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An Introduction to Machine
Learning Interpretability

Understanding and trusting models and their results is a hallmark of
good science. Scientists, engineers, physicians, researchers, and
humans in general have the need to understand and trust models
and modeling results that affect their work and their lives. However,
the forces of innovation and competition are now driving analysts
and data scientists to try ever-more complex predictive modeling
and machine learning algorithms. Such algorithms for machine
learning include gradient-boosted ensembles (GBM), artificial neu‐
ral networks (ANN), and random forests, among many others.
Many machine learning algorithms have been labeled “black box”
models because of their inscrutable inner-workings. What makes
these models accurate is what makes their predictions difficult to
understand: they are very complex. This is a fundamental trade-off.
These algorithms are typically more accurate for predicting nonlin‐
ear, faint, or rare phenomena. Unfortunately, more accuracy almost
always comes at the expense of interpretability, and interpretability
is crucial for business adoption, model documentation, regulatory
oversight, and human acceptance and trust.

The inherent trade-off between accuracy and interpretability in pre‐
dictive modeling can be a particularly vexing catch-22 for analysts
and data scientists working in regulated industries. Due to strenuous
regulatory and documentation requirements, data science professio‐
nals in the regulated verticals of banking, insurance, healthcare, and
other industries often feel locked into using traditional, linear mod‐
eling techniques to create their predictive models. So, how can you
use machine learning to improve the accuracy of your predictive
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models and increase the value they provide to your organization
while still retaining some degree of interpretability?

This report provides some answers to this question by introducing
interpretable machine learning techniques, algorithms, and models.
It discusses predictive modeling and machine learning from an
applied perspective and puts forward social and commercial moti‐
vations for interpretability, fairness, accountability, and transpar‐
ency in machine learning. It defines interpretability, examines some
of the major theoretical difficulties in the burgeoning field, and pro‐
vides a taxonomy for classifying and describing interpretable
machine learning techniques. We then discuss many credible and
practical machine learning interpretability techniques, consider test‐
ing of these interpretability techniques themselves, and, finally, we
present a set of open source code examples for interpretability tech‐
niques.

Machine Learning and Predictive Modeling in
Practice
Companies and organizations use machine learning and predictive
models for a very wide variety of revenue- or value-generating
applications. A tiny sample of such applications includes deciding
whether to award someone a credit card or loan, deciding whether
to release someone from a hospital, or generating custom recom‐
mendations for new products or services. Although many principles
of applied machine learning are shared across industries, the prac‐
tice of machine learning at banks, insurance companies, healthcare
providers and in other regulated industries is often quite different
from machine learning as conceptualized in popular blogs, the news
and technology media, and academia. It’s also somewhat different
from the practice of machine learning in the technologically
advanced and generally unregulated digital, ecommerce, FinTech,
and internet verticals. Teaching and research in machine learning
tend to put a central focus on algorithms, and the computer science,
mathematics, and statistics of learning from data. Personal blogs and
media outlets also tend to focus on algorithms and often with more
hype and less rigor than in academia. In commercial practice, talent
acquisition, data engineering, data security, hardened deployment of
machine learning apps and systems, managing and monitoring an
ever-increasing number of predictive models, modeling process
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documentation, and regulatory compliance often take precedence
over more academic concerns regarding machine learning algo‐
rithms[1].

Successful entities in both traditional enterprise and in digital,
ecommerce, FinTech, and internet verticals have developed pro‐
cesses for recruiting and retaining analytical talent, amassed vast
amounts of data, and engineered massive flows of data through cor‐
porate IT systems. Both types of entities have faced data security
challenges; both have learned to deploy the complex logic that
defines machine learning models into operational, public-facing IT
systems; and both are learning to manage the large number of pre‐
dictive and machine learning models required to stay competitive in
today’s data-driven commercial landscape. However, larger, more
established companies tend to practice statistics, analytics, and data
mining at the margins of their business to optimize revenue or allo‐
cation of other valuable assets. Digital, ecommerce, FinTech, and
internet companies, operating outside of most regulatory oversight,
and often with direct access to huge data stores and world-class tal‐
ent pools, have often made web-based data and machine learning
products central to their business.

In the context of applied machine learning, more regulated, and
often more traditional, companies tend to face a unique challenge.
They must use techniques, algorithms, and models that are simple
and transparent enough to allow for detailed documentation of
internal system mechanisms and in-depth analysis by government
regulators. Interpretable, fair, and transparent models are a serious
legal mandate in banking, insurance, healthcare, and other indus‐
tries. Some of the major regulatory statutes currently governing
these industries include the Civil Rights Acts of 1964 and 1991, the
Americans with Disabilities Act, the Genetic Information Nondis‐
crimination Act, the Health Insurance Portability and Accountabil‐
ity Act, the Equal Credit Opportunity Act, the Fair Credit Reporting
Act, the Fair Housing Act, Federal Reserve SR 11-7, and European
Union (EU) Greater Data Privacy Regulation (GDPR) Article 22[2].
Moreover, regulatory regimes are continuously changing, and these
regulatory regimes are key drivers of what constitutes interpretabil‐
ity in applied machine learning.
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Social and Commercial Motivations for
Machine Learning Interpretability

The now-contemplated field of data science amounts to a superset of the
fields of statistics and machine learning, which adds some technology for
“scaling up” to “big data.” This chosen superset is motivated by commer‐
cial rather than intellectual developments. Choosing in this way is likely
to miss out on the really important intellectual event of the next 50
years.

—David Donoho[3]

Usage of AI and machine learning models is likely to become more
commonplace as larger swaths of the economy embrace automation
and data-driven decision making. Even though these predictive sys‐
tems can be quite accurate, they have been treated as inscrutable
black boxes in the past, that produce only numeric or categorical
predictions with no accompanying explanations. Unfortunately,
recent studies and recent events have drawn attention to mathemati‐
cal and sociological flaws in prominent machine learning systems,
but practitioners usually don’t have the appropriate tools to pry
open machine learning black boxes to debug and troubleshoot
them[4][5].

Although this report focuses mainly on the commercial aspects of
interpretable machine learning, it is always crucially important to
consider social motivations and impacts of data science, including
interpretability, fairness, accountability, and transparency in
machine learning. One of the greatest hopes for data science and
machine learning is simply increased convenience, automation, and
organization in our day-to-day lives. Even today, I am beginning to
see fully automated baggage scanners at airports and my phone is
constantly recommending new music that I actually like. As these
types of automation and conveniences grow more common,
machine learning engineers will need more and better tools to
debug these ever-more present, decision-making systems. As
machine learning begins to make a larger impact on everyday
human life, whether it’s just additional convenience or assisting in
serious, impactful, or historically fraught and life-altering decisions,
people will likely want to know how these automated decisions are
being made. This might be the most fundamental application of
machine learning interpretability, and some argue the EU GDPR is
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already legislating a “right to explanation” for EU citizens impacted
by algorithmic decisions[6].

Machine learning also promises quick, accurate, and unbiased deci‐
sion making in life-changing scenarios. Computers can theoretically
use machine learning to make objective, data-driven decisions in
critical situations like criminal convictions, medical diagnoses, and
college admissions, but interpretability, among other technological
advances, is needed to guarantee the promises of correctness and
objectivity. Without interpretability, accountability, and transpar‐
ency in machine learning decisions, there is no certainty that a
machine learning system is not simply relearning and reapplying
long-held, regrettable, and erroneous human biases. Nor are there
any assurances that human operators have not designed a machine
learning system to make intentionally prejudicial decisions.

Hacking and adversarial attacks on machine learning systems are
also a serious concern. Without real insight into a complex machine
learning system’s operational mechanisms, it can be very difficult to
determine whether its outputs have been altered by malicious hack‐
ing or whether its inputs can be changed to create unwanted or
unpredictable decisions. Researchers recently discovered that slight
changes, such as applying stickers, can prevent machine learning
systems from recognizing street signs[7]. Such adversarial attacks,
which require almost no software engineering expertise, can obvi‐
ously have severe consequences.

