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An=v_  -v =@+c/2L-qc/2L=c /2L, (0-30)

so the separation between neighboring modes of a laser
is constant and dependent only on the distance be-
tween the mirrors in the laser, as shown in Fig. 0.33.
Since the amount of power obtained from small helium-
neon lasers, such as those used for the projects de-
scribed in this manual, is related to the length of the
laser, the separation between mirrors is set by the laser
manufacturers to produce the required power for the
laser. But the band of wavelengths that can maintain
stimulated emission is determined by the atomic
physics of the lasing medium, in this case, neon. That
band does not change radically for most helium-neon
laser tubes. Therefore, the number of axial modes is
mainly dependent on the distance between the mirrors,
L. The farther apart the mirrors are, the closer are the
axial mode frequencies. Thus, long high power helium-
neon lasers have a large number of axial modes,
whereas, the modest power lasers used in this Projects
in Optics kit produce only a small number (usually
three) of axial modes.

One of the other relations between neighboring laser
modes, beside their separation, is that their polariza-
tion is orthogonal (crossed) to that of their neighbors
(Fig. 0.34). Thus, if we examined a three-mode laser
with the appropriate tools, we would expect to find that
two of the modes would have one polarization and the
other would have a perpendicular polarization. This
means that, while axial modes are separated in fre-
quency by c¢ /2L, modes of the same polarization are
separated by c/L.

Looking through a diffraction grating at the output of a
three-mode laser, we see a single color. High resolution
interferometers must be employed to display the axial
modes of a laser. However, it is also possible to use a
Michelson interferometer to investigate the modes
without resorting to high resolution devices. This
technique has special applications in the infrared
region of the spectrum.

0.6.4 Coherence of a Laser

If we speak of something as being “coherent” in every-
day life, we usually mean that it, a painting, a work of
music, a plan of action, “makes sense.” It “hangs
together.” There is in this concept the idea of consis-
tency and predictability. The judgement of what is
coherent, however, is one of individual taste. What one
person may find coherent in heavy metal rock music,
another person would hear in rhythm and blues ... or
elevator music, perhaps. This concept of coherence as
a predictable, consistent form of some idea or work of
art has much the same meaning when applied to light
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Figure 0.33. Laser mode distribution. Plot of power

in laser output as a function of frequency.
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Figure 0.34. Output from a three mode laser. The

relative polarization of each mode is indicated at its

base.
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sources. How consistent is a light field from one point
to another? How do you make the comparison? The
interference of the light beam with itself does the
comparing. If there is a constant relation between one
point on a laser beam and another point, then the
interference of waves separated by that distance should
produce a stable interference pattern. If, however, the
amplitude or phase or wavelength changes between
these two points, the interference, while it is still there
at all times, will constantly vary with time. This un-
stable interference pattern may still exhibit fringes, but
the fringes will be washed out. This loss of visibility of
fringes as a function of the distance between the points
of comparison is measure of the coherence of the light.
This visibility can be measured by the contrast of the
interference fringes. The contrast is defined by

T (0-31)

where [ is the irradiance of the bright interference
fringes and /__is the irradiance of the dark interference
fringes (Fig. 0.35). This contrast is determined by
passing the light from the source through a Michelson
interferometer with unequal arms. By changing the
path length difference between the arm in the interfer-
ometer, the visibility of the fringes as a function of this
difference can be recorded. From these observations,
the measurement of the coherence of a source can be

done using a Michelson interferometer.

If a source were absolutely monochromatic, there
would be no frequency spread in its spectrum. That is,
its frequency bandwidth would be zero. For this to be
true, all parts of the wave exhibit the same sinusoidal
dependence from one end of the wave to the other.
Thus, a truly monochromatic wave would never show
any lack of contrast in the fringes, no matter how large
of a path length difference was made. But all sources,
even laser sources contain a distribution of wave-
lengths. Therefore, as the path length difference is
increased, the wavefront at one point on the beam gets
out of phase with another point on the beam. A meas-
ure of the distance at which this occurs is the coher-
ence length [ of a laser. It is related to the frequency
bandwidth of a laser by

Av=c/L (0-32)

Any measurement of the coherence length of a light
source by observation of the visibility of fringes from a
Michelson interferometer will yield information on the
bandwidth of that source and, therefore, its coherence.
For example, suppose the source is a laser with some
broadening. As the length of the one of the arms in a
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Michelson interferometer, as shown in Fig. 0.36,
becomes unequal (mirror moved from A to B), the one
part of a wave will interfere with another part that is
delayed by a time equal to the difference in path length
divided by the speed of light. Eventually the waves
begin to get out of step and the fringe contrast begins
to fall because the phase relations between the two
waves is varying slightly due to the spread in frequen-
cies in the light. The greater the broadening, the more
rapidly the visibility of the fringes will go to zero.

