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Abstract

In recent years, Convolutional Neural Networks (CNNs) have shown remarkable
performance in many computer vision tasks such as object recognition and de-
tection. However, complex training issues, such as “catastrophic forgetting” and
hyper-parameter tuning, make incremental learning in CNNs a difficult challenge.
In this paper, we propose a hierarchical deep neural network, with CNNs at multiple
levels, and a corresponding training method for incremental learning. The network
grows in a tree-like manner to accommodate the new classes of data without losing
the ability to identify the previously trained classes. The proposed network was
tested on CIFAR-100 and reported 60.46% accuracy and 20% reduction in training
effort as compared to retraining final layers of a deep network. The network orga-
nizes the incoming classes of data into feature-driven super-classes and improves
upon existing hierarchical CNN models by adding the capability of self-growth.

1 Introduction

In recent years Deep Convolutional Neural Networks (DCNNs) have emerged as the leading architec-
ture for large scale image classification [19]. In 2012, AlexNet [13] won the ImageNet Large Scale
Visual Recognition Challenge (ISLVRC) by implementing a Deep-CNN and catapulted DCNNs
into the spotlight. Since then, they have dominated ISLVRC and have performed extremely well on
popular image datasets such as MNIST [14, 30], CIFAR-10/100 [12], and ImageNet [21].

Today, with increased access to large amount of labeled data (eg. ImageNet contains 1.2 million
images with 1000 categories), supervised learning has become the leading paradigm in training
DCNNs for image recognition. Traditionally, a DCNN is trained on a dataset containing large number
of labeled images. The network learns to extract relevant features and classify these images. This
trained model is then used on real world unlabeled images to classify them. In such training, all the
training data is presented to the network during the same training process. However, in real world,
we hardly have all the information at once. Instead, data is gathered incrementally over time. We
need systems that can learn new tasks as new information is available. In this work, we try to address
the challenge of incremental learning in the domain of image recognition using deep networks.

A DCNN embeds feature extraction and classification in one coherent architecture within the same
model. Modifying one part of the parameter space immediately affects the model globally. Another
problem of incrementally training a DCNN is the issue of “catastrophic forgetting”[6]. When new
data is fed into a DCNN, it results in the destruction of existing features learned from earlier data.
This mandates using previous data when retraining on new data.

To avoid catastrophic forgetting, and to leverage the features learned in previous task, this work
proposes a network made of CNNs that grows hierarchically as new classes are introduced. The
network adds the new classes like new leaves to the hierarchical structure. The branching is based on
the similarity of features between new and old classes. The initial nodes of the Tree-CNN assign the
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input into coarse super-classes, and as we approach the leaves of the network, finer classification is
done. Such a model allows us to leverage the convolution layers learned previously to be used in the
new bigger network.

The rest of the paper is organized as follows. The related work on incremental learning in deep neural
networks is discussed in Section 2. In Section 3 we present our proposed network architecture and
incremental learning method. In Section 4, the two experiments using CIFAR-10 and CIFAR-100
datasets are described. It is followed by a detailed analysis of the performance of the network and its
comparison with basic transfer learning and fine tuning in Section 5. Finally, Section 6 discusses the
merits and limitations of our network, and our findings and suggests opportunities for future work.

2 Related Work

The modern world of digitized data produces new information every second [10], thus fueling the
need for systems that can learn as new data arrives. Traditional deep neural networks are static
in that respect, and several new approaches to incremental learning are currently being explored.
“One-shot learning” [4] is a Bayesian transfer learning technique, that uses very few training samples
to learn new classes. Fast R-CNN [5], a popular framework for object detection, also suffers from
“catastrophic forgetting”. One way to mitigate this issue is to use a frozen copy of the original network
compute and balance the loss when new classes are introduced in the network[24]. "Learning without
Forgetting" [15] is another method that uses only new task data to train the network while preserving
the original capabilities. However, here the original network is trained on an extensive dataset, such as
ImageNet [21], and the new task data is a much smaller dataset. ‘Expert Gate’ [1] adds networks (or
experts) trained on new tasks sequentially to the system and uses a set of gating autoencoders to select
the right network (‘expert’) for the given input. Progressive Neural Networks [22] learn to solve
complex sequences of task by leveraging prior knowledge with lateral connections. Another recent
work on incremental learning in neural networks is iCaRL [20], where they built an incremental
classifier that can potentially learn incrementally over an indefinitely long time period.

