Enhancing the mathematical education of undergraduates:

the role of sigma and the mathematics support community

Prof. Tony Croft
Mathematics Education Centre
Loughborough University

Overview and background

"The mathematics problem"

- Measuring the mathematics problem - the extent of the challenges facing UK mathematics education
- Tackling the mathematics problem
- The role of sigma - network for excellence in mathematics and statistics support
services and facilities offered by mathcentre, sigma, statstutor and institutional support centres. University

The "mathematics problem"

- Anecdotally
- Quantitative Data
- Evidence from Government, Professional Body, and Research Reports

The "mathematics problem" : anecdotal evidence

THE UK's No.I REGIO NEWSPAPER \& WEBSIT

News

'Cool Cash' card confusion

Ciara Leeming

November 03, 2007
Share Article |\& Submit Comments | Comments (67)|\&Printable Version

A Cool Cash Lotto ticket
A LOTTERY scratchcard has been withdrawn from sale by, Camelot because players couldn't understand it.

The Cool Cash game - launched on Monday - was taken cut of shops yesterday after some players failed to grasp whether or nct they had won.

On one of my cards it said I had to find temperatures lower than -8. The numbers I uncovered were -6 and -7 so I thought I had won, and so did the woman in the shop. But when she scanned the card the machine said I hadn't.

I phoned Camelot and they fobbed me off with some story that -6 is higher - not lower - than -8 but I'm not having it.

Tina Farrell (23) - Levenshulme

National numeracy: across the UK 2012

- Around 4 in 5 adults have a low level of numeracy - roughly defined as the adult skills equivalent of being below GCSE grade C level.
- In 2011, the Skills for Life Survey showed that numeracy skills in England declined in the 8 years from 2003, whereas literacy improved.
- These findings led to the realisation that 17 million adults in England are working at a level roughly equivalent to that expected of children at primary school.
- Around 30\% of the people who rated their skills as "very good" performed poorly - showing a sizable lack of awareness of this problem.
National Numeracy http://www.nationalnumeracy.org.uk/news/16/index.html

Total Mathematics and Further Mathematics A level entries

Total Mathematics and Further Mathematics A level entries

Total Mathematics and Further Mathematics A level entries

Total Mathematics and Further Mathematics A level entries

Total A level entries compared with Maths \& FM entries

Maths \& FM as \% of total entries

Maths \& FM as \% of total entries

Confidence testing and diagnostic testing

FIG. 12. Comparison of the 1997 Diagnostic Test and the Confidence Survey.

Confidence testing and diagnostic testing

- 1995,1996,1997 Confidence Surveys, Diagnostic Testing

1997: $\mathrm{N}=557$ (478 >= D in A level maths (86\%))

- Simple quadratic equation which will factorize easil

20\% incorrect; 4\% don't know

- Quadratic equation requiring use of the formula

7\% incorrect; 31\% don't know

- Simple partial fractions

22\% incorrect; 37\% don't know
"Over 60 departments of physics engineering and mathematics are now routinely carrying out diagnostic mathematics tests"

The "mathematics problem" - a plethora of reports

RESPONDING TO THE
MATHEMATICS PROBLEM:
The implementation of
Institutional Support Mechanisms

Eatiet br C.M. Mary ant M. S. Gem
nw maina ? sigīnas.

©

Saying the couss: the retertion of sturjerts in higher education
\qquad

The "mathematics problem" - a plethora of reports

TACKLING THE
MATHEMATICS PROBLEM

There is unprecedented concern amongst mathematicians, scientists and engineers in higher education about the mathematical preparedness of new undergraduates.

LMS, IMA, RSS, 1995,
Tackling the Mathematics Problem.

The "mathematics problem"- a plethora of reports

Acute problems now confront those teaching mathematics and mathematicsbased modules across the full range of universities.....

Prompt and effective support should be available to students whose mathematical background is found wanting.....

