate z̄ =
∫∫

S
zδ dS∫∫

S
δ dS

. Now

δ(x, y, z) = x2 + y2 + (z + a)2.

If we parametrize the sphere:

⎧⎨
⎩

x = a cos s sin t 0 ≤ s < 2π
y = a sin s sin t 0 ≤ t ≤ π
z = a cos t

, then ‖N‖ = a2 sin t (see Example 1 of §7.2). We

therefore have ∫∫
S

δ dS =

∫∫
S

(
x2 + y2 + (z + a)2

)
dS

=

∫ π

0

∫ 2π

0

(
a2 sin2 t + (a cos t + a)2

)
a2 sin t ds dt

= 2πa2

∫ π

0

(
a2 sin2 t + a2 cos2 t + 2a2 cos t + a2) sin t dt

= 4πa4

∫ π

0

(1 + cos t) sin t dt

= 4πa4 (− cos t + 1
2

sin2 t
) ∣∣∣∣π

0

= 8πa4

∫∫
S

zδ dS =

∫∫
S

z
(
x2 + y2 + (z + a)2

)
dS

=

∫ π

0

∫ 2π

0

a cos t
(
a2 sin2 t + (a cos t + a)2

)
a2 sin t ds dt

= 4πa5

∫ π

0

(1 + cos t) cos t sin t dt

= 4πa5 ( 1
2

sin2 t − 1
3

cos3 t
) ∣∣∣∣π

0

=
8πa5

3
.

Hence,

z̄ =
8πa5/3

8πa4
=

a

3
.

16. Parametrize the cylinder as

⎧⎨
⎩

x = a cos s
y = t 0 ≤ s < 2π, 0 ≤ t ≤ 2
z = a sin s

.
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Then N = Ts × Tt = (−a sin s, 0, a cos s) × (0, 1, 0) = (−a cos s, 0,−a sin s) so ||N|| = a. Hence

M =

∫∫
S

δ dS =

∫ 2

0

∫ 2π

0

(a2 cos2 s + t) · a ds dt

=

∫ 2

0

∫ 2π

0

(
at +

a3

2
(1 + cos2 s)

)
ds dt =

∫ 2

0

(2πat + πa3) dt

= (πat2 + πa3t)

∣∣∣∣2
0

= 4πa + 2πa3 = 2πa(a2 + 2).

Symmetry implies z̄ = 0, so we calculate

x̄ =
1

2πa(a2 + 2)

∫ 2

0

∫ 2π

0

a cos s (a(t + a2 cos2 s)) ds dt

=
a

2π(a2 + 2)

∫ 2

0

∫ 2π

0

(t cos s + a2 cos3 s) ds dt

=
a

2π(a2 + 2)

∫ 2

0

∫ 2π

0

(t cos s + a2(1 − sin2 s) cos s) ds dt

=
a

2π(a2 + 2)

∫ 2

0

(
t sin s + a2 sin s − a2

3
sin3 s

) ∣∣∣∣2π

0

dt = 0.

(Actually, you can really see this from symmetry.)

ȳ =
1

2πa(a2 + 2)

∫∫
S

y(x2 + y) dS =
1

2πa(a2 + 2)

∫ 2

0

∫ 2π

0

t (t + a2 cos2 s) · a ds dt

=
1

2π(a2 + 2)

∫ 2

0

∫ 2π

0

[
t2s + a2t

(
1

2
s +

1

4
sin 2s

) ∣∣∣∣2π

s=0

]
dt

=
1

2π(a2 + 2)

∫ 2

0

(2πt2 + πa2t) dt =
1

2(a2 + 2)

∫ 2

0

(2t2 + a2t) dt

=
1

2(a2 + 2)

(
2

3
t3 +

a2

2
t2
) ∣∣∣∣2

0

=
1

2(a2 + 2)

(
16

3
+ 2a2

)

=
1

a2 + 2

(
8

3
+ a2

)
=

3a2 + 8

3a2 + 6
.

So (x̄, ȳ, z̄) =

(
0,

3a2 + 8

3a2 + 6
, 0

)
.

17. (a) Parametrize the frustum z2 = 4x2 + 4y2, 2 ≤ z ≤ 4, as X(r, θ) = (r cos θ, r sin θ, 2r), 0 ≤ θ ≤ 2π, 1 ≤ r ≤ 2. Then

∂(x, y)

∂(r, θ)
=

∣∣∣∣ cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r

∂(x, z)

∂(r, θ)
=

∣∣∣∣ cos θ −r sin θ
2 0

∣∣∣∣ = 2r sin θ

∂(y, z)

∂(r, θ)
=

∣∣∣∣ sin θ r cos θ
2 0

∣∣∣∣ = −2r cos θ.

Therefore,

Iz =

∫∫
S

(x2 + y2) dS =

∫ 2π

0

∫ 2

1

r2
√

r2 + 4r2 dr dθ

=

∫ 2π

0

∫ 2

1

√
5r3 dr dθ =

∫ 2π

0

√
5

4
(15) dθ =

15
√

5π

2
.
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(b) The radius of gyration is given by rz =

√
Iz

M
. Assuming, as in part (a), that the density is 1, the total mass is just the

surface area of the frustum. This can be computed from the surface area of the cone without much trouble. We view the
frustum as a large cone (of height 4) with the tip (a similar cone of height 2) removed and note that the surface area of a
cone is π(radius)(slant height). Then

Surface area of frustum = π(2)(2
√

5) − π(1)(
√

5) = 3
√

5π.

Hence

rz =

√
Iz

M
=

√
15

√
5π

2

1

3
√

5π
=

√
5

2
.

(Note: you can also compute the surface area as
∫ 2π

0

∫ 2

1

√
5r dr dθ.)

(c) We recompute the integral for Iz with δ = kr. Thus

Iz =

∫∫
S

(x2 + y2)δ dS

=

∫ 2π

0

∫ 2

1

r2kr
√

5r2 dr dθ

=

∫ 2π

0

∫ 2

1

√
5kr4 dr dθ

=

∫ 2π

0

√
5k

5
(25 − 1) dθ =

62
√

5πk

5
.

The total mass of the frustum is

M =

∫∫
S

δ dS =

∫ 2π

0

∫ 2

1

kr
√

5r dr dθ

=

∫ 2π

0

√
5

3
(23 − 1) dθ =

14
√

5πk

3
.

Hence

rz =

√
Iz

M
=

√
62

√
5πk

5

3

14
√

5πk
=

√
93

35
.

18. (a)

Iz =

∫∫
S

(x2 + y2) δ dS = δ

∫∫
S

a2 dS = δa2 · surface area

= δa2 · 2πa · 2b = 4πδa3b

(b) M =

∫∫
S

δ dS = δ · 4πab, so rz =

√
Iz

M
=

√
4πδa3b

4πδab
= a.

19. (a) Ix =
∫∫

S
(y2 +z2)δ dS. If we parametrize S by

⎧⎨
⎩

x = a cos t
y = a sin t −b ≤ s ≤ b, 0 ≤ t < 2π
z = s

, then ||N|| = ||Ts ×Tt|| = a

and so

Ix =

∫ b

−b

∫ 2π

0

(a2 sin2 t + s2)δa dt ds = δa

∫ b

−b

(
a2

2

(
t − 1

2
sin 2t

)
+ s2t

∣∣∣∣2π

t=0

)
ds

= δa

∫ b

−b

(πa2 + 2πs2) ds = πδa

(
2a2b +

4

3
b3

)
=

2πabδ

3
(3a2 + 2b2)

Iy =

∫∫
S

(x2 + z2)δ dS =

∫ b

−b

∫ 2π

0

(a2 cos2 t + s2)δa dt ds

= δa

∫ b

−b

(
a2

2

(
t +

1

2
sin 2t

)
+ s2t

) ∣∣∣∣2π

t=0

ds = πδa

(
2a2b +

4

3
b3

)
as before.
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(b) From Exercise 18, M = 4πabδ, so

rx = ry =

√
πδa

(
2a2b + 4

3
b3
)

4πabδ
=

√
2a2 + 4

3
b2

4
=

√
a2 + 2

3
b2

2

=

√
3a2 + 2b2

6
.

20. (a) Let M be the maximum value of f on D and m the minimum value. (The numbers M and m must exist since D is
compact.) Then

m =

∫∫
D

mg dA∫∫
D

g dA
≤

∫∫
D

fg dA∫∫
D

g dA
≤

∫∫
D

Mg dA∫∫
D

g dA
= M.

Hence by the intermediate value theorem, there must be some point P in D such that

f(P ) =

∫∫
D

fg dA∫∫
D

g dA
,

which gives the result, provided
∫∫

D
g dA �= 0.

If
∫∫

D
g dA = 0 then we have

0 = m

∫∫
D

g dA =

∫∫
D

mg dA ≤
∫∫

D

fg dA ≤
∫∫

D

Mg dA = M

∫∫
D

g dA = 0,

so
∫∫

D
fg dA = 0 and any P in D gives the desired result.

(b) Assume that S may be parametrized by a single function X. Then∫∫
S

F · dS =

∫∫
S

F · n dS =

∫∫
D

F(X(s, t)) · n(s, t)||N(s, t)|| ds dt

= F(X(s0, t0)) · n(s0, t0)

∫∫
D

||N(s, t)|| ds dt by part (a),

= F(P ) · n(P )(area of S)

where P = X(s0, t0).
21. (a) Let a = (a1, a2, a3) and assume x(t) = (x(t), y(t), z(t)) parametrizes C. Then∮

C

a · ds =

∫ b

a

a · x′(t) dt

=

∫ b

a

(a1x
′(t) + a2y

′(t) + a3z
′(t)) dt

= (a1x(t) + a2y(t) + a3z(t))

∣∣∣∣b
a

= a · x(t)

∣∣∣∣b
a

= a · x(b) − a · x(a)

= 0

since x(a) = x(b) because C is a closed curve.
(b) Let S be any smooth, orientable surface with boundary curve C. If we orient S appropriately and use Stokes’s theorem,

we have ∮
C

a · ds =

∫∫
S

∇× a · dS =

∫∫
S

0 · dS = 0.

22. Note that C lies in the surface z = x2 − y2. The line integral is∮
C

F · ds, where F = (x2 + z2) i + yj + zk
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Therefore, Stokes’s theorem implies that ∮
C

F · ds =

∫∫
S

(∇× F) · dS,

where S is the portion of z = x2 − y2 bounded by C. Note that S lies over the unit disk in the xy-plane. We may take for unit
normal

n =
−2xi + 2yj + k√

4x2 + 4y2 + 1
and

∇× F =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
x2 + z2 y z

∣∣∣∣∣∣ = 2zj = 2(x2 − y2) j on S.

Thus
∫∫

S

(∇× F) · dS =

∫∫
D

4y(x2 − y2) dA where D is the unit disk. This is

∫ 2π

0

∫ 1

0

4r4(cos2 θ sin θ − sin3 θ) dr dθ

=

∫ 2π

0

4

5
(cos2 θ sin θ − sin3 θ) dθ =

4

5

∫ 2π

0

(cos2 θ sin θ − (1 − cos2 θ) sin θ) dθ

=
4

5

(
−2

3
cos3 θ + cos θ

) ∣∣∣∣2π

0

= 0.

23. By Stokes’s theorem ∮
∂S

(f∇g) · ds =

∫∫
S

∇× (f∇g) · dS

=

∫∫
S

(∇f ×∇g + f∇× (∇g)) · dS =

∫∫
S

(∇f ×∇g) · dS,

since ∇× (∇g) = 0 (see §3.4).
24. Using the result of Exercise 23 (twice):∮

∂S

(f∇g + g∇f) · ds =

∫∫
S

(∇f ×∇g + ∇g ×∇f) · dS =

∫∫
S

0 · dS = 0

because ∇f ×∇g = −∇g ×∇f .
25. ∮

∂S

(f∇f) · ds =

∮
∂S

1

2
(f∇f + f∇f) · ds

= 0 by Exercise 24.

26. (a) First apply Stokes’s theorem:

1

2

∮
C

(bz − cy) dx + (cx − az) dy + (ay − bx) dz

=
1

2

∫∫
D

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
bz − cy cx − az ay − bx

∣∣∣∣∣∣ · dS (D is the region enclosed by C)

=
1

2

∫∫
D

(2a, 2b, 2c) · dS =

∫∫
D

(a, b, c) · dS

=

∫∫
D

n · n dS =

∫∫
D

dS since n is a unit vector,

= area enclosed by C.
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(b) If C is contained in the xy-plane, then n = k, so a = b = 0 and c = 1 in the notation above. Hence the result reduces to

1

2

∮
C

−y dx + x dy = area enclosed by C.

27. By Faraday’s law ∫∫
S

(∇× E) · dS = −
∫∫

S

∂B
∂t

· dS = − d
dt

∫∫
S

B · dS.

On the other hand, using Stokes’s theorem,∫∫
S

(∇× E) · dS =

∮
∂S

E · ds =

∫
∂S

(E · T) ds = 0,

since E is everywhere perpendicular to ∂S. Thus d

dt

∫∫
S

B · dS = 0, so the magnetic flux does not vary with time.