Transfer learning plays a significant role in incremental learning. It allows us to leverage past
knowledge. It has been observed that initial layers of a CNN learn very generic features[33]
[23]. Common features, that are shared between images, have been exploited to build hierarchical
classifiers. These features can be grouped semantically, such as in [18], or be feature-driven, such as
“FALCON” [17]. Similar to the progression of complexity of convolutional layers in a DCNN, the
upper nodes of a hierarchical CNN classify the images into coarse super-classes using basic features,
like grouping green-colored objects together, or humans faces together. Then deeper nodes perform
finer discrimination, such as “boy” v/s “girl” , “apples” v/s “oranges”, etc. Such hierarchical CNN
models have been shown to perform at par or even better than standard DCNNs [32]. “Discriminative
Transfer learning” [28] is one of the earliest works where classes are categorized hierarchically to
improve network performance. Deep Neural Decision Forests [11] unified decision trees and deep
CNN’s to build a hierarchical classifier. “HD-CNN” [32], is a hierarchical CNN model that is built
by exploiting the common feature sharing aspect of images. However, in these works, the dataset is
fixed from the beginning, and prior knowledge of all the classes and their properties is used to build a
hierarchical model.

In this work, the Tree-CNN starts out as a single root node and generates new hierarchies to accom-
modate the new classes. Images belonging to the older dataset are required during retraining, but by
localizing the change to a small section of the whole network, our method tries to reduce the training
effort and complexity. In [31], a similar approach is applied, where the new classes are added to the
old classes, and divided into two super-classes, by using an error-based model. The initial network is
cloned to form two new networks which are fine tuned over the two new super-classes. While their
motivation was a "divide-and-conquer" approach for large datasets, this work tries to incrementally
grow with new data. And, we sequentially add new data over multiple learning stages. In the next
section, we lay out in detail our design principle, network topology and the algorithm used to grow
the network.

2



IMAGE

Root Node
classifies 

input image 
into one of 
the “super-

classes”

Branch Node
Fine classifier

Figure 1: A generic model of Tree-CNN: The root node predicts super-classes whereas lower nodes
predict finer classes

3 Incremental Learning Model

The Tree-CNN is made of nodes connected as a directed acyclic graph. Each node acts a classifier
that outputs a label for the input image. As per the label, the image is then passed on to the next node
which further classifies the image, until we reach a leaf node, the last step of classification. The root
node is the highest node of the tree. The first classification happens at this node. Next in hierarchy is
the branch node. It has a parent and two or more children. It performs classification for at minimum 2
classes/super-classes. The leaf node is the last level of the tree. Each leaf node is uniquely associated
to a class. No two leaf nodes have the same class. Fig. 1 shows the root node and branch nodes for a
two-stage classification network. Each output of the second level branch node is a leaf node.

The network starts out as a single node that can classify N classes. This is the first task the network
learns. The CNN is trained using gradient descent and back-propagation on training images belonging
to those N classes. A new task arrives which requires the system to classify M new classes. A small
sample of images (∼ 10%) is selected from the training set of the new classes. At the root node these
images are fed to the DCNN, one class at a time. We obtain a 3 dimensional matrix, OK×M×I , where,
K is number of children of the root node, M is number of new classes, and I number of sample
images per class. O(k,m, i) denotes the output of the k th output neuron for the ith image belonging
to the mth class where k ∈ [1,K], m ∈ [1, M], and i ∈ [1, I]. OK×M

avg is the average of the outputs over
I images . Softmax is taken over Oavg to obtain the likelihood matrix LK×M 1. Each column of L
can be represented as a K × 1 vector, lm, where m ∈ [1, M] represents the M new classes. We arrange
lm in an ordered set, S as given by 2.

