
DCHARTS, A FORMALISM FOR MODELING AND
SIMULATION BASED DESIGN OF REACTIVE SOFTWARE

SYSTEMS

Huining Feng
http://msdl.cs.mcgill.ca/people/tfeng/

Supervisor: Professor Hans Vangheluwe

February, 2004

School of Computer Science
McGill University, Montŕeal, Canada

A Master’s Thesis Submitted in Partial Fulfillment of Requirements for
the Master of Science Degree

Copyright c© 2004 by Huining Feng
All rights reserved

http://msdl.cs.mcgill.ca/people/tfeng/

Abstract

DCharts, a formalism for modeling and simulation of complex reactive software systems, is proposed and
studied. The DCharts formalism is based on UML statecharts and DEVS, but provides better modularity and
expressiveness. DCharts semantics is rigorously defined in both an operational way and in a denotational
way. Abstract, textual, and visual syntax for DCharts are presented.

SVM, a DCharts simulator implemented in Python, is presented. It accepts textual model descriptions and
simulates them. Multiple types of simulations, as well as real-time execution, are discussed in detail with
examples. Model verification is supported by means of repeated simulations in SVM and rule-checking of
the simulation traces with extended regular expressions.

SCC is a tool to synthesize executable code from DCharts models. It statically optimizes the models to
achieve high run-time performance. Multiple target languages are supported.

Applications of the DCharts formalism are studied, by means of the the above-mentioned tools. They demon-
strate how DCharts are ready for practical use.

i

Contents

1 INTRODUCTION 1

1.1 Modeling and Simulation .2

1.1.1 Models and Meta-models .2

1.1.2 The Process of Modeling and Simulation Based Design2

1.1.3 Modeling and Meta-modeling in AToM3 . 5

1.2 The Statecharts Formalism .8

1.2.1 Finite State Automata .8

1.2.2 Statecharts Extensions to FSA .8

1.3 The DEVS Formalism .10

1.3.1 Atomic DEVS .10

1.3.2 Coupled DEVS .11

1.4 Research Focus .12

1.4.1 Formal Specification .12

1.4.2 Model Transformation .13

1.4.3 Simulation .13

1.4.4 Model Checking and Verification .15

1.4.5 Code Synthesis .15

1.5 Related Work .16

2 ABSTRACT SYNTAX AND SEMANTICS OF DCHARTS 18

2.1 The DCharts Meta-model .18

2.2 Overview of Abstract Syntax and Semantics .18

2.2.1 Overview .18

2.2.2 State SetS .21

2.2.3 TransitionsT .22

2.2.4 Variables .23

2.2.5 Transition Priorities .23

2.2.6 Importation .25

2.2.7 Ports and Connections .25

2.2.8 Actions and Guards .26

2.3 Algorithms .27

2.3.1 Firing a Transition .27

2.3.2 Alternate Algorithm for Firing a Transition .28

2.3.3 Importation .29

ii

2.4 Closure under Importation .30

2.5 Asynchronous Communication and Synchronous Communication30

3 Timing 32

3.1 The Real-time Concept .32

3.2 Virtual-time Simulation .33

3.3 Special Event:a f ter .33

4 GRAPHICAL SYNTAX AND TEXTUAL SYNTAX 35

4.1 Graphical Syntax .35

4.1.1 State Hierarchy .35

4.1.2 Naming Convention .35

4.1.3 Orthogonal Components .35

4.1.4 Default States and Final States .37

4.1.5 Transitions .39

4.1.6 History .40

4.1.7 Enter/Exit Actions .41

4.1.8 Importation .41

4.1.9 Ports .41

4.1.10 Connections .44

4.2 Textual Syntax .45

4.2.1 Descriptors .45

4.2.2 State Hierarchy .45

4.2.3 State Properties .46

4.2.4 Orthogonal Components .46

4.2.5 Transitions .48

4.2.6 Priority Numbers .49

4.2.7 History .49

4.2.8 Enter/Exit Actions .51

4.2.9 Importation .51

4.2.10 Ports .52

4.2.11 Connections .52

4.3 Extended Syntax .54

4.3.1 Macros .54

4.3.2 Once Timed Transition .58

4.3.3 Global Options .59

4.3.4 Initializer, Finalizer, and Interactor .60

4.3.5 Snapshot .61

4.3.6 Model Description .62

4.3.7 Comments .62

5 MAPPINGS 64

5.1 Mapping from Non-recursive DCharts to Statecharts with Variables64

iii

5.2 Mapping from Non-recursive DCharts to DEVS .67

5.3 Mapping from Statecharts to DCharts .68

5.4 Mapping from DEVS to DCharts .68

5.5 Mapping from Programming Language Control Flow Constructs to DCharts68

5.5.1 Statements .69

5.5.2 Compound Statements .69

5.5.3 Conditional Statements .72

5.5.4 Loops .74

5.5.5 Break and Continue .75

5.5.6 Tricks of Actions Specific to SVM .77

5.6 Conclusion .80

6 SVM – A DCHARTS SIMULATOR 82

6.1 An Introduction to SVM .82

6.2 The Design of SVM .82

6.3 Default Interfaces .85

6.3.1 Default Graphical Interface .85

6.3.2 Default Textual Interface .87

6.4 Modeling and Simulating DCharts in AToM3 . 87

6.5 Distributed Simulation .88

6.5.1 The SVMDNS daemon .88

6.5.2 Example .89

6.6 Debugging .92

7 MODEL VERIFICATION 93

7.1 Simulation Trace .93

7.2 Extended Regular Expressions .94

7.3 Rule Checker .95

7.4 Limitation and Future Work .96

8 SCC – A DCHARTS COMPILER 97

8.1 Java Code Design .97

8.1.1 Class Hierarchy .97

8.1.2 Numbering .98

8.1.3 Members of Model Classes .98

8.1.4 Default Textual Interface .100

8.2 Transformation Strategies .102

8.2.1 State Hierarchy .102

8.2.2 State Properties .102

8.2.3 History .103

8.2.4 Event Handling .103

8.2.5 Importation .104

8.3 Space Efficiency and Speed Efficiency .104

iv

8.4 Example .105

8.5 Applet Interface .106

8.6 Limitations .107

9 APPLICATIONS 109

9.1 Simple Data Types .109

9.1.1 Boolean .109

9.1.2 Integer Counter .110

9.1.3 Integer .111

9.2 The Clock Component for Virtual-Time Simulation .112

9.3 An MP3 Player .115

9.4 Simulation of Software Process .116

9.5 Simulation of TCP .117

10 CONCLUSION 126

11 ACKNOWLEDGMENT 128

v

List of Figures

1.1 The Finite State Automata syntax in an Entity-Relationship diagram3

1.2 Modeling and simulation based design process .4

1.3 AToM3 meta-modeling environment with the Entity-Relationship diagrams meta-model loaded5

1.4 AToM3 meta-modeling environment with the PetriNet meta-model loaded6

1.5 AToM3 meta-modeling environment with the statecharts meta-model loaded7

1.6 A simple FSA example .9

1.7 The statecharts meta-model in an Entity-Relationship diagram9

1.8 Atomic DEVS state trajectory .11

1.9 Generalization of DCharts .12

1.10 Specification of DCharts .12

1.11 Matrix of simulation and execution .14

2.1 The DCharts meta-model in an Entity-Relationship diagram19

2.2 The AToM3 development environment for DCharts .19

2.3 An example of transition priorities .24

4.1 An example of the graphical representation of a state hierarchy36

4.2 Alternate graphical representation of a state hierarchy in AToM3 36

4.3 An example of the graphical representation of orthogonal components37

4.4 Alternate graphical representation of orthogonal components in AToM3 38

4.5 An example of the graphical representation of default states and final states38

4.6 An example of the graphical representation of default states and final states with orthogonal
components .39

4.7 An example of the graphical representation of transitions40

4.8 Graphical representation of transitions in AToM3 . 40

4.9 An example of the graphical representation of history states41

4.10 Graphical representation of history states inAToM3 . 42

4.11 An example of the graphical representation of enter actions and exit actions42

4.12 An example of the graphical representation of importation43

4.13 An example of the graphical representation of ports .43

4.14 An example of the graphical representation of connections44

4.15 Alternate graphical representation of connections in AToM3 45

4.16 An example of the graphical representation of macros .54

5.1 An invalid DCharts model that contains compound statements in the output70

5.2 A DCharts model that contains simple statements in the output70

vi

5.3 An example of the transformation from a compound statement in the output into simple
statements .71

5.4 An example of the transformation from a conditional statement into guards73

5.5 An example of the transformation from a for-loop into multiple transitions76

5.6 An example of the transformation from abreak statement into DCharts transitions77

5.7 An example of the transformation from acontinue statement into DCharts transitions . . .78

5.8 The three parts of a system .79

6.1 SVM class design .83

6.2 SVM default graphical interface .86

6.3 SVM default textual interface .86

6.4 AToM3 modeling environment with SVM plugin .87

6.5 Multiple layers for distributed simulation in SVM .88

6.6 Sender of theEcho example .89

6.7 Echo of theEcho example .90

6.8 Name pattern of theEcho server .90

6.9 Port name of theEcho server .90

8.1 Java class hierarchy of state machines .98

8.2 An example of the default textual interface of the Java code synthesized by SCC101

8.3 The graphical representation of a sample model for SCC105

8.4 Applet interface for the Java code synthesized from a DCharts model107

9.1 The MP3 player .115

9.2 Traces of the software process model simulation .118

9.3 The TCP system .119

9.4 Overview of the TCP simulator .119

9.5 The submodel of the client application .120

9.6 The submodel of the TCP driver (for both client side and server side)121

9.7 TheActiveClose state of the TCP driver .122

9.8 ThePassiveClose state of the TCP driver .122

9.9 TheEstablished state of the TCP driver .123

9.10 The submodel of the communication channel .123

9.11 The submodel of the server application .124

9.12 The virtual-time version of the communication channel .124

9.13 The plot of the simulation result of the TCP model .125

vii

List of Tables

1.1 Atomic DEVS< S, ta,δint ,X,δext,Y,λ > . 10

1.2 Coupled DEVS< Xsel f,Ysel f,D,{Mi},{Ii},{Zi, j},select> 11

4.1 An example of the textual representation of a simple state hierarchy46

4.2 State properties in the textual syntax .46

4.3 An example of the textual representation of state properties47

4.4 An example of the textual representation of orthogonal components47

4.5 An example of the textual representation of transitions .48

4.6 An example of the textual representation of a timed transition49

4.7 An example of the textual representation of priority numbers49

4.8 An example of the textual representation of histories .50

4.9 An example of the textual representation of an enter action and an exit action51

4.10 An example of the textual representation of an importation52

4.11 An example of the textual representation of ports .53

4.12 An example of the textual representation of connections .55

4.13 An example of the textual representation of macros .56

4.14 An example of the textual representation of a macro redefinition58

4.15 An example of the textual representation of a once timed transition59

4.16 Default values for initializer, finalizer and interactor .60

4.17 An example of the textual representation of a snapshot/restore description62

4.18 An example of the textual representation of comments .63

5.1 An example of the textual representation of a function definition in a DCharts model80

7.1 An example of an extended regular expression .95

8.1 Trade-offs between SVM and SCC .104

9.1 Rounds and tasks in a software development process .116

viii

1
INTRODUCTION

As software systems and hardware systems are becoming more and more complex nowadays, a systematic
approach for the development of physical as well as software systems is needed.

As we look back at the history of software development, there have been three revolutions which greatly
improved productivity and quality. The first revolution was the Fortran language. Two important concepts
were introduced in Fortran: structured programming and variable names. With those concepts, programmers
no longer mixed data and code in a program. They started to think in a more modular way instead of directly
writing assembly code or machine code, which is hard to understand or debug for human beings. As a result,
both productivity and quality of the systems were improved.

The second revolution started in the 60’s with Algol and reached its peak somewhere in the 80’s when
the dominating languages were Pascal and C. Those languages eliminated all column-based formatting.
They provided well-designed high-level control structures such as “while” loops and “for” loops. This
programming was much more structured, and the use of the “goto” statement was widely criticized for
breaking the structure (or the modularity) of the programs.

The third revolution was object-oriented programming (OOP). The OOP concept originated in the Simula
language emerging in 1967. C++ matured this idea and made it practical. Programmers started to think in
a more modular way and to reuse existing code to a greater extent by means of encapsulation and poly-
morphism. Encapsulation emphasizes the distinction between behavior and interface. Data is divided and
maintained in different classes according to their semantics. These ideas help guarantee the integrity of a
logical piece of software, and make it more stable. Polymorphism allows better reusability. The behavior of
a whole class or part of it can be reused by means of inheritance. Overriding allows to modify part of the
existing behavior of a class and fit it to a new application. These ideas greatly improve productivity.

However, as new demands arise, people have seen the limitations of OOP, or software programming in
general:

• code has to be written by hand and is thus error-prone;

• it is impossible to prove the correctness of a system because of too much detailed information in the
program;

• coding is too labor-consuming and once a high-level error is discovered, it is not easy to go back to
the design phase of the development process.

Neither structured programming nor object-oriented programming solves the above problems, due to the fact
that such problems have their roots in the high-level design instead of in the implementation. Effort has been
spent on discovering systematic methods for system design. This effort leads to the research in modeling
and simulation based design.

This chapter presents a general introduction to modeling and simulation. In particular, existing formalisms
for this purpose, such as statecharts and DEVS (Discrete EVent Systems specification), are discussed. They
are the starting point of this thesis work.

1.1 Modeling and Simulation 2

1.1 Modeling and Simulation

Modeling and simulation are enablers for principled (software) system design.

From the modeling point of view, implementation details are not interesting and are thus neglected by de-
signers who reason at a high level of abstraction. By neglecting this information, a system can be modeled
in formalisms such as statecharts and DEVS. Such formalisms are much more abstract and formal than a
piece of code written in a specific programming language. Certain properties, such as reachable states or
deadlocks, can be proved or disproved with the assistance of model-checking tools. In this way, most of the
problems are solved in the design phase, and manual implementation is kept minimal. All these result in
higher stability, better maintainability and less potential errors in the systems.

Some of the modeling formalisms provide a rigorous way to specify interfaces (e.g., class diagrams), inter-
action protocols (e.g., activity diagrams and sequence diagrams) and behavior (e.g., statecharts and DEVS).
The combined use of them protects the internal structure of components (modular parts of a system), while
still revealing enough information to the outside world to ensure reusability. For example, in the UML (Uni-
fied Modeling Language) 2.0, the interface of a component is defined by a class diagram. The associations
between classes reflect the relations between them. Sequence diagrams are used to illustrate the interaction
between different components (of the same type or of different types). They influence each other at run-time
by means of messages. Finally, the full internal behavior of these components is specified with statecharts,
which give an executable semantics to them. With this semantics, simulation as well as code synthesis of the
system becomes possible.

Specifying the complete behavior with a formalism is analogous with implementation. However, this ap-
proach differs from the traditional implementation phase in that by specifying a system in a formal way,
the designers are able to fully predict its run-time behavior and prove its correctness. The models can be
simulated in appropriate environments. Code can be automatically synthesized with code generators. Those
tools save human labor and greatly increase productivity.

1.1.1 Models and Meta-models

To specify a system as a model in a formalism, the two important parts of the formalism must be well-
understood by all the designers and whoever wants to reuse parts of the system: the syntax and the semantics.
Thesyntaxenforces certain rules on every model designed in the formalism, while thesemanticsdefines the
concrete meaning of every model that conforms to the syntax. If the formalism is executable, its semantics
provides the basis for simulation and execution; if the formalism is non-executable, its semantics helps
ensure a unique interpretation of a model among multiple designers and users.

The formalism, if it is considered as a model itself, can be explicitly modeled with another formalism. In
this case, the formalism to be modeled is called ameta-model. There are many benefits to meta-modeling.
One of those is that the syntax of the modeled formalism can be very concisely and explicitly defined. For
example, the syntax of FSA (Finite State Automata) can be easily modeled by an ER (Entity-Relationship)
diagram as shown in Figure 1.1. This syntactic definition is much more rigorous than a definition in a natural
language. A parser can be built from it, which automatically checks whether a model is an FSA.

Another benefit is that a user can easily design his/her own formalism that best fits a specific application
area. With a tool capable of generating a modeling environment from a meta-model, such as AToM3 (A Tool
for Multi-formalism and Meta-Modeling) developed in the MSDL (Modeling, Simulation and Design Lab)
of McGill University [1] [2], the designer gets a domain-specific modeling environment. The environment
is then used to solve problems specific to the application domain. Model designers can thus make full use of
their knowledge in that domain. [3]

1.1.2 The Process of Modeling and Simulation Based Design

Modeling and simulation based system development requires a series of steps of transformation. In each step
a model is transformed into another one. The new model is usually in another formalism at a lower level
of abstraction. This takes the original design along the way from a very abstract model (derived from user

1.1 Modeling and Simulation 3

Name type=String init.val
isInitial type=Boolean in
isFinal type=Boolean init

FSAState

current

FSATransition

points_to

Figure 1.1: The Finite State Automata syntax in an Entity-Relationship diagram

1.1 Modeling and Simulation 4

Figure 1.2: Modeling and simulation based design process

requirements) to the simulation model and eventually, application code.

Figure 1.2 illustrates the system development process and the different transformations involved in it. Usu-
ally, a user (the designer of a system) starts from an existing formalism, and defines his/her own model based
on the syntax and semantics of that formalism. However, in case no existing formalism is suitable to specify
the system, the user may define a meta-model with a meta-modeling tool, such as AToM3, and further design
the model with the formalism defined by that meta-model.

After the “model design” phase, which requires manual work of the designer, automatic transformations
can be done to obtain different models for various purposes. Tools can be used to check the correctness
of the model. Those tools actually generatechecking models, which give the designer such information
as reachable states, deadlocks and reactiveness to every possible event in every state. The designer has to
modify the model if potential errors are found in the checking. This is much easier than the debugging in the
traditional development process, where code is written and debugged manually.

Tools that generatesimulation modelsenable simulation of the model. Simulating a model requires detailed
information about the model execution. If this information is not given in the original model, it must be
added at the time when the simulation models are generated. Executable formalisms, such as statecharts
and DEVS, allow to fully specify this information in the models. Interpreters of such formalisms are thus

1.1 Modeling and Simulation 5

Figure 1.3: AToM3 meta-modeling environment with the Entity-Relationship diagrams meta-model loaded

able to simulate the original designs. Simulation can be used to increase confidence in the correctness of the
model. Commonly, simulation is used to calculate performance metrics. These can be used to tune model
parameters to satisfy system performance requirements.

Another kind of tools take the original models as input and generate executable code. The code is optimized
and efficient, but usually platform-dependent. Its execution does not require the support from an underlying
environment, as simulation does. The purpose of this code generation is to maximize performance and to
release the well-developed system to the end-users, who are not interested in the model design.

1.1.3 Modeling and Meta-modeling in AToM 3

AToM3 [1] [2] is a tool for modeling, meta-modeling and simulation. It is developed by Prof. Hans Vang-
heluwe at the MSDL (Modeling, Simulation and Design Lab) of McGill University in Canada in close
collaboration with Prof. Juan de Lara at the Autonomous University of Madrid. It allows building and dy-
namically loading meta-models in its graphical environment. When a meta-model is loaded, the graphical
environment is modified according to the allowed entities of the formalism. The user can design models
according to the syntax of the formalism. Transformations between models of different formalisms are han-
dled with graph grammars, a powerful formalism to specify transformations in a graphical form. With the
support of a simulation engine that implements the semantics of the loaded formalism, AToM3 can also be
used as a simulation environment.

Figure 1.3 shows the main window of AToM3 with the Entity-Relationship diagrams meta-model loaded in
it. The left panel of AToM3 shows only the buttons of allowed entities. In this case, “entity” and “relation”
are two different kinds of entities in an Entity-Relationship diagram.

1.1 Modeling and Simulation 6

Figure 1.4: AToM3 meta-modeling environment with the PetriNet meta-model loaded

1.1 Modeling and Simulation 7

Figure 1.5: AToM3 meta-modeling environment with the statecharts meta-model loaded

1.2 The Statecharts Formalism 8

Figure 1.4 and Figure 1.5 show the AToM3 environment with the PetriNet meta-model and the statecharts
meta-model loaded in it, respectively. The buttons shown on the left panel vary with the loaded meta-models.

Simulation in AToM3 is discussed later.

1.2 The Statecharts Formalism

Statecharts, introduced by David Harel [4], are a visual and executable formalism for modeling complex
reactive systems. It has roots in the Finite State Automata (FSA) formalism and adds new concepts to it.
Those new concepts make the formalism suitable for specifying discrete event systems.

1.2.1 Finite State Automata

The syntax of the FSA formalism is defined by means of meta-model in Figure 1.1. An FSA consists of
states and transitions between states. A state has three properties:

• Name, a string that denotes the unique ID of a state.

• isInitial, a boolean that decides whether a state is the initial state. There must be exactly one initial
state in each FSA model.

• isFinal, a boolean that decides whether a state is a final state. There must be at least one final state
in each FSA model.

A transition, whentriggered, changes the model from one state (source state) to another (destination state).
(The destination state may be the same as the source state.) In the ER meta-model, a transition is represented
as a relation between states.

Input symbolis a property of transitions, which is not visible from the graphical representation of the meta-
model. It defines a single symbol that triggers the transition. When that symbol is received and the model is
in the source state of a transition (the starting of the arc), the transition is triggered, and the model changes
to the new state (the ending of the arc with an arrow).

The input symbols are taken one by one from an input sequence. If there is noenabledtransition (a transition
is enabledif and only if the model is in its source state and the current input is its input symbol) for one of
the symbols, an error is raised, and the FSA halts. This error means the FSA does not accept such an input
sequence, or more formally, thelanguage(the set of accepted input sequences) defined by the FSA does not
include such asentence(one single input sequence ended with anend mark).

The FSA formalism also requires that when an accepted input sequence ends, the FSA must be in one of the
final states. Otherwise, the input sequence is not accepted.

A simple FSA example is shown in Figure 1.6. Its initial state is state 1 (a state with a black dot pointing to
it). Its final state is state 5 (a state with a double-line border). This FSA accepts the language:

{a f,ae(dc)∗g,b(cd)∗cg}

As a result,af, aedcg, aedcdcg, bcg, bcdcgare all accepted sentences, whilea, aedgandbcdare unaccepted.

1.2.2 Statecharts Extensions to FSA

David Harel has added extensions to FSA to make it a practical and expressive formalism [4]. With those
extensions, it becomes possible to specify the complete reactive behavior of a system in a model.

The meta-model of statecharts is drawn in the ER diagram in Figure 1.7. Elements in the diagram are
described below:

• The nameBlob is used to distinguish hierarchical states in statecharts from states in FSA. Since hi-
erarchy and orthogonal components are introduced in statecharts, the states may have inner structures
and are known as blobs. A blob has aName attribute.

1.2 The Statecharts Formalism 9

Figure 1.6: A simple FSA example

Name type=String init.val

Blob

Name type=String init.val

Orthogonal

Actions type=String init.

Initial

Hyperedge

composed_of

has_inside

has_Initialiconnection

Figure 1.7: The statecharts meta-model in an Entity-Relationship diagram

1.3 The DEVS Formalism 10

S a set of admissible states
ta : S→ R+

0,+∞ time advance function
δint : S→ S internal transition function
X a set of admissible external inputs
δext : Q×X → S external transition function

whereQ = {(s,e)|s∈ S,0≤ e≤ ta(s)}
Y a set of possible outputs
λ : S→Y∪{ø} output function

Table 1.1: Atomic DEVS< S, ta,δint ,X,δext,Y,λ >

• A Hyperedge connects two states and denotes a transition between them. A transition has anevent
property, and may or may not have propertiesguard andoutput. Those properties and their meanings
are discussed later.

• A blob may consist of one or more orthogonal components. Each of them maintains a local current
state. The Cartesian product of the current states of all the orthogonal components belonging to the
same parent is equal to the current state of the parent state. An orthogonal component may have blobs
inside it.

• Like FSA, every statecharts model has an initial state. Within every blob or orthogonal component
there is also a default state.

The statecharts semantics has many variants. One popular semantics is David Harel’s STATEMATE se-
mantics [5]. Another one is the statecharts semantics described in the UML (Unified Modeling Language)
[6]. These variants are not compatible with each other. There will be more discussion about the statecharts
variants in the latter part of this thesis work.

1.3 The DEVS Formalism

DEVS (Discrete EVent Systems specification) was created by Bernard Zeigler [7] [8]. It is a modular for-
malism for deterministic and causal systems. It allows for component-based design of complex systems. A
DEVS model may contain two kinds of DEVS components: Atomic DEVS and Coupled DEVS. An Atomic
DEVS does not contain any component in it. It only has a mathematical specification of its behavior. A
Coupled DEVS is a modular composition of one or more Atomic DEVS’.

According to the closure under coupling property of DEVS, a Coupled DEVS can be substituted by an
Atomic DEVS with equivalent behavior. A Coupled DEVS can be used to compose more complex DEVS
components.

A Coupled DEVS specifies connections between the components in it. Two connected components send
messages via well-defined ports.

1.3.1 Atomic DEVS

An Atomic DEVS is a functional atom in a model, which cannot be further divided into sub-components.
Its behavior is described by implementation-independent mathematical functions and symbols.

Atomic DEVS is a tuple< S, ta,δint ,X,δext,Y,λ > as shown in Table 1.1. All the states of the DEVS are
in the admissible state setS. An execution of the model is to sequentially change its states, until ended
explicitly. The change in its states is defined by two functions: internal transition functionδint and external
transition functionδext.

δint : S→ S defines the autonomous internal behavior. The time when these changes take place is defined
by functionta : S→ R+

0,+∞. It takes a state as a parameter and returns a non-negative real value denoting
the time interval between state changes. The time for a DEVS is not discrete, because the simulation is not

1.3 The DEVS Formalism 11

Figure 1.8: Atomic DEVS state trajectory

Xsel f a set of admissible external inputs
Ysel f a set of possible outputs
D a set of unique component references
{Mi |i ∈ D} a set of components
Ii , i ∈ D a set of influencees of componenti
{Zi, j} a set of output-to-input translation functions
select: 2D → D the select function

Table 1.2: Coupled DEVS< Xsel f,Ysel f,D,{Mi},{Ii},{Zi, j},select>

based on time-slicing. An internal transition can be scheduled at any point in the future on the real time-line
(Figure 1.8).

An external event may occur at any time.δext : Q×X →Sis the external transition function. It defines which
new state the DEVS should be changed to, when a certain external event is received. The new state depends
on the old state and how long the DEVS has been in the old state (elapsed time). The old states and the
elapsed timeeare usually represented as a tuple(s,e), wheres∈ Sand 0≤ e≤ ta(s).
Only internal transitions are allowed to produce output.Y is the set of all possible output values. The output
produced by a transition from the old states to any other state can be calculated with theλ function. Value
ø means no output is produced.

All the input values are defined inX and all the output values are defined inY. They can be viewed as
an interface exposed to the outside world. The outside world communicates with the Atomic DEVS only
through input events and output events.

1.3.2 Coupled DEVS

As the coupling of one or more Atomic DEVS’, a Coupled DEVS is a tuple

< Xsel f,Ysel f,D,{Mi},{Ii},{Zi, j},select>

as described in Table 1.2.

Mi (wherei ∈ D) is an Atomic DEVS as one of the Coupled DEVS’ components. Its output is connected
to the input of its influenceesIi (a set). Every output signal of componenti is translated by theZi, j function
before it reaches an input of componentj.

It is possible that internal transitions in different components occur at exactly the same time. The virtual
time is not advanced until all these events at the same time are handled. The order in which the events
are handled is important, because the change of state caused by a transition may affect the behavior of

1.4 Research Focus 12

Figure 1.9: Generalization of DCharts

Figure 1.10: Specification of DCharts

subsequent transitions, though they are triggered at the same virtual time. Theselectfunction decides which
transition must be triggered first when a conflict occurs.

DEVS is closed under coupling by construction. A Coupled DEVS can be rewritten as an equivalent Atomic
DEVS, and thus be reused as a component in a larger DEVS. The outside world need not know whether a
DEVS component is atomic or coupled, because both kinds expose the same interface.

1.4 Research Focus

The research and its results discussed in this thesis builds on the existing formalisms and tools. In particular,
it is closely related to both statecharts and DEVS. It combines the syntax and semantics of statecharts and
DEVS in a modular way (Figure 1.9), and provides a friendly user-interface and good expressiveness to
model designers.

DCharts are a new executable formalism, which allows model design, model transformation, model simula-
tion, model checking and verification, and code generation.

1.4.1 Formal Specification

The syntax and semantics of DCharts are formally specified in this thesis (Figure 1.10).

Three types of syntaxes are described:

• The abstract syntax is a symbolic language. It gives a symbol to every entity in DCharts. Relations are
regarded as functions. This syntax is formal and it allows logical reasoning or inference on DCharts
models. It also makes it possible to mathematically transform or simplify DCharts models.

1.4 Research Focus 13

• The textual syntax defines the textual form of the formalism. This form simplifies computer processing
of a DCharts model. The textual syntax is implemented in this thesis work with a parser and interpreter.

• The graphical syntax gives a graphical representation for the formalism. It provides a way to design
DCharts models in a modeling environment that supports GUI (Graphical User Interface), such as
AToM3. In many cases graphical model design is more user-friendly and understandable. Part of the
graphical syntax is implemented in a DCharts meta-model in AToM3, so that designers can manipulate
DCharts models in this environment.

The semantics of DCharts is formally defined in two different ways:

• Operational semanticsdefines the meaning of DCharts models with a functional description or pseudo-
code. From this description, an interpreter (SVM, Statechart Virtual Machine) and a code synthesizer
(SCC, StateChart Compiler) for DCharts are constructed.

• Denotational semanticsmaps DCharts to other existing formalisms such as statecharts and DEVS.
The DCharts semantics is made clear provided that the formalisms that we map onto have well-defined
semantics. Denotational semantics provides a way to transform DCharts models into models in other
formalisms.

1.4.2 Model Transformation

There are two kinds of model transformation. Intra-formalism transformations transform a model into an-
other model in the same formalism. The result of this transformation is usually optimized for modularity
or efficiency. Inter-formalism transformations transform a model into a new model in another formalism.
The new model can thus be reused in the systems designed in the other formalism. The possibility of such
transformations gives a meaningful comparison of expressiveness between the two formalisms. Another
benefit of inter-formalism transformations is that, by transforming a model into a more extensively studied
formalism, the model checking tools of that formalism can be used to prove certain properties of the model.

The model transformations discussed in this thesis are inter-formalism transformations. Intra-formalism
transformations are not discussed.

Spencer Borland in his Master’s thesis [9] has shown an approach with which statecharts models can be
transformed to DEVS. This helps prove that DCharts can be transformed to DEVS, because DCharts are
a modular combination of statecharts and DEVS. More transformations between statecharts, DEVS and
DCharts are discussed in the later part of this thesis.