28. For Gauss’s theorem to apply to the situation, S must be closed. Hence ∂S is empty. But then there really is no line integral∫
∂S

G ·ds. If we try to apply Stokes’s theorem in general (i.e., to surfaces with nonempty boundary) then we cannot also apply

Gauss’s theorem.
29. Note that the boundary ∂W of W consists of three parts: S, S̃a and the lateral surfaces L of ∂W . With ∂W oriented by

outward normal, and if we take S and S̃a to be oriented in the same way,∫
©
∫

∂W

x
||x||3 · dS = ±

(∫∫
S

x
||x||3 · dS −

∫∫
S̃a

x
||x||3 · dS

)
+

∫∫
L

x
||x||3 · dS

(The ± sign depends on how S, S̃a are oriented with respect to the orientation of ∂W .) Now L consists of a collection of
segments of the rays defining Ω(S, O). Thus L is tangent to x. Hence x · n = 0 where n is the appropriate unit normal to L.

Thus
∫∫

L

x
||x||3 · dS = 0. Thus

∫
©
∫

∂W

x
||x||3 · dS = ±

(∫∫
S

x
||x||3 · dS −

∫∫
S̃a

x
||x||3 · dS

)
.

Gauss’s theorem implies ∫
©
∫

∂W

x
||x||3 · dS =

∫∫∫
W

(
∇ · x

||x||3
)
dV =

∫∫∫
W

0 dV.

Hence
∫∫

S

x
||x||3 · dS =

∫∫
S̃a

x
||x||3 · dS. On S̃a, n =

x
||x|| , so

Ω(S, O) =

∫∫
S

x
||x||3 · dS =

∫∫
S̃a

x
||x||3 · x

||x|| dS

=

∫∫
S̃a

||x||2
||x||4 dS =

∫∫
S̃a

1

||x||2 dS.

But on S̃a, ||x|| = a, so

Ω(S, O) =

∫∫
S̃a

1

a2
dS =

1

a2
(surface area of S̃a).

30. From the definition of Ω(S, O), we calculate Ω(S, O) =

∫∫
S

x
||x||3 · dS. Now x = (x(s, t), y(s, t), z(s, t)), so that ||x|| =√

x2 + y2 + z2. Moreover, the standard normal N = Ts × Tt is

N =

∣∣∣∣∣∣∣∣∣∣

i j k
∂x

∂s

∂y

∂s

∂z

∂s

∂x

∂t

∂y

∂t

∂z

∂t

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∂y

∂s

∂z

∂s

∂y

∂t

∂z

∂t

∣∣∣∣∣∣∣ i −

∣∣∣∣∣∣∣
∂x

∂s

∂z

∂s

∂x

∂t

∂z

∂t

∣∣∣∣∣∣∣ j +

∣∣∣∣∣∣∣
∂x

∂s

∂y

∂s

∂x

∂t

∂y

∂t

∣∣∣∣∣∣∣ k.
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Hence ∫∫
S

x
||x||3 · dS =

∫∫
D

1

(x2 + y2 + z2)3/2
x · (Ts × Tt) ds dt

=

∫∫
D

1

(x2 + y2 + z2)3/2

∣∣∣∣∣∣∣∣
x y z

∂x/∂s ∂y/∂s ∂z/∂s

∂x/∂t ∂y/∂t ∂z/∂t

∣∣∣∣∣∣∣∣ ds dt as desired.

31. First, if S does not enclose the origin then, by Gauss’s theorem

Ω(S, O) =

∫∫
S

x
||x||3 · dS = ±

∫∫∫
W

∇ ·
(

x
||x||3

)
dV =

∫∫∫
W

0 dV = 0.

Here the ± sign depends on the orientation of S and W is the region enclosed by S.
Next, if S does enclose the origin, let Sa be the sphere of radius a centered at O and contained inside S. Let D be the

solid region in R3 between Sa and S.

O

Sa

S

Note that ∇ ·
(

x
||x||3

)
throughout D since D doesn’t contain O. If Sa is oriented by inward normal (which points away from

D), then, by Gauss’s theorem, we have:

0 =

∫∫∫
D

∇ ·
(

x
||x||3

)
dV =

∫
©
∫

∂D

x
||x||3 · dS = ±

∫∫
S

x
||x||3 · dS +

∫∫
Sa

x
||x||3 · dS.

Hence Ω(S, O) = ±
∫∫

Sa

x
||x||3 · dS. On Sa, n = − x

||x|| = −1

a
so

Ω(S, O) = ±
∫∫

Sa

x
a3

·
(
−1

a
x
)
dS = ±

∫∫
Sa

− 1

a4
(x · x) dS

= ±
∫∫

Sa

−a2

a4
dS = ± 1

a2
(surface area of Sa)

= ± 1

a2
(4πa2) = ±4π.

32. We may parametrize S as ⎧⎨
⎩

x = s cos t
y = s sin t 0 ≤ s ≤ a, 0 ≤ t < 2π
z = 0

.

(0,0,z) O

x

S

Then one way to orient S is with unit normal n = k. Also, we have the vector x from O to a point of S given by

x = (s cos t, s sin t,−z) ⇒ ||x|| =
√

s2 + z2.
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Hence

Ω(S, O) =

∫∫
S

x
||x||3 · n dS =

∫ 2π

0

∫ a

0

−z

(s2 + z2)3/2
s ds dt

= −z

∫ a

0

∫ 2π

0

s

(s2 + z2)3/2
dt ds

= −πz

∫ a

0

2s

(s2 + z2)3/2
ds = −πz(s2 + z2)−1/2(−2)

∣∣∣∣a
0

= 2πz

(
(a2 + z2)−1/2 − 1

|z|
)

= 2πz

(
1√

a2 + z2
− 1

|z|
)

= 2πz

(
1√

a2 + z2
− 1√

z2

)
= 2πz

(√
z2 −√

a2 + z2

√
z2
√

a2 + z2

)
.

Now
z√
z2

=

{
+1 if z > 0
−1 if z < 0

and
√

z2 =

{
z if z ≥ 0
−z if z < 0

.

Thus

Ω(S, O) =

⎧⎪⎪⎨
⎪⎪⎩

2π

(
z −√

a2 + z2

√
a2 + z2

)
if z > 0

2π

(
z +

√
a2 + z2

√
a2 + z2

)
if z < 0.

(z �= 0 because O should not be a point of S.)
Note that if z > 0, z − √

a2 + z2 < 0 and |z − √
a2 + z2| <

√
a2 + z2. Hence 0 > Ω(S, O) > −2π. If z < 0, then

z +
√

a2 + z2 > 0 and z +
√

a2 + z2 <
√

a2 + z2. Hence 0 < Ω(S, O) < 2π. Either way −2π < Ω(S, O) < 2π. Now as
z → 0+, Ω(S, O) → −2π and as z → 0−, Ω(S, O) → 2π. Hence as O passes through S, there is a jump of 4π.

33. We have

∇× G = ∇×
∫ 1

0

tF(tr) × r dt where r = (x, y, z),

=

∫ 1

0

∇× (tF(tr) × r) dt

=

∫ 1

0

t∇× (F(tr) × r) dt since t behaves as a constant with respect to ∇,

=

∫ 1

0

t{F(tr)∇ · r − r∇ · F(tr) + (r · ∇)F(tr) − (F(tr) · ∇)r} dt by the first identity,

=

∫ 1

0

t{3F(tr) − r∇ · F(tr) + (r · ∇)F(tr) − F(tr)} dt

=

∫ 1

0

t{2F(tr) − r∇ · F(tr) + (r · ∇)F(tr)} dt.

To compute ∇ · F(tr), note that ∂

∂x
F(tr) = t

∂F
∂X

by the hint. This implies that ∇ · F(tr) = t∇X,Y,ZF(X, Y, Z) where ∇X,Y,Z

signifies that all partials are to be taken with respect to X, Y, and Z where X = tx, Y = ty, and Z = tz. Thus ∇ · F(tr) = 0
since F is assumed to be divergenceless. By the second identity given in the hint,

(r · ∇)F(tr) =
d
dt

[tF(tr)] − F(tr).
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Hence,

∇× G =

∫ 1

0

t

{
2F(tr) +

d
dt

[tF(tr)] − F(tr)
}
dt

=

∫ 1

0

t

{
F(tr) +

d
dt

[tF(tr)]
}
dt

=

∫ 1

0

d
dt

[t2F(tr)] dt by the last identity in the hint,

= t2F(tr)
∣∣∣∣1
t=0

= F(r).

34. Note ∇ · F = 2 − 1 − 1 = 0 so, by the result of Exercise 33, a vector potential for F must exist. We can compute it by

G =

∫ 1

0

t(2xt,−yt,−zt) × (x, y, z) dt =

∫ 1

0

t(0,−3xzt, 3xyt) dt

=

∫ 1

0

(0,−3xzt2, 3xyt2) dt = (0,−xzt3, xyt3)

∣∣∣∣1
t=0

= (0,−xz, xy).

35. ∇ · F = 1 + 1 + 1 = 3 �= 0, so, by the result of Exercise 33, F has no vector potential.
36. ∇ · F = 0 + 0 + 0 = 0, so, by the result of Exercise 33, a vector potential for F must exist. We compute it as follows.

G =

∫ 1

0

t(3yt, 2xzt2,−7x2yt3) × (x, y, z) dt

=

∫ 1

0

(2xz2t3 + 7x2y2t4,−7x3yt4 − 3yzt2, 3y2t2 − 2x2zt3) dt

=

(
1

2
xz2 +

7

5
x2y2,−7

5
x3y − yz, y2 − 1

2
x2z

)
.

37. Since ∇× (∇φ) = 0 for any C2 function, we have

∇× (G + ∇φ) = ∇× G + ∇× (∇φ) = ∇× G + 0 = F.

Thus G + ∇φ is a vector potential for F.

38. (a) Write F = − GMm

(x2 + y2 + z2)3/2
(xi + yj + zk). Then

∂F1

∂x
=

∂

∂x

[
x

(x2 + y2 + z2)3/2

]
=

(x2 + y2 + z2)3/2 − 3x2(x2 + y2 + z2)1/2

(x2 + y2 + z2)3

=
(x2 + y2 + z2)2 − 3x2(x2 + y2 + z2)

(x2 + y2 + z2)7/2
.

Similarly,

∂F2

∂y
=

∂

∂y

[
y

(x2 + y2 + z2)3/2

]
=

(x2 + y2 + z2)2 − 3y2(x2 + y2 + z2)

(x2 + y2 + z2)7/2

∂F3

∂z
=

∂

∂z

[
z

(x2 + y2 + z2)3/2

]
=

(x2 + y2 + z2)2 − 3z2(x2 + y2 + z2)

(x2 + y2 + z2)7/2
.

Thus

∇ · F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
=

3(x2 + y2 + z2)2 − (3x2 + 3y2 + 3z2)(x2 + y2 + z2)

(x2 + y2 + z2)7/2
= 0.
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(b) Let S be a sphere of radius a enclosing the origin. Consider S to be the union of hemispheres S1 and S2, each oriented
so that the normal vector points away from the center of the sphere. If F = ∇× G, then∫∫

S

F · dS =

∫∫
S

∇× G · dS =

∫∫
S1

∇× G · dS +

∫∫
S2

∇× G · dS

=

∮
∂S1

G · ds +

∮
∂S2

G · ds by Stokes’s theorem

= 0,

since ∂S1 and ∂S2 inherit opposite orientations from S1 and S2 and are equal as unoriented curves. On the other hand
n = r/||r||, so ∫∫

S

F · dS =

∫∫
S

−GMm

||r||3 r · r
||r|| dS = −GMm

∫∫
S

||r||2
||r||4 dS

= −GMm

∫∫
S

1

||r||2 dS = −GMm

∫∫
S

1

a2
dS since ||r|| = a on S,

= −GMm
4πa2

a2
= −4πGMm �= 0.

Hence, it cannot be that F = ∇× G.
(c) F is not of class C1 on R3; F is undefined at the origin. The C1 hypothesis is assumed in Exercise 33, so there’s no

contradiction.
39. We calculate the curl:

∇×
(

E +
∂A
∂t

)
= ∇× E + ∇× ∂A

∂t

= ∇× E +
∂

∂t
∇× A

= ∇× E +
∂B
∂t

= 0

by Faraday’s law. Since E, B and thus A are all defined on a simply-connected region, we must have that E + ∂A/∂t is
conservative.

40. Substituting ∇× A for B in Ampère’s law, we have

∇× (∇× A) = μ0J + μ0ε0
∂E
∂t

.

From the identity ∇× (∇× A) = ∇(∇ · A) −∇2A, we have

μ0J = ∇(∇ · A) −∇2A − μ0ε0
∂E
∂t

.

Since E + ∂A/∂t is conservative, E = ∇f − ∂A
∂t

, so that

μ0J = ∇(∇ · A) −∇2A − μ0ε0
∂

∂t

(
∇f − ∂A

∂t

)

= ∇(∇ · A) −∇2A − μ0ε0

(
∇

(
∂f

∂t

)
− ∂2A

∂t2

)
since f is of class C2.

Thus

μ0J = ∇
(
∇ · A − μ0ε0

∂f

∂t

)
−∇2A + μ0ε0

∂2A
∂t2

,

which is equivalent to the desired formula.
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41. Again we have E = ∇f − ∂A
∂t

so that Gauss’s law becomes ρ/ε0 = ∇ · E = ∇ ·
(
∇f − ∂A

∂t

)
= ∇2f − ∂

∂t
(∇ · A) or

∇2f = ρ/ε0 +
∂

∂t
(∇ · A).

