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Abstract: In this work we discuss the possibility of reconciling quantum mechanics with 

classical mechanics by formulating a temporal dynamics, which is a dynamics caused by the 

rate of change of time with respect to distance. First, we show that a temporal dynamics can 

be derived from the time dilation formula in Einstein’s theory of special relativity. Then we 

show that a short-lived time-dependent force derived from a dynamical equation that is 

obtained from the temporal dynamics in a 1-dimensional temporal manifold can be used to 

describe Bohr’s postulates of quantum radiation and quantum transition between stable orbits 

in terms of classical dynamics and differential geometry. We extend our discussions on 

formulating a temporal dynamics to a 3-dimensional temporal manifold. With this 

generalisation we are able to demonstrate that a sub-quantum dynamics is a classical 

dynamics.  

 

1. Introduction  

In 1935, Einstein and his co-authors published a paper that raises the question of whether 

quantum mechanical description of physical reality can be considered complete [1]. Even 

though their non-locality arguments have been disproved by theory and experiments [2,3], 

fundamentally and epistemologically, their question remains unresolved. Despite the fact that 

the modern quantum theory is based on a more sophisticated and advanced mathematical 

formulation, many paradoxical and counter-intuitive aspects in physics still remain. This 

situation has an epistemological consequence that underpins the very foundation of quantum 

physics. If we do not simply embrace the current probabilistic interpretation of the quantum 

mechanical formalism then we need to find a way to interpret quantum physics. On the other 

hand, if general relativity could account for all forces and contain in it the quantum 

description of physical reality then it would be a complete theory. Because the dynamical 

foundation of quantum mechanics is based on classical mechanics, we may ask a question of 

whether the classical mechanics itself is incomplete. In this work we attempt to answer this 

question by formulating a new dynamics in addition to Newtonian dynamics to explain 

quantum phenomena. We will discuss the possibility of reconciling quantum mechanics with 

classical mechanics by formulating a temporal dynamics, which is a dynamics produced by 

the rate of change of time with respect to distance. In Section 2, we show that a temporal 

dynamics can be derived from the time dilation formula in Einstein’s theory of special 
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relativity [4,5]. In Section 3, we show that a short-lived time-dependent force derived from a 

dynamical equation that is obtained from the temporal dynamics in a temporal manifold can 

be used to describe Bohr’s postulates of quantum radiation and quantum transition between 

stable orbits in terms of classical dynamics and differential geometry. Despite the fact that 

Bohr’s model of a hydrogen-like atom is very basic compared to the modern theory of 

quantum mechanics, if we attempt to look for a connection between classical and quantum 

physics, we need to consider it first, because Bohr’s model itself is fundamentally classical, 

except for Bohr’s postulates [6]. These postulates assume the existence of discrete entities 

that could not be explained in terms of classical mechanics itself. In order to describe the 

dynamics of the electron in a deterministic manner we need to formulate a new dynamics that 

can be used to describe how the electron transits between stable orbits, because quantum 

mechanics based on Newtonian mechanics cannot explain this type of dynamical 

characteristics of the electron. Time has been considered to be part of the fundamental 

structure of space-time, either absolute, when time is assumed to flow with the same rate in 

all coordinate systems, or relative, when the rate of the flow of time is associated with 

relative motions. In this work, we will show that if time exhibits a dynamic character then a 

temporal dynamics will yield new physical insights that can be used to account for problems 

in quantum physics, such as the processes of quantum transition and quantum radiation in the 

Bohr’s model of a hydrogen-like atom in terms of classical dynamics. In Section 4, we extend 

our discussions on formulating a temporal dynamics to a 3-dimensional temporal manifold. 

With this generalisation we are able to demonstrate that a sub-quantum dynamics is a 

classical dynamics.  

For references, a summary of the postulates of Bohr’s model of a hydrogen-like atom may be 

summarised as follows: 

 The centripetal force required for the electron to orbit the nucleus in a stable circle is 

the Coulomb force         . Using Newton’s second law,     , we obtain 

   

 
 
   

  
                                                                                                                                    

 The permissible orbits are those that satisfy the condition that the angular momentum 

of the electron equals   , that is 

                                                                                                                                           

where the subscript n in    and    denotes the nth orbit.  

 When the electron moves in one of the stable orbits it does not radiate. However, it 

will radiate when it makes a transition between them. 

From Equations (1) and (2) we can derive the following 

    
                                                                                                                                                        

   
 

    
                                                                                                                                                  



where     
       is the Bohr radius. As in classical mechanics, using the kinetic energy 

   

 
     

 
      and the potential energy         , the total energy       is 

calculated as 

   
 

 

   

 
                                                                                                                                                

Using Equation (3), the energy levels of the permissible orbits are  

    
 

 

   

    
                                                                                                                                            

It is also noted that, as in circular motion, the relationship between velocity v, radius r and 

angular frequency   is given by      , for stable orbits of the electron, from Equations 

(3) and (4) we obtain 

   
  
  
 

 

   
   

                                                                                                                                    

It is seen from Equation (7) that when    ,     . 

