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1. Introduction

The purpose of this chapter is to provide a basic and general introduction to the physical
properties and electronic structures of elemental crystalline solids and their surfaces. Its
main aim is to set the stage for what follows in the rest of this volume by providing
a general overview of solids and their surfaces. We shall thus, in most circumstances,
refrain from going into details.

By its very nature as an introductory text much of what we say will have been said
before, though we will present it with our own personal and, hopefully, up-to-date
perspective. And, on the basis that one must understand elemental (i.e., one component)
systems before one can understand compounds and other binary materials, elemental
solids and surfaces alone will be considered. On a similar basis the surfaces we discuss
will mostly be flat, clean, and defect free. In addition, for reasons of space or because
it is covered elsewhere in this volume there will be many interesting aspects of solids
and their surfaces that will not be covered. Specifically, vibrations or any other dynamic
properties will not be considered; more often than not the electrons we discuss will be
sitting happily in their ground state; magnetic and relativistic effects will largely be
ignored; and our periodic table will exclude elements with unfilled shells of f electrons.
Setting this list of exclusions aside, there remains, as we will see, much to be said about
the physical properties and electronic structures of elemental solids and their surfaces.

The chapter shall begin with a brief discussion of a few preliminary concepts of crys-
talline solids, such as an introduction to the common crystal types and a brief discussion
of the cohesive properties of solids. Following this, the most widely used electronic
structure technique for interrogating the properties of solids and their surfaces, namely
density-functional theory will be introduced. We then discuss cohesion in bulk metals
and semiconductors in more depth before reaching the main body of the chapter which
involves a discussion of the atomic structures of crystalline solid surfaces, their energies,
and their electronic structures in turn. We close with some general conclusions and
perspectives for future work.

2. Preliminaries

2.1 Crystalline solids are crystalline

The crystalline nature of materials such as salt or diamond is clearly apparent to the
naked eye. It turns out, however, that crystals occur more often than expected in nature
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and many other materials which are not obviously crystalline in appearance possess
a long range crystalline structure. Indeed metals and semiconductors and many other
insulators aside from just diamond and salt adopt crystalline structures.

The key property of crystalline solids is their inherent symmetry which arises because of
the regular arrangement of their nuclei. It is interesting to note, however, that the actual
definition of the term crystal provided by the International Union of Crystallography
(IUC) is somewhat broader than a discussion based on periodicity of the atoms would
imply. Specifically, IUC define a crystal as “any solid having an essentially discrete
diffraction diagram”. This definition, which is clearly somewhat ill-defined, has arisen
mainly to account for the observations, from the 1980s, of quasiperiodic crystals,
so-called “quasicrystals” [1]. Thus periodic crystals, which we will focus on here, are just
a subset. How the nuclei are arranged leads to the crystal structure which is the unique
arrangement of atoms in a crystal composed of a unit cell: a set of atoms arranged in a
particular way which is periodically repeated in three dimensions on a lattice. The unit
cell is given in terms of its lattice parameters, the length of the unit cell edges and the
angles between them.

Crystallographers are adept at categorizing, counting, and systematizing crystal types
according to their symmetry and crystal system. We will not venture into the world
of crystallography except to say that for a general crystal structure in which objects
of arbitrary symmetry are translated on a so-called Bravais lattice that there turn out
to be 230 different symmetry groups that a lattice can have, known as the 230 space
groups. When the object to be translated (the “basis”) is completely symmetric, such
as a single atom is, there turn out to be fourteen space groups (the fourteen Bravais
lattices) falling into seven crystal structures (cubic, tetragonal, orthorombic, monoclinic,
triclinic, trigonal, and hexagonal). Fortunately, for present purposes, we do not need to
worry about all 230 space groups or even all fourteen Bravais lattices since elemental
solids under standard conditions adopt a very small number of structures. Indeed more
than 70% [2] of all elemental solids adopt one of the following four crystal structures:

• Body-Centered Cubic (bcc): This is a simple cubic structure with atoms at the
corner of a cube along with an additional atom at the center of the cube (Fig. 1(a)).
The alkali metals and many early transition metals adopt this structure;

• Face-Centered Cubic (fcc): Again this is a simple cubic structure but now with an
additional atom at the center of each square face (Fig. 1(b)). Most late transition
and noble metals adopt this structure as well as the inert gas solids and some of the
alkaline earth elements;

• Hexagonal Close Packed (hcp): This consists of two interpenetrating simple hexag-
onal lattices as shown in Fig. 1(c). Several transition metals adopt this structure;

• Diamond: This consists of two interpenetrating face-centered cubic lattices
(Fig. 1(d)). The group IV elements (C, Si, Ge, and Sn) often crystalize in this
structure.

All the elements we discuss in the following will be in one of these four crystal structures.

2.2 Cohesive energies
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FIG. 1: Illustration of the four types of crystal structure most commonly adopted by elemental
solids. Certain atoms are shaded differently for clarity.

Another central property of solids is their cohesive energy, Ecoh. This is the energy needed
in order to rip a sample apart into a gas of widely separated atoms, as illustrated schemat-
ically in Fig. 2. If {V} denotes some structural parameter characteristic of a given crystal,
such as, for example, the unit cell volume, and {V
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Here E is the energy of the solid, and M the number of atoms in the crystal. The energy
that is used in (1) is the total electronic energy (neglecting the zero point energy in this
definition). The total electronic energy is a large negative number, which leads to a posi-
tive Ecoh in the definition above. Cohesive energies of elemental solids range from little
more than a few meV per atom for the inert gases to just under 9 eV per atom for tungsten.

If one considers the variation of the energy with volume then, since both energy and
volume are state functions, what we have is an equation of state (EOS) for the crys-
tal. Equations of state for elemental solids very often look like the sketch in Fig. 2. The
difference between one material and the other is determined by variations in the depth,
location, and curvature of the minimum. Many useful analytic expressions for the func-
tional form of the EOS for solids have been developed. The most popular of them being
the EOS due to Murnaghan [3], which is given by:
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where the new quantities above are, Bo, the bulk modulus, and, B0
o, its pressure derivative.

The bulk modulus of a substance essentially measures its resistance to uniform compres-
sion and is defined as:
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We shall have more to say about cohesive energies and bulk moduli below.

2.3 The “types” of bonds in solids

It is useful to ask what “types” of bonds characterize solids in general and elemental solids
in particular. In answering this question it is common to take a cleaver to the physical
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FIG. 2: Schematic illustration of a typical energy-volume equation of state for a solid. The
cohesive energy, E

coh, is indicated.

continuum of interactions that hold nature’s many and varied solids together and conclude
that there are five idealized types of bonding interaction, namely van der Waals, ionic,
covalent, metallic, and hydrogen bonding. Let’s now consider each briefly in turn:

• Van der Waals Bonding: These are the weakest bonding interactions and arise
through the instantaneous induced dipole-induced dipole (dispersive) forces between
atoms [4]. The elements most commonly held together by van der Waals bonds are
the rare gases Ne, Ar, Kr, and Xe [5]. These are the elements that have so-called
filled valence shells. The layers of C in the graphite structure are also held together
with van der Waals forces. The two overriding features of van der Waals forces are
that they are: i) non-directional; and ii) weak (compared to the other types of bond-
ing that we shall discuss). This leads in most cases to close-packed structures with
cohesive energies that rarely exceed a few hundred meV per particle.

• Ionic Bonding: These are much stronger bonds than van der Waals bonds and arise
through electrostatic attraction between oppositely charged ions. Typically this is re-
alized in so-called ionic crystals such as the alkali halides in which an electropositive
group I atom transfers an electron to an electronegative group VII atom resulting
in two oppositely charged ions (in rather stable closed-shell configurations) which
strongly attract each other. The resulting crystal structures that arise are those
which offer optimal packing of differently sized ions.

• Covalent Bonding: Whilst ionic bonding is based on complete electron transfer be-
tween the atoms involved in a bond, covalent bonding is realized through the some-
what opposite scenario (still in our idealized pictures) in which electrons are equally
shared between the bonding partners through the overlap of orbitals on adjacent
atoms. Intrinsic to covalent bonding is therefore a strong directionality as opposed
to the non-directional ionic or van der Waals bonds. As a result such materials do
not necessarily adopt structures that arise from optimal crystal packing. Instead the
diamond and zincblende lattices are often favored.

• Metallic Bonding: The conceptual idea behind metallic bonding is that the valence
electrons are highly delocalized; shared among the “community” of atoms in the solid
and not localized on one particular atom or pair of atoms. In most abstract terms,
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such metals can thus be perceived as atomic nuclei immersed in a featureless electron
glue. Thus metallic bonds are largely non-directional and close-packed structures are
mostly adopted.

• Hydrogen Bonding: Generally hydrogen bonds occur when a covalently bound hy-
drogen atom forms a second bond to another element. Schematically the hydrogen
bond is often represented as A-H...B. Invariably both A and B will be electronegative
species (for example N, O, F, Cl). Hydrogen bonds are the strongest intermolecular
forces. However, compared to covalent or ionic bonds they are weak with strengths
ranging from about 100 meV to 500 meV. Generally it is believed that hydrogen
bonds are mostly mediated by electrostatic forces; stabilized by the Coulomb inter-
action between the (partial) positive charge on hydrogen and the (partial) negative
charge on the electronegative elements A and B. However, hydrogen bonds likely
contain some covalent and van der Waals character too [6].

Almost no real solid can be classified 100% into any one of the above categories.
Nonetheless, the division proves useful when seeking a qualitative understanding of the
largely varying cohesive properties of materials. For elemental solids only three of these
types of bonding interaction are found, namely metallic, covalent, and van der Waals.
Since relatively little is known about the surfaces of van der Waals solids, van der Waals
bonding will not be discussed in the following. Instead we restrict our discussion on
bonding in solids that comes below to metallic and covalent bonding. But, first we discuss
density-functional theory.

3. A Beginner’s Guide to Density-Functional Theory

3.1 Theoretical Framework

Density-functional theory (DFT) is the most popular and robust theoretical approach
currently available for solving the electronic structures of solids and their surfaces.
Although far from a panacea for all physical problems in this domain (or any other), no
other theoretical approach has provided as much basic understanding of the electronic
structures of solid surfaces. DFT has proven capable of computing a host of properties of
condensed matter and their surfaces to reasonable accuracy. What “reasonable” accuracy
is and what properties can be determined will be discussed. But before this we briefly
introduce the theoretical framework that lies behind DFT, and the approximations that
must be made to make it work in practice. We limit this introduction to the very basics
of DFT since this is, after all, a surface physics book and several excellent and detailed
texts on the subject exist [7, 8]. The reader already schooled in the basics of DFT may
jump to section 4.