42. (a) If Ã = A + ∇φ, then in order to have

∇f̃ = E +
∂Ã
∂t

= E +
∂A
∂t

+ ∇∂φ

∂t

= ∇f + ∇∂φ

∂t
,

we must have ∇f̃ = ∇
(

f +
∂φ

∂t

)
. Thus, up to addition of a constant, f̃ = f +

∂φ

∂t
.

(b) The condition that ∇ · Ã = μ0ε0
∂f̃

∂t
is equivalent to

∇ · (A + ∇φ) = μ0ε0
∂

∂t

(
f +

∂φ

∂t

)
or

∇ · A + ∇2φ = μ0ε0

(
∂f

∂t
+

∂2φ

∂t2

)
⇔

∇2φ − μ0ε0
∂2φ

∂t2
= −∇ · A + μ0ε0

∂f

∂t
.

43. If the final equation in part (b) above can be solved for φ, then we may arrange things so that ∇ · A = μ0ε0
∂f

∂t
. Then the

equation in Exercise 40 is

∇2A − μ0ε0
∂2A
∂t2

= −μ0J + ∇

0︷ ︸︸ ︷(
∇ · A − μ0ε0

∂f

∂t

)
= −μ0J

and the equation in Exercise 41 is

∇2f =
ρ

ε0
+ μ0ε0

∂2f

∂t
or ∇2f − μ0ε0

∂2f

∂t2
=

ρ

ε0
.

44. We check all the equations, given the assumptions.

∇ · E = ∇ ·
(
−∂A

∂t
+ ∇f

)
︸ ︷︷ ︸

E

= − ∂

∂t
∇ · A + ∇2f = − ∂

∂t

(
μ0ε0

∂f

∂t

)
+ ∇2f

= −μ0ε0
∂2f

∂t2
+ ∇2f =

ρ

ε0

from the second equation in Exercise 43.

∇× E = −∇×
(

∂A
∂t

−∇f

)
= −∇× ∂A

∂t
= − ∂

∂t
(∇× A) = −∂B

∂t

∇ · B = ∇ · (∇× A) = 0

∇× B = ∇× (∇× A) = ∇(∇ · A) −∇2A (identity)

= ∇(∇ · A) − μ0ε0
∂2A
∂t2

+ μ0J
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by the equation in part (b) of Exercise 42

= ∇
(

μ0ε0
∂f

∂t

)
− μ0ε0

∂

∂t
(−E + ∇f) + μ0J,

using the condition ∇ · A = μ0ε0
∂f

∂t
, and that ∂A

∂t
= ∇f − E

= μ0ε0
∂E
∂t

+ μ0J

since we may assume f to be of class C2.
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Chapter 8

Vector Analysis in Higher Dimensions

8.1 An Introduction to Differential Forms

1. (dx1 − 3 dx2)(7, 3) = dx1(7, 3) − 3 dx2(7, 3) = 7 − 3(3) = −2.

2.

(2 dx + 6 dy − 5 dz)(1,−1,−2)

= 2 dx(1,−1, 2) + 6 dy(1,−1,−2) − 5 dz(1,−1,−2)

= 2(1) + 6(−1) − 5(−2) = 6.

3. (3 dx1 ∧ dx2)((4,−1), (2, 0)) = 3 det

[
dx1(4,−1) dx1(2, 0)

dx2(4,−1) dx2(2, 0)

]
= 3 det

[
4 2

−1 0

]
= 3(2) = 6.

4.

(4 dx ∧ dy − 7 dy ∧ dz)((0, 1,−1), (1, 3, 2))

= 4 dx ∧ dy((0, 1,−1), (1, 3, 2)) − 7 dy ∧ dz((0, 1,−1), (1, 3, 2))

= 4 det

[
dx(0, 1,−1) dx(1, 3, 2)

dy(0, 1,−1) dy(1, 3, 2)

]
− 7 det

[
dy(0, 1,−1) dy(1, 3, 2)

dz(0, 1,−1) dz(1, 3, 2)

]

= 4 det

[
0 1

1 3

]
− 7 det

[
1 3

−1 2

]
= 4(−1) − 7(5) = −39.

5. We have

7 dx ∧ dy ∧ dz(a,b, c) = 7 det

⎡
⎣dx(a) dx(b) dx(c)

dy(a) dy(b) dy(c)
dz(a) dz(b) dz(c)

⎤
⎦

= 7 det

⎡
⎣1 2 5

0 −1 2
3 0 1

⎤
⎦ = 7(−1 + 12 + 15) = 182.

6. We have

(dx1 ∧ dx2 + 2 dx2 ∧ dx3 + 3 dx3 ∧ dx4)(a,b)

= det

[
dx1(a) dx1(b)
dx2(a) dx2(b)

]
+ 2 det

[
dx2(a) dx2(b)
dx3(a) dx3(b)

]
+ 3 det

[
dx3(a) dx3(b)
dx4(a) dx4(b)

]

= det

[
1 4
2 3

]
+ 2 det

[
2 3
3 2

]
+ 3 det

[
3 2
4 1

]
= −5 + 2(−5) + 3(−5) = −30.
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7.

(2 dx1 ∧ dx3 ∧ dx4 + dx2 ∧ dx3 ∧ dx5)(a, b, c)

= 2 det

⎡
⎢⎣
dx1(a) dx1(b) dx1(c)
dx3(a) dx3(b) dx3(c)
dx4(a) dx4(b) dx4(c)

⎤
⎥⎦ + det

⎡
⎢⎣
dx2(a) dx2(b) dx2(c)
dx3(a) dx3(b) dx3(c)
dx5(a) dx5(b) dx5(c)

⎤
⎥⎦

= 2 det

⎡
⎢⎣

1 0 5

−1 9 0

4 1 0

⎤
⎥⎦ + det

⎡
⎢⎣

0 0 0

−1 9 0

2 −1 −2

⎤
⎥⎦

= 2(−185) + 0 = −370.

8. ω(3,−1,4)(a) = (−9 dx + 4 dy + 192 dz)(a1, a2, a3) = −9a1 + 4a2 + 192a3.

9.

ω(2,−1,−3,1)(a, b) = (−6 dx1 ∧ dx3 + dx2 ∧ dx4)(a, b)

= −6 det

[
dx1(a) dx1(b)

dx3(a) dx3(b)

]
+ det

[
dx2(a) dx2(b)

dx4(a) dx4(b)

]

= −6(a1b3 − a3b1) + a2b4 − a4b2.

10.

ω(0,−1,π/2)(a, b) = (1 dx ∧ dy − 1 dy ∧ dz + 4 dx ∧ dz)(a, b)

=

∣∣∣∣∣ dx(a) dx(b)

dy(a) dy(b)

∣∣∣∣∣ −
∣∣∣∣∣ dy(a) dy(b)

dz(a) dz(b)

∣∣∣∣∣ + 4

∣∣∣∣∣ dx(a) dx(b)

dz(a) dz(b)

∣∣∣∣∣
=

∣∣∣∣∣ a1 b1

a2 b2

∣∣∣∣∣ −
∣∣∣∣∣ a2 b2

a3 b3

∣∣∣∣∣ + 4

∣∣∣∣∣ a1 b1

a3 b3

∣∣∣∣∣
= a1b2 − a2b1 − (a2b3 − a3b2) + 4(a1b3 − a3b1)

11.

ω(x,y,z)((2, 0,−1), (1, 7, 5)) = cos x

∣∣∣∣∣ 2 1

0 7

∣∣∣∣∣ − sin z

∣∣∣∣∣ 0 7

−1 5

∣∣∣∣∣ + (y2 + 3)

∣∣∣∣∣ 2 1

−1 5

∣∣∣∣∣
= 14 cos x − 7 sin z + 11(y2 + 3)

12. We have

ω(0,0,0)(a,b, c) = (3 dx ∧ dy ∧ dz)(a,b, c)

= 3 det

⎡
⎣dx(a) dx(b) dx(c)

dy(a) dy(b) dy(c)
dz(a) dz(b) dz(c)

⎤
⎦ = 3 det

⎡
⎣a1 b1 c1

a2 b2 c2

a3 b3 c3

⎤
⎦

= 3(a1b2c3 + a3b1c2 + a2b3c1 − a3b2c1 − a1b3c2 − a2b1c3).

13. We have

ω(x,y,z) ((1, 0, 0), (0, 2, 0), (0, 0, 3)) =
(
ex cos y + (y2 + 2)e2z) det

⎡
⎣1 0 0

0 2 0
0 0 3

⎤
⎦

= 6
(
ex cos y + (y2 + 2)e2z) .
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14. From Definition 1.3 of exterior product,

(3 dx + 2 dy − x dz) ∧ (x2 dx − cos y dy + 7 dz)

= 3x2 dx ∧ dx + 2x2 dy ∧ dx − x3 dz ∧ dx − 3 cos y dx ∧ dy − 2 cos y dy ∧ dy + x cos y dz ∧ dy
+ 21 dx ∧ dz + 14 dy ∧ dz − 7x dz ∧ dz

= 2x2 dy ∧ dx − x3 dz ∧ dx − 3 cos y dx ∧ dy + x cos y dz ∧ dy
+ 21 dx ∧ dz + 14 dy ∧ dz using (4),

= −(2x2 + 3 cos y) dx ∧ dy + (x3 + 21) dx ∧ dz
+ (14 − x cos y) dy ∧ dz using (3).

15. Again from Definition 1.3 of exterior product,

(y dx − x dy) ∧ (z dx ∧ dy + y dx ∧ dz + x dy ∧ dz)

= yz dx ∧ dx ∧ dy − xz dy ∧ dx ∧ dy + y2 dx ∧ dx ∧ dz − xy dy ∧ dx ∧ dz
+ xy dx ∧ dy ∧ dz − x2 dy ∧ dy ∧ dz

= 2xy dx ∧ dy ∧ dz using (3) and (4).

16. Again from Definition 1.3 of exterior product,

(2 dx1 ∧ dx2 − x3 dx2 ∧ dx4) ∧ (2x4 dx1 ∧ dx3 + (x3 − x2) dx3 ∧ dx4)

= 4x4 dx1 ∧ dx2 ∧ dx1 ∧ dx3 − 2x3x4 dx2 ∧ dx4 ∧ dx1 ∧ dx3

+ 2(x3 − x2) dx1 ∧ dx2 ∧ dx3 ∧ dx4 − x3(x3 − x2) dx2 ∧ dx4 ∧ dx3 ∧ dx4

= −2x3x4 dx2 ∧ dx4 ∧ dx1 ∧ dx3 + 2(x3 − x2) dx1 ∧ dx2 ∧ dx3 ∧ dx4 using (4),

= 2(x3x4 + x3 − x2) dx1 ∧ dx2 ∧ dx3 ∧ dx4 using (3).

17. Again from Definition 1.3 of exterior product,

(x1 dx1 + 2x2 dx2 + 3x3 dx3) ∧ ((x1 + x2) dx1 ∧ dx2 ∧ dx3 + (x3 − x4) dx1 ∧ dx2 ∧ dx4)

= x1(x1 + x2) dx1 ∧ dx1 ∧ dx2 ∧ dx3 + 2x2(x1 + x2) dx2 ∧ dx1 ∧ dx2 ∧ dx3

+ 3x2(x1 + x2) dx3 ∧ dx1 ∧ dx2 ∧ dx3 + x1(x3 − x4) dx1 ∧ dx1 ∧ dx2 ∧ dx4

= 2x2(x3 − x4) dx2 ∧ dx1 ∧ dx2 ∧ dx4 + 3x3(x3 − x4) dx3 ∧ dx1 ∧ dx2 ∧ dx4.

Using equation (4), this last expression is equal to

0 + 0 + 0 + 0 + 0 + 3x3(x3 − x4) dx3 ∧ dx1 ∧ dx2 ∧ dx4 = 3x3(x3 − x4) dx1 ∧ dx2 ∧ dx3 ∧ dx4,

using equation (3).
18. We can work everything out, or note that ω and η in this problem are η and ω (respectively) in Exercise 17. Thus anticommu-

tativity (property 2 of Proposition 1.4) may thus be applied to give

ω ∧ η = (−1)3·13x3(x3 − x4) dx1 ∧ dx2 ∧ dx3 ∧ dx4 = −3x3(x3 − x4) dx1 ∧ dx2 ∧ dx3 ∧ dx4.

19. Again from Definition 1.3 of exterior product,

(x1 dx2 ∧ dx3 − x2x3 dx1 ∧ dx5) ∧ (ex4x5 dx1 ∧ dx4 ∧ dx5 − x1 cos x5 dx2 ∧ dx3 ∧ dx4)

= x1e
x4x5 dx2 ∧ dx3 ∧ dx1 ∧ dx4 ∧ dx5 − x2x3e

x4x5 dx1 ∧ dx5 ∧ dx1 ∧ dx4 ∧ dx5

− x2
1 cos x5 dx2 ∧ dx3 ∧ dx2 ∧ dx3 ∧ dx4 + x1x2x3 cos x5 dx1 ∧ dx5 ∧ dx2 ∧ dx3 ∧ dx4

= x1e
x4x5 dx2 ∧ dx3 ∧ dx1 ∧ dx4 ∧ dx5 + x1x2x3 cos x5 dx1 ∧ dx5 ∧ dx2 ∧ dx3 ∧ dx4 using (4),

= (x1e
x4x5 − x1x2x3 cos x5)dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ dx5 using (3).
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20. Using Definition 1.1,

dxi1 ∧ dxi2 ∧ · · · ∧ dxij
∧ · · · ∧ dxil

∧ · · · ∧ dxik
(a1, a2, . . . , ak)

= det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dxi1(a1) dxi1(a2) . . . dxi1(ak)
...