2. The concept of time in Special Relativity 

In the next section we will formulate a temporal dynamics in terms of the rate of change of 

time of a physical object, similar to Newtonian dynamics. However, in this section we want 

to show that such temporal dynamics can be derived from Einstein’s theory of special 

relativity. Consider two inertial reference systems   and    with coordinates              and 

   
    

    
     . If the system    moves relative to the system   along the   -axis with the 

velocity v, then according to Newtonian physics the transformation of the coordinates of the 

two systems is the Galilean transformation [7] 

     
          

       
                                                                               

The concept of absolute time in Newtonian physics was changed when Einstein proposed his 

theory of special relativity. Instead of the Galilean transformation, in special relativity the 

transformation of the coordinates adopts the Lorentz transformation  

   
  

     

   
  

  

      
       

    
   

 
  
  

   
  

  

                                                        

From Equations (9), for infinitesimal changes, the formulas for the length contraction and the 

time dilation are derived as  

   

   
 
 

 

   
  

  

                                                                                                                                         



  

   
 

 

   
  

  

                                                                                                                                          

In the following we will consider the system    as a moving particle in a reference system  . 

During its motion, if the particle interacts with other physical objects, as in the case of 

Compton’s scattering between an electron and a photon, then the particle’s direction and 

speed will change. From Equation (11), the proper time interval will change during the 

interaction if we assume the time of the reference frame still flows at a constant rate. In this 

case we have a rate of change of the proper time of the particle. However, if the speed of the 

particle remains small compared to the speed of light after this short period of interaction 

then the proper time flow will still be the same as that of the reference frame. Inversely, if we 

assume the proper time to flow at a constant rate during the interaction then the time interval 

of the time of the reference frame will change, and in this case we have the rate of change of 

the time of the reference frame. Furthermore, we will consider the case when the interaction 

happens only in a very short duration of time, therefore, we assume that the form in Equation 

(11) still remains valid even though the velocity of the particle changes continuously. This 

can be considered as an extension of the postulate of relativity. It should be mentioned here 

that this kind of extension of the postulate of relativity had led Einstein to develop his general 

theory of relativity. The extended principle of relativity is stated as: “The law of physics must 

be of such a nature that they apply to systems of reference in any kind of motion” [4]. With 

the assumption that the relation given by Equation (11) remains valid for a continuous change 

of velocity, we obtain the second rate of change of the time of the reference frame with 

respect to the proper time as 

   

    
 

       

     
  

  
 
    

  

   
                                                                                                                     

Using Equation (11) and multiplying both sides of Equation (12) by the relativistic mass of 

the particle,              , where    is the particle’s rest mass, we obtain  

  

   

    
 

         

     
  

  
 
   

 

   
  

  
 
   
                                                                                              

Equation (13) can be re-written as 

   
    

  

  
 

 
   

    
                                                                                                                       

where           is a Newtonian force that is responsible for the rate of change of the 

time of the particle. The dynamical equation given by Equation (14) needs to be reformulated 

in terms of variables in the reference system in order to be applied. For example, if the force 

  is the Coulomb force that acts along the radial direction given by the position vector      



and the particle moves in circular orbits, such as the motion of the electron in Bohr’s model, 

then      . In the case of Bohr’s model, the speed of the electron in a stationary orbit is 

constant therefore according to Equation (11) the time rates of the reference frame time and 

the proper time are proportional to each other. For the nth orbit, we have          , 

therefore                     . We assume further that the proper time is the same 

for all stationary orbits. If the electron transits from one stationary orbit to another then it 

must adjust its time rate as measured by an observer in a reference frame. In order to do this it 

would need a second rate of change of its time with respect to distance along the path 

between the two orbits. From this result, it is seen that the second rate of change of the time 

of the particle occurs only when the particle departs from its circular motion. We will discuss 

this problem further in the following.  

Assume the transition of the electron between two stationary orbits is the radial motion. In 

this case we have                  . In the case of Bohr’s model of a hydrogen-like 

atom, this happens when the electron transits from one stationary orbit to another. When the 

electron moves out of a stationary orbit it is still under the influence of Coulomb force, 

therefore we can assume the force F in Equation (14) is the Coulomb force. Since the motion 

of the electron now is along the positive direction of the radial position vector and the 

Coulomb force is in opposite direction, we can write                  . Then 

Equation (14) can be re-written as  

    
     

  

  
 

 
   

      
                                                                                                              

Using Equation (11), we can write                                   . With 

this result, Equation (15) becomes 

    
     

  

  
 
   

   
                                                                                                                     

If we define a new physical quantity 

      
     

  

  
                                                                                                                           

then Equation (16) takes the form 

 
   

   
                                                                                                                                                     

The dynamical equation given in Equation (18) has the form of Newton’s second law of 

motion. However, in this case the roles of space and time are reversed. Equation (18) plays 

the crucial role in the new temporal dynamics. The new physical quantity   plays the role of 

the inertial mass of a particle in Newtonian mechanics. As in the case of special relativistic 

dynamics, this new physical quantity also depends on the velocity of the particle.  