Measuring the mathematics problem.
Engineering Council (2000)

The "mathematics problem" - a plethora of reports

Making Mathematics Count
higher education has little option but to accommodate to the students emerging from the current GCE [ie pre-university schooling] process. Making Mathematics Count: Section 4.39

What about more recently?

B|B|C
NEWS EDUCATION \& FAMILY

- ACME - Advisory Committee on Mathematics Education - June 2011
- We estimate that of those entering higher education in any year, some 330,000 would benefit from recent experience of studying some mathematics (including statistics) at a level beyond GCSE.

Maths is required for many subjects at degree level

- At the moment fewer than 125,000 have done so.
- Over 60\% of students entering higher education courses which require good mathematical skills beyond GCSE level have not benefitted from higher level study

Is the UK an outlier in upper secondary maths education?

- Nuffield Foundation Report (2010)
- In a survey of 24 countries, England, Wales and Northern Ireland had the lowest levels of participation in upper secondary mathematics.
- They were the only countries in which fewer than 20% of upper secondary students study maths. This includes all mathematics qualifications at this level.
- England, Scotland, Wales and Northern Ireland are four of only six countries that do not require compulsory participation in mathematics at upper secondary for any students.

Is the UK an outlier?

That's the "mathematics problem"!

Snapshots at jasoniove.com区

Professor Herman stopped when he heard that unmistakable thud - another brain had implcded.

"Brilliant mathematician. Teaching second grade. Dies suddenly from no apparent cause. Something just doesn't add up."

So what have we been trying to do about it?

Mathematics support - what is it ?

- activities and resources provided to support and enhance students' learning of mathematics and statistics, in any discipline, at any level of higher education and which are provided in addition to traditional lectures, tutorials, examples classes, personal tutorial sessions....
- Non-judgmental, informal, not credit-bearing
- Pleasant and non-threatening
- Supportive
- Offers alternative ways of looking at problems that
 students find difficult

University
Trying very hard to overcome attitudinal problems....

One Woman's Strugele

presented by Skills@Library Pictures

Mathematics support - what is it ?

"Uh, yeah, Homework Help Line? I need to have you explain the quadratic equation in roughly the amount of time it takes to get a cup of coffee."

The first Loughborough Centre 1996

mathcentre and mathtutor

 University

A wealth of maths support resources

mathcentre
 Integration
 by parts

mc-TY-parts-2009-1
A special rule, integration by parts, is available for integrating products of two functions. This unit derives and illustrates this rule with a number of examples

In order to master the techniques explained here it is vital that you undertake plenty of practice erclises so that they become second nature
After reading this text, and/or viewing the video tutorial on this topic, you should be able to:
state the formula for integration by parts
integrate products of functions using integration by parts

Contents

1. Introduction
2. Derivation of the formula for integration by parts

$$
\begin{equation*}
\int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=u v-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x \tag{2}
\end{equation*}
$$

3. Using the formula for integration by parts 5

mathcentre
 community project

mathcentre community project

Eigenvalues and eigenvectors

mccp-croft-0901 September 9, 2010

Introduction

This lea et summarises how eigenvalues and eigenvectors of a square matrix are found

The characteristic equation

Given a square $n \times n$ matrix A, we can form a new matrix $A-\lambda I$, where λ is an (as yet) unknown number and I is the $n \times n$ identity matrix. For example, if we start with the 2×2 matrix

$$
A=\left(\begin{array}{cc}
3 & 1 \\
-1 & 5
\end{array}\right)
$$

then we can form

$$
\begin{gathered}
A-\lambda I=\left(\begin{array}{cc}
3 & 1 \\
-1 & 5
\end{array}\right)-\lambda\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
A-\lambda I=\left(\begin{array}{cc}
3-\lambda & 1 \\
-1 & 5-\lambda
\end{array}\right)
\end{gathered}
$$

hich is simpli ed to

If we now evaluate the determinant of $A-\lambda I$ we obtain what is called the characteristic polynomial of A. In this case

$$
A-\lambda I=\left|\begin{array}{cc}
3-\lambda & 1 \\
-1 & 5-\lambda
\end{array}\right|=(3-\lambda)(5-\lambda)-(1)(-1)=\lambda^{2}-8 \lambda+16
$$