For traditional and often more-regulated commercial applications,
machine learning can enhance established analytical practices (typi‐
cally by increasing prediction accuracy over conventional but highly
interpretable linear models) or it can enable the incorporation of
unstructured data into analytical pursuits. In many industries, linear
models have long been the preferred tools for predictive modeling,
and many practitioners and decision-makers are simply suspicious
of machine learning. If nonlinear models—generated by training
machine learning algorithms—make more accurate predictions on
previously unseen data, this typically translates into improved finan‐
cial margins but only if the model is accepted by internal validation
teams and business partners and approved by external regulators.
Interpretability can increase transparency and trust in complex
machine learning models, and it can allow more sophisticated and
potentially more accurate nonlinear models to be used in place of
traditional linear models, even in some regulated dealings. Equifax’s
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NeuroDecision is a great example of modifying a machine learning
technique (an ANN) to be interpretable and using it to make meas‐
urably more accurate predictions than a linear model in a regulated
application. To make automated credit-lending decisions, NeuroDe‐
cision uses ANNs with simple constraints, which are somewhat
more accurate than conventional regression models and also pro‐
duce the regulator-mandated reason codes that explain the logic
behind a credit-lending decision. NeuroDecision’s increased accu‐
racy could lead to credit lending in a broader portion of the market,
such as new-to-credit consumers, than previously possible[1][8].

Less-traditional and typically less-regulated companies currently
face a greatly reduced burden when it comes to creating fair,
accountable, and transparent machine learning systems. For these
companies, interpretability is often an important but secondary con‐
cern. Even though transparency into complex data and machine
learning products might be necessary for internal debugging, valida‐
tion, or business adoption purposes, the world has been using Goo‐
gle’s search engine and Netflix’s movie recommendations for years
without widespread demands to know why or how these machine
learning systems generate their results. However, as the apps and
systems that digital, ecommerce, FinTech, and internet companies
create (often based on machine learning) continue to change from
occasional conveniences or novelties into day-to-day necessities,
consumer and public demand for interpretability, fairness, account‐
ability, and transparency in these products will likely increase.

The Multiplicity of Good Models and Model
Locality
If machine learning can lead to more accurate models and eventu‐
ally financial gains, why isn’t everyone using interpretable machine
learning? Simple answer: it’s fundamentally difficult and it’s a very
new field of research. One of the most difficult mathematical prob‐
lems in interpretable machine learning goes by several names. In his
seminal 2001 paper, Professor Leo Breiman of UC, Berkeley, coined
the phrase: the multiplicity of good models[9]. Some in credit scoring
refer to this phenomenon as model locality. It is well understood that
for the same set of input variables and prediction targets, complex
machine learning algorithms can produce multiple accurate models
with very similar, but not the same, internal architectures. This
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alone is an obstacle to interpretation, but when using these types of
algorithms as interpretation tools or with interpretation tools, it is
important to remember that details of explanations can change
across multiple accurate models. Because of this systematic instabil‐
ity, multiple interpretability techniques should be used to derive
explanations for a single model, and practitioners are urged to seek
consistent results across multiple modeling and interpretation tech‐
niques.

Figures 1-1 and 1-2 are cartoon illustrations of the surfaces defined
by error functions for two fictitious predictive models. In Figure 1-1
the error function is representative of a traditional linear model’s
error function. The surface created by the error function in
Figure 1-1 is convex. It has a clear global minimum in three dimen‐
sions, meaning that given two input variables, such as a customer’s
income and a customer’s interest rate, the most accurate model
trained to predict loan defaults (or any other outcome) would
almost always give the same weight to each input in the prediction,
and the location of the minimum of the error function and the
weights for the inputs would be unlikely to change very much if the
model was retrained, even if the input data about customer’s income
and interest rate changed a little bit. (The actual numeric values for
the weights could be ascertained by tracing a straight line from min‐
imum of the error function pictured in Figure 1-1 to the interest rate
axis [the X axis] and income axis [the Y axis].)

Figure 1-1. An illustration of the error surface of a traditional linear
model. (Figure courtesy of H2O.ai.)

Because of the convex nature of the error surface for linear models,
there is basically only one best model, given some relatively stable
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set of inputs and a prediction target. The model associated with the
error surface displayed in Figure 1-1 would be said to have strong
model locality. Moreover, because the weighting of income versus
interest rate is highly stable in the pictured error function and its
associated linear model, explanations about how the function made
decisions about loan defaults based on those two inputs would also
be stable. More stable explanations are often considered more trust‐
worthy explanations.

Figure 1-2 depicts a nonconvex error surface that is representative of
the error function for a machine learning function with two inputs
—for example, a customer’s income and a customer’s interest rate—
and an output, such as the same customer’s probability of defaulting
on a loan. This nonconvex error surface with no obvious global
minimum implies there are many different ways a complex machine
learning algorithm could learn to weigh a customer’s income and a
customer’s interest rate to make a good decision about when they
might default. Each of these different weightings would create a dif‐
ferent function for making loan default decisions, and each of these
different functions would have different explanations. Less-stable
explanations feel less trustworthy, but are less-stable explanations
actually valuable and useful? The answer to this question is central
to the value proposition of interpretable machine learning and is
examined in the next section.

Figure 1-2. An illustration of the error surface of a machine learning
model. (Figure courtesy of H2O.ai.)
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Accurate Models with Approximate
Explanations
Due to many valid concerns, including the multiplicity of good
models, many researchers and practitioners deemed the complex,
intricate formulas created by training machine learning algorithms
to be uninterpretable for many years. Although great advances have
been made in recent years to make these often nonlinear, nonmono‐
tonic, and noncontinuous machine-learned response functions
more understandable[10][11], it is likely that such functions will
never be as directly or universally interpretable as more traditional
linear models.

Why consider machine learning approaches for inferential or
explanatory purposes? In general, linear models focus on under‐
standing and predicting average behavior, whereas machine-learned
response functions can often make accurate but more difficult to
explain predictions for subtler aspects of modeled phenomenon. In
a sense, linear models create very exact interpretations for approxi‐
mate models (see Figure 1-3).

Figure 1-3. A linear model, g(x), predicts the average number of pur‐
chases, given a customer’s age. The predictions can be inaccurate but
the explanations are straightforward and stable. (Figure courtesy of
H2O.ai.)

Whereas linear models account for global, average phenomena in a
dataset, machine learning models attempt to learn about the local
and nonlinear characteristics of a dataset and also tend to be evalu‐

Accurate Models with Approximate Explanations | 9



ated in terms of predictive accuracy. The machine learning inter‐
pretability approach seeks to make approximate interpretations for
these types of more exact models. After an accurate predictive
model has been trained, it should then be examined from many dif‐
ferent viewpoints, including its ability to generate approximate
explanations. As illustrated in Figure 1-4, it is possible that an
approximate interpretation of a more exact model can have as
much, or more, value and meaning than the exact interpretations
provided by an approximate model.

Additionally, the use of machine learning techniques for inferential
or predictive purposes shouldn’t prevent us from using linear mod‐
els for interpretation. In fact, using local linear approximations of
more complex machine-learned functions to derive explanations, as
depicted in Figure 1-4, is one of the most popular current
approaches. This technique has become known as local interpretable
model-agnostic explanations (LIME), and several free and open
source implementations of LIME are available for practitioners to
evaluate[12].

Figure 1-4. A machine learning model, g(x), predicts the number of
purchases, given a customer’s age, very accurately, nearly replicating
the true, unknown signal-generating function, f(x). Although the
explanations for this function are approximate, they are at least as
useful, if not more so, than the linear model explanations in
Figure 1-3. (Figure courtesy of H2O.ai.)