1.4.3 Simulation

DCharts are executable. Every DCharts model has a rigorous semantics and can be simulated in a simulation
environment such as SVM (Statechart Virtual Machine), which is discussed later in detail.

As an overview of model simulation, Figure 1.11 illustrates the different simulation and execution strategies
as a three-dimensional matrix. The meaning of the axes is described here:

• Thex axis indicates whether the simulation (or execution) is sequential or parallel.Sequential simula-
tion is step by step simulation that guarantees no overlap of two or more operations (such as change of
states and execution of action code) at the same time.Parallel simulation, however, strives to perform
operations in a parallel way typically to maximize performance. Due to the sequential nature of most
of the models, it is very hard to tell which operation can overlap with another. The overhead of finding
out potential overlapable operations and synchronizing different parallelized parts is usually so high
that the simulation slows down rather than speeds up.

• The y axis indicates whether the simulation (or execution) is local or distributed.Local simulation
is done on a stand-alone process. There are three kinds of local simulation: single-threaded, multi-
threaded, and multi-process. Indistributed simulation, multiple processes are involved in a single sim-

1.4 Research Focus 14

Figure 1.11: Matrix of simulation and execution

ulation. Components participating in the simulation are deployed among those processes in a modular
way. They communicate with each other by means of messages via a network.

• Thezaxis indicates whether it is a virtual-time simulation or real-time execution.Real-time execution
is synchronized with the real time (or wall-clock time). It may need to satisfy several time constraints
in order to guarantee the real-time behavior of the model. The satisfaction of those time constraints
usually requires support from the underlying operating system.Virtual-time simulationuses a timer
that is usually not synchronized with the wall clock. If the timer is proportional to the real time, the
simulation is calledscaled real-time simulation; if the timer is a counter that keeps track of the time
and it is advanced as fast as possible (i.e., as soon as all the components are waiting for their scheduled
events), the simulation is calledas-fast-as-possible simulation.

It is important and interesting to know all the combinations of these schemes, though only some of the
combinations are reasonable, and only some of the reasonable combinations are relevant to this thesis work.

• Sequential local real-time execution. This type of execution is natively implemented in SVM, the
interpreter for DCharts. All the operations are sequentially executed on a multi-threaded process.
Different threads are synchronized to guarantee that only one operation is performed at a time.

• Sequential local virtual-time simulation. The two types of virtual time (scaled and as-soon-as-possible)
are not directly supported by the SVM simulation kernel. However, scaled real-time simulation can
be easily simulated with real-time simulation. This can be accomplished by redefining the macro that
retrieves or schedules time (with thea f ter event), as discussed later. The later part of this thesis also
shows that as-soon-as-possible simulation can be simulated with aclock component(section 9.2). As
a result, there is no need to internally implement this kind of simulation.

• Sequential distributed real-time execution. For distributed execution, it is natural to allow parallel
behavior between components on different computers. Sequential behavior can be simulated with par-
allel execution by means of global semaphores or a global clock component. However, this makes the
execution less efficient than sequential real-time execution on a single computer (because of latency
in the network and the overhead of synchronization). Because it is rarely useful, sequential distributed
real-time execution is not directly supported by the SVM.

• Sequential distributed virtual-time simulation. For the same reason of inefficiency, sequential dis-
tributed virtual-time simulation is not supported. The users should use sequential local virtual-time
simulation instead.

1.4 Research Focus 15

• Parallel local real-time execution. SVM provides support for multi-process simulation on a single
machine. Those processes are highly parallel. They influence each other in the form of messages via
ports. The execution is real-time so that each of the processes directly accesses the time given by the
computer hardware.

• Parallel local virtual-time simulation. Virtual time is not directly supported by SVM. However, with
a special clock component running as a separate process and providing time service to all the other
processes, the two types of virtual-time simulation are made possible. As a result, there is no need to
implement this kind of simulation internally in the SVM.

• Parallel distributed real-time execution. This kind of execution directly corresponds to distributed
software systems and is thus interesting. SVM builds parallel distributed real-time execution on top
of PVM (Parallel Virtual Machine) [10]. Ports are defined on the boundary of components. Individual
components have parallel behavior. They communicate with messages sent via connections between
ports over a network.

• Parallel distributed virtual-time simulation. This kind of simulation is simulated with parallel dis-
tributed real-time execution with an additional clock component. The clock component reveals its
ID to all the other components and provides global timing service to them. This clock component is
discussed later in general.

From this discussion, it is easily seen that SVM is a powerful simulation tool that supports most of the
simulation schemes, though some are simulated by the others with extra components. The concept of a
clock component is important because it reduces the requirements on the simulation engine. The simulator
is thus minimal and optimizable.

1.4.4 Model Checking and Verification

Model checkingrefers to proving properties of the models without simulation or execution. For example,
by enumerating all possible event sequences accepted by a state machine, thedead states(the states that
the model never goes to) are discovered and deleted. Another example is by building a reachability graph
of a PetriNet model, it can be easily proved whether or not the model allows deadlock (a state of which the
model, once enters it, can never go out).

Model checking of DCharts is not easy, mostly because models in DCharts contain too much information
about the execution detail. Usually, a model has to be abstracted and the irrelevant information in it must be
removed before checking can be performed. This could be done by means of transforming the model into
model(s) of other formalisms, such as DEVS and PetriNets. Because of its difficulty, model checking is not
discussed in this thesis.

Another approach to find out properties of models and demonstrate their correctness is model verification. It
is done by simulating or executing the models multiple times. A tool that analyzes the gathered output trace
tells whether the models are running correctly or not. It may also analyze the performance of the models and
discover possible bottle-necks in them.

1.4.5 Code Synthesis

The purpose of code synthesis is to maximize run-time performance. It is always much slower to simulate a
model in an interpreted way than to execute the compiled code directly.

A lot of optimization can be done on the models at the time of code synthesis. This issue will be dis-
cussed thoroughly in this thesis. In particular, SCC (StateChart Compiler), a code synthesizer for DCharts,
is implemented. It is able to generate Java, C++, Python and C# source code from textual DCharts model
descriptions.

1.5 Related Work 16

1.5 Related Work

This thesis work is done in the MSDL (Modeling, Simulation and Design Lab) of McGill University, headed
by Prof. Hans Vangheluwe. It is closely related to other on-going projects in the MSDL:

• AToM3 [1] [2] is a graphical modeling and meta-modeling environment. It is able to meta-model the
syntax of many formalisms, as well as generate dedicated visual environments for the model design in
those formalisms. The semantics of some of those formalisms, such as PetriNets, is usually modeled
with graph grammars. In this way, AToM3 can also be used as a simulation or execution environment,
with graph grammars that transform the model from one state to another.

A DCharts meta-model is built in AToM3, which defines a subset of the DCharts syntax. This meta-
model is discussed in later chapters. The semantics of DCharts is implemented in SVM, which can be
loaded in AToM3 as a simulation engine. It makes it possible to simulate DCharts models and at the
same time highlight the current states and enabled transitions in the AToM3 visual environment.

• PythonDEVS [11] [12] is a virtual-time DEVS simulator implemented by Hans Vangheluwe and
Jean-Śebastien Bolduc. It provides a practical basis for DCharts simulation, as DCharts is a modular
combination of statecharts and DEVS.

PythonDEVS is a set of DEVS templates and a DEVS simulator class. Those templates must be
extended by the model designers by means of inheritance. SVM takes one step further by accepting
a textual language of DCharts model descriptions. The users can easily write model descriptions
conforming to a rigorously defined syntax. They may also use the AToM3 environment to graphically
model DCharts, and then generate model descriptions by pressing a button.

• Real-time PythonDEVS is the real-time version of PythonDEVS. It is modified by Spencer Borland
from non-real-time PythonDEVS.

• Spencer Borland in his Master’s thesis [9] describes a way to transform statecharts into DEVS and
hence proves that DEVS has at least the same expressive power as statecharts [13]. (Actually, DEVS
is even more expressive than statecharts.) This provides another means to simulate DCharts other than
simulating them directly in SVM: transform DCharts (which take a similar form as statecharts) into
DEVS, and use Real-time PythonDEVS to simulate them.

• Alison Stewart has compared the functionality between Real-time PythonDEVS and SVM, and has
built an MP3 player on both of them. In her report, she concludes that though neither of the two is
perfect, SVM is much more user-friendly. The report is available on-line [14].

Information about the above projects can be obtained from the MSDL website:

http://msdl.cs.mcgill.ca/

This thesis work is also related to several research projects outside of McGill University.

• David Harel has created the statecharts formalism [4] [5], which has been the basis of DCharts. Many
of the DCharts constructs, as they are defined in latter chapters, can be found in statecharts. The
semantics of those common constructs is the same in both formalisms.

DCharts have extended statecharts to make them more rigorous and expressive. The syntax of DCharts
is a superset of the statecharts syntax. The semantics of DCharts is a superset of the semantics of David
Harel’s statecharts. Hence, SVM is also a simulator for statecharts.

• Bernard P. Zeigler has created DEVS [7] [8], a modular and expressive formalism. The idea of blocks
and connections between them via ports is reused in DCharts. As a result, DCharts are much more
modular than statecharts, which are not modular in their nature. Many other concepts in DEVS are
useful for the creation of DCharts. In particular, the select function is invented in DEVS to solve
transition conflicts. This idea is absorbed by DCharts, though they support a different mechanism
based on transition priorities to solve those conflicts.

http://msdl.cs.mcgill.ca/

1.5 Related Work 17

• Ptolemy II [15] [16] [17] is a heterogeneous modeling and simulation environment implemented by
Prof. Edward A. Lee and his students at EECS, University of California at Berkeley. Its viewpoint of
directors and actors in component-based models and its Java code generation have important impact
on the design of DCharts and such tools as SVM and SCC.

Unlike SVM, a dedicated simulator for DCharts, Ptolemy II is a modeling and simulation environment
for multiple formalisms. Different formalisms may be used to model components (or actors) in a
single model. Directors manage the interaction between those components. Discrete-time components
and continuous-time components are allowed to coexist and communicate in a single system in this
framework.

• The Parallel and Distributed Simulation (PADS) lab of Georgia Institute of Technology, headed by
Prof. Richard Fujimoto, has implemented PDNS (Parallel and Distributed Network Simulator). It is
an advanced distributed simulation environment.

The research at the PADS lab is more oriented to distributed simulation than system design. Envi-
ronments for high-performance distributed simulation are being built, which support the testing and
analysis of complex and large systems, such as aircrafts and global troop deployment.

Similar functionality will be supported by the future version of SVM. It will support the distributed
timewarp simulation with DCharts.

• The research on model checking is active and advanced in the Model Checking group of Carnegie
Mellon University, headed by Prof. Edmund Clarke. In particular, their research on explicit state model
checking [18] [19] is interesting and useful.

As SVM currently has very limited support for model checking, studying the research results of the
Model Checking group will be helpful to the future of a model checker for DCharts. The checker will
be able to formally prove properties of DCharts models without simulating or executing them in SVM.

• Prof. Joanne M. Atlee, Prof. Nancy A. Day and their WatForm (Waterloo Formal Methods) research
group at University of Waterloo are seeking a way to enhance the power of statecharts and to make
them more expressive and practitioner-friendly. [20] [21] [22] Their work is closely related to the
creation of DCharts.

In [23], they discussed a parametrized template capable of expressing the semantics of all the state-
charts variants. It is meaningful to describe their framework in DCharts. This enables SVM to simulate
models of any statecharts variant.

• Prof. Ivan Porres at Software Construction Laboratory ofÅbo Akademi University in Finland has
developed SMW (System Modeling Workbench), “a collection of tools to edit, store, analyze and
verify models.” [24] [25] Those tools are reusable and comparable with AToM3.

SMW with appropriate extension can be used as a visual environment to design DCharts models. With
a plugin that invokes SVM, DCharts simulation in SMW is also possible.

2
ABSTRACT SYNTAX AND SEMANTICS OF

DCHARTS

The definition of DCharts 1.0, the current version of DCharts, contains two parts: the syntax answers the
question “what is the structure of a DCharts model?” while the semantics answers “what is the meaning of
a DCharts model?” The following criteria influence the syntax and the semantics:

• The syntax must be rich enough to allow the specification of a complete semantics. I.e., if a semantic
element cannot be specified according to the syntax, there is no way to design a model that uses it,
and hence the element becomes useless.

• Every syntactically correct model must have a unique meaning according to the semantics.

• The definition of syntax must facilitate both computer processing and human understanding.

• The semantics should be as platform/implementation-independent as possible. This allows the formal-
ism to be implemented by different tools and to be used in different systems.

The following sections describe the basic syntax and semantics of DCharts 1.0.

2.1 The DCharts Meta-model

Figure 2.1 shows the meta-model of DCharts in the AToM3 meta-modeling environment. It is modified from
Spencer Borland’s statecharts meta-model (Figure 1.7). It defines the abstract as well as graphical syntax.
Iconic representations of entities in the DCharts formalism are not shown. Some of the DCharts constructs,
such as importation and transition priorities, are not explicitly modeled for simplicity. (They are marked as
UML-style comments in the graphical representation of DCharts models.)

Figure 2.2 shows the AToM3 environment with the DCharts meta-model loaded in it. The buttons on the left
panel give access to all the entities to be used in a DCharts model. The buttons on the top allow the user to
connect entities and edit their properties.

2.2 Overview of Abstract Syntax and Semantics

This section defines the abstract syntax of DCharts 1.0. Part of this definition is subject to change in later
versions. This possibility of change is discussed wherever appropriate.

2.2.1 Overview

A modelM in DCharts 1.0 is defined by a tuple

< S,T,C,V,∆,P,L >

where:

• S= {s1,s2, ...,sm} is a set of finite and enumerable states.si (i ∈ [1, ...,m]) is a tuple

< SN,DS,CS,HS,TP,EN,EX >

2.2 Overview of Abstract Syntax and Semantics 19

name type=String init.val
is_default type=Boolean i
visible type=Boolean init
auto_adjust type=Boolean
enter_action type=Text in

Composite

name type=String init.val
is_default type=Boolean i
enter_action type=Text in
exit_action type=Text ini

Basic

is_default type=Boolean i
name type=String init.val
star type=Boolean init.va

History

name type=String init.val
visible type=Boolean init
auto_adjust type=Boolean

Orthogonal

contains_links_visible ty
Composite_default_height
Composite_default_width t
contains_color type=Strin
orthogonality_links_visib

visual_settings

name type=String init.val
is_in type=Boolean init.v
is_out type=Boolean init.

Port

id type=String init.value
name_pattern type=String

Server

contains

Hyperedge

orthogonality

connection

Figure 2.1: The DCharts meta-model in an Entity-Relationship diagram

Figure 2.2: The AToM3 development environment for DCharts

2.2 Overview of Abstract Syntax and Semantics 20

where:

• SN is a string that represents a globally unique identifier (GUID) of the state. Every state in a
given model has a unique GUID. GUIDs of states in different models may be the same.

• DS is a boolean value that specifies whether statesi is a default state of its parent state. Among
the children of a parent state there must be exactly one default state, unless all those children are
orthogonal components (discussed later).

• CSis a boolean value that specifies whether statesi is an orthogonal component. If a state is an
orthogonal component, all itssiblings(other children of the same parent) must also be orthogonal
components, and all those states are default states in their nature (DS= true).

• HS is an enumerated value that specifies whether statesi has a history in it, and, if it has a
history, whether the history is deep history. Its possible values are defined with an enumerated
type (explained later):

HS= {None,Normal,Deep}

• TP is an enumerated value that specifies the transition priority within the scope of statesi . The
scopeof a state includes the state itself, all its children states, and all the transitionsfrom that
state and its children states. Possible values ofTP are defined below (explained later):

TP= {Keep, ITF,OTF,RTO}

• EN is a list of sequentially executed enter actions. These actions are executed when the state
is entered (whether from other states or from this state itself). In DCharts 1.0, there is no strict
definition of actions. This part is subject to change in later versions, where a more rigorous
definition of action code will be given. However, actions must conform to several rules. Those
rules are discussed in section 2.2.8.

• EX is a list of sequentially executed exit actions. These actions are executed when the state is
exited (whether the destination is another state or this state itself). This part is subject to change
in later versions, where a more rigorous definition of action code will be given. Some rules of
actions are further discussed in section 2.2.8.

• T = {t1, t2, ..., tn} is a set of transitions.ti (i ∈ [1, ...,n]) is a tuple

< SRC,DES,E,γ,G,λ,HST ,Prio >

where:

• SRC∈ S is the source state.

• DES∈ S is the destination state.

• E is a string that represents the event name. This event triggers the transition. The event name
should not contain a “.” (which is used in inter-model communication via ports), unless the
transition handles an incoming message. In that case, the event name is the input port name
followed by a dot, and then followed by the message name.

• γ = {γ1,γ2, ...,γk} is a set of variables that represent the formal parameters. Each parameter is
a variable. In DCharts 1.0, there is no strict definition of variables. Section 2.2.4 offers a loose
definition of variables.

• G is a boolean expression that specifies the guard. In DCharts 1.0, there is no strict definition of
guards. One of the few requirements is that they can be evaluated to a boolean result at the time
when the event of the transition is received. Guards are further discussed in section 2.2.8.

• λ is a list of sequentially executed actions. In DCharts 1.0, there is no strict definition of actions.
This part is subject to change in later versions, where a more rigorous definition on action code
will be given. Several rules of actions are discussed in section 2.2.8.

2.2 Overview of Abstract Syntax and Semantics 21

• HST is a boolean variable that specifies whether the transition goes to the history of the des-
tination state (if it has a normal history or deep history) or the default substate of it (if it has
substates).

• Prio is an integer number (may be positive or negative) that specifies the priority of the transi-
tion. In case a conflict occurs that cannot be solved by transition ordering (discussed later), the
transition with the smallestPrio number has the highest priority.

• C : S→ 2S is a function that defines the parent-children relationship of all the states. It maps any state
to the set of its children states. All the states in a model and their parent-children relations form a tree
(with states as nodes and relations as edges).

• V = {v1,v2, ...,vs} is the set of variables. In DCharts 1.0, there is no strict definition of variables. The
only requirement is that every variable has a GUID and provides a certain amount of storage. This
part is implementation-dependent. It is subject to change in later versions, where a more rigorous
definition of variables and the operations on them will be given.

• ∆ : S→ M is the mapping of importations. If∆ is defined for a statesi , the result of the function
gives the definition of a model which is imported intosi . Importing a model into a state means, in
theory, including all its states and transitions in that state. The states defined in the imported model
become substates of theimportation state. The transitions between the states of the imported model
are preserved. An implementation of DCharts must provide a means to modify the GUIDs in the
submodels, so that they never conflict with the GUIDs of the importing model. (Note that the imported
model itself may import models, and a model may import multiple models.) It is allowed for a model to
import itself. Such a recursive specification allows for the dynamic creation of arbitrary-sized models
(discussed later).

• P = {p1, p2, ..., pt} is the set of ports. In DCharts 1.0, a portpi (i ∈ [1, ..., t]) is a tuple< PN,PT >
(later versions of DCharts may add more information to a port to further specify it), where:

• PN is the GUID of the port. This GUID has a different name space from the GUIDs of states.
As a result, even if thePN of a port is equal to theSNof a state, no conflict occurs. There is no
restriction on a port name, except that it must not contain a “.” or a space.

• PT is the type of the port. In DCharts 1.0, the following types are defined (later versions of
DCharts may add more information):

PT = {InOut, In,Out}

• L = {l1, l2, ..., lu} a set of mappings from ports in one model to the ports of other models.l i , with
i ∈ [1, ...,u], is a tuple< PN1,< M,PN2 >>, where:

• PN1 is the GUID of a port in this model (the model that contains the definition of thisl i).

• M is another model, which the currently specified model connects to.

• PN2 is the GUID of a port in modelM.

Note that ifP1 of modelM1 is connected toP2 of modelM2 with a single connection, eitherM1 or
M2 specifies this connection, but not both. The model in with the connection is specified looks up the
other model when the simulation or execution of it starts.

If in a simulation or execution, more than one model (or component)M1,M2, ...,Mv has exactly the
same definition (M1 = M2 = ... = Mv), a link l =< PN1,< Mi ,PN2 >> (i ∈ [1,2, ...,v]) in L implies
thatPN1 is connected toPN2 of all those models with the same definition.

2.2.2 State Set S

State setS= {s1,s2, ...,sm} defines all the states in a model, regardless of their parent-children relationship.

2.2 Overview of Abstract Syntax and Semantics 22

The choice ofSN, the GUID of a state, is a decision of the model designer. According to the definition of
sets, there should not be two identical elements in a single set. Two states in the same state set differ from
each other at least in their GUIDs.

DSdefines whether the state is a default state of its parent. If the state is at the top level (i.e., it has no parent)
DSdefines whether it is a default state of the model. IfCSis true for a state, it is an orthogonal component
of its parent, and as a result, all its siblings are orthogonal components. Due to the nature of orthogonal
components (also known as “and states”), all orthogonal components must be active simultaneously, and are
in some sense default states. Hence,CS= truealways impliesDS= true.

When started, the model is always in its top-level default state(s), and the default substate(s) of the top-level
default state(s). At any given time during a simulation or execution, the model is in itscurrent leaf state(a
leaf stateis defined as a state at the lowest level, which does not contain any substate), orcurrent statefor
short. A model isin state sif and only if its current state iss or a substate ofs. Hence, a model in states′ is
also ins′′ provided that:

∃k∈ N+,s1,s2, ...,sk ∈ S · s′ ∈C(s1)∧s1 ∈C(s2)∧ ...∧sk−1 ∈C(sk)∧sk ∈C(s′′)

Here,C(s) is the children set of states. < s′′,sk,sk−1, ...,s1,s′ > is called thepath from superstate s′′ to
substate s′. Such a relation betweens′ ands′′ is formally written ass′ ∈ Substate(s′′).
Each orthogonal component has a default state defined in it. At any time in a simulation or execution, all
orthogonal components in an active state have a current state. All the transition from those current states (or
superstates of the current states) with their guards evaluated totrue are enabled and can be triggered by an
event. However, at any time there is at most one triggered transition, and the execution of a transition must
be finished without any interleaving operation. Usually, a transition is implemented as a critical section.
In this interpretation, orthogonal components are not concurrent threads. The Cartesian product of all the
orthogonal components gives a unique current state of a model. This model can be transformed to an ordinary
FSA, which has no orthogonal components.

HSspecifies the history of a state. History is regarded as a property of a state. If a state has a normal history
or deep history, a transition with that state as destination can be either to its default substate or to its history.
The transition specifies this choice by means of itsHST property. As a special case, if a transition with
HST = truegoes to a state without history,HST is automatically ignored or changed tof alse.

The difference between normal history and deep history, as they were first introduced in statecharts [4], is
that normal history only records the last visited child of a state, while deep history records all the last visited
substates of a state so that when the model goes back to this history, those substates are restored.

TP defines the priority of transitions within the scope of a state. TheTP definition of a substate always
overrides theTP definition of its superstates. Transition priorities are discussed in section 2.2.5.

EN and EX actions are implementation-dependent. However, they are restricted to sequences of single
actions. Hence, loops and if-else conditions are not allowed. These structures must be explicitly modeled.

2.2.3 Transitions T

T is a set that contains all the transitions in a model. A transition, when enabled, changes the model from
the source state to the destination state. A transition isenabledif and only if the following conditions are all
satisfied:

1. The model is in the source stateSRC.

2. EventE is received and is at the head of theglobal event list(a logical list that contains all the events
to be processed by a model in the sequence of their arrival).

3. All the formal parameters defined inγ have their values of the correct types (if the specific implemen-
tation supports types).

4. GuardG is valid and evaluated totrue.

2.2 Overview of Abstract Syntax and Semantics 23

Provided that the guard (though it is implementation-dependent) is only a boolean expression without any
side effect (i.e., potential change to the model state), and the execution of a transition is in a critical section
so that no other actions affect the decision, the order of the above conditions is not important. For example,
if a specific implementation uses exactly the same order to decide enabled transitions, it may ignore the
evaluation of guards if any one of the first three conditions is not satisfied. (This method is known as short-
circuit.)

There may be more than one transition (in the same component) enabled by a single event. In that case, the
transition with the highest priority isfired, which means itsλ is executed, and the state changes toDES.

γ is a set of variables that act as formal parameters received with the eventE. If a transition requires pa-
rameters, the event must provideat leastthe same number of parameters with the same types (if types are
supported). It may even provide more parameters (after those required), which are simply omitted.

λ is a list of sequentially executed output actions. Control structures such as loops and if-else conditions
are not allowed. Those structures must be explicitly modeled (see section 5.5).λ may contain actions that
further broadcast events. If such actions are included, the newly broadcast events are appended to the end of
the global event list.

HST is used in combination withHSof a state. However,HST is ignored if theHSproperty of the destination
stateDESis None.

Prio is an arbitrary integer that represents transition priority. The smaller this number is, the higher priority
the transition has. However, this number is used only for conflicts that cannot be resolved by the scheme of
transition ordering (see section 2.2.5).

2.2.4 Variables

Variables are involved in several parts of a model specification. Though they are implementation-dependent,
the minimum requirement for a variable is described here:

• A variable has a GUID. This GUID uniquely identifies a variable within a model. Variable GUIDs,
state names (SN) and port names (PN) have different name spaces and hence GUIDs need not be
unique among them.

• A variable stores a certain amount of data. Those data may or may not have types, depending on the
specific implementation.

• A variable can only be modified by theλ of a transition, orEN or EX of a state. Other parts of the
model cannot modify variables.

• The data stored in the variables can be retrieved inG andλ of transitions, andEN andEX of states.
In particular,G of transitions may use variables to determine theirtrue/ f alsevalue. Other parts of the
model cannot retrieve the data in variables.

Provided these rules are satisfied, an implementation of DCharts 1.0 may choose any scheme to implement
variables.

2.2.5 Transition Priorities

Transition Priorities are an extension of concepts found in STATEMATE statecharts, UML statecharts and
DEVS (the select function). They are used to solve run-timeconflictsbetween multiple transitions enabled
by the same event at a given time. This case would make the model non-deterministic. [26]

Two possible kinds of transition conflicts are described in [5].

1. At least two transitions are enabled by the same event, the source state of one of the transitions is a
substate (or superstate) of the source state of the other transition(s).

2. At least two transitions are enabled by the same event, they have the same source state.

2.2 Overview of Abstract Syntax and Semantics 24

S1

S2

S3

ITF

OTF

e

e

e

t1

t2

t3

Figure 2.3: An example of transition priorities

(Note that if those transitions have source states in different orthogonal components, no conflict occurs and
all those transitions are triggered by the same event. In that case, the order of the firing of those transitions
is random or implementation-dependent.)

Solutions to the first kind of conflicts are found in both the STATEMATE semantics [5] and the UML [27].
Unfortunately, the solutions from the two sources are opposite: in UML, if the source state of a transition is
a substate of the source state of the others, it gets higher priority; however, in the STATEMATE semantics,
it gets lower priority.

In DCharts, it is possible to customize the priority of transitions by setting theTP attribute of states (1st-
round decision) and thePrio attribute of transitions (2nd-round decision). The semantics of the different
values ofTP is formalized below (functionPriority(t) is the total priority number of transitiont; t1 andt2
are transitions;SRC1 is theSRCof t1; SRC2 is theSRCof t2):

• TPSRC1 == ITF ∧SRC2 ∈ Substate(SRC1)⇒ Priority(t1) > Priority(t2)
If SRC1 is set to be inner-transition-first (ITF), andSRC2 is a substate ofSRC1, then the total priority
of t1 is lower than that oft2, or the total priority number oft1 is larger than that oft2.

• TPSRC1 == OTF∧SRC2 ∈ Substate(SRC1)⇒ Priority(t1) < Priority(t2)
If SRC1 is set to be outer-transition-first (OTF), andSRC2 is a substate ofSRC1, then the total priority
of t1 is higher than that oft2, or the total priority number oft1 is smaller than that oft2.

• If TPSRC1 == Keep, SRC1 preserves theTP setting of its parent. This means, if its parent is inner-
transition-first,SRC1 is inner-transition-first, too. And vice versa.

• If TPSRC1 == RTO, SRC1 reverses theTP setting of its parent. This means, if its parent is ITF,SRC1

is OTF. And vice versa. In the case wheres2 ∈C(s1)∧TPs1 == RTO∧TPs2 == KEEP, s2 preserves
the transition order ofs1 rather than the reverse-transition-order (RTO) property itself. Similarly, if
TPs1 == RTO∧TPs2 == RTO, s2 reverts the actual transition order ofs1 rather than the reverse-
transition-order (RTO) property itself.

Suppose there are three transitionst1, t2 andt3 as illustrated in Figure 2.3. When evente occurs, they are
all enabled, so there is a conflict of the first kind. To understand the priority of these transitions, one must
first consider the outermost state and step inward from there. BecauseS1 is specified to beITF , the priority
of t1 must be lower than botht2 andt3. SinceS2 is OTF, t2 has a higher priority thant3. So the ordering
by priority ist2, t3, t1. Detailed explanation of the graphical representation of DCharts models is in section

2.2 Overview of Abstract Syntax and Semantics 25

4.1.

The above scheme cannot solve the second type of conflicts. In case of such a conflict, the transition with the
smallestPrio number is fired. It is the designer’s responsibility to ensure that this situation does not occur,
or even if it occurs, there is a unique decision among the conflicting transitions according to theirPrio
numbers. If the choice is not unique (more than one transition has the smallestPrio number), the transition
that is fired is random or implementation-dependent.

2.2.6 Importation

Importation allows reusing a model in another by placing all its states and transitions in a state of the
importing model. That state of the importing model is calledimportation state. An importation state is not
allowed to have substates prior to importation (and is thus a leaf state). After importation is done, that state
becomes a non-importation state.

After importation, some of the importing model’s elements must be changed to reflect the new model with
more states and transitions. For example, the GUIDs of the states in the imported model are modified so that
the new GUIDs still uniquely identify those states after importation. An implementation of DCharts could
choose a prefix and add it to the head of all the original GUIDs in the imported model. TheC (children)
function must be changed, since all the states of the imported model become substates of the importation
state (and the top-level states become its children). The transitions in the imported model are added to the
T set of the importing model, with the GUIDs of theirSRCandDESproperties accordingly changed. Other
GUIDs in the imported model must be modified in a similar way.

Importation is a dynamic operation. It is done at run-time when the imported model is needed. This allows
recursive importation, where a model explicitly or implicitly imports itself. A theoretically infinite state
hierarchy can be created in this way.

The imported model is forbidden to transition to the states of the importing model. This breaks the modu-
larity of the imported model. To interact with the importing model, the imported model should send (i.e.,
broadcast) events that trigger transitions in the importing model. After the imported model is merged with
the importing model, there is no distinction between transitions in the importing model and the imported
model any more. An event may be handled by any transition in the combined transition set.