The Hamiltonian within the Born-Oppenheimer approximation is

H = T e + V nuc°nuc + V e°nuc + V e°e . (4)

T e is the kinetic energy of each of the N electrons given by,

°1

2

NX

i=1

r2
i , (5)
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where r2
i is the Laplacian operator acting on each of the i electrons. V nuc°nuc describes

the electrostatic interaction between the M ions (or nuclei) with fixed coordinates RJ,...N

and charges ZJ...N
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V e°nuc is the electron-ion interaction energy,
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, (7)

with electrons at positions ri, and V e°e is the electron-electron interaction energy given
by,

1

2

N,NX
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1

|ri ° rj|
. (8)

For simplicity and brevity in this section we use atomic units so that

e2 = h̄ = m = 1 , (9)

where e is the electron charge, h̄ is Planck’s constant, and m is the electron mass.

The Hamiltonian can be written in one simple line as done above and slotted neatly into
the Schrödinger equation,

H™ = (T e + V nuc°nuc + V e°nuc + V e°e)™ = E™ , (10)

to deliver us the total energy of the system. The total energy of a given system at its
ground-state, designated as E0, is a highly sought after quantity. Many, if not most,
physical properties of solids (or materials, in general) can be related to total energies or
to differences in total energies.

However, solving the many-body Schrödinger equation is much easier said than done, and
it is impossible to solve exactly for anything but the simplest model systems with 1, 2,
or perhaps 3 electrons, or an infinite “jellium” system. Since solids contain lots (¿ 1023)
of electrons and the potential due to the nuclei is far from the constant of jelium we
have a challenge. The root of the problem is well known. It is the quantity V e°e, the
electron-electron interaction, which contains all the many-body physics of the electronic
structure problem. It depends on (at least) 3N spatial coordinates which are all coupled
by the operator V e°e.

There are many strategies for obtaining accurate approximate solutions to the many-body
Schrödinger equation such as Green-function self-energy theory, quantum Monte Carlo,
configuration interaction (CI), coupled cluster, and effective single-particle theories
such as Hartree-Fock and DFT. The defining characteristic of DFT is that it aims to
determine the ground state electron density distribution, n0, of a system instead of the
many-body wavefunction itself. Since real space is only 3 dimensional, regardless of the
number of electrons in the system, the required minimization is with regard to only
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3 variables and not 3N variables [9]. In principle DFT is thus most useful for many
electron systems. Indeed density-functional simulations of systems with hundreds of
electrons are now common and calculations with thousands of electrons are not unheard of.

Approaches for tackling the many body problem based on the density have been around
since the 1920s [10, 11]. The birth of modern DFT for the electronic structure problem,
however, came with the realization and associated proof by Hohenberg and Kohn in 1964
[12] that the ground state electronic wavefunction, ™0, is a unique functional of the ground
state electron density, n0, i.e.,

™0 = ™0[n0] . (11)

We don’t reproduce the proof of this theorem here since the original paper is of unim-
provable brevity and clarity. However, we do point the interested reader in the direction
of ref. [13] for a subsequent more general formulation.

From the Hohenberg-Kohn theorem it follows that all ground state observables are also
functionals of the ground state density. In particular the ground state electronic energy,
Ee

0, for a given configuration of the ions, is a functional, with a one to one correspondence,
of n0

Ee
0 = Ee[n0] = min

n(r)
h™[n]|T e + V e°nuc + V e°e|™[n]i , (12)

where the electron-nuclei interaction, which in this context is usually referred to as the
“external potential”, can be written explicitly in terms of the density as

V e°nuc[n] =

Z
V (r)n(r)d3r . (13)

A variational principle, sometimes called the second Hohenberg-Kohn theorem, tells us
that a successful minimization of the energy functional will yield the ground state density
and the ground state total energy [14].

A critical problem with eqn. (12), however, is the evaluation of the kinetic energy func-
tional. Although in principle T e is a function of the density a direct evaluation is not
feasible, at least not without introducing significant errors. A practical method for ob-
taining Ee[n] and thus minimizing the functional came from Kohn and Sham with the
application of the Lagrangian method of undetermined multipliers [15]. Hereby, one uses
the fact that the functional in eqn. (12) can be written as a fictitious density functional
of a non-interacting reference system

Ee[n] = T e
s [n] +

Z
V (r)n(r)d3r + EHartree[n] + Exc[n] (14)

where T e
s [n] is the kinetic energy functional of non-interacting electrons of density distribu-

tion n. EHartree is the Hartree energy describing the (classical) electron-electron Coulomb
repulsion given by

EHartree[n] =
1

2

ZZ
n(r)n(r0)

|r° r0| d3rd3r0 . (15)
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And the final term, Exc, is the exchange and correlation energy of DFT, into which all
the complicated quantum-mechanical many-body effects are placed. The next step in this
electronic structure problem in to define an effective potential,

V eÆ(r) =
±
©R

V (r)n(r)d3r + EHartree[n] + Exc[n]
™

±n(r)

= V (r) +

Z
n(r0)

|r° r0| d3r0 +
±Exc[n]

±n(r)
. (16)

from which one obtains the single-particle Schrödinger equation:
Ω
°1

2
r2 + V eÆ(r)

æ
'o

i

(r) = ≤o
i

'o
i

(r) , (17)

which yields the orbitals that reproduce the density of the original many-body system

n(r) =
NX

i=1

|'o
i

(r)|2 . (18)

This is an effective single-particle equation, because V eÆ depends on the solutions that
we are seeking. The Hartree and exchange-correlation potentials depend on n[r], which
depends on the orbitals ', which in turn depend on V eÆ . Thus the problem of solving
the Kohn-Sham equations (eqns. (16)-(18)) has to be done in a self-consistent (iterative)
way. Usually one starts with an initial guess for n(r), then calculates the correspond-
ing V eÆ and solves the Kohn-Sham equations for the '. From these one calculates a
new density and starts again. This procedure is then repeated until convergence is reached.

3.2 Approximations for Exchange and Correlation

So far, within the Born-Oppenheimer approximation, the theory is exact. However, we do
not know the precise form of Exc[n] and V xc(r) = ±Exc[n]

±n(r)
into which we have placed all the

complicated many-body physics. As the name suggests Exc[n] arises from a combination
of two quantum mechanical effects: electron exchange and correlation. Briefly, electron
exchange arises because a many-body wave function must by antisymmetric under
exchange of any two electrons since electrons are fermions. This antisymmetry of the
wave function, which is simply a general expression of the Pauli exclusion principle,
reduces the Coulomb energy of the electronic system by increasing the spatial separation
between electrons of like spin [16]. Likewise electron correlation further reduces the
Coulomb energy between electrons of unlike spin because the motion of each individual
electron is correlated with the motion of all others, helping also to keep electrons of
unlike spin spatially separated. The sum of these two quantum mechanical effects as
embodied in Exc is incredibly difficult to describe. Indeed it is unclear if this functional
can be given in a simple closed form at all. And so to get something useful out of DFT
in practice one needs to approximate Exc. There is no shortage of ways to do this, and
as usual with a large number of anything, the anything gets categorized. Exchange
and correlation functionals are no exception, being most often grouped in evolutionary
terms (generations) or in biblical terms (the rungs of Jacob’s ladder) [17]. Let’s now
look at some of the most popular types of exchange-correlation functional currently in use:
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(a) The local-density approximation (LDA): This is the simplest approximation, and can
be written as

Exc°LDA[n] =

Z
n≤xc°unif (n(r)) d3r , (19)

where ≤xc°unif is the exchange-correlation energy per particle of the homogeneous electron
gas of density n, i.e., the exchange-correlation energy density is taken to be that of a
uniform electron gas of the same density. The exchange energy is known exactly and
the correlation energy is obtained by fitting to the many-body studies of Gell-Man and
Brueckner and Ceperly and Alder [18, 19]. Modern LDA functionals tend to be exceed-
ingly similar, differing only in how their correlation contributions have been fitted to the
many-body free electron gas data. The Perdew-Zunger (PZ) [20], Perdew-Wang (PW)
[21] and Vosko-Wilk-Nusair (VWN) [22] functionals are all common LDA functionals [23].

Strictly, the LDA is valid only for slowly varying densities. Experience with calculations
of atoms, molecules, and solids shows that eq. (19) can in general also be applied to
these systems. Indeed LDA works surprisingly well and much current understanding of
metal surfaces comes from LDA simulations. A partial rationalization of the success of
LDA is provided by the observation that it satisfies a number of so-called sum rules [24–27].

(b) The generalised gradient approximation (GGA): These are the second generation func-
tionals (sitting on the second rung of Jacob’s ladder) in which the gradient of the density,
rn(r), at each coordinate is taken into account as well as the density itself:

Exc°GGA[n] =

Z
n≤xc°unif (n(r))rn(r) d3r . (20)

Thus GGAs are “semi-local” functionals, comprising corrections to the LDA while
(again) ensuring consistency with known sum rules. For many properties, for example
geometries and ground state energies of molecules, GGAs can yield better results
than the LDAs. Although, as we will see, for the properties of metals and their
surfaces, GGA results are not necessarily superior to LDA results. The most widely
used GGAs in surface physics are the PW91 [21] functional, and its close relative
PBE [28]. PBE actually has several off-spring [29]; revPBE [30], RPBE [31], and
PBE-WC [32]. RPBE is the most popular of the off-spring, although the latest addition
to the PBE family, PBE-WC, offers promise for the simulation of solids and their surfaces.

(c) The meta-GGAs : These are the third generation functionals (third rung of Jacob’s
ladder) and use the second derivative of the density, r2n(r), and/or kinetic energy
densities, øæ(n) = 1/2ßi|r'i(n)|2, as additional degrees of freedom. In gas phase studies
of molecular properties meta-GGAs such as the TPSS [33] functional have been shown to
offer improved performance over LDAs and GGAs. However, aside from some benchmark
studies of bulk materials and jellium surfaces, these functionals have not yet been
exploited to any great extent in the solid state.

(d) The hybrid functionals : These fourth generation functionals add “exact exchange” cal-
culated from Hartree-Fock (HF) theory to some conventional treatment of DFT exchange
and correlation [34]. The most widely used, particularly in the quantum chemistry com-
munity, is the B3LYP [35] functional which employs three parameters, a1°3 (determined
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through fitting to experiment [17]) to control the mixing of the HF exchange and density
functional exchange and correlation. It takes the following form:

Exc = Exc°LDA + a1(E
x°HF ° Ex°LDA) + a2¢Ex°GGA + a3¢Ec°GGA . (21)

Reformulating this to eliminate two parameters leads to an equation of the form

Exc = Exc°GGA + a(Ex°HF ° Ex°GGA) , (22)

and setting a = 1/4 (based on the grounds of perturbation theory [36]) leads to a class of
functionals with only as many parameters as their underlying GGAs. If PBE is the GGA
used in eqn. (22) we arrive at the hybrid PBE0 functional [37]. Such functionals have
been shown to offer noticeably improved performance over LDA and GGA functionals
for the calculation of gas phase properties of molecules and band gaps in solids. However,
applications of hybrid functionals to metals and metal surfaces are, as we will see, limited
in number to only a few.

3.3 Other Approximations and Practicalities of Condensed Phase DFT
calculations

Before we can take our electronic structure theory with our chosen exchange-correlation
functional off to compute a metal or a metal surface there are several other issues to
deal with and approximations to make. Good reviews exist on what it takes to perform
a reliable condensed matter DFT simulation (see for example, refs. [38–40]), so we don’t
go into the details here, instead merely point out some of the relevant issues necessary to
appreciate the discussion that comes later.