Defining Interpretability
Let’s take a step back now and offer a definition of interpretability,
and also briefly introduce those groups at the forefront of machine
learning interpretability research today. In the context of machine
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learning models and results, interpretability has been defined as “the
ability to explain or to present in understandable terms to a human.”
[13]. The latter might be the simplest definition of machine learning
interpretability, but there are several communities with different and
sophisticated notions of what interpretability is today and should be
in the future. Two of the most prominent groups pursuing interpret‐
ability research are a group of academics operating under the acro‐
nym FAT* and civilian and military researchers funded by the
Defense Advanced Research Projects Agency (DARPA). FAT* aca‐
demics (meaning fairness, accountability, and transparency in multi‐
ple artificial intelligence, machine learning, computer science, legal,
social science, and policy applications) are primarily focused on
promoting and enabling interpretability and fairness in algorithmic
decision-making systems with social and commercial impact.
DARPA-funded researchers seem primarily interested in increasing
interpretability in sophisticated pattern recognition models needed
for security applications. They tend to label their work explainable
AI, or XAI.

A Machine Learning Interpretability
Taxonomy for Applied Practitioners
Technical challenges as well as the needs and perspectives of differ‐
ent user communities make machine learning interpretability a sub‐
jective and complicated subject. Luckily, a previously defined
taxonomy has proven useful for characterizing the interpretability of
various popular explanatory techniques used in commercial data
mining, analytics, data science, and machine learning applica‐
tions[10]. The taxonomy describes models in terms of their com‐
plexity, and categorizes interpretability techniques by the global or
local scope of explanations they generate, the family of algorithms to
which they can be applied, and their ability to promote trust and
understanding.

A Scale for Interpretability
The complexity of a machine learning model is directly related to its
interpretability. Generally, the more complex the model, the more
difficult it is to interpret and explain. The number of weights or
rules in a model—or its Vapnik–Chervonenkis dimension, a more
formal measure—are good ways to quantify a model’s complexity.
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However, analyzing the functional form of a model is particularly
useful for commercial applications such as credit scoring. The fol‐
lowing list describes the functional forms of models and discusses
their degree of interpretability in various use cases.

High interpretability—linear, monotonic functions
Functions created by traditional regression algorithms are prob‐
ably the most interpretable class of models. We refer to these
models here as “linear and monotonic,” meaning that for a
change in any given input variable (or sometimes combination
or function of an input variable), the output of the response
function changes at a defined rate, in only one direction, and at
a magnitude represented by a readily available coefficient.
Monotonicity also enables intuitive and even automatic reason‐
ing about predictions. For instance, if a credit lender rejects
your credit card application, it can easily tell you why because
its probability-of-default model often assumes your credit score,
your account balances, and the length of your credit history are
monotonically related to your ability to pay your credit card bill.
When these explanations are created automatically, they are
typically called reason codes. Linear, monotonic functions play
another important role in machine learning interpretability.
Besides being highly interpretable themselves, linear and mono‐
tonic functions are also used in explanatory techniques, includ‐
ing the popular LIME approach.

Medium interpretability—nonlinear, monotonic functions
Although most machine-learned response functions are nonlin‐
ear, some can be constrained to be monotonic with respect to
any given independent variable. Although there is no single
coefficient that represents the change in the response function
output induced by a change in a single input variable, nonlinear
and monotonic functions do always change in one direction as a
single input variable changes. Nonlinear, monotonic response
functions usually allow for the generation of both reason codes
and relative variable importance measures. Nonlinear, mono‐
tonic response functions are therefore interpretable and poten‐
tially suitable for use in regulated applications.

Of course, there are linear, nonmonotonic machine-learned
response functions that can, for instance, be created by the mul‐
tivariate adaptive regression splines (MARS) approach. We do
not highlight these functions here. They tend to be less accurate
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predictors than purely nonlinear, nonmonotonic functions and
less directly interpretable than their completely monotonic
counterparts.

Low interpretability—nonlinear, nonmonotonic functions
Most machine learning algorithms create nonlinear, nonmono‐
tonic response functions. This class of functions is the most dif‐
ficult to interpret, as they can change in a positive and negative
direction and at a varying rate for any change in an input vari‐
able. Typically, the only standard interpretability measures these
functions provide are relative variable importance measures.
You should use a combination of several techniques, which we
present in the sections that follow, to interpret these extremely
complex models.

Global and Local Interpretability
It’s often important to understand the entire model that you’ve
trained on a global scale, and also to zoom into local regions of your
data or your predictions and derive local explanations. Global inter‐
pretations help us understand the inputs and their entire modeled
relationship with the prediction target, but global interpretations
can be highly approximate in some cases. Local interpretations help
us understand model predictions for a single row of data or a group
of similar rows. Because small sections of a machine-learned
response function are more likely to be linear, monotonic, or other‐
wise well-behaved, local explanations can be more accurate than
global explanations. It’s also very likely that the best explanations of
a machine learning model will come from combining the results of
global and local interpretation techniques. In subsequent sections
we will use the following descriptors to classify the scope of an inter‐
pretable machine learning approach:

Global interpretability
Some machine learning interpretability techniques facilitate
global explanations of machine learning algorithms, their
results, or the machine-learned relationship between the predic‐
tion target and the input variables.

Local interpretability
Local interpretations promote understanding of small regions
of the machine-learned relationship between the prediction tar‐
get and the input variables, such as clusters of input records and
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their corresponding predictions, or deciles of predictions and
their corresponding input rows, or even single rows of data.

Model-Agnostic and Model-Specific Interpretability
Another important way to classify model interpretability techniques
is whether they are model agnostic, meaning they can be applied to
different types of machine learning algorithms, or model specific,
meaning techniques that are applicable only for a single type or class
of algorithm. For instance, the LIME technique is model agnostic
and can be used to interpret nearly any set of machine learning
inputs and machine learning predictions. On the other hand, the
technique known as treeinterpreter is model specific and can be
applied only to decision tree models. Although model-agnostic
interpretability techniques are convenient, and in some ways ideal,
they often rely on surrogate models or other approximations that
can degrade the accuracy of the explanations they provide. Model-
specific interpretation techniques tend to use the model to be inter‐
preted directly, leading to potentially more accurate explanations.

Understanding and Trust
Machine learning algorithms and the functions they create during
training are sophisticated, intricate, and opaque. Humans who
would like to use these models have basic, emotional needs to
understand and trust them because we rely on them for our liveli‐
hoods or because we need them to make important decisions. For
some users, technical descriptions of algorithms in textbooks and
journals provide enough insight to fully understand machine learn‐
ing models. For these users, cross-validation, error measures, and
assessment plots probably also provide enough information to trust
a model. Unfortunately, for many applied practitioners, the usual
definitions and assessments don’t often inspire full trust and under‐
standing in machine learning models and their results.

Trust and understanding are different phenomena, and both are
important. The techniques presented in the next section go beyond
standard assessment and diagnostic practices to engender greater
understanding and trust in complex models. These techniques
enhance understanding by either providing transparency and spe‐
cific insights into the mechanisms of the algorithms and the
functions they create or by providing detailed information and
accountability for the answers they provide. The techniques that fol‐

14 | An Introduction to Machine Learning Interpretability



low enhance trust by enabling users to observe or ensure the fair‐
ness, stability, and dependability of machine learning algorithms,
the functions they create, and the answers they generate.

Common Interpretability Techniques
Many credible techniques for training interpretable models and
gaining insights into model behavior and mechanisms have existed
for years. Many others have been put forward in a recent flurry of
research. This section of the report discusses many such interpreta‐
bility techniques in terms of the proposed machine learning inter‐
pretability taxonomy. The section begins by discussing data
visualization approaches because having a strong understanding of a
dataset is a first step toward validating, explaining, and trusting
models. We then present white-box modeling techniques, or models
with directly transparent inner workings, followed by techniques
that can generate explanations for the most complex types of predic‐
tive models such as model visualizations, reason codes, and variable
importance measures. We conclude the section by discussing
approaches for testing machine learning models for fairness, stabil‐
ity, and trustworthiness.

Seeing and Understanding Your Data
Seeing and understanding data is important for interpretable
machine learning because models represent data, and understanding
the contents of that data helps set reasonable expectations for model
behavior and output. Unfortunately, most real datasets are difficult
to see and understand because they have many variables and many
rows. Even though plotting many dimensions is technically possible,
doing so often detracts from, instead of enhances, human under‐
standing of complex datasets. Of course, there are many, many ways
to visualize datasets. We chose the techniques highlighted in Tables
1-1 and 1-2 and in Figure 1-5 because they help illustrate many
important aspects of a dataset in just two dimensions.