...
...

dxij
(a1) dxij

(a2) . . . dxij
(ak)

...
...

...
dxil

(a1) dxil
(a2) . . . dxil

(ak)
...

...
...

dxik
(a1) dxik

(a2) . . . dxik
(ak)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dxi1(a1) dxi1(a2) . . . dxi1(ak)
...

...
...

dxil
(a1) dxil

(a2) . . . dxil
(ak)

...
...

...
dxij

(a1) dxij
(a2) . . . dxij

(ak)
...

...
...

dxik
(a1) dxik

(a2) . . . dxik
(ak)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(since switching rows l and j changes the sign of the determinant)

= −dxi1 ∧ dxi2 ∧ · · · ∧ dxil
∧ · · · ∧ dxij

∧ · · · ∧ dxik
(a1, a2, . . . , ak).

21. This is easier to show in person, but the point is that if you switch the two identical forms then, on the one hand, nothing has
changed and, on the other hand, formula (3) says that you now have the negative of what you started with. So

dxi1 ∧ dxi2 ∧ · · · ∧ dxij
∧ · · · ∧ dxij

∧ · · · ∧ dxik
= −dxi1 ∧ dxi2 ∧ · · · ∧ dxij

∧ · · · ∧ dxij
∧ · · · ∧ dxik

and therefore
dxi1 ∧ dxi2 ∧ · · · ∧ dxij

∧ · · · ∧ dxij
∧ · · · ∧ dxik

= 0.

22. A k-form ω on Rn may be written as ω =
∑

Fi1...ik
dxi1 ∧ · · · ∧ dxik

. For each summand, each of the k dxij
’s is one of

dx1, dx2, . . . dxn. If k > n, then, by the pigeon hole principle, there must be at least one repeated term dxl in dxi1∧· · ·∧ dxik

(i.e., it will look like dxi1 ∧ · · · ∧ dxl ∧ · · · ∧ dxl ∧ · · · ∧ dxik
). And so, by formula (4), we have that dxi1 ∧ · · · ∧ dxik

= 0.
Hence every term of ω is zero.

23. Let ω1 =
∑

Fi1...ik
dxi1 ∧ · · · ∧ dxik

, ω2 =
∑

Gi1...ik
dxi1 ∧ · · · ∧ dxik

, and η =
∑

Hj1...jl
dxj1 ∧ · · · ∧ dxjl

. Then

(ω1 + ω2) ∧ η =

⎡
⎣ ∑

i1,...,ik

(Fi1...ik
+ Gi1...ik

) dxi1 ∧ · · · ∧ dxik

⎤
⎦ ∧

∑
j1,...,jl

Hj1...jl
dxj1 ∧ · · · ∧ dxjl

=
∑

i1,...,ik
j1,...,jl

(Fi1...ik
+ Gi1...ik

)Hj1...jl
dxi1 ∧ · · · ∧ dxik

∧ dxj1 ∧ · · · ∧ dxjl

=
∑

i1,...,ik
j1,...,jl

Fi1...ik
Hj1...jl

dxi1 ∧ · · · ∧ dxik
∧ dxj1 ∧ · · · ∧ dxjl

+
∑

i1,...,ik
j1,...,jl

Gi1...ik
Hj1...jl

dxi1 ∧ · · · ∧ dxik
∧ dxj1 ∧ · · · ∧ dxjl

= ω1 ∧ η + ω2 ∧ η.
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24. Let ω =
∑

Fi1...ik
dxi1 ∧ · · · ∧ dxik

, and η =
∑

Gj1...jl
dxj1 ∧ · · · ∧ dxjl

. Then

ω ∧ η =
∑

i1,...,ik
j1,...,jl

Fi1...ik
Gj1...jl

dxi1 ∧ · · · ∧ dxik
∧ dxj1 ∧ · · · ∧ dxjl

.

Now move dxj1 to the front by switching, in reverse order, with each of the dxip ’s. There are k switches so, by formula (3),
there are k sign changes and this last equation becomes

ω ∧ η =
∑

i1,...,ik
j1,...,jl

Fi1...ik
Gj1...jl

(−1)k dxj1 ∧ dxi1 ∧ · · · ∧ dxik
∧ dxj2 ∧ · · · ∧ dxjl

.

Similarly, we use k more interchanges to move dxj2 into the second position. We repeat this for each of the l dxjq ’s. and our
equation becomes

ω ∧ η =
∑

i1,...,ik
j1,...,jl

Fi1...ik
Gj1...jl

(−1)k(−1)k · · · (−1)k︸ ︷︷ ︸
l times

dxj1 ∧ · · · ∧ dxjl
∧ dxi1 ∧ · · · ∧ dxik

= (−1)klη ∧ ω.

25. Let ω =
∑

Fi1...ik
dxi1 ∧ · · · ∧ dxik

, η =
∑

Gj1...jl
dxj1 ∧ · · · ∧ dxjl

, and τ =
∑

Hu1...um dxu1
∧ · · · ∧ dxum . Then

(ω ∧ η) ∧ τ =

⎡
⎢⎣ ∑

i1,...,ik
j1,...,jl

Fi1...ik
Gj1...jl

dxi1 ∧ · · · ∧ dxik
∧ dxj1 ∧ · · · ∧ dxjl

⎤
⎥⎦

∧
∑

u1,...,um

Hu1...um dxu1
∧ · · · ∧ dxum

=
∑

i1,...,ik
j1,...,jl

u1,...,um

Fi1...ik
Gj1...jl

Hu1...um dxi1 ∧ · · · ∧ dxik
∧ dxj1 ∧ · · · ∧ dxjl

∧ dxu1
∧ · · · ∧ dxum .

Similarly, calculate ω ∧ (η ∧ τ) and you will obtain the same result.
26. Here ω =

∑
Fi1...ik

dxi1 ∧ · · · ∧ dxik
, and η =

∑
Gj1...jl

dxj1 ∧ · · · ∧ dxjl
and f is a function (or 0-form). First we

note that

(fω) ∧ η =

⎛
⎝ ∑

i1,...,ik

fFi1...ik
dxi1 ∧ · · · ∧ dxik

⎞
⎠ ∧

⎛
⎝ ∑

j1,...,jl

Gj1...jl
dxj1 ∧ · · · ∧ dxjl

⎞
⎠

=
∑

i1,...,ik
j1,...,jl

fFi1...ik
Gj1...jl

dxi1 ∧ · · · ∧ dxik
∧ dxj1 ∧ · · · ∧ dxjl

= f
∑

i1,...,ik
j1,...,jl

Fi1...ik
Gj1...jl

dxi1 ∧ · · · ∧ dxik
∧ dxj1 ∧ · · · ∧ dxjl

= f(ω ∧ η).

We will use this result to establish the second equality,

f(ω ∧ η) = (−1)klf(η ∧ ω) by property 2 of Proposition 1.4,

= (−1)kl(fη) ∧ ω by the result established above,

= (−1)kl(−1)klω ∧ (fη) by property 2 of Proposition 1.4,

= ω ∧ (fη).

Therefore, (fω) ∧ η = f(ω ∧ η) = ω ∧ (fη).
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8.2 Manifolds and Integrals of k-Forms

1. Here the map is X(θ1, θ2, θ3) = (3 cos θ1, 3 sin θ1, 3 cos θ1 + 2 cos θ2, 3 sin θ1 + 2 sin θ2, 3 cos θ1 + 2 cos θ2 + cos θ3,
3 sin θ1 + 2 sin θ2 + sin θ3).
Follow the lead of Example 2 from the text. Each component function is at least C1 so the mapping is at least C1. To see one-
one, consider the equation X(θ1, θ2, θ3) = X(θ̂1, θ̂2, θ̂3). The first two component equations would then have cos θ1 = cos θ̂1

and sin θ1 = sin θ̂1. Since 0 ≤ θ1, θ̂1 < 2π we see that θ1 = θ̂1. Using this information in the next two component functions,
we make the same conclusion for θ2 and θ̂2. Finally, use all of this information in the last set of equations to see that θ3 = θ̂3.
So X is one-one and C1. What is left to show is that the tangent vectors Tθ1

, Tθ2
, and Tθ3

are linearly independent.

Tθ1
= (−3 sin θ1, 3 cos θ1,−3 sin θ1, 3 cos θ1,−3 sin θ1, 3 cos θ1)

Tθ2
= (0, 0,−2 sin θ2, 2 cos θ2,−2 sin θ2, 3 cos θ2)

Tθ3
= (0, 0, 0, 0, sin θ3, cos θ3)

Because of the leading pair of zeros in Tθ2
and Tθ3

we can see that if c1Tθ1
+ c2Tθ2

+ c3Tθ3
= 0, then c1 = 0. Looking at

the second pair of zeros in Tθ3
we can then see that c2 = 0. This would then force c3 = 0. So Tθ1

, Tθ2
, and Tθ3

are linearly
independent. We have shown that the parametrized 3-manifold is a smooth parametrized 3-manifold.

2. As in Example 3, let’s begin by describing the location of the point (x1, y1). It is anywhere in the annular region described by
(l1 cos θ1, l1 sin θ1) where 1 ≤ l1 ≤ 3 and 0 ≤ θ1 < 2π. You can now describe (x2, y2) as being this same annular region
centered at (x1, y1). Together this means that the locus of (x2, y2) is the interior of a disk of radius 6. Using variables l2 and
θ2 such that 1 ≤ l2 ≤ 3 and 0 ≤ θ2 < 2π, the mapping is

X(l1, θ1, l2, θ2) = (l1 cos θ1, l1 sin θ1, l1 cos θ1 + l2 cos θ2, l1 sin θ1 + l2 sin θ2).

As before, the component functions are at least C1 so the mapping is at least C1. As for one-one, consider X(l1, θ1, l2, θ2) =
X(l̂1, θ̂1, l̂2, θ̂2). From the first component functions we see that (x1, y1) lies on a circle of radius l1 and (x̂1, ŷ1) lies on a
circle of radius l̂1 so l1 = l̂1. Then, as in Exercise 1, cos θ1 = cos θ̂1 and sin θ1 = sin θ̂1. As 0 ≤ θ1, θ̂1 < 2π, we see that
θ1 = θ̂1. Now the rest of the argument follows in exactly the same way since (x2, y2) is related to (x1, y1) in the same way
that (x1, y1) is related to the origin. We now need to show that the four tangent vectors are linearly independent.

Tl1 = (cos θ1, sin θ1, cos θ1, sin θ1)

Tθ1
= (−l1 sin θ1, l1 cos θ1,−l1 sin θ1, l1 cos θ1)

Tl2 = (0, 0, cos θ2, sin θ2)

Tθ2
= (0, 0,−l2 sin θ2, l2 cos θ2)

Look at the equation c1Tl1 + c2Tθ1
+ c3Tl2 + c4Tθ2

= 0. Because of the leading pair of zeros in Tl2 and Tθ2
we can see that

c1 cos θ1 = c2l1 sin θ1 and c1 sin θ1 = −c2l1 cos θ1. Solve for c1 in the first equation and substitute into the second equation
to get c2l1 sin2 θ1 = −c2l1 cos2 θ1. Because l1 cannot be zero, this implies that c2 = 0. This then implies that c1 = 0. Given
that, we can make the same argument to show c3 = c4 = 0. Therefore the four tangent vectors are linearly independent and
we have described the states of the robot arm as a smooth parametrized 4-manifold in R4.

3. This is a combination of Example 3 and Exercise 2. Let’s begin by describing the location of the point (x1, y1). It is
anywhere on a circle of radius 3 centered at the origin. So (x1, y1) = (3 cos θ1, 3 sin θ1) where 0 ≤ θ1 < 2π. We can
then describe (x2, y2) as being this same annular region centered at (x1, y1). Together this means that the locus of (x2, y2) is
(3 cos θ1 + l2 cos θ2, 3 sin θ1 + l2 sin θ2) where 1 ≤ l2 ≤ 2 and 0 ≤ θ2 < 2π. Similarly we describe (x3, y3) in terms of
(x2, y2) using variables l3 and θ3 such that 1 ≤ l3 ≤ 2 and 0 ≤ θ2 < 2π. The mapping is

X(θ1, l2, θ2, l3, θ3) = (3 cos θ1, 3 sin θ1, 3 cos θ1 + l2 cos θ2, 3 sin θ1 + l2 sin θ2,

3 cos θ1 + l2 cos θ2 + l3 cos θ3, 3 sin θ1 + l2 sin θ2 + l3 sin θ3).

As before, the component functions are at least C1 so the mapping is at least C1. As for one-one, consider X(θ1, l2, θ2, l3, θ3) =
X(θ̂1, l̂2, θ̂2, l̂3, θ̂3). From the first two component functions we see that cos θ1 = cos θ̂1 and sin θ1 = sin θ̂1 and 0 ≤ θ1, θ̂1 <
2π so θ1 = θ̂1. Now, (x2, y2) lies on a circle of radius l2 and (x̂2, ŷ2) lies on a circle of radius l̂2 with each circle centered at
the same point (x1, y1) = (x̂1, ŷ1). So l2 = l̂2. Then, as above, cos θ2 = cos θ̂2 and sin θ2 = sin θ̂2. As 0 ≤ θ2, θ̂2 < 2π,
we see that θ2 = θ̂2. Now the rest of the argument follows in exactly the same way since (x3, y3) is related to (x2, y2) in the
same way that (x2, y2) is related to (x1, y1).
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We now need to show that the five tangent vectors are linearly independent.

