

A smarandache completely prime ideal with respect to an element of near ring

Kareem Abass Layith AL-Ghurabi

Department of Mathematics, College of Education for Pure Sciences, University of Babylon E-mail: kareemalghurabi@yahoo.com

Copyright © 2014 Kareem Abass Layith AL-Ghurabi. This is an open access article distributed under the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper we introduce the notion of a smarandache completely prime ideal with respect to an element belated to a near field of a near ring N (b-s-c.p.i) of N. We study some properties of this new concept and link it with some there types of ideals of a near ring.

Keywords: Smarandache Completely Prime, Near Ring.

1. Introduction

In 1905, L.E. Drckson began the study of a near ring and later in 1930; Wieland has investigated it [1]. In 1977, G.Pilz, introduced the notion of a prime ideal of near ring [1]. In 1988, N.G. Groenewald introduced of a completely prime ideal of a near ring [5]. In 2002, W.B. Vasanth Kandasamy study samaradache near ring, (samaradache ideal, of a near ring [7]. In 2012 H.H. Abbass and M.A.Mohommed introduced the notion of a completely prime ideal with respect to an element of a near ring [3].

In this work, we introduce a Samaradache completely prime ideal with respect to an element related to a near field of near ring as we mentioned in the abstract.

2. Preliminaries

In this section, we review some basic concepts about a near ring, and some types of fields of a near rind that We need in our work.

Definition 2.1 [1]: A left near ring is a set N together with two binary operations "+" and"." such that

- 1. (N, +) Is a group (not necessarily abelian),
- 2. (N, .) Is a semi group?
- 3. $n_1 \cdot (n_2 + n_3) = n_1 n_2 + n_1 n_3$, for all $n_1, n_2, n_3, \in \mathbb{N}$.

Definition 2.2 [2]: The left near ring is called a zero symmetric if 0.x = 0, for all $x \in N$.

Definition 2.3[7]: Left (N, +, .) be a near-ring. A normal subgroup I of (N, +) is called a left ideal of N if

- 1. N.I \subseteq I
- 2. for all n , $n_1 \in N$ and for all $i \in I$,

 $(n + i).n - n_1.n \in I$

Remark 2.4: If N is a left near ring, then $x \cdot 0 = 0$, for all $x \in N$ (from the left distributive law). Also, we will refer that all near rings and ideals in this work are left.

Definition 2.5 [6]: Let I be an ideal of a near ring N, then I is called a completely prime ideal of N if for all $x, y \in N$, $x, y \in I$ implies $x \in I$ or $y \in I$, denoted by c. p. I of N. The a b - c. s. p. I near ring N in example (1.3) is not

Definition 2.6 [3]: Let N be a near ring, I be an ideal of N and let $b \in N$, then I is called a completely ideal with respect to the element b denoted by (b - c.p.I) of N, if for all $x, y \in N$, $b.(x, y) \in I$ implies $x \in I$ or $y \in I$

Definition 2.7 [7]: A near ring N is called an integral domain if N has non_zero divisors.

Definition 2.8 [7]: Let $(N_1, +, .)$ and $(N_2, +, .)$ be two near rings, the mapping $f: N_1 \to N_2$ is called a near ring homomorphism if for all $m, n \in N_1$ f(m + n) = f(m)+f(n) and f(m, n) = f(m). f(n)

Definition 2.9 [7]: Anon-empty set N is said to be a near field if N is defined by two binary operations "+" and"." such that

1. (N, +) Is a group

2. $(N \setminus [0], .)$ Is a group

3. a. (b + c) = a. b + a. c, for all $a, b, c, \in N$.

Definition 2.10 [7]: The near ring (N, +, .) is said to be a smarandache near ring denoted by (s-near ring) if it has aproper subset M such that (M, +, .) is a near field.