One particularly interesting case consists of a source
with only a few modes present as is the case for the
three-mode helium-neon laser discussed above. Be-
cause only light of the same polarization can interfere,
there will be two modes (ﬂ.], A,) in the laser that can
interfere with each other. The third mode (4,) with
orthogonal polarization is usually eliminated by passing
the output of the laser through a polarizer. With the
interferometer mirrors set at equal path length there
are two sets of fringes, one from each mode. Since the
path length difference is zero, these two sets of high
contrast fringes overlap each other. But as the path
length increases, the fringes begin to get out of step.
Until, finally, the interference maximum of one set of
fringes overlaps the interference minimum of the other
set of fringes and the fringe contrast goes to zero. The
calculation of this condition is fairly simple. The
condition for an interference maximum is given by

L -L,=mi/2 m =an integer 0-33)
and for an interference minimum by
L -L,=mA/4 m=odd integers (0-349)

If we assume that the change in path length is from zero
path length to the point where the visibility first goes to
zero, then for one wavelength, 4,,

L -L,=mA/2 m=aninteger (0-35)

and for the other mode with the same polarization,
there is a minimum.

L -L,=ml/2+A,/4 (0-35)
Equating these two expressions and rearranging terms,
gives
mA,/2 - mA,/2 = m(A-2,)/2 = A,/4. (0-35)
or
mAA = 2,/2

Wavelength separation can be expressed as a frequency
separation by Av

AL = AAv)v (0-36)
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where A and v are the average values in the intervals A4
and Av. Inserting this expression for A1, we obtain

Av=v/2m. (0-37)

The integer m is an extremely large number in most
cases and is not easily determined, but it is related to
the average wavelength of the sourceby L -L, = mA/2.
If we set AL =L, -L,, solve for m and insert in the
expression for Av,

Av=v/2m = Av/4AL = c [AAL, (0-38)
since Av = c.

Thus the frequency separation between modes can be
measured by determining the path length difference
when the two interference fringe patterns are out of
step with one another, causing the visibility to go to
zero, as depicted in Fig. 0.37. It can also be demon-
strated that there are additional minima in the visibility
at Av =3c/4AL, 5c/4AL, etc. Visibility maxima occur
halfway between these minima as the two fringes
patterns get back into step. In Project#7, this effect will
enable you to determine the mode separations for the
laser used in these projects. What has been derived
here is a simple case of a much more involved applica-
tion of this technique. It is possible to measure the
fringe contrast as a function of mirror position (called
an interferogram) and store it in the memory of a
computer. It has been shown that a mathematical
transformation (the same Fourier Transform that will
be discussed in the next section) of the visibility
function yields the frequency spectrum of the source.

While it might be considered difficult, the advent of
powerful computers has reduced the cost and en-
hanced the utility of this technique, particularly in the
far infrared part of the spectrum. These devices are
known as Fourier transform spectrometers.

0.7 Abbe Theory of Imaging

The earlier discussion of imaging depended upon
tracing a series of rays to determine the location and
size of the image. It was shown that only a few rays
were needed. This approach ignores the possibilities
that the source could be monochromatic and suffi-
ciently coherent that diffraction and interference effects
could play a part in the formation of an image. What we
will describe and then demonstrate in Project #10, is
that after the light that will form an image has traversed
the lens, we can intervene and change the image in very
special ways. This approach to imaging has found use
in a number of applications in modern optics. To begin
to understand this concept, we need to review briefly
the diffraction grating discussed in Section 0.4.3, since



CCCoCcCcCccccccc

ccccocccccccCccCccCcoccccccoccrcc

4

C CCCCcC<(C

the grating is one of the simplest illustrations of this
new way of thinking about imaging. Consider a diffrac-
tion grating consisting of a series of equally spaced,
narrow absorbing and transmitting (black and white)
bands. It is possible to determine mathematically not
only the directions of the diffracted orders

sinf =mA/d m = an integer, (0-39)

but also the relative irradiances of the diffracted spots
to one another. If we insert a lens after the diffraction
grating, we can relocate the orders of the diffraction
grating from infinity to the back focal plane of the lens
(Fig. 0.38). We will see how this can be used to under-
stand imaging.