Table 1-1. A description of 2-D projection data visualization approaches

Technique: 2-D projections

Description: Projecting rows of a dataset from a usually high-dimensional original space into a
more visually understandable lower-dimensional space, ideally two or three dimensions.
Techniques to achieve this include Principal Components Analysis (PCA), Multidimensional Scaling
(MDS), t-Distributed Stochastic Neighbor Embedding (t-SNE), and Autoencoder Networks.
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Suggested usage: The key idea is to represent the rows of a dataset in a meaningful low-
dimensional space. Datasets containing images, text, or even business data with many variables can
be difficult to visualize as a whole. These projection techniques enable high-dimensional datasets to
be projected into representative low-dimensional spaces and visualized using the trusty old scatter
plot technique. A high-quality projection visualized in a scatter plot should exhibit key structural
elements of a dataset, such as clusters, hierarchy, sparsity, and outliers. 2-D projections are often
used in fraud or anomaly detection to find outlying entities, like people, transactions, or computers,
or unusual clusters of entities.

References:
Visualizing Data using t-SNE
MDS, Cox, T.F., Cox, M.A.A. Multidimensional Scaling. Chapman and Hall. 2001.
The Elements of Statistical Learning
Reducing the Dimensionality of Data with Neural Networks

OSS:
h2o.ai
R (various packages)
scikit-learn (various functions)

Global or local scope: Global and local. You can use most forms of visualizations to see a courser
view of the entire dataset, or they can provide granular views of local portions of the dataset.
Ideally, advanced visualization tool kits enable users to pan, zoom, and drill-down easily.
Otherwise, users can plot different parts of the dataset at different scales themselves.

Best-suited complexity: 2-D projections can
help us to understand very complex relationships
in datasets.

Model specific or model agnostic: Model
agnostic; visualizing complex datasets with
many variables.

Trust and understanding: Projections add a degree of trust if they are used to confirm machine
learning modeling results. For instance, if known hierarchies, classes, or clusters exist in training or
test datasets and these structures are visible in 2-D projections, it is possible to confirm that a
machine learning model is labeling these structures correctly. A secondary check is to confirm that
similar attributes of structures are projected relatively near one another and different attributes of
structures are projected relatively far from one another. Consider a model used to classify or cluster
marketing segments. It is reasonable to expect a machine learning model to label older, richer
customers differently than younger, less affluent customers, and moreover to expect that these
different groups should be relatively disjointed and compact in a projection, and relatively far from
one another.

Table 1-2. A description of the correlation graph data visualization
approach

Technique: Correlation graphs
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Description: A correlation graph is a two-dimensional representation of the relationships
(correlation) in a dataset. The authors create correlation graphs in which the nodes of the graph are
the variables in a dataset and the edge weights (thickness) between the nodes are defined by the
absolute values of their pairwise Pearson correlation. For visual simplicity, absolute weights below a
certain threshold are not displayed, the node size is determined by a node’s number of connections
(node degree), node color is determined by a graph community calculation, and node position is
defined by a graph force field algorithm. The correlation graph allows us to see groups of correlated
variables, identify irrelevant variables, and discover or verify important relationships that machine
learning models should incorporate, all in two dimensions.

Suggested usage: Correlation graphs are a very powerful tool for seeing and understanding
relationships (correlation) between variables in a dataset. They are especially powerful in text
mining or topic modeling to see the relationships between entities and ideas. Traditional network
graphs—a similar approach—are also popular for finding relationships between customers or
products in transactional data and for use in fraud detection to find unusual interactions between
entities like people or computers.

OSS:
Gephi
https://github.com/jphall663/corr_graph

Global or local scope: Global and local. You can use most forms of visualizations to see a courser
view of the entire dataset, or they can provide granular views of local portions of the dataset.
Ideally, advanced visualization tool kits enable users to pan, zoom, and drill-down easily.
Otherwise, users can plot different parts of the dataset at different scales themselves.

Best-suited complexity: Correlation graphs can
help us understand complex relationships but can
become difficult to understand with more than
several thousand variables.

Model specific or model agnostic: Model
agnostic; visualizing complex datasets with
many variables.

Trust and understanding: Correlation graphs promote understanding by displaying important
and complex relationships in a dataset. They can enhance trust in a model if variables with thick
connections to the target are important variables in the model, and we would expect a model to
learn that unconnected variables are not very important. Also, common sense relationships
displayed in the correlation graph should be reflected in a trustworthy model.
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Figure 1-5. A data visualization, a correlation graph, that is helpful for
enhancing trust and understanding in machine learning models
because it displays important, complex relationships between variables
in a dataset as edges and nodes in an undirected graph. (Figure cour‐
tesy of H2O.ai.)

Techniques for Creating White-Box Models
When starting a machine learning endeavor, it’s a best practice to
determine to what degree interpretability is an important criterion
for success. If interpretability is of paramount importance to the
project’s outcome, it’s best to use an interpretable modeling techni‐
que from the beginning. The techniques described in Tables 1-3
through 1-8 will enable you to create highly transparent models,
well-suited for regulated industry or other applications in which
interpretability is of extreme importance.
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Table 1-3. A description of the decision tree white-box modeling approach

Technique: Decision trees

Description: Decision trees create a model that predicts the value of a target variable based on
several input variables. Decision trees are directed graphs in which each interior node corresponds
to an input variable; there are edges to child nodes for values of that input variable that create the
highest target purity in each child. Each terminal node or leaf node represents a value of the target
variable given the values of the input variables represented by the path from the root to the leaf.
These paths can be visualized or explained with simple if-then rules.

Suggested usage: Decision trees are great for training simple, transparent models on I.I.D. data
—data where a unique customer, patient, product, or other entity is represented in each row. They
are beneficial when the goal is to understand relationships between the input and target variable
with “Boolean-like” logic. Decision trees can also be displayed graphically in a way that is easy for
non-experts to interpret.

References:
Breiman, L., J. Friedman, C. J. Stone, and R. A. Olshen. Classification and regression trees. CRC press,
1984.
The Elements of Statistical Learning

OSS:
rpart
scikit-learn (various functions)

Global or local scope: Global.

Best-suited complexity: Decision trees can
create very complex nonlinear, nonmonotonic
functions. For best interpretability, restrict to
shallow depth and binary splits. Predictions can
also be restricted to be monotonic with respect to
input variable values.

Model specific or model agnostic: Model
specific; interpretability is a key motivating
factor for using decision-tree models.

Trust and understanding: Increases trust and understanding because input to target mappings
follow a decision structure that can be easily visualized and interpreted and compared to domain
knowledge and reasonable expectations.
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Table 1-4. A description of the XNN modeling approach

Technique: eXplainable Neural Networks

Description: Often considered the least transparent of black-box models, recent work in XNN
implementation and explaining artificial neural network (ANN) predictions may render that notion
of ANNs obsolete. Many of the breakthroughs in ANN explanation stem from the straightforward
calculation of derivatives of the trained ANN response function with regard to input variables made
possible by the proliferation of deep learning toolkits such as Tensorflow. These derivatives allow
for the disaggregation of the trained ANN response function prediction into input variable
contributions for any observation.

Suggested usage: Explaining ANN predictions is impactful for at least two major reasons. While
most users will be familiar with the widespread use of ANNs in pattern recognition, they are also
used for more traditional data mining applications such as fraud detection, and even for regulated
applications such as credit scoring. Moreover, ANNs can now be used as accurate and explainable
surrogate models, potentially increasing the fidelity of both global and local surrogate model
techniques.

References:
Ancona, M., E. Ceolini, C. Öztireli, and M. Gross. Towards Better Understanding of Gradient-based
Attribution Methods for Deep Neural Networks, ICLR 2018.
Vaughan, Joel, et al. Explainable Neural Networks Based on Additive Index Models .

OSS:
Skater (integrated gradients and layerwise relevance propagation)
DeepLift

Global or local scope: Typically local but can be both.