The concept of leaf states becomes relative when importation is considered. Leaf statesmay import another
model. Since the importation is done dynamically, it is possible thats is a leaf state before a transition is
fired, while it becomes non-leaf after that because of an importation. It is assumed that notationLea f(s, t)
or simplyLea f(s) returns whether or nots is leaf at a certain point in time (t).

At any time in a simulation or execution, an importation state is always a leaf state. (Be reminded that after
a submodel is imported into it, it is no longer called importation state.)

2.2.7 Ports and Connections

Ports and connections provide a means for a model to communicate with other concurrently and indepen-
dently running models. This is different from importation, where a model is imported into an importation
state of another model, and the combined model runs sequentially as a whole.

Connections are the communication channels between those concurrent models. After they are established,
messages can be sent and received via those channels. Except when two connected models communicate,
they are independent, and they have no other means to affect the behavior of each other.

A message is a tuple< MN,γ > whereMN is the message name. The names of different messages may
be the same. Actually, there is no way to guarantee uniqueness, since every model runs independently and
concurrently. There is no restriction onMN, except that it should not contain a dot “.”γ = {γ1,γ2, ...,γk} is a
set of parameters. Each parameter is a variable.

To establish a connection, aserver modelwith at least one port must be started first. TheL link set of
the server may be empty, since it usually does not connect to other models at start-up time. Aclient must
also have at least one port. When it starts running, the simulation/execution environment connects it to the

2.2 Overview of Abstract Syntax and Semantics 26

server(s) according to theL set defined in it. That is, for each linkl i =< PN1,< M,PN2 >> defined in
L, connect portPN1 of the client model with portPN2 of the server model(s)M. All the connections are
established at start-up time. If any of the connections cannot be established, the client model cannot be
simulated or executed. Its simulator or executor should immediately terminate, without even placing the
client model in its default state(s).

If any of the following situations occurs, the establishment of connectionl i =< PN1,< M,PN2 >> is con-
sidered a failure:

• The model withl i in its L set has no port calledPN1.

• ModelM cannot be found in a certain scope that the simulator or the executor is interested in.

• ModelM has no port calledPN2.

• BothPN1 andPN2 are in-ports.

• BothPN1 andPN2 are out-ports.

• Model M does not respond to the connection request within a certain timeout (an implementation-
dependent parameter).

Once connections between two models are established, they are never disconnected.

A port of a client may connect to multiple ports of one or more servers. Reversely, a port of a server may be
connected by multiple ports of one or more clients.

Messages can be sent in any part of a model where action code can be written, such as the outputλ of a
transition, andEN andEX of a state. To send a message, a model simply broadcasts an event whose name
starts with the port name and a following dot “.” On the one hand, since neither the port name nor the
message name can have a dot in it, the only dot in this representation separates the two parts. On the other
hand, no transition handles an event sent internally with a name that contains a dot, the simulator or executor
knows that it is an out-going message instead of a normal event.

Before the message is sent via a connection, the port name and the dot are removed. When the simulator or
executor of the receiver receives this message, it first adds the name of its input port to the message name
(again separated with a dot), and then broadcasts the event internally. The parameters of the message are
regarded as the parameters of the event.

2.2.8 Actions and Guards

There is no strict definition of actions in the semantics of DCharts 1.0. As a loose definition, anaction is a
statement in an action language, which modifies the variables of the model, outputs events, or interacts with
other parts of the system that are not modeled with DCharts. An implementation of DCharts may support
an action language that is specific to it. For example, because SVM is implemented in Python and Python is
an interpreted language, Python is chosen as the action language for SVM. Other DCharts implementations
may use different action languages.

An action language must satisfy the following rules:

• An action must not modify the state hierarchy of the model. Nor can it reflect upon the current state
of the model.

• Actions are executed sequentially. They must not contain any control flow structure, such as branches
and loops.

• An implementation of DCharts usually provides primitive actions to model designers. With those
primitive actions, the models are able to interact with the simulation or execution environment, or
broadcast events. Examples of models’ interaction with the simulation or execution environment in-
clude but are not limited to snapshot requests. (The complete state of the model is taken by a snapshot,
which may be used later to roll back the model.) Snapshot is discussed later.

2.3 Algorithms 27

• A primitive action must be provided to access the elapsed time since the simulation or execution was
started. The increment of this time must be synchronized with the wall-clock. I.e., the time obtained
by this primitive action is increased by 1 after 1 second is elapsed in reality. (The accuracy depends
on the operating system.)

The case of constraint language is similar. A constraint language is used to express guards of transitions.
A guard is a side-effect-free statement that can be evaluated to eithertrue or f alseat the time when the
simulator or executor decides whether a transition is enabled. (In particular, for a timed transition with a
guard, the guard is evaluated after the scheduled amount of time instead of at the time when the transition is
scheduled.)

A constraint language must satisfy the following rules:

• A guard written in the constraint language must be side-effect-free. The language must not allow any
change on the states or variables. Nor should it allow guards to control other parts of the system, which
are not modeled.

• A guard is allowed to access the current state of the model. This makes it possible for an orthogonal
component to dynamically decide whether a transition should be fired based on the current states of
other orthogonal components.

• A guard should never affect the simulation or execution process (for example, by causing the model
to sleep for a certain amount of time or by snapshotting or rolling back the model).

• Guards must be deterministic. Provided that all the states or variables (including those in the parts that
are not modeled) that a guard depends on are not changed, the guard must always yield the sametrue
or f alseresult.

The above are the minimal requirements for DCharts actions and guards. Later versions of DCharts may
explicitly define an action language and a constraint language, or specify more requirements for them.

2.3 Algorithms

This section discusses some important algorithms for the implementation of DCharts. They define part of
the operational semantics.

2.3.1 Firing a Transition

Every time an event is received, the transition that becomes enabled with the highest total priority is fired.
To fire a transitionT, the following algorithm is used:

1. Output actions inλ of T are executed.

2. Here are some definitions:

Common superstatesare the set of common superstates of two or more states (s1,s2,...,sn). They are
defined as:

Common(s1,s2, ...,sn) = {s|s1 ∈ Substate(s)∧s2 ∈ Substate(s)∧ ...∧sn ∈ Substate(s)}

The Closest Common Superstate CCS(David Harel has called it LCA, which is short forLowest
Common Ancestor) of s1,s2, ...,sn is defined as:

CCS(s1,s2, ...,sn)= s · (s∈Common(s1,s2, ...,sn)∧¬∃s′ · (s′ ∈Substate(s)∧s′ ∈Common(s1,s2, ...,sn)))

In this step,CCS(SRC,DES) is decided. The model exitsSRCand all the states in the path from
CCS(SRC,DES) (not includingCCS(SRC,DES) itself). The exit actions of a state at a lower level are

2.3 Algorithms 28

executed before the exit actions of a state at a higher level. IfCCS(SRC,DES) cannot be found (i.e.,
SRCandDEShave no common superstate, orCommon(SRC,DES) = ø), all the current states are
exited, and all their exit actions are executed in the correct order. (If we imagine there is atop state>
that encloses all the states in a model, theCCSin this case is>.)

Exit actions of orthogonal components belonging to the same parent are executed in an implementation-
dependent order. This is because orthogonal components are logically simultaneous, and the designers
should never make the behavior of their models dependent on the execution sequence of the actions
among different orthogonal components.

3. All the states in the path fromCCS(SRC,DES) (not inclusive) toDESare entered. The enter actions
of a state at a higher level are executed before the enter actions of a state at a lower level. The enter
actions (if any) ofDESare executed last.

Enter actions of orthogonal components belonging to the same parent are executed in an implementation-
dependent order.

If SRC= DES, in which case the transition is aself-loop, the enter/exit actions of the state are executed,
becauseCCS(SRC,DES) is equal to the parent state ofSRC(or DES).

2.3.2 Alternate Algorithm for Firing a Transition

The algorithm in the previous section for firing a transition conforms to David Harel’s statecharts, whose se-
mantics is described in [5]. Alternatively, an implementation of DCharts may also support another algorithm
for firing a transition. This alternate algorithm is not compatible with David Harel’s statecharts. However, it
sometimes better expresses the behavior of a system to be modeled.

In this algorithm,CCSalt(SRC,DES) is defined in a different way:

CCSalt(SRC,DES) =

SRC, DES∈ Substate(SRC)
DES, SRC∈ Substate(DES)
SRC, SRC= DES
CCS(SRC,DES), otherwise

The steps of the firing of a transition is described below:

1. CCSalt(SRC,DES) is decided. The model exitsSRCand all the states in the path fromCCSalt(SRC,DES).
The exit actions of a state at a lower level are executed before the exit actions of a state at a higher
level. If CCSalt(SRC,DES) cannot be found, all the current states are exited, and all their exit actions
are executed in the correct order.

2. Output actions inλ of T are executed.

3. All the states in the path fromCCSalt(SRC,DES) to DESare entered. The enter actions of a state at a
higher level are executed before the enter actions of a state at a lower level. The enter actions (if any)
of DESare executed last.

Compared to the algorithm described in the last section, this algorithm reverses the first operation and
the second operation. As a result, when theλ of a transition is executed, the model is not inSRCbut
CCSalt(SRC,DES). This better reflects the fact thatλ is executedwhile transitionT is fired, notbeforeor
after that.

SupposeDES is a history state, thehistory leaf substates History(DES) = {h1,h2, ...,hn} are defined as
the set ofDES’ substates recorded in its history, whereLea f(h1), Lea f(h2), ..., Lea f(hn) are alltrue. The
default leaf substates De f ault(DES) = {d1,d2, ...,dn} are defined as the set ofDES’ default substates, where
Lea f(h1), Lea f(h2), ...,Lea f(hn) are alltrue. It is possible thatHistory(DES) andDe f ault(DES) contain
more than one elements, considering that theDESmay have orthogonal components as its substates.

2.3 Algorithms 29

In the special case whereSRC= DES, or thoughSRC6= DES, SRCis in the path fromDESto any state in
History(DES) or De f ault(DES), the enter/exit actions ofDES(and its superstates) are not executed. This
is because a self-loop toDESis not considered as a state change. This is the reason for usingCCSalt instead
of CCS.

An implementation of DChartsmustimplement the first algorithm described in the previous section. The
algorithm discussed here is highly optional.

2.3.3 Importation

When modelM′ is imported into statesof modelM, a part of its definition is merged withM, while the rest
is ignored. The algorithm below describes this merging:

1. As an stimulus of this importation, a transitiont must be fired, or the submodel is placed in a default
state of the model so that it is required at the very beginning of a simulation or execution.t has the
following properties:

• Its DES is an importation state (a states that has a value at∆(s)), or an importation states
appears in the path fromCCS(SRC,DES) (or CCSalt(SRC,DES) depending on the algorithm
used) toDES, or one of the default substates ofDESis an importation states.

• ∆(s) == M′. M′ has not been imported intosyet. (If M′ has already been imported intosbecause
of the firing of a previous transition, it is never removed, ands is no longer an importation state.)

If such a transition is detected, the simulation/execution environment must first prepare the substates
of s by importation (since it is at that time a leaf state) before actually firing the transition.

If an importation state is a default state of a model, the simulation/execution environment must import
the appropriate submodel at the beginning. If the imported model requires more submodels, they are
also imported at that time. It is the designer’s responsibility to make sure that this repeated importation
process ends in finite and acceptable time.

2. To import modelM′ into importation states of M, the following merging operations are performed:

3. The GUIDs of the states inM′ are modified to make them globally unique within the states name
space. This may be implemented by adding a prefix. TheSRCandDESof each transition are
modified accordingly. The parent-children relationship functionC is modified accordingly.

4. The state hierarchy ofM′ is merged withM. All the states inM′ become substates ofs. TheC
function ofM′ is combined with theC function ofM.

5. T of M′ is merged withT of M. If it is enforced that theSRCof any transition inM cannot be
a state in submodelM′, the two transition sets do not have overlapping elements. (However, the
DESof some transitions may be states inM′.) Note that theDESof a transition inM′ cannot
refer to a state inM, since the simulation or execution environment modifies it to be a unique
GUID at the time of importation.

6. V of M′ is merged withV of M. If a variable inM′ has the same name as a variable inM, it is
considered the same variable. If they have different types in a type system, a run-time exception
is raised.

7. ∆ is merged after the GUIDs of states are changed.

And the following properties ofM′ are ignored:

• TheFSproperties of all its states are set tof alse. This is because the behavior ofM′ should not
affect the original behavior ofM. If those final states are kept after importation, they would stop
the simulation or execution ofM unexpectedly.

• P andL of M′ are ignored, since the submodelM′ cannot open a port or establish a connection
dynamically.

2.4 Closure under Importation 30

1. s becomes a non-importation state, becauseM′ has already been imported into it.s is no longer a leaf
state, either. When the importation is finished, there is no knowledge of modelM′ any more.

2. Repeat steps 2.3.3 to 2.3.3 until no importation states is found in the path fromCCS(SRC,DES) to
DESor DESitself.

After this merging of one or more submodels, transitiont can be fired according to any of the algorithms
described in previous sections.

2.4 Closure under Importation

Importation is a kind of tight coupling between models.

Strictly speaking, DCharts are not closed under importation. I.e., it may not be possible to find such a model
M′ so that it has exactly the same behavior as the original modelM but it has no importation state. A counter-
example can be easily found. Suppose∃s∈ S · ∆M(s) = M, which means modelM imports itself in states.
This creates an infinite structure. It is impossible to find a non-recursive modelM′ with the same behavior.

If recursive importation is not considered, closure under importation can be proved with the algorithm de-
scribed in section 4.2.9.

Theorem 1 Non-recursive DCharts models are closed under importation. I.e., models with importation
states can be replaced by models without importation states, which have exactly the same behavior.

Proof Theexpanded model M′ of non-recursive DCharts modelM is found by the following algorithm:

function expand(M)
M′=M
for s in S of M′

if ∆M′ is defined at s then
M′

s=expand(∆M′(s))
import M′

s into M′ according to the algorithm in section 4.2.9
return M′

SinceM is non-recursive, this algorithm always terminates in a finite number of steps. The modelM′ returned
does not contain any importation state.

Obviously,M′ is still a DCharts model. According to the semantics of dynamic importation (section 4.2.9),
it has exactly the same behavior asM. �

2.5 Asynchronous Communication and Synchronous Communication

Asynchronous communication and synchronous communication are the two different types of inter-model
communication. They define the semantics of sending and receiving messages via ports, after necessary
connections are established.

Asynchronous sendingmeans sending without waiting for response. DCharts require that an action be pro-
vided to send messages asynchronously to a specified port. A message, as discussed in section 2.2.7, is a
tuple< MN,γ > whereMN is its name, andγ is a set of parameters. The message is buffered and the action
returns immediately.

In many cases, the sender is not interested in when or whether a message is received by the receiver. However,
mechanisms (possibly in the constraint language) should be provided to check this result. There are two
possible mechanisms:

1. Checking function. It is a boolean function that returns whether a message has been received. A model
may use this function in the actions or guards to check the status of a message sent previously.

2. Callback. A certain event is sent by the simulation/execution environment of the sender when the
confirmation from the message receiver is received by the sender. The event name is specified by

2.5 Asynchronous Communication and Synchronous Communication 31

the sender model at the time when it sends out the message. The parameters of a callback event is
implementation-dependent.

Synchronous sendingmeans sending a message and waiting until the receiver confirms the receipt of the
message with an acknowledgment. Some communication protocols allow to test whether a message is cor-
rectly received, or to wait until it is received. A DCharts implementation on such a protocol may not require
acknowledgments.

Since a model is simulated or executed sequentially, synchronous sending blocks the whole model until
the simulation/execution environment knows the message is received. During the blocking period, all the
incoming events are queued by the simulation/execution environment. Some scheduled transitions may be
delayed because of this blocking. As a result, if a model uses synchronous sending, it is the designer’s
responsibility to make sure that the time constraints of scheduled transitions (if any) are satisfied. (Event
scheduling and timing of DCharts models are discussed in chapter 3.)

The following algorithms use the facilities of asynchronous sending to simulate synchronous sending:

1. If a checking function is provided, the model asynchronously sends a message, and goes to an isolated
state. A transition is repeatedly scheduled after a certain period (timeout). When this transition is
triggered, it checks the status of the message in its guard. If the checking function returnstrue, the
model goes back to the previous state; otherwise, the same transition is scheduled after the same
timeout period.

2. If callback is supported, the model asynchronously sends a message, and goes to an isolated state. The
callback event triggers a transition from that state back to the previous state.

In both cases, the isolated state must accept all other events and sequentially record them in a variable. At
the time when the model goes back to the original state, those recorded events are re-broadcast in the same
order. This explicitly models part of the global event list of the simulator/executor.

3
Timing

As part of the DCharts semantics, the timing of DCharts models is defined in this chapter.

The DCharts formalism requires that its implementation (whether it is a simulator or an executor) strives to
provide the real-time timing scheme for every model.

3.1 The Real-time Concept

The termreal-timeis defined by FOLDOC [28] as following:

1. Describes an application which requires a program to respond to stimuli within some small upper
limit of response time (typically milli- or microseconds). Process control at a chemical plant is the
classic example. Such applications often require special operating systems (because everything else
must take a back seat to response time) and speed-tuned hardware.

2. In jargon, refers to doing something while people are watching or waiting. “I asked her how to find
the calling procedure’s program counter on the stack and she came up with an algorithm in real time.”

(Used to describe a system that must guarantee a response to an external event within a given time. [28])

Definition 1 puts the requirement of time more on the underlying operating system than the specific DCharts
implementation. This is because the small upper limit of response time can only be guaranteed if the op-
erating system supports it. For many common-purpose systems that model designers would most probably
use, this guarantee is hard to achieve. For example, Linux only provides a very limited support for real-time
computation; Windows and many other multi-tasking operating systems perform even more unsatisfactory
within the real-time domain. To allow DCharts to be implemented on most systems and platforms, the real-
time requirement cannot be formalized as strict as that in definition 1.

Definition 2 makes the real-time concept more general: the DCharts implementations provide real-time
support for models within the extent of their capability. The model users watch the simulation/execution of
the models and wait for them to respond.

The real-time concept is defined by Webopedia [29] in a similar way:

1. Occurring immediately. The term is used to describe a number of different computer features. For
example, real-time operating systems are systems that respond to input immediately. They are used
for such tasks as navigation, in which the computer must react to a steady flow of new information
without interruption. Most general-purpose operating systems are not real-time because they can take
a few seconds, or even minutes, to react.

2. Real time can also refer to events simulated by a computer at the same speed that they would occur
in real life. In graphics animation, for example, a real-time program would display objects moving
across the screen at the same speed that they would actually move.

Definition 2 is useful for the understanding of the real-time required by DCharts. Similarly, the requirement
of “the same speed” is not strict. DCharts implementations should provide this support as much as possible,
given the restrictions of the operating systems that they are built for.

3.2 Virtual-time Simulation 33

MSN Encarta [30] also defines the real-time concept, which is stricter than the real-time concept in DCharts:

1. Computing immediacy of data processing: the time in which certain computer systems process and
update data as soon as it is received from some external source, e.g. an air-traffic control or antilock
brake system. The time available to receive the data, process it, and respond to the external process is
dictated by the time constraints imposed by the process.

2. Actual time of occurrence: the actual time during which something happens.

In most cases, model designers may assume that 1 second elapsed in the model simulation or execution
is approximately equal to 1 second in reality. Designers with time-critical requirements should turn to the
documentation of specific DCharts implementations or operating systems to know whether they suit the
need.

3.2 Virtual-time Simulation

Though real time is desirable for many practical applications, virtual time is still necessary in other cases.

There are two kinds of virtual time simulation:

• In scaled real-time simulation, the time is proportional to the real time. Thescale factoris a floating-
point number, and may be 1.0 in some cases.

Scaled real-time simulation can be easily simulated by a real-time simulation. This is done by mul-
tiplying all the time variables in a model with the scale factor. Macro redefinition discussed in later
chapters allows for flexible change of the scale factor.

• In as-fast-as-possible simulation, a variable is used to keep track of time. It is increased to the smallest
scheduled time (see section 3.3) when the model becomesidle (the global event list becomes empty).
This time variable has no relation with the time in reality. It is consistent only in one single simulation.
Within one simulation there is exactly one such variable, and the model retrievescurrent timefrom
this variable, and schedules events with it.

As-fast-as-possible simulation can be simulated by a real-time simulation. For a stand-alone model
(a model that does not communicate with other models via ports), aclock componentis designed
and discussed later with examples (section 9.2). By importing the clock component as a top-level
orthogonal component in the model, as-fast-as-possible simulation is enabled. The clock component
maintains the time variable. To retrieve time, the model sends an event, which triggers a transition in
the clock. That transition outputs another event with the value of the time variable as a parameter. The
latter event tells other parts of the model the current time.

To schedule an event, the model sends an event with the scheduled time as a parameter. The event
triggers another transition in the clock component, which adds the scheduled time to itsschedule list
(a variable). The clock component also keeps track of the activity of the model. It broadcasts thetime
advanceevent with the smallest scheduled time in the schedule list as a parameter, when the model
becomes idle.

To simulate as-fast-as-possible simulation for distributed models (models that communicate via ports),
the idea of a clock component is similar. However, the clock component must tolerate network delay,
if some or all of the connections are established via a network. Because of this delay, a model may
receive a message from another model, which is sent at a time in the past (in terms of the local virtual
time of the receiver). In that case, the receiver must be rolled back to the message time. This timewarp
issue is discussed in [31]. It is not in the scope of this thesis.

3.3 Special Event: a f ter

In DCharts,a f ter is regarded as a special event. It is comparable to thetm (timeout) in David Harel’s
STATEMATE statecharts. Though it appears in the event partE of a transition, it is not really an event

3.3 Special Event: a f ter 34

but a schedule request. It also has a special syntaxa f ter(t) wheret is the schedule time (in seconds) as a
parameter. For example, ift is 10, the transition with such anE will be triggered after 10 seconds in real-time
(if the model stays in itsSRCstate).

The meaning of “after 10 seconds” must be clarified.SRC is the source state of transitiont. When the
model changes toSRCor any substate ofSRCfrom the outside, transitions fromSRCwith a f ter(t) events
are collected. Their scheduled timest are evaluated. Thet is usually a constant float number. However, a
specific implementation may allow to use expressions to specifyt. Those expressions are evaluated at run-
time. Each of such transitions will be triggered after the resulting number of seconds, counting from the
moment when thet of all those transitions are evaluated. Of course, there might be slight difference in the
timing of those transitions. The accuracy is implementation-dependent.

When the model leaves stateSRC, the scheduled transitions fromSRCor its substates that have not been trig-
gered yet, arecanceled. In particular, if Harel’s algorithm for firing a transition (section 2.3.1) is used, sched-
uled transitions fromSRCare re-scheduled when a self-loop onSRCis triggered (becauseCCS(SRC,SRC)
is the parent ofSRC); if the alternate algorithm (section 2.3.2) is used, they are not re-scheduled or canceled
(becauseCCSalt(SRC,SRC) is SRCitself).

4
GRAPHICAL SYNTAX AND TEXTUAL SYNTAX

The abstract syntax of DCharts is not concerned with concrete implementation. The graphical syntax and
textual syntax discussed in this chapter make DCharts usable by human beings and various tools. Models
can be easily and formally specified. They can also be simulated or executed in DCharts implementations
that support these syntaxes.

4.1 Graphical Syntax

DCharts allows multiple syntaxes. A designer chooses his/her favorite syntax or combination of syntaxes.
This section describes the graphical syntax of DCharts. Note that only part of this syntax is implemented in
AToM3. Initializer, finalizer, macros, transition priorities and submodel importation cannot be specified in
AToM3 at this time, and thus require the designers to manually write them with the textual syntax. However,
they do have a graphical representation, which will be implemented in AToM3 in the future.

4.1.1 State Hierarchy

States in DCharts are shown as circles or round-corner boxes. If a state is drawn as a circle, it is a leaf state,
which means it cannot contain any substate. When a state is drawn as a round-corner box, it is a composite
state. Acomposite statemust have at least one substate in it. Those substates can be composite states or leaf
states. The set of composite states and leaf states, and the parent-children relations among them defined in
a DCharts model, are called thestate hierarchyof the model. As an example, Figure 4.1 shows the state
hierarchy of an imaginary model: the model has statesA, B, ...,K; B is a composite state with childrenC, D
andE; composite stateD has a childF; and so on. The name of a leaf state is shown inside the circle. The
name of a composite state is shown in a rectangle above or inside the round-corner box.

Specific modeling tools may depict the state hierarchy in slightly different ways. In this particular DCharts
meta-model in AToM3, composite states are drawn as blue rectangles. The names are in black, shown beside
the states.

4.1.2 Naming Convention

Different states may have the same name, provided that the states with the same name are not top-level states
or children of the same composite state. For example, changing the name of stateC in the previous example
to F does not cause a conflict. However, changing its name toD makes it conflict with another stateD, since
both of them are children of composite stateB.

Thepath nameor full path of a state is a unique string that identifies a state in a model (the GUID required
in the mathematical syntax). It contains the state names from the top-level superstate down to the state that
is identified. The name of each state within this path is aname component. Different name components are
separated with a dot. For example, the following path names uniquely identify all the states in Figure 4.1:A,
B, B.C, B.D, B.E, B.D.F, B.E.G, B.E.H, B.E.I, B.E.I.J andB.E.I.K.

4.1.3 Orthogonal Components

Orthogonal components are a special kind of composite states.

Orthogonal components belonging to the same (orthogonal or non-orthogonal) composite state are separated

4.1 Graphical Syntax 36

Figure 4.1: An example of the graphical representation of a state hierarchy

B

D E

A

C

F G H

I

J K

Figure 4.2: Alternate graphical representation of a state hierarchy in AToM3

4.1 Graphical Syntax 37

Figure 4.3: An example of the graphical representation of orthogonal components

by dashed lines across the round-corner box of the composite state. The current state of that composite state
is the Cartesian product of the current states of all those orthogonal components. Substates may be defined
inside each of the orthogonal components. If no substate is defined in it, the orthogonal component is a leaf
state.

If a composite state has an orthogonal component as one of its children states, all its other children states
must also be orthogonal components.

It is possible that an orthogonal component has orthogonal components as its children. SupposeM.A andM.B
are orthogonal components ofM, andM.B.C andM.B.D are orthogonal components ofM.B. According to the
definition of orthogonal components, the current state ofM is equal to the Cartesian product of the current
states ofM.A andM.B, i.e.,S(M) = S(M.A)×S(M.B) (S(M) is the function to compute the current state(s)
of M). Similarly, S(M.B) = S(M.B.C)×S(M.B.D). As a result,S(M) = S(M.A)×S(M.B.C)×S(M.B.D).
The names of the orthogonal components are shown in rectangles inside them. According to the naming
convention, orthogonal components of the same composite state should have different names.

Figure 4.3 shows an example of orthogonal components. Composite stateA has three orthogonal components
defined in it:A.B, A.C andA.D, each of which has its inner structure.

Alternately, AToM3 shows the same example in a slightly different way (Figure 4.4).

4.1.4 Default States and Final States

Default statesdefine the states where a model starts running, or which substates are the actual destination
of a transition.Final statesdefine where a simulation or execution of the model terminates. In the graphical
representation of a model, a default state is drawn as a circle with a black dot pointing to it. A final state
is a state with a double-line border. An example of default states and final states is given by Figure 4.5. In
this example, statesA, B.D, B.D.F, B.E.G andB.E.I.J are default states. StatesB.D andB.E.I.K are final
states.

In this example,B.D is a non-leaf state. Assigning the final property to a non-leaf state is equivalent to
making all its substates final. When a transition is fired with a non-leaf final state as its destination, the
model will be changed to the leaf substate(s) of the destination state. Those leaf substate(s) (may be more
than one because of orthogonal components in the destination state) are all final. The simulation or execution
stops after the enter actions of those states are executed. If the destination state or any of its substates is an

4.1 Graphical Syntax 38

A

J

E F

G H

I

K L

B

C

D

Figure 4.4: Alternate graphical representation of orthogonal components in AToM3

Figure 4.5: An example of the graphical representation of default states and final states

4.1 Graphical Syntax 39

Figure 4.6: An example of the graphical representation of default states and final states with orthogonal
components

importation state, the submodel must be imported and all its states become final states. Enter actions in the
submodel are also executed. If a finalizer is defined for a model (discussed in section 4.3.4), the finalizer
is executed as the last step before the simulation or execution halts. Note that all the above operations are
triggered by a single transition. It is illegal to transition out of a final state, whether its final property is
assigned by the designer or inherited from its superstates.

It is important that there must be default states among all the children of a composite state or an orthogonal
component. Orthogonal components are default in their nature, so a composite state that contains orthog-
onal components need not explicitly specify default substates. For the example in Figure 4.6, all the three
orthogonal components of stateA are default. Besides this, statesA.B.E, A.C.H, A.D.J andA.D.J.K are also
default states. StateA is a final state, and hence all its substates, including the three orthogonal components
in it, are final states. Besides these, stateA.D.J.L is a final state explicitly specified by the designer.

AToM3 uses a different color to represent default states. The current version of AToM3 does not support the
specification of final states.

4.1.5 Transitions

Transitionsof a model are triggered by events, and they react to them. They may or may not change the state
of the model. They are graphically shown as arcs or arrow lines.

A transition has several properties:

• The event nameis placed on the arc of the transition. The event name of thea f ter special event is
shown asa f ter(t), wheret is a float number or an expression that can be evaluated to a float number
at run-time.

• Theguard is placed after the event name between a pair of square brackets (“[” and “]”).

• One or moreoutput actionsare placed sequentially after the event and the guard, with a leading slash
“/”. They are separated by comma “,” or semicolon “;”.

The guard and output of a transition are optional and may be omitted from the graphical representation of the
model for better conciseness. It is not allowed to create a transition without an event name. For a transition

4.1 Graphical Syntax 40

Figure 4.7: An example of the graphical representation of transitions

A

BC

D

e [i==1] / [DUMP("t1 fired")]

f
g / [DUMP("t2 fired")],[EVENT("e")]

Figure 4.8: Graphical representation of transitions in AToM3

whose triggering does not depend on any event, i.e., the transition is triggered whenever the source state is
entered (and with its guard evaluated to true, if any), the model designer must explicitly specifya f ter(0) as
the event name. Because DCharts is a real-time formalism,a f ter(0) does not mean to trigger the transition
at no timebut ratheras soon as possible(after all the currently queued events have been handled).

Figure 4.7 shows a model with three transitions. (Note that the arc from a black dot to a state is not a
transition but part of the notation of a default state.) The transition fromB to A reacts to evente if and only if
conditioni==1 is satisfied. As a side effect of the triggering of this transition, action[DUMP("t1 fired")]1

is executed.

