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The Riemann Zeta Function

In this note, I will sketch some of the main properties of the Riemann zeta function,
ζ(x). For x > 1, we define

ζ(x) =
∞

∑

n=1

1

nx
, x > 1 . (1)

For x ≤ 1, this sum diverges. However, we shall see that it is possible to extend the
definition of ζ(x) so that it is valid for all real x (more generally, all complex x).

There is a beautiful relation between the zeta function and the Gamma func-
tion. In deriving this relation, we shall establish another possible definition of
ζ(x) [for x > 1] in terms of an integral. The trick here is to note the following
formula:

∫ ∞

0

e−nt tx−1 dt =
Γ(x)

nx
.

To prove this result, define a new variable u = nt. The resulting integral is
recognized as the definition of the Gamma function up to an overall factor of n−x.
Now, we can do something clever and use the above result to write

1

nx
=

1

Γ(x)

∫ ∞

0

e−nt tx−1 dt .

If we now sum both sides of the equation from n = 1 to n = ∞, we obtain:

ζ(x) =
1

Γ(x)

∞
∑

n=1

∫ ∞

0

e−nt tx−1 dt

=
1

Γ(x)

∫ ∞

0

∞
∑

n=1

e−nt tx−1 dt . (2)

where the interchange of the sum and the integral is justified by the uniform
convergence of the sum. The sum over n is just an infinite geometrical series with
the n = 0 term missing. Thus, using

∞
∑

n=1

rn =
1

1 − r
− 1 =

r

1 − r
=

1
1

r
− 1

with r = e−t, it follows that

ζ(x) =
1

Γ(x)

∫ ∞

0

tx−1

et − 1
dt , x > 1 . (3)
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Note that this integral form for ζ(x) converges for x > 1 and diverges for x ≤ 1
as expected from the convergence properties of eq. (1).

In particular, ζ(1) = ∞. But, it is useful to determine the behavior of ζ(x) as
x → 1. Here we shall simply quote the relevant result:

lim
x→1

(

ζ(x) −
1

x − 1

)

= γ ,

where γ is Euler’s constant. Equivalently,

ζ(x) =
1

x − 1
+ γ + O(x − 1) , as x → 1 . (4)

The proof of this result can be found in the article on the Riemann zeta function
that is posted on the class web site.

We shall now define another function that is closely related to the Riemann
zeta function:

η(x) =
∞

∑

n=1

(−1)n+1

nx
, x > 0 . (5)

Note that this series converges for all x > 0 by the alternating series test. We can
also derive an integral expression for this function by exactly the same procedure
as above. This time, the geometric series that we encounter is given by

∞
∑

n=1

(−1)n+1rn = 1 −
1

1 + r
=

r

1 + r
=

1
1

r
+ 1

Thus, we end up with

η(x) =
1

Γ(x)

∫ ∞

0

tx−1

et + 1
dt , x > 0 . (6)

I encourage the reader to fill in the missing steps of this derivation. Eqs. (3) and
(6) play a central role in the statistical mechanics of a free ideal Bose and Fermi
gas, respectively.

The function η(x) is related in a simple way to the Riemann zeta function as
follows

η(x) = 1 −
1

2x
+

1

3x
−

1

4x
+ · · ·

= 1 +
1

2x
+

1

3x
+

1

4x
+ · · · − 2

[

1

2x
+

1

4x
+

1

6x
+ · · ·

]

= ζ(x) −
2

2x

(

1 +
1

2x
+

1

3x
+ · · ·

)

= ζ(x) − 21−xζ(x)

= (1 − 21−x)ζ(x) .
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However, we must be careful. Although the series definition for η(x) [eq. (5)]
converges for x > 0, this convergence is conditional for 0 < x ≤ 1 and absolute
only for x > 1. Whereas the rearrangement of an absolutely convergent series does
not change its sum, this is no longer true for a conditionally convergent series.
Hence, the manipulations just performed are mathematically sound only if x > 1.
Hence, we conclude that

η(x) = (1 − 21−x)ζ(x) , x > 1 . (7)

If we solve eq. (7) for ζ(x), we can write:

ζ(x) =
1

1 − 21−x

∞
∑

n=1

(−1)n+1

nx
. (8)