Definition 2.11 [7]: Let N be s-near ring. A normal subgroup I of N is called a smarandache ideal (s-ideal) of N related M if,

i. For all x, y ∈ M and for all i ∈ I,x(y + i) - xy ∈ I,
Where M is the near field contained inN.
ii. IM ⊆ I

Remark 2.12 [7]: Let $[I_i]_{i \in I}$ be a chain of s-ideals related to a near field M of a near ring N, then $[I_i]_{i \in I}$ Is a s-ideals related to near field M

Remark 2.13 [6]: Let $(N_1, +, .)$ and $(N_2, +, .)$ be two s-near rings and let $f: N_1 \to N_2$ Be an epimomorphism and N_1 has M_1 as near filed. Then $M_2 = f(M_1)$ is a near field of N_2 .

Proposition 2.14 [4]: Let (N_1, \div, \div) and (N_2, \div, \div) be two s-near rings and $f: N_1 \to N_2$ Be an epimomorphism and let *I* be a S-ideals related to a near field M of a near ring N, and then f(I) is s-ideals related to a near field f(M).

Proposition 2.15 [4]: Let $(N_1, +, .)$ be a s-near ring has a near filed M_1 , N_2 be a s-near ring, $f: N_1 \to N_2$ be an epimomorphism and let J be s-ideals related to a near field M_2 of N_2 , where $f(M_1) = M_2$ of N_2 , then $f^{-1}(J)$ is a s-ideals related to a near field M_1 of N_1 .

Definition 2.16 [7]: Let N is an s-near ring. The s-ideals I related to a near field M is called completely prime related to a near field M of N if, for all $x, y \in M, x, y \in I$ implies $x \in I$ or $y \in I$.denoted by (s. c. p. I) of N.

3. The main results

In this section, we define the notion of smarandache completely ideal with respect to an element b (b - s. c. p. I) And study some properties of this notion, we will discuss the image and pre image of b - s. c. p. I under near rings epimomorphism and explain the relationships between it and b - s. c. p. I of a near ring.

Definition 3.1: A s-ideals related to a near field M of a s-near ring N is called a samarandache completely ideal with respect to an element b of N (b - s. c. p. I), if $b.(x. y) \in I$ implies $x \in I$ or $y \in I$ for all $x, y \in M$.

	0	1 7	U	
+	0	а	b	c
0	0	а	b	c
a	a	0	С	b
b	b	c	0	a
 с	с	b	a	0

Example 3.2: The left s-near ring with addition and multiplication defined by the following tables.

	0	a	b	с
0	0	0	0	0
а	0	a	а	0
b	0	a	b	с
с	0	0	с	с

The s-ideal I = [0, a] related to the near field M = [0, c] is b - s. c. p. I of N since $0. (c. c) = 0 \in I$, but $c \notin I$.

Proposition 3.3: Let I be a s-ideal related to a near field M of a s-near ring N,then I is a s. c. p. I of N if and only if I is 1 - s. c. p. I, where 1 is the multiplicative identity element of M.

Proof: Suppose I is a s. c. p. I ideal of N And let x, y \in M such that 1. (x. y) \in I. Then we have 1. (x. y) = x. y \in I \Rightarrow x \in I or y \in I [Since I is a s. c. p. I of N]. \Rightarrow I is 1 - s. c. p. I Of N. Conversely, Let x, y \in M such that x. y \in I \Rightarrow x. y = 1. (x. y) \in I \Rightarrow x \in I or y \in I [Since I is 1. (x. y) of N].

Remark 3.4: In general an S.C.P.I related to a near field M of an s-near ring N may not be b-S.C.P.I related to M of N as in the following example

Example 3.5: Consider the s-near ring of integers mod 6 (z6, t6, .6); the s-ideal I= [0,2,4] is S.C.P.I related to the near field M = [0,3], but it is not 2-S.C.P.I of N, since $3 \in M$ and $2 \cdot (3.3) = 0 \in I$ but $3 \notin T$.

Proposition 3.6: Let I be a b-C.P.I related to a near field M of a s-near ring N. then I is a b-S.C.P.I of N.