Figure 4.8 shows the graphical representation of the same model in AToM3.

4.1.6 History

Though history is a state property, it is graphically shown as a leaf state in a composite state (according to
David Harel’s syntax). AnH or H* is placed in a circle inside the composite state, depending on whether the
history is a normal history or a deep history. A transition with a history as its destination is a transition with

1DUMP is a predefined macro for the specification of actions. See section 4.3.1 for a detailed description of macros.

4.1 Graphical Syntax 41

Figure 4.9: An example of the graphical representation of history states

HST = true to the owner of the history in the mathematical syntax.

This graphical representation assumes that only composite states can have histories. Leaf states, since noth-
ing can be placed inside them, cannot have histories. As such, this restriction has a positive effect on the
well-formedness of a model. Leaf states have no substates and thus they need not have any history. (As an
exception, importation states may have histories, and those histories apply to the models that they import. In
those cases, importation states are drawn as composite states rather than leaf states.)

An example of history states is shown in Figure 4.9. In this example, stateA has a deep history, and state
A.C has a normal history. If the transition reacting to evente1 is represented in the abstract syntax, itsDES
is A, and itsHST is equal totrue. Similarly, for the transition reacting toe2, DESis A.C andHST is true.

Obviously, a composite state cannot have both a normal history and a deep history. In such a case, its deep
history always overrides the normal history, and the latter is ignored. This is also because in the abstract
syntax, history is a property of a state with valueNone, Normalor Deep. It is impossible to assign different
values to this single property.

Figure 4.10 shows the graphical representation of history states inAToM3.

4.1.7 Enter/Exit Actions

Enter actions and exit actions are shown as UML notes in a state. An example is given in Figure 4.11.

In AToM3, enter/exit actions are not graphically visible. They are hidden properties of states.

4.1.8 Importation

Importation is graphically shown as UML comments. The name of the file that contains the imported model
is given in the comment.2 As an example, Figure 4.12 includes stateB, where submodelsubmodel.des
(des, short for “model description”, is the postfix used by SVM) is imported.

The current version of the DCharts meta-model in AToM3 does not support the specification of importation.

4.1.9 Ports

An example of ports is shown in Figure 4.13. There are three ports:p, q andr. A port is graphically repre-
sented as a box with one or two openings. Its name is placed beside the icon. There are different graphical

2It is assumed that each model is defined in a separate file, whether the graphical syntax or the textual syntax is used.

4.1 Graphical Syntax 42

A

C

D E

B

H

H*

e1
e2

e3

e4

Figure 4.10: Graphical representation of history states inAToM3

Figure 4.11: An example of the graphical representation of enter actions and exit actions

4.1 Graphical Syntax 43

Figure 4.12: An example of the graphical representation of importation

Figure 4.13: An example of the graphical representation of ports

4.1 Graphical Syntax 44

Figure 4.14: An example of the graphical representation of connections

representations for different types of ports. In this example,p is an inout-port,q is an in-port, andr is an
out-port. (The direction of a port icon does not matter. Different types of ports have different icons.)

Once a port is defined, transitions in the model can refer to it by name. For example, the transition fromA to
B reacts to eventp.e, wherep is the name of a port, ande is the name of a message coming from that port.
The other transition fromB to A reacts to eventq.f. In its actions, eventr.f is output with parameteri. As
described in the abstract syntax, an event generated by the model with a dot is considered as an out-going
message. As a result, messagef will be sent asynchronously via portr with parameteri.

4.1.10 Connections

The definition of connections is not required for servers, the models that passively wait for incoming service
requests, and provide those services to the clients.

In the clients, connections must be specified in addition to the ports. The clients must also locate the servers.
A specific implementation of DCharts may provide a number of ways to locate those servers. The following
mechanisms are most common:

• Locate servers by their names. The clients specify name patterns of the servers that they want to
connect to. All the servers with names matching those name patterns are selected by the simula-
tion/execution environments. They attempt to establish the required connections between the servers
and the clients. The name patterns are strings of UNIX regular expressions.

• Locate servers by their types. The clients specify types of the servers. Thetype of a modelis an
unordered list of the types of all its ports. For example, the type of a model with 2 in-ports, 1 out-port
and 3 inout-ports is{in, in,out, inout, inout, inout}. This scheme selects all the servers that match a
given type.

• Locate servers by their behavioral keywords. A server may define several keywords that define its
behavior or the services that it provides. If so, the clients can use the keywords to match the servers.

• Any combination of the above schemes.

The graphical representation of three connections is given in Figure 4.14. The scheme to locate the server
is a property of the connections and is not shown graphically. Connections are the links between the ports

4.2 Textual Syntax 45

A B

p.e / [DUMP("p.e received

q.f / [EVENT("r.f", i)]

p

q

r

Server0

Figure 4.15: Alternate graphical representation of connections in AToM3

and the server. A connection must also specify the port of the server to which the client is connected. This
specification is not shown graphically, either.

In the figure, portp, because it is an inout-port (supporting input, output, or both), can be connected to ports
of any type of the server;q can only be connected to out-ports or inout-ports of the server;r can only be
connected to in-ports or inout-ports of the server.

The graphical representation of connections is a little different in AToM3 (Figure 4.15).

4.2 Textual Syntax

The textual syntax of DCharts makes it possible to manually write a model in a text file. Such a file can be
easily processed by a simulator or executor. The syntax discussed in this section is specific to SVM. Other
implementations of DCharts may use other textual syntaxes or other file formats.

For the simulation in SVM, each model is written in a separate file. A model may import others by assigning
identifiers to their file names and using those identifiers as properties for its importation states.

4.2.1 Descriptors

A model description consists of several parts, each of which starts with adescriptor, such asSTATECHART
andTRANSITION. A model may specify the same descriptor many times.

In the text file of a model description, a descriptor is a single line with an ending colon “:”. All the following
lines pertain to that descriptor until a new descriptor appears.Empty linesare lines that contain only spaces,
tabs and/or comments (see below). Empty lines are automatically ignored.

DescriptorSTATECHART is necessary for every model, which defines the state hierarchy. As least one default
state must be defined for the hierarchy. Other descriptors are optional.

4.2.2 State Hierarchy

The state hierarchy of a model is written using indentation so it is easily understood by designers. Descriptor
STATECHART starts the definition of the state hierarchy. If there are multipleSTATECHART descriptors in a
single model, the definitions under all of them are literally combined.

4.2 Textual Syntax 46

A
B

C
D

F
E

G
H
I

J
K

Table 4.1: An example of the textual representation of a simple state hierarchy

Symbol Meaning Note
[DS] default state The state is a default state of its parent or of the model.
[FS] final state The state is a final state.
[CS] concurrent state The state is an orthogonal component.
[HS] history state The state has a normal (1-level) history.
[HS*] deep history state The state has a deep history.
[ITF] inner transition first
[OTF] outer transition first
[RTO] reverse transition order

Table 4.2: State properties in the textual syntax

Under theSTATECHART descriptor, the names of the states are written on separate lines. The indentation of
those names represents the parent-children relationship. A name with more leading spaces becomes a child
state of the state defined in the previous line. For example, the graphical model in Figure 4.1 is written as
the textual representation in Table 4.1.

The amount of indentation spaces for the first child of a composite state is not important, as long as all its
children have exactly the same indentation. From this example,B.C is the first child ofB with 4 more leading
spaces. ForB.D andB.E to be children ofB, they should have exactly the same indentation.

The use ofTAB is not recommended, since different text editors display aTAB character with different num-
bers of spaces. In SVM, aTAB is always equivalent to 4 spaces.

The naming convention is the same as the graphical syntax. Different states may have the same name,
provided that their path names are different (i.e., they have globally unique fully qualified names).

4.2.3 State Properties

State properties are written after the names of the states. A state may have 0 or more properties. Each
property is enclosed by a pair of square brackets. There can be 0 or more spaces between the state name and
the first property, and between two adjacent properties.

The state properties are explained in Table 4.2.

As an example, the model in Figure 4.5 is textually written in Table 4.3.

4.2.4 Orthogonal Components

Orthogonal components are states with[CS] properties. As required by their semantics,[CS] always comes
with [DS]. If any of a composite state’s children has a[CS] property, all other children of the same parent
should also have[CS].

4.2 Textual Syntax 47

STATECHART:
A [DS]
B

C
D [DS] [FS]

F [DS]
E

G [DS]
H
I

J [DS]
K [FS]

Table 4.3: An example of the textual representation of state properties

STATECHART:
A [DS]

B [CS] [DS]
E [DS]
F

C [CS] [DS]
G
H [DS]

D [CS] [DS]
I
J [DS]

K [DS]
L

Table 4.4: An example of the textual representation of orthogonal components

4.2 Textual Syntax 48

STATECHART:
A [DS]

C [DS]
D

B

TRANSITION:
S: B
N: A
E: e
C: i==1
O: [DUMP("t1 fired")]

TRANSITION:
S: A.C
N: A.D
E: f

TRANSITION:
S: A.D
N: B
E: g
O: [DUMP("t2 fired")]

[EVENT("e")]

Table 4.5: An example of the textual representation of transitions

Table 4.4 shows the textual description of the same model as Figure 4.3.

4.2.5 Transitions

Each transitions is written under theTRANSITION descriptor. A transition may have the following 5 proper-
ties. Some of them are optional.

• TheS (source state) property is theSRCof a transition in the abstract syntax.

• TheN (new state) property is theDESof a transition in the abstract syntax.

• TheE (event) orT (time) property is theE of a transition in the abstract syntax.

• TheC (condition) property (optional) is theG of a transition in the abstract syntax.

• TheO (output) property (optional) is theγ of a transition in the abstract syntax.

TheS property, theN property, and either theE property or theT property are obligatory for each transition.
The value of theE property is the name of the event that triggers the transition. The value of theT property,
which may be a Python expression to be evaluated at run-time, is the timet (in seconds) to be scheduled in
advance. It is equivalent to thea f ter(t) event in the abstract syntax. A transition cannot have bothE andT
properties.

The properties of a transition are specified in separate lines after theTRANSITION descriptor. Their order is
not important. For transitions that have multiple output actions, each action is written on a single line, and all
those actions are left-aligned with 0 or more leading spaces. Similarly, more than one guard can be written
in consecutive lines with left-alignment. Those guards have “and” relations. Alternatively, they can also be
written in a single line with theandoperator in the constraint language (Python) between them.

4.2 Textual Syntax 49

TRANSITION:
S: A
N: B
T: 0.5 + i
C: x==1

y==2

Table 4.6: An example of the textual representation of a timed transition

STATECHART:
A [DS]

TRANSITION: [1]
S: A
N: A
E: e
O: [DUMP(‘‘t1’’)]

TRANSITION: [0]
S: A
N: A
E: e
O: [DUMP(‘‘t2’’)]

Table 4.7: An example of the textual representation of priority numbers

As an example, the model in Figure 4.7 is textually written as the textual representation in Table 4.5.

Timed transitionsare a special kind of transitions that have theT property instead ofE. An example of timed
transition is shown in Table 4.6. This transition is triggered 0.5+ i seconds after stateA is entered. The
transition is enabled after the scheduled time only ifx == 1 andy == 2.

4.2.6 Priority Numbers

An integer numberPrio is assigned to each transition. Whenever there is a conflict that cannot be solved
with the ITF and OTF scheme, the priority numbers are used. The priority number is placed between square
brackets after theTRANSITION descriptor. By default, each transition has a priority number of 0.

For example, two transitions are defined in Table 4.7. The model is initialized in stateA. When evente
occurs, both transitions are enabled and hence there is a conflict that cannot be solved with the ITF and OTF
convention (because they have the same source stateSRC). In this case, their priority numbers are used to
solve the conflict. Since the second transition has a smaller priority number, it has higher priority and is thus
fired.

4.2.7 History

A state with history is simply written as a state name followed by an[HS] or [HS*] property. Above this,
there must be a means for a transition to choose whether the destination is a state itself or the history of
the state. This is accomplished by an additional[HS] attribute after theTRANSITION descriptor. A transition
with [HS] after itsTRANSITION descriptor goes to the (normal or deep) history of its destination stateDES;
a transition without this attribute goes toDESor the default substates ofDES.

As an example, the model in Figure 4.9 is textually written in Table 4.8. The transitions reacting to events
e1 ande2 have an[HS] attribute, so they go to the histories of theirDESstates. Since statesA.C.D and

4.2 Textual Syntax 50

STATECHART:
A [DS] [HS*]

B [DS]
C [HS]

D [DS]
E

TRANSITION: [HS]
S: A
N: A
E: e1

TRANSITION: [HS]
S: A.B
N: A.C
E: e2

TRANSITION:
S: A.C.D
N: A.C.E
E: e3

TRANSITION:
S: A.C.E
N: A.C.D
E: e4

Table 4.8: An example of the textual representation of histories

4.2 Textual Syntax 51

STATECHART:
A [DS]

B [DS]
C

ENTER:
N: A
O: [DUMP("A entered")]

[EVENT("e")]

EXIT:
S: A
O: [DUMP("A exited")]

TRANSITION:
S: A.B
N: A.C
E: e

Table 4.9: An example of the textual representation of an enter action and an exit action

A.C.E do not have history, adding[HS] attribute to the transitions reacting toe3 ande4 does not change the
behavior of those transitions.

4.2.8 Enter/Exit Actions

Enter actions of a state are written under theENTER descriptor. Exit actions are written under theEXIT
descriptor. There are two obligatory properties and one optional property for enter actions and exit actions:

• TheN (source state) property or theS (new state) property specifies the state of those actions. For enter
actions, since they are executed when a state is entered, theN property is used to identify the state.
Conversely, for exit actions, since they are executed when a state is exited, theS property is used.

• The O (output) property specifies the actions to be executed. If there are multiple actions, they are
written on consecutive lines and left aligned.

• The C (condition) property specifies the guard to be satisfied. It is similar to theC property of a
transition. The guard is evaluated when the state is entered/exited.

There may be multiple parts of enter/exit actions defined for a single state. This is done with multiple
ENTER or EXIT descriptors with the sameN or S property. The guards of those parts are mutually
independent. Each guard only controls the execution of the actions under one descriptor.

The model with an enter action and an exit action in Figure 4.11 is translated into the textual representation
in Table 4.9.

4.2.9 Importation

Definition of importation in a model is separated into two parts. Under theIMPORTATION descriptor, one or
more models can be defined as submodels. Unique IDs are assigned to those models. Those IDs can then be
used as properties of states in the definition of the state hierarchy. A state with a submodel ID as a property
becomes an importation state. It is not allowed to define substates for it.

There can be one or more submodel definitions under anIMPORTATION descriptor, and there can be multiple
IMPORTATION descriptors in a single model. Each submodel definition is written as “ModelID = FileName”

4.2 Textual Syntax 52

IMPORTATION:
sub0 = submodel.des

STATECHART:
A [DS]
B [sub0]

TRANSITION:
S: A
N: B
E: e

Table 4.10: An example of the textual representation of an importation

on a single line, whereModelID is the user-defined ID of the submodel, andFileName is the name of the
file that contains the model to be imported.

For example, the model in Figure 4.12 is written as Table 4.10.sub0 is the ID of the submodel defined in file
submodel.des. Designers can choose any ID consisting of characters and numbers, except the pre-defined
state properties. The submodel is imported into stateB.

4.2.10 Ports

A PORT descriptor is used to specify a port of a model. Properties of the port are written on separate lines
after the descriptor.

• Thename property specifies the GUID of a port. Every port of a model must have a unique ID.

• Thetype property specifies the type of a port. Possible values arein, out andinout.

• Thebuffer property is reserved for later versions. Its may be used to specify a queue or stack that
stores the incoming messages.

Propertiesname andtype are obligatory and must be specified exactly once for each port.buffer is optional
(not implemented currently).

As an example, the model in Figure 4.13 is written as Table 4.11.

4.2.11 Connections

Before connections can be established, servers that passively wait for incoming connection requests must
be located. The name patterns or types of those servers are specified under theCOMPONENT descriptor. Like
thePORT descriptor, eachCOMPONENT descriptor is followed by the properties of a component or a group of
components that matches a certain criteria:

• Theid property defines a GUID for the component (or group of component). Each group of compo-
nents that matches a name pattern must be assigned a unique GUID.

• Thename property, unlike the name of a port, specifies a name pattern for the group of components.
The format of the name pattern follows the conventions of UNIX regular expressions. All the com-
ponents with a name matching that pattern are selected as members of the group. Hence, a message
sending to a group of components will be broadcast to all its members.

For example, names “model1”, “ model” and “model123” match name pattern “model[0-9]*”.

• Thetype property specifies the type of a group of components. It is a string that lists the in-ports, out-
ports and inout-ports. An in-port is listed asin; an out-port is listed asout; and an inout-port is listed
asinout. Multiple ports are separated by one or more spaces. An integer number can be added before

4.2 Textual Syntax 53

STATECHART:
A [DS]
B

PORT:
name = p
type = inout

PORT:
name = q
type = in

PORT:
name = r
type = out

TRANSITION:
S: A
N: B
E: p.e
O: [DUMP("p.e received")]

TRANSITION:
S: B
N: A
E: q.f
O: [EVENT("r.f", i)]

Table 4.11: An example of the textual representation of ports

4.3 Extended Syntax 54

Figure 4.16: An example of the graphical representation of macros

a type to specify multiple ports of the same type. For example, “type = in in out inout inout”
matches components with 2 in-ports, 1 out-port, and 2 inout-ports. “type = 2 in out 1 inout 1
inout” has exactly the same effect.

Thename property or thetype property or both must be specified for each group.

Connections are established between ports and the ports of the servers under theCONNECTIONS descriptor.
One or more links can be defined. The left-hand side of a link is connected with the right-hand side with
double hyphens (“--”). Suppose the ID of a component group isC and the model wants to connect to portp
of the group with its portq, the link should be written as either “q -- C.p” or “ C.p -- q”.

As an example, suppose a server is given ID “Server0” and it has inout-portp, in-portq and out-portr, the
model in Figure 4.14 is written as Table 4.12.

4.3 Extended Syntax

SVM takes advantage of the textual model description format and extends the DCharts textual syntax. The
syntactic extensions discussed in this section do not have special graphical representations. In the graphical
form of DCharts models, they are usually shown as UML comments where appropriate.

4.3.1 Macros

Macros are used to literally substitute texts in model descriptions. They are written under theMACRO descrip-
tor.

An Example

In the graphical form, macros are defined as a UML comment at the top level, as shown in Figure 4.16. The
textual description of the same model is in Table 4.13. In this example, macrosE(n)=ev[n] andEXIT=ex
are defined. To use those macros in the model description, put the name of a macro in a pair of square
brackets, and replace all the necessary parameters with values. In the figure, macroEXIT is used as an event
name ([EXIT]). It is equivalent toex in this case.

Macros can be used wherever text is written. For example, they can be used in event names, in guards, in
actions, in importations, and so on. In the textual form of a model, they can even be used in the specification
of state hierarchy, ports, connections and so on. In particular, the values of macros can also be used as
descriptors, with the exception of theMACRO descriptor.

On the right-hand side of a macro definition, other macros that are defined before it can be used without
ambiguity. However, it may be a fatal error to use this macro itself or the macros defined after it.

4.3 Extended Syntax 55

STATECHART:
A [DS]
B

PORT:
name = p
type = inout

PORT:
name = q
type = in

PORT:
name = r
type = out

COMPONENT:
id = Server0
name = model[0-9]*
type = in out inout

CONNECTIONS:
p -- Server0.p
q -- Server0.r
r -- Server0.q

TRANSITION:
S: A
N: B
E: p.e
O: [DUMP("p.e received")]

TRANSITION:
S: B
N: A
E: q.f
O: [EVENT("r.f", i)]

Table 4.12: An example of the textual representation of connections

4.3 Extended Syntax 56

STATECHART:
A [DS]
B

C [DS]
D [FS]

MACRO:
E(n) = ev[n]
EXIT = ex

TRANSITION:
S: A
N: B.C
E: [E(1)]

TRANSITION:
S: B.C
N: B.D
E: [EXIT]

Table 4.13: An example of the textual representation of macros

Parameters

A macro may carry 1 or more parameters. In the left-hand side of a macro definition, the formal parameters
are specified in a way similar to the parameters of a Python function. Default values can be given to all
or some of the parameters. If only part of the parameters are given default values, the parameters that do
not have default values must be specified before the parameters that have default values. For example, the
following specifications of the left-hand sides of macro definitions are valid:

• my macro(p1, p2, p3)

• my macro(p1, p2, p3="hello")

• my macro(p1, p2, p3=[another macro(1)]) (Suppose macroanother macro(n) is defined be-
foremy macro.)

On the right-hand side, parameters are referred to with their name between square brackets. For example,
parametersp1, p2 andp3 are referred to with[p1], [p2] and[p3], respectively.

To use a macro, all the parameters must have their values. Values must be explicitly assigned to the param-
eters that do not have default values. 0 or more ending parameters that have default values can be omitted.
For example, to use macromy macro(p1, p2, p3="hello"), the following statements are valid:

• [my macro(1, 2, "hello")]

• [my macro(1, 2)]

• [my macro(p2=2, p1=1)]

• [my macro(p3="hello", 1, 2)]

In all these use cases, the actual values ofp1, p2 andp3 are1, 2 and"hello", respectively.

Macros can be used as parameters of other macros.

Brackets for parameters cannot be omitted even if in the definition of a macro, all the parameters have default
values, or there is no parameter specified between the brackets. For example, to usemy macro(p="hello")

4.3 Extended Syntax 57

= ... or my macro() = ..., the user must include the brackets ([my macro()]). However, to use macro
my macro = ..., simply write[my macro].

Pre-defined Macros

SVM pre-defines a number of macros. Pre-defined macros can be used in every model without being explic-
itly defined.

• EVENT(ev, p=[]) = eventhandler.event([ev], [p]).

This macro is used to raise an event. The event name is given by parameterev. Parameterp can be
used as a parameter or a list of parameters for the event. By default it is an empty Python list.

eventhandler is an internal object of the SVM simulation environment. For each simulation, there
is exactly one instance ofeventhandler. Its event method appends an event to the end of its global
event list.

• EXTEVENT(ev, p, rec=None) = eventhandler.external_event([ev], [p], [rec])

This macro is used to send an external event (or in another word, send a message to a remote compo-
nent).ev is the event name,p is the parameter, andrec is a set of specific components that receive the
message.

The event name contains the name of a port and the message, separated by a dot. For example, to send
a massagem via port p, the value ofev is equal to “p.m”. If the user wants to restrict the receivers
to the components namedmodel0 and model1, the value ofrec should be equal to["model0",
"model1"].

Whenrec is not given orrec is equal toNone, all the components in the group identified by the port
name will receive the (possibly duplicated) message. In that case, macroEXTEVENT is the same as
EVENT, except thatEXTEVENT sends the message immediately in an asynchronous way, whileEVENT
queues the message in the global event list, and sends it asynchronously later when the simula-
tor/executor is free.

• DUMP(msg) = dump_message([msg])

This macro dumps a message to the output device. If SVM is run in the text mode, the message is
printed on the console. If SVM is run with the default graphical interface, the message is displayed in
the output box of the main window.

• INSTATE(state, check_substate=0) = eventhandler.is_in_state([state],
[check_substate])

This macro checks whether the model is currently in a specific state. Thestate parameter is the name
of the state.check substate is default to 0, which means the simulator does not check the substate
of the given state. Hence, if the given state is not a leaf state andcheck substate is equal to 0, the
result is always 0. If the model is in the given state or its substates, andcheck substate is equal to
1, the result is 1.eventhandler.is in state is a method of the simulator that handles this inquiry.

This macro should only be used in the guards of transitions, as the DCharts formalism requires that
the actions of a model cannot reflect upon the current state of the model itself.

• PARAMS = eventhandler.get_event_params()

This macro can only be used in the guards or output of transitions. It returns the parameter of the
event that triggers a transition. If the parameter is a list,[PARAMS][i] can be used to access individual
elements in the list, wherei is an integer between 0 andlen([PARAMS])−1 (inclusively).

• SENDER = eventhandler.get_event_sender()

This macro can only be used in the guards or output of transitions, and the transitions must be triggered
by messages from remote components. It returns the sender (a model name) of the message.

• SYNCALL(event, params, listento) = eventhandler.synchronous_call([event],
[params], [listento])

4.3 Extended Syntax 58

IMPORTATION:
sub0 = submodel.des

STATECHART:
A [DS]
B [sub0] [DUMP(msg)=print "sub0 says: "+[msg]]

TRANSITION:
S: A
N: B
E: e

Table 4.14: An example of the textual representation of a macro redefinition

This macro provides the synchronous call facility for the action language. A model uses this macro to
send a message to a remote component, and waits for a reply via a port.event is the event name, as is
discussed for macroEXTEVENT. params is a parameter or a list of parameters.listento is the name
of the event to be waited for. It also follows the convention of event names discussed inEXTEVENT.
For example, if a model sends messagem1 via port p1 without parameter, and waits for a replym2
from portp2, the call is written as[SYNCALL("p1.m1", [], "p2.m2")]. The return of this call is
the parameter(s) received with the reply.

This call does not return until the reply is received. If it is not the last action in the output, the actions
after this are executed only after the call is finished.

• MacrosSNAPSHOTREQ andSNAPSHOTRET are used for snapshot purpose. They are discussed in section
4.3.5.

Importation Parameters (Macro Redefinition)

Macros in a submodel are interpreted before the submodel is imported. They have no effect on the importing
model. The importing model is allowed to modify the behavior of the submodel by redefining its macros. All
the macros that are defined in the submodel and all the pre-defined macros can be redefined by the importing
model. They act as parameters to the submodel.

This mechanism enhances the expressiveness of DCharts 1.0. It is the only means by which the behavior of
submodels is modified. This is necessary for model reuse. Moreover, model reuse with macro redefinition
protects the well-defined behavior of submodels. Only the macros defined in them (or pre-defined macros)
are allowed to be modified. The importing model cannot change other parts of the submodels. [26]

To redefine macros as parameters for a submodel, the importing model imports the submodel into one of its
states as described in section 4.2.9. The macro redefinitions are specified as properties of the importation
state in the state hierarchy. Redefining a macro is similar to macro definition under theMACRO descriptor,
except that it is placed between square brackets following the name of the state.

For example, the model in Table 4.14 imports submodelsubmodel0.des and assigns IDsub0 to it. It is
imported into stateB. The importing model redefines macroDUMP of the submodel.DUMP is originally a
pre-defined macro to display a message. It is redefined to print the message to the console with prefix “sub0
says: ”. Multiple macro redefinitions can be written on the same line.

4.3.2 Once Timed Transition

By default, SVM timed transitions arerepeated timed transitions. This means a timed transition is fired
repeatedly ifSRC= DES. The simulator considers a self-loop as a state change, and hence it reschedules
the timed transition from the same source state. Repeated timed transitions are equivalent to transitions with
afterevent in DCharts 1.0 or theafter transitions in David Harel’s semantics.

4.3 Extended Syntax 59

TRANSITION:
S: A
N: A
T: 1 [OTT]
O: i = i + 1

TRANSITION:
S: B
N: B
T: 1
C: i < 10
O: i = i + 1

Table 4.15: An example of the textual representation of a once timed transition

On the contrary,once timed transitionsare not rescheduled for self-loops. They are fired only once even if
SRC= DES. (Of course, ifSRC6= DES, the transition is always fired once.) The semantics of once timed
transition is different from the special eventafterdescribed in DCharts 1.0. They must be explicitly specified
with the[OTT] property.

Consider the two transitions in Table 4.15. The first transition is a once timed transition (with the[OTT]
property). When stateA is entered from the outside, it is scheduled after 1 second. When it is fired, it
increasesi by 1. It is not rescheduled. Suppose the original value ofi is 0. When the model is stable, the
value ofi becomes 1. The second transition is a repeated timed transition. It is rescheduled each time after it
is fired. As a result, without the guard,i would be increasing forever if no other transition brings the model
to a state other thanB. However, with the guardi < 10, when the model is stable, the value ofi is 10.

4.3.3 Global Options

Global options of a model are specified under theOPTIONS descriptor. Currently, three global options are
supported:

• TheModelName global option specifies the name of the model. By default, the model name is the file
name that contains the model description with the.des postfix removed. Designers are allowed to
explicitly define model names with this option. Other models use the model name as an ID to locate
the model and establish connections to it.

• Harel global option specifies whether the simulator should strictly obey David Harel’s statecharts
semantics and DCharts 1.0, or use alternate algorithms in the simulation (refer to section 2.3.2). By
defaultHarel is equal to 1, which means SVM strictly follows David Harel’s statecharts algorithm,
and hence it can also be used as a statecharts simulator. WhenHarel = 1, the following different
points are made:

1. The alternate algorithm is used to fire all the transitions, which is different from David Harel’s
algorithm.

2. Self-loops are not considered as state changes. For example, a transition withSRC= DESdoes
not cause the exit actions or the enter actions of the state to be executed. This is because the
algorithm usesCCSalt(SRC,DES) rather thanCCS(SRC,DES) to compute the closest common
state.

3. Because self-loops are not state changes, timed transitions are by default once time transitions,
unless the model design explicitly assigns the[RTT] (Repeated Timed Transition) property to
them.

4.3 Extended Syntax 60

INITIALIZER:

FINALIZER:

INTERACTOR:
setup_gui_debugger(eventhandler, debugger)

Table 4.16: Default values for initializer, finalizer and interactor

• InnerTransitionFirst global option specifies whether the model follows the inner-transition-first
convention or the outer-transition-first convention. This option affects all the top-level states so that
their default behavior conforms to this setting. For example, havingInnerTransitionFirst = 1,
all the top-level states get the[ITF] property by default, and their substates inherit this behavior
by default. However, this default behavior can always be modified with an explicit[ITF], [OTF] or
[RTO] property for a state.InnerTransitionFirst = 1 is just a short-hand notation for specifying
[ITF] for every top-level state.

The default value ofInnerTransitionFirst is set to 0, which means all the top-level states are
outer-transition-first (according to the STATEMATE semantics [5] of David Harel).

The above options are global in the scope of the whole model. They cannot be imported with submodels.
When a submodel is imported, its global options are ignored.

4.3.4 Initializer, Finalizer, and Interactor

Initializer, finalizer and interactor are SVM extensions to DCharts 1.0. In most models, they are highly
simulation-oriented.

Initializer is the Python code to be executed before a model starts running. It is executed even before the
model is placed in its default states (so that it may be illegal to test the current state within the initializer).
This code usually initializes the environment where the model is simulated or executed. For example, this
code can be used to initialize all the variables that the model uses.

An initializer is written under theINITIALIZER descriptor. Arbitrary Python code can be written, including
function definitions, if-else or switch-case conditional structures and loops.

Finalizer is used to finalize the model. It is executed after the model changes to a final state. If the final
state has enter actions, those enter actions are executed before the finalizer. A finalizer is written under the
FINALIZER descriptor. Similar to initializer, arbitrary Python code can be written.