3. A temporal dynamics in one dimension 

In Newtonian physics, time is an independent 1-dimensional Euclidean continuum, which is 

an essential component of the fundamental structure of the nature. Time is considered to be 

absolute and its properties are independent of any system of reference. The time intervals of 

time between two events are identical for all reference systems. In classical physics, the 

dynamics of a particle is a study of its motion in space with respect to time under the action 

of forces, where time is considered to be universal and to flow at a constant rate. Because 

time is considered to be 1-dimensional, therefore in the following we will discuss the 

dynamics of a particle in 1-dimension and extend the discussion to a 3-dimensional temporal 

manifold in the next section. Consider the motion of a particle in a straight line under the 

action of a force  . Its displacement from an origin is represented by the position vector  . In 

order to study the dynamics of the particle, we divide the 1-dimensional Euclidean time into 

equal intervals    and measure the distance     that the particle has travelled in the     time 

interval. In this case we define the rate of change of the displacement of the particle as 

      . If these rates are equal then we say the particle is moving with a constant velocity  . 

Let     , we have        . If the rates are different then we say the particle is moving 

with an acceleration                . When physical entities related to the particle, 

such as mass   and charge  , are introduced then we can formulate a classical dynamics such 

as Newtonian dynamics 

 
   

   
                                                                                                                                                    

In the following we will term Newtonian dynamics as the spatial dynamics, in contrast to the 

temporal dynamics that we formulate as follows. We also consider the motion of the particle 

along a straight line as described above. Instead of dividing the time line into equal intervals, 

we divide the spatial line into equal spatial intervals   . After the particle moves through the 

    spatial interval we measure the corresponding time interval     that the particle has taken 

to move through that distance. In this case we define the rate of change of the temporal 

displacement of the particle with respect to distance as       . The temporal displacement 

from a temporal origin is represented by the temporal vector  . If these rates are equal then 

we say the particle is moving with a constant temporal velocity   . Let     , we have 

        . If the rates are different then we say the particle is moving with a temporal 

acceleration                  . If the temporal dynamics of the particle is also 

caused by a force   then we can formulate a temporal dynamics similar to Newtonian 

dynamics 

 
   

   
                                                                                                                                                     

where the physical quantity  , which plays the role of the inertial mass   in Newtonian 

mechanics needs to be determined. The quantity   has the dimension of the quantity given by 

Equation (17), i.e.,             . The form given by Equation (21) is similar to Newton’s 



second law of motion given by Equation (20), except for the roles of space and time are 

reversed. 

It can be shown that the dynamics of a particle obtained from Equation (21) is equivalent to 

the dynamics obtained from Equation (20). For example, consider the simple harmonic 

motion with the force in Equation (20) is given by the Hooke’s law 

                                                                                                                                                            

Using Newton’s second law of motion  

 
   

   
                                                                                                                                                    

we obtain the dynamic equation for the simple harmonic motion 

 
   

   
                                                                                                                                                 

Since the motion is 1-dimensional, Equation (24) can be re-written in the form using only the 

magnitude of the position vector as 

 
   

   
                                                                                                                                                 

A general solution of Equation (25) with the initial condition         is given by 

        
 

 
                                                                                                                                     

The inverse obtained from Equation (26) is 

   
 

 
      

 

 
                                                                                                                                    

From Equation (27) we can derive the second rate of change of the time t with respect to r as  

   

   
  

 

 

 

          
                                                                                                                        

If we multiply both sides of Equation (28) by a dimensional constant D so that the right hand 

side of Equation (28) has the dimension of a force  , then we have 

 
   

   
                                                                                                                                                     

Equation (29) has the form of Newton’s second law similar to Equation (18) with the 

corresponding force given by  



   
 

 

  

          
                                                                                                                             

Since the motion is 1-dimensional, Equations (29) and (30) can be re-written in vector form  

 
   

   
                                                                                                                                                     

with the force   becomes 

   
 

 

  

          
                                                                                                                             

It is seen that, at least formally, the dynamics that arises from the system of Equations (31) 

and (32) is equivalent to the Newtonian dynamics that arises from the system of Equations 

(22) and (23), in the sense that either of them can be used to describe the dynamics of the 

simple harmonic motion. In this case, however, the quantity   is not required to be 

determined for a complete description of the simple harmonic motion. 

Now we consider an example that can be used to explain Bohr’s model. That is the motion 

along the radial direction of a particle of spatial mass m under an inverse square field with the 

force        . Applying Newtonian dynamics with Equation (20) we obtain   

 
   

   
  

 

  
                                                                                                                                            

The solution of this equation with the initial condition          is given by[8] 

   
 

  
    

 
  

   
 

  

                                                                                                                          

where E is the total energy of the particle. From Equation (34) we obtain the following rates 

of change of the time t with respect to the distance r 

  

  
 

 

  
    

 
  

                                                                                                                                   

   

   
 

   

        
 
  

   
                                                                                                                      

If we multiply both sides by the temporal mass D then we have 

 
   

   
 

    

        
 
  

   
                                                                                                                  



Hence the temporal force is found as 

  
    

        
 
  

   
                                                                                                                          

Inversely, if the temporal dynamics from Equation (21) together with the force from Equation 

(38) are given then the dynamics of the particle under the inverse square law can be 

recovered.  