Best-suited complexity: XNNs can be used to
directly model extremely nonlinear, non-
monotonic phenomena or they can be used as
surrogate models to explain other nonlinear,
non-monotonic models.

Model specific or model agnostic: As
directly interpretable models, XNNs rely on
model specific mechanisms. Used as surrogate
models, XNNs are model agnostic.

Trust and understanding: XNN techniques are typically used to make ANN models themselves
more understandable or as surrogate models to make other nonlinear models more
understandable.
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Table 1-5. A description of the monotonic GBM white-box modeling
approach

Technique: Monotonic gradient-boosted machines (GBMs)

Description: Monotonicity constraints can turn difficult-to-interpret nonlinear, nonmonotonic
models into highly interpretable, and possibly regulator-approved, nonlinear, monotonic models.
One application of this can be achieved with monotonicity constraints in GBMs by enforcing a
uniform splitting strategy in constituent decision trees, where binary splits of a variable in one
direction always increase the average value of the dependent variable in the resultant child node,
and binary splits of the variable in the other direction always decrease the average value of the
dependent variable in the other resultant child node.

Suggested usage: Potentially appropriate for most traditional data mining and predictive
modeling tasks, even in regulated industries (no matter what a training data sample says,
regulators might still want to see monotonic behavior) and for consistent reason code generation
(consistent reason code generation is generally considered a gold standard of model
interpretability).

Reference:
XGBoost Documentation

OSS:
XGBoost
http://bit.ly/2IIRhh5
https://github.com/h2oai/mli-resources/blob/master/notebooks/mono_xgboost.ipynb

Global or local scope: Monotonicity
constraints create globally interpretable
response functions.

Best-suited complexity: Monotonic GBM’s
create nonlinear, monotonic response functions.

Model specific or model agnostic: As
implementations of monotonicity constraints
vary for different types of models in practice,
they are a model-specific interpretation
technique.

Trust and understanding: Understanding is
increased by enforcing straightforward
relationships between input variables and the
prediction target. Trust is increased when
monotonic relationships, reason codes, and
detected interactions are parsimonious with
domain expertise or reasonable expectations.

Table 1-6. A description of alternative regression white-box modeling
approaches

Technique: Logistic, elastic net, GAM, and quantile regression

Description: These techniques use contemporary methods to augment traditional, linear modeling
methods. Linear model interpretation techniques are highly sophisticated, typically model specific,
and the inferential features and capabilities of linear models are rarely found in other classes of
models. These types of models usually produce linear, monotonic response functions with globally
interpretable results like those of traditional linear models but often with a boost in predictive
accuracy.

Suggested usage: Interpretability for regulated industries; these techniques are meant for
practitioners who just can’t use complex machine learning algorithms to build predictive models
because of interpretability concerns or who seek the most interpretable possible modeling results.
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References:
The Elements of Statistical Learning
Koenker, R. Quantile regression (No. 38). Cambridge University Press, 2005.

OSS:
gam
glmnet
h2o.ai
quantreg
scikit-learn (various functions)

Global or local scope: Alternative regression
techniques often produce globally interpretable
linear, monotonic functions that can be
interpreted using coefficient values or other
traditional regression measures and statistics.

Best-suited complexity: Alternative
regression functions are generally linear,
monotonic functions. However, GAM
approaches can create quite complex nonlinear
functions.

Model specific or model agnostic: Model specific.

Trust and understanding: The lessened assumption burden, the ability to select variables
without potentially problematic multiple statistical significance tests, the ability to incorporate
important but correlated predictors, the ability to fit nonlinear phenomena, or the ability to fit
different quantiles of the data’s conditional distribution (and not just the mean of the conditional
distribution) could lead to more accurate understanding of modeled phenomena. Basically, these
techniques are trusted linear models but used in new, different, and typically more robust ways.

Table 1-7. A description of rule-based white-box modeling approaches

Technique: Rule-based models

Description: A rule-based model is a type of model that is composed of many simple Boolean
statements that can be built by using expert knowledge or learning from real data.

Suggested usage: Useful in predictive modeling and fraud and anomaly detection when
interpretability is a priority and simple explanations for relationships between inputs and targets
are desired, but a linear model is not necessary. Often used in transactional data to find simple,
frequently occurring pairs or triplets of products in purchases.

Reference:
An Introduction to Data Mining, Chapter 6

OSS:
RuleFit
arules
FP-growth
Scalable Bayesian Rule Lists

Global or local scope: Rule-based models
can be both globally and locally
interpretable.

Best-suited complexity: Most rule-based models
are easy to follow for users because they obey
Boolean logic (“if, then”), but they can model
extremely complex nonlinear, nonmonotonic
phenomena.

22 | An Introduction to Machine Learning Interpretability

https://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII_print12.pdf
https://cran.r-project.org/web/packages/gam/index.html
https://cran.r-project.org/web/packages/glmnet/index.html
https://github.com/h2oai/h2o-3
https://cran.r-project.org/web/packages/quantreg/index.html
https://github.com/scikit-learn/scikit-learn
https://www-users.cs.umn.edu/~kumar001/dmbook/ch6.pdf
http://statweb.stanford.edu/~jhf/R_RuleFit.html
https://cran.r-project.org/web/packages/arules/index.html
http://spark.apache.org/docs/2.2.0/mllib-frequent-pattern-mining.html
https://users.cs.duke.edu/~cynthia/code/sbrl_1.0.tar.gz


Model specific or model agnostic:
Model specific; can be highly interpretable
if rules are restricted to simple
combinations of input variable values.

Trust and understanding: Rule-based models
increase understanding by creating straightforward,
Boolean rules that can be understood easily by users.
Rule-based models increase trust when the
generated rules match domain knowledge or
reasonable expectations.

Table 1-8. A description of SLIM white-box modeling approaches

Technique: Supersparse Linear Integer Models (SLIMs)

Description: SLIMs create predictive models that require users to only add, subtract, or multiply
values associated with a handful of input variables to generate accurate predictions.

Suggested usage: SLIMs are perfect for serious situations in which interpretability and simplicity
are critical, similar to diagnosing newborn infant health using the well-known Agpar scale.

Reference:
Supersparse Linear Integer Models for Optimized Medical Scoring Systems

Software:
slim-python

Global or local scope: SLIMs are globally
interpretable.

Best-suited complexity: SLIMs are simple, linear
models.

Model specific or model agnostic: Model
specific; interpretability for SLIMs is
intrinsically linked to their linear nature and
several model-specific optimization routines.

Trust and understanding: SLIMs enhance
understanding by breaking complex scenarios into
simple rules for handling system inputs. They
increase trust when their predictions are accurate
and their rules reflect human domain knowledge or
reasonable expectations.

Techniques for Enhancing Interpretability in Complex
Machine Learning Models
In some machine learning projects, accuracy is more important than
interpretability, but some level of transparency is still desirable. In
other projects, dirty or unstructured input data rules out the use of
highly interpretable classical regression models, even if explainabil‐
ity is a necessary outcome of the project. The techniques described
here are meant to be used in these situations or other scenarios in
which explanations must be extracted from complex, nonlinear,
black-box models or decisioning systems. Many of these techniques
can also be used on more transparent white-box models to further
enhance interpretability.
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Seeing model mechanisms with model visualizations
Model visualization techniques can provide graphical insights into
the prediction behavior of nearly any black-box model and into the
prediction mistakes they might make. A few popular model visuali‐
zations, including decision-tree surrogate models, individual condi‐
tional expectation plots, partial-dependence plots, and residual plots
are presented in Tables 1-9 through 1-12 and in Figures 1-6 and 1-7.
Surrogate models are simple models of more complex models, and
decision-tree surrogate models (Figure 1-6) create an approximate
overall flow chart of a complex model’s decision-making processes.
Individual conditional expectation (ICE) plots and partial-
dependence plots (Figure 1-7) provide a local and global view,
respectively, into how a model’s predictions change based on certain
input variables. Residual analysis provides a mechanism to investi‐
gate how black-box models make errors in their predictions while
also highlighting anomalous data and outliers that might have
undue influence on a model’s predictions.