This expression is valid for x > 1. If we try to set x = 1, we find that ζ(1) = ∞

as expected. But, we also notice something remarkable. Eq. (8) seems to make
perfect sense for 0 < x < 1. We know that the sum converges conditionally if
0 < x < 1. Moreover, there are no singularities in sight. Thus, we shall extend

the definition of the Riemann zeta function by defining ζ(x) by eq. (8) for x > 0.
We can use eq. (8) to study the behavior of ζ(x) as x → 1. This is a very

instructive exercise in expansions, so I present the details here. Let x = 1 + ǫ,
where ǫ is a very small parameter. We shall expand eq. (8) about ǫ = 0. The first
step is to expand (1 − 21−x)−1. Putting 1 − x = −ǫ,

1

1 − 21−x
=

1

1 − 2−ǫ
=

1

1 − e−ǫ ln 2
.

Expanding out the exponential in the denominator of the last expression,

1

1 − 21−x
≃

1

1 − (1 − ǫ ln 2 + 1

2
ǫ2 ln2 2)

≃
1

ǫ ln 2

(

1

1 − 1

2
ǫ ln 2

)

≃
1

ǫ ln 2

(

1 + 1

2
ǫ ln 2

)

. (9)

The second step is to expand out the factor nx = n1+ǫ that appears in the
denominator of the summand in eq. (8).

1

n1+ǫ
=

1

n · nǫ
=

1

neǫ ln n
.

Working to first order in ǫ, we expand the exponential and then expand the
resulting expression as follows:

1

neǫ ln n
≃

1

n(1 + ǫ ln n)
≃

1

n
(1 − ǫ ln n) .
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It then follows that

∞
∑

n=1

(−1)n+1

n1+ǫ
≃

∞
∑

n=1

(−1)n+1

n
[1 − ǫ ln n]

= ln 2 − ǫ
∞

∑

n=2

(−1)n+1

n
ln n + O(ǫ2) , (10)

where we have identified the well known expansion, ln 2 =
∑∞

n=1
(−1)n+1/n.

Applying the results of eqs. (9) and (10) to eq. (8), we find

ζ(1 + ǫ) =
1

ǫ ln 2

[

1 + 1

2
ǫ ln 2

]

[

ln 2 − ǫ
∞

∑

n=2

(−1)n+1

n
ln n + O(ǫ2)

]

=
1

ǫ
+ 1

2
ln 2 −

1

ln 2

∞
∑

n=2

(−1)n+1

n
ln n + O(ǫ) .

Putting back x = 1 + ǫ, and writing (−1)n+1 = −(−1)n, we arrive at our final
result:

ζ(x) =
1

x − 1
+ 1

2
ln 2 +

1

ln 2

∞
∑

n=2

(−1)n

n
ln n + O(x − 1) , as x → 1 . (11)

Comparing eq. (11) with eq. (4), we learn that:

γ = 1

2
ln 2 +

1

ln 2

∞
∑

n=2

(−1)n

n
ln n ,

which also provides us with the sum of the alternating series:

∞
∑

n=2

(−1)n

n
ln n = ln 2

[

γ − 1

2
ln 2

]

.

So far, we have managed to extend the definition of ζ(x) to include all x > 0.
As in the case of the Gamma function, we would like to extend the definition
further to include all real x (and eventually all complex x). This can be done, but
it requires methods beyond the scope of this note. One of the key steps makes
use of the following remarkable functional relation:

ζ(x) = 2x πx−1 sin
(

1

2
πx

)

Γ(1 − x) ζ(1− x) . (12)

One can prove that this functional relation holds for 0 < x < 1, where the zeta
function on both sides of the equation are defined by eq. (8). The general proof
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of this relation can be found in the article on the Riemann zeta function that is
posted on the class web site. Eq. (12) provides the way to extend the definition of
ζ(x). For values of x < 0, the right hand side of eq. (12) is perfectly well behaved.
Thus, we can use eq. (12) to define ζ(x) for all negative values of x.

Using eq. (12), we can work out the value of ζ(0). First, we multiply eq. (12)
by (1− x) and use (1− x)Γ(1− x) = Γ(2− x). Then we take the limit as x → 1:

lim
x→1

(1 − x)ζ(x) = 2ζ(0) .

But, according to eq. (4), limx→1(1 − x)ζ(x) = −1. We conclude that

ζ(0) = −1

2
.