So the characteristic polynomial in this example is the quadratic polynomial $\lambda^{2}-8 \lambda+16$. The characteristic equation is
$\lambda^{2}-8 \lambda+16=0$
the case of a 3×3 matrix the characteristic polynomial will be cubic, and the algebra gets a little ore tedious, but the method of calculation is the same.
Eigenvalues
The eigenvalues of a matrix A are the solutions of its characteristic equation. For example the eigenvalues of $A=\left(\begin{array}{cc}3 & 1 \\ -1 & 5\end{array}\right)$ are found by solving $\lambda^{2}-8 \lambda+16=0$. Thus

$$
\begin{aligned}
\lambda^{2}-8 \lambda+16 & =0 \\
(\lambda-4)(\lambda-4) & =0 \\
\lambda & =4 \quad \text { (twice) }
\end{aligned}
$$

In this example there is one (repeated) eigenvalue, $\lambda=4$. You should note that in a more genera 2×2 case, the solution of the quadratic characteristic equation may yield two real distinct eigenvalues, 2×2 case, the solution of the quadratic
or perhaps two complex eigenvalues.

Maths support for pharmacists

What maths do pharmacists need?

This is something I hope to learn more about today:

- ? Numeracy: ratios, \%, arithmetic, fractions...
- ? Units of measurement, conversions
- ? Doses, concentrations, molarity
- ? Basic algebra: rearranging formulae
- ? Some common functions and their graphs: logarithm, exponential
- ? Differential calculus: chemical kinetics
but what about: trigonometry ? Integral calculus ? differential equations?

mathcentre has resources to help

Graphs of common functions

The straight line: $y=m x+$
$m=$ gradient (slope), $c=$ vertical intercept.

Exponential and \log functions:
$\mathrm{e} \approx 2.718$ is the exponential constant.

Graph of $y=\mathrm{e}^{x}$ and $y=\mathrm{e}^{-x}$ Graph of $y=\ln x$ and $y=\log _{10} x$ Quadratic functions: $y=a x^{2}+b x+c$

Statistics

Population values, or parameters, are denoted by Greek letters, Population mean $=\mu$. Population variance $=\sigma^{2}$. Population standard deviation $=\sigma$. Sample values, or estimates, are denoted by roman letters.
The mean of a sample of n observations $x_{1}, x_{2}, \ldots x_{n}$ is

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

The sample mean \bar{x} is an unbiased estimate of the population mean μ. The unbiased estimate of the variance of these n sample observations is $s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}$ which can be written as

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n} x_{i}^{2}-\frac{n \bar{x}^{2}}{n-1}
$$

The sample unbiased estimate of standard deviation, s, is the
\square square root of the variance: $s=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$ The standard deviation of the sample mean is called the standard error of the mean and is equal to $\frac{\sigma}{\sqrt{n}}$, and is often estimated by $\frac{s}{\sqrt{n}}$.

Differentiation

Differentiating a function, $y=f(x)$, we obtain its derivative $\frac{\mathrm{d} y}{\mathrm{~d} x}$ This new function tells us the gradient (slope) of the origina function at any point. When $\frac{d y}{d x}=0$ the gradient is zero.

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(u v)=u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x} \quad \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{u}{v}\right)=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}} .
$$

The chain rule:
If $y=y(u)$ where $u=u(x)$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}$.
Higher derivatives: $f^{\prime \prime}(x)$, or $\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}$, means differentiate $\frac{\mathrm{d} f}{\mathrm{~d} x}$ with respect to x. That is, $\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}=\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{\mathrm{~d} f}{\mathrm{~d} x}\right)$
Partial derivatives: If $f=f(x, y)$ is a function of two (or more) independent variables, $\frac{\partial f}{\partial x}$ means differentiate f with respect to x treating y as if it were a constant. $\frac{\partial f}{\partial y}$ means differentiate f with respect to y treating x as if it were a constant.