Table 1-9. A description of the decision-tree surrogate model visualization
technique

Technique: Decision-tree surrogates

Description: A decision-tree surrogate model is a simple model that is used to explain a complex
model. Decision-tree surrogate models are usually created by training a decision tree on the original
inputs and predictions of a complex model. Variable importance, trends, and interactions displayed
in the surrogate model are then assumed to be indicative of the internal mechanisms of the
complex model. There are few, possibly no, theoretical guarantees that the simple surrogate model
is highly representative of the more complex model.

Suggested usage: Use decision-tree surrogate models to create approximate flow charts of a more
complex model’s decision-making processes.

References:
Extracting Tree-Structured Representations of Trained Networks
Interpreting Blackbox Models via Model Extraction

OSS:
http://bit.ly/2DL3Ip3
https://github.com/h2oai/mli-resources/blob/master/notebooks/dt_surrogate.ipynb

Global or local scope: Generally, decision-tree surrogate models are global. The globally
interpretable attributes of a simple model are used to explain global attributes of a more complex
model. However, there is nothing to preclude fitting decision-tree surrogate models to more local
regions of a complex model’s predictions and their corresponding input rows.
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Best-suited complexity: Surrogate models can
help explain machine learning models of medium
to high complexity, including nonlinear, monotonic
or nonmonotonic models.

Model specific or model agnostic: Model
agnostic.

Trust and understanding: Decision-tree surrogate models enhance trust when their variable
importance, trends, and interactions are aligned with human domain knowledge and reasonable
expectations of modeled phenomena. Decision-tree surrogate models enhance understanding
because they provide insight into the internal mechanisms of complex models.

Figure 1-6. A model visualization, a decision-tree surrogate that illus‐
trates an approximate overall flowchart of the decision processes
learned by a more complex machine learning model. (Figure courtesy
of H2O.ai.)

Table 1-10. A description of the ICE plot model visualization technique

Technique: Individual Conditional Expectation (ICE) plots

Description: ICE plots, a newer and less well-known adaptation of partial-dependence plots, can
be used to create local explanations using the same ideas as partial-dependence plots.
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Suggested usage: ICE plots depict how a model behaves for a single row of data and can be used
to validate monotonicity constraints. ICE pairs nicely with partial dependence in the same plot to
provide local information to augment the global information provided by partial dependence. ICE
can detect when partial dependence fails in the presence of strong interactions among input
variables. Some practitioners feel that ICE can be misleading in the presence of strong correlations
between input variables.

Reference:
Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional
Expectation

OSS:
ICEbox
http://bit.ly/2IIRhh5
https://github.com/h2oai/mli-resources/blob/master/notebooks/pdp_ice.ipynb

Global or local scope: ICE plots are local
because they apply to one observation at a
time.

Best-suited complexity: Can be used to
describe nearly any function, including nonlinear,
nonmonotonic functions.

Model specific or model agnostic: Model agnostic.

Trust and understanding: ICE plots enhance understanding by showing the nonlinearity,
nonmonotonicity, and two-way interactions between input variables and a target variable in
complex models, per observation. They can also enhance trust when displayed relationships
conform to domain knowledge expectations, when the plots remain stable or change in expected
ways over time, or when displayed relationships remain stable under minor perturbations of the
input data.

Table 1-11. A description of the partial dependence plot model
visualization technique

Technique: Partial-dependence plots

Description: Partial-dependence plots show us the average manner in which machine-learned
response functions change based on the values of one or two input variables of interest, while
averaging out the effects of all other input variables.

Suggested usage: Partial-dependence plots show the nonlinearity, nonmonotonicity, and two-
way interactions in very complex models and can be used to verify monotonicity of response
functions under monotonicity constraints. They pair nicely with ICE plots, and ICE plots can expose
when partial dependence becomes inaccurate in the presence of strong interactions.

Reference:
The Elements of Statistical Learning

OSS:
h2o.ai
R (various packages)
scikit-learn (various functions)
http://bit.ly/2IIRhh5
https://github.com/h2oai/mli-resources/blob/master/notebooks/pdp_ice.ipynb
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Global or local scope: Partial-dependence
plots are global in terms of the rows of a
dataset but local in terms of the input variables.

Best-suited complexity: Can be used to
describe almost any function, including complex
nonlinear, nonmonotonic functions.

Model specific or model agnostic: Model agnostic.

Trust and understanding: Partial-dependence plots enhance understanding by showing the
nonlinearity, nonmonotonicity, and two-way interactions between input variables and a dependent
variable in complex models. They can also enhance trust when displayed relationships conform to
domain knowledge expectations, when the plots remain stable or change in expected ways over
time, or when displayed relationships remain stable under minor perturbations of the input data.

Figure 1-7. A model visualization in which partial dependence is dis‐
played with ICE for the input variable AGE across several percentiles
of predicted probabilities to explain and validate the behavior of a
monotonic GBM model. (Figure courtesy of H2O.ai.)

Table 1-12. A description of the residual plot model visualization
technique

Technique: Residual plots

Suggested usage: Diagnostic for any machine learning model. Plotting the residual values against
the predicted values is a time-honored model assessment technique and a great way to find outliers
and see all of your modeling results in two dimensions.

Description: Residuals refer to the difference between the actual value of a target variable and the
predicted value of a target variable for every row in a data set. Residuals can be plotted in 2-D to
analyze predictive models.

OSS:
http://bit.ly/2FQ7X8E
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Global or local scope: Residual analysis
can be global in scope when used to assess
the goodness-of-fit for a model over an
entire dataset. It can be local in scope when
used to diagnose how a model treats a
single row or small group of rows of data.

Best-suited complexity: Can be used to assess
machine learning models of varying complexity,
including linear, nonlinear and nonmonotonic
functions.

Model specific or model agnostic: Model
agnostic.

Trust and understanding: Residual analysis can
promote understanding by guiding users toward
problematic predictions and enabling users to debug
such problems. It can enhance trust when residuals
are appropriately distributed and other fit statistics
(i.e., R2, AUC, etc.) are in the appropriate ranges.

Deriving reason codes for enhanced transparency and accountability
Reason codes (or turn-down codes) are plain-text explanations of a
model prediction in terms of a model’s input variables. The latter
phrases come from credit scoring. Credit lenders in the US must
provide reasons for automatically rejecting a credit application. If a
lender rejects your credit card application, it must tell you why
based on the values of input variables to its credit risk models such
as your credit score, your account balances, and the length of your
credit history.

Reason codes are crucially important for machine learning inter‐
pretability in applied settings because they tell practitioners why a
model makes a decision in terms of the model’s input variables, and
they can help practitioners understand if high weight is being given
to potentially problematic inputs including gender, age, marital sta‐
tus, or disability status. Of course, generating reason codes for linear
models is nothing new to banks, credit bureaus, and other entities.
The techniques described in Tables 1-13 through 1-17 are interest‐
ing because you can apply them to generate approximate reason
codes for potentially more accurate machine learning models.

Like global surrogate models, local surrogate models are simple
models of complex models, but they are trained only for certain,
interesting rows of data (for instance, the best customers in a dataset
or most-likely-to-fail pieces of equipment according to some mod‐
el’s predictions). LIME is a prescribed method for building local lin‐
ear surrogate models around single observations. Decision trees or
other rule-based models can also be used in local regions. Both can
shed light on how decisions are made for specific observations, and
reason codes can be derived by sorting the contributions of input
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variables in these local models. Newer, related, and highly anticipa‐
ted work from the creators of LIME, called anchors, uses rules to
explain the local prediction behavior of complex models. Other
promising techniques for generating reason codes for machine
learning models include treeinterpreter, leave-one-covariate-out
(LOCO) local variable importance, and Shapley explanations.

Table 1-13. A description of the anchors local variable importance, or
reason code, technique

Technique: Anchors

Description: A newer approach from the inventors of LIME that generates high-precision sets of
plain-language rules to describe a machine learning model prediction in terms of the model’s input
variable values.

Suggested usage: Anchors is currently most applicable to classification problems in both
traditional data mining and pattern-recognition domains.