(a) Periodicity and simulation cells: A finite chunk of crystal contains many atoms; 1023

is not a large number when discussing the number of atoms in a crystal. Fortunately,
crystalline solids have, by definition, periodicity. This periodicity introduces important
elements of simplicity. Notably Bloch’s theorem can be applied, allowing the electronic
structure problem for infinite solids to be tackled in periodic 3D simulation cells, primitive
or otherwise. Surfaces, although only periodic in two dimensions, can nonetheless be
computed within periodic 3D simulation cells by introducing a vacuum region into the
unit cell. In particular the introduction of a vacuum region along just one dimension, for
example along the z axis in Fig. 3, partitions the unit cell into regions of solid (slab) and
vacuum. The periodic boundary conditions ensure that the slab is infinite in the x and y
directions, and also along the z direction the slab and vacuum stack extends infinitely. It
is common to use this periodic slab model in simulations of metallic surfaces and results
from such slab model simulations will be discussed frequently throughout this chapter [41].

(b) Basis sets and electron-ion interactions: The primary computational task in a DFT
calculation is the solution of the Kohn-Sham equations for a given atomic structure and
chemical composition. Invariably for a condensed phase system this requires the use of a
set of basis functions with which to expand the Kohn-Sham orbitals '. This choice of
basis set is of critical importance to the accuracy of an electronic structure calculation;
so much so that first-principles methods are often named according to the basis functions
they employ.
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FIG. 3: Illustration of the supercell approach to model surfaces: the surface is represented by a
periodic stack of slabs separated by vacuum.

Basis sets are constructed from either atom-centered functions or from non-atom-centered
functions or a combination of both. For condensed phase simulations non-atom-centered
basis sets such as plane waves are currently the most popular scheme. Often the choice
of basis set goes hand in hand with the choice of electron-ion interaction and indeed
if one chooses to use purely a plane-wave basis set one must replace the full and
deep electron-ion potential with some approximate potential that can be described
with a tractable number of plane waves. Hiding the core electrons in, for example, a
pseudopotential (PP) or something similar like a projector augmented wave (PAW)
potential are two possibilities [40, 42, 43]. And, indeed, the plane-wave plus PP or PAW
recipe is currently the most popular one for electronic structure simulations of metals and
their surfaces [40, 44]. Alternatively, one may choose to use a mixed basis set in which
the computational cell is partitioned in to distinct regions, each of which is described
with different basis sets. One particular scheme we mention here is the full-potential
linearized augmented plane-wave (FP-LAPW) method [45]. In this scheme plane waves
are used to describe a predefined interstitial region between the atoms in the solid and
the regions close to the cores of the atoms, within predefined “muffin-tin” spheres, are
described by radial functions and spherical harmonics. The FP-LAPW approach is more
computationally expensive than the plane-wave plus PP or PAW approach, but has the
advantage of being a truly all-electron approach. In many cases in solid state systems
FP-LAPW calculations thus provide the benchmark “gold standard” theoretical data
with which to compare other methods. Where possible in the following we will thus
discuss results from FP-LAPW calculations.

4. Bonding in Solids
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FIG. 4: Band structure (a), density of states (DOS) (b), and partial DOS (PDOS) (c) for bulk
Cu as computed from a plane-wave pseudopotential DFT calculation within the LDA. In (c) the
PDOS are projected onto Cu s, p, and d orbitals. The energy zero is the Fermi level (computed
by the authors).

We now introduce some simple models for bonding in metals and semiconductors such
as jellium and hydridization and at the same time assess our theoretical tool of choice,
DFT, at predicting some of the central cohesive properties of solids.

4.1.1 Bonding in Metals

The essential characteristic of metallic bonding is that the valence electrons are delocal-
ized among a lattice of metal atoms. Delocalization is the consequence of heavy overlap
between the individual valence wavefunctions resulting in the valence electrons being
shared by all the atoms in the “community”. In most abstract terms, metals can thus be
perceived as atomic nuclei immersed in a featureless sea (or “glue”) of electrons. This
electron sea leads to bonding that is generally not directional, resulting in close-packed
crystal structures being often favored, such as the fcc and hcp structures. Because of the
strong overlap of the orbitals the resultant electronic wavefunctions or bands of a metal
will thus exhibit a strong dispersion in reciprocal space, k space. As an example we show
in Fig. 4(a) the band structure of bulk Cu.

A useful quantity for interpreting the characteristics of chemical bonding, that we will
use throughout to examine metals, is the density of states. It is defined as

N(≤) =

Z
n(r, ≤)dr =

1X

i=1

±(≤° ≤i) , (23)

where the sum goes over all eigenstates (orbitals) with eigenvalues, ≤i of the Kohn-Sham
Hamiltonian. Cutting through this DOS is the Fermi level (EF ): the energy below which
the one-electron levels are occupied and above which they are not, in the ground-state
of a metal. Again we illustrate these concepts with the example of Cu, displayed in
Fig. 4(b). For future reference, we note that for metals at 0 K the Fermi level is equivalent
to the chemical potential of the electrons.

Another useful quantity, which is not readily accessible in any simple manner from exper-
iment, is the state-resolved DOS, also called the projected DOS (PDOS):
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NÆ(≤) =
1X

i=1

|h¡Æ|'ii|2±(≤° ≤i) , (24)

where ¡Æ is a properly chosen localized function whose overlap with the Kohn-Sham
orbitals is determined. Often it proves useful to pick individual atomic orbitals or groups
of atomic orbitals as localization functions upon which to project the electron density.
For example, we have done this for Cu in Fig. 4(c) from where it can be seen that the
Cu valence band is comprised of s, p, and d states.

4.1.2 Simple Metals and Jellium

It turns out that for the s and p block metals a simple model, namely the jellium model
provides useful insight. In this model the discrete nature of the ionic lattice is replaced
with a smeared out uniform positive background exactly equal to that of the valence
electron gas. In jellium, each element is completely specified by just the electron density
n = N/V , where N is the number of electrons in the crystal and V is its volume. Usually
the electron density is given in terms of the so-called Wigner-Seitz radius, rs, where
rs = (3/4ºn)1/3 which corresponds to the spherical volume in Bohr atomic units available
to one valence electron. The rs of real metals range from ª 2 (high density) to ª 6 (low
density).

For the completely smeared out constant ion density of jellium the electron-ion, ion-ion,
and Hartree energies cancel exactly (Ee°nuc + Enuc°nuc + EHartree = 0) leaving,

E/N = Ts + Exc , (25)
where, à la DFT, Ts is the kinetic energy of the non-interacting electron gas and Exc is
the exchange and correlation energy. It is easy to show that the kinetic energy of the free
electron gas is, in atomic units, Ts = 2.21

r2

s

[2, 46]. The exchange energy per particle can
also be computed exactly from HF theory and together with accurate parameterizations
of the correlation energy, the binding energy of jellium (in atomic units) is

E/N =
2.21

r2
s|{z}
° 0.916

rs

° 0.115 + 0.0313 ln rs

| {z }
. (26)

Ts Exc

The kinetic energy contribution to eqn. (26) is, of course, positive and repulsive, whereas
the contribution from electron exchange and correlation is attractive. The latter is the
glue that hold metals together and arises from the formation of the so-called exchange-
correlation hole. This is a region of charge depletion around each electron due to the
fact that electrons of like spin keep apart because of the antisymmetry condition and the
motion of electrons of unlike spin is correlated (section 3.2). The main consequence of
this region of charge depletion around each electron for the present discussion is that each
electron feels an attractive potential from the surrounding positive jellium background.
Therefore the equilibrium bound state of minimum total energy results from a balance
between the kinetic energy of the valence electrons, which tries to push the atoms apart,
and the exchange-correlation energy, which tries to pull them together. The minimum
in this binding energy curve for jellium occurs at an rs = 4.2 with a binding energy of
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FIG. 5: (a) Schematic illustration of the relative filling of the d and sp densities of states as one
moves from left to right across the transition metals. (b) Computed d and sp partial densities
of states for several 4d transition metals, as obtained from a plane-wave pseudopotential DFT
calculation within the LDA (computed by the authors).

2.2 eV/atom. This is quite close to the cohesive energy, Ecoh, of real sp metals which
fall at around 1-2 eV/atom [47] and quite good agreement considering the simplicity
of the model. Indeed jellium can be modified [2, 48–50] to do better and to describe a
range of properties (for example, phonon spectra, optical absorption, superconducting
transition temperatures, and equations of states) by replacing our initial approximation
of a uniform positive background with something less extreme, like, for example, a weak
pseudopotential.

4.1.3 Transition Metals and Tight Binding

The transition metals belong to three series in the periodic table which correspond to
the progressive filling of 3d, 4d, and 5d states. The presence of the d electrons changes
the picture of bonding in these metals considerably from the simple metals and the
jellium description of metallic bonding no longer suffices. Notably the cohesive energies
rise to significantly more than the 1-2 eV/atom of the simple metals and follow a roughly
parabolic variation across the transition metal series. For example, Ecoh goes from 4.36
to 6.66 to 3.92 eV/atom from Y to Ru to Pd [51].

To understand this variation in Ecoh it is useful to recognize that the electronic structure
of the transition metals is comprised of two largely separate contributions: a broad free-
electron-like sp band; and a considerably narrower d band. We saw this already with
the PDOS plot of Cu (Fig. 4) and we illustrate it again schematically in the top part
of Fig. 5(a). The d band is narrower than the sp band simply because the d valence
orbitals and thus the overlap between them is significantly smaller than the s and p
valence orbitals. For example, the peak maximum of the 3d radial distribution for the
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3d transition metals is typically >2 times closer to the core than the peak maximum of
the 4s radial distributions [52]. For such systems where there is small overlap between
orbitals a tight-binding description in which the system is described by a simple linear
combination of atom centered d orbitals can be used. The simplest version of this applied
to the transition metals is the so called rectangular d band model of Friedel, where the d
PDOS is assumed to be rectangular and Ecoh takes the following form

Ecoh / W

20
Nd(Nd ° 10) , (27)

where W is the width of the d band and Nd is the number of d electrons. As one can
see from eqn. (27) this model leads to a parabolic shape for the cohesive energy over the
transition metal series and suffices at catching the basic chemical behavior that as one
moves from left to right across the transition series one gradually fills up the d band,
which, of course, involves filling the bonding, non-bonding and then anti-bonding states
until finally at the end of the transition metal series, the d band is completely filled.
We illustrate this progression schematically Fig. 5(a). This crude model captures the
qualitative cohesive trend over a large number of elements and with a suitable choice
of the parameter W and the introduction of an (empirical) proportionality constant to
account for repulsion between the ions in the solid, also the absolute cohesive energies
come out quite well. For the interested reader a detailed discussion on this topic can be
found in the book by Desjonquères and Spanjaard [53].