Oavg(k,m) =
I∑

i=1

O(k,m, i)
I

and L(k,m) = eOavg (k,m)

K∑
k=1

eOavg (k,m)
(1)

S = [lm1, lm2, ...lmM ] , max
k
(lm1(k)) >= max

k
(lm2(k)) >= ... >= max

k
(lmM (k)) (2)

The ordering is done so that new classes with high likelihood values are attended to first. A class
with a high max(lm(k)) like 0.9 indicates that it has a strong affinity to a particular child node. So we
first add that class. A class with a low max(lm(k)) such as 0.2 indicates it probably has almost equal
likelihood of being classified to any of the nodes. Softmax likelihood is used instead of counting how
many images get classified to one of the child nodes because it translates the image’s response to the
child nodes into an exponential scale and captures how strongly a child node responds to an image of
a particular class, rather than if it is the highest of all nodes. Once we have S, we go through it in an
ordered manner and take one of the 3 actions:

i. Add the new class to an existing child node: If the value of max(lm) is greater than a
threshold (a design specification), it indicates a strong resemblance/association with a partic-
ular child node. The new class is added to child node k such that lm(k) = max

k′
(lm(k ′)), k ′ ∈

[1,K]
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ii. Combine one or more child nodes and the new class to form a new child node: If there
are more than 1 child nodes that the new class has a strong likelihood for, we can combine
them to form a new child node. Say, the top two likelihood values were 0.48,and 0.45, and
at least one of them is a leaf node, we can combine the two and the new class to form a new
child node which will be a branch node. We can set an upper limit to the number of child
nodes that could be combined

iii. Add the new class as a new child node: If the new class doesn’t have a single likelihood
value greater than a threshold (lm(i) < threshold ∀i ∈ [1,K]), or certain network restrictions
are applied to prevent addition of classes to child nodes, the network expands horizontally
by adding the new class as a new child node. This node will be a leaf node.

Once this is complete for the M classes at the root node, we move to the next level of the tree. The
same process is applied on the child nodes that now have new classes to be added to them. As we
move to the next level, the sample images belonging to the only those new classes that are assigned
to a particular child node are shown to it. Overall, for one level, sample images of all M classes
are passed through different child nodes. For example, say, two new classes were added to a child
node. If child node is a leaf node, it is changed into a branch node that now has 3 leaf nodes as
children. If the child node is a branch node, then we repeat the process of calculating likelihood
matrix and determining how these two new classes will get added to its output. The decision on
how to grow the tree is semi-supervised: the algorithm itself decides how to grow the tree, given the
constraints by the user. We can limit parameters such as maximum children for a node, maximum
depth for the tree, etc. as per our system requirements. Once the new classes are allotted locations
in the tree, supervised gradient descent based training is performed on the modified/new nodes.
This saves us from modifying the whole network, and only affected portions of the network require
retraining/fine-tuning.

4 Experiments

We conducted two experiments using the datasets CIFAR-10 and CIFAR-100[12], and used Mat-
ConvNet [29], an open-source toolbox for implementation of Convolutional Neural Networks in
MATLAB [16].

During training, data augmentation was done by flipping the training images horizontally at random
with a probability of 0.5 [7]. All images were whitened and contrast normalized [7]. The activation
used in all the networks is rectified linear activation ReLU, σ(x) = max(x, 0). The networks are
trained using stochastic gradient descent with fixed momentum of 0.9. Dropout [27] is used between
the final fully connected layers, and between pooling layers to regularize the network. We also
employed batch-normalization (BNORM) [9] at the output of every convolutional layer. Additionally,
a weight decay λ = 0.001 was set to regularize each model. The weight decay helps against overfitting
of our model. The final layer performs softmax operation on the output of the nodes to generate
class probabilities. All CNNs are trained for 300 epochs. The learning rate is kept at 0.1 for first 200
epochs, then reduced by 10 times every 50 epochs.