Tθ1
= (−3 sin θ1, 3 cos θ1,−3 sin θ1, 3 cos θ1,−3 sin θ1, 3 cos θ1)

Tl2 = (0, 0, cos θ2, sin θ2, cos θ2, sin θ2)

Tθ2
= (0, 0,−l2 sin θ2, l2 cos θ2,−l2 sin θ2, l2 cos θ2)

Tl3 = (0, 0, 0, 0, cos θ3, sin θ3)

Tθ3
= (0, 0, 0, 0,−l3 sin θ3, l3 cos θ3)

Look at the equation c1Tθ1
+ c2Tl2 + c3Tθ2

+ c4Tl3 + c5Tθ3
= 0. Because of the leading pair of zeros in all but the vector

Tθ1
we conclude that c1 = 0. The remainder of the argument is exactly as in Exercise 2. Because the first four components of

Tl3 and Tθ3
are zero, we can see that c2 cos θ2 = c3l2 sin θ2 and c2 sin θ2 = −c3l2 cos θ2. Solve for c2 in the first equation

and substitute into the second equation to get c3l2 sin2 θ2 = −c3l2 cos2 θ2. Because l2 cannot be zero, c3 = 0. This then
implies that c2 = 0. Given that, we can make the same argument to show c4 = c5 = 0. Therefore the five tangent vectors are
linearly independent and we have described the states of the robot arm as a smooth parametrized 5-manifold in R6.

4. We can use spherical coordinates to describe the parametrized space. The point (x1, y1, z1) can be written as (2 sin ϕ1 cos θ1,
2 sin ϕ1 sin θ1, 2 cos ϕ1) where 0 ≤ ϕ1 ≤ π and 0 ≤ θ1 < 2π. We can then write (x2, y2, z2) as (x1 + sin ϕ2 cos θ2, y1 +
sin ϕ2 sin θ2, z1 + cos ϕ2) where 0 ≤ ϕ2 ≤ π and 0 ≤ θ2 < 2π. In other words, our mapping is

X(θ1, ϕ1, θ2, ϕ2) = (2 sin ϕ1 cos θ1, 2 sin ϕ1 sin θ1, 2 cos ϕ1,

2 sin ϕ1 cos θ1 + sin ϕ2 cos θ2, 2 sin ϕ1 sin θ1 + sin ϕ2 sin θ2, 2 cos ϕ1 + cos ϕ2).

As in the previous exercises, the fact that the component functions are at least C1 tells us that the mapping is at least
C1. Checking one-one is a little more interesting than in the above exercises. Consider the implications of the equa-
tion X(θ1, ϕ1, θ2, ϕ2) = X(θ̂1, ϕ̂1, θ̂2, ϕ̂2). By the third component functions we see that cos ϕ1 = cos ϕ̂1. Because
0 ≤ ϕ1, ϕ̂1 ≤ π we see that ϕ1 = ϕ̂1. Substituting this into the sixth component function implies that ϕ2 = ϕ̂2. Now
comparing the equations from the first two component functions we see that if ϕ1 = 0 or π then θ1 need not be the same as θ̂1.
This is allowed—recall that the mapping might not be one-one on the boundary of the domain. Other than on the boundary,
cos θ1 = cos θ̂1 and sin θ1 = sin θ̂1 and so, as before θ1 = θ̂1. Again, substitute this into the equations that arise from the
fourth and fifth component functions to conclude that, except when ϕ2 is 0 or π, we must have θ2 = θ̂2.

We now need to show that the four tangent vectors are linearly independent.

Tθ1
= (−2 sin ϕ1 sin θ1, 2 sin ϕ1 cos θ1, 0,−2 sin ϕ1 sin θ1, 2 sin ϕ1 cos θ1, 0)

Tϕ1
= (2 cos ϕ1 cos θ1, 2 cos ϕ1 sin θ1,−2 sin ϕ1, 2 cos ϕ1 cos θ1, 2 cos ϕ1 sin θ1,−2 sin ϕ1)

Tθ2
= (0, 0, 0,− sin ϕ2 sin θ2, sin ϕ2 cos θ2, 0)

Tϕ2
= (0, 0, 0, cos ϕ2 cos θ2, cos ϕ2 sin θ2,− sin ϕ2)

Look at the equation c1Tθ1
+c2Tϕ1

+c3Tθ2
+c4Tϕ2

= 0. There is a zero in the third component of all of the tangent vectors
except for Tϕ1

. This tells us that c2 = 0. If that is the case, then there is a zero in the sixth component of all of the remaining
tangent vectors except for Tϕ2

so c4 = 0. But then the leading trio of zeros in Tθ2
implies that c1 = 0 which in turn would

mean that c3 = 0. Therefore the four tangent vectors are linearly independent and we have described the states of the robot
arm as a smooth parametrized 4-manifold in R6.

5. This is just an exercise in linear algebra. If x ∈ Rn is orthogonal to vi for i = 1, . . . , k, then x · vi = 0 for i = 1, . . . , k. An
arbitrary vector v in Span{v1, . . . , vk} is of the form v = c1v1 + · · · + ckvk for scalars c1, . . . , ck ∈ R. The calculation is
straightforward:

x · v = x · (c1v1 + · · · + ckvk) = c1(x · v1) + · · · + ck(x · vk) = c1(0) + · · · + ck(0) = 0.

In other words, x is orthogonal to v.

6. By Definition 2.1,
∫

x
ω =

∫ π

0

ωx(t)(x′(t)) dt. We have, x′(t) = (−a sin t, b cos t, c) and also ω = b dx − a dy + xy dz so
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that ∫
x
ω =

∫ π

0

[b(−a sin t) − a(b cos t) + (ab cos t sin t)c] dt

= ab

∫ π

0

[− sin t − cos t + c sin t cos t] dt

= ab
(
cos t − sin t +

c

2
sin2 t

) ∣∣∣∣π
0

= −2ab.

7. Parametrize the unit circle C by x(t) = (cos t, sin t), 0 ≤ t ≤ 2π. Then∫
C

ω =

∫ 2π

0

ωx(t)(− sin t, cos t) dt =

∫ 2π

0

(sin t dx − cos t dy)(− sin t, cos t) dt

=

∫ 2π

0

(− sin2 t − cos2 t) dt =

∫ 2π

0

−1 dt = −2π.

8. Parametrize the segment as x(t) = (t, t, . . . , t), 0 ≤ t ≤ 3. Then x′(t) = (1, 1, . . . , 1) and so

ωx(t)(x′(t)) = (t dx1 + t2 dx2 + · · · + tn dxn)(1, 1, . . . , 1) = t + t2 + · · · + tn.

Hence, ∫
C

ω =

∫ 3

0

(t + t2 + · · · + tn) dt =

(
1

2
t2 +

1

3
t3 + · · · + 1

n + 1
tn+1

) ∣∣∣∣3
0

=

n+1∑
k=2

3k

k
=

n∑
k=1

3k+1

k + 1
.

9. By Definition 2.3,
∫

S

ω =

∫∫
D

ωX(s,t)(Ts, Tt) ds dt. For X(s, t) = (s cos t, s sin t, t), we have Ts = (cos t,

sin t, 0), and Tt = (−s sin t, s cos t, 1). Then

ωX(s,t)(Ts, Tt) = (t dx ∧ dy + 3 dz ∧ dx − s cos t dy ∧ dz)(Ts, Tt)

= t

∣∣∣∣∣ cos t −s sin t

sin t s cos t

∣∣∣∣∣ + 3

∣∣∣∣∣ 0 1

cos t −s sin t

∣∣∣∣∣ − s cos t

∣∣∣∣∣ sin t s cos t

0 1

∣∣∣∣∣
= st − 3 cos t − s

2
sin 2t.

Thus ∫
S

ω =

∫ 4π

0

∫ 1

0

(
st − 3 cos t − s

2
sin 2t

)
ds dt =

∫ 4π

0

(
1

2
t − 3 cos t − 1

4
sin 2t

)
dt

=

(
1

4
t2 − 3 sin t +

1

8
cos 2t

) ∣∣∣∣4π

0

= 4π2.

10. (a) First calculate the two tangent vectors for this parametrization of the helicoid. We have Tu1
= (cos 3u2,

sin 3u2, 0) and Tu2
= (−3u1 sin 3u2, 3u1 cos 3u2, 5). Then

ΩX(u1,u2)(Tu1
, Tu2

) = det

⎡
⎢⎣

−5 sin 3u2 cos 3u2 −3u1 sin 3u2

5 cos 3u2 sin 3u2 3u1 cos 3u2

−3u1 0 5

⎤
⎥⎦ = −9u2

1 − 25 < 0

for all (u1, u2). Therefore this particular parametrization is incompatible with Ω.
(b) There is more than one solution. One possible way to do this is to switch the ordering of the variables so that the

resulting determinant is positive. Try the parametrization Y(u1, u2) = X(u2, u1) = (u2 cos 3u1, u2 sin 3u1, 5u1) for
0 ≤ u1 ≤ 2π and 0 ≤ u2 ≤ 5. Then the tangent vectors are Tu1

= (−3u2 sin 3u1, 3u2 cos 3u1, 5) and Tu2
=

(cos 3u1, sin 3u1, 0). Then

ΩY(u1,u2)(Tu1
, Tu2

) = det

⎡
⎢⎣

−5 sin 3u1 −3u2 sin 3u1 cos 3u1

5 cos 3u1 3u2 cos 3u1 sin 3u1

−3u2 5 0

⎤
⎥⎦ = 9u2

1 + 25 > 0

for all (u1, u2). Therefore this particular parametrization is now compatible with Ω.
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(c) Since the goal is to change the sign of the resulting determinant, we can change Ω to Φ where

ΦX(u1,u2)(a, b) = − det

⎡
⎢⎣

−5 sin 3u2 a1 b1

5 cos 3u2 a2 b2

−3u1 a3 b3

⎤
⎥⎦ .

(d) The discussion following Theorem 2.11 tells us what to do if the parametrization is compatible. Since the parametrization
X is incompatible with Ω we make the following simple adjustment:

∫
S

ω = − ∫
X ω. We pause to calculate

ωX(u1,u2)(Tu1
, Tu2

) = 5u2

∣∣∣∣∣ cos 3u2 −3u1 sin 3u2

sin 3u2 3u1 cos 3u2

∣∣∣∣∣
− (u2

1 cos2 3u2 + u2
1 sin2 3u2)

∣∣∣∣∣ sin 3u2 3u1 cos 3u2

0 5

∣∣∣∣∣
= 15u1u2 − 5u2

1 sin 3u2.

Hence, ∫
S

ω = −
∫ 5

0

∫ 2π

0

(15u1u2 − 5u2
1 sin 3u2) du2 du1 = 5

∫ 5

0

∫ 2π

0

(u2
1 sin 3u2 − 3u1u2) du2 du1

= 5

∫ 5

0

[
u2

1

(− cos 3u2

3

)
− 3u1u

2
2

2

] ∣∣∣∣u2=2π

u2=0

du1 = 5

∫ 5

0

(−6π2u1) du1

= −30π2

∫ 5

0

u1 du1 = −15π2u2
1

∣∣5
0

= −375π2.

11. (a) For the parametrization given, we calculate the tangent vectors as Tu1
= (cos u2, sin u2, 0),

Tu2
= (−u1 sin u2, u1 cos u2, 0), and Tu3

= (0, 0, 1). Then

ΩX(u)(Tu1
, Tu2

, Tu3
) = det

⎡
⎢⎣

cos u2 −u1 sin u2 0

sin u2 u1 cos u2 0

0 0 1

⎤
⎥⎦ = u1.

As 0 ≤ u1 ≤ √
5, this is positive when u1 �= 0. Note that when u1 = 0 the parametrization is not one-one and also

that Tu2
= 0 so Tu1

, Tu2
, and Tu3

are not linearly independent. In other words, the parametrization is not smooth when
u1 = 0. It is, however, smooth when u1 �= 0. You can easily see that the mapping is one-one and at least C1. To see that
the tangent vectors are linearly independent, consider the equation c1Tu1

+ c2Tu2
+ c3Tu3

= 0. We see from the third
components that c3 = 0. Look at the remaining equations and we see that{

(cos u2)c1 − (u1 sin u2)c2 = 0

(sin u2)c1 + (u1 cos u2)c2 = 0.

Multiply the first equation by − sin u2 and the second by cos u2 and add to obtain u1c2 = 0. Because we are assuming
that u1 �= 0, this implies that c2 = 0 and therefore c1 = 0. This shows that the tangent vectors are linearly independent
and hence the parametrization is smooth when u1 �= 0. The conclusion is then that the parametrization given is compatible
with the orientation when it is smooth.

(b) We can read the boundary pieces right off of the original parametrization: they are paraboloids that intersect at z = −1 in
a circle in the plane z = −1 of radius

√
5 centered at (0, 0,−1). The boundary is

∂M = {(x, y, z)|z = x2 + y2 − 6, z ≤ −1} ∪ {(x, y, z)|z = 4 − x2 − y2, z ≥ −1}.
We can easily adapt the parametrization to each of these pieces. For the bottom, use

Y1 : [0,
√

5] × [0, 2π) → R3; Y1(s1, s2) = (s1 cos s2, s1 sin s2, s
2
1 − 6).