Interactoris used to define a model-specific interface. As discussed in later chapters, SVM provides a default
textual interface, a default curses interface (for Unix or Linux systems) and a default graphical interface.
However, in many cases designers may want to redesign the interface for specific models. They can write
Python code under theINTERACTOR descriptor for this purpose. The difference between the interactor and the
initializer is that the initializer is executedbeforethe model starts running, while the interactor is executed
while the model is running. In the SVM implementation, an extra thread is allocated for the interactor, so
that it is allowed to use an infinite loop in the interactor to handle user events received from the interface,
and pass those events to the running model.

The default definition of these parts is shown in Table 4.16. The default actions of initializer and finalizer
are empty. The default action of interactor, if the default graphical interface is used, is to setup the interface,
which includes creating all the widgets, building a tree view of the state hierarchy, and handling GUI events
afterward.

4.3 Extended Syntax 61

4.3.5 Snapshot

Snapshot is a powerful utility for model debugging and testing. SVM is able to snapshot a model during
its simulation (but not execution). The state of the model that need to be stored (specified by the model
designer), including its variables, is snapshot as a text file or a string. The snapshot contains enough infor-
mation for a restore operation, which puts the model into its previous state so that simulation can restart at
exactly that point. The snapshot is usually saved in a.snp file in the same directory as the model’s. The file
name of the snapshot file is the same as the text file of the model, with its postfix changed.

A snapshot request is a special event to SVM. This request may be sent from the model that is being sim-
ulated, or by the user from the user interface (for example, the default graphical interface of SVM pro-
vides a “snapshot” button). Functioneventhandler.snap to file(filename) accepts a string parameter
filename as the snapshot file name (usually ending with.snp), and schedules a snapshot right after the
current event is handled. SVM assigns the highest priority to this request. The snapshot is taken before other
scheduled events are handled, if any.

A model may also request a snapshot in the memory, and roll back to it at a later time. Pre-defined macro
[SNAPSHOTREQ(time)] requests a snapshot (with the highest priority) and labels it withtime (an arbitrary
but increasing integer that uniquely identifies a snapshot). Macro[SNAPSHOTRET(time)] is used to retrieve
a snapshot taken previously, and roll the model back to it. In this way, the model is able to interact with the
simulator at run-time.

The designers may customize snapshotting in their models. DescriptorsBEFORESNAPSHOT, AFTERSNAPSHOT,
SNAPSHOT andRESTORE are dedicated for snapshot purpose.

• TheSNAPSHOT descriptor specifies the variables (or objects) that need to be recorded in a snapshot.
Each variable is written on a single line under the descriptor.

• TheBEFORESNAPSHOT descriptor specifies a piece of arbitrary Python code to be executed immedi-
ately before a snapshot is taken. It usually is used to synchronize different parts of a model, because
a snapshot can be requested at any time during a simulation, even when the model is in an unsta-
ble state. For example, if the model uses a native library that requires extra threads, the code under
BEFORESNAPSHOT may synchronize those threads to ensure that all the variables are stable and mean-
ingful. Similar to initializer and finalizer, the code here may contain function definitions, loops and
other action-language-specific control structures.

• The AFTERSNAPSHOT descriptor is similar to theBEFORESNAPSHOT descriptor, except that the code
specified under it is executed immediately after a snapshot is taken.

• theRESTORE descriptor is used to specify a piece of code that is executed after a snapshot is restored.
For example, in Table 4.17, the code under theRESTORE descriptor starts playing (initially the CD is
stopped) at timecd.time, whose value is restored by SVM, if the CD was playing at the time when
the snapshot was taken.

In the example in Table 4.17, supposecd is the instance of a CD-Rom controller that plays CD music. Its
time attribute is constantly updated when the CD is playing, which indicates the current time in a track.
To enable snapshotting during the playing, the designer may include such a description segment in his/her
model. ItsSNAPSHOT descriptor tells SVM thatcd.time andcd.playing before snapshot (variables as
attributes of thecd instance) need to be recorded in a snapshot. The code underBEFORESNAPSHOT pauses the
playing so that thetime attribute is not changed during the snapshot operation. When the snapshot operation
is finished, the code underAFTERSNAPSHOT resumes the playing, if it is paused previously by the code under
BEFORESNAPSHOT.

This model enables the user to play CD music, snapshot at any time during the playing and save the recorded
state in a.snp file. Later when the user runs the.snp file with SVM, the variables specified under the
SNAPSHOT descriptor are restored, and the code under theRESTORE descriptor is executed, which starts
playing at exactly the recorded time.

4.3 Extended Syntax 62

SNAPSHOT:
cd.time
cd.playing_before_snapshot

BEFORESNAPSHOT:
if cd.is_playing():

cd.pause()
cd.playing_before_snapshot = 1

AFTERSNAPSHOT:
if cd.playing_before_snapshot:

cd.resume()
cd.playing_before_snapshot = 0

RESTORE:
if cd.playing_before_snapshot:

cd.play()

Table 4.17: An example of the textual representation of a snapshot/restore description

4.3.6 Model Description

TheDESCRIPTION descriptor is used to give a short description to a model. The description is the content
between theDESCRIPTION descriptor and the next descriptor. Empty lines are automatically removed.

If the default textual interface or the default curses interface of SVM is used, the description (if specified in
the model) is printed to the console. If the default graphical interface is used, the description is displayed
in the output box of the main window. In the simulation/execution environment, the description is a string
stored ineventhandler.description. It may be used by the actions of the model.

4.3.7 Comments

Contents after a sharp “#” mark on the same line are considered as comments. Comments are ignored by
SVM. An example of comments is given in Table 4.18.

4.3 Extended Syntax 63

#-------------------------------#
This is an example of RESTORE
#-------------------------------#
SNAPSHOT: # variables to be snapshot

cd.time
cd.playing_before_snapshot

BEFORESNAPSHOT: # before snapshot
if cd.is_playing():

cd.pause()
cd.playing_before_snapshot = 1

AFTERSNAPSHOT: # after snapshot
if cd.playing_before_snapshot:

cd.resume()
cd.playing_before_snapshot = 0

RESTORE: # after restore
if cd.playing_before_snapshot:

cd.play()

Table 4.18: An example of the textual representation of comments

5
MAPPINGS

Mappings between different formalisms are discussed in this chapter.

Mapping from DCharts to another formalism proves that DCharts haveat mostas much power as that formal-
ism. This mapping provides a means to express the behavior of any DCharts model in the other formalism.
Thedenotational semanticsof DCharts is defined in this way. (The semantics discussed in previous chapters
is operational semantics.) Few formalisms allow recursion in the model structure. It is impossible to map
the complete DCharts formalism to them. Recursive importation is not considered in the mappings from
DCharts to other formalisms discussed in this chapter.

Mapping from another formalism to DCharts proves that DCharts haveat leastas much power as the for-
malism. It provides a means to express the behavior of any model in the other formalism with DCharts.

5.1 Mapping from Non-recursive DCharts to Statecharts with Variables

David Harel’s statecharts [4] do not formalize variables. The state hierarchy of models only allows finite and
enumerable number of states. Obviously, it is impossible to map DCharts to original statecharts, since the
variable setsV of DCharts models may contain variables that have infinite and continuous state space.

Now suppose the use of variables is allowed in statecharts. This variant of statecharts is calledstatecharts
with variables. It becomes interesting to show that non-recursive DCharts can be mapped to this statecharts
variant. Statecharts with variables are simpler than DCharts. If this mapping can be proved, it is implied that
the only DCharts extensions that enhance the expressiveness of statecharts are recursion and variables.

To show that non-recursive DCharts can be mapped to statecharts with variables, the following semantic
extensions must be explicitly transformed into statecharts structures:

• Importation.

• Transition priorities.

• Transition parameters.

• Ports and connections.

Since the variable setV is supported by statecharts with variables, it is not discussed in this mapping. Other
semantic elements of DCharts, such as state hierarchy, history, transitions, can be directly mapped to the
corresponding entities of statecharts. They are not discussed, either.

Lemma 1 Importation of non-recursive DCharts models can be flattened to be the state hierarchy of origi-
nal statecharts.

Proof The algorithm discussed in section 2.3.3 shows a way in which importation in non-recursive DCharts
can always be flattened. The result of this flattening does not contain any importation state. �

Lemma 2 There exists an ordering over all the transitions in every DCharts model. According to this or-
dering, when an event causes a conflict at run-time, the first enabled transition in the list always has the
highest priority.

5.1 Mapping from Non-recursive DCharts to Statecharts with Variables 65

Proof This lemma can be proved by an algorithm which manages to find out this ordering.

In this algorithm, the transitions in a model are sequentially appended to an initially empty listl . When|l | is
equal to the number of transitions in the model, the algorithm terminates, and the ordering of the transitions
in l satisfies the requirements in this lemma.

Before the algorithm starts, the model must be flattened with the algorithm discussed in section 2.3.3.

The algorithm is summarized below:

function merge(ls, l)
/* merge two sets of transitions with insertion sort
ls: the transitions to be merged with l. The SRC of these transitions has no parent-children relation with
the SRC of transitions in l. Conflicts between transitions in the two lists can only be solved with their Prio
number.
l: another set of transitions
return: the union of ls and l. The transitions are sorted by priority.
*/

for t in ls
added = false
for t ′ in l

if Et = Et ′ ∧Priot <= Priot ′ then
insert t into l right before t′

added = true
break

if !added then
append t to the end of l

return l

function order(states, ITF)
/* sort the transitions
states: a set of states belonging to the same parent
ITF: whether the parent of the states in states is set to be inner-transition-first or not
return: the list l of transitions whose SRC is in states or Substate(s) where s∈ states. The transitions are
sorted by priority.
*/

l = []
for s in states

lts = [transitions with SRC = s]
sort lts in the increasing order of the Prio numbers of the transitions
if s is ITF then

next ITF = true
elif s is OTF then

next ITF = f alse
elif s is RTO then

next ITF = not ITF
else

next ITF = ITF
if ITF then

ls = l ts + order(C(s), next ITF)
else

ls = order(C(s), next ITF) + l ts

merge(ls, l)
return l

5.1 Mapping from Non-recursive DCharts to Statecharts with Variables 66

Note that it is assumed there are not two or more transitions with exactly the same total priority. If such
transitions exist, conflicts among them cannot be solved with the ITF and OTF scheme and theirPrio number
is the same. The ordering of such transitions with the above algorithm is implementation-dependent and not
unique.

Suppose all the top-level states are in setTops, and parameterInnerTransitionFirstcontains the global op-
tion of the model that decides whether its top-level states are inner-transition-first by default. The invocation
order(Tops, InnerTransitionFirst) always terminates since there are finite number of states in the model.
The result is the transitions sorted by their total priority. If a state is set to beITF , transitions from this state
are always placed after transitions from the substates of this state in the transition list. The opposite is true
for states with theOTF property.

The merge function merges two lists of transitions. It assumes that both lists are sorted according to the
ITF and OTF convention, and tries to further sort the merged list in the order ofPrio numbers. Because the
source states of transitions in the two lists do not have the parent-children relation, the merging does not
affect the ITF and OTF sorting. It only guarantees that a transition with smallerPrio number appears before
the transitions with largerPrio numbers triggered by the same event.

According to the semantics of transition priority, the ITF and OTF settings of transitions are considered
before theirPrio numbers. This algorithm is correct because it sortsPrio on the basis that the ordering of
ITF and OTF is already created and is preserved over the merging of two lists. �

Comments 1 Although this algorithm ensures that the transition with higher total priority always appear
before the others with lower total priorities in the sorted list, it does not remove all the potential conflicts.
It is still possible that two transitions have exactly the same total priority. Those two transitions (t1 andt2)
always have the following properties:

• SRCt1 = SRCt2 or SRCt1 andSRCt2 belong to two sibling orthogonal components. In that case, the
ITF and OTF settings cannot solve the conflict, and it is possible that the model is inSRCt1 andSRCt2

at the same time.

• Et1 = Et2. When this event is raised andGt1 = true∧Gt2 = true at run-time, both transitions are
enabled.

• Priot1 = Priot2. In this case, thePrio number cannot solve the conflict.

It is the designer’s responsibility to ensure that there are no such transitions in a model. The simulator cannot
statically analyze the model and find out these transitions, since their guards usually cannot be evaluated
statically. If these transitions are found at run-time, only one of them is fired. The choice is random or
implementation-dependent.

Comments 2 In the implementation of SVM, this algorithm that sorts transitions in the order of their pri-
orities is employed. It effectively decreases the run-time computation for choosing a transition in case of a
conflict. Because the first enabled transition in the list always has the highest priority among all the enabled
transitions, the simulator simply picks the first one and triggers it. The sorting is done only once for every
model or submodel in a simulation.

Lemma 3 Transition priorities can be simulated with additional guards.

Proof Lemma 2 suggests a way in which all the transitions can be sorted in a listl . Supposel is statically
obtained. An additional guard for each transition checks whether the transition is the first enabled transition
in the list. This guard ensures that the choice of a transition in a conflict is unique and deterministic. The
chosen transition always has the highest priority. Other transitions that are enabled are not fired since they
order after the fired one. For simplicity, conflicts that cannot be solved with transition priorities are not
considered. �

5.2 Mapping from Non-recursive DCharts to DEVS 67

Lemma 4 Transition parameters can be simulated with variables.

Proof Transition parameters are themselves variables. If each transition is given a GUID, and the GUID of
the transition is added to the names of its formal parameters, those parameter names share the same name
space as the variable setV of the model. All the transition parameters can thus be included in the variable
set. To send an event with parameters, the action simply modifies the global variables converted from the
parameters of the transition that handles the event, and sends the event without parameters.

Lists can be used as variables. So if more than one event in the global event list is going to trigger the same
transition, parameters can be queued in a global parameter list. �

Lemma 5 Ports and connections can be simulated in a stand-alone statecharts model.

Proof Ports and connections in DCharts allow to connect multiple models and run them in a single sim-
ulation. Statecharts do not provide this mechanism. However, the behavior of a combination of multiple
DCharts models connected with ports can be simulated with a single stand-alone statecharts model.

Ports restrict the receivers of a message. Connections are established between ports of a model and ports
of remote components whose names match a pattern. To simulate this in a statecharts model, the messages
are transformed into events. The parameters are transformed into global variables (see Lemma 4). The name
patterns and the port names of remote components are additional parameters sent with the event. Each
transition triggered by this event checks the name pattern in its guard. Only those transitions with names
(inherited from theirSRCstates) matching the pattern are triggered.

To simulate the broadcast of messages, an event is duplicated. Each transition triggered by the event regen-
erates the event in its output actions. The event is repeatedly handled until it is ignored because no transition
is able to handle it. To avoid handling a event more than once by the same transition, the transition must
remember whether it has handled the most recent event. This implies adding states or variables to the model.
�

Theorem 2 Non-recursive DCharts models can be mapped to statecharts with variables that have the same
behavior.

Proof This is easily proved on the basis of Lemma 1 to Lemma 5. �

Theorem 2 proves that non-recursive DCharts are at most as powerful as statecharts with variables. Exten-
sions such as transition priorities, importation and ports do not enhance the expressiveness of the formalism.
However, they make it easier to design modular models.

5.2 Mapping from Non-recursive DCharts to DEVS

Intuitively, since non-recursive DCharts can be mapped to statecharts with variables, and statecharts with
variables are at most as powerful as DEVS, one should be able to map DCharts to DEVS. Spencer Borland
has already shown the mapping from statecharts to DEVS in his Master’s thesis [9]. A general method that
transforms statecharts models to DEVS models has been found.

Mapping variables to DEVS is trivial, since DEVS supports variables in its nature. The state space of a
statecharts with variables is transformed intoS×v1×v2× . . .×vn, whereS is the state set of the statecharts,
andv1,v2, . . . ,vn ∈V are the variables that appear in the model. The total state space is the Cartesian product
of the state space of the enumerable states and the state space of all those variables. This total state space,
which is usually infinite and continuous, becomes the state space of a DEVS model. The values of the
variables are changed by the DEVS’ external transitions and internal transitions as a modification on the
current state.

From the discussion above, since original statecharts have been mapped to DEVS, and variables can be easily
transformed into DEVS states, statecharts with variables can be mapped to DEVS models. As a result, non-
recursive DCharts can also be mapped to DEVS models. This proves that non-recursive DCharts are at most
as powerful as DEVS.

5.3 Mapping from Statecharts to DCharts 68

5.3 Mapping from Statecharts to DCharts

Transforming statecharts models to DCharts is trivial, since all the semantic elements of statecharts can be
found in DCharts. The state hierarchy is directly mapped to the DCharts state hierarchy. DCharts transitions
includes all the elements of statecharts transitions. The state properties in DCharts form a superset of the
state properties in statecharts. As a result, it is easy to transform any statecharts model into DCharts.

This proves that DCharts are at least as powerful as statecharts.

5.4 Mapping from DEVS to DCharts

DEVS models can also be transformed into DCharts. Because of the closure under coupling of DEVS, any
Coupled DEVS can be replaced by an Atomic DEVS that has the same behavior. It is not necessary to
consider coupled DEVS in proving the mapping from DEVS to DCharts.

The DEVS formalism discussed here is real-time DEVS, which use the real time instead of virtual time as
global time. The time unit is default to second.

Theorem 3 DEVS models can be transformed into DCharts that have exactly the same behavior.

Proof Different parts of an Atomic DEVS are mapped to DCharts constructs as following:

• The state setS is mapped to a single variablev of a DCharts model, whose state hierarchy has only
one default states. The state space ofv is a superset ofS. This variable can always be found. It can
be of a primitive type such as integer or string, a list which contains multiple elements, or any other
types supported by the action language. This variable is used to keep track of the model state.

• The time advance functionta and internal transition functionδint are transformed into transitions with
a f terevents. Each of such DCharts transitions is a self-loop on the states. It usesa f ter(t) as its event,
wheret is theta of a DEVS state. The guard of the transition checks the current state of the variable
v, and tests if the model is in the old state of the DEVS model. In the output of this transition,v is
modified according to theδint of the DEVS model.

• The external transition functionδext is transformed into transitions with the same event names. This
transformation is similar to the transformation betweenδint and DCharts transitions.

The elapsed time of an external transition can be computed with the primitive action that allows access
to the time since the simulation or execution starts. Suppose the time when the last state is entered is
tl ast. It is obtained with the time action in the enter actions of the state. The time when the external
event is received is denoted bytevent. This time can be obtained in the guard (since the time action is
side-effect-free) or the output of the transition. Then the elapsed time is equal totevent− tl ast, which
can be known in the guard and the output.

• TheX (input set) andY (output set) of the DEVS model is ignored, since DCharts do not require to
explicitly declare them.

• The output functionλ is transformed into action code in the output of transitions. It produces the same
output as the DEVS model, according to the current state of the model.

The events sent in the output of a DEVS transition are different from the events broadcast in a state-
charts, because the first kind of events are explicitly sent to an output port. Fortunately, this kind of
events are equivalent to the out-going messages in DCharts, which are textually represented as a port
name and an event name separated by a dot.

�

5.5 Mapping from Programming Language Control Flow Constructs to DCharts

Though there is no rigorous definition of an action language in DCharts, it is a rule that each piece of action
code in the output, enter/exit actions and all other parts of a model that allow actions, is composed of a series

5.5 Mapping from Programming Language Control Flow Constructs to DCharts 69

of statements. Those action statements are primitive commands that are not modeled explicitly. (The only
exceptions are the extensions added by SVM, such as initializer, interactor and finalizer. Those constructs
do not belong to the DCharts formalism.)

The problem whether DCharts are capable of modeling more complex programming structures is interesting.
On the one hand, designers who are familiar with programming languages tend to think in a programming
way. If a formalism allows the specification similar to a programming language, it is much friendly to those
designers. On the other hand, this capability demonstrates the expressiveness of the formalism. It is possible
to explicitly model any control structure with such a formalism. As a result, theoretically all the control
structures in a system can be formally checked by modeling them in the formalism. When the model is
checked thoroughly, part of it can be converted into native code or hardware to achieve better run-time
performance.

This section discusses several programming constructs of programming languages in general (e.g., the C
language [32]), and their mappings to DCharts submodels. Most of the submodels introduced here can be
directly imported into larger models to simplify the task of designers.

5.5.1 Statements

Statements in the C language are categorized into simple statements and compound statements. Asimple
statementends with a semicolon “;” and cannot be further divided. Here is an example of two simple
statements.

i = 0; // a simple statement
if (i == 0) i = i + 1; // a simple statement

A simple statement that only contains a semicolon is called anull statement:

; // null statement

A compound statementis a sequence of statements enclosed by a pair of curly braces. The statements in the
curly braces can be simple statements or compound statements.

if (i == 0) { // a compound statement
int a = 0;
a = 1;
i += a;

}

A compound statement that only contains a pair of curly braces is calledempty compound statement.

{ // empty compound statement
}

Statementsare the union of simple statements and compound statements.

5.5.2 Compound Statements

Because of the restriction of actions in DCharts models, compound statements cannot be directly written in
the action list of the output of a transition. Supposecomp stm1, comp stm2, ... are compound statements,
andsimp stm1, simp stm2, ... are simple statements. The model in Figure 5.1 is invalid since the output
of a transition is a list of compound statements instead of simple statements. On the contrary, the model in
Figure 5.2 is valid.

5.5 Mapping from Programming Language Control Flow Constructs to DCharts 70

Figure 5.1: An invalid DCharts model that contains compound statements in the output

Figure 5.2: A DCharts model that contains simple statements in the output

It is important to transform a model with compound statements in its output into a valid form, since the
statements discussed later are mostly compound statements. This transformation can always be found with
the following method. (Since the composition of compound statements is still a compound statement, this
method only consider transitions that have a single compound statement in their output.)

1. A GUID is assigned to each compound statement. It is assumed that there is no event with the same
name as the GUID in the model. If there is an event whose name conflicts with a GUID, simply add
an implementation-dependent prefix to all the GUIDs.

2. Create a top-level orthogonal component.

3. Suppose the compound statement contains the following substatements:stm1, stm2, ..., stmn. There
are such substates in the orthogonal component:s0 (default state),s1, s2, ...,sn.

4. Transition froms0 tos1 reacts to the GUID of the compound statement (as an event name) and executes
stm1 in the output. It generates a unique evente1 with the parameters that it receives. The transition
from s1 to s2 reacts to evente1 and executesstm2. It generates a unique evente2 with the same
parameters. Transition froms2 to s3 reacts to evente2 and executesstm3. It generates a unique event
e3 with the same parameters. ... Transition fromsn−1 to sn reacts to eventen−1 and executesstmn. It
generates a unique eventen with the same parameters. Transition fromsn to s0 reacts to eventen and
generates “returnGUID” as an event.

5. For each transitiont from SRCto DESwith this compound statement as itsλ, a new states is added.

6. The original transition is replaced by two new transitions. The transition fromSRCto s is the same as
t, except that itsDESis s, and itsλ is an action that generates the GUID of the compound statement
as an event. The parameters of this new transition become the parameters of the generated event. That
event triggers the transition froms0 to s1 in the orthogonal component.

7. A transition is created froms to DESreacting to the “returnGUID” event.

8. Repeat the above steps wherever a compound statement is found in the output, until all the output
actions become simple statements or lists of simple statements (separated by a comma).

As an example, Figure 5.3 shows the transformation from a model with a compound statement in its output
into a valid DCharts model. It assumescomp stm to be a compound statement consisting ofstm1, stm2 and
stm3, which may be simple statements or compound statements. The model in the upper part is converted
into the model in the lower part. Ifstm1, stm2 orstm3 is not a simple statement or a list of simple statements,
this transformation is repeated.

As a result of this transformation, the output of each transition becomes a simple statement or a list of simple
statements. (Note that this transformation may be done with graph grammars [33].)

Sequential execution of substatements in the compound statement is guaranteed by this transformation.

5.5 Mapping from Programming Language Control Flow Constructs to DCharts 71

Figure 5.3: An example of the transformation from a compound statement in the output into simple state-
ments

5.5 Mapping from Programming Language Control Flow Constructs to DCharts 72

However, synchronization is lost. Actions in other orthogonal components may be executed during the exe-
cution of those substatements, and the execution result of those interleaving actions becomes unpredictable.
This semantics is different from executing a compound statement in a critical session provided by the sim-
ulator or executor. To solve this problem, it is suggested that the simulator or executor provide actions that
allow designers to control the critical sessions. If such actions are available, the orthogonal component gen-
erated by this transformation is explicitly placed in a critical session. All the statements in it are executed
continuously without interleaving with other actions. This topic is out of the scope of this thesis.

5.5.3 Conditional Statements

If-else statements and switch statements are two kinds of conditional statements.

if (i == 0) { // an if-else statement
...

} else if (i == 1) {
...

} else if (i == 2) {
...

} else {
...

}

switch (i) { // a switch statement
case 0: ...

break;
case 1: ...

break;
case 2: ...

break;
default: ...

}

Switch statements are actually nested if-else statements. Each case within a switch statement corresponds to
a condition in the if-else statement. If-else statements are more powerful than switch statements, since the
conditions of if-else statements are C expressions, while the cases in switch statements must be constants.

If-else statements can be easily modeled in DCharts. The guards in the transitions test the different cases,
and the outputs perform the actions that correspond to those cases.

Figure 5.4 depicts an example of the transformation from an if-else conditional statement into guards of
multiple transitions. Supposecond stm is such an if-else statement:

if (x == 0)
stm1;

else if (x == 1)
stm2;

else if (y == 0)
stm3;

else if (y == 1)
stm4;

else
stm5;

5.5 Mapping from Programming Language Control Flow Constructs to DCharts 73

Figure 5.4: An example of the transformation from a conditional statement into guards

5.5 Mapping from Programming Language Control Flow Constructs to DCharts 74

In the upper part, the model has a transition from stateA to B reacting to evente. The transition is enabled
only if the guardi==1 is satisfied. It executescond stm as an output. This is not a valid DCharts model,
since it violates the restriction of the action code. It is transformed into the valid DCharts model in the lower
part. A transition is created for each condition in the if-else statement. The test cases of the conditions are
added to the guards. For example, the first test case isx==0. It is added to the guard of the first transition.
The second test case isx==1 on the basis that the first test case is not satisfied. As a result(x!=0) && x==1
is added to the guard of the second transition. The third test case isy==0 is on the basis that neither the first
test case nor the second test case is satisfied. As a result(x!=0 && x!=1) && y==0 is added to the guard
of the third transition. And so on.

If any statement instm1 to stm5 is not a simple statement or a list of simple statements, further transform
the model with the algorithm in section 5.5.2. If the model has other conditional statements, orstm1 to stm5
contain conditional statements, transform those conditional statements with the same method.

5.5.4 Loops

There are several kinds of loops in the C language:

• For-loop.

for (init; cond; step)
stm;

Here,init is a statement (or a list of statements) to be executed before the for-loop.cond is a boolean
expression that must be satisfied before each iteration. The for-loop stops whencond is evaluated to
f alse. stepis a statement (or a list of statements) to be executed after each iteration.stmis a statement
to be executed in each iteration. It may be a compound statement enclosed by a pair of curly braces.

For-loops can be transformed into statements with an if-else condition. The above for-loop structure
is transformed into:

init;
loop label:
if (cond) {

stm;
step;
goto loop label;

}

• While-loop.

while (cond)
stm;

It can be transformed into a for-loop:

for (; cond;)
stm;

• Do-while-loop.

5.5 Mapping from Programming Language Control Flow Constructs to DCharts 75

do
stm;

while (cond)

It can be transformed into a for-loop with one extra execution of the statementstm:

stm;
for (; cond;)

stm;

Since other types of loops can be simulated with for-loops, it is enough to show that for-loops can be mod-
eled with DCharts. As shown above, for-loop can be transformed into:

init;
loop label:
if (cond) {

stm;
step;
goto loop label;

}

Supposev is a temporary boolean variable. This code is equivalent to the following piece of code (de-
note it withcomp stm). It brings the “goto” statement out of the conditional construct.

init;
loop label:
v = cond; // evaluate cond and store the result in v
if (v) {

stm;
step;

}
if (v)

goto loop label;

A model with a transition from stateA to B that has the above action code in the output (the upper part of
Figure 5.5) is transformed into the model in the lower part of Figure 5.5. If compound statements are still
found in the output of the generated transitions, further transform the model into valid DCharts models with
the method in previous sections.

This proves that all kinds of loops can be modeled with DCharts.

This transformation does not take into account synchronization among actions in different orthogonal com-
ponents either.

5.5.5 Break and Continue

Thebreak statement and thecontinue statement in a loop can be transformed into extra transitions.

Suppose statementcomp stm is such a compound statement:

init;
loop label:

5.5 Mapping from Programming Language Control Flow Constructs to DCharts 76

Figure 5.5: An example of the transformation from a for-loop into multiple transitions

if (cond) {
stm1;
if (finished)

break;
stm2;
step;
goto loop label;

}

The break statement stops the for-loop by changing the execution point out of the compound statement.
It is equivalent to:

init;
loop label1:
v = cond; // evaluate cond and store the result in v
if (v) {

stm1;
if (finished)

goto loop label2;
stm2;
step;

}
if (v)

goto loop label1;
loop label2:

5.5 Mapping from Programming Language Control Flow Constructs to DCharts 77

Figure 5.6: An example of the transformation from abreak statement into DCharts transitions

The transformation of the model is illustrated in Figure 5.6. Thebreak statement in the for-loop is eliminated
in this example.

Thecontinue statement in a loop can be eliminated in a similar way. If thebreak statement in the above
comp stm is replaced by thecontinue statement, it is equivalent to:

init;
loop label:
v = cond; // evaluate cond and store the result in v
if (v) {

stm1;
if (finished)

goto loop label;
stm2;
step;

}
if (v)

goto loop label;

The transformation of this code with thecontinue statement is shown in Figure 5.7.

5.5.6 Tricks of Actions Specific to SVM

This section discusses the tricks of action code in SVM. Although it is forbidden to write arbitrary code in
the output of transitions or enter/actions, the tricks discussed below still allow designers to write native code
in a specific language. These tricks are specific to SVM. They are not in the DCharts 1.0 definition, and
hence they are not portable.

5.5 Mapping from Programming Language Control Flow Constructs to DCharts 78

Figure 5.7: An example of the transformation from acontinue statement into DCharts transitions

Python Native Libraries

SVM is completely implemented in the Python language [34] [35] [36]. It is possible to import libraries in
the action code of a model. Those libraries can be Python standard modules [37] or user-defined libraries.
For example, the following piece of code defines several functions in a library (saved in filelib.py):

def func1():
...

def func2(a, b, c):
...

import sys
def func3(x, y=0):

...

To import this library into an SVM model, include actionimport lib in its initializer, and make sure
that lib.py is in the same path as the model or can be found in thePYTHONPATH environment variable.
Hence, the functions defined in the library can be directly used in the action code.