Instead of Newtonian dynamics, we now consider the temporal dynamics of a particle by 

applying the dynamical law given by Equation (18). If the force is the Coulomb’s inverse 

square law with magnitude           , then we obtain the equation 

 
   

   
 
   

  
                                                                                                                                              

With the condition          , and the initial condition         , a general 

solution to Equation (39) can be found as 

     
 
 
   

 
                                                                                                                                              

The corresponding Newtonian force            derived from Equation (40) is  

    
 

   
 
 

   
  

   
 
   

 

   
 
 

                                                                                                 

Equation (39) can be used to explain in terms of classical dynamics how the electron of 

Bohr’s model of a hydrogen-like atom transits between stable orbits. It can be re-written as 

 
 

  
 
 

 
  

   

  
                                                                                                                                        

If we also assume the condition    ,       then we have the relation 

 

 
  

   

 
                                                                                                                                                 

It is noted that the energy due to the temporal dynamics is equal to the potential energy of the 

electron in the Coulomb field of the nucleus. Using Equation (3) and Equation (4), the value 

of D for the nth stable orbit of Bohr’s model can be calculated as 

   
    

   
   

                                                                                                                                           

Using this value of D, with the initial condition         , the solution given in Equation 

(40) becomes 



     
 

   
   

 
                                                                                                                                            

If we consider the time t in Equation (45) is the duration for the electron to transit between 

stable orbits, then the transition time from    to    can be calculated as 

  
   

   

 
   

  
  
                                                                                                                                   

For example, the time for the electron to transit from the first stable orbit to the second stable 

orbit of Bohr’s model is               The Newtonian force found in Equation (41) is re-

written as  

    
 

   
   

 

 

    
 

   
   

 
    

 

   
   

 

 

                                                                           

This is a repulsive force. This force is opposite to the attractive Coulomb force. It should be 

mentioned here that from Equations (3) and (4), the speed of the electron can be calculated as 

            
    m/s, which is much less than the speed of light in vacuum. Therefore, 

according to the time dilation given in Equation (11), the proper time flow and the time flow 

of the reference frame can be considered as flowing at the same rate. The magnitude of the 

force given in Equation (47) at     is        
    . This is equal to the magnitude of the 

Coulomb force          calculated at the distance        . In this case, because the 

net force on the electron equals zero, the electron does not radiate according to classical 

electrodynamics. From this analysis, we conclude that the effect of the force on the electron 

of a hydrogen-like atom of Bohr’s model given in Equation (47) must be very short-lived. 

This is in fact consistent with our assumption that this force only appears when there is a 

second rate of change of the time. It is possible to use the concept of an exchange of virtual 

photons in electrostatic interaction between two charges to address this situation [9]. We 

assume that each time the electron absorbs a virtual photon, in a very short duration of time 

the electron changes its speed and this will give rise to the second rate of change of the time. 

We have a different situation when the electron absorbs a real photon. The duration of the 

time during the process of absorption, as can be calculated using Equation (46), is long 

enough and the force given in Equation (47) will cause the electron to transit to the higher 

stable orbit. The average force given to the electron by the photon can be estimated according 

to classical dynamics as follows. For the electron to make a transition from the      stable 

orbit with       
    to the      stable orbit with       

   , the average force provided by 

the photon is 

  
  

  
 

   

   
        

                                                                                                                           

For example, if      and      then the average force is                 . This 

force has the same order of magnitude of the Coulomb force on the electron in its ground 

orbit, which can be calculated as        
                     . 



4. Time as a 3-dimensional manifold 

In this section, we will generalise to formulate a 3-dimensional temporal dynamics that 

involves the second rate of change of time with respect to distance. Mathematically, space-

time can be assumed to be a six-dimensional metrical continuum, which is a union of a 3-

dimensional spatial manifold and a 3-dimensional temporal manifold. The spatial manifold is 

a simply connected Euclidean space    and the temporal manifold is also a simply connected 

Euclidean manifold   . The points of this space-time are expressed as                    , 

where            representing           , and the square of the infinitesimal space-time 

length is of a quadratic form          
      For the purpose of this work, however, as in 

Newtonian physics, we will consider space-time as two separate Euclidean manifolds which 

exist together. However, as shown below, these spatial and temporal manifolds are connected 

dynamically. In this case, the quadratic forms for the infinitesimal spatial arc length and the 

temporal arc length are reduced respectively to the forms          
       

       
  

and          
       

       
 . In Newtonian physics, the dynamics of a particle is a 

description of the rate of change of its position in space with respect to time according to 

Newton’s laws of motion, where time is assumed to flow at a constant rate and is considered 

to be a 1-dimensional continuum. In the following, we will generalise this formulation by 

considering the dynamics of a particle as a description of the mutual rates of change of the 

position and the time of a particle with respect to one another, where not only space but time 

is also considered to be a 3-dimensional manifold. As shown below, this generalisation will 

yield new insights that can be used to explain physical phenomena. Especially, it is shown 

that matter, space and time of a particle are connected through the spatial mass m and the 

temporal mass D.  

Consider a particle of inertial mass   that occupies a position in space. In a coordinate 

system  , the position of the particle at the time   is determined by the position vector 

                         . We have assumed the Newtonian time is the temporal arc 

length  .  As in classical physics, the classical dynamics of the particle is governed by 

Newton’s laws of motion. We will term Newton’s laws as spatial laws. These laws are stated 

as follows: 

 First spatial law: In an inertial reference frame, unless acted upon by a force, an object 

either remains at rest or continues to move at a constant velocity. 