There is an absence of standardized benchmark protocol for incremental learning. A benchmark
protocol similar to one used in iCaRL[20] is used here. The classes of the dataset are arranged in a
fixed random order. After each incremental learning stage, the network would be evaluated on the
classes it has already been trained on and the accuracy would be reported.

To compare against the Tree-CNN, we took another network (Network “B”) with a complexity level
similar to two stage complexity of this Tree-CNN. It has 4 convolutional blocks, each block having 2
sets of 3 × 3 convolutional kernels. The network is inspired from the architecture of VGG-net [25].
Detailed model is given in Table 3. This is also trained in incremental stages using fine-tuning. The
new classes are added as new output nodes of the final layer and 5 different fine tuning strategies
have been used. Each method retrains/fine-tunes certain layers of the network. As listed below, we
set 5 different depths of back-propagation when retraining with the incremental + old dataset.

1. Case I: FC
2. Case II: FC + CONV1
3. Case III: FC + CONV1 + CONV2
4. Case IV: FC + CONV1 + CONV2 + CONV3
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5. Case V: FC + CONV1 + CONV2 + CONV3 + CONV4 (equivalent to training a new
network with all the classes)

We compare our Tree-CNN against retraining network ‘B’ on two metrics: Testing Accuracy, and
Training Effort , which is

∑
nets

(total number of weights × total number of training samples)

Training Effort tries to capture the number of weight updates that happen per training epoch. As
batch size and number of training epochs is kept the same, the product of number of weights and the
number of training samples used gives us a good measure of the effort used in training a network.
This metric allows us to compare the computational effort without making it specific to a particular
hardware on which the computation is performed. For Tree-CNN the training effort of each of the
nodes (‘nets’) is summed together. For network “B”, there is only one net in each case.

4.1 Adding Multiple New Classes

Dataset CIFAR-10 dataset [12], having 10 mutually exclusive classes, was used for this experiment.
The network is first trained on 6 classes, and then learns the remaining 4 classes as an incremental
learning stage.

Network For ease of reference, we label this network as Tree-CNN A. The root node is a DCNN
with two output nodes. It will classify the input image as either “Animals” or “Vehicles”. Each
child node has a DCNN that does finer classification. The detailed description of the layers in each
of these sub-networks can be found in the supplementary section. Fig. 2 and Fig. 3 a) depict the
initial model of Tree-CNN A. This experiment is used to demonstrate how the network grows in a
simplistic manner. It demonstrates at given intermediate Tree-CNN state, how it would respond to
new classification data.
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A (before incremental learning)
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Figure 3: Graphical representation of
Tree-CNN A a) before incremental learn-
ing, b) after incremental learning

Initial Training 6 classes of CIFAR-10 are grouped into “Vehicles” and “Animals” as shown in
Fig 3. The root node achieves a testing accuracy of 98.73%, while the branch nodes, “Animals” and
“Vehicles”, achieve 86% and 94.43% testing accuracy respectively. Overall, this network achieves a
testing accuracy of 89.10%. Network “B” is trained on the 6 image classes and achieves a testing
accuracy of 92.40%.