The designers, if they implement part of the system with user-defined libraries, must decide what is to
be implemented with the native libraries and what is to be modeled with the DCharts formalism. This
usually raises a dilemma: implementation in the library is straightforward (for programmers) and efficient,
while modeling explicitly with DCharts is formal and the benefits of modeling (model checking, analysis,
transformation, simulation and code generation) are gained. As a general suggestion, a system is usually
divided into three parts: user interface, control logic and hardware driver (Figure 5.8). The user interface
is usually hard-coded in a library, since it contains the detail of the rendering of various widgets and their
interaction with the users. The hardware driver is usually hard-coded in a library, too. This is because it deals
with the detail of hardware control, threading, synchronization, interrupt, status polling, and so on. Only the
control logic is explicitly modeled with DCharts. It is usually the most vulnerable part of a system. Tools

5.5 Mapping from Programming Language Control Flow Constructs to DCharts 79

Figure 5.8: The three parts of a system

should be used as much as possible to thoroughly test and simulate the control logic before it is considered
stable.

Though the separation of the three parts is far from deterministic or unique, there are some rules to be
followed:

• The user interface should never interact with the hardware driver directly. It only sends user events to
the DCharts model, and the DCharts model consumes those events. (In SVM, to send an event to the
DCharts model, the user interface library must call functioneventhandler.event(ev, p), where
ev is the event name andp is a parameter of any Python type.)

• The hardware driver should never interact with the user interface directly. It only generates hardware-
specific events with the sameeventhandler.event function. Those events are also consumed by the
DCharts model.

• The API (Application Programming Interface) of the hardware driver should be generalized for vari-
ous applications. The designer should not intentionally tune it in order to simplify a specific DCharts
model.

• The designer is allowed to use yet another library to define functions that are considered primitive in
the system. For example, sorting, management of data structures and well-know algorithms should be
hard-coded in a library rather than being modeled explicitly. The latter approach only unnecessarily
complicates the model and obscures the essence of the problem to be studied.

Function Definition in SVM Models

As another trick, it is also possible to directly define functions in SVM models, though this method is highly
discouraged because of its lack of modularity and portability. The initializer of a model is among the parts
that allow arbitrary Python code. A model designer may decide to implement some of the functions in the
initializer of a model. Because Python is an interpreted language, SVM is able to dynamically interpret the
definition of those functions, and make them available for the actions executed later.

For example, the textual representation of the model in Table 5.1 defines a functionprint a to b, which
prints integers froma to b to the console on a single line. (a andb are integer parameters of the function.)
The model calls this function witha=1 andb=10 every 1 second with a timed transition. As a result, the user
of the model gets the following output in the console:

1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

5.6 Conclusion 80

STATECHART:
A [DS]

INITIALIZER:
def print_a_to_b(a, b):

while a<=b:
print a,
a = a + 1

print

TRANSITION:
S: A
N: A
T: 1
O: print_a_to_b(1, 10)

Table 5.1: An example of the textual representation of a function definition in a DCharts model

1 2 3 4 5 6 7 8 9 10
...

A whole Python library can be written under theINITIALIZER descriptor. However, the more Python code
is written here, the harder it is to port the model to another simulator or executor, and the harder it becomes
to fully understand the meaning of the model. As the size of the model grows, it becomes less manageable.
The chances of undetectable errors increase dramatically.

5.6 Conclusion

The expressive power of DCharts is formally shown in this chapter. It is proved that non-recursive DCharts
are at most as powerful as statecharts with variables (section 5.1), and non-recursive (the theorem in sec-
tion 5.3 does not use recursive importation) DCharts are at least as powerful as statecharts with variables.
From these results, it can be inferred that non-recursive DCharts are equivalent to statecharts with variables
in terms of expressiveness. Similarly, sections 5.2 and section 5.4 prove that non-recursive DCharts are
equivalent to DEVS in terms of expressiveness.

Obviously, DCharts are more powerful than statecharts with variables and DEVS. Recursive importation
and the parametrized importation introduced by SVM cannot be modeled with non-recursive DCharts.1

Because of the equivalence of expressiveness, recursive importation and parametrized importation cannot
be modeled with statecharts with variables or DEVS, either. The following inequation shows the comparison
of expressiveness of the above-mentioned formalisms:

DCharts> non-recursive DCharts= statecharts with variables= DEVS

The expressiveness of DCharts is further shown by using them to model the constructs in the C programming
language. This proves that DCharts are able to model a complete system in place of modern programming
languages such as C. The explicitly modeled parts of a system can be formally checked, analyzed, optimized
and simulated with DCharts modeling and simulation tools. Code can be generated from the well-developed
parts for efficiency. This development process strongly emphasizes the use of automated tools and saves
human labor.

1The SVM simulator itself can be modeled with non-recursive DCharts. In this sense, the execution of recursive DCharts can be
modeled with non-recursive DCharts. This issue is highly implementation-oriented. It is not considered here.

5.6 Conclusion 81

The examples in section 5.5 illustrate severaldesign patterns[38]. Those patterns point out a way in which
C constructs can be transformed into DCharts submodels. Designers may model those patterns in separate
submodels, and import them into their systems. Tools can also be implemented for this transformation.

For a relatively large system, there may be a lot of those design patterns. Optimization tools and code
generation tools may reverse them. They locate every appearance of known patterns, and transform it into
equivalent but much simplified C code. This code generation produces much more efficient code than the
classes generated in a normal way, which manage all the states and transitions in those patterns.

6
SVM – A DCHARTS SIMULATOR

A valid DCharts model contains all the necessary information for a simulation. SVM (Statechart Virtual
Machine) is the simulation environment that runs textual DCharts models.

6.1 An Introduction to SVM

SVM is originally a statecharts simulator implemented in Python (http://www.python.org), but now it
supports the complete DCharts semantics and the textual syntax, including the syntactic extensions.

SVM is a project developed in the MSDL (Modeling, Simulation and Design Lab) of SOCS (School of
Computer Science) of McGill University. The lab is headed by Prof. Hans Vangheluwe.

SVM has multiple sub-projects. One of its sub-projects, SCC (StateChart Compiler), aims at a tool that syn-
thesizes source code from DCharts models. Multiple target-languages are supported. This code synthesizer
is discussed in chapter 8.

SVM and its sub-projects are provided for public use under the terms of GNU GPL (General Public License)
version 2. There is absolutely no warranty for these tools. The text of the license can be obtained from:

http://www.gnu.org/licenses/gpl.html

The SVM homepage is at:

http://msdl.cs.mcgill.ca/people/tfeng/?research=svm

All the necessary information for obtaining and installing SVM and SCC can be found at the homepage. In
particular, a tutorial on SVM and SCC, which contains the installation instructions and several interesting
examples, is available [39].

6.2 The Design of SVM

The class design of SVM is shown in Figure 6.1. (This class diagram only shows the important attributes and
methods.) ClassEventHandler is the main class that loads the model from a text file, builds internal data
structures for the model, and simulates the model on demand. It can be used with different user interfaces: the
TextualInterface class defines the default textual interface that accepts input and produces output on the
console; theGraphicalInterface class defines the default graphical interface; and theCursesInterface
class defines the default curses interface (for UNIX only) to be used in the text mode with colors. Designers
may define model-specific interfaces. Examples of model-specific interfaces are discussed in later chapters.

ClassSVMFrontEnd provides a front end of the simulation environment for the end users. It accepts command-
line parameters and initializes an instance ofEventHandler with the model description. It also interacts with
the model user through one of the user interfaces.

ClassGenerator usesEventHandler to parse DCharts models. It generates source code in different target-
languages from the internal structures created byEventHandler. ClassSCCFrontEnd provides a command-
line front end for the code generator.

http://www.python.org
http://www.gnu.org/licenses/gpl.html
http://msdl.cs.mcgill.ca/people/tfeng/?research=svm

6.2 The Design of SVM 83

Figure 6.1: SVM class design

6.2 The Design of SVM 84

As EventHandler is the core of the parser and the simulator, it is necessary to introduce some of its methods
and attributes here:

• event(event, params, internal, lock)

Appends an event to the global event list. The event will be handled after all the events before it
in the list are consumed. Parameterevent is the event name.params is a parameter or a Python
list of parameters for the event.internal is a boolean that denotes whether the event is generated
by the model itself or is received as a message from a port.lock is a semaphore. If it is non-null,
the simulator will release this lock once this event is handled. The following piece of code uses a
semaphore to schedule an event and waits until it is handled:

...
import thread // import the Python threading library
lock = thread.allocate_lock() // allocate a lock
lock.acquire() // acquire the lock for the first time
eventhandler.event("e", [], 1, lock) // raise event
lock.acquire() // acquire the lock again; block until the event is handled
del lock // destroy the lock
...

• synchronous event(event, params, internal, lock)

Raises an event and waits until the event is handled (as the code segment above). Its parameters have
exactly the same meaning as theevent method.

• start()

Starts the simulation. It executes the initializer of the model and places the model in its initial default
state.

• shutdown()

Ends the simulation. If the model is not in a final state (the finalizer has not been executed yet), the
finalizer is executed; otherwise (the finalizer has been executed), the SVM simulator simply exits.

• snap to string():String

Takes a snapshot of the current state of the model. The snapshot is returned as a string.

• snap to file(filename)

Takes a snapshot and save the snapshot in the file named by thefilename parameter. The file is a
plain text file. The user may manually edit it. (Note: it is the modifier’s responsibility to make sure
that the file is still meaningful.)

• restore from string(s)

Restores a previously taken snapshot (saved in a string) and resumes the simulation. Information about
the current simulation is completely lost.

• restore from file(filename)

Restores a previously taken snapshot stored in the file named by thefilename parameter.

• get enabled events()

Returns a list of the names of enabled events. The result depends on the current state of the simulation.

• is or is substate(state1, state2):bool

Returnstrue if state1 is equal tostate2 or state1 is a substate ofstate2.

• is in state(state, check substate):bool

Returns whether the model is currently instate. If check substate is false, the simulator only
checks leaf states. Hence, the result istrue if and only if the model is instate andstate is a leaf

6.3 Default Interfaces 85

state. Ifcheck substate is true, the function returnstrue if and only if the model is instate,
whether it is a leaf state or not.

• is ifs(state):bool

Returns whetherstate is inner-transition-first.

• Attributestate

A list of strings enumerating all the leaf states that the model is currently in.

To simulate DCharts models,EventHandler requires the support of other classes. These classes are not
necessary for code generation in SCC:

• ClassSVMPVM is an interface to PVM (Parallel Virtual Machine) for distributed simulation in SVM.

• ClassDebugger provides the functions for model debugging. It allows the testers to define callback
functions that are invoked when certain criteria are satisfied during a simulation. Those callback func-
tions are similar to the breakpoints of modern IDEs (Integrated Development Environments).

• ClassSerialize provides serialization facilities for SVM. With this class, the globaleventhandler
object can be serialized as a string that contains all the information needed to reconstruct the object.

• ClassSnapShot makes use of the functions provided by classSerialize and provides snapshotting
facilities for SVM.

TheEventHandler class is a parser and a simulator. It can be reused in other applications. For example, the
SCC code synthesizer uses this class to parse textual model descriptions; an application that needs a DCharts
simulator (such as AToM3 with the DCharts plugin) may use it to simulate models.

The command-line to invoke SVM is discussed in [39]. It includes a complete description on how to start
the simulation of a model, how to choose among the default interfaces, and how to redefine macros for the
model.

6.3 Default Interfaces

This section discusses the default graphical interface and the default textual interface. The default curses
interface is similar to the default textual interface.

6.3.1 Default Graphical Interface

Figure 6.2 shows the default graphical interface. The window on the right is the main window. The enabled
events are displayed in the “Enabled Events” list. This list is refreshed whenever the state of the model
changes. The “Output” box displays output from the model or the commands entered by the user. The model
sends output to this box with theDUMP macro. Model description (if defined) is also displayed in this box at
the time a model is loaded or imported. The “Command” box accepts commands from the user. Three kinds
of commands are accepted:

• Events. To raise an event, the user may enter the event name in the “Command” box and pressENTER,
or double-click the event name in the “Enabled Events” list.

• “debug”. The user may enter a special event “debug” to change to the debug mode.

• “exit”. This special event terminates the simulator and closes the SVM windows. It has the same
effect as pressing the “Exit” button in the main window.

Any other command not recognized by SVM is simply ignored.

By pressing the “Snapshot” button, the user takes a snapshot of the current state of the model. The snapshot
is saved to a.snp file with the same name (excluding the postfix) as the file name of the model description.

6.3 Default Interfaces 86

Figure 6.2: SVM default graphical interface

Figure 6.3: SVM default textual interface

6.4 Modeling and Simulating DCharts in AToM 3 87

Figure 6.4: AToM3 modeling environment with SVM plugin

6.3.2 Default Textual Interface

As opposed to the graphical interface, textual interface is suitable for most systems, even if they do not have
any graphical device or they are too slow to support Tkinter (the graphical widget library for Python). The
default textual interface is shown in Figure 6.3. The state of the model is printed before the prompt. Similar
to the graphical interface, the user is allowed to enter event names and the “debug” and “exit” special
events. TheDUMP macro prints messages to the console.

6.4 Modeling and Simulating DCharts in AToM 3

SVM is a stand-alone simulator that does not depend on any other modeling and simulation tool. However, it
can be seamlessly integrated with AToM3. A plugin for AToM3 generates DCharts model descriptions from
its graphical representation in AToM3. The user may then save the descriptions in text files to be simulated
by SVM. Alternatively, the generated model descriptions can also be stored in memory and be simulated
by SVM immediately without being saved. In the latter case, SVM highlights the current states and enabled
transitions in AToM3 during the simulation (Figure 6.4).

The SVM plugin adds a DCharts meta-model to AToM3. It is developed on the basis of Spencer Borland’s
statecharts meta-model for AToM3 [9]. Three buttons are available to simulate the model in the current
canvas immediately, generate.des model description to a text file, and generate Java source code from the
current model with SCC (discussed later). The designer is thus able to design the model in the AToM3 visual

6.5 Distributed Simulation 88

Figure 6.5: Multiple layers for distributed simulation in SVM

environment, and access to these functions simply by clicking on the corresponding buttons.

6.5 Distributed Simulation

SVM supports distributed simulation with PVM (Parallel Virtual Machine) [10]. Adistributed modelis
divided into several components conceptually running on multiple machines. PVM hides the configuration
of those machines. Each PVM process is regarded as a conceptual machine that has its unique ID and is
able to communicate with other PVM processes. Multiple PVM processes may run on the same machine.
Multiple machines may be involved in a distributed simulation enabled by PVM, after they are added to the
PVM daemon.

6.5.1 The SVMDNS daemon

SVMDNS (SVM Dynamic Naming Service) is another daemon built on top of the PVM library. It provides
a higher level of interface to SVM processes. For example, in Figure 6.5 there are 4 SVM processes, each
of which has a DCharts component running on it. Those DCharts components communicate with each other
via ports. The SVM processes register themselves to a single SVMDNS daemon. The SVMDNS daemon
invokes functions in the PVM library to create 4 PVM processes. Each of them corresponds to an SVM
process. The location of those PVM processes depends on the configuration of the PVM daemon. In this
case, PVM processes 1, 2 and 3 are located on machine 1, while PVM process 4 is located on machine 2.
The PVM library hides details of this configuration, but provides a uniform API to SVMDNS.

SVMDNS provides the following functionality to each SVM process:

• Registration. Each SVM process that interacts with remote components must register itself to SVMDNS.
By default, the SVM simulator attempts to register itself to SVMDNS if and only if a model with at
least one port is running in it.

6.5 Distributed Simulation 89

Send Wait

message Echo

AFTER(0) / msg=Messages[randint(0, MessageNo−1)], [EVENT("message.send", msg)], [DUMP("Sent: " + msg)]

message.echo / [DUMP("Received: " + [PARAMS])]

Figure 6.6:Sender of theEcho example

• Life-time. Each SVM process registered to SVMDNS must periodically sends a keep-alive message
to the SVM daemon. If the daemon does not receive such a message from an SVM process within
a certain period of time (known aslife-time), information about the SVM process is removed from
SVMDNS’ registry. The life-time can be customized inPVMUtil.py. By default it is 30 seconds.
Each SVM simulator, after it registers itself, sends the keep-alive message to the SVMDNS every half
life-time period.

• Component lookup. SVM processes send the name patterns or types of required components to the
SVMDNS. SVMDNS then locates the registered components with those name patterns and types. It
establishes the connections between components.

• SVMDNS also maintains the connections between components. SVM processes are ignorant of this
information. They simply use ports to identify groups of connected components in SVMDNS. SVMDNS
acts as a router in this inter-component communication.

Detailed information about the setup of the SVM daemon and the PVM daemon can be found in [39].

6.5.2 Example

A simpleEcho example is studied in the section. There are two components in the system:Sender andEcho.
TheSender randomly generates a message and sends it to themessage port of theEcho. TheEcho sends
back this message to theSender after 1 second. When theSender receives the message, it sends another
random message to theEcho. This loop continues forever.

These components are designed in AToM3 as shown in Figure 6.6 and Figure 6.7. In Figure 6.7, an in-
put/output port namedmessage is defined for theEcho component. TheSender component in Figure 6.6
also has a port calledmessage. The port of theSender is connected to the port of theEcho. The name pat-
tern of the server isEcho (Figure 6.8). This matches theEcho component only. The link between theSender
port and the server has a property that specifies the server portmessage (Figure 6.9). The enter actions of
the Send state of theSender component is hidden. Those actions import necessary Python libraries and
initialize a list of random messages.

When theSender component is loaded into AToM3, the user may press the “to SVM Des.” button to generate
a.des file. Here is theSender.des generated by the SVM plugin:

DCharts description generated by SVM−AToM3−plugin, written by Thomas Feng
Source: /home/thomas/Backup/Atom3 2.2/DCharts/models/SimpleEcho/Sender.py
Date: January 15, 2004

6.5 Distributed Simulation 90

Receive Echo
message

message.send / msg=[PARAMS]

AFTER(1) / [EVENT("message.echo", msg)]

Figure 6.7:Echo of theEcho example

Figure 6.8: Name pattern of theEcho server

Figure 6.9: Port name of theEcho server

6.5 Distributed Simulation 91

Time: 21:29:44

COMPONENT:
id = Echo
name = Echo

PORT:
name = message
type = inout

CONNECTIONS:
message −− Echo.message

STATECHART:
Send [DS]
Wait

ENTER:
N: Send
O: from random import randint

Messages=["Hello, everyone!", "Have a nice day!", "How are you today?", "I feel very well \
today!", "The same to you!"]

MessageNo=len(Messages)

TRANSITION:
S: Send
N: Wait
T: 0 [RTT]
C: 1
O: msg=Messages[randint(0, MessageNo−1)]

[EVENT("message.send", msg)]
[DUMP("Sent: " + msg)]

TRANSITION:
S: Wait
N: Send
E: message.echo
C: 1
O: [DUMP("Received: " + [PARAMS])]

Here isEcho.des:

DCharts description generated by SVM−AToM3−plugin, written by Thomas Feng
Source: /home/thomas/Backup/Atom3 2.2/DCharts/models/SimpleEcho/Echo.py
Date: January 15, 2004
Time: 21:31:4

PORT:
name = message
type = inout

CONNECTIONS:

STATECHART:
Receive [DS]

6.6 Debugging 92

Echo

TRANSITION:
S: Receive
N: Echo
E: message.send
C: 1
O: msg=[PARAMS]

TRANSITION:
S: Echo
N: Receive
T: 1 [RTT]
C: 1
O: [EVENT("message.echo", msg)]

This example can also be found in [39].

6.6 Debugging

The SVM simulator supports low-level debugging. Its debug mode is entered whenever the user inputs the
“debug” special event. If the simulation makes use of a model-specific interface, the debug mode may be
entered in a different way. For example, theCDPlayer example in the SVM distribution provides a “Debug”
button that switches to the debug mode.

When the debug mode is entered, the simulation is suspended. The user is allowed to execute arbitrary
Python code. If the default curses interface or the default graphical interface is used, the Python code entered
by the user is highlighted according to a combined syntax of Python and SVM model description.

The Python code executed in the debug mode may inspect the status of the simulation and the model running
in it, as well as modify their variables.eventhandler is an important object that contains most information
concerning the simulation. Its following attributes are useful for debugging:

• eventhandler.state contains the current leaf states (a Python list of strings). Modifying this list
changes the state of the model.

• eventhandler.trans contains the definition of all the transitions. It is a Python dictionary.

• eventhandler.stateH is another Python dictionary that contains the definition of the state hierarchy.

• eventhandler.enter andeventhandler.exit are the two Python dictionaries that contain the en-
ter actions and the exit actions, respectively.

• eventhandler.ports is a Python dictionary that contains all the ports and their properties.

• eventhandler.connections is a Python dictionary that contains all the required connections be-
tween this model and other components.

7
MODEL VERIFICATION

Model checking, model verification and debugging are the three methods to improve the correctness of a
model or to find out potential errors in it.

Model checkingchecks the correctness of a model by means of formal property proving. This checking does
not depend on individual experiments. The properties, such as reachable states and acceptable event lists,
are always true for the model.Model verificationchecks the correctness of a model by means of multiple
simulations. The common properties of those simulations are summarized and are regarded as properties of
the model. For example, the states that are not entered in all those simulations are considered unreachable
states of the model. However, this conclusion may not be correct because of the non-exhaustive sampling
of all possible behaviors. In fact, to achieve 100% certainty for a single property, an infinite number of
simulations are usually required. Those simulations exhaust all possible traces of the model simulation. This
is, of course, impossible. As a result, model verification is less formal than model checking.Debuggingis the
least formal in this comparison, since it is responsible for only one simulation or one group of simulations.
When an error occurs in a simulation, the debugger usually looks inside the faulty part of the model to
locate the error. When a design error is discovered, the debugger tries to fix it without affecting the other
parts. However, this is usually impossible, and the result of this modification becomes unpredictable.

This chapter mainly discusses model verification, as it is the most well-studied approach. Our paper on
consistency checking [40] contains a general discussion and an example of model verification with SVM.
Formal model checking of DCharts is interesting and useful for many applications. It will be studied in the
future. Debugging of DCharts models in the SVM simulator has been discussed in the previous chapter.

7.1 Simulation Trace

A simulation tracerecords the evolution of the state (and possibly, the messages being sent) over time. In
SVM it is obtained as text output of a simulation. This output is sent by the model with theDUMP macro.
Different models may have different output formats. However, if the models conform to a single standard
and provide enough information in the output, the output trace is useful to check the correctness of those
models.

An example of chat rooms and clients is introduced in [40]. Chat rooms and clients are the two different types
of DCharts components. The communication between them conforms to the following simplified protocol:

• There are 5 clients and 2 chat rooms in the system. Initially, the clients are not connected. They try to
connect to a random chat room every 1 to 3 seconds (uniformly distributed). The requested chat room
instantaneously receives the request (zero network delay and reliable communication are assumed).

• A chat room accepts at most 3 clients. It accepts a connection request if and only if its capacity is not
exceeded.

• The requesting client receives an acceptance or rejection notice from the requested server immediately.

• A client must be accepted by a chat room before it may send chat messages.

• When connected, a client sends random messages to the chat room that it is connected to every 1 to 5
seconds (uniformly distributed). The chat room immediately receives the messages. It takes 1 second
to process a message and broadcast it to all the clients connected to it, except the sender.

7.2 Extended Regular Expressions 94

• The clients instantaneously receive the broadcast.

The following is a part of the output trace generated by a simulation of the whole system with 2 chat rooms
and 5 clients:

.
CLOCK: (10.5s,0)

Client 0

Says "Hello!" to ChatRoom 1

.
CLOCK: (11.5s,0)

ChatRoom 1

Broadcasts "Hello!" to all clients except Client 0

.
CLOCK: (11.5s,2)

Client 1

Receives "Hello!" from Client 0

.

For more insight into this example, the readers are referred to the paper published at the UML 2003 confer-
ence [40]. This example is cited here only to demonstrate model verification. This output trace consists of a
number of output segments, each of which is composed of three lines: the time when the output is produced,
the component that produces the output and a brief message from the component.

The time is written in an enhanced format. Atime tupleconsists of a float number that denotes the number
of seconds elapsed since the simulation was started, and an integer that denotes the sequence of the multiple
events received at that time. For example, time(10.5s,0) means 10.5 seconds have elapsed since the
simulation is started and the event is the first (0+ 1) to occur at that time. Time(11.5s,2) means 11.5
seconds after the simulation is started and that the event is the third (2+1) to occur at that time.

This extended time format allows the specification of multiple events that occur at exactly the same time,
while their order is still important. For example, according to the protocol,as soon asthe server broadcasts
a message, the clients receive it. The two events occur at exactly the same time, but in the output trace,
the message sent from the chat room must appear before the message received by the clients (a causality
constraint).

7.2 Extended Regular Expressions

Checking the consistency between the protocol and the output trace is a kind of model verification. An
automatic approach is taken to check this consistency for each simulation. If a large number of checks are
successful, confidence in model correctness increases.

Before automatic checking can be done, the protocol must be translated into a formal description to be
processed by computer programs. Here, a rule-based approach is employed. A rule file to be processed
contains several rules that the output trace must conform to. The rules are written withextended regular
expressions, an extended form of UNIX regular expressions. Each rule consists of 4 parts: pre-condition,
post-condition, guard (optional) and counter-rule property (optional).Pre-conditionis a regular expression
used to match a part of the output trace. It, combined with theguard (a boolean expression), defines when
and where the rule is applicable. If it is applicable and thecounter-rule propertyis false, thepost-condition
(another regular expression) must be found in the output; on the contrary, if counter-rule istrue, the post-
condition mustnotbe found.

For example, the rule in Table 7.1 expresses the requirement that the sender of a message does NOT receive
the broadcast after 1 second. (However, it does not address whether it can receive the message after 0.9999
second or 1.0001 seconds.)

In the pre-condition, fivegroupsare defined between parentheses. They are numbered 1 to 5 in the order

7.3 Rule Checker 95

pre-condition CLOCK: \((\d+\.{0,1}\d*)s,(\d+\.{0,1}\d*)\)\n\Client (\d+)\nSa
ys "(.*?)" to ChatRoom (\d+)\n

post-
condition

CLOCK: \([(\1+1)]s,(\d+\.{0,1}\d*)\)\nClient [(\3)]\n Receives
"[(\4)]" from Client [(\3)]\n

guard [(\1+1)]<50
counter-rule true

Table 7.1: An example of an extended regular expression

of their appearance. Group 1 matches the floating-point time. Group 2 matches the sequence number. They
constitute a time tuple. Group 3 matches the integer ID of the sender. Group 4 matches the message, which
is an arbitrary string. Group 5 matches the ID of the chat room that the sender is connected to.

In the post-condition,[(...)] contains an expression, where values of groups can be cited with their index
numbers behind “\”. Thus,[(\1+1)] is the value of the first group plus 1.[(\3)] is equal to group 3. More
about regular expressions can be found in [41].

Suppose the execution stops at simulated time 50. The checking should not exceed time 50. Without addi-
tional conditions, if a message is sent to a chat room at time 49.5, the checker would expect a corresponding
broadcast at time 50.5. To cope with this, a guard[(\1+1)]<50 is added. This tells the checker that the rule
is applicable only when the value of group 1 (floating-point time) plus 1 is less than 50.

Since a client should not receive its own message, the counter-rule property is set totrue.

7.3 Rule Checker

A rule checker is implemented to read in a text file with rules defined in it, and check the correctness of the
output trace saved in another text file.

The algorithm of the rule checker is summarized below (suppose that the rule file is read intorulesand the
output trace is read intoouttrace):

function check(rules, outtrace)
for each rule r in the rules

pre = the pre-condition
post = the post-condition
cond = the condition
counter = the counter-rule property
pos = 0
while true

match = search(pre, outtrace, pos)
if match is empty then

break
else

pos = the last position of the match in outtrace
if cond is not empty

replace(cond, match)
if cond is not satisfied then

continue
replace(post, match)
if (counter and search(post, outtrace, 0) is not empty) or

(not counter and search(post, outtrace, 0) is empty) then
output an error and exit

return successful

7.4 Limitation and Future Work 96

function search(re, text, pos)
search regular expression re in text starting from position pos
if the pattern is found then

return the matching with the value of all the groups in the pattern
else

return empty

function replace(text, match)
i = 0
while i < number of groups in match

replace all the citations of group i in text with the actual value of group i
i = i + 1

7.4 Limitation and Future Work

Model verification with extended regular expressions is very useful. In theory, most properties concerning
the behavior of a model can be expressed with rules and be written in text files as the input to the rule
checker. However, it is not an easy task to write such a rule file with extended regular expressions. The rules
in the file may contain errors themselves. As a consequence, the result of this largely manual verification
process is unreliable.

This approach can be greatly improved by developing a method to automatically generate rules from other
formalisms such as UML sequence diagrams. (However, there is a large gap between the protocol specified
in natural language and formal specifications.) The future work in this area will mostly focus on making this
approach practical by developing more tools and reducing human intervention.

Model checking, since it is much more formal than model verification, overcomes some of the vulnerabilities
of model verification. For example, if a property is formally proved to exist in a model, it always holds no
matter how many simulations are made. However, for model verification to reach this certainty, an infinite
number of simulations are usually required.

Model checking of DCharts is not easy. This is mainly because DCharts support variables and arbitrary
actions that modify those variables. The result of this modification is hardly predictable statically. A promis-
ing approach of model checking is to transform DCharts into other formalisms such as PetriNets [42], and
formally check the properties of the new models. Graph grammars [43] [44] [45] [33] are useful for model
transformation, because of their well-developed theory. In view of this, the future work in the area of model
checking will mainly focus on possible transformations from DCharts models to other formalisms by means
of graph grammars.

8
SCC – A DCHARTS COMPILER

SCC (StateChart Compiler) is a command-line tool to synthesize executable code from DCharts models. It
optimizes the models and produces efficient code. The code is independent of the SVM simulator.

SCC is able to synthesize code in Java, C++, C# and Python. Those target languages can be chosen on the
command-line when the user invokes SCC.

SCC is distributed with SVM. It is started with thescc script (orscc.bat for DOS). A command-line
parameter specifies the.des file name of a model description. The code is written to a file with the same
name as the model description (with its extension changed according to the target language).

This chapter mainly discusses code synthesis in Java. Several classes are defined in a single Java source file,
so when it is compiled with JDK (Java Development Kit), multiple.class files are produced. The class with
the same name as the Java source file and the model description is the main public class. Amain function is
defined in this class, which provides the default textual interface.

More information about SCC can be found at its homepage:

http://msdl.cs.mcgill.ca/people/tfeng/?research=scc

Usage and several examples on SCC can be found in theSVM and SCC Tutorial[39].