Reference:
Anchors: High-Precision Model-Agnostic Explanations

OSS: anchor

Global or local scope: Local. Best-suited complexity: Anchors can create explanations
for very complex functions, but the rule set needed to
describe the prediction can become large.

Model specific or model
agnostic: Model agnostic.

Trust and understanding: Anchor explanations increase
understanding by creating explanations for each prediction
in a dataset. They enhance trust when the important
features for specific records conform to human domain
knowledge and reasonable expectations.

Table 1-14. A description of the LOCO local variable importance, or
reason code, technique

Technique: Leave-One-Covariate-Out (LOCO) variable importance

Description: A general implementation of LOCO might proceed as follows. LOCO creates local
interpretations for each row in a training or unlabeled score set by scoring the row of data once and
then again for each input variable (e.g., covariate) in the row. In each additional scoring run, one
input variable is set to missing, zero, its mean value, or another appropriate value for leaving it out
of the prediction. The input variable with the largest absolute impact on the prediction for that row
is taken to be the most important variable for that row’s prediction. Variables can also be ranked by
their impact on the prediction on a per-row basis.

Suggested usage: You can use LOCO to build reason codes for each row of data on which a
complex model makes a prediction. LOCO can deteriorate in accuracy when complex nonlinear
dependencies exist in a model. Shapley explanations might be a better technique in this case.

Reference:
Distribution-Free Predictive Inference for Regression
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OSS:
conformal
http://bit.ly/2DL3Ip3
https://github.com/h2oai/mli-resources/blob/master/notebooks/loco.ipynb

Global or local scope: Typically local, but
LOCO also creates global variable importance
measures by estimating the mean change in
accuracy for each variable over an entire dataset
and can even provide confidence intervals for
these global estimates of variable importance.

Best-suited complexity: LOCO measures are
most useful for nonlinear, nonmonotonic
response functions but can be applied to many
types of machine-learned response functions.

Model specific or model agnostic: Model agnostic.

Trust and understanding: LOCO measures increase understanding because they tell us the most
influential variables in a model for a particular observation and their relative rank. LOCO measures
increase trust if they are in line with human domain knowledge and reasonable expectations. They
also increase trust if they remain stable when data is lightly and intentionally perturbed and
whether they change in acceptable ways as data changes over time or when pertinent scenarios are
simulated.

Table 1-15. A description of the LIME local variable importance, or
reason code, technique

Technique: Local Interpretable Model-Agnostic Explanations (LIME)

Description: Uses local linear surrogate models to explain regions in a complex machine-learned
response function around an observation of interest.

Suggested usage: Local linear model parameters can be used to describe the average behavior of
a complex machine-learned response function around an observation of interest and to construct
reason codes. Appropriate for pattern recognition applications, as well. Potentially inappropriate for
generating explanations in real time on unseen data.

Reference:
“Why Should I Trust You?” Explaining the Predictions of Any Classifier

OSS:
eli5
lime (Python)
lime (R)
http://bit.ly/2u4Ychs

Best-suited complexity: Suited for response
functions of high complexity but can fail in regions of
extreme nonlinearity or high-degree interactions.

Global or local scope: Local.

Model specific or model agnostic: Model agnostic.

Trust and understanding: LIME increases transparency by revealing important input features and
their linear trends. LIME enhances accountability by creating explanations for each observation in a
dataset. LIME bolsters trust and fairness when the important features and their linear trends around
specific records conform to human domain knowledge and reasonable expectations.
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Table 1-16. A description of the treeinterpreter local variable importance,
or reason code, technique

Technique: Treeinterpreter

Description: Treeinterpreter decomposes decision tree, random forest, and gradient-boosting
machine (GBM) predictions into bias (overall training data average) and component terms for each
variable used in a model. Treeinterpreter simply outputs a list of the bias and individual variable
contributions globally and for each record.

Suggested usage: You can use Treeinterpreter to interpret complex tree-based models, and to
create reason codes for each prediction. However, local contributions do not sum to the model
prediction in some cases and in some implementations, which is an unnerving level of
approximation for such a simple technique.

Reference:
Random forest interpretation with scikit-learn

OSS:
eli
treeinterpreter

Global or local scope: Treeinterpreter is global
in scope when it represents average
contributions of input variables to overall model
predictions. It is local in scope when used to
explain single predictions.

Best-suited complexity: Treeinterpreter is
meant to explain the usually nonlinear,
nonmonotonic response functions created by
decision tree, random forest, and GBM
algorithms.

Model specific or model agnostic: Treeinterpreter is model specific to algorithms based on
decision trees.

Trust and understanding: Treeinterpreter increases understanding by displaying ranked
contributions of input variables to the predictions of decision tree models. Treeinterpreter enhances
trust when displayed variable contributions conform to human domain knowledge or reasonable
expectations. Treeinterpreter also enhances trust if displayed explanations remain stable when data
is subtly and intentionally corrupted and if explanations change in appropriate ways as data
changes over time or when interesting scenarios are simulated.

Table 1-17. A description of the Shapley local variable importance, or
reason code, technique

Technique: Shapley explanations

Description: Shapely explanations are a promising newer technique with credible theoretical
support that unifies approaches such as LIME, LOCO, and treeinterpreter for deriving consistent local
variable contributions to black-box model predictions.

Suggested usage: Shapely explanations are based on accurate, local contributions of input
variables and can be rank-ordered to generate reason codes. Shapley explanations have theoretical
support, which might make them more suitable for use in regulated industry, but they can be time
consuming to calculate, especially outside of XGBoost.

Reference:
A Unified Approach to Interpreting Model Predictions
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OSS:
shap
XGBoost

Global or local scope: Shapley explanations
are local but can be aggregated to create
global explanations.

Best-suited complexity: This method applies to
any machine learning model, including nonlinear
and nonmonotonic models.

Model specific or model agnostic: Can be
both. Uses a variant of LIME for model-
agnostic explanations. Takes advantage of
tree structures for decision tree models.

Trust and understanding: Shapely explanations
enhance understanding by creating explanations
for each observation in a dataset. They bolster trust
when the important features for specific records
conform to human domain knowledge and
reasonable expectations.

Variable importance measures
Variable importance quantifies the global contribution of each input
variable to the predictions of a complex machine learning model.
For nonlinear, nonmonotonic response functions, variable impor‐
tance measures are often the only commonly available quantitative
measure of the machine-learned relationships between input vari‐
ables and the prediction target in a model. Variable importance
measures rarely give insight into even the average direction that a
variable affects a response function. They simply state the magni‐
tude of a variable’s relationship with the response as compared to
other variables used in the model.

Variable importance measures are typically seen in tree-based mod‐
els but are sometimes also reported for other models. A simple heu‐
ristic rule for variable importance in a decision tree is related to the
depth and frequency at which a variable is split on in a tree, where
variables used higher in the tree and more frequently in the tree are
more important. For artificial neural networks, variable importance
measures are typically associated with the aggregated, absolute mag‐
nitude of model parameters associated with a given variable of inter‐
est.

Table 1-18. A description of global variable importance techniques

Technique: Global variable importance

Suggested usage: Understanding an input variable’s global contribution to model predictions.
Practitioners should be aware that unsophisticated measures of variable importance can be biased
toward larger scale variables or variables with a high number of categories. Global feature
importance measures are typically not appropriate for creating reason codes.
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References:
Greedy Function Approximation: A Gradient Boosting Machine
Random Forests

OSS:
h2o.ai
R (various packages)
scikit-learn (various functions)

Global or local scope: Global. Best-suited complexity: Variable importance
measures are most useful for nonlinear,
nonmonotonic response functions but can be applied
to many types of machine-learned response functions.

Model specific or model agnostic: Global variable importance techniques are typically model
specific.

Trust and understanding: Variable importance measures increase understanding because they
tell us the most influential variables in a model and their relative rank. Variable importance
measures increase trust if they are in line with human domain knowledge and reasonable
expectations. They also increase trust if they remain stable when data is lightly and intentionally
perturbed, and if they change in acceptable ways as data changes over time or when pertinent
scenarios are simulated.