Proof: Let x, $y \leftarrow M$, such that b. $(x.y) \in I$ $\Rightarrow x, y \in N$ [since M is a proper subset of N] $\Rightarrow x \in I$ or $y \in I$ [since I is b-S.C.P.I of N] $\Rightarrow I$ is a b-S.C.P.I of N.

Remark (3.7): The conzerse of proposition (3.6) may not be true as in the following example.

Example 3.8: Consider the s-near ring of integers mod 12 (Z12, t12, i12); s-ideal I = [0,2,4,6,8,10] if z-S.C.P.I related to the near field M= [0,4,8], but it is not 2-C.P.I, since $3,5 \in Z12$ and $2.(3.5) = 6 \in I$, but 3 and $5 \notin I$.

Proposition 3.9: Let N be a s-near ring and let I be a s-ideal related to a near field M of N. then I is a b-S.C.P.I of N if and only if M is a subset of I, for all $b \in I >$

Proof: Suppose I is a b-S.C.P.I, $b \in I$ and $X \in M$. Now, $X^2 = x.x \in I$, $0 \in I$ and $0. x^2 = 0. (x.x) = 0 \in I$ $x \in I$ [since I is o-S.C.P.I], $\Rightarrow M$ is a subset of I Conversely, Let $b \in I$ and x, $y \in M$ such that $b.(x.y) \in I$ $\Rightarrow x$ or $y \in I$ [since $M \subseteq I$] $\Rightarrow I$ is b-S.C.P.I of N.

Proposition 3.10: Let N be a s-near integral domain . then I =[0] is b-S.C.P.I related to a near field M of N, for all $n \in NI$ [0].

Proof: Let $b \in NI [0]$ and $x, y \in M$, such that $b.(x.y) \in I$ $\Rightarrow b. (x.y) = 0$ $\Rightarrow x.y = 0$ [since $b \neq 0$ and N is a near integral domain] $\Rightarrow x=0$ or $y=0 \Rightarrow x \in I$ or $y \in I$ $\Rightarrow x \in I$ or $y \in I$. $\Rightarrow I$ is a b-S.C.P.I of N. **Proposition 3.11:** Let N be a zero symmetric s-near ring and let I=[0]. Then I is not o-S.C.P.I of N related to all near fields of N.

Proof: Suppose I is o-S.C.P.I related to a near field M of N. Since M is a near field $\Rightarrow M \neq [0]$ $\Rightarrow \exists X \in M$, such that $x \neq 0$. Now, $0x^2 = 0.(x.x) = 0 \in I$ $\Rightarrow x \in I \Rightarrow x=0$ and this contradiction [since $x \neq 0$] $\Rightarrow I$ is not 0- S.C.P.I related to M of N.

Proposition 2.12: Let N be a s-near ring and let $[Ii]_{i \in I}$ be a chain of b-S.C.P.I related to a near field M of N, for all $i \in I$. then $V_{i \in I} I_{i}$ is a b-S.C.P.I related to M of N.

Proof : Since [Ii] _i ∈ _I is a chain a b-S.C.P.I related to M of N. ⇒ Ii is a s-ideal of N for all i ∈ I. ⇒ V_i ∈ _I Ii is a s-deal of N [By remark (2.12)] Now, Let x, y ∈ M, such that b.(x.y) ∈ V_i ∈ _II_i ⇒ There exists b-S.C.P.I related M I_k ∈ [Ii]_i ∈ _I of N, such that b.(x.y) ∈ I_k ⇒ x ∈ I_k or y ∈ I_k [since I_k is a b-S.C.P.I of N] ⇒ x ∈ V_i ∈ _II_i or Y ∈ V_i ∈ _II_i. ⇒ V_i ∈ _II_i is a b-S.C.P.I of N.