8.1 Java Code Design

SCC invokes the functions in the Python moduleJavaGenerator.py to generate source code from DCharts.
The code is included as a template in the module. SVM-style macros are defined in the template. For different
models, the template is the same, but the macros are given different values. The code synthesizer simply
substitutes those macros in the template with their values, and writes the result to a text file.

The Java code design refers to the design of the template for Java code generation.

8.1.1 Class Hierarchy

In the class hierarchy of the generated Java source code (Figure 8.1), classStateMachine is the common
superclass of all the DCharts models. It defines the common interface for the models, so that one model
may invoke methods in another without explicitly specifying its concrete type. For each DCharts model (or
submodel to be imported), a Java class with the same name is synthesized. The class with the same name as
the.des file specified on the command-line is themain class.

SCC searches for the submodels to be imported into the main model. Those submodels are converted into
corresponding Java classes, written in the same Java source file. In addition, it also generates code for the
subsubmodels (if any) imported into those submodels. This search repeats until no new model is found under
theIMPORTATION descriptor of all those model descriptions. If a model is imported by more than one model,
or a model is imported by itself directly or indirectly, it is converted into only one class, which can then be
reused in different importing models.

For example, in Figure 8.1, classMainModel is generated from a DCharts model inMainModel.des. It
imports other models, and those imported models also import more models in their own right. Classes

http://msdl.cs.mcgill.ca/people/tfeng/?research=scc

8.1 Java Code Design 98

Figure 8.1: Java class hierarchy of state machines

Submodel 1 to Submodel n are generated from those imported models. All the above classes inherit class
StateMachine.

8.1.2 Numbering

A unique integer number is assigned to each state of a DCharts model. Internally, the state number is used
instead of the name or full path of the state. This has two effects:

• The execution becomes more efficient because string comparisons between state names is reduced to
integer comparisons.

• The state hierarchy is partly flattened because those integer IDs do not contain any hierarchical infor-
mation as can be found in the full paths of the states.

A linked list of current leaf states is maintained in each model. It may contain more than one state ID for a
model with orthogonal components.

Two states of different models may have the same ID, whether there is an importation relation between those
models or not. The Java function to get the current state first checks the leaf states that the main model is
currently in. If any of those leaf states is originally (before importation) an importation state, it then further
checks the current leaf states of the submodel imported in that state. This is because, unlike SVM, SCC does
not merge the imported model with the importing model but it records the imported model as an attribute of
the importation state. This lookup process repeats until the bottom of the state hierarchy is reached.

Similarly, all the events are numbered. Those event IDs are the internal representation of the events that
trigger transitions. The synthesized code uses a switch-case structure to test acceptable events. Events han-
dled by different models may have the same ID, even if they have different event names in their model
descriptions.

8.1.3 Members of Model Classes

The following constants are defined in each model class. They contain information about the model structure.

• private static final int StateNum. The number of states in the model, not including the states
in its submodels.

• private static final String[] EventNames. The names of the events to be handled by the
model, not including the events handled by its submodels. The indexes of those event names represent
their IDs. Those IDs start from 0.

8.1 Java Code Design 99

• private static final String[] StateNames. The full paths of the states in the model, not in-
cluding the states in its submodels. The indexes of those full paths represent the IDs of the states.
Those IDs start from 0.

• private static final int[] ParentTable. The table of parent-children relations in the model.
ParentTable[i] contains the ID of the parent of statei. This is the inverse of theC function in the
abstract syntax.

• private static final boolean[][] Hierarchy. The children function of the model (the same
as theC function in the abstract syntax).Hierarchy[i] is an array over all the states.Hierarchy[i][j]
is true if and only if statej is a child of statei.

• private static final int[] HistoryStateTable. The definition of history states in the model.
Each element in this array has the following meaning:

HistoryStateTable[i] =

0, i f state i has no history
1, i f state i has a normal history
2, i f state i has a deep history

• private static final String[] LeafStateTable. The definition of leaf states in the model,
including importation states if any. If statei is a leaf state,LeafStateTable[i] is equal to the full
path of statei; otherwise,LeafStateTable[i] is equal tonull.

The following are the Java data structures to store the state of the model at run-time:

• private State state. The current leaf state list of the model. ClassState is a linked list of state
IDs.

• private StateMachine[] Submodels. The submodels of the model.Submodels[i] is notnull if
and only if statei is an importation state and the submodel in it has been loaded. Once the submodel
is loaded, it is never deleted even if the model leaves the importation state. The history recorded in the
submodel object is the history of the importation state.

• private History[] history. The history of each state in the model.history[i] is notnull if
and only if a history is recorded for statei. ClassHistory is an internal structure that records a single
history. Its value is changed as the model enters the state again and leaves it from another substate.

As all of the attributes of a model class are private members, the users can only access them by means of
public methods. The following list includes some of the important methods:

• public modelname(). Constructor of the model class. (modelname is the name of the model.) The
required data structures are initialized. However, the model is not initialized. Its current state is illegal.

• public void initModel(). Initializes the model. This means to place the model in its default
state(s). The initializer of the model is executed.

• public boolean isInState(String s) and public boolean isInState(int s). These two
functions check whether the model is in a certain state. The state can be specified with its full path or
with its integer ID. The second method is more efficient since it does not require string comparison.
The method with a string parameter is kept only for interaction with the model users, who do not know
the internal state IDs.

• public boolean handleEvent(String se). The handler of any event. The event is given as a
string, and this function automatically converts the string into its integer ID for internal use. It tests
the event ID with a switch-case control structure. It checks the source states of the transitions and their
guards. If any enabled transition is found, the state variables are changed according to the original
design of the DCharts model. This method also executes the output and the enter/exit actions (if any)
as the transition is fired. If the model changes to a final state, it also executes the finalizer before
returning.

8.1 Java Code Design 100

• public void changeState(int s1, int s2, boolean check history). Changes the model from
states1 tos2. This method implements the state change triggered by a transition from states1 tos2. If
check history is true, the history of s2 or any state in the path from stateCommon(s1,s2) to state
s2 is considered (such a transition has a[HS] property in the original DCharts model); otherwise,
history is ignored even if it is recorded.

public void changeState(int s1, int s2) is equivalent topublic void changeState(int
s1, int s2, false).

• protected int eventStr2Int(String event). Converts a string event name into its integer ID.

• protected StringList getCurrentStateList(). Retrieves the current leaf state(s) of the model.
The result is stored in a linked list of strings. Its elements are instances of classStringList. This
method looks up all the current leaf states in the main model, as well as the current leaf states in all the
submodels. It is used internally in the Java class. To retrieve the current states in a more understandable
format, the designers should use functionpublic String getCurrentState().

• public String getCurrentState(). This method invokes methodprotected StringList get-
CurrentStateList(), and returns the current leaf state(s) as a string enclosed by a pair of square
brackets. Multiple states are separated by comma “,”.

• public int getParentState(int state). Returns the parent state of the specified state.

• public boolean isHistoryState(int state). Tests if the specified state has a history.

• public boolean isLeafState(String state). Tests if the specified state is a leaf state.

• public Hierarchy getHierarchy(int start level, String state prefix). Returns the state
hierarchy structure of the model. The hierarchy structure is a linked list. TheNext attribute of each
element (if it is non-null) gives access to the next element. Each element in this linked list has the
following attributes:

• public String StateName. The name of a state in the model.

• public String PathName. The full path of the state.

• public int StateNum. The integer ID of the state.

• public int Level. An integer that denotes the level which the state is at. The larger this num-
ber is, the deeper the state is in the state hierarchy.

Parameterstart level is an integer to be added to theLevel attributes of all the elements in the
returned list. This is useful for importation states. Suppose an importation state is at level 5. It calls
the getHierarchy method of the imported model withstart level=5. The generated hierarchy
starts from level 6.

Parameterstate prefix is the prefix to be added to the head of thePathName attributes of all the
elements in the returned list. For example, importation state “A.B” calls thegetHierarchy method of
the imported model withstate prefix="A.B". The full paths in the generated hierarchy start with
“A.B.”.

8.1.4 Default Textual Interface

Themain function of a model class provides a default textual interface. The user inputs events to the model
from this interface, and every time the current states of the model are changed, the new states are displayed
as a list between square brackets before the “>” prompt.

Figure 8.2 shows this default textual interface. It is started by executing the class of the main model in
the JVM (Java Virtual Machine). For each model or submodel, this textual interface is defined in amain
function. By default, JVM starts themain function of the main model. Themain functions of submodel
classes, if necessary, can be invoked by user-defined classes.

The user may reuse the Java code of a model with a customized interface instead of the default textual

8.1 Java Code Design 101

Figure 8.2: An example of the default textual interface of the Java code synthesized by SCC

8.2 Transformation Strategies 102

interface. This is discussed in section 8.5.

8.2 Transformation Strategies

The strategies used to transform different parts of a DCharts model into source code are discussed in this
section.

8.2.1 State Hierarchy

As was discussed previously, each state in a model is given an integer ID. Those IDs are unique within
a single model but may be duplicated across different models. This is a flattening of the state hierarchy,
which causes a loss of information, such as the parent-children relations and information about orthogonal
components. Auxiliary functions and arrays are generated to preserve information like this.

Constant attributesParentTable andHierarchy of the model class record the parent-children relations.
ParentTable[i] contains the state ID (≥0) of the parent of statei. If statei is at the top level,ParentTable[i]
is equal to-1. Hierarchy[i][j] is a boolean specifying whether statej is a child of statei. With these
data structures, the following simple Java function tests if a state is the parent of another state (suppose that
a state with ID less than 0 is parent of any state):

private boolean isParent(int sp, int sc){
return sc>=0 && (sp<0 || Hierarchy[sp][sc]);

}
Each model class has a state hierarchy defined in it. The hierarchy of a submodel is not visible from the
model that imports it. However, the importation states are statically decided in the importing model. A
model calls the member functions of its submodels to access to their states.

8.2.2 State Properties

Most of the state properties are statically coded in multiple parts of the Java classes. For example, the
property of default states are implemented in these functions:

• TheinitModel function changes the state of the model to its default leaf states. Those default leaf
states are computed statically. For example, if states number4 and6 are the default leaf states, the
following statements are statically coded in functioninitModel: addInState(4); addInState(6).
Methodprivate boolean addInState(int s) simply adds a state to the current state list of the
model. If the model is already in states, the function returnsfalse. Since the current state list of
the model is empty when it is being initialized, this function always returnstrue when invoked by
initModel.

• The default states are statically coded in functionchangeState, which changes the model from one
state to another. If the new state is not a leaf state or it is orthogonal to other states in the path from the
Common(SRC,DES) to theDESof the transition, default leaf states are generated according to the
model structure. SCC invokes the SVM simulator to decide those default leaf states as if the model
were being simulated. The default leaf states which need to be added for each transition do not vary
in different simulations or executions.

State properties concerning transition priorities ([ITF], OTF andRTO) are statically interpreted. The transi-
tions are sorted according to the algorithm in section 2.2.5. Those transitions are coded in the Java classes in
the same order with a switch-case structure. The first enabled transition at run-time is always the one with
the highest total priority. This sorting of a submodel’s transitions does not vary, because the importing model
is not allowed to modify its global optionInnerTransitionFirst (which is default to 0).

Orthogonal components are also statically coded in the classes. For a transition going out of an orthogonal
component, code is generated to eliminate all other orthogonal components of the same parent. For a tran-
sition going into an orthogonal component, the default leaf states of other orthogonal components of the

8.2 Transformation Strategies 103

same parent are added to the current state list. SCC hard-codes this information in the Java code to improve
performance.

8.2.3 History

History is the most complex part in the Java code, because it largely depends on the state of the model exe-
cution, and cannot be decided statically. Thehistory attribute of a model class keeps track of its histories.
Its value changes at run-time. The computation of this part is among the most expensive in the execution of
a hierarchical model with history.

Methodprivate void recordHistory(int top state) records the history of statetop state (sup-
pose it has a history or deep history defined in it) in thehistory attribute.

history is an array over the state IDs.history[i] for statei is an instance of classHistory, which has
the following attributes:

• public int[] States. The history of all the states when statei is exited.States[j] contains the
ID of the child state of statej, which the model is currently in. If the children of statej are orthogonal
components,States[j] is meaningless.

• public long[] Times. The time when the history is recorded for each state. When a state with
history is entered after its history is recorded, the record with the latest time-stamp is considered most
recent and will be restored as the current state(s).

• public StateMachine Submodel. The submodel imported in statei, or null if statei is not an
importation state. When the model leaves an importation state, the imported model remains, because
its history recorded in its ownhistory attribute may be useful in the future.

Calls to therecordHistory method is statically coded in thechangeState method. When a model leaves
statei with a history in it,recordHistory(i) is called before the state changes.

When the model enters a state with a history recorded in thehistory attribute, the model dynamically
decides the destination states with the history record, and changes the model to them. For normal history,
this computation is complex.

Note that history recording is necessary even for non-history states. This is because the compiled model may
be imported into such an importation state that it is a history state itself, or some of its superstates are deep
history states. In those cases, history manipulation is required for every state.

8.2.4 Event Handling

MethodhandleEvent handles events by comparing their IDs with accepted event IDs. It uses a switch-case
structure to test those events, and invokes thechangeState method to change the current state.

MethodchangeState usually makes the following three calls:

1. recordHistory(com) records the necessary history in the path fromcom= Common(SRC,DES)
to the bottom of the state hierarchy.Common(SRC,DES) is computed statically and stored in a 2-
dimensional array. IfCommon(SRC,DES) does not exist (becauseSRCandDESare or belong to two
different top-level states),recordHistory(-1) is called.

2. removeOutStates(com) causes the model to leave statecom= Common(SRC,DES) by removing
that state and all its substates from the current state list. IfCommon(SRC,DES) does not exist, the
code generator simply writes statementstate=null; to clean up the current state list.

3. generateStates(com, DES) generates new states in the path fromcom= Common(SRC,DES) to
DES, and adds them to the current state list.

8.3 Space Efficiency and Speed Efficiency 104

Tool Achieve Sacrifice
SVM functionality and extensibility space and speed
SCC speed space, modularity and functionality

Table 8.1: Trade-offs between SVM and SCC

8.2.5 Importation

Importation is transformed into instantiation in the synthesized code. A class is generated for each model.
When a submodel is imported, the importing model instantiates an object of the submodel class, and asso-
ciates the new object with the ID of the importation state.

According to the DCharts semantics, an imported model is conceptually a part of the importing model. Once
imported, it remains until the simulation or execution finishes. All the states and transitions of the imported
model are copied to the inside of the importation state. This semantics is implemented as instantiation as
follows:

• Once an object of a submodel class is instantiated and associated with a state ID, it is not deleted until
the execution of the top-level model finishes (or, usually until the program exits).

• When the model leaves an importation state, the object associated with it is kept as its history.

• If history is recorded for an importation state, it is restored when the model goes to that state because
of the firing of a transition with the[HS] property. If the state has a history but the transition does
not have the[HS] property, the submodel is re-initialized to its default states. In the latter case, for
simplicity, the importing model instantiates a new object of the submodel class, and replaces the old
one with it. The old submodel object is recycled by the Java garbage collector.

• For each model, the configuration of submodels, including their number and the states that import
them, is fixed and can be decided statically. The arraySubmodels of a model class keeps track of all
those submodels.

8.3 Space Efficiency and Speed Efficiency

Several aspects and concerns affect the design of SVM and SCC (Table 8.1). There are different emphases
of these tools:

• SVM sacrificesspaceandspeedto achievefunctionalityandextensibility. Here, space refers to the
memory space required for a simulation. Because SVM is a simulator, speed and space usage is
not the most important. However, it must provide a suitable experimental platform for a complete
DCharts syntax and semantics. It must also be extensible so that new features can be easily added to
the simulator, as DCharts are improved over time.

• SCC sacrificesspace, modularity and functionality for speed. The purpose of code synthesis is to
produce highly efficient code that can be used in practical applications. Hence, speed becomes the
most important factor. SCC guarantees high performance for most of the implemented features, but
sacrifices the features that are not practical, or warns the users about the implemented but inefficient
ones. Modularity is not important either. When a model is transformed into Java code, it does not tend
to change any more. The code for different DCharts features is usually mixed in an uninterpretable
way to achieve better performance. For example, the model is flattened and its hierarchy information is
encoded in its transitions. The code to fire transitions and to change the state of the model is optimized
with static state properties such as default states, history and orthogonal components.

The design of SCC reflects the above concerns. The numbering of states and events reduces string compar-
ison to integer comparison. Tables are statically generated, which records the parent-children relations and
leaf states.

8.4 Example 105

Figure 8.3: The graphical representation of a sample model for SCC

However, history still requires complex computation at run-time. This is because the behavior of models
with history is statically unpredictable. For this reason, the use of history (whether it is common history or
deep history) is discouraged, if the designer intends to synthesize really efficient code for his/her model.

8.4 Example

A sample model is provided in thetest/applet/ subdirectory of SVM. It demonstrates the use of SCC
and the applet interface discussed in section .

The graphical design of the model is in Figure 8.3. This model uses the following features of DCharts:

• default states;

• orthogonal components;

• recursive importation;

• deep history; and

• inner-first transition priorities.

sample.des, the textual model description is included below:

IMPORTATION:
sample = sample.des

OPTIONS:
InnerTransitionFirst = 1

STATECHART:
S1 [DS] [HS*]
S2
S3 [DS] [CS]
S4 [DS] [CS]

8.5 Applet Interface 106

S5 [DS] [CS] [sample]
S6 [DS]

S7
S8 [DS]
S9

TRANSITION:
S: S1.S6
N: S1.S2
E: to S2

TRANSITION:
S: S1.S2
N: S7
E: to S7

TRANSITION: [HS]
S: S7.S8
N: S1
E: to S1 hs

TRANSITION:
S: S7.S8
N: S1
E: to S1

When the code (sample.java) is synthesized by SCC, the following classes are defined:

• StateMachine. The common superclass of all DCharts models.

• sample. The main class in the source file. Becausesample.des only imports itself, no other model
class is generated.

• State. Data structure of the elements in the current state list.

• History. Data structure to record the history of a single state.

• EventList. Linked list for returning the enabled event list.

• StringList. Linked list over strings.

• Hierarchy. Linked list for returning the DCharts hierarchy.

Among the above classes,sample is the public class that can be accessed by user classes or from the Java
command-line. The user may execute “java sample” to run the model.

8.5 Applet Interface

The user may provide a customized interface for the model. This is done by manually writing a Java appli-
cation, which instantiates the model class and provides input/output channels to it.

A general applet interface is written to be used with any DCharts model. It is embedded in webpages and
executed in a JVM, as shown in Figure 8.4. This interface has a similar look as the SVM simulator. The
state hierarchy is shown as a tree in the left panel. All the enabled events are listed in the “Events” list. The
“Output” box displays the output from the model. The “Command” box accepts commands from the user.
Accepted commands are limited to enabled events. Debugging is not supported. Exiting the program is not
applicable for an applet.

This applet is written in Java source filesvmapplet.java in thetest/applet/ subdirectory of the SVM
directory. It supports amodel parameter. Its value is the name of the model class to be loaded. The applet

8.6 Limitations 107

Figure 8.4: Applet interface for the Java code synthesized from a DCharts model

automatically looks for the model class and instantiates an instance of it. If an error occurs, an error message
is displayed.

8.6 Limitations

The following DCharts features are not supported. They will be studied in future research:

• Currently, actions and guards are not supported for target-languages Java and C#. If Python is chosen
as the target-language, actions and guards are optionally included in the synthesized code (if parameter
--ext is given on the SCC command-line). The behavior of this Python code with actions and guards
is the same as the simulation in SVM. If C++ is chosen instead, the actions and guards may also be
included (with the same--ext parameter). The code must then be linked to a Python run-time library.
In an execution, the binary code automatically loads the Python library, and executes the actions and
evaluates the guards. With this, the behavior of the model is also preserved.

There are many other choices for the implementation of actions and guards. One possibility is to
use languages that are independent of specific target-languages, such as action semantics [46] [47]
and Modelica [48] [49]. Action semantics is not yet standardized. There is no mature library for it
until now. Modelica is a powerful language capable of specifying non-causal equation sets. Actions
“a=b+c, d=a/2” can thus be written as “a=2*d, a-b-c=0”. The Modelica compiler symbolically
and automatically determines the unknown variables and sorts the equations in an order in which
all the equations can be solved sequentially. For example, supposea andd are unknown before the
actions are executed. Modelica changes the order of the equations and symbolically transforms them.
As a result,a is solved with “a=b+c” first, and thend is solved with “d=a/2”. Though, there is no
non-commercial Modelica solver until now, its has a bright future as both an action language and a
constraint language.

• Transition parameters are supported only for Python and C++. The--ext parameter must be explicitly
given on the command-line to invoke SCC.

• Timed transitions are supported only for Python and C++. The--ext parameter must be explicitly
given on the command-line to invoke SCC. Scheduling events in an execution requires extra threads.
This limits the portability and predictability of the model.

• Macros are statically substituted with their values by SCC. The generated code does not contain
macros any more. This also implies that macro redefinition is no longer allowed in the synthesized
code. When a model imports a submodel, it instantiates the submodel class, which cannot be modified

8.6 Limitations 108

at run-time. Because of this, the behavior of a model is fixed when code is generated.

• Distributed simulation is not supported. Ports and connections defined in a model description are
simply ignored by SCC. This feature is left as future work. It is important and meaningful for SCC
to automatically generate distributed systems, where different components (objects in the target lan-
guage) communicate via a network. If they conform to the same communication protocols as PYPVM
and SVMDNS, those components may coexist in a system with some DCharts components simulated
by SVM. This makes the system extremely flexible.

• As discussed a previous section, the implementation of history is not efficient.

9
APPLICATIONS

There have been a number of practical applications for SVM and SCC. Some of them are introduced in this
chapter.

9.1 Simple Data Types

Data types such as boolean and integer are explicitly modeled with DCharts. Though variables of those types
are internally supported, modeling them explicitly allows symbolic checking and analysis.

9.1.1 Boolean

The boolean data type is one of the simplest DCharts models. Its textual description is saved in fileBoolean.des
in theDataTypes/ subdirectory of SVM.

MACRO:
INIT = true

STATECHART:
initiate [DS]
true
false

TRANSITION:
S:initiate
T:0
N:[INIT]

TRANSITION:
S:true
E:chg
N:false

TRANSITION:
S:false
E:chg
N:true

TRANSITION:
S:true
E:get
N:true
O:[EVENT(’true’)]

TRANSITION:
S:false
E:get

9.1 Simple Data Types 110

N:false
O:[EVENT(’false’)]

ENTER:
N:true
O:[DUMP(’Current value is true.’)]

ENTER:
N:false
O:[DUMP(’Current value is false.’)]

This model simulates a boolean data cell, whose value is eithertrue or false. MacroINIT can be redefined
in the command-line to give an initial value. By default, it istrue.

Thechg event inverts the value in the cell. Theget event reveals its value to the user by dumping it out.

9.1.2 Integer Counter

An integer counteris a cell that stores an integer in it. The only operations on its value are “increase” by 1
and “decrease” by 1.

The model saved inCounter.des in theDataTypes/ subdirectory of SVM models such an integer counter.

MACRO:
INIT = 0
CURRENT = [INIT]

OPTIONS:
InnerTransitionFirst = 1

IMPORTATION:
myself = Counter.des

STATECHART:
STABLE [DS]
SMALLER [myself] [INIT = [INIT]] [CURRENT = [EVAL([CURRENT]−1)]]
LARGER [myself] [INIT = [INIT]] [CURRENT = [EVAL([CURRENT]+1)]]

TRANSITION:
S:LARGER
C:[CURRENT] >= [INIT]
E:dec
N:STABLE

TRANSITION:
S:STABLE
C:[CURRENT] <= [INIT]
E:dec
N:SMALLER

TRANSITION:
S:SMALLER
C:[CURRENT] <= [INIT]
E:inc
N:STABLE

TRANSITION:
S:STABLE

9.1 Simple Data Types 111

C:[CURRENT] >= [INIT]
E:inc
N:LARGER

TRANSITION:
S:STABLE
E:get
N:STABLE
O:[EVENT(’CURRENT’)]

ENTER:
N:STABLE
O:[DUMP(’Current value is [CURRENT].’)]

TheINIT macro can be redefined to give a different initial integer value to the cell.

In this model, recursive importation is extensively used. When the model receives theinc event after it is
initialized, a submodel with the same structure is imported into theLARGER state (because its value becomes
[INIT]+1, which is larger than [INIT]). The value in the submodel is redefined as[CURRENT]+1 in the
submodel. Since transitions in this model are inner-first, if theget event is received at this time, a transition
in the submodel instead of the importing model is triggered. The model returns the new value. Whendec is
received at this time, the model goes out of the submodel. The[CURRENT] value of the model at the higher
level is 1 less than the[CURRENT] value of its submodel in theLARGER state. Aget event received at this
time is handled by the importing model itself.

If the value of the cell becomes less than[INIT] because ofdec events, submodels are imported into its
SMALLER state.

The cell has a theoretically infinite capacity, which only depends on the available memory of the system.

9.1.3 Integer

The integer model [26] is similar to the counter. However, it allows the user to directly set its value to an
arbitrary number. It also has an upper bound and a lower bound. At any time during a simulation, any number
between the lower bound (inclusively) and the upper bound (exclusively) are accepted as an event. The value
of the cell is set accordingly.

The integer model is saved inInteger.des in theDataTypes/ subdirectory of SVM.

MACRO:
MIN = 0
MAX = 9
INIT = [MIN]
FIRST = 1

IMPORTATION:
myself = Integer.des

OPTIONS:
InnerTransitionFirst = 1

STATECHART:
STABLE [DS]
TEMP
LEFT [myself] [MIN = [EVAL([MIN]+1)]] [INIT = [INIT]] [FIRST = [FIRST]] [MAX = [MAX]]
RIGHT [myself] [MIN = [EVAL([MIN]+1)]] [INIT = [INIT]] [FIRST = 0] [MAX = [MAX]]

TRANSITION:

9.2 The Clock Component for Virtual-Time Simulation 112

S:STABLE
T:0
C:[MIN] <= [MAX]
N:LEFT

TRANSITION:
S:STABLE
T:0
C:[MIN] > [MAX] and [FIRST]==1
N:TEMP
O:[EVENT(’[INIT]’)]

When the bottom is reached and it is initiating,
sent an event of the [INIT] character

TRANSITION:
S:LEFT
E:[MIN]
N:RIGHT
O:[DUMP(’Current value is [MIN].’)]

TRANSITION:
S:RIGHT
E:[MIN]
N:RIGHT
O:[DUMP(’Current value is [MIN].’)]

TRANSITION:
S:RIGHT
E:get
N:RIGHT
O:[EVENT(’[MIN]’)]

By default, the lower bound ([MIN]) of the cell is 0, and the upper bound ([MAX]) is 10. The idea is to struc-
ture all the possibilities in a bi-tree. Valid states in a model execution includeLEFT.LEFT.RIGHT...STABLE
and RIGHT.LEFT.LEFT.RIGHT.LEFT.RIGHT...STABLE. (There are 11 levels in total, with the last one
namedSTABLE.) The rightmostRIGHT represents the current value. Suppose the name components in “...”
are allLEFT, then the first state represents integer 2, and the second represents 5.

When initiated, the model nests deep enough so that the transitions at the first level are duplicated (with only
the event names changed) 10 times. When the innermostSTABLE state is reached, events of all those states
are accepted. For theget event to return the current value from the deepestRIGHT state, the transitions in
this model must be inner-first ordered.

Having nested deep enough ([MIN]>[MAX]) and the model is being initialized ([FIRST]=1), the state changes
to TEMP – a dummy state, and at the same time event[INIT] is broadcast. The cell immediately changes to
the initial value. Whenever the firstRIGHT state is entered, the model is no longer being initialized and is
able to accept events from the user (possibly input from the SVM graphical interface). The[FIRST] is then
set to 0.

When an event between 0 (the[MIN] value) and 9 (the[MAX] value minus 1) is received, the state in the
appropriate level changes toRIGHT. If it is already inRIGHT, a self-loop is triggered. The self-loop eliminates
theRIGHT states at all the lower levels, so it becomes the deepestRIGHT state.

9.2 The Clock Component for Virtual-Time Simulation

SVM only supports real-time execution. However, virtual-time simulation is required sometimes. The clock
component makes it possible to simulate DCharts models in an as-fast-as-possible way.

9.2 The Clock Component for Virtual-Time Simulation 113

The textual description of the clock component is included below:

Clock component for tight coupling

MACRO:
CHECKINTERVAL = 0
STARTTIME = 0

INITIALIZER:
sched=[]
global time=[STARTTIME]
def sched cmp(a, b):
return cmp(a[1], b[1])

STATECHART:
NORMAL [DS]

TRANSITION:
schedule event
param 1: scheduler ID
param 2: schedule time
S: NORMAL
N: NORMAL
E: schedule
O: sched.append([PARAMS])

TRANSITION:
idle checker
notifies the earliest scheduled event
S: NORMAL
N: NORMAL
T: [CHECKINTERVAL] [RTT]
C: len(eventhandler.event list)==1 and len(sched)>0
O: sched.sort(sched cmp)

s=sched[0]
del sched[0]
global time=s[1]
[EVENT("notify", s)]
param 1: scheduler ID
param 2: schedule time

TRANSITION:
time retrieval
S: NORMAL
N: NORMAL
E: gettime
O: [EVENT("timereturn", [global time])

param 1: current global time

The clock component uses variables to explicitly model the scheduler of an as-fast-as-possible simulation.
(This clock component is not functional in distributed simulation. Timewarp [31] technology is needed for
as-fast-as-possible distributed simulation.) To use this component, the designer designs a real-time model
as usual, but imports the clock as a top-level orthogonal component. Some transitions in the model need to
be modified to interact with the scheduler. After this, the real-time model is converted into a virtual-time
model. In a virtual-time model, there must be exactly one clock component.

9.2 The Clock Component for Virtual-Time Simulation 114

In a real-time simulation, a model schedules transitions simply with thea f ter special event. The transi-
tions with this event are triggered after the specified number of seconds. In as-fast-as-possible simulation,
scheduling becomes different. The simulator does not really wait. When no event is scheduled at the current
time, the virtual time counter is immediately increased to be the next scheduled time, and the transitions
scheduled at that time are fired without delay.

When the clock component is used, the model schedules transitions with theschedule event. This event is
broadcast by other parts of the model, and it is handled by the clock component. Two parameters must be
sent with this event:

1. The first parameter is an arbitrary ID. This ID can be any Python variable. When the virtual time
becomes equal to the scheduled time, the clock broadcasts a notifier with this ID as a parameter.
Transitions in the model that react to the notifier test this ID in their guards to determine whether or
not the event is scheduled by themselves.

2. The second parameter is a float number of the difference between the scheduled time and the current
time. It must be positive or 0. If its value is 0, the notifier will be received before the clock component
advances the time counter.