We will see when we move to surfaces that the rectangular d band model helps to explain
trends in surface electronic structures also. However, it must be recognized that this is
merely a highly simplified model of the electronic structures of transition metals. In reality
the DOS results from an integration over the Brillouin zone and so points that occur
often and where the bands are relatively flat will give rise to a high density of states. This
implies that the detailed shape of the d DOS is more complex that the simple rectangular
model assumes and reflects the lattice type of the crystal rather than the filling. This can
be seen in Fig. 5(b) where PDOS from self-consistent DFT calculations are shown for
four 4d metals (Zr, Mo, Ru, and Pd). The d PDOS of the fcc metal Pd is rather similar
to the d PDOS of Cu (also fcc) (Fig. 4). The two hcp metals Zr and Ru exhibit similar
d PDOS and the bcc metal metal Mo, exhibits a large dip in the center of the d PDOS
characteristic of bcc metals [54]. Despite the added complexity, however, it can be seen
from Fig. 5 that the trend embodied in the rectangular d band model with regard to
d band filling holds, which is, of course, the reason for the qualitative success of the model.

4.1.4 DFT for the Cohesive Properties of Metals?

Simple models aside, if we choose to perform a self-consistent DFT calculation in
which we explicitly treat the ionic lattice with, for example a pseudopotential or full
potential treatment, what level of accuracy can we expect to achieve? As always the
answer depends on the properties we are interested in and the exchange-correlation
functional we use. DFT has been used to compute a whole host of properties of metals,
such as phonon dispersion curves, electronic band structures, solid-solid and solid-liquid
phase transitions, defect formation energies, magnetism, super-conducting transition
temperatures, and so on. However, to enable a comparison between a wide range of
exchange-correlation functionals, we restrict ourselves here to a discussion of only three
key quantities, namely (i) Ecoh; (ii) a0, the equilibrium lattice constant; and (iii) B0, the



16

TABLE 1: Bulk properties of Al, Cu, Pd, and Ag, as computed from DFT with the LDA, PBE,
TPSS, and PBE0 exchange-correlation functionals. All data is taken from Refs. [55], [56], and
[57]. Ref. [55] is an all-electron study with a Gaussian basis set. Data from ref. [56] has been
obtained with the plane-wave plus PAW method and data from ref. [57] has been obtained with
the FP-LAPW method.

a0(Å) B0 (Mbar) E

coh(eV)
Ref. [55] Ref. [56] Ref. [57] Ref. [55] Ref. [56] Ref. [57] Ref. [55] Ref. [56] Ref. [57]

Al LDA 4.01 3.98 0.82 0.84 4.07
PBE 4.06 4.04 4.04 0.76 0.77 0.78 3.43 3.60
TPSS 4.04 0.85
PBE0 4.01 0.86 3.39
expt. 4.03 0.79 3.39

Cu LDA 3.53 3.52 1.88 1.92 4.57
PBE 3.64 3.64 3.63 1.50 1.36 1.42 3.48 3.51
TPSS 3.59 1.71
PBE0 3.64 1.30 3.05
expt. 3.60 1.42 3.49

Pd LDA 3.85 3.85 2.35 2.22 5.04
PBE 3.95 3.94 3.95 1.77 1.66 1.63 3.71 3.63
TPSS 3.92 2.00
PBE0 3.92 1.72 2.88
expt. 3.88 1.95 3.89

Ag LDA 4.00 1.49
PBE 4.13 4.15 1.06 0.89 2.52
TPSS 4.08 1.27
PBE0 4.14 0.87 2.33
expt. 4.07 1.09 2.95

bulk modulus.

Table 1 lists a number of DFT and experimental values for a simple metal Al, two noble
metals Cu and Ag, and a transition metal with an unfilled d shell Pd. One example
from each of the first four generations of exchange-correlation functional is given so as
to provide a flavor of the current state of DFT for the cohesive properties of metals. In
addition to the LDA we show results from the PBE (GGA), TPSS (meta-GGA), and
PBE0 (hybrid) functionals. Let’s consider each functional in turn and see what general
conclusions can be drawn:

(a) LDA predicts the smallest lattice constants, the largest bulk moduli, and the largest
cohesive energies. Moreover, compared to experiment the LDA lattice constants are
smaller (ª °2 %), the bulk moduli are larger (ª +10 %), and the cohesive energies are
larger (ª +20 %) for these four materials. These quantities are naturally all related and
reflect the now well-established fact that LDA generally over binds metals (and other
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solids and molecules).

(b) The PBE (GGA) functional results are generally closer to experiment than LDA. The
average errors for these metals are +1.3 % for the lattice constants, and -5 % for both
the bulk moduli and cohesive energies. Naturally this improvement leads to larger lattice
constants, smaller bulk moduli, and smaller cohesive energies. For the late transition
metals and the noble metals this actually results in an over-correction with GGA-PBE
predicting too large lattice constants and too small cohesive energies.

(c) The TPSS (meta-GGA) functional is somewhat difficult to assess. For lattice constants
it is significantly better than LDA and GGA with an error of only 0.5 %, getting all four
metals within 0.04 Å. For the bulk moduli, however, it is not as accurate with an error of
11 %, and unfortunately, Ecoh has not yet been computed for these metals (or any other
metals) with this functional [58].

(d) The hybrid PBE0 functional does not appear to offer any clear improvement over
the other functionals. At an error of 1 % for the lattice constants PBE0 performs worse
than TPSS and is similar to PBE. Furthermore, errors for the bulk moduli and cohesive
energies, both of 10 % are rather disappointing; offering worse performance than the
regular GGA-PBE [59]. Since using functionals with exact exchange when treating
solids (or more precisely periodic systems) generally leads to a considerable increase
in computational effort (about a factor of 35 with a plane-wave basis set according to
one recent estimate [60]) it is difficult to justify their use if one is purely interested in
determining properties such as the lattice constant, bulk modulus and cohesive energy
of metals. In addition other hybrid functionals, such as B3LYP, can perform even worse
[61], with, for example, the computed Ecoh of Mg differing from experiment by almost
100 % [62].

In conclusion, of the functionals tested, no single one stands out as being significantly
superior to the others for treating metals. All of them perform reasonably well in
capturing the large variation in lattice constants and bulk moduli. Periodic trends in
Ecoh are also reproduced. As for the quantitative determination of Ecoh, however, the
situation is far from satisfactory with the choice of exchange-correlation functional crucial
to the value obtained. Moreover, there is no convincing proof to tell us that, for example,
GGA will always be superior to LDA. The identification of a functional, or, indeed any
electronic structure method that is computationally efficient and consistently able to
calculate Ecoh for metals with an accuracy of, for example, less than 5 % error remains
an important unresolved issue in materials science.

4.2.1 Semiconductors and Covalent Bonding

The metallic bonding described in the last section is based largely on a delocalization
of electrons throughout the entire lattice, yielding, as we have said, a sea of electrons.
In covalent bonding, on the other hand, electrons are shared between adjacent bonding
partners through the strong overlap of the wavefunctions on the adjacent atoms. The
extent of this overlap depends in part on the orbital character of the wavefunctions
involved, i.e., in which directions the bonding partners lie. Intrinsic to covalent bonding is
therefore a strong directionality as opposed to the largely non-directional metallic bonds.
When directionality matters the preferred crystal structures will not simply result from
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FIG. 6: Illustration of the formation of sp

3 valence and conduction bands in the tetrahedral
semiconductors. As one goes from C to Si to Ge to Sn the size of the atoms increase, which
increases the band widths and decreases the band gap (Egap).

an optimum packing fraction but instead result from optimal orbital overlap and bonding
between the partners. Often this leads covalent solids to adopt tetrahedral structures
such as the diamond and zincblende structures; with the classic examples of such solids
being the tetrahedral group IV elements (C, Si, Ge, and Æ-Sn). A useful concept for
understanding such structures and indeed covalent materials in general is what is known
as hybridization, which we now briefly discuss.

Hybridization or hybrid orbital formation has proved to be an extremely helpful and in-
structive concept for understanding the structure and bonding in many covalent materials
(solids and molecules). Here we introduce the basic ideas of hybrid orbital formation with
the single illustrative example of the group IV elements, C, Si, Ge, and Sn. All four el-
ements have four valence orbitals with the valence configuration ns2, np2 (A in Fig. 6).
One finds that it is possible to make linear combinations of these four valence orbitals
to yield a new set of hybrid orbitals. The particular set of hybrid orbitals relevant to
the present discussion are the sp3-hybrid functions. These four sp3 hybrid orbitals can be
written down as

¡1 =
1

2
(s + px + py + pz) (28)

¡2 =
1

2
(s + px ° py ° pz) (29)

¡3 =
1

2
(s° px + py ° pz) (30)

¡4 =
1

2
(s° px ° py + pz) (31)

yielding orbitals which point to the four corners of a tetrahedron (B in Fig. 6). This set
of hybrid orbitals corresponds to the orbitals of an excited state of the atom, i.e., this
set of hybrid orbitals is less stable than the original set of atomic orbitals, by an amount
known as the hybridization energy. In certain circumstances, however, it is possible for
hybrid orbitals on adjacent atoms to bond more effectively with each other than the
atomic orbitals would have done and in so-doing render the composite (molecule, solid)



19

system more stable. Or, in other words, the energy gain upon chemical bonding between
the hybrid orbitals outweighs the hybridization energy cost. For the present example of
sp3 hybrid orbitals this will be the case when the elements are arranged in a tetrahedral
structure. Overlapping hybrid orbitals on neighboring sites produce then bonding and
anti-bonding levels (C in Fig. 6), which in the solid broaden into semi-conductor valence
and conduction bands (D in Fig. 6). The fact that hybridization, which is essentially a
mathematical construct to change basis functions, provides a qualitative understanding
of observed electronic structures in real materials is where the real value of the concept
lies. In the present context, for example, hybridization can be used to rationalize the
electronic structures of the group IV elements and, in particular, the qualitative trend in
the size of the band gap in tetrahedral semiconductors. In C, Si, Ge, and Sn the splitting
between the valence s and p shells are all around 7 to 8 eV. In the solid, however,
the measured gaps between the valence and conduction bands are: C = 5.5 eV; Si =
1.1 eV; Ge = 0.7 eV; and Æ-Sn = 0.1 eV. This trend can be understood through sp3

hybrid formation, which in the solid leads to sp3 bonding (valence) and sp3 antibonding
(conduction) bands. The width of the bonding and antibonding bands, and hence the
band gap, depends upon the overlap between atoms in each solid. This is, of course,
related to the “size” of the individual elements, i.e., the band gap depends on the extent
of orbital overlap. Carbon (in the diamond structure) therefore exhibits the largest
band gap and Æ-Sn the smallest. This trend can also be captured in DFT calculations,
although the value of the computed Kohn-Sham band gap depends sensitively on the
exchange-correlation functional employed, which brings us to the question of the accuracy
of DFT for covalently bonded elemental solids.