Remark 3.13: In general, if $[Ii]_{i \in I}$ is a family of b-S.C.P.I related to a near field M of as near ring N, then $\bigcap_{i \in I} I_i$ and $V_{i \in I} I_i$ may not be b-S.C.P.I Related to M of N, as in the following example

Example 3.13: Consider the s-near ring of integer's mod12. (Z12,t12, 12), the s-ideals I=[0,6] and J=[0,4,8] are 3-S.C.P.I. related to the near field M= [0,4,8] of Z12, but the s-ideal $I \cap J = [0]$ is not 3-S.C.P.I related to M of Z12, since $3.(3.8)=0 \in I$, but and $8 \notin I$, Also, the subset $I \cup J = [0,4,6,8]$ is s-ideal of Z12 and this implies $I \cup J$ is not 3-S.C.P.I related to M of Z12.

Theorem 3.15: Let (N1, *, 0) and (N2, t, 0) be two s-near rings, $F: N1 \rightarrow N2$ be an epimvor phism and let I be a b-S.C.P.I related to near field M of N, then f(I) is f(b) –S.C.P.I related to the near field f(M) of N2.

Proof :By remark (2.13), we have f (I) is a s-ideal related to a near field f(M) Now Let f(m1), f(m2) \in f(m), such that f (b) ! (f(m1) ! f(m2) \in f(I) \Rightarrow f (b (m1 . m2)) \in f (I) \Rightarrow f (b (m1 . m2)) \in f (I) \Rightarrow either m1 \in I or m2 \in I or m2 [since I is b- S.C. P. I related to M of N1] \Rightarrow f (m1) \in f (I) or (m2) \in f(I) \Rightarrow f (I) is a f (b) - S.C. P. I related to f(M) of N2

Theorem 3.16: Let (NI, +, .) be as – near ring has a near field MI, (N2) be S- near ring, $f: NI \rightarrow N2$ be an epimomorphism, and Let J be a b-S.C. P.I related to the near field f(M) of N2, then $f^{I}(I)$ is a - S.C. P.I related to a near field M of N1, where b - f(a).

Prof: By proposition (2.15), we have $f^{-1}(J)$ is a S – ideal related to M of N1. Now, Let $x, y \in M$, such that a. $(x, y) \in f^{f-1}(J)$ ⇒ f(x), $f(y) \in f(M)$ and $f(a \mid (x \mid y) \in J$ ⇒ f(x), $f(y) \in f(M)$ and $f(a \mid ! (x \mid y) \in J$ ⇒ either $f(x) \in J$ or $f(y) \in J$ [since J is b- S.C. .P. I related to f(M) of N2] ⇒ either $x \in f^{-1}(J)$ or $y f^{-1}(J)$ or $y \in f^{-1}(J)$ ⇒ $f^{-1}(J)$ is a b- S.C. .P. I related to f(M) of N2

Corollary 3.17: Let (N1,+,0) be a S- near ring has a near field M, (N2,+',.'') be a S- near ring, $f:N1, \rightarrow N2$ be an e pimomorphism, and if $[o^1]$ be a b- S.C. P. I related to the near field f(M) of N2 The ker(f) is b- S.C. P. I related to a near field M of N1, where

Ker f = [$x \in N1$: f(x) = 0] and b=f(a)

Proof: Since $f^1([0^1)] = ker(f)$, then where Rer(f) is a - S.C. P. I related to M of N1 [By theorem (3-16)]

References

- [1]
- G. Pilz, "Near Ring ", North Holland Publ and Co., 1977.
 H.A. Abujabal, M.A obaid and M.A. han, "On structure and Commutatitiy of near Rings", An to fagasta chule, 2000. [2]
- [3] H.H Abbass and M.A. Who Mmed, "On alompletely prime Ideal with respect to an element of a near ring", J. of Kerbala university. Vol. 10, No 3, 2012.
- H.H Abbass and S.M. Ibrahem, "On Fuzzy completely semi orime Ideal with respect to an element of a near Ring", M Sc. Thesis university of [4] Kufa 2011.
- N.J Groenewatd, "The completely prim radical near rings", Acta Math. Hung, VO 133, 1988. P. Dheena and G. Sathesh Kumar, "Completely z-prime Ideal in near ring", India, 2007. [5]
- [6]
- W.B Vasantha and A. Samy, "Samarandache near ring", U.S. America research press, 2002. [7]