Incremental Learning The remaining four classes are now introduced as the new incremental task.
50 images (10% of the training set) per class are selected at random , and shown to the root node. We
obtain the L matrix, which is a 2 × 4 matrix with each element li j ∈ (0, 1). The 1st row of the matrix
indicates the softmax likelihood of each of the 4 classes as being classified as “Vehicles”, while the
second row presents the same information for “Animals”. In this experiment, the network takes one
action: Add the new class to an existing child node and threshold is set at 0.5. The before and after
structure of the Tree-CNN A is shown in Fig. 3 . Next the root node is retrained with 50, 000 training
images from all the 10 classes(old and new) to classify them in to the two coarse categories. Then the
two branch nodes are trained.
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4.2 Sequentially Adding Multiple Classes

Dataset For this experiment, CIFAR-100 [12] is used. It has 100 classes, 500 training and 100
testing images per class. The 100 classes are divided into 10 groups of 10 classes each and organized
in a fixed random order, details of which are provided in the supplementary section. The network is
trained incrementally on these groups of classes. The first experiment was a proof of concept where
we showed how a small tree-like structure would grow. Here there is no fixed hierarchical grouping
of classes, unlike earlier. The aim is to show this method works irrespective of the initial grouping.

The Network Initially, the Tree-CNN has a root node and 10 leaf nodes. We label this network as
Tree-CNN C. The root node has a DCNN network, with 10 output nodes. The layers of the CNN are
described in detail in Table 1. In subsequent learning stages, the network would extend branches. The
DCNN model used in branch nodes is given in Table 2. The branch node is at more risk of overfitting
than the root node. The dataset size shrinks as we move deeper into the tree. Hence lower nodes
require more regularization techniques. In this network, we added more dropout layers in the branch
node CNN to compensate overfitting.

Table 1: Root Node Tree-CNN
C

Input 32x32x3
Conv 1

5x5x3x64 ReLU stride 1 + BNORM
[2 2] Max Pooling stride 2

Conv 2
3x3x64x128 ReLU stride 1 + BNORM

Dropout 0.5
3x3x128x128 ReLU stride 1 + BNORM

[2 2] Max Pooling stride 2
Conv 3

3x3x128x256 ReLU stride 1 + BNORM
Dropout 0.5

3x3x256x256 ReLU stride 1 + BNORM
[2 2] Avg Pooling stride 2

FC
Fully Connected 4x4x256x1024 ReLU

Dropout 0.5
Fully Connected 1x1x1024x1024 ReLU

Dropout 0.5
Fully Connected 1x1x1024xN

(N = Number of Children)

Table 2: Branch Node Tree-
CNN C

Input 32x32x3
Conv 1

5x5x3x32 ReLU stride 1 + BNORM
[2 2] Max Pooling stride 2

Dropout 0.25
Conv 2

5x5x32x64 ReLU stride 1 + BNORM
[2 2] Max Pooling stride 2

Dropout 0.25
Conv 3

3x3x64x64 ReLU stride 1 + BNORM
Dropout 0.5

3x3x256x256 ReLU stride 1 + BNORM
[2 2] Avg Pooling stride 2

FC
Fully Connected 4x4x64x512 ReLU

Dropout 0.5
Fully Connected 1x1x512x128 ReLU

Dropout 0.5
Fully Connected 1x1x128xN

(N = Number of Children)

Table 3: Network B
Input 32x32x3

Conv1
3x3x3x64 ReLU stride 1 + BNORM

Dropout 0.5
3x3x64x64 ReLU stride 1 + BNORM

[2 2] Max Pooling stride 2
Conv 2

3x3x64x128 ReLU stride 1 + BNORM
Dropout 0.5

3x3x128x128 ReLU stride 1 + BNORM
[2 2] Max Pool stride 2

Conv3
3x3x128x256 ReLU stride 1 + BNORM

Dropout 0.5
3x3x256c256 ReLU stride 1 + BNORM

[2 2] Max pooling stride 2
Conv4

3x3x256x512 ReLU stride 1 + BNORM
Dropout 0.5

3x3x512x512 ReLU stride 1 + BNORM
[2 2] Avg Pooling stride 2

FC
Fully Connected 2x2x512x1024 ReLU

Dropout 0.5
Fully Connected 1x1x1024x1024 ReLU

Dropout 0.5
Fully Connected 1x1x1024xN

(N=Number of Classes)

Initial Training For Tree-CNN C, the root node is trained to classify 10 classes and it records a
testing accuracy of 84.90%. Network “B” achieves a testing accuracy of 85%. Thus the starting
accuracy for the two networks is almost the same.