 Second spatial law: 

 

 
   

   
                                                                                                                                       

 

This law is used to determine the spatial trajectory of the particle in space with respect 

to time. 

 Third spatial law: for every action, there is an equal and opposite reaction. 

These spatial laws determine the dynamics of a particle in space with the assumption that 

time is 1-dimensional, universal and flowing at a constant rate. For example, within this 



formulation, Equation (24) for the simple harmonic motion should have been written as 

            , where   is the temporal arc length in the 3-dimensional temporal 

manifold and          
       

       
 .  

Similar to the case of 1-dimensional time, we can establish a dynamics for a 3-dimensional 

temporal manifold by considering space as an independent variable. However, due to the 

symmetry between space and time we may use the following argument to formulate. As in 

classical dynamics, in order for a particle to change its position it needs a flow of time. So, 

similarly, we assume that in order for the particle to change its time it would need an 

expansion of space. We consider the motion of a particle in space as its local spatial 

expansion. This assumption then allows us to define the rate of change of time with respect to 

space. From this mutual symmetry between space and time, a temporal dynamics, which is 

identical to Newtonian dynamics, can be assumed. Consider a particle of a temporal mass   

that occupies a time in the 3-dimensional temporal manifold. In the coordinate system  , the 

time of the particle at the position specified by the spatial vector   is determined by the 

temporal vector                          , where   is the spatial arc length in the 3-

dimensional spatial manifold and          
       

       
 .  We assume the 

temporal dynamics of the particle is governed by dynamical laws which are similar to 

Newton’s laws of motion in space. In the following we will term these laws as temporal laws. 

These laws are stated as follows: 

 First temporal law: In an inertial reference frame, unless acted upon by a force, the 

time of an object either does not flow or flows at a constant rate. This is a 

generalisation of Newtonian concept of time, which is considered to be universal and 

flowing at a constant rate independent of the state of motion of the particle.  

 Second temporal law: 

 

 
   

   
                                                                                                                                       

 

The constant   is a dimensional constant which plays the role of the inertial mass   

of the particle in space. We can choose a unit for D so that the force F in Equation 

(50) remains a force. This law is used to determine the temporal trajectory of the 

particle in the time manifold with respect to space. 

 Third temporal law: for every action, there is an equal and opposite reaction. 

With the view that time is a 3-dimensional manifold, it follows that time flow is a complex 

description with regards to a physical process. Time is not simply specified as past, present 

and future, but also dependent on its direction of flow. Only when the direction of flow of 

time can be specified then the state and the dynamics of a particle can be determined 

completely. For example, if time is a 3-dimensional continuum whose topology is Euclidean 

   then the time of a particle with a temporal distance of unit length from the origin of a 

reference system is a temporal sphere of unit radius. The 3-dimensional temporal manifold 

can be reduced to 1-dimensional continuum by considering the 3-dimensional temporal 



manifold as a compactified manifold of the form     , where    is a 2-dimensional 

compact manifold whose size is much smaller than any length. However, in the following we 

will only consider forces that act along a radial spatial direction, such as the force of gravity 

and Coulomb force, therefore even though we can assume time as a 3-dimensional continuum 

whose topology is Euclidean   , we will also only consider the dynamics of a particle along 

its radial time. In this case time is effectively a 1-dimensional continuum. Therefore, in the 

following, otherwise stated, we will assume       and      .  

First, we want to investigate whether there are any forces that can produce the same dynamics 

for a physical system if we apply Equations (49) and (50) separately. Suppose the temporal 

dynamics of a particle and its spatial dynamics are influenced by the same force F that gives 

rise to the same physical process, then we have 

 
   

   
  

   

   
                                                                                                                                         

Since m and D are constant, Equation (51) can be re-written in magnitude form as 

 
   

   
  

   

   
                                                                                                                                         

The Equation (52) can be shown to take the form 

   

   
 
 

 
  

  

  
 
 

                                                                                                                                

From this equation we obtain the following equations  

   

   
                                                                                                                                                         

and 

  

  
       

 
                                                                                                                                         

Form these results, it is concluded that      and space and time are linearly related in this 

case. The speed given by Equation (55) may be the maximum speed of a particle of spatial 

mass m and temporal mass D in an empty space-time. If a particle has a mass m and its speed 

in empty space is v then from Equation (55) we obtain         For example, if each 

particle is a galaxy of the observable universe then using Hubble’s law       the value of 

D can be determined [10]. In this case because the proper distance d can change over time, 

therefore the value of D can also change over time. Or, if photons are considered to have a 

mass of                and their speed in empty space is              then the 

value of    is                     [11]. These results also show that in order for the 

space to expand with the forward time, D must be negative.  



Equation (54) when written in vector form has a more complex structure that may be 

associated with physical observables in quantum mechanics. The equation can be re-written 

in a vector form as follows 

   

   
                                                                                                                                                         

If we apply the temporal rate with explicit partial derivatives to Equation (56) then besides 

the velocity, there exists a physical quantity that can be interpreted as spin in quantum 

mechanics. In Newtonian classical mechanics, the position vector which satisfies Equation 

(56) takes the form 

                                                                                                                                                        

where               is the constant velocity of the particle and    is an initial position. 