4.2.2 DFT for the Cohesive Properties of Elemental Covalent Solids?

As we asked before for metals, we now consider what level of accuracy to expect if we
choose to perform a self-consistent DFT calculation. The properties considered are again
Ecoh, a0, and B0. Table 2 lists the values obtained for each of these quantities for C, Si,
and Ge with the LDA, PBE, TPSS, and PBE0 functionals. As before, let’s consider each
functional in turn and see what general conclusions can be drawn:

(a) Like we saw for metals, LDA predicts the smallest lattice constants and the largest
cohesive energies. Compared to experiment the LDA lattice constants are ever so slightly
smaller (-0.6 to -0.1 %). The cohesive energies are significantly larger (+14 to +22 %)
and the bulk moduli straddle the experimental values (being 5 % smaller for Si and 3 %
larger for C).

(b) The PBE functional predicts lattice constants that are marginally larger than
experiment (+0.5 % to +2.0 %), just as this functional did for metals. The bulk moduli
are less than the experimental values (-17 % to -5 %) and the cohesive energies are within
about 4 % of experiment, considerably improved compared to LDA.

(c) The TPSS functional appears to offer equivalent performance to PBE for lattice
constants and bulk moduli. For Ecoh, TPSS actually appears to be inferior to PBE,
predicting cohesive energies that are 6 to 2 % smaller than the experimental values.

(d) For metallic systems the hybrid PBE0 functional did not appear to offer any clear
improvement over the other functionals. However, for C and Si (Ge has yet to be treated
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TABLE 2: Bulk properties of C, Si, and Ge, as computed with the LDA, PBE, TPSS, and
PBE0 exchange-correlation functionals. All data is taken from Refs. [63] and [56]. Ref. [63] is
an all-electron study with a Gaussian basis set. Data from ref. [56] has been obtained with the
plane-wave plus PAW method. Note that the PBE0 functional has not yet been employed to
treat Ge.

a0(Å) B0 (Mbar) E

coh (eV)
Ref. [63] Ref. [56] Ref. [63] Ref. [56] Ref. [63] Ref. [56]

C LDA 3.54 4.54 8.83
PBE 3.58 3.57 4.22 4.31 7.62 7.71
TPSS 3.58 4.17 7.12
PBE0 3.55 4.67 7.59
expt. 3.57 4.43 7.37

Si LDA 5.43 0.95 5.26
PBE 5.49 5.47 0.89 0.88 4.50 4.56
TPSS 5.48 0.92 4.36
PBE0 5.43 0.99 4.56
expt. 5.43 0.99 4.62

Ge LDA 5.63 0.76 4.72
PBE 5.77 0.63 3.82
TPSS 5.73 0.66 3.78
PBE0
expt. 5.65 0.76 3.87

with the PBE0 functional) PBE0 does, indeed, offer slightly improved performance
compared to the other functionals. PBE0 gets the lattice constants of both materials
correct to within 1 %, the bulk moduli to within 5 % and the cohesive energies to within
3 % of the corresponding experimental values.

In conclusion, we again see that all functionals discussed perform reasonably well in
capturing the variation in lattice constants and bulk moduli for the small collection of
covalently bonded solids considered. As we observed for metals, the situation with regard
to the quantitative determination of Ecoh is far from satisfactory with the choice of
exchange-correlation functional crucial to the value obtained. Finally, before closing this
section we briefly discuss one further important aspect of DFT calculations of covalent
elemental solids, namely how the computed band gaps compare to the experimental ones.
We have indicated already that the computed Kohn-Sham band gap depends sensitively
on the exchange-correlation functional used and generally it is found that the LDA
and GGA functionals predict Kohn-Sham band gaps that are considerably smaller than
the experimentally observed optical band gaps. The LDA and PBE band gaps of C in
the diamond lattice, for example, are ª4.2 and ª4.8 eV, respectively, compared to the
corresponding experimental value of ª7.3 eV [56, 64]. Moving to the hybrid functionals
such as PBE0 leads to increased band gaps through the inclusion of a fraction of Hartree-
Fock exchange and generally (but not always) this improves the band gap compared
to the pure DFT functionals. The PBE0 band gap for C, for example, is at ª6.7 eV
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fcc(111) fcc(100) fcc(110)

bcc(100) bcc(110)bcc(111)

FIG. 7: Structures of some bulk-truncated (i.e., unreconstructed) low Miller index surfaces of
fcc and bcc metals. The surface unit cell is shown in each case. The density of surface atoms
decreases from left to right for the fcc surfaces and from right to left for the bcc surfaces.

in much better agreement with experiment than either the LDA and PBE functionals [56].

5. Surface Structure

Knowledge of the atomic arrangement in the surface region is a prerequisite to under-
standing the properties of surfaces, and so let’s now briefly consider the structures of
surfaces. As we have said metals come most often in fcc, hcp, or bcc structures. Of the
many ways to cleave such metallic crystals to produce a surface the most interesting to us
here are those with low energy. These tend to be close-packed surfaces such as the (111),
(100) or (110) surfaces of fcc and bcc metals, or the (001), (100), and (101) surfaces of
the hcp metals. For orientation purposes we show the structures of the aforementioned
fcc and bcc metal surfaces in Fig. 7. Elemental semiconductors, on the other hand, most
often come in the diamond lattice. The three low-index faces of the diamond lattice are
the (111), (110), and (001) surfaces, which are shown in Fig. 8. Both the (111) and (110)
surfaces of the diamond lattice have hexagonal symmetry, whereas the (010) surface has
square symmetry.

Because the atoms at the surface of a crystal have less neighbors than they do in the
bulk it is unlikely that they will remain at their precise “bulk truncated” positions.
Rather, the atoms are likely to move in response to their new environment. Minor
displacements in which the top few layers of atoms move inward or outward along
the surface normal, but retain their periodicity parallel to the surface, are generally
referred to as surface relaxations. More pronounced alterations of the atoms in the
surface region involving lateral displacements which alter their translation symmetry
parallel to the surface and/or changes in the surface layer atomic density are gener-
ally known as surface reconstructions. We illustrate the distinction between surface
relaxations and surface reconstructions in Fig. 9 and now discuss some examples of
each type of behavior. In general, freshly cleaved metal and semiconductor surfaces are
both liable to undergo surface relaxations and/or reconstructions. However, because
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FIG. 8: Top and side views of the structures of the low-index bulk-truncated (i.e., unrecon-
structed) surfaces of the diamond lattice. In each sub-figure the size of the atoms decreases as
one moves deeper into the selvedge. The dangling bonds on the surface atoms (in a single unit
cell) are also indicated. For the (001) surface the dehybridized p states are also shown on the
right. Note that for the (111) surface two cleavage planes are possible. The one shown is the one
that involves cleavage along two widely spaced layers (as opposed to two narrowly spaced layers),
leading to a surface with one dangling bond per surface atom as opposed to three dangling bonds
per surface atom.

making a surface in a covalent crystal involves cleaving highly-directional bonds, the
rearrangement of the atoms at semiconductor surfaces often involves more substantial
reconstructive displacements of the atoms in the selvedge as opposed to minor relaxations.

5.1 Surface Relaxation

Simple surface relaxations in which only the interlayer spacings of the top layer or so
change are often observed for metal surfaces. For such systems the well-known model
of Finnis and Heine is applicable and used to rationalize how the surface atoms can
be expected to relax [65]. This model predicts: (i) a small contraction for the first
interlayer spacing; and (ii) that the contraction is more pronounced for open surfaces
than for close-packed ones. The original application was to the low Miller index surfaces
of Al, for which contractions of 2, 5, and 16 % were predicted for the (111), (100), and
(110) surfaces, respectively. Such contractions were not inconsistent with experimental
observations at the time [66–68].

The physical basis of the model is the Smoluchowski smoothing of the electron charge
density at the surface [69]. When a crystal is cut to form a surface, the electrons
rearrange in order to reduce the charge-density corrugations and by this way their
kinetic energy. This leads to a motion of the electrons left on top of the surface atoms
downward to the crystal resulting in an electrostatic attraction of the top layer ions
toward the rest of the crystal. As electronic corrugations are rather flat for close-
packed surfaces, small contractions are expected in that case. For more open surfaces
larger contractions can be expected. Landman et al. [70] subsequently expanded the
model to show that the redistribution of electronic density extends over several layers,
giving rise to a tendency for a damped oscillatory nature to the relaxation. Indeed
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FIG. 9: Schematic side views of: (a) a bulk truncated surface; (b) a relaxed surface; and (c) a
reconstructed surface.

for Al(110) subsequent low-energy electron-diffraction (LEED) analysis confirmed the
prediction of multilayer relaxation [71], thus representing an early success for the predic-
tive nature of electronic structure theories in their application to the structure of surfaces.

The model as outlined above, however, is not as general as one might be lead to expect,
and not as widely applicable as it is often said to be [72, 73]. In particular the closest
packed hexagonal surfaces of the fcc and hcp metals often undergo an “anomalous”
expansion of the first to second layer distance relative to the bulk interlayer spacing. This
is clear from Table 2 where measured interlayer relaxations at a number of hexagonal
close-packed metal surfaces are listed. This table includes the results of DFT (LDA
and PBE) calculations and LEED analyses for simple, noble, and transition metals
aiming at providing a broad and representative overview of the behavior of close-packed
metal surfaces. It can be seen from the table that LEED predicts an expansion of
the first to second interlayer spacing of Al(111), Pd(111), and Pt(111). For two of
these surfaces (Al and Pt) there is excellent agreement between theory and experiment
suggesting that the expansion is a real effect. For Pd(111) and some other surfaces
not listed in Table 2, such as Rh(111) and Ru(0001), experiment and theory disagree
and the question of how exactly the topmost layer relaxes is still somewhat unclear [74–76].

5.2 Surface Reconstruction

For many surfaces the displacements of the atoms from their bulk truncated positions
are more pronounced than a simple relaxation in which only the interlayer spacings
change. These may involve lateral displacements of atoms within the surface layers
and/or a change in the surface layer atomic density. First we discuss some examples of
reconstructions at metal surfaces and then some examples at semiconductor surfaces.

5.2.1 Reconstructions of Elemental Metal Surfaces

In Fig. 10 we show three well-known examples of the common types of reconstructions
observed for clean metal surfaces. Following Titmuss et al. [77] we discuss these examples
as representative of three classes of reconstruction that may occur at metal surfaces:

(a) Displacive reconstructions at constant layer density: Some surfaces undergo displacive
intralayer lateral relaxations within the surface layers, lowering the layer symmetry but
not the density. Within this class of displacive reconstructions the c(2£ 2) reconstruction
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TABLE 3: Percentage interlayer relaxations, ¢dij , for several (unreconstructed) close-packed
hexagonal metal surfaces, as obtained from DFT (LDA and PBE) calculations and LEED anal-
yses. All data is from ref. [57].