For the top, use
Y2 : [0,

√
5] × [0, 2π) → R3; Y2(s1, s2) = (s1 cos s2, s1 sin s2, 4 − s2

1).
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(c) On the bottom part of ∂M the outward-pointing unit vector

V1 =
(2x, 2y,−1)√
4x2 + 4y2 + 1

. In terms of Y1, this is V1 =
(2s1 cos s2, 2s1 sin s2,−1)√

4s2
1 + 1

.

On the top part of ∂M the outward-pointing unit vector

V2 =
(2x, 2y, 1)√

4x2 + 4y2 + 1
. In terms of Y2, this is V2 =

(2s1 cos s2, 2s1 sin s2, 1)√
4s2

1 + 1
.

12. The paraboloid can be parametrized as X(s, t) = (s, t, s2 + t2) where 0 ≤ s2 + t2 ≤ 4. Therefore, Ts = (1, 0, 2s) and Tt =
(0, 1, 2t). Note that this parametrization is compatible with the orientation Ω derived from the normal N = (−2x,−2y, 1) as

ΩX(s,t)(Ts, Tt) = det[N Ts Tt] = det

⎡
⎢⎣

−2s 1 0

−2t 0 1

1 2s 2t

⎤
⎥⎦ = 2s2 + 2t2 + 1 > 0.

Therefore, we may compute ∫S ω as ∫X ω. So we begin by calculating

ωX(s,t)(Ts, Tt) = (es2+t2 dx ∧ dy + t dz ∧ dx + s dy ∧ dz)(Ts, Tt)

= es2+t2

∣∣∣∣∣ 1 0

0 1

∣∣∣∣∣ + t

∣∣∣∣∣ 2s 2t

1 0

∣∣∣∣∣ + s

∣∣∣∣∣ 0 1

2s 2t

∣∣∣∣∣
= es2+t2 − 2t2 − 2s2.

Use this in the calculation:∫
S

ω =

∫∫
0≤s2+t2≤4

[es2+t2 − 2(s2 + t2)] ds dt

=

∫ 2π

0

∫ 2

0

(er2 − 2r2)r dr dθ using polar coordinates,

=

∫ 2π

0

(
1

2
er2 − 1

2
r4

) ∣∣∣∣2
r=0

dθ

=

∫ 2π

0

(
1

2
e4 − 1

2
− 8

)
dθ = π(e4 − 17).

13. The cylinder can be parametrized as X(s, t) = (2 cos t, s, 2 sin t) where −1 ≤ s ≤ 3 and 0 ≤ t ≤ 2π. Therefore,
Ts = (0, 1, 0) and Tt = (−2 sin t, 0, 2 cos t). This parametrization turns out to be compatible with the orientation Ω derived
from the normal N = (x, 0, z) as

ΩX(s,t)(Ts,Tt) = det
[
N Ts Tt

]
=

∣∣∣∣∣∣
2 cos t 0 −2 sin t

0 1 0
2 sin t 0 2 cos t

∣∣∣∣∣∣ = 4 cos2 t + 4 sin2 t = 4 > 0.

Therefore, we may compute
∫

S
ω as

∫
X

ω. Hence we calculate

ωX(s,t)(Ts,Tt) =
(
2 sin t dx ∧ dy + es2

dz ∧ dx + 2 cos t dy ∧ dz
)

(Ts,Tt)

= 2 sin t

∣∣∣∣0 −2 sin t
1 0

∣∣∣∣ + es2

∣∣∣∣0 2 cos t
0 −2 sin t

∣∣∣∣ + 2 cos t

∣∣∣∣1 0
0 2 cos t

∣∣∣∣
= 4 sin2 t + 0 + 4 cos2 t = 4.

Thus ∫
S

ω =

∫∫
[−1,3]×[0,2π]

4 ds dt = 32π.
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14. We have, for the given parametrization, that

Ts =

(
cos t

2
√

s
, − sin t

2
√

4 − s
,

sin t

2
√

s
, − cos t

2
√

4 − s

)
and

Tt =
(−√

s sin t,
√

4 − s cos t,
√

s cos t,−√
4 − s sin t

)
.

Thus,

ωX(s,t)(Ts,Tt) =
(
((4 − s) sin2 t + (4 − s) cos2 t) dx1 ∧ dx3

− (2s cos2 t + 2s sin2 t) dx2 ∧ dx4

)
(Ts,Tt)

= (4 − s)

∣∣∣∣∣∣∣
cos t

2
√

s
−√

s sin t

sin t

2
√

s

√
s cos t

∣∣∣∣∣∣∣ − 2s

∣∣∣∣∣∣∣
− sin t

2
√

4 − s

√
4 − s cos t

− cos t

2
√

4 − s
−√

4 − s sin t

∣∣∣∣∣∣∣
= (4 − s)

(
1
2

cos2 t + 1
2

sin2 t
) − 2s

(
1
2

sin2 t + 1
2

cos2 t
)

= 2 − 3
2
s.

Hence, ∫
X

ω =

∫ 2π

0

∫ 3

1

(
2 − 3

2
s
)

ds dt =

∫ 2π

0

(
2s − 3

4
s2) ∣∣∣s=3

s=1
dt =

∫ 2π

0

(−2) dt = −4π.

15. We have, for the given parametrization, that Tu1
= (1, 0, 0, 4(2u1 − u3)), Tu2

= (0, 1, 0, 0), and Tu3
= (0, 0, 1, 2(u3 −

2u1)). Thus,

ωX(u1,u2,u3)(Tu1
, Tu2

, Tu3
) = (u2 dx2 ∧ dx3 ∧ dx4 + 2u1u3 dx1 ∧ dx2 ∧ dx3)(Tu1

, Tu2
, Tu3

)

= u2

∣∣∣∣∣∣∣
0 1 0

0 0 1

4(2u1 − u3) 0 2(u3 − 2u1)

∣∣∣∣∣∣∣ + 2u1u3

∣∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣
= u2(8u1 − 4u3) + 2u1u3 = 8u1u2 − 4u2u3 + 2u1u3.

Hence, ∫
X

ω =

∫ 1

0

∫ 1

0

∫ 1

0

(8u1u2 − 4u2u3 + 2u1u3) du1 du2 du3

=

∫ 1

0

∫ 1

0

(4u2 − 4u2u3 + u3) du2 du3

=

∫ 1

0

(2 − 2u3 + u3) du3 = 2 − 1

2
=

3

2
.

8.3 The Generalized Stokes’s Theorem

1. Using Definition 3.1,

d(exyz) =
∂

∂x
(exyz) dx +

∂

∂y
(exyz) dy +

∂

∂z
(exyz) dz + exyz(yz dx + xz dy + xy dz).

2. Using Definition 3.1,

d(x3y − 2xz2 + xy2z) = (3x2y − 2z2 + y2z) dx + (x3 + 2xyz) dy + (xy2 − 4xz) dz.

3. Again, using Definition 3.1,

d((x2 + y2) dx + xy dy) = d(x2 + y2) ∧ dx + d(xy) ∧ dy
= (2x dx + 2y dy) ∧ dx + (y dx + x dy) ∧ dy
= 2y dy ∧ dx + y dx ∧ dy using (4) from Section 8.1,

= −y dx ∧ dy using (3) from Section 8.1.
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4. Again, using Definition 3.1,

d(x1 dx2 − x2 dx1 + x3x4 dx4 − x4x5 dx5)

= dx1 ∧ dx2 − dx2 ∧ dx1 + (x4 dx3 + x3 dx4) ∧ dx4 − (x5 dx4 + x4 dx5) ∧ dx5

= dx1 ∧ dx2 − dx2 ∧ dx1 + x4 dx3 ∧ dx4 − x5 dx4 ∧ dx5 using (4) from Section 8.1,

= 2 dx1 ∧ dx2 + x4 dx3 ∧ dx4 − x5 dx4 ∧ dx5 using (3) from Section 8.1.

5. Again, using Definition 3.1,

d(xz dx ∧ dy − y2z dx ∧ dz) = (z dx + x dz) ∧ dx ∧ dy − (2yz dy + y2 dz) ∧ dx ∧ dz
= x dz ∧ dx ∧ dy − 2yz dy ∧ dx ∧ dz using (4) from Section 8.1,

= (x + 2yz) dx ∧ dy ∧ dz using (3) from Section 8.1.

6. Again, using Definition 3.1,

d(x1x2x3 dx2 ∧ dx3 ∧ dx4 + x2x3x4 dx1 ∧ dx2 ∧ dx3)

= (x2x3 dx1 + x1x3 dx2 + x1x2 dx3) ∧ dx2 ∧ dx3 ∧ dx4

+ (x3x4 dx2 + x2x4 dx3 + x2x3 dx4) ∧ dx1 ∧ dx2 ∧ dx3

= x2x3 dx1 ∧ dx2 ∧ dx3 ∧ dx4 + x2x3 dx4 ∧ dx1 ∧ dx2 ∧ dx3 using (4) from Section 8.1,

= 0 using (3) from Section 8.1.

7. For this solution d̂xi means that the term dxi is omitted.

dω =
n∑

i=1

d(xi)
2 ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

=

n∑
i=1

2xi dxi ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

=
n∑

i=1

(−1)i−12xi dx1 ∧ · · · ∧ dxn using equation (3) of Section 8.1 repeatedly

= 2(x1 − x2 + x3 − · · · + (−1)n−1xn) dx1 ∧ · · · ∧ dxn.

8. Let u = (u1, u2, . . . , un); then

dfx0(u) = (fx1
(x0) dx1 + fx2

(x0) dx2 + · · · + fxn(x0) dxn)(u)

= fx1
(x0)u1 + fx2

(x0)u2 + · · · + fxn(x0)un

= (fx1
(x0), fx2

(x0), . . . , fxn(x0)) · u

= ∇f(x0) · u

= Duf(x0) by Theorem 6.2 of Chapter 2.

9. For ω = F (x, z) dy + G(x, y) dz, we have dω = (Fx dx + Fz dz) ∧ dy + (Gx dx + Gy dy) ∧ dz. Expanding, this gives
dω = Fx dx ∧ dy + Gx dx ∧ dz + (Gy − Fz) dy ∧ dz. But we are told that dω = z dx ∧ dy + y dx ∧ dz so

∂F

∂x
= z,

∂G

∂x
= y, and ∂G

∂y
− ∂F

∂z
= 0.

The first equation implies that F (x, z) = xz + f(z) for some differentiable function f of z alone. Similarly, the second
equation implies that G(x, y) = xy + g(y) for some differentiable function g of y alone. Using these results together with
the third equation we see that x + g′(y) = x + f ′(z) or g′(y) = f ′(z). This can only be true if their common value is a
constant C. So if g′(y) = f ′(z) = C, then f(z) = Cz + D1 and g(y) = Cy + D2 for arbitrary constants C, D1, and D2.
We conclude that F (x, z) = xz + Cz + D1 and G(x, y) = xy + Cy + D2.
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10. If ω = 2x dy∧ dz−z dx∧ dy, then dω = 2 dx∧ dy∧ dz−dz∧ dx∧ dy = dx∧ dy∧ dz. From Exercise 11 of Section 8.2,
M is parametrized as X: D → R3; X(u1, u2, u3) = (u1 cos u2, u1 sin u2, u3) where D = {(u1, u2, u3)|u2

1 − 6 ≤ u3 ≤
4 − u2

1, 0 ≤ u1 ≤ √
5, 0 ≤ u2 < 2π}. If we orient M by the 3-form Ω = dx ∧ dy ∧ dz, then

ΩX(u)(Tu1
, Tu2

, Tu3
) = det

⎡
⎢⎣

cos u2 −u1 sin u2 0

sin u2 u1 cos u2 0

0 0 1

⎤
⎥⎦ = u1 ≥ 0.

As before, this is strictly positive when the parametrization is smooth so the parametrization is compatible with the orientation.
Therefore, using this orientation,∫

M

dω =

∫
X
dω =

∫ 2π

0

∫ √
5

0

∫ 4−u2

1

u2

1
−6

u1 du3 du1 du2 = 2π

∫ √
5

0

u1(10 − 2u2
1) du1

= 4π

(
5

2
u2

1 − 1

4
u4

1

) ∣∣∣∣
√

5

0

= 4π

(
25

2
− 25

4

)
= 25π.

On the other hand, ∂M is parametrized on the bottom surface as

Y1 : [0,
√

5] × [0, 2π) → R3; Y1(s1, s2) = (s1 cos s2, s1 sin s2, s
2
1 − 6)

with tangent vector normal to ∂M

V1 =
(2s1 cos s2, 2s1 sin s2,−1)√

4s2
1 + 1

.

The boundary ∂M is parametrized on the top surface as

Y2 : [0,
√

5] × [0, 2π) → R3; Y2(s1, s2) = (s1 cos s2, s1 sin s2, 4 − s2
1)

with tangent vector normal to ∂M

V2 =
(2s1 cos s2, 2s1 sin s2, 1)√

4s2
1 + 1

.

Then we have that the induced orientation on ∂M is given by Ω∂M (a1, a2) = Ω(V, a1, a2). Therefore we see that on the
bottom part of ∂M

Ω∂M
Y1(s)(Ts1

, Ts2
) = ΩX(s1,s2,s2

1
−6)(V1, Ts1

, Ts2
)

= det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2s1 cos s2√
4s2

1 + 1
cos s2 −s1 sin s2

2s1 sin s2√
4s2

1 + 1
sin s2 s1 cos s2

−1√
4s2

1 + 1
2s1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= − 4s3
1 + s1√
4s2

1 + 1
≤ 0.