However, in terms of the 3-dimensional temporal manifold, Equation (56) becomes 

     
   

      

 

     

    
   

     

 

   

 
   

   
                                                                                              

where we have assumed          , with   ’s are constants.  It is seen that the vector 

              plays the role of the velocity v in spatial dynamics. The position vector 

that satisfies Equation (58) is 

                                                   

                                                                                                    

where a’s and v’s are arbitrary constants. Using the conditions          , this position 

vector can be re-written as 

        

         
         
         

  

  
  
  
                                                                                 

It is seen from this form that if a 3-dimensional temporal manifold is introduced along side 

with the 3-dimensional spatial manifold then, in addition to the velocity  , the motion of a 

free particle is also described by a matrix, which, even though the overall effect being a linear 

motion in space, can be represented as rotation in the temporal manifold if the matrix satisfies 

the orthogonality condition        
 
                 . It should be mentioned here that 

there is an isomorphism between the set of 3-dimensional orthogonal matrices and the set of 

pair of matrices (Q,-Q), where Q is a transformation matrix which represents the Cayley-

Klein parameters          , which can be written in terms of the Euler angles         as 

follows [12], 

   
  
  

   
 
      

    
 

 
  
      

    
 

 

  
      

    
 

 
  

      
    

 

 

                                                                              



The half angles and the double-valued property of the isomorphism are related to the fact that 

the value of the spin of an elementary particle such as an electron is half integral.  

We now extend our investigation of the similarity between the 3-dimensional temporal 

dynamics and the 3-dimensional spatial dynamics of a particle and show that the sub-

quantum dynamics of an elementary particle is a classical dynamics. From the symmetry of 

space and time given by the dynamical equations (49) and (50), we anticipate that physical 

laws which govern the spatial dynamics and the temporal dynamics of a particle should have 

identical forms, except for their roles to be reversed. We know that in classical and wave 

mechanics, a dynamical equation that describes a physical system can be derived from the 

law of conservation of energy, which in turns is derived from the concept of work done. 

Therefore, we will apply this procedure in our investigation. In classical mechanics, the work 

done is defined as 

        
  

  

                                                                                                                                           

In the following we will focus only on the work done of an inverse square field with the force 

      , where A is a constant. In spatial dynamics, with this form of force, the work done 

defined by Equation (62) on a particle along its radial motion becomes  

   
 

  
  

  

  

                                                                                                                                          

From the similarity between the spatial dynamics and the temporal dynamics of the particle, 

we may assume the work done in the temporal dynamics along the radial time to be written as 

   
 

  
  

  

  

                                                                                                                                          

where B is a constant. In fact, the form of work done given by Equation (64) can be realised, 

for example, by Planck’s quantum of energy        in quantum physics [13]. The 

Planck’s quantum of energy can be put in this form as follows 

  
 

 
  

 

  
  

 

 

                                                                                                                                  

Besides Planck’s quantum of energy, another fundamental relation in quantum mechanics is 

de Broglie’s relation between the momentum and the wavelength of a particle,       [14]. 

This relation can be re-written in the form given by Equation (63) as 

  
 

 
  

 

  
  

 

 

                                                                                                                                   

We will discuss later that these forms of work done and momentum can be used to show that 

at the sub-quantum level the dynamics of radiation is a classical dynamics. Now we show that 



using Equations (49), (50), (63) and (64) we can obtain different forms for the conservation 

law of energy and the corresponding wave equation for each form. 

Form 1: Using Equations (49) and (63) 

  

  
   

   
  

  

  

  
 

  
  

  

  

                                                                                                                     

we obtain the following form of the conservation law, where E is the total energy, 

 

 
    

 

 
                                                                                                                                           

A classical solution to Equation (68) for a particle moving along a radial direction with the 

initial condition          can be written as   

   
 

  
    

 
  

   
 

  

                                                                                                                         

Using the standard procedure in quantum mechanics to replace          and       , 

the corresponding wave equation to Equation (68) is found as [15] 

 
  

  
    

 

 
    

  

  
                                                                                                                     

 

The well-known Schrödinger wave equation for a hydrogen-like atom is then obtained by 

replacing        in Equation (70). It should be emphasised here that we have used the 

motion along a radial direction in order to obtain a form for the law of conservation of 

energy. However, when we convert the form to a wave equation, the wave equation can be 

used to describe the wave dynamics of the particle in 3 spatial dimensions with respect to the 

1-dimensional temporal arc length.  

 

Form 2: Using Equations (50) and (63) 

 

  
   

   
  

  

  

  
 

  
  

  

  

                                                                                                                      

 

we obtain the following form for the energy conservation law  

 

 

 
 
 

 
                                                                                                                                                    

 

A classical solution to Equation (72) can be found as 



 

  
 

 
  

 

 
                                                                                                                                    

 

This solution can be reduced to the form of the solution given in Equation (40). In order to 

convert Equation (72) into a wave equation, as in the case of the Schrödinger wave equation, 

we re-write Equation (72) in the following form 

 

   
 

 
    

 
       

 
                                                                                                                          

 

Using the identity between the momentum operator        and the Fractional Laplacian 

     ,     
 
         

 
       

 
 , the time-dependent wave equation corresponding to 

Equation (74) takes the form  

 

    
 

  
     

 
   

 

 
    

 
   

  

 
                                                                                             

 

Whether Equation (75) can be solved using the conventional mathematical analysis requires 

further investigation. However, according to our previous analysis, the resulting wave-

function would be a description of the transition of an elementary particle in a quantum 

system, such as the transition of the electron from one stationary orbit to another of a 

hydrogen-like atom in Bohr’s model when the constant   is replaced by       .  