Al(111) Ti(0001) Cu(111) Pd(111) Pt(111)
¢d12 LDA +1.35 -6.44 -1.58 -0.22 +0.88

PBE +1.35 -6.84 -1.19 -0.01 +1.14
LEED +2.2 ± 1.3 -2.1 -0.7 ± 0.5 +1.3 ± 1.3 +0.87
LEED +0.9 ± 0.5 -4.9 -0.3 ± 1.0 +2.4 ± 0.9 +1.20
LEED +1.7 ± 0.3 +1.0 ± 0.1
LEED +1.3 ± 0.8 +1.0

¢d23 LDA +0.54 +2.64 -0.73 -0.53 -0.22
PBE +0.54 +2.82 -0.65 -0.41 -0.29
LEED +0.5 ± 0.7 +1.4 -1.3 ± 1.3
LEED +0.7 ± 0.9

¢d34 LDA +1.04 +0.37 -0.43 -0.33 -0.17
PBE +1.06 -0.51 -0.24 -0.22 -0.21
LEED -1.1 +2.2 ± 1.3
LEED +0.7 ± 1.8

of W(100) is the most well characterized. As illustrated in Fig. 10(a) the top layer of
W atoms reconstructs from the ideal square lattice to a “zigzag” atomic arrangement.
This is achieved through a pair of symmetry breaking lateral displacements as indicated
by the arrows in the top part of Fig. 10(a). LEED structural analysis gives a lateral
displacement of the top layer W atoms of ª 0.2 Å [78–81]. Although not apparent
from Fig. 10(a) this reconstruction also involves displacements of the sub-surface W
atoms as well as a contraction of the topmost interlayer spacing of 6 %. The results
obtained from DFT LDA calculations are consistent with the experimentally determined
structural model and point to a coupling between one of the surface states of W(100)
and a particular surface phonon mode as the origin of the reconstruction [38, 82].

(b) Changes in surface layer atomic density : Large-scale surface reconstructions produc-
ing changes in the surface layer density have been identified on several metal surfaces.
Notably the top layer of the (100) surfaces of Pt, Au, and Ir reconstruct from their
ideal square arrangements into quasi-hexagonal configurations known as “hex” phases
[83–90]. Because of the different symmetries of the reconstructed top layer and the
substrate, generally commensurate hex phases have rather long periodicities; (5£ 1) and
(20 £ 5) surface unit cells have been observed. Indeed the (5 £ 1) periodicity, which
takes place on Ir(100), is the simplest of the hex reconstructions found and the one
displayed in Fig. 10(b). Again this reconstruction involves displacements of subsurface
atoms and a change in surface interlayer distances. Based on DFT calculations Fiorentini
et al. [91] suggested that the driving mechanism for this class of reconstruction is the
tensile excess stress present in the unreconstructed surfaces. This explanation, which
finds its origin in a depletion of d charge from the surface layer, also explains why the
4d isoelectronic upper neighbors of Pt, Au, and Ir, i.e., Rh, Pd, and Ag, do not reconstruct.

Another surface reconstruction that fits happily into this class of reconstructions is the
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FIG. 10: Illustration of three bulk truncated surfaces and typical types of reconstruction that
they undergo. (a) depicts the (1£1) to c(2£2) reconstruction of bcc W(100). The arrows indicate
the direction in which the top layer W atoms move upon reconstruction. (b) displays an example
of the “hex” reconstruction that the late 5d (fcc) transition metals undergo. The specific example
is the (1£ 1) to (1£ 5) reconstruction of fcc Ir(100). (c) displays the (1£ 1) to (1£ 2) “missing
row” reconstruction that occurs on the (110) surfaces of the late 5d (fcc) transition metals. The
rows of atoms removed by the reconstruction are indicated by the £ at the edge of the unit cell.

so-called herring bone reconstruction of Au(111) [92–96]. Here a uniaxial contraction
along one of the h110i directions in the top layer leads to a layer with a higher density
of atoms in it than the unreconstructed (111) surface and a surface unit cell of (n£

p
3)

(n = 22).

(c) Missing row reconstruction of fcc (110) surfaces : A well-known class of reconstruction
is the so-called missing row reconstruction of the fcc (110) surfaces [97–101]. The
(110) surface is the most open of the widely studied low Miller index fcc surfaces.
Consequently, it has the lowest surface layer atomic density and the highest surface
energy, making it the most likely to reconstruct. In the case of Ir, Pt, and Au the
clean (110) surface spontaneously reconstructs, giving rise to the (1 £ 2) missing
row reconstruction. As the name suggests every second close-packed row along the
(110) surface is removed (Fig. 10(c)), resulting in a surface comprised of ribbons of
(111)-like microfacets. On closer inspection, LEED as well as DFT find that each
of the missing row reconstructed surfaces show all three effects discussed above: a
relaxation of the first to second interlayer distance; a change in the surface layer
atomic density; and a displacive reconstruction of some of the surface layers parallel to
the surface. For the interested reader ref. [102] and references therein provides a more
detailed discussion of this particular type of reconstruction for the specific case of Pt(110).

5.2.2 Reconstructions of Elemental Semiconductor Surfaces

This is a huge issue and one that will be covered at length throughout this and subsequent
volumes. The enormity of the topic, which will only briefly be touched upon now, can
immediately be grasped by recognizing that already in 1994 >300 surface phases of Si
alone had been reported [103, 104]. This implies that elemental semiconductors exhibit
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a much richer variety of reconstructions than metal surfaces do, which is certainly the
case. Fortunately, however, much of the qualitative insight into semiconductor surfaces
has been condensed into a series of general principles, first laid down by Duke [105, 106]
and discussed at length in several other places [104, 107]. A discussion of the relevant
principles [108] along with a few examples is sufficient to provide a flavor for how some
of the most-common elemental semiconductor surfaces behave.

The first principle which we discuss here is often described as the basic or guiding
principle of semiconductor surfaces and it states that “the surface structure observed will
be the lowest free energy structure kinetically accessible under the preparation conditions”.
This, rather obvious statement, is true of any surface. However, it is especially pertinent
to semiconductors since which surface is observed is known to depend sensitively on
cleavage, annealing, and growth conditions.

Stemming from the guiding principle are a series of other principles. Of relevance to the
present discussion on elemental semiconductors is one that states that “...the surface
atomic geometry is determined primarily by a rehybridization-induced lowering of the
surface state bands associated with surface bonds or (filled) anion dangling bond states”.
Put another way this principle simply implies that a surface tends to minimize the number
of dangling bonds by formation of new bonds and/or rehybridization. The concept of the
“dangling” bond is absolutely key to understanding semiconductor surface reconstruc-
tions. In an elemental semiconductor, covalent bonds between neighboring atoms contain
two spin paired electrons in, for example, an sp3 hybrid orbital. When a surface is created
at least one such bond per surface atom is cut, leaving some sp3 hybrid orbitals to stick
out of the surface. These orbitals are called dangling bonds and they contain less than
two spin paired electrons. Dangling bonds are unstable and reactive and so the above
principle is simply stating that real surfaces will relax or reconstruct to reduce the number
of dangling bonds they possess and, in so doing, minimize the total energy of the system.
Dangling bond states are surface-localized orbitals that reside at an energy between
the valence and conduction bands. Thus these are surface states. Naturally, dangling
bonds on neighboring atoms interact and so the dangling bond levels get broadened into
bands. As an example we show in Fig. 11 the computed surface band structure of the
unreconstructed (100), (110), and (111) surfaces of Si. These are the prototype dangling
bond systems; with the dangling bonds clearly seen in the fundamental gap in each system.

The other principle relevant to elemental semiconductors is one that states that “...sur-
faces can lower their energies by atomic relaxations leading to semiconducting (as opposed
to metallic) surface state eigenvalue spectra”. Basically this principle implies that a
semiconductor surface tends to be insulating or semiconducting but not metallic. In
general, if there is a single dangling bond per surface atom or when two or more dangling
bond bands overlap then the surface is metallic. Otherwise the surface is semiconducting.
All three bulk-truncated surfaces of the diamond lattice shown in Fig. 8 are metallic and
thus liable to reconstruct.

Let’s now consider how the (001) and (111) surfaces of the diamond lattice behave.
First, the (001) surface. This surface, in particular the (001) surface of Si, has been
examined in detail at least as much as any other solid surface; often being described
as the backbone of the semiconductor industry. The Si(001) surface undergoes a large
number of reconstructions, notably to p(2£1), p(2£2), and c(4£2) phases. We discuss
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FIG. 11: Surface band structures of the bulk-truncated (111), (110), and (001) surfaces of Si, as
obtained from empirical tight-binding calculations (after refs. [109, 110]).

the (2£1) reconstruction, which is also observed for Ge and C. The atoms at the surface
of the non-reconstructed (001) surface are second nearest-neighbors and each is involved
in just two nearest-neighbor covalent bonds. As a result each surface atom is relatively
unstable with two dangling sp3 orbitals, as shown schematically in Fig. 8. Partly this
situation is remedied through dehybridization of the sp3 orbitals on the surface atoms
back to the original atomic s and p orbitals, since lacking their tetrahedral environment
the incentive to stay as sp3 hybrid orbitals is diminished. Dehybridization leaves the
surface atoms with p or sp orbitals parallel to and perpendicular to the surface, known
in this specific system as bridge bond and dangling bond states, respectively. These are
the states that are shown schematically on the right hand side of Fig. 12 and also the
states labeled D and B in Fig. 11 Unsaturated states on neighboring atoms can interact
and in so-doing further reduce the total energy of the system. Specifically this is achieved
through the formation of dimers between atoms on adjacent rows. In the simplest case
this gives rise to a (2£1) reconstruction as indicated in Fig. 12.

In Fig. 12 the dimers are parallel to the surface in a symmetric configuration known as
the symmetric dimer model (SDM). However, the dimers need not necessarily lie parallel
to the surface but instead may buckle or tilt. The (2£1) reconstruction comprised of
buckled dimers is known as the asymmetric dimer model (ADM). For the particular
case of Si(001) in the (2£1) reconstruction the question of whether the dimers buckle or
not was intensely debated in the 1980s and early 1990s. Now it is well established that
the ADM is favored for the (2£1) reconstruction on Si(001), and likewise for the (2£1)
reconstruction of the (001) surface of Ge [112]. On C(001), however, the dimers in the
(2£1) phase do not buckle and the SDM is favored [113, 114].

Important contributions to the understanding of the (001) surfaces of the group IV
elements in the diamond lattice have come from DFT, including an explanation as to
why the dimers buckle on Si and Ge but not on C [110, 111, 115] Specifically, DFT
reveals that on Si and Ge the buckling is required to split the energies of the dimers’
bonding and anti-bonding states (in this context called the º and º§ bands) to yield a
semiconducting rather than a metallic surface. For C(001)-(2£ 1) the splitting is already
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FIG. 12: Left: Bulk-truncated structure of the (001) surface of the diamond lattice. Right: the
(2£ 1) reconstruction of the (001) surface within the symmetric dimer model (SDM).