Fairness
Fairness is yet another important facet of interpretability, and an
admirable goal for any machine learning project whose outcome
will affect human lives. Traditional checks for fairness, often called
disparate impact analysis, typically include assessing model predic‐
tions across sensitive demographic segments of ethnicity or gender.
Today the study of fairness in machine learning is widening and
progressing rapidly, including the development of techniques to
remove unfairness, or bias, from model predictions and models that
learn to make fair predictions.

Table 1-19. A description of fairness

Technique: Fairness (various techniques)

Description: Fairness means that models treat segments within training data and new unseen
data roughly equally in terms of predictions, accuracy, variance, or error.

Suggested usage: Different types of contemporary fairness techniques can detect bias, can correct
bias in model predictions, and can learn to make fair predictions.

Reference: 
Barocas, S., M. Hardt, and A. Narayanan. Fairness and Machine Learning.

OSS:
AIF360
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Global or local scope: Most straightforward
fairness techniques check or achieve group fairness
(i.e., segments of interest receive similar treatment
by a model as the entire population). Some fairness
techniques can check or achieve individual fairness
(i.e., similar individuals are treated similarly by a
model).

Best-suited complexity: Fairness is best
paired with transparent, understandable
models.

Model specific or model agnostic: Many bias detection and correction techniques involve post-
processing of predictions and can be model agnostic. However, some fairness techniques do involve
model-specific information.

Trust and understanding: Fairness is crucial for trusting machine learning models.

Sensitivity Analysis: Testing Models for Stability and
Trustworthiness
Sensitivity analysis investigates whether model behavior and outputs
remain stable when data is intentionally perturbed or other changes
are simulated in data. Beyond traditional assessment practices, sen‐
sitivity analysis of machine learning model predictions is perhaps
the most important validation technique for machine learning mod‐
els. Machine learning model predictions can change dramatically
due to only minor changes in input variable values. In practice,
many linear model validation techniques focus on the numerical
instability of regression parameters due to correlation between input
variables or between input variables and the target variable. It can be
prudent for those switching from linear modeling techniques to
machine learning techniques to focus less on numerical instability of
model parameters and to focus more on the potential instability of
model predictions. One of the main thrusts of linear model valida‐
tion is sniffing out correlation in the training data that could lead to
model parameter instability and low-quality predictions on new
data. The regularization built into most machine learning algo‐
rithms makes their parameters and rules more accurate in the pres‐
ence of correlated inputs, but as discussed repeatedly, machine
learning algorithms can produce very complex nonlinear, nonmo‐
notonic response functions that can produce wildly varying predic‐
tions for only minor changes in input variable values. Hence, in the
context of machine learning, directly testing a model’s predictions
on simulated, unseen data is likely a better use of time than digging
through static training data looking for hidden correlations.

Sensitivity analysis can also test model behavior and outputs when
interesting situations or known corner cases are simulated. For
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instance, test your model’s predictions on negative incomes or ages,
use character values instead of numeric values for certain variables,
or try input variable values 10 to 20% larger in magnitude than
would ever be expected to be encountered in new data. If you can’t
think of any interesting situations or corner cases, simply try a ran‐
dom data attack: score many samples of random data with your
machine learning model and analyze the resulting predictions. You
will likely be surprised by what you find.

Table 1-20. A description of sensitivity analysis

Technique: Sensitivity analysis

Suggested usage: Testing machine learning model predictions for accuracy and stability using
simulated data. If you are using a machine learning model, you should probably be conducting
sensitivity analysis.

OSS:
http://bit.ly/2FQ7X8E
https://github.com/h2oai/mli-resources/blob/master/notebooks/sensitivity_analysis.ipynb

Global or local scope: Sensitivity analysis can be a global interpretation technique when many
input rows to a model are perturbed, scored, and checked for problems, or when global
interpretation techniques are used, such as using a single, global surrogate model to ensure major
interactions remain stable when data is lightly and purposely corrupted. Sensitivity analysis can be
a local interpretation technique when a single row is perturbed, scored, and checked or when local
interpretation techniques are used, for instance using LIME to determine if the important variables
in a credit allocation decision remain stable for a given customer segment under macroeconomic
stress testing.

Best-suited complexity: Sensitivity analysis can help explain the predictions of nearly any type of
response function, but it is probably most appropriate for nonlinear response functions and
response functions that model high degree variable interactions. For both cases, small changes in
input variable values can result in large changes in a predicted response.

Model specific or model agnostic: Model agnostic.

Trust and understanding: Sensitivity analysis enhances understanding because it shows a
model’s likely behavior and output in important situations, and how a model’s behavior and output
may change over time. Sensitivity analysis enhances trust when a model’s behavior and outputs
remain stable when data is subtly and intentionally corrupted. It also increases trust if models
adhere to human domain knowledge and expectations when interesting situations are simulated,
or as data changes over time.

Testing Interpretability
The approximate nature of machine learning explanations can, and
often should, call into question the trustworthiness of model explan‐
ations themselves. Don’t fret! You can test explanations for accuracy.
Originally, researchers proposed testing machine learning model
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explanations by their capacity to enable humans to correctly deter‐
mine the outcome of a model prediction based on input data values.
[13] Very recent research has highlighted the potential bias of
human practitioners toward simpler explanations, even when simple
explanations are inaccurate[14]. Given that human evaluation stud‐
ies are likely impractical for most commercial data science or
machine learning groups anyway, several more automated
approaches for testing model explanations are proposed here.

Simulated data
You can use simulated data with known characteristics to test
explanations. For instance, models trained on totally random
data with no relationship between a number of input variables
and a prediction target should not give strong weight to any
input variable nor generate compelling local explanations or
reason codes. Conversely, you can use simulated data with a
known signal generating function to test that explanations accu‐
rately represent that known function.

Explanation stability with increased prediction accuracy
If previously known, accurate explanations or reason codes
from a simpler linear model are available, you can use them as a
reference for the accuracy of explanations from a related, but
more complex and hopefully more accurate, model. You can
perform tests to see how accurate a model can become before its
prediction’s reason codes veer away from known standards.

Explanation stability under data perturbation
Trustworthy explanations likely should not change drastically
for minor changes in input data. You can set and test thresholds
for allowable explanation value changes automatically by per‐
turbing input data. Explanations or reason code values can also
be averaged across a number of models to create more stable
explanations.

Machine Learning Interpretability in Action
To see how some of the interpretability techniques discussed in this
report might look and feel in action, a public, open source reposi‐
tory has been provided.

This repository contains examples of white-box models, model visu‐
alizations, reason code generation, and sensitivity analysis applied to
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the well-known Taiwanese credit card customer dataset[15] using
the popular XGBoost and H2O libraries in Python.

Conclusion
FAT/ML, explainable AI, and machine learning interpretability are
new, rapidly changing, and expanding fields. The widespread
acceptance of machine learning interpretability techniques will
likely be a contributing factor in the increasing adoption of machine
learning and artificial intelligence in both commercial applications
and in our day-to-day lives. At this juncture, training interpretable
machine learning models is still a difficult process, and yet practi‐
tioners should probably begin considering accountability, explaina‐
bility, interpretability, and transparency from the beginning of any
serious applied machine learning project. Moreover, new explana‐
tory techniques are bubbling up frequently. Some are rigorously tes‐
ted before being publicized, others are not. Some recognize the
approximate nature of the explanations they generate. Some do not.
Practitioners should be cognizant of the source of any explainability
software, consider testing any explanations they plan to use in
mission-critical applications, try out multiple local and global
explanation-generating techniques, and seek consistent results
across these multiple techniques.

Along with interpretability, automated machine learning is another
important new trend in artificial intelligence. Several open source
and proprietary software packages now build machine learning
models automatically with minimal human intervention. These new
automatic systems tend to be even more complex, and therefore
black box in nature, than today’s more human-oriented data science
workflows. For automation of machine learning to take hold across
a broad cross-section of industries, these cutting-edge predictive
modeling systems will need to be accountable, interpretable, and
transparent to their users.
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