 

Form 3: Using Equations (49) and (64) 

 

  
   

   
  

  

  

  
 

  
  

  

  

                                                                                                                      

 

we obtain the following form for the energy conservation law  

 

 

 
    

 

 
                                                                                                                                           

 

A classical solution to Equation (77) is given by 

 

   
 

 
    

 

 
 

 

    
          

 

 
                                                           

 



where   is a constant. The condition for the solution (78) to exist as real solution is      . 

If B is identified as the Planck constant,    , and E as the Planck quantum energy, 

     , then we have    , where T is the period of wave motion of the particle involved. 

In the next section, we will derive a dynamics that can be used to describe a physical process 

for     only. Now we show that the relation (76) can be used to study the dynamics of the 

process of radiation of an elementary particle from a quantum system. In quantum physics, 

Planck’s quantum of energy is considered as a complete unit of energy which is indivisible, 

even when it is being produced or absorbed by a quantum system [13,16]. This quantum 

hypothesis has led to the development of quantum mechanics and quantum field theories 

which are fundamental and essential to predictions and explanations of observations of sub-

atomic physical processes [6,15]. Even though quantum theories have been proved to be 

highly successful in applications to physical problems, the quantum principles still remain 

paradoxical, especially when we try to reconcile the quantum dynamics, which seems to be 

probabilistic, to classical dynamics, which is deterministic. We suspect that this problem may 

be the result of an unknown dynamical process when a microscopic object is being emitted or 

absorbed by a quantum system. With this in mind, we will show that there is a propulsive 

force in action that transfers energy to the emitted particle and the total transferred energy is 

the Planck’s quantum of energy. The work done W given in Equation (62) by a force F that 

moves an object with velocity v from time    to time    is re-written as 

 

         

  

  

                                                                                                                                          

In the case of a microscopic particle emitted from a quantum system, the work done W is 

equal to Planck’s quantum of energy that can be expressed in the form given by Equation 

(65). It is seen from Equation (65) that possible effects of a propulsive force are applied to the 

emitted particle only after the time T, which is the period of wave motion of the quantum 

particle when the particle is bounded inside a quantum system. The bounded state of the 

electron of a hydrogen-like atom is a wave-like state will be discussed in Section 6. In the 

following we consider these effects to be classical, which obey the generalised Newtonian 

dynamics. From Equations (65) and (79) we obtain the relation 

    
 

  
                                                                                                                                                     

Assuming        and using Newton’s second law         , the following equations 

are obtained 

  
 

   
                                                                                                                                                      

 
  

  
 

 

   
                                                                                                                                               



If we consider the condition that at the initial time     , the velocity of the particle is 

     , then solutions to Equation (82) are found as follows 

   

 
 
   

 

 
   

 

 
 
 

 
                                                                                                                         

Taking the positive sign for v from Equation (83) we obtain the required propulsive force 

  
 

     
  

  
  

 
  

 
  

                                                                                                                       

The negative sign of v from the solutions (83) may be considered when an elementary 

particle is being absorbed by a quantum system. Furthermore, using de Broglie’s relation 

given in Equation (66), it can be shown that the momentum of the emitted particle satisfies 

the relation 

         
 

 
 
 

 
                                                                                                                           

where λ is the wavelength of the particle’s wave motion before it is emitted from a quantum 

system. It is seen from these results that there is a continuous transfer of energy and 

momentum between a quantum system and a microscopic object during a quantum radiation 

process. The total energy transferred to the particle is equal to the Planck’s quantum of 

energy, which is a total work done on the particle, and the momentum in de Broglie’s relation 

is a total transferred momentum.  

If the constant   in Equation (77) is identified with the Planck’s constant,    , the 

corresponding time-dependent wave equation to Equation (77) is obtained as 

 

 
  

  
    

 

 
    

  

  
                                                                                                                      

 

First it is noted that when    , Equation (85) reduces to the Schrödinger wave equation for 

a free particle in space. In reality, however, due to the smallness of the Planck constant, the 

duration is very short to an observer in a laboratory. During this transition time, Equation 

(85) can be solved as follows. Let                , Equation (85) is reduced to the 

following two equations 

 

 
  

  
                                                                                                                                             

 

  

  
  

  

 
  

 

 
                                                                                                                                      

 



Equation (86) is the Schrödinger wave equation for a free particle with a continuous spectrum 

of energy. Solutions to Equation (86) take the form of a plane wave 

 

                                                                                                                                                  

 

On the other hand, solutions to Equation (87) are given by 

 

             
       

 
    

       

 
  

 

  
 

 

  
 

      
   

 
                                                

 

where c is an undetermined constant. As we discussed above, we assume that the particle 

emitted from the quantum system at the time    , which is the period of wave motion of 

the particle in a quantum system. At      we have        , therefore the initial value 

of the solution is 

 

            
      

 
    

      

 
  

 

  

 

  

                                                                          

 

 

Form 4: Using Equations (50) and (64)  

 

  
   

   
  

  

  

  
 

  
  

  

  

                                                                                                                       

 

we obtain the following energy conservation law  

 

 

 
 
 

 
                                                                                                                                                    

 

A classical solution to Equation (92) is found as 

 

  
 

  
                                                                                                                            

 

where c is an undetermined constant. The condition for the solution (93) to exist as a real 

solution is      . If we also identify B with the Planck constant and E with the Planck 

quantum energy, then we have    , where T is the period of wave motion of the particle. 