The parametrization Y1 is incompatible with the induced orientation on ∂M . Along the top part of ∂M

Ω∂M
Y2(s)(Ts1

, Ts2
) = ΩX(s1,s2,4−s2

1
)(V2, Ts1

, Ts2
)

= det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2s1 cos s2√
4s2

1 + 1
cos s2 −s1 sin s2

2s1 sin s2√
4s2

1 + 1
sin s2 s1 cos s2

1√
4s2

1 + 1
−2s1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
4s3

1 + s1√
4s2

1 + 1
≥ 0.
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This parametrization is compatible with the induced orientation on ∂M .
Therefore we set up our integral (changing signs in the first integrand because of the incompatibility of the parametrization)

to obtain the following.

∫
∂M

ω = −
∫

Y1

ω +

∫
Y2

ω

= −
∫ 2π

0

∫ √
5

0

{
2s1 cos s2

∣∣∣∣∣ sin s2 s1 cos s2

2s1 0

∣∣∣∣∣ − (s2
1 − 6)

∣∣∣∣∣ cos s2 −s1 sin s2

sin s2 s1 cos s2

∣∣∣∣∣
}
ds1 ds2

+

∫ 2π

0

∫ √
5

0

{
2s1 cos s2

∣∣∣∣∣ sin s2 s1 cos s2

−2s1 0

∣∣∣∣∣ − (4 − s2
1)

∣∣∣∣∣ cos s2 −s1 sin s2

sin s2 s1 cos s2

∣∣∣∣∣
}
ds1 ds2

=

∫ 2π

0

∫ √
5

0

[8s3
1 cos2 s2 + (2s2

1 − 10)s1] ds1 ds2

=

∫ 2π

0

[
s4
1 cos 2s2 +

3

2
s4
1 − 5s2

1

]∣∣∣∣s1=
√

5

s1=0

ds2

=

∫ 2π

0

[25 cos 2s2 + 25/2] ds2 = [(25/2) sin 2s2 + 25s2/2]
∣∣∣2π

0
= 25π.

11. One integral is easy. Since ω = xy dz ∧ dw and ∂M = {(x, y, z, w)|x = 0, 8 − 2y2 − 2z2 − 2w2 = 0}, we see that x = 0
along ∂M so

∫
∂M

ω =
∫

∂M
0 = 0.

Now dω = d(xy) ∧ dz ∧ dw = x dy ∧ dz ∧ dw + y dx ∧ dz ∧ dw. We can orient M any way we wish, so we won’t
worry about this—we’ll choose the orientation to be compatible with the parametrization.

X : D → R4, X(u1, u2, u3) = (8 − 2u2
1 − 2u2

2 − 2u2
3, u1, u2, u3)

where D = {(u1, u2, u3)|u2
1 + u2

2 + u2
3 ≤ 4} (i.e., the solid ball of radius 2). Then

∫
M

dω =

∫
X
dω =

∫∫∫
B

dωX(u)(Tu1
, Tu2

, Tu3
) du1 du2 du3

=

∫∫∫
B

⎧⎪⎨
⎪⎩(8 − 2u2

1 − 2u2
2 − 2u2

3)

∣∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣ + u1

∣∣∣∣∣∣∣
−4u1 −4u2 −4u3

0 1 0

0 0 1

∣∣∣∣∣∣∣
⎫⎪⎬
⎪⎭ du1 du2 du3

=

∫∫∫
B

(8 − 2(u2
1 + u2

2 + u2
3) − 4u2

1) du1 du2 du3.
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At this point it is helpful to switch to spherical coordinates. The previous quantity is then

=

∫ 2π

0

∫ π

0

∫ 2

0

(8 − 2ρ2 − 4ρ2 sin2 ϕ cos2 θ)ρ2 sin ϕ dρ dϕ dθ

= 8 · (volume of B) − 2

∫ 2π

0

∫ π

0

∫ 2

0

ρ4(sin ϕ + 2 sin3 ϕ cos2 θ) dρ dϕ dθ

= 8 ·
(

4

3
π23

)
− 2

∫ 2π

0

∫ π

0

32

5
(sin ϕ + 2 sin ϕ(1 − cos2 ϕ) cos2 θ) dϕ dθ

=
256π

3
− 64

5

∫ 2π

0

{(− cos ϕ)

∣∣∣∣π
0

+ 2 cos2 θ(− cos ϕ + (cos3 ϕ)/3)

∣∣∣∣π
ϕ=0

} dθ

=
256π

3
− 64

5

∫ 2π

0

{
2 + 2 cos2 θ ·

(
2 − 2

3

)}
dθ =

256π

3
− 128

5

∫ 2π

0

(
1 +

4

3
cos2 θ

)
dθ

=
256π

3
− 128

5

∫ 2π

0

(
5

3
+

2

3
cos 2θ

)
dθ (using the half angle formula)

=
256π

3
− 128

5

(
5

3
(2π) +

1

3
sin 2θ

∣∣∣∣2π

0

)
=

256π

3
− 256π

3
= 0.

12. (a) Using the generalized version of Stokes’s theorem (Theorem 3.2), we have

1

3

∫
∂M

x dy ∧ dz − y dx ∧ dz + z dx ∧ dy =
1

3

∫
M

d(x dy ∧ dz − y dx ∧ dz + z dx ∧ dy)

=
1

3

∫
M

dx ∧ dy ∧ dz − dy ∧ dx ∧ dz + dz ∧ dx ∧ dy

=
1

3

∫
M

3 dx ∧ dy ∧ dz using formula (3) of Section 8.1,

=

∫
M

dx ∧ dy ∧ dz =

∫∫∫
M

dx dy dz = volume of M.

(See Definition 2.6 and Example 6 of Section 8.2.)
(b) This generalizes the result demonstrated in part (a). Notice that the kth summand is (−1)k−1xk multiplied by the (n−1)-

form which is the wedge product of the dxi’s in order with dxk missing. In other words, the kth summand is

(−1)k−1xk dx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn

where d̂xk means that dxk is omitted. (Make the obvious adjustments to the expression if it is the first or last term that is
omitted.) Then

d(of the kth summand) = (−1)k−1 dxk ∧ dx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn.

Let ω denote the (n − 1)-form in the integrand. Then, using the generalized Stokes’s theorem,

1

n

∫
∂M

ω =
1

n

∫
M

dω

=
1

n

∫
M

(
n∑

k=1

(−1)k−1 dxk ∧ dx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn

)
.

Use formula (3) of Section 8.1 to “move” each dxk back into the slot from which it has been omitted and collect terms to
obtain

1

n

∫
∂M

ω =
1

n

∫
M

n dx1 ∧ · · · ∧ dxn =

∫
· · ·

∫
M

dx1 · · · dxn.

It is entirely reasonable to take this last n-dimensional integral to represent the n-dimensional volume of M .
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True/False Exercises for Chapter 8

1. True.
2. False. (There is a negative sign missing.)
3. True.
4. False.
5. True.
6. False. (A negative sign is missing.)
7. True.
8. False. (There should be no negative sign.)
9. True.

10. True.
11. False. (X(1, 1,−1) = X(1, 1, 1), so X is not one-one on D.)
12. True. (Both manifolds are the same helicoid.)
13. False. (The agreement is only up to sign.)
14. True.
15. False. (This is only true if n is even.)
16. False. (A negative sign is missing.)
17. True.
18. False. (dω = 0.)

19. True. (dω would be an (n + 1)-form, and there are no nonzero ones on Rn.)
20. True. (This is the generalized Stokes’s theorem, since ∂M = ∅.)

Miscellaneous Exercises for Chapter 8

1. (a) First, by definition of the exterior product and derivative

d(f ∧ g) =
n∑

i=1

∂

∂xi
(fg) dxi =

n∑
i=1

(
∂f

∂xi
g + f

∂g

∂xi

)
dxi by the product rule,

= g

n∑
i=1

∂f

∂xi
dxi + f

n∑
i=1

∂g

∂xi
dxi

= g ∧ df + f ∧ dg
= df ∧ g + (−1)0f ∧ dg.

(b) If k = 0, then write ω = f so that

d(ω ∧ η) = d(f ∧ η) = d
(∑

fGj1...jl
dxj1 ∧ · · · ∧ dxjl

)
=

∑
d(fGj1...jl

) ∧ dxj1 ∧ · · · ∧ dxjl

=
∑

(df ∧ Gj1...jl
+ f ∧ dGj1...jl

) ∧ dxj1 ∧ · · · ∧ dxjl
from (a),

= df ∧
∑

Gj1...jl
dxj1 ∧ · · · ∧ dxjl

+ f ∧
∑

dGj1...jl
dxj1 ∧ · · · ∧ dxjl

= df ∧ η + (−1)0f ∧ dη.
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(c) If l = 0, then write η = g so that

d(ω ∧ η) = d(ω ∧ g) = d
(∑

gFi1...ik
dxi1 ∧ · · · ∧ dxik

)
=

∑
d(gFi1...ik

) ∧ dxi1 ∧ · · · ∧ dxik

=
∑

(dg ∧ Fi1...ik
+ g ∧ dFi1...ik

) ∧ dxi1 ∧ · · · ∧ dxik

= dg ∧ ω + g ∧ dω
= (−1)kω ∧ dg + dω ∧ g

by part 2 of Proposition 1.4 (recall dg is a 1-form).
(d) In general,

d(ω ∧ η) = d

⎛
⎝ ∑

1≤i1<···<ik≤n

Fi1...ik
dxi1 ∧ · · · ∧ dxik

∧
∑

1≤j1<···<jl≤n

Gj1...jl
dxj1 ∧ · · · ∧ dxjl

⎞
⎠

= d

⎛
⎜⎜⎝ ∑

1≤i1<···<ik≤n

1≤j1<···<jl≤n

Fi1...ik
Gj1...jl

dxi1 ∧ · · · ∧ dxik
∧ dxj1 ∧ · · · ∧ dxjl

⎞
⎟⎟⎠

=
∑

d(Fi1...ik
Gj1...jl

) ∧ dxi1 ∧ · · · ∧ dxik
∧ dxj1 ∧ · · · ∧ dxjl

so by part (a),

=
∑

(dFi1...ik
∧ Gj1...jl

+ Fi1...ik
∧ dGj1...jl

) ∧ dxi1 ∧ · · · ∧ dxik
∧ dxj1 ∧ · · · ∧ dxjl

=
∑

dFi1...ik
∧ Gj1...jl

∧ dxi1 ∧ · · · ∧ dxik
∧ dxj1 ∧ · · · ∧ dxjl

+
∑

Fi1...ik
∧ dGj1...jl

∧ dxi1 ∧ · · · ∧ dxik
∧ dxj1 ∧ · · · ∧ dxjl

=
∑

dFi1...ik
∧ dxi1 ∧ · · · ∧ dxik

∧ Gj1...jl
∧ dxj1 ∧ · · · ∧ dxjl

+
∑

Fi1...ik
∧ (−1)k dxi1 ∧ · · · ∧ dxik

∧ dGj1...jl
∧ dxj1 ∧ · · · ∧ dxjl

since Gj1...jl
is a 0-form and dGj1...jl

is a 1-form,
= dω ∧ η + (−1)kω ∧ dη.

2. (a) Define X : [0, 1] × [0, 1] × [0, 1] × [0, 1] → R5, X(u1, u2, u3, u4, u5) = (u1, u2, u3, u4, u1u2u3u4). Then Tu1
=

(1, 0, 0, 0, u2u3u4), Tu2
= (0, 1, 0, 0, u1u3u4), Tu3

= (0, 0, 1, 0, u1u2u4), and Tu4
= (0, 0, 0, 1, u1u2u3). From this

we see that

ΩX(u)(Tu1
, Tu2

, Tu3
, Tu4

) = det

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ = 1.

(b) We can now calculate∫
M

dx1 ∧ dx2 ∧ dx3 ∧ dx4

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

det

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

u2u3u4 u1u3u4 u1u2u4 u1u2u3

⎤
⎥⎥⎥⎦ du1 du2 du3 du4

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

u1u2u3 du1 du2 du3 du4 =
1

8
.
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3. (a) The curve C may be parametrized as x(t) = (t, f(t)), a ≤ t ≤ b. Then x′(t) = (1, f ′(t)) and this is compatible with the
orientation of C. By Definition 2.1, we have∫

C

ω =

∫
x
ω =

∫ b

a

ωx(t)(x′(t)) dt.

For ω = y dx this is ∫ b

a

f(t) · 1 dt =

∫ b

a

f(t) dt = area under the graph.

(b) Parametrize S by
X : [a, b] × [c, d] → R3; X(u1, u2) = (u1, u2, f(u1, u2)).

The upward unit normal N is given by

N =
(−fx,−fy, 1)√

f2
x + f2

y + 1
.

The parametrization is compatible with the orientation since

Tu1
× Tu2

=

∣∣∣∣∣∣∣
i j k
1 0 fu1

0 1 fu2

∣∣∣∣∣∣∣ = (−fu1
,−fu2

, 1)

is parallel to N (when N is expressed in terms of the parametrization). Thus,∫
S

ω =

∫
X

ω =

∫ d

c

∫ b

a

ωX(u1,u2)(Tu1
, Tu2

) du1 du2.