For example, if an orthogonal component in the model has ID “o1” (arbitrarily determined by the designer),
and it schedules a transition after 5.3 seconds, it may send theschedule event with action “[EVENT("schedule",
["o1", 5.3])]”, which is then handled and recorded by the clock component.

The clock component increases the virtual time automatically when no more events are scheduled at the
current time. At that time, all the orthogonal components are considered idle because they are waiting for
notifiers from the clock. This condition is expressed with the following guard:

len(eventhandler.event list)==1 and len(sched)>0

Here,eventhandler.event list is the internal list of scheduled events in SVM. If its length is equal to 1,
no event other than the one that the clock component itself schedules is in the event list. This means all other
orthogonal components are idle. This guard also checks whether there is any event scheduled insched (the
list of schedule requests maintained by the clock component).

When all the other orthogonal components are idle, the clock component increases the time counter to the
smallest scheduled time. It then broadcasts notifiers. A notifier is anotify event with the same parameters
as theschedule event that schedules it. If multiple events are scheduled at exactly the same time, the
clock component broadcasts multiple notifiers with different parameters. The transitions in other orthogonal
components reacting to thenotify event use guards to test whether they are the ones to be notified. To
continue with the last example, “[PARAMS][0]="o1"” is the guard of the transition that reacts to thenotify
event.

In real-time simulation, the current time can be retrieved by calling thetime function in thetime Python
library. This function returns the current time according to the hardware clock. However, as-fast-as-possible
simulation uses a different concept of time. The current time is maintained in a time counter. To retrieve the
current time from the clock component, agettime event should be sent without parameter. When the clock
component receives this event, it immediately replies with atimereturn event. The current time (a float
number) is the only parameter with the event. The receiver retrieves the current time with “[PARAMS][0]”.

The following are several rules for the current time broadcast by the clock component:

• It is impossible to request and retrieve the current time in the output of a transition. At least 2 transi-
tions are required for this purpose: one sends thegettime event, and the other reacts to the immediate
timereturn event. (As a trick, the model may directly access theglobal time variable in the clock
component, since all the variables in a model, including those of the clock component, share the same
name space. However, this method is not modular.)

9.3 An MP3 Player 115

Figure 9.1: The MP3 player

• Usually, there is no need to retrieve the current time in a scheduled transition, because the current
time is always equal to the time when it is scheduled, received as the second parameter of thenotify
event.

• Using the clock component and thea f ter special event (witht larger than 0) in combination produces
unpredictable result and is strongly discouraged.

• Multiple clock components in the same model conflict with each other. For as-fast-as-possible simu-
lation, there must be exactly one clock component.

9.3 An MP3 Player

An MP3 player is developed according to the division of the 3 parts of a system in Figure 5.8. It is included
in theMP3Player/ subdirectory of SVM.

The model consists of the following files:

• MP3Player.des. The main DCharts model of the control logic between the user interface and the
hardware driver.

• MP3PlayerGUI.py. The model-specific user interface. It is a Python library, where classes and func-
tions concerning the graphical interface are defined. The user interface is instantiated under the
INTERACTOR descriptor in the main model. Transitions in the main model control the interface by
means of the functions defined in the library.

• MP3Library.py. The hardware driver library. In this example, the hardware is the PyGame (http:
//www.pygame.org/) MP3 library that provides playback functions. The hardware driver accommo-
dates this conceptual hardware to the main model. Because the hardware is not event-based, the driver
starts an extra thread to periodically test the status of the hardware, and generate events to be handled
by the main model. The main model also controls the hardware by means of the functions provided
by the driver.

• FilesFwd.gif, KsCD.gif, MP3GUI.gif, PlayPause.gif, Rew.gif andStop.gif are the images to
be displayed on the buttons in the graphical interface.

TheFILE macro in the main model specifies the name of the MP3 file to be played. By default, it is empty. It
must be redefined by the user on the command-line. The following statement under theINITIALIZER tests
the validity of its value. The simulation halts if no file name is given:

if ”[FILE]”==””:
print ’usage: svm MP3Player.des ”FILE=[.mp3]”’
exit(1)

Figure 9.1 shows the graphical interface of the MP3 player. It is initialized by the following statements under
theINTERACTOR descriptor:

from MP3PlayerGUI import MP3PlayerGUI # import the GUI class MP3PlayerGUI
root = Tk()

http://www.pygame.org/
http://www.pygame.org/

9.4 Simulation of Software Process 116

Round Task Hours

1

developing code 12
developing tests 8
running tests 1
analyzing problems 3

2

developing code 6
developing tests 4
running tests 1
analyzing problems 2

3
developing code 3
running tests 1
– passed –

Table 9.1: Rounds and tasks in a software development process

root.title(“MP3 player”)
gui = MP3PlayerGUI(root, eventhandler) # instantiate the GUI with the global eventhandler
eventhandler.start() # start the simulation of the model
root.mainloop() # loop infinitely to receive GUI events, until the window is closed

Because SCC supports actions and guards for the Python and C++ target languages, the user may synthesize
code for this MP3 player in those languages. This produces a stand-alone application, which does not de-
pend on the Python environment. TheFILE macro must be explicitly redefined on the SCC command-line,
since it is not possible to redefine it in the synthesized code. The user may use the following command to
generateMP3Player.py, which encodes the complete behavior of the MP3 player (assuming that MP3 file
music.mp3 exists):

scc -lpython --ext MP3Player.des "FILE=music.mp3"

The command to synthesize code in C++ is similar:

scc -lcpp --ext MP3Player.des "FILE=music.mp3"

Note that the user need not compile Python source, as Python is an interpreted language.MP3Player.py can
be directly executed with Python and it playsmusic.mp3. However, the C++ source needs to be compiled
and linked with the Python shared library. The need and the command for this compilation is printed to the
console when SCC synthesizes the code.

CDPlayer is another meaningful model included in the SVM distribution. It is in theCDPlayer/ subdirec-
tory. It models a CD player similar to the MP3 player. It is more complex because debugging and snapshot-
ting are supported.

9.4 Simulation of Software Process

Sadaf Mustafiz has built a software process model [50] for SVM. The development process is modeled as
several tasks, each of which is “an entity (a real object that exists and has an extended lifetime)” (Sadaf
Mustafiz).

To model those tasks with DCharts, each of them corresponds to an active state. For example, a software
development process consists of three rounds, as shown in Table 9.1. In the first round, the following tasks
are scheduled sequentially: developing code, developing tests, running tests and analyzing problems. The
distribution of hours among them is: developing code takes 12 hours, developing tests takes 8 hours, running
tests takes 1 hour, and analyzing problems takes 3 hours.

Because problems are discovered in round 1 during the running tests task, another round must be added to
fix those problems. Before round 1 finishes, the task of analyzing problems is undertaken to analyze the
problems that are to be fixed and the cost to fix them in the next round.

9.5 Simulation of TCP 117

Round 2 is based on the results of round 1. It strives to fix the problems discovered in round 1, as well as to
improve the functionality of the system. The development becomes faster: developing code takes 6 hours,
developing tests takes 4 hours, running tests takes 1 hour, and analyzing problems takes 2 hours. Because
there are still problems found in the running tests task, round 3 is required, which only aims at fixing those
remaining problems.

In round 3, the problems are fixed, and all the tests are passed. The development process successfully fin-
ishes.

Sadaf Mustafiz has modeled this process with DCharts. The model is simulated with SVM. The output trace
is written in text files. The plots of the output trace is shown in Figure 9.2.

More information about the above software process model can be found at the Modeling and Simulation
Based Design course homepage:

http://moncs.cs.mcgill.ca/people/hv/teaching/COMP762B2003/

9.5 Simulation of TCP

Shah Asaduzzaman and Zaki Hasnain Patel have built a TCP model for SVM. This model simulates com-
munication via the TCP network protocol.

The communication process of the system is shown in Figure 9.3. There are 6 parts in the system:

• The client application generates data with a data generator. The data enter a buffer (FIFO queue). They
are sent by the application controller one by one. The client application also listens to the data coming
from the TCP driver.

• The TCP driver on the client side accepts data packets from the application controller. It sends mes-
sages via a network. It has no buffer. The messages must be sent immediately. It also listens to the
incoming data channel.

• The data channel transfers data packets from the client side to the server side.

• The TCP driver on the server side accepts data from the data channel from the client side to the server
side. It sends control information to the outgoing data channel.

• The server application computes with the received data packets. It generates control packets. Because
the control packets are generated one at a time, buffer is not necessary for the server. The generated
control packets are sent to the TCP driver on the server side.

• The data channel transfers control packets from the server side to the client side. Those packets are
received by the client TCP driver.

Each part of the system is modeled with a DCharts orthogonal component. The whole system is a combina-
tion of those orthogonal components by means of importation (Figure 9.4).

The 6 parts of the system is modeled with submodels imported into the total system:

• The client application is modeled in submodelClientApp (Figure 9.5).

• The TCP driver is modeled in submodelTCPDriver. It is for both the client side and the server
side, because the API of the TCP protocol on both sides is exactly the same. TheActiveClose,
PassiveClose and Established states of the submodel are abstracted. Figures 9.7, 9.8 and 9.9
show the internal structure of those states, respectively.

• The data channels are modeled in submodelChannel (Figure 9.10). Both channels in the system are
implemented with the same submodel.

• The server application is modeled in submodelServerApp (Figure 9.11).

The channel in Figure 9.10 uses thea f terspecial event to simulate delay in the network and the time interval
between two subsequent inquiries to the buffer. As a result, this model is a real-time model. To convert it

http://moncs.cs.mcgill.ca/people/hv/teaching/COMP762B2003/

9.5 Simulation of TCP 118

Figure 9.2: Traces of the software process model simulation

9.5 Simulation of TCP 119

Figure 9.3: The TCP system

Figure 9.4: Overview of the TCP simulator

9.5 Simulation of TCP 120

Figure 9.5: The submodel of the client application

9.5 Simulation of TCP 121

Figure 9.6: The submodel of the TCP driver (for both client side and server side)

9.5 Simulation of TCP 122

Figure 9.7: TheActiveClose state of the TCP driver

Figure 9.8: ThePassiveClose state of the TCP driver

9.5 Simulation of TCP 123

Figure 9.9: TheEstablished state of the TCP driver

Figure 9.10: The submodel of the communication channel

9.5 Simulation of TCP 124

Figure 9.11: The submodel of the server application

Figure 9.12: The virtual-time version of the communication channel

9.5 Simulation of TCP 125

Figure 9.13: The plot of the simulation result of the TCP model

into a virtual-time model, Shah Asaduzzaman and Zaki Hasnain Patel have provided another version of
the channel submodelChannel2 (Figure 9.12). The clock component is imported as a top-level orthogonal
component in the system. The new data channel schedules events by sending theSchedule event to the
clock component. When the virtual time becomes equal to the scheduled time, the clock component sends
back aSchedulerNotify event. (Theschedule event and thenotify event discussed in section 9.2 are
renamed toSchedule andSchedulerNotify, respectively.)

The results of the simulation are gathered and plotted in Figure 9.13. For more information about the TCP
model, the readers are referred to Shah Asaduzzaman’s on-line report for the Modeling and Simulation
course at McGill University:

http://www.cs.mcgill.ca/˜asad/archive/project-522/

http://www.cs.mcgill.ca/~asad/archive/project-522/

10
CONCLUSION

DCharts are a new formalism that combines the benefits of statecharts and DEVS for the design of complex
physical systems and software systems. It has the following advantages:

• A visual syntax is designed for the DCharts formalism. There is graphical representation for every
entity or feature of DCharts.

• DCharts are powerful. They support statecharts-like hierarchical model design with variables. Vari-
ables help keep infinite and innumerable states. Recursive DCharts models are much more expressive
than statecharts and DEVS in that they are able to specify infinite states and transitions.

• DCharts are modular. Importation is also known astight coupling. Submodels are copied to the inside
of a state of the importing model. The behavior of the submodels may not be modified by the importing
model, except that macros can be redefined as parameters.

Connections between multiple models via ports are also known asloose coupling. In that case, a model
may affect other models only by means of messages sent via the established connections.

• DCharts are independent of simulation strategies. Though its definition only addresses real-time sim-
ulation, it is shown that virtual-time simulation can be easily accomplished by means of a clock
component.

• DCharts are highly practical. SVM is a simulator for DCharts, which supports a complete semantics
of DCharts 1.0. Many of the algorithms implemented in SVM can be reused by other simulators or
applications. SVM itself is reusable (for example, by AToM3 and SCC).

SCC is a code synthesizer for DCharts capable of generating source code in multiple target languages.
The synthesized code is efficient and suitable for practical purposes.

• Besides these, non-recursive DCharts can be transformed into statecharts with variables or DEVS
models. Statecharts and DEVS models can also be transformed into DCharts. This property is useful
for model simulation and model checking.

Three types of syntaxes are discussed: abstract syntax, graphical/visual syntax and textual syntax. The math-
ematical syntax provides a means by which DCharts models can be formally specified. The graphical syntax
represents DCharts models visually, which is much more easily understood by human beings. The textual
syntax is accepted and processed by computer programs, while at the same time designers can still easily
write DCharts models with the textual syntax. A few extensions to the basic syntax are proposed by the
textual syntax. Those extensions allow designers to specify their models with more flexibility. They are
supported by SVM and SCC.

The future work on DCharts includes:

• Do more research on model checking and verification of DCharts. There are two possible approaches:

• Build tools that directly check DCharts models, or verify them by means of simulations.

• Transform DCharts models into models in other well-studied formalisms, and check/verify the
new models with the tools available for those formalisms.

CONCLUSION 127

• The performance of some DCharts features (such as history) in the code generated by SCC must
be improved. Above this, an important hurdle to cross is the need for a target-language-independent
action language.

• Extend the concept of ports and connections to tight coupling, so that an importing model may only
send events to its submodels via ports and connections established between them. This mechanism
further protects the internal behavior of submodels. It makes DCharts more modular.

• Implement the support of more target languages in SCC. Users will be able to integrate the code gen-
erated by SCC with the code generated by other code generators for other formalisms. This integration
allows the users to model a system with different formalisms and tools, and finally combine different
parts to get a complete system.

11
ACKNOWLEDGMENT

I have given beginning to the research on modeling and simulation with DCharts. The completion of this
formalism requires and will require the collaboration and support from many researchers friends. At the very
end of this thesis work, I would like to especially and sincerely thank these people:

• Professor Hans Vangheluwe of the MSDL (Modeling, Simulation and Design Lab) of McGill Uni-
versity, who has earnestly supervised my research from the very beginning, and who is still ardently
supporting me with his learning, research equipments and morality;

• My parents and Ms. Wanmei Huang, my girlfriend, who have been supporting me by understanding
the importance of my work and not asking for more time from me;

• Mr. Spencer Borland, whose research results, including the theory of transformation from statecharts
to DEVS and the statecharts plugin for AToM3 (which has been enhanced by me to become a DCharts
plugin for AToM3), have been the basis for my research;

• Professor J̈org Kienzle in the SEL (Software Engineering Lab) of McGill University, who always
jokes with me and teaches me with his unique humorous tone;

• Ms. Sadaf Mustafiz, who has built the software process model for SVM, one of the most cited appli-
cations of my research result;

• Mr. Shah Asaduzzaman and Mr. Zaki Hasnain Patel, who have built the TCP model for SVM, another
one of the most cited applications of my research result; and

• any one else who has unselfishly supported my research.

Index

ALGORITHMS
Fire a Transition, 27
Fire a Transition (Alternate), 28
Flatten Importation, 29
Model Compound Statements with Simple State-

ments, 70
Order Transitions by Priorities, 65
Rule Checker, 95
Simulate Synchronous Sending with Asynchronous

Sending, 31

DESCRIPTORS
BEFORESNAPSHOT, 61
OPTIONS
InnerTransitionFirst, 60

AFTERSNAPSHOT, 61
COMPONENT, 52
id, 52
name, 52
type, 52

CONNECTIONS, 54
DESCRIPTION, 62
ENTER, 51
C, 51
N, 51
O, 51

EXIT, 51
S, 51
C, 51
O, 51

FINALIZER, 60
IMPORTATION, 51
INITIALIZER, 60
INTERACTOR, 60
MACRO, 54
OPTIONS, 59
ModelName, 59
Harel, 59

PORT, 52
buffer, 52
name, 52
type, 52

RESTORE, 61
SNAPSHOT, 61
STATECHART, 45
[CS], 46
[DS], 46

[FS], 46
[HS*], 46
[HS], 46
[ITF], 46
[OTF], 46
[RTO], 46
Importation Parameters, 58

TRANSITION, 48
C, 48
E, 48
N, 48
O, 48
S, 48
T, 48
[HS], 49
Priority Numbers, 49

MATHEMATICAL SYMBOLS
Importation∆

Overview, 21
PortsP

TypePT, 21
MATHEMATICAL SYMBOLS

Children FunctionC, 21
ConnectionsL, 25

Local PortPN1, 26
Overview, 21
Server ModelM, 26
Server PortPN2, 26

Importation∆, 25
PortsP, 21

NamePN, 21
State SetS, 21

Default StateDS, 22
Enter ActionsEN, 22
Exit ActionsEX, 22
GUID SN, 22
HistoryHS, 22
Orthogonal ComponentCS, 22
Overview, 18
Transition PriorityTP, 22

TransitionT, 22
Destination StateDES, 23
EventE, 22
GuardG, 22
Output Actionsλ, 23
Overview, 20

INDEX 130

Parametersγ, 23
Priority Prio, 23
Source StateSRC, 22
Transition to HistoryHST , 23

VariablesV, 23
Overview, 21

Bibliography

[1] Juan de Lara and Hans Vangheluwe. Atom3: A tool for multi-formalism and meta-modelling. In
European Joint Conference on Theory And Practice of Software (ETAPS), Fundamental Approaches
to Software Engineering (FASE), pages 174–188, April 2002. Grenoble, France.

[2] Juan de Lara and Hans Vangheluwe. Using atom3 as a meta-case tool. In4th International Conference
on Enterprise Information Systems (ICEIS), pages 642–649, 2002. Ciudad Real, Spain.

[3] Pieter J. Mosterman and Hans Vangheluwe. Computer automated multi-paradigm modeling.ACM
Transactions on Modeling and Computer Simulation, 12(4):1–7, 2002. Special Issue Guest Editorial.

[4] David Harel. Statecharts: A visual formalism for complex systems.Science of Computer Program-
ming, 8(3):231–274, June 1987.

[5] David Harel and Amnon Naamad. The STATEMATE semantics of statecharts.ACM Transactions on
Software Engineering and Methodology, 5(4):293–333, 1996.

[6] Jim Rumbaugh, Ivar Jacobson, and Grady Booch.The Unified Modeling Language Reference Manual.
Addison-Wesley, 1998.

[7] Bernard P. Zeigler.Multifacetted modelling and discrete event simulation. Academic Press Profes-
sional, Inc., 1984.

[8] Bernard P. Zeigler.Theory of Modelling and Simulation. Krieger Publishing Co., Inc., 1984.

[9] Spencer Borland. Transforming statechart models to DEVS. Master’s thesis, School of Computer
Science, McGill University, Montŕeal, Canada, August 2003.

[10] A. Geist, A. Beguelin, Jack Dongarra, W. Jiang, R. Manchek, and V. Sunderam.PVM Parallel Virtual
Machine, A User’s Guide and Tutorial for Networked Parallel Computing. MIT Press, Cambridge,
Mass., 1994.

[11] Jean-Śebastien Bolduc and Hans Vangheluwe. The modelling and simulation package PythonDEVS
for classical hierarchical DEVS. Technical report, MSDL, McGill University, June 2001. technical
report MSDL-TR-2001-01.

[12] Ernesto Posse and Bolduc Jean-Sébastien. Generation of DEVS simulators by graph-transformation.
In Summer Computer Simulation Conference (Student Workshop), pages S139–S146. Society for Com-
puter Simulation International (SCS), July 2003. Montréal, Canada.

[13] Spencer Borland and Hans Vangheluwe. Transforming statecharts to DEVS. InSummer Computer
Simulation Conference (Student Workshop), pages S154–S159. Society for Computer Simulation In-
ternational (SCS), July 2003. Montréal, Canada.

[14] Alison Stewart. Modelling and simulation based design of GUI behaviour. Technical report, MSDL,
McGill University, December 2003.http://msdl.cs.mcgill.ca/people/astewa5/report.dtml.

[15] C. Hylands, E. A. Lee, and et al. Heterogeneous concurrent modeling and design in java (volume 1:
Introduction to ptolemy ii). Technical report, University of California, Berkeley, CA USA 94720, July
2003. Technical Memorandum UCB/ERL M03/27.

[16] C. Hylands, E. A. Lee, and et al. Heterogeneous concurrent modeling and design in java (volume
2: Ptolemy ii software architecture). Technical report, University of California, Berkeley, CA USA
94720, July 2003. Technical Memorandum UCB/ERL M03/27.

http://msdl.cs.mcgill.ca/people/astewa5/report.dtml

BIBLIOGRAPHY 132

[17] C. Hylands, E. A. Lee, and et al. Heterogeneous concurrent modeling and design in java (volume 3:
Ptolemy ii domains). Technical report, University of California, Berkeley, CA USA 94720, July 2003.
Technical Memorandum UCB/ERL M03/27.

[18] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching time temporal
logic. In Logic of Programs: Workshop, Yorktown Heights, volume 131. Springer-Verlag, May 1981.

[19] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems
using temporal logic specifications.ACM Transactions on Programming Languages and Systems,
8(2):244–263, 1986.

[20] Joanne M. Atlee and John Gannon. State-based model checking of event-driven systems requirements.
IEEE Transactions on Software Engineering, 19(1):24–40, January 1993.

[21] Jianwei Niu, Joanne M. Atlee, and Nancy A. Day. Understanding and comparing model-based specifi-
cation notations. InIEEE International Requirements Engineering Conference (RE 2003), September
2003.

[22] Jianwei Niu, Joanne M. Atlee, and Nancy A. Day. Composable semantics for model-based notations.
In Proceedings of the 10th ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE 2002), 2002.

[23] Jianwei Niu, Joanne M. Atlee, and Nancy A. Day. Template semantics for model-based notations.
IEEE Transactions on Software Engineering, pages 866–882, October 2002.

[24] Ivan Porres. Model refactorings as rule-based update transformations. InProceedings of the
<<UML>> 2003 Conference. LNCS 2863, Springer, October 2003. San Francisco, California, USA.

[25] Ivan Porres. A toolkit for model manipulation.Journal on Software and System Modeling, 2, 2003.

[26] Thomas Huining Feng. An extended semantics for a Statechart Virtual Machine. In A. Bruzzone and
Mhamed Itmi, editors,Summer Computer Simulation Conference. Student Workshop, pages S147–
S166. The Society for Computer Modelling and Simulation, July 2003. Montréal, Canada.

[27] Dániel Varŕo. A formal semantics of UML Statecharts by model transition systems. In Andrea Corra-
dini, Hartmut Ehrig, Hans-J̈org Kreowski, and Grzegorz Rozenberg, editors,Proc. ICGT 2002: 1st In-
ternational Conference on Graph Transformation, volume 2505 ofLNCS, pages 378–392, Barcelona,
Spain, October 2002. Springer-Verlag.

[28] Foldoc (free on-line dictionary of computing), November 1997.http://wombat.doc.ic.ac.uk/
foldoc/.

[29] Webopedia, 2004.http://www.pcwebopedia.com/.

[30] Msn encarta (online encyclopedia, dictionary, atlas, and homework), 2004.http://encarta.msn.
com/.

[31] Richard M. Fujimoto.Parallel and Distributed Simulation Systems. Wiley-Interscience, 2000.

[32] Stanley B. Lippman and Josée Lajoie.C++ Primer. EPUBCN.COM, 1998.

[33] Juan de Lara, Hans Vangheluwe, and Manuel Alfonseca. Meta-modelling and graph grammars for
multi-paradigm modelling in atom3. Software and Systems Modeling (SoSyM), 2003.

[34] David M. Beazley.Python Essential Reference (2nd Edition). New Riders Publishing, 2001.

[35] Mark Lutz. Programming Python. nh. O’Reilly & Associates, Inc., 1996.

http://wombat.doc.ic.ac.uk/foldoc/
http://wombat.doc.ic.ac.uk/foldoc/
http://www.pcwebopedia.com/
http://encarta.msn.com/
http://encarta.msn.com/

BIBLIOGRAPHY 133

[36] Mark Lutz and David Ascher.Learning Python. nh. O’Reilly & Associates, Inc., 1999.

[37] Fredirk Lundh.The Standard Python Library. PythonWare, 2000.

[38] Erich Gamma, Richard Helm, and John Vlissides.Design Patterns – Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[39] Thomas Huining Feng. SVM and SCC tutorial, March 2004.http://msdl.cs.mcgill.ca/people/
tfeng/svmsccdoc/.

[40] Thomas Huining Feng and Hans Vangheluwe. Case study: Consistency problems in a UML model of a
chat room. InSixth International Conference on the Unified Modelling Language (UML 2003), Work-
shop on Consistency Problems in UML-based Software Development II, October 2003. San Francisco,
USA. http://msdl.cs.mcgill.ca/people/tfeng/docs/con03.pdf.

[41] Python 2.2.3 documentation, May 2003.http://www.python.org/doc/2.2.3/.

[42] Juan de Lara and Hans Vangheluwe. Computer aided multi-paradigm modelling to process petri-nets
and statecharts. InInternational Conference on Graph Transformations (ICGT), volume 2505, pages
239–253. Springer-Verlag, October 2002. Barcelona, Spain.

[43] Juan de Lara Jaramillo, Hans Vangheluwe, and Manuel Alfonseca Moreno. Using meta-modelling
and graph grammars to create modelling environments. In Paolo Bottoni and Mark Minas, editors,
Electronic Notes in Theoretical Computer Science, volume 72, February 2003.

[44] Juan de Lara and Hans Vangheluwe. Using meta-modelling and graph grammars to process gpss
models. In Hermann Meuth, editor,16th European Simulation Multi-conference (ESM), pages 100–
107, June 2002. Darmstadt, Germany.

[45] Ernesto Posse, Juan de Lara, and Hans Vangheluw. Processing causal block diagrams with graph-
grammars in atom3. In European Joint Conference on Theory and Practice of Software (ETAPS),
Workshop on Applied Graph Transformation (AGT), pages 23–34, April 2002. Grenoble, France.

[46] Peter D. Mosses. Theory and practice of action semantics”. InMFCS ’96, Proc. 21st Int. Symp. on
Mathematical Foundations of Computer Science (Cracow, Poland, Sept. 1996), volume 1113, pages
37–61. Springer-Verlag, 1996.

[47] Peter D. Mosses. Action semantics and asf+sdf. InElectronic Notes in Theoretical Computer Science,
volume 65. Elsevier, 2002.

[48] Peter Fritzson and Vadim Engelson. Modelica — A unified object-oriented language for system mod-
eling and simulation.Lecture Notes in Computer Science, 1445, 1998.

[49] Hilding Elmqvist et. al. Modelica – A unified object-oriented language for physical systems modeling:
Tutorial and rationale. Technical report, The Modelica Design Group, December 1999.http://www.
modelica.org/.

[50] Watts S. Humphrey and Marc I. Kellner. Software process modeling: principles of entity process
models. InProceedings of the 11th international conference on Software engineering, pages 331–342.
ACM Press, 1989.

http://msdl.cs.mcgill.ca/people/tfeng/svmsccdoc/
http://msdl.cs.mcgill.ca/people/tfeng/svmsccdoc/
http://msdl.cs.mcgill.ca/people/tfeng/docs/con03.pdf
http://www.python.org/doc/2.2.3/
http://www.modelica.org/
http://www.modelica.org/

	INTRODUCTION
	Modeling and Simulation
	Models and Meta-models
	The Process of Modeling and Simulation Based Design
	Modeling and Meta-modeling in AToM3

	The Statecharts Formalism
	Finite State Automata
	Statecharts Extensions to FSA

	The DEVS Formalism
	Atomic DEVS
	Coupled DEVS

	Research Focus
	Formal Specification
	Model Transformation
	Simulation
	Model Checking and Verification
	Code Synthesis

	Related Work

	ABSTRACT SYNTAX AND SEMANTICS OF DCHARTS
	The DCharts Meta-model
	Overview of Abstract Syntax and Semantics
	Overview
	State Set S
	Transitions T
	Variables
	Transition Priorities
	Importation
	Ports and Connections
	Actions and Guards

	Algorithms
	Firing a Transition
	Alternate Algorithm for Firing a Transition
	Importation

	Closure under Importation
	Asynchronous Communication and Synchronous Communication

	Timing
	The Real-time Concept
	Virtual-time Simulation
	Special Event: after

	GRAPHICAL SYNTAX AND TEXTUAL SYNTAX
	Graphical Syntax
	State Hierarchy
	Naming Convention
	Orthogonal Components
	Default States and Final States
	Transitions
	History
	Enter/Exit Actions
	Importation
	Ports
	Connections

	Textual Syntax
	Descriptors
	State Hierarchy
	State Properties
	Orthogonal Components
	Transitions
	Priority Numbers
	History
	Enter/Exit Actions
	Importation
	Ports
	Connections

	Extended Syntax
	Macros
	Once Timed Transition
	Global Options
	Initializer, Finalizer, and Interactor
	Snapshot
	Model Description
	Comments

	MAPPINGS
	Mapping from Non-recursive DCharts to Statecharts with Variables
	Mapping from Non-recursive DCharts to DEVS
	Mapping from Statecharts to DCharts
	Mapping from DEVS to DCharts
	Mapping from Programming Language Control Flow Constructs to DCharts
	Statements
	Compound Statements
	Conditional Statements
	Loops
	Break and Continue
	Tricks of Actions Specific to SVM

	Conclusion

	SVM -- A DCHARTS SIMULATOR
	An Introduction to SVM
	The Design of SVM
	Default Interfaces
	Default Graphical Interface
	Default Textual Interface

	Modeling and Simulating DCharts in AToM3
	Distributed Simulation
	The SVMDNS daemon
	Example

	Debugging

	MODEL VERIFICATION
	Simulation Trace
	Extended Regular Expressions
	Rule Checker
	Limitation and Future Work

	SCC -- A DCHARTS COMPILER
	Java Code Design
	Class Hierarchy
	Numbering
	Members of Model Classes
	Default Textual Interface

	Transformation Strategies
	State Hierarchy
	State Properties
	History
	Event Handling
	Importation

	Space Efficiency and Speed Efficiency
	Example
	Applet Interface
	Limitations

	APPLICATIONS
	Simple Data Types
	Boolean
	Integer Counter
	Integer

	The Clock Component for Virtual-Time Simulation
	An MP3 Player
	Simulation of Software Process
	Simulation of TCP

	CONCLUSION
	ACKNOWLEDGMENT