This remarkable result plays a significant role in the Casimir effect, which is the
phenomenon (predicted by quantum field theory) that two uncharged conducting
plates in the vacuum actually attract each other. In a naive version of the theo-
retical computation, one obtains a result that involves limx→0

∑∞

n=1
(1/nx) = ∞.

In the more sophisticated analysis, it turns out that the actual result of the com-
putation involves limx→0 ζ(x) = −1

2
. It seems that nature is telling us that:

1 + 1 + 1 + 1 + 1 + 1 + · · · = −1

2
.

While we are at it, we can also evaluate η(0) = (1 − 21)ζ(0) = 1

2
. If we interpret

this as the x → 0 limit of eq. (5), we would conclude that

1 − 1 + 1 − 1 + 1 − 1 + · · · = 1

2
,

a result we have seen before when substituting x = −1 into the geometric series
(1 − x)−1 =

∑∞

n=0
xn. Of course, you should not take these last two equations

literally!
From eq. (8), it is clear that ζ(x) 6= 0 for any value of x > 0. For negative

values of x, we can examine eq. (12). In this case, the right hand side of eq. (12)
can vanish only when sin(πx/2) = 0.∗ For x < 0, we have sin(πx/2) = 0 when
1

2
πx = −nπ (n = 1, 2, 3, . . .). Hence, we conclude that:

ζ(−2n) = 0 , n = 1, 2, 3, . . .

These are the only zeros of the zeta function for real values of x. When the defi-
nition of the zeta function is extended to complex values z, Riemann conjectured
that the only other zeros of the Riemann zeta function occur for z = 1

2
+ iy (where

y is real). An infinite number of zeros appear for various discrete values of y. This
conjecture is called the Riemann zeta hypothesis and is the most famous outstand-
ing unsolved problem in mathematics (now that Fermat’s last theorem has been

∗For the case of x = 0, we note that limx→0 sin(πx/2)ζ(1 − x) = −π/2, which implies again
that ζ(0) = − 1

2
. You should be able to derive this limit from the results presented above.
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proven). The proof of this hypothesis would have very profound results for the
behavior of prime numbers. Remarkably, there seems to be an amazing connection
with physics as well. The distribution of the discrete values of y corresponding to
the zeros of ζ(z) for z = 1

2
+ y seems to mirror precisely the distribution of energy

levels of certain complex quantum systems.

It would be remiss not to mention the value of the zeta function at other integer
values. There is a deep connection between the zeta function and the Bernoulli
numbers.† As a result, the following relation holds:

ζ(1 − 2n) = −
B2n

2n
, n = 1, 2, 3, . . . ,

which provides the value of the zeta function evaluated at negative odd integers
in terms of the Bernoulli numbers B2n. The general proof of this relation can be
found in the article on the Riemann zeta function that is posted on the class web
site. Using this result and eq. (12), one can now easily derive the value of the zeta
function evaluated at the positive even integers:

ζ(2n) =
(−1)n+1(2π)2nB2n

2(2n)!
, n = 1, 2, 3, . . . (13)

In deriving this result, I inserted x = 1 − 2n in eq. (12) and used 2n Γ(2n) =
Γ(2n + 1) = (2n)! and sin(1

2
π(1 − 2n)) = (−1)n. As a test, you should put n = 1

in eq. (13) and find ζ(2) = 1

4
(2π)2B2 = π2/6. Similarly, ζ(4) = π4/90, etc.

The only integers we have not yet considered are the positive odd integers. You
might think that we could get a formula for ζ(2n + 1) using eq. (12). However,
given that ζ(−2n) = 0, eq. (12) with x = 2n (for positive integers n) simply reads
0 = 0, and we fail to extract a value for ζ(2n + 1). In fact, there are no known
formulae for ζ(2n + 1) in terms of powers of π or any other known constants.
Whether such formulae could ever be discovered is an open question, although
there is strong evidence that no such formulae exist. Until 1978, no one knew
for sure whether the numbers ζ(3), ζ(5), ζ(7), . . . were rational or irrational. In
1978, Roger Apéry stunned the world of mathematics by presenting new ideas for
proof that ζ(3) was irrational. The formal proof was completed and published the
following year. Unfortunately, his proof did not generalize to ζ(2n + 1) for n > 1.

†Bernoulli numbers were introduced in the class handout on Taylor series. A nice introduction
to the Bernoulli numbers can also be found on the class web site.
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