For ω = z dx ∧ dy, this is∫ d

c

∫ b

a

f(u1, u2)

∣∣∣∣∣ 1 0

0 1

∣∣∣∣∣ du1 du2 =

∫ d

c

∫ b

a

f(u1, u2) du1 du2 = area under the graph.

(c) Parametrize M using

X : D → Rn, X(u1, . . . , un−1) = (u1, . . . , un−1, f(u1, . . . , un−1)).

Then, depending on how M is oriented,∫
M

ω = ±
∫

X
ω = ±

∫
· · ·

∫
D

ωX(u)(Tu1
, . . . , Tun−1

) du1 · · · dun−1

= ±
∫

· · ·
∫

D

f(u1, . . . , un−1)det

⎡
⎢⎣

1
. . .

1

⎤
⎥⎦ du1 · · · dun−1

= ±
∫

· · ·
∫

D

f(u1, . . . , un−1) du1 · · · dun−1 = ±(n-dimensional volume under the graph).

If you orient M with the unit normal

N = (−1)n (fx1
, . . . , fxn−1

,−1)√
(fx1

)2 + · · · + (fxn−1
)2 + 1

we can guarantee a + sign above.
4. (a) Define a parametrization

X : [0, 3] × [0, 2π) → R3; X(u1, u2) = (cos u2, u1, sin u2).

Then we may define ΩX(u)(a, b) = det[N a b]. Note that X is compatible with this orientation as Tu1
= (0, 1, 0) and

Tu2
= (− sin u2, 0, cos u2) so that

ΩX(u)(Tu1
, Tu2

) = det

⎡
⎢⎣

cos u2 0 − sin u2

0 1 0

sin u2 0 cos u2

⎤
⎥⎦ = 1 > 0.

(Note that the first column is the normal N in terms of the parametrization.)
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(b) The boundary ∂M consists of two disjoint pieces. The left piece is {(x, 0, z)|x2 + z2 = 1}, parametrized by Y1 :
[0, 2π) → R3, Y1(t) = (cos t, 0, sin t). The right piece is {(x, 3, z)|x2 + z2 = 1}, parametrized by Y2 : [0, 2π) →
R3, Y2(t) = (cos t, 3, sin t).

(c) We must first determine V, a unit vector tangent to M , normal to ∂M , and pointing away from M . If you think about the
boundary pieces we looked at in part (b), a vector corresponding to the left side is V1 = (0,−1, 0) and corresponding to
the right side is V2 = (0, 1, 0). Then, along the left circle of ∂M ,

Ω∂M
Y1(t)(a) = ΩX(0,t)(V1, a)

and along the right circle of ∂M ,
Ω∂M

Y2(t)(a) = ΩX(3,t)(V2, a).

Note that

Ω∂M
Y1(t)(Tt) = det

⎡
⎢⎣

cos t 0 − sin t

0 −1 0

sin t 0 cos t

⎤
⎥⎦ = −1.

So the parametrization Y1 is incompatible with Ω∂M . However,

Ω∂M
Y2(t)(Tt) = det

⎡
⎢⎣

cos t 0 − sin t

0 1 0

sin t 0 cos t

⎤
⎥⎦ = 1.

So the parametrization Y2 is compatible with Ω∂M .
(d) If ω = z dx + (x + y + z) dy − x dz, we have

dω = dz ∧ dx + (dx + dy + dz) ∧ dy − dx ∧ dz = dx ∧ dy − dy ∧ dz − 2 dx ∧ dz.

Then using the orientation Ω and the parametrization X from part (a), we have

∫
M

dω =

∫
X
dω =

∫ 2π

0

∫ 3

0

(∣∣∣∣∣ 0 − sin u2

1 0

∣∣∣∣∣ −
∣∣∣∣∣ 1 0

0 cos u2

∣∣∣∣∣ − 2

∣∣∣∣∣ 0 − sin u2

0 cos u2

∣∣∣∣∣
)
du1 du2

=

∫ 2π

0

∫ 3

0

(sin u2 − cos u2) du1 du2 = 3(− cos u2 − sin u2)|2π
0 = 0.

On the other hand, using the parametrizations Y1 and Y2 for ∂M in parts (b) and (c), we have (after reversing the sign for
the left piece because of the incompatibility with Ω∂M )∫

∂M

ω = −
∫

Y1

ω +

∫
Y2

ω

= −
∫ 2π

0

[sin t(− sin t) + (cos t + sin t) · 0 − cos t(cos t)] dt

+

∫ 2π

0

[sin t(− sin t) + (cos t + 3 + sin t) · 0 − cos t(cos t)] dt = 0.

5. If S4 is the unit 4-sphere in R5, then let B denote the 5-dimensional unit ball

B = {x1, x2, x3, x4, x5)|x2
1 + x2

2 + x2
3 + x2

4 + x2
5 ≤ 1}.

Note that ∂B = S4. Then using the generalized Stokes’s theorem, we have∫
S4

ω =

∫
B

dω.

For ω = x3 dx1 ∧ dx2 ∧ dx4 ∧ dx5 + x4 dx1 ∧ dx2 ∧ dx3 ∧ dx5 we have dω = dx3 ∧ dx1 ∧ dx2 ∧ dx4 ∧ dx5 + dx4 ∧
dx1 ∧ dx2 ∧ dx3 ∧ dx5 = dx1 ∧ · · · ∧ dx5 − dx1 ∧ · · · ∧ dx5 = 0. Hence

∫
S4 ω =

∫
B

0 = 0.
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6. (a) Let ω = f . Then df =
∑

i

∂f

∂xi
dxi and

d(df) =
∑

i

d
(

∂f

∂xi

)
∧ dxi =

∑
i

(∑
j

∂2f

∂xj∂xi
∧ dxj

)
∧ dxi

=
∑
i<j

∂2f

∂xj∂xi
dxj ∧ dxi +

∑
i>j

∂2f

∂xj∂xi
dxj ∧ dxi,

since the terms where i = j contain dxi ∧ dxi = 0. By exchanging the roles of i and j in the second sum, we find

d(df) =
∑
i<j

∂2f

∂xj∂xi
dxj ∧ dxi +

∑
i<j

∂2f

∂xi∂xj
dxi ∧ dxj

=
∑
i<j

(
− ∂2f

∂xj∂xi
+

∂2f

∂xj∂xi

)
dxi ∧ dxj = 0

since the mixed partials are equal because f is of class C2.
(b) Now

d(dω) = d

⎛
⎝d

⎛
⎝ ∑

1≤i1<···<ik≤n

Fi1...ik
dxi1 ∧ · · · ∧ dxik

⎞
⎠

⎞
⎠

= d

⎛
⎝ ∑

1≤i1<···<ik≤n

dFi1...ik
∧ dxi1 ∧ · · · ∧ dxik

⎞
⎠

=
∑

1≤i1<···<ik≤n

[d(dFi1...ik
) ∧ dxi1 ∧ · · · ∧ dxik

+ (−1)1 dFi1...ik
∧ d(dxi1 ∧ · · · ∧ dxik

)] from Exercise 1,

= −
∑

1≤i1<···<ik≤n

dFi1...ik
∧ d(dxi1 ∧ · · · ∧ dxik

)

since d(dFi1...ik
) = 0 from part (a). But

d(dxi1 ∧ · · · ∧ dxik
) = d(1 dxi1 ∧ · · · ∧ dxik

) = d(1) ∧ dxi1 ∧ · · · ∧ dxik
= 0.

Hence d(dω) = 0, as desired.
7. (a) If ω is a 0-form, write ω = f . Then, using the first row of the chart, the 1-form dω corresponds to the vector field ∇f .

Hence, from the second row of the chart, d(dω) is the 2-form that corresponds to ∇×∇f . Thus d(dω) = 0 “translates”
to the statement ∇× (∇f) = 0.

(b) If ω is a 1-form, it corresponds to the vector field F and, using the second row of the chart, dω is the 2-form that
corresponds to ∇× F, another vector field. Then, using the third row of the chart, d(dω) is the 3-form that corresponds
to ∇ · (∇× F). Hence, d(dω) = 0 “translates” to the statement that ∇ · (∇× F) = 0.

8. (a) The outward unit normal N = (x, y, z) gives orientation form ΩX(u)(a1, a2) = det[N a1 a2] where X is a parametrization
of S. For a specific parametrization we can use

X : [0, π] × [0, 2π) → R3; X(u1, u2) = (sin u1 cos u2, sin u1 sin u2, cos u1).

Then Tu1
= (cos u1 cos u2, cos u1 sin u2,− sin u1) and Tu2

= (− sin u1 sin u2, sin u1 cos u2, 0), so that

ΩX(u)(Tu1
, Tu2

) = det

⎡
⎢⎣

sin u1 cos u2 cos u1 cos u2 − sin u1 sin u2

sin u1 sin u2 cos u1 sin u2 sin u1 cos u2

cos u1 − sin u1 0

⎤
⎥⎦ = sin u1 ≥ 0.

In fact, this quantity is strictly greater than 0 when the parametrization is smooth and so the parametrization is compatible
with the orientation.
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Next we note that on S we have ω = x dy ∧ dz + y dz ∧ dx + z dx ∧ dy as the denominators in ω are all 1 on
S. Therefore,∫

S

ω =

∫
X

ω

=

∫ 2π

0

∫ π

0

{
sin u1 cos u2

∣∣∣∣∣ cos u1 sin u2 sin u1 cos u2

− sin u1 0

∣∣∣∣∣
+ sin u1 sin u2

∣∣∣∣∣ − sin u1 0

cos u1 cos u2 − sin u1 sin u2

∣∣∣∣∣
+ cos u1

∣∣∣∣∣ cos u1 cos u2 − sin u1 sin u2

cos u1 sin u2 sin u1 cos u2

∣∣∣∣∣
}
du1 du2

=

∫ 2π

0

∫ π

0

(sin3 u1 + cos2 u1 sin u1) du1 du2 =

∫ 2π

0

∫ π

0

sin u1 du1 du2

= 2π(− cos u1)|π0 = 4π.

(b) For ω as given we calculate

d
[

x

(x2 + y2 + z2)3/2

]
=

(y2 + z2 − 2x2) dx − 3xy dy − 3xz dz
(x2 + y2 + z2)5/2

d
[

y

(x2 + y2 + z2)3/2

]
=

−3xy dx − (x2 + z2 − 2y2) dy − 3yz dz
(x2 + y2 + z2)5/2

d
[

z

(x2 + y2 + z2)3/2

]
=

−3xz dx − 3yz dy − (x2 + y2 − 2z2)dz
(x2 + y2 + z2)5/2

Hence,

dω =
1

(x2 + y2 + z2)5/2

[
(y2 + z2 − 2x2) dx ∧ dy ∧ dz

+ (x2 − 2y2 + z2) dy ∧ dz ∧ dx

+(x2 + y2 − 2z2) dz ∧ dx ∧ dy]
This is identically equal to 0 wherever it is defined.

(c) Since M does not include the origin, we have
∫

M
dω =

∫
M

0 = 0 from part (b).
∂M consists of two pieces. The outer piece S1 is the unit sphere x2 + y2 + z2 = 1, oriented by the outward unit

normal n1 = (x, y, z). The inner piece is the sphere x2 + y2 + z2 = a2 of radius a, oriented by inward unit normal
n2 = (−x,−y,−z)/a. Then, using Proposition 2.4, we have∫

∂M

ω =

∫∫
∂M

F · dS where F =
xi + yj + zk

(x2 + y2 + z2)3/2
.

In the following calculation we will use the fact that x2 + y2 + z2 is 1 on S1 and is a2 on S2.∫
∂M

ω =

∫∫
S1

F · n1 dS +

∫∫
S2

F · n2 dS

=

∫∫
S1

1 dS +

∫∫
S2

−1

a2
dS

= (1)(surface area of S1) − 1

a2
(surface area of S2)

= 4π − 1

a2
(4πa2) = 0.

This verifies Theorem 3.2.

c© 2012 Pearson Education, Inc.
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(d) No—since ω is not defined at the origin, Theorem 3.2 does not apply.
(e) Let M be the 3-manifold bounded on the outside by S, oriented with the outward normal, and on the inside by Sε, oriented

by the inward normal. Then 0 /∈ M , so we have

0 =

∫
M

dω =

∫
∂M

ω =

∫
S

ω +

∫
Sε

ω =

∫
S

ω − 4π.

The last equality follows from part (c). The conclusion is that ∫S ω = 4π.
9. Because ∂M = ∅, the note following Theorem 3.2 advises us to take ∫∂M ω ∧ η to be 0 in the equation ∫∂M ω ∧ η =

∫M d(ω ∧ η). Now substitute the results of Exercise 1 to get

0 =

∫
M

d(ω ∧ η) =

∫
M

dω ∧ η + (−1)kω ∧ dη =

∫
M

dω ∧ η + (−1)k

∫
M

ω ∧ dη.

Pull this last piece to the other side to obtain the result

(−1)k+1

∫
M

ω ∧ dη =

∫
M

dω ∧ η.

10. By the generalized Stokes’s theorem,∫
∂M

fω =

∫
M

d(fω)

=

∫
M

(df ∧ ω + f ∧ dω) by the result of Exercise 1,

=

∫
M

(df ∧ ω + f dω).

Hence ∫
M

f dω =

∫
∂M

fω −
∫

M

df ∧ ω.

c© 2012 Pearson Education, Inc.
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