Integration	
$f(x)$	$\int f(x) \mathrm{d} x$
k, constant	$k x+c$
x	$\frac{x^{2}}{2}+c$
x^{2}	$\frac{x^{3}}{3}+c$
$x^{n},(n \neq-1)$	$\frac{x^{n+1}}{n+1}+c$
$x^{-1}=\frac{1}{x}$	$\ln x+c$ or $\ln c^{\prime} x$
e^{x}	$\mathrm{e}^{x}+c$
$\mathrm{e}^{k x}$	$\frac{\mathrm{e}^{k x}}{k}+c$
$\sin k x$	$-\frac{1}{k} \cos k x+c$
$\cos k x$	$\frac{1}{k} \sin k x+c$

[^0]
mathcentre

For the help you need to support your course

Mathematics for Chemistry

Facts \& Formulae
mathcentre is a project offering students and staff free resources to support the transition from school mathematics to university mathematics in a range of disciplines.

cc) (6)

www.mathcentre.ac.uk

This leaflet has been produced in conjunction with the Higher Education Academy Maths, Stats \& OR Network, the UK Physical Sciences Centre, and sigma For more copies contact the Network at info@mathstore.ac.uk
sIgma Σ

mathcentre has resources to help

A task for today.....

Are furthersơvibject specific resources needed?

What are these
/
Whe midht prepare them p N
"\%"\%

network for excellence in mathematics and statistics support
HOME ABOUT NEWS EVENIS HUBS PROUECTS RESOURCES LNKS CONTACT Type to search, then press enter

Supporting mathematics support practitioners across the country

LATEST NEWS

- Eastern England
- Events
- General News
- Midlands

CETL-MSOR CONFERENCE 2013

MAILING LIST

To receive updates from sigma please join the JISC mailing list by clicking this link:

2010 the sigma network - sigma goes national!

- Six regional hubs offering local events:
training
workshops
resource production networking sharing practice

Extensive influence - the Scottish Network

Home

Resources

Reports and papers
Maths in the news
Contacts
Events

Scottish Mathematics and Statistics Support Network

Welcome

This is the Scottish Mathematics and Statistics Network website; a forum for those interested in the provision of maths support in tertiary education in Scotland.

The network was founded in 2008 following two events held at the University of St Andrews: a Maths Support (Scotland) workshop held in July 2008 and a conference (Addressing the Quantitative Skills Gap: Establishing and Sustaining Cross-Curricular Mathematical Support in Higher Education) held from 25-27 June 2007.

The Scottish Mathematics and Statistics Network and its events are actively supported and generously sponsored by SIGMA and the Maths, Stats \& OR Network.

The majority of Scotland's Universities have an individual who is a member of the Scottish Mathematics \& Stats Support Network. Additionally we wecome members from Scotland's specialist HEIs.

Extensive influence - the irish Network

Irish Mathematics Learning Support Network

Home Contects Events Projects Resources Research Papers \& Reports

Welcome

This is the website for the Irish Mathematics Learning SLpport Network (IMLSN). It was officially launched in December 2011 and the official logo (top teft corner) was also announced.

The IML5N was established in 2009 following a meeting held at the National University of Ireland Maynooth. This meeting was attended by pecple involved in the provision of extra mathematics services at third level in Ireland and the attendees were advised by experts from NCE-MSTL (The National Centre for Excellence in Mathematics and Science Teaching and Learning and sigma (Centre for Excellence in Mathematics and statistics Support).

The aim of the IMLSN is to act as an informal focus point for all those who are interested in the provision of mathematics and statistics support at third level in Ireland.

To date we have organised a number of events and projects.
We have been supported and sponsored by a number of organisations including AISHE (The All-Ireland Society for Higher Education), NCE-MSTL (The National Centie for Excellence in Mathematics and Sclence Teaching and Learning), NDLR (National Digital Learning Resources) and sigma (Centre for Excellence in Mathematics and Stutistics Support).