Incremental Learning We divided the remaining 90 classes into 9 groups, each containing 10
classes. These classes were added to the network in 9 incremental learning stages. At each stage, first
50 images belonging to each class are shown to the root node and a likelihood matrix L is generated.
The columns of the matrix are used to form an ordered set S, as described in equation 2. For this
experiment, we applied the following constraints to the system:

• Maximum depth of the tree is 2.
• Maximum number of output/children for a branch node is 10

It was observed during developing the algorithm that new classes tend to have a higher softmax
likelihood value for branch nodes with higher number of children. To prevent the network from
being lop-sided, by having one very large branch, we limit the number of children to 10 per branch
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node. Once the placement of the new classes is determined we train the root node and the modified
branch nodes. The pseudo-code of how we grow the network is given by Algorithm 1. We sort
the "likelihood" array, l in descending order and store the value and the index. The index holds the
corresponding number of the child node. We use the top 3 values of the likelihood array to determine
how the mth new class would be added to the tree. The various threshold used for comparing the
softmax values are required to be set externally depending on the network environment. Network B
is also trained in 5 different manners on the 10 incremental batches of data.

Algorithm 1 Grow Tree-CNN C

1: S is the Likelihood matrix
2: procedure GROWTREE(S, Tree-CNN)
3: for m in (1, M) do
4: l = S(m) and set l( j) = 0 for full child nodes j
5: val, ind = sort(l, ‘descend’)
6: if val(1) > 0.55 then add class m to node ind(1), continue
7: end if
8: if val(1) − val(2) < 0.1 and val(2) − val(3) > 0.1 then
9: merge ind(1) and ind(2)

10: add new class m to the merged node, continue
11: else
12: create new child node, add class m to new node
13: end if
14: end for
15: end procedure

5 Results

Adding multiple new classes (CIFAR-10) In Table 4, we report the test accuracy and the training
effort for the 5 cases of fine-tuning network “B” against our Tree-CNN C for CIFAR-10. Fig. 3b
shows the graphical structure of Tree-CNN A after addition of new classes. Retraining only FC layer
of network “B” requires the least training effort. However, it gives us the lowest accuracy, 78.37%
amongst all. And as more classes are introduced, this method causes much loss in accuracy, as shown
with CIFAR-100 in Fig. 5. Our proposed model, Tree-CNN A has the second lowest normalized
training effort, ∼ 40% less than ‘B:V’, and ∼ 30% less than ‘B:II’. At the same time, Tree-CNN A
(86.25%) had comparable accuracy to ‘B:II’ (85.02%) and ‘B:III’ (88.15%), while just being less
than the ideal case ‘B:V’ by a margin of 3.76%.

Table 4: Training Effort and Test Accuracy comparison for Tree-CNN A against Network B for
CIFAR-10 dataset

B:I B:II B:III B:IV B:V Tree-CNN A
Testing Accuracy 78.37 85.02 88.15 90.00 90.51 86.24

Normlaized Training Effort 0.40 0.85 0.96 0.99 1 0.60

Sequentially adding new classes (CIFAR-100) We compare Tree-CNN C against the 5 different
fine-tuning cases of Network B. Fig. 4 shows the training effort. We normalized the training effort
by dividing all the values with the highest training effort. i.e. B:V. B:I has the lowest training effort,
as we only fine tune the final fully connected layer. However, it performs the worst in accuracy as
shown in Fig. 5. Tree-CNN C requires almost the same training effort as B:II, and achieves better
accuracy than B:II and B:III. It achieves accuracy within the same range as B:IV, while requiring 20%
less training effort. B:IV and B:V require almost similar training effort, as the difference is only the
extra training of the smallest CONV layer, i.e. the first layer. B:V gives us the best accuracy, however,
that is because we are retraining the entire network with all the images. There is no pre-trained kernel
sharing and it is as good as starting anew, thereby requiring the highest training effort. The Tree-CNN
achieves an accuracy of 60.46% on the full CIFAR-100 dataset. It is 2.59% less than the accuracy
achieved by training the full network ‘B’, which gives us 63.05%. In all 6 cases, the training effort
required at a particular learning stage was greater than the effort required by the previous stage. This
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Figure 4: Training Effort as
new classes are added in batch
of 10 (CIFAR-100)