FIG. 13: Left: Section of the DFT (LDA) surface band structure of C, Si, and Ge (001)-(2£ 1).
The circles and squares correspond to experimental photoemission data. Right: Side views of the
optimized DFT (LDA) structures of these surfaces. For C the symmetric dimer model (SDM) is
favored, whereas on Si and Ge the asymmetric dimer model (ADM) is favored. Bond lengths are
given in Å (from refs. [110, 111]).
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FIG. 14: Left: Bulk-truncated structure of the (111) surface of the diamond lattice. Right: the
(2£1) reconstruction of the (111) surface within the º-bonded chain model. Reconstruction from
the (1£ 1) to the (2£ 1) structure involves cleavage of the bond between atoms 1 and 5 and the
formation of a new bond between atoms 4 and 5.

large enough that the surface is insulting in the SDM anyway. This can be clearly seen
in Fig. 13 where partial band structures for the various (2 £ 1) phases under discussion
are displayed as well details of the optimized DFT (LDA) structures of each phase. For a
more detailed account of the chemical and physical differences between the (001) surfaces
of C, Si, and Ge the interested reader is referred elsewhere [110, 111].

Moving now to the (111) surface of the group IV elemental semiconductors. For this
surface two distinct bulk-truncated terminations are possible. One involves cleavage
through one of the double-layers stacked along the [111] direction of the bulk yielding a
surface with three dangling bonds per surface atom. The other involves cleavage above
or below one of the double layers yielding a surface with one dangling bond per surface
atom. Not surprisingly the (111) termination with three dangling bonds per surface atom
is less stable than the (111) cleavage plane with one dangling bond per surface atom. It
is the low energy single dangling bond termination that is shown in Fig. 8 and Fig. 14.

As we have indicated already the bulk-truncated (111) surface of Si is unstable and
undergoes reconstruction, notably to (2£1) and (7£7) phases. We discuss here the
simpler (2£1) reconstruction and refer the interested reader to many of the other texts
which describe at length the nature of the (7£7) reconstruction, which is indeed the most
famous but also most complex reconstruction in surface physics [104, 106, 107, 116, 117].

The bulk-truncated (111) surface of Si is comprised of hexagonal bilayer rings within
the plane of the surface as well as 6-membered rings perpendicular to the surface. The
reconstruction into the (2£1) phase involves a specific rearrangement of the bonding
pattern between the surface bilayers and the subsurface atoms. With regard to Fig. 14
it can be seen how this is achieved. Specifically, the bond between the atoms labeled
1 and 5 breaks and a new one forms between the atoms labeled 4 and 5. Concomitant
displacements of the atoms leave atoms 1 and 2 in the first atomic sub-layer and atoms 3
and 4 in the second sub-layer. This leaves the surface with zig-zag chains running along
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FIG. 15: Side view of the º-bonded chain model for the (111) surface of the group IV elements
in the diamond lattice and how it can be transformed in to two related structures known as the
“chain-left” or “chain-high” and “chain-right” or “chain-low” isomers. After ref. [107].

the [110] direction connected to the subsurface atoms by 5- and 7-membered rings, as
opposed to the 6-membered rings of the bulk structure. This zig-zag chain model for
the (2£1) reconstruction of the (111) surface of the diamond lattice is known as the
“º-bonded chain model ”. In the original º-bonded chain model, due to Pandey [118],
all the top layer Si atoms in the º-bonded chains reside at the same height. However,
like the situation just discussed for the Si dimers of the (100)-(2£1) reconstruction, the
atoms in the º-bonded chains are liable to buckle. Specifically one can generate two
analogue structures by titling the the two atoms of the chain in clockwise or anticlockwise
directions. How the two resulting structures, the so-called “chain-high” or “chain-left”
and “chain-low” or “chain-right” structures are generated is illustrated in Fig. 15. For
Ge(111)-(2£1) the anticlockwise chain-high isomer is favored. For Si(111)-(2£1) both the
chain high and chain low structure are almost degenerate in energy and for C(111)-(2£1)
no buckling is found. For a fuller discussion focussing on the physical origin of the
buckling the interested reader is referred to the book of Bechstedt [107].

5.3 Surface Structure Summary

To conclude our discussion on semiconductor and metal surface structures, these surfaces
tend not to retain their bulk-truncated structures and a huge variety of relaxations and
reconstructions are possible. The interested reader may wish to refer to Tables 2.3a and
2.3b of Somorjai’s textbook on surface chemistry for a more extensive overview of the
many and varied structures clean solid surfaces can adopt [72].

6. Surface Energetics

6.1 Introduction and Experimental Considerations

The energy to make a surface at a given temperature and pressure is the Gibbs surface
free energy, GS. The Gibbs surface free energy thus determines the surface that will form
under real world everyday conditions, and can be defined by the relation

G = NG0 + AGS , (32)
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where G is the total free energy of the solid, N is the number of atoms in it and A is the
surface area [72, 116]. Thus GS is the excess free energy that the solid has over the value
G0, which is the value per atom in the infinite solid. Excess implies that GS is a positive
quantity, i.e., it costs free energy to make more surface. For elemental systems and in
the absence of an applied electrical field this is always the case. For binary, ternary or
more complex materials, in which the precise stoichiometry of bulk and surface phases
becomes unclear, there have been suggestions that GS need not be positive under all
conditions [119, 120].

The Gibbs surface free energy will usually be different for different facets of a crystal. Such
variations, often referred to as surface free energy anisotropies, are key to determining
the equilibrium crystal shape (as well as many other properties) of materials because
at equilibrium a crystal seeks to minimize its total surface free energy subject to the
constraint of constant volume.

To see exactly how variations in GS impact upon the equilibrium crystal shape of
materials let’s now examine a simple 2D model system. Consider the schematic (ccp-like)
crystal shown in Fig. 16(a). One can imagine different planes along which to cleave
this crystal to produce a surface. Some possible cuts are indicated in Fig. 16(a) and
are labeled by the angle, £, that they make with the [01] plane. Clearly, in this model
system, cuts along £ = 0± and £ = 90± will yield identical close-packed surfaces, cleavage
along the plane £ = 45± will also yield a close-packed surface but with a lower density
of atoms in the top layer, and cleavage along the planes £ = 22.5± and £ = 67.5± will
produce the most corrugated (stepped) surfaces. Generally the surface energy increases
with the corrugation of the surface, something we will discuss in more detail below, and
thus one can expect that surfaces cut along the planes £ = 0± and £ = 90± will have
the smallest surface energy and surfaces cut along the planes £ = 22.5± and £ = 67.5±

will have the largest surface energy with £ = 45± coming somewhere in between. A
so-called polar surface energy plot provides a particularly convenient and concise way
in which to represent the dependence of GS on £, GS(£), and is a useful first step
towards determining the equilibrium crystal shape. In Fig. 16(b), the first quadrant of
one such plot for the model system shown in (a) is displayed. Such plots are constructed
by drawing radial vectors from the origin with a magnitude proportional to GS for
each value of £. Thus for the simple model in Fig. 16(a) the magnitude of

°!
GS(0) is

relatively small,
°!
GS(22.5) and

°!
GS(67.5) are relatively large and

°!
GS(45) is somewhere in

between. From such a polar surface energy plot it is then straightforward to determine
the equilibrium crystal shape by applying the Wulff theorem or by, in other words,
performing a Wulff construction [121]. The aforementioned Wulff theorem is remarkable
in two respects: its simplicity to apply and its difficulty to prove [122]. Here, we deal
with the application, which tells us to construct planes (or lines in this 2D example) at
the endpoints of and perpendicular to the radial GS vectors (Fig. 16(c)). The resultant
planes (lines) are known as Wulff planes (lines) and it is simply the inner envelope - the
inner Wulff envelope - of all the planes (lines) connected normal to the vectors of the
surface energy plot that yields the equilibrium crystal shape (Fig. 16(d)). The resultant
2D crystal shape obtained by performing a Wulff construction on all four quadrants of a
polar surface energy plot for the model system in Fig. 16(a) is shown in Fig. 16(d).

Before moving away from Wulff constructions, we briefly make a few rather self-evident
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FIG. 16: (a) Schematic illustration of a 2D model crystal. Several possible cleavage planes of this
crystal, labeled by the angle, £, that they make with the [01] symmetry plane, are indicated.
(b) The first quadrant of a polar surface free energy plot for the model system sketched in (a),
and assuming a correlation between the corrugation of a surface and its surface energy. For each
value of £ radial vectors are drawn from the origin of the plot with a magnitude proportional to
G

S at that value of £, i.e., the function G

S(£) is plotted. (c) and (d) The Wulff planes of the
polar surface energy plot sketched in (b) and the resulting equilibrium crystal shape (for all four
equivalent quadrants) of the model system displayed in (a).

but nonetheless worthwhile comments upon it. First, the distance of each face from the
center of the crystal is proportional to the surface energy of that face. The equilibrium
crystal shape for a purely isotropic crystal is thus a sphere. Second, the Wulff theorem
can be used in “reverse”, i.e., given a crystal of a particular shape one can use the Wulff
theorem to extract the relative surface energies of the different facets exposed. This is a
powerful and commonly used technique for extracting relative surface energies of different
crystal facets from experiment. Third, if one cleaves a crystal along a direction which
does not form part of the equilibrium boundary, the crystal will spontaneously facet
along those directions that do, assuming, as always, that the system is at equilibrium.
Fourth, and finally, as the volume of the crystal decreases to the nanometer scale, the
accuracy of the predictions one can obtain from the Wulff theorem become questionable
because the energetic contribution of edges and corners at the boundary between each
face becomes non-negligible.

Although the standard application of the Wulff theorem provides a means to obtain
relative surface free energies from experiment, the determination of absolute surface
free energies is, on the other hand, notoriously difficult. This is mainly because it is a
small quantity and sensitive to the presence of vacancies, adatoms, steps, and impurities.
Furthermore, most experimental surface free energy measurements from which absolute
surface free energies can be obtained are indirect and old, originating in the mid 1970s and
before. Although in compilations of surface energies “recommended values” may be given,
one would need to be brave to make a bet of any substance on the validity of a tabulated
value of a surface free energy. One need only look at published results for W, for ex-
ample, to see the problem: measured values range from 105 meV/Å2 to 281 meV/Å2 [123].

Partly because of the difficulty in acquiring reliable surface free energies of solids, when
dealing with one component systems, it is common to exploit the equivalence of GS and
surface tension, ∞ [124]. The surface tension, particulary the surface tension of liquids,
can be determined more accurately than GS for solids. Since it is generally believed that
the surface tension of a molten liquid is about 10-20 % less than GS for the close-packed
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surfaces of that solid, the liquid surface tension measurements provide what is considered
an average surface free energy of the low-index solid surfaces. Generally these values
are extrapolated on “semi-theoretical” [125] grounds to 0 K, which is how most of the
tabulated surface free energy values of metals are presented [51, 125].

A notable exception to the rule that experimental surface energy measurements are old
are the experiments of Bonzel and co-workers on Pb in which surface free energies for
individual crystal facets were determined from knowledge of the temperature dependence
of the equilibrium crystal shapes of Pb crystallites [126]. The Pb crystallites were
supported on a Ru(0001) substrate and imaged with scanning tunneling microscopy at
around room temperature and above, leading to the determination of the absolute free
energy of Pb(111) and several other low-index orientations ((100), (110), (113), (112),
and (221)). Comparison of the measured value for Pb(111), 27.5 meV/Å2 at 323-393 K,
with previous recommended values of polycrystalline Pb samples show that the new value
is about 15 % smaller than the previous ones. It remains to be seen where this difference
comes from and if the modern value is indeed superior to its predecessor. However, recent
DFT (LDA) calculations tend to favor the modern result [127].