The majority of third level institutions in Ireland have some level of maths support and a list of contacts is available here. Anyone who is interested in organising events or participating in the Network's activities please contact us.

News Items

- The ALM 21 Conference, Acuits Learning Mathematics inside and outside the classroom, takes place Junt 29, 2014 until July 2, 2014 in Bern, Switzerland. Details can be found here.
- CETL-MSOR 2014 takes place in Cardiff University Monday 8th and Tuesday 9th September 2014. The conference theme is 'Mathematics and Statistics Teaching, Learning and Support: Reall, Virtual, Mobile'. Detalls can be found here.
- Further information, inclucing the presentations, from the 8th Annual Workshop of the IMLSN are avallable.
- A newly developed resource has just been added to the sigma network website aimed at supporting those who wish to get started in pedagogic research. It may be of interest to those wishing to explore how to investigate the impact of mathematics support activities.
- Previous news is archived here.

Extensive influence - Welsh Language editions

Nod ystadegath yw cael gwybodaeth allan o ddata sydd ar flurf rhifau mewn rtyw gidestun penodol. Fell arfer mae hyn yn golygu darys problem. Mae gwelthred neu baradelm ar gyfer datrys problem ystadegol neu ymhollad gwyddonol yn cael el ddagntio yn y diagram lsod. Mae'r linell ddorlog yn cyfeino at sefylta, le ar bl cael trafodaeth, mae angen all osody broblem a owbinau o leiaf un itertad arall.

atinget
athoted
+

Os yw'r data ar flurf docraniad wedri gwplo yn ol amider he mat gennym f_{1} arywad mewn cyfwng a chanolbwynt x_{L}, x or yw $\sum f=n$, yna mae

$$
\begin{array}{r}
x=\frac{\sum f_{i} x_{i}}{\sum f_{1}}=\frac{\sum f_{i} x_{i}}{n} \quad 2 \\
S_{n}=\sum f_{1}\left(x_{i}-z\right)^{2}=\sum f_{i} x_{i}^{3}-\frac{\left(\sum f_{i} x_{i}\right)^{2}}{n} .
\end{array}
$$

Digwyddiadau a thebygolrwyddau

Croestorlad dau ddigwyddiad A a Byw A \cap B. Unbd A a B yw A u II. Mae A a B yn gydanghynhwysol os na all y ddau gymryd lle ar unwath, calf hyn eil ddynodi gan $A \cap B=0$. lle gelwir i yn ddigwyddlad nwi. Ar gyler digwyddiad A. mae $0 \leq P(A) \leq 1$. Ar grfer dau ddigwyddiad A a B, mae

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Ocyw A a B yn gydanhynhwysol mae

$$
P(A \cup B)=P(A)+P(B)
$$

Calyniadau sydd yr un mor debygol
Oc yw of gytiown I n canlynisd elfennol sydd yr un mor debygol o ddigwydd, rebygolinyydd pob canlyniad yw - . Os yw digwyddad A yn cynnwys m o'r canlynbadau elfennol n. moe $P(A)=$ 룬.
Digwyddiadau annibynnol
Mae A a Bl yn annlbynnol o'u gilydd os ac os yn unig bod $P(A \cap B)=P(A) P(B)$.
Tebygolrwydd Amodol A a wybod Byw

$$
P(A \mid B)=\frac{P(\downarrow \cap B)}{P(B)} \quad \text { cyn belled fod } P(B) \neq 0
$$