Figure 5: Testing Accuracy for
CIFAR-100 as new classes are
added in batch of 10

Figure 6: Accuracy over
incremental learning stages
of Tree-CNN, iCaRL[20]
and Learning without
Forgetting(LwF)[15]

is because we had to show images belonging to old classes to avoid “catastrophic forgetting”. Our
method had lower slope for Training Effort v/s Learning Stage, as compared to all but B:I. The overall
accuracy of the Tree-CNN and the network we compared with is comparable to the range of reported
accuracy of similar sized networks, such as 67.38% by HD-CNN [32], 67.68% by Hertel, et al [8].
Further improvements to accuracy can be done by modifying the CNN architecture of the nodes, and
by adopting methods such as “all convolutional net” [26], “exponential linear units” [2].

We also compare our work against the following 2 works on incremental learning, ‘iCaRL’[20] and
‘Learning without Forgetting’ [15]. in Fig. 6. We use the accuracy reported in [20] for CIFAR-100
as it is, and compare it against our method. Tree-CNN yields 10% higher accuracy than ’iCaRL’
and over 50% higher accuracy than ‘Learning without Forgetting’. This shows that a hierarchical
structure is more resistant to catastrophic forgetting as new classes are added.

6 Discussion

The motivation of this work stems from the idea that subsequent addition of new image classes to a
network should be easier than retraining the whole network again with all classes. We observed that
each incremental learning stage required more effort than the previous, because images belonging to
old classes needed to be shown to the CNNs. This is due to the inherent problem of “catastrophic
forgetting” in deep neural networks. Our proposed method has a lower rate of increase of training
effort over consecutive learning stages as compared to the effort needed to fine-tune final layers of a
large network. Although the accuracy on CIFAR-10/100 is below that of a standard deep network due
the incremental nature of learning, it displays lower accuracy degradation compared to other works
[20, 15]. However, the Tree-CNN continues to grow in size over time, and the implications of that
on memory requirements (also the need for storing old training examples) needs to be investigated.
The Tree-CNN grows in a manner such that images that share common features are closer in the tree
than those images that are very different. The correlation of the semantic similarity of the class labels
and the feature-similarity of the class images is another interesting area to explore. The Tree-CNN
generates hierarchical grouping of initially unrelated classes, thereby generating a label relation graph
out of these classes[3]. Details of the final groups formed is given in supplementary section. The
final leaf nodes, and the distance between them can also be used as a measure of how similar any two
images are. Such a method of training and classification can be used to hierarchically classify large
datasets. Our proposed method, Tree-CNN, thus offers a better incremental learning model that is
based on hierarchical classifiers and transfer learning and can organically adapt to new information.
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Supplementary

Adding multiple classes(CIFAR-10) The CNNs used at each level of the Tree-CNN for CIFAR-10
in the first experiment are given in Tables 5 and 6.