0.7.1 Spatial Frequencies

We are used to the idea of repetitions in time. Electrical
and audio sources of signals with single frequencies,
particularly as they relate to sound are used to test
equipment for their response. A good high fidelity
system will reproduce a wide range of frequencies
ranging from the deep bass around 20 Hz (cycles per
second), that is as much felt as it is heard, to the nearly
impossible to hear 15,000 Hz, depending on how well
you have treated your ears during life. As noted earlier,
the frequency of the electromagnetic field determines
whether the radiation is visible to the eye. Again, this
periodic variation in the electric field takes place in
time. Just as it is possible to speak about variation of
electrical waves and sound with time, in optics, varia-
tions in space can be expressed as spatial frequencies.
These are usually expressed in cycles/mm (or mm™).
They indicate the rapidity with which an object or
image varies in space instead of time. An example that
shows a number of spatial frequencies is given in Fig.
0.39.

As in the case of many sounds and electrical signals,
most spatially repetitive patterns do not consist of a
single frequency, but as a musical chord, are made up
of some fundamental frequency plus its overtones, or
higher harmonics. The discussion of spatial frequencies
in optics is based on some interesting, but relatively
complicated mathematics. You may want to read this
section once to get the general ideas, then come back
later after you have done Project #10. Certainly, here is
a case where hands-on work will improve your under-
standing of the discussion of the subject.

An example of an object with a few spatial frequencies
is the diffraction grating. If the grating just discussed
consisted of a sinusoidal variation, as shown in Fig.
0.40(a), there would only be a zero order and the first

Figure 0.39. Spatial frequencies in an object.
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Figure 0.40. Sinusoidal grating versus black and
white grating (Fourier analysis).
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orders (m = tl). As repetitive patterns depart from
sinusoidal, additional diffraction orders appear and in
the case of the black and white grating, a whole series
of diffraction orders are present (Fig. 0.40(b)).

All of this can be expressed mathematically in terms of
Fourier (Four-ee-ay) Theory. We will not go into the
mathematical expression of the theory, but only
graphically express the result as simply as possible.

Any periodic (repeating) function can be expressed as a
series of sine and cosine functions consisting of the
fundamental periodic frequency (f) and its higher
harmonics (those frequencies that are multiples of the
fundamental frequency, f (2f, 3f, 4f, ...) The amount that
each frequency contributes to the original function can
be calculated using some standard integral calculus
expressions. The decomposition of the periodic pattern
into its harmonics is referred to as Fourier Analysis.
This analysis determines the amplitude of each har-
monic contribution to the original function and its
phase relative to the fundamental (in phase or 180° out
of phase).

The procedure can be, in a sense, reversed. If a pattern
at the fundamental frequency is combined with the
appropriate amounts of the higher harmonics, it is
possible to approximate any function with a repetition
frequency of the fundamental. This is referred to as
Fourier Synthesis. To completely synthesize a function
such as our example of an alternating black and white
grating, an infinite number of harmonics would be
needed. If only frequencies up to some specific value
are used, the synthesized function will resemble the
function, but it will have edges that are not as sharp as
the original. A simple example (Fig. 0.41) using only a
fundamental and two harmonics shows the beginning of
the synthesis of a square wave function, similar to our
black and white grating. What you will be investigating
in Project #10 are optical techniques that use Fourier
analysis and synthesis in creating images.

0.7.2 Image Formation

If the black and white grating is illuminated with plane
waves of monochromatic light, a number of diffraction
orders will be generated by the grating. These plane
wave beams diffracted at different angles given by Eq. 0-
39, can be focused with a lens located behind the
diffraction grating, as shown in Fig. 0.42. The focused
spots have intensities that are proportional to the
square of the amplitudes that we could calculate for
this diffraction grating. In effect, the laser plus lens
combination serves as an optical Fourier analyzer for a
diffractive object.