Theorem Bayes: $\quad P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}$.
Theorem Cyfanswm Tebygolrwydd
Mae'r k digwyddilid $B_{1}, B_{1}, \ldots B_{k}$ yn ffurfio rhaniad o'r golod sampl S os jw $B_{1} \cup B_{2} \cup H_{3} \ldots \cup B_{k}=S$ ac nl all dau
o'r B_{1} '2u ddigwydil yr un pryd a'u gilydd. Yna mae
$P(A)=\sum P\left(A \mid B_{i}\right) P\left(B_{4}\right)$.
Yn yr achós hwn, nellir cyffredinoli Theorem Bayes I

$$
P\left(B_{1} \mid A\right)=\frac{P\left(A \mid B_{i}\right) P\left(B_{j}\right)}{\sum_{j} P\left(A \mid B_{j}\right) P\left(B_{j}\right)} \quad(i=1,2, \ldots k)
$$

Os mat E^{\prime} yw coflenwad B, mae $P\left(B^{\prime}\right)=1-P(B)$ a $P(A)=P(A \mid B) F(B)+P\left(A \mid B^{\prime}\right) P\left(B^{\prime}\right)$ yn achodon arbennig o'f theorem cyfanswn tebygolnwyddau. Mae'n gyffredin i ddynodi cyflenwady y digwyddiad B \& B

mathcentre

Am yr holl gefnogaeth rydych ei angen â'ch cwrs

Canllaw i Ystadegaeth: Ffeithiau Tebygoleg ac Ystadegaeth, Fformwlâu a Gwybodaeth

Prosiect aml-ddisgyblsethol sy'n cynnig adnoddau rhad ac am ddim i fyfyrwyr a staff er mwy hwyluso dysgu x^{C} adoysen mathemateg yn yr ysed a't brifysgot ywit

www.mathcentre:ac.uk

Cynhyrchwed y dafen hon ar y cyd thwng yr Higher Education Academy Mathe, Stats \& OR Academy Maths, Stats $\& 0 \mathrm{O}$ Cenedluehol.

Am fwy a adnoddau, ewch I' Porth www yporth.ac.uk neu

Growth in the number of centres in the UK

Extent of provision

sigma Σ
 mathematics learning support in UK higher education

the extent of provision in 2012

	Russell	1994	Alliance	million+	Cathedrals	Unaligned
Total Number Contacted Identified as providing mathematics support	24	12	20	25	12	26

Table 3: Percentage of institutions, by mission group, providing mathematics support

Encouraging and establishing further provision

- Maths support at the University of York

In this clip we hear from Dr Andy Pomfret from the Department of Electronics explaining why he wanted to establish maths support for engineering students at York.

Encouraging and establishing further provision

Mathematics support is not the prerogative of the weak!

Edited by C.M. Marr and M. J. Grove
$0-$
Mathematics support has a significant role to play in institutions with demanding entrance requirements. mathematics support as remedial, targetting the less-able student. The St Andrews Conference sought to redress the balance and emphasise the benefits of mathematics support provision for students of all abilities.

Closing remarks

.....Looking back, I probably regarded mathematics support as a form of cottage industry practised by a few well meaning, possibly eccentric, individuals, who may themselves have been hard pushed to offer a credible rationale for this work....

Edited by C. M. Marr and M. J. Grove

Closing remarks

RESPONDING TO THE MATHEMATICS PROBLEM:

The Implementation of Institutional Support Mechanisms

Edited by C. M. Marr and M. J. Grove

The Wilkinson Charitable Thast
.... Now only a few years on, we see that the concept of mathematics support has not only become firmly embedded in UK Higher Education, but colleagues have moved on to gather data on the way students use such resources and look for optimal strategies for the delivery of this support, and this is perhaps the most convincing evidence of acceptance. Mathematics support came of age in the first decade of the 21st century. What might once have been described as a cottage industry now plays a respected and widely adopted role in Higher Education.

University

- The end - Thank you for listening!

[^0]: The linearity rule:
 $\int(a f(x)+b g(x)) \mathrm{d} x=a \int f(x) \mathrm{d} x+b \int g(x) \mathrm{d} x, \quad(a, b$ constant $)$ Integration by parts: $\int_{a}^{b} u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=[u v]_{a}^{b}-\int_{a}^{b} \frac{\mathrm{~d} u}{\mathrm{~d} x} v \mathrm{~d} x$.