The initial condition of Equation (93) is given by    ,   
 

  
          . If    , then 

the initial distance    is equal to    
 

  
        .  



 The relation given in Equation (91) can also be used to study the dynamics of the process of 

radiation of an elementary particle from a quantum system. Using the relation (50) and (83) 

we obtain the following system of equations 

  
 

   
                                                                                                                                                      

 
 

  
 
 

 
  

 

  
                                                                                                                                           

With the final conditions           the solution to Equation (95) is found as  

 

  
 
 

 
   

 

 
 
 

 
                                                                                                                                  

Equation (96) shows that there is a continuous transfer of energy from a quantum system to 

an emitted particle to increase its speed from     at the initial time      to the final value 

     at    . At the time    , the amount of energy transferred from the system is also 

equal to Planck’s quantum of energy    . The corresponding force given by Equation (94) is 

  
 

  
 
 

  
 
 

 
 
 

 
 
 

 
                                                                                                                          

In order to convert the relation given by Equation (92) into a wave equation, we re-write it as 

 

   
 

 
    

 
       

 
                                                                                                                          

 

The corresponding wave equation to Equation (98) is 

 

 
    

 
    

 
         

 
                                                                                                    

 

The time-dependent wave equation of Equation (99) is  

 

 
    

 
    

 
        

 

  
     

 
                                                                                   

 

Because of the Fractional Laplacian, whether Equation (99) and Equation (100) can be solved 

using the conventional mathematical analysis also requires further investigation.  

 

Form 5: Using Equations (49) and (50)  

 

  
   

   
  

  

  

   
   

   
  

  

  

                                                                                                             



 

we obtain the following energy conservation law  

 

 

 
    

 

 
                                                                                                                                         

 

General classical solutions to Equation (102) can be found to have a linear relationship 

between space and time in the form          , which includes one real solution and two 

complex solutions. The real solution is expected because as we discussed before the relation 

(102) is that of a free particle. To convert the relation (102) into a wave equation, we re-write 

it in the form 

 

 

  
    

 
       

 
                                                                                                                        

 

The corresponding wave equation to Equation (103) is 

 

  

  
    

 
         

 
                                                                                                          

  

The time-dependent wave equation is 

 

  

  
    

 
        

 

  
     

 
                                                                                           

 

From our discussions before, we can say that this is the wave equation of a free particle in the 

unified space-time manifold.  

 

Form 6: Using Equations (63) and (64)  

 

 
 

  
  

  

  

  
 

  
  

  

  

                                                                                                                            

 

we obtain the following energy conservation law 

 

 

 
 
 

 
                                                                                                                                                   

 

In this case we don’t have a dynamics related to the motion of a particle but only a dynamics 

of the particle’s space-time. This spatial-temporal dynamics is governed by the physical 



properties of the physical constants A and B associated with the particle. The relation in 

Equation (106) can be re-written as 

 

  
 

 
   

   

     
                                                                                                                            

 

It is interesting to note that at the initial time         but when          . This 

result shows that the final size of the unified space-time of a particle is finite and inversely 

proportional its total energy. For a particle which has a negligible amount of energy, the size 

of its corresponding space-time is infinite. Inversely, the size of a particle will approach zero 

if it has an infinite amount of energy. The latter case is similar to that of a black hole in 

general relativity, while the former one can be considered to be that of a photon in terms of 

quantum physics.  

 

Since the problem we deal with in this work is related to the wave-particle duality in quantum 

physics, it is therefore appropriate to discuss further this dual nature of an elementary 

particle. In classical mechanics a Lagrangian L is used to determine the trajectory of a particle 

by applying the principle of least action          Similarly, a Lagrangian density can be 

used to describe the wave dynamics of a classical field whose physical entities can be 

interpreted and identified. However, in Schrödinger’s wave mechanics a Lagrangian is only 

related to the description of the dynamics of the phase of matter wave, but not a particular 

physical entity. This can be seen for the case of the motion of a free particle as follows 

[15,17]. In order to derive his wave equation, Schrödinger applied the Hamilton-Jacobi 

equation with a particular form of wavefunction      
  

 
    . On the other hand, the 

solution obtained from Schrödinger’s wave equation for a free particle is given by   

   
   

 
       

. Comparing these two wavefunctions we obtain              If we apply 

the Lagrangian equation in classical mechanics to this Lagrangian we arrive at the same 

equation of motion for the phase as that for a free particle in classical mechanics, that is 

             In our present problem, if the wave motion of an elementary particle at the 

time     can be approximated to be that of a plane wave then this constant velocity can be 

identified as the initial velocity    of the particle when it is emitted as given in Equation (83). 

This result may provide for an explanation of the interference pattern of a beam of 

elementary particles by considering their absorption and emission by a quantum system.  
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