Table 5: Root Node Tree-CNN A
Input 32x32x3

Conv1
5x5x3x64 ReLU stride 1 + BNORM

[2 2] Max Pooling stride 2
Conv 2

3x3x64x128 ReLU stride 1 + BNORM
Dropout 0.5

3x3x128x128 ReLU stride 1 + BNORM
[2 2] Max Pooling stride 2

FC
Fully Connected 8x8x12x512 ReLU

Dropout 0.5
Fully Connected 1x1x512x128 ReLU

Dropout 0.5
Fully Connected 1x1x128x2 ReLU

Softmax Layer

Table 6: Branch Node Tree-CNN A
Input 32x32x3

Conv1
5x5x3x32 ReLU stride 1 + BNORM

[2 2] Max Pooling stride 2
Dropout 0.25

Conv2
5x5x32x64 ReLU stride 1 + BNORM

[2 2] Max Pooling stride 2
Dropout 0.25

Conv3
3x3x64x64 ReLU stride 1 + BNORM

[2 2] Avg Pooling stride 2
Dropout 0.25

FC
Fully Connected 4x4x64x128 ReLU

Dropout 0.5
Fully Connected 1x1x128xN ReLU

(N=number of children)
Softmax Layer

Sequentially adding classes(CIFAR-100) The 100 classes of CIFAR-100 were randomly arranged
and divided in 10 batches, each containing 10 classes. We randomly shuffled numbers 1 to 100 in 10
groups and then used that to group classes. We list the batches in the order they were added to the
Tree-CNN for the incremental learning task below. The final tree-CNN groups formed in given in
Table 7.

1. chair, bridge, girl, kangaroo, lawn mower, possum, otter, poppy, sweet pepper, bicycle
2. lion, man, palm tree, tank, willow tree, bowl, mountain, hamster, chimpanzee, cloud
3. plain, leopard, castle, bee, raccoon, bus, rabbit, train, worm, ray
4. table, aquarium fish, couch, caterpillar, whale, sunflower, trout, butterfly, shrew, house
5. bottle, orange, dinosaur, beaver, bed, snail, flatfish, shark, tractor, apple
6. woman, fox, lobster, skunk, can, turtle, cockroach, dolphin, bear, pickup truck
7. lizard, road, porcupine, mouse, seal, sea, tiger, telephone, rocket, tulip
8. baby, motorcycle, elephant, clock, maple tree, mushroom, pear, orchid, spider, oak tree
9. wardrobe, squirrel, crocodile, wolf, plate, skyscraper, keyboard, beetle, streetcar, crab

10. snake, lamp, camel, pine tree, cattle, boy, rose, forest, television, cup

Table 7: Root Node of Tree-CNN C classifying CIFAR-100 classes into 17 child nodes after learning
all 100 classes incrementally

1 trout dolphin turtle seal sea mouse lizard elephant mushroom maple tree
2 bridge mountain palm tree tank willow tree castle plain train bus leopard
3 girl man woman baby boy
4 caterpillar bottle can bear skunk fox tiger telephone rocket porcupine
5 lawn mower
6 possum hamster kangaroo whale shrew dinosaur beaver flatfish shark snail
7 otter chimpanzee cloud bowl lion ray fish worm raccoon bee rabbit
8 poppy aquarium fish sunflower butterfly cockroach tulip orchid spider beetle crab
9 sweet pepper apple orange pear rose
10 bicycle chair couch table house bed tractor pickup truck road motorcyle
11 lobster
12 clock plate wardrobe keyboard television cup lamp snake
13 oak tree streetcar pine tree forest
14 skyscraper
15 squirrel camel cattle
16 crocodile
17 wolf
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Notes on groups formed Similar looking classes, that were also semantically similar, were grouped
under the same branches. At the end of the 9 incremental learning stages, the root node had 17
children nodes out of which 4 were leaf nodes and remaining 13 were branch nodes. The details
of the classes associated with each of these 17 nodes is given in Table 7. These 13 branch nodes
further had 3 to 10 leaf nodes. The final groups formed after training all the classes is given in
Table 7. While almost every group has a few odd classes, it is interesting to note that all humans got
exclusively grouped together under Node 3. Color of the object played an important factor. Bright
multi-olored objects were grouped together in Node 8, while Node 13 has all green objects. We see
the grouping that emerged from our algorithm is not random, but there is a pattern in feature and
semantic similarity that is worth exploring and exploiting in future applications.
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