6.2 Theoretical Considerations of Surface Energies

In theoretical calculations, such as with DFT, the T=0 value of GS is typically calculated,
also assuming that contributions due to zero point vibrations as well as the pV term
are negligible, i.e., ES is calculated. In terms of a periodic slab calculation ES is more
conveniently defined with regard to surface area, A, as

GS ª ES = (Eslab
tot °NEbulk

tot )/2A , (33)

where Eslab
tot is the total energy of a slab with N atoms and Ebulk

tot is the reference total
energy per atom of the bulk system. The factor 1/2 takes into account the presence of
two equivalent surfaces of the slab. To obtain Es one thus needs to compute just two
quantities, Eslab

tot and Ebulk
tot [128]. Before doing this one must, as always, decide on which

exchange-correlation functional to trust. Unlike in the bulk, however, our comparison is
limited to LDA and GGA functionals since practically nothing beyond GGA has been
applied yet to real surfaces [129]. This is a somewhat unfortunate consequence of the
fact that the post-GGA functionals, such as the meta-GGAs and hybrid functionals, are
relatively new and have not yet, or have only recently, been implemented in the popular
materials science DFT codes. Comparing the results of LDA and GGA (PBE) calculations
for a selection of sp and transition metals to the 0 K experimental data proves useful and
leads to the somewhat surprising result that LDA apparently outperforms GGA (Table
3). We say “apparently”, of course, because the size of the error bars on the experimental
values are unclear. Nonetheless in each case GGA (PBE) predicts surface energies that
are about 30 % lower than LDA, and more often than not LDA is closer to experiment
than GGA. This seems to be a genuine conclusion for metals since it is also true for
Pb(111) for which possibly the most reliable single-crystal surface energy measurements
have been made. Here LDA comes within 2 meV/Å2 of the experimental value, whereas
GGA-PBE is about 10 meV/Å2 lower than experiment [127].

Studies on jellium surfaces provide a partial explanation for why LDA outperforms
GGA for the calculation of the surface energy of metals. Specifically they show that
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TABLE 4: Theoretical (DFT LDA and PBE) and experimental surface energies in meV/Å2 for
some close-packed transition metal surfaces. All data is taken from ref. [57] except for the Pb
results which are from ref. [127].

Mg(0001) Al(111) Ti(0001) Cu(111) Pd(111) Pt(111) Pb(111)
LDA 38.7 56.8 141.7 119.8 116.7 139.2 26.0
PBE 35.0 46.8 124.2 88.0 83.0 104.2 17.2
Exp. 49.3 71.2 124.2 114.2 125.5 155.4 27.5

the exchange-correlation contribution to the surface energy is calculated more reliably
with the LDA due to a favorable cancelation of errors: LDA overestimates the exchange
contribution to the surface energy, but underestimates the correlation contribution,
whereas PBE underestimates both quantities [36, 130, 131]. Since these results on jellium
surfaces are apparently transferable to real metals, it is reasonable to anticipate that
functionals which are superior to LDA for jellium surfaces will also be superior to LDA for
real metal surfaces. In this regard it appears that the meta-GGA TPSS, PBE-WC, and a
functional from Mattsson and co-workers based on a subsystem functional approach offer
some promise [32, 131, 132]. However, whether these functionals live up to expectations
for real metal surfaces and solid surfaces in general remains to be seen.

6.3 Phenomenological Theories of Surface Energies

So far we have not discussed the physics of the surface energy. Why do different materials
exhibit different surface energies? Why does the surface energy of different facets of the
same material differ? Essentially both questions are the same as asking: what controls
the magnitude of the surface energy? The qualitative answer to this is very simple:
the surface energy is related to the number and strength of the bonds which are broken
in creating the surface. Thus surface energies exhibit similar periodic dependencies as
cohesive energies do, and surface energies are lower for more closely packed surfaces than
they are for the more open ones or with less dangling unsaturated bonds.

(a) Surface energies and cohesive energies

For any given element its surface energy is a fraction of its cohesive energy. Most often
it turns out that for metals GS per surface atom ª 1/6Ecoh per bulk atom [133]. This
rough empirical relationship can be seen in Fig. 17(a), for example, where the ratio of
experimental heat of vaporization and experimental surface energy is plotted for more
than 20 metals. Correlations like this have a long history and can easily be refined to
account for the elements which are outliers on the plot [134].

So where does the value of the proportionality constant come from? Simply counting the
number of nearest-neighbor bonds that break in making a close-packed surface would lead
one to expect a value of 1/4 or larger, since at the most closely packed (111) surface of
an fcc metal 1/4 of the bonds are broken. On less closely packed surfaces obviously more
bonds are broken. As discussed by Methfessel et al. [136, 139] the reason the simple bond
cutting model fails to predict the correct proportionality constant is that it neglects to
account for the variation of the bond strength with coordination number, C. In particular
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FIG. 17: (a) Plot of experimental values of the surface free energy (GS) (from ref. [125]) against
the cohesive energy (Ecoh) (from ref. [135]) for more than twenty simple, transition, and noble
metals. Lines corresponding to proportionality constants of 1/6 and the result of eqn. (34),
0.134, are also displayed. (b) Variation of the computed DFT LDA surface energies across the 4d
transition metal series and for various close-packed surfaces. Note that in this plot fcc crystals
have been used for all metals (after ref. [136]). (c) Computed DFT anisotropy ratios, relative
to the (111) surface, for the low index and the most close-packed vicinal surfaces of some noble
and transition metal surfaces (after ref. [137]). (d) Plot of experimental (two lower curves) and
theoretical (upper curve) anisotropy ratios, relative to the (111) surface, along the [001], [110]
and [011] zones for a series of Pb surfaces (after ref. [138]).

it must be recognized that bonds between an atom with a few neighbors are stronger than
those between an atom with many neighbors. This coordination-number-bond-strength
relationship is well known and has, for example, been calculated explicitly with DFT
for several metals, showing that the energy per bond can be as much as twice as large
for C = 2 compared to C = 12 [139, 140]. Since making an fcc (111) surface entails
cutting the comparatively weak twelfth, eleventh, and tenth bonds, the overall cost to
make the surface is less than would be predicted by the simple linear bond cutting concept.

The coordination-number-bond-strength relationship is qualitatively captured in simple
tight binding schemes in which the energy per bond can be assumed to scale with

p
C

leading to

ES =

p
Cbulk °

p
Csurf

p
Cbulk

Ecoh , (34)
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where Cbulk and Csurf are the coordination number of the bulk and the surface, respec-
tively. For an fcc (111) surface eq. (34) yields a surface energy per atom of 0.134Ecoh

which gives results rather close to the ones plotted in Fig. 17(a). Refinements of the
tight binding treatment to account for repulsive forces between the atoms improves the
agreement with experiment further [136, 139].

(b) Surface energy anisotropy

As we have said the variation of surface energy with the type of crystal facet exposed is
known as surface energy anisotropy. Generally it is known that the surface energy of a
material is proportional to the number of broken bonds at the surface. Thus more open
surfaces with more under-coordinated atoms (i.e., more broken bonds) are less stable
than the close-packed ones. This effect is qualitatively seen in the equilibrium crystal
shapes of materials which expose close-packed surfaces at the expense of more open
ones. First principles theory provides a considerable body of quantitative support for
this concept [64, 107, 127, 136–139, 141–143]. As an example we show in Fig. 17(b) the
computed DFT LDA surface energies of Methfessel et al. [136, 139] for model fcc (111),
(100) and (110) surfaces of the 4d transition metals. Clearly for each metal the surface
energy increases along with the corrugation of the surface, being lowest for the (111)
surfaces and highest for the (110) surfaces.

More recently Galanakis et al. [137, 142] have shown that for the surfaces of several fcc
metals there is an almost perfect linear correlation between the relative surface energies
of different crystal facets and the number of broken bonds. This is shown in Fig. 17(c) for
a number of fcc transition metal surfaces. Precisely the DFT LDA computed anisotropy
ratios (relative to the (111) surface) for the (100), (110), (311), (331), and (210) surfaces
of several transition metals are displayed. The solid horizontal lines are the ideal
broken-bond ratios, which for the (100) surface, for example, is 4/3 since each atom on
this surface has only 8 nearest neighbors compared to 9 in the (111) surface. It can be
seen that in every case the computed results fall on the ideal lines or within a few percent
of them. Calculations on other fcc metal surfaces, including an extensive series of 35 Pb
surfaces and a large set of Cu surfaces predict that this trend also applies to these sub-
strates; typically computed surface energies were within 5 % of what would be predicted
from the broken bond rule [138, 143]. It has been argued that the linear correlation in
the relative surface energies is not inconsistent with eqn. (34) and the basic knowledge
that the binding energy does not scale linearly with coordination number C, by recalling
that the square root in eqn. (34) can be linearized in the regime of high coordination [137].

Recent experimental results on Pb crystallites [126, 145, 146], provide valuable data with
which to assess the validity of the trends predicted by DFT. Summarizing an extensive
series of comparisons between experimental and DFT results [127, 138, 144, 147], it is
found that the surface energy anisotropies obtained from experiment and predicted by
theory agree with each other reasonably well. In Fig. 17(d), for example, the experimental
and theoretical surface energy anisotropies are plotted along the [001], [110] and [011]
zones. At 323 and 473 K the experimental anisotropies are 11 and 6 %, respectively,
whereas the T = 0 K theoretical anisotropy is at 25 %, expectedly higher than the
finite temperature experimental values. In addition the directions of the maxima and
minima of the theoretical anisotropy curve coincide with the experimental values.
Moreover, when the theoretical equilibrium crystal shape - obtained by performing a
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FIG. 18: (a) Scanning tunneling microscopy (STM) image of part of a Pb crystallite showing the
(111) and the surrounding 2-fold symmetric (221) and (211) facets as well as a (100) facet at
the contact edge to the substrate. The image size is ca. 970£ 750 nm. (b)-(d) Three dimensional
equilibrium crystal shapes of Pb constructed from DFT LDA surface energies. (b) is obtained
from computed surface energies on relaxed surfaces, (c) from computed surface energies on fixed
surfaces, and (d) with the vicinal surface energies obtained from the linear broken bond model
(after ref. [144]).

Wulff construction with the theoretical surface energies - is compared to experiment,
the qualitative agreement is good. As shown in Figs. 18(a)-(b) many features of the
experimental equilibrium crystal shape are reproduced by the theoretical one, such as
the 3-fold symmetry of the central (111) facet and the smaller peripheral (211) and (221)
facets. Also shown in Figs. 18 are the predicted equilibrium crystal shapes obtained from
the surface energies of unrelaxed Pb surfaces (Fig. 18(c)) and from the application of
the linear broken bond rule. It is clear that the equilibrium crystal shapes obtained with
the alternative data sets differ noticeably from experiment. In particular the assumption
of a linear dependence of the surface energy with the number of broken bonds results
in an incorrect crystal shape with just the low-index (111) and (100) surfaces present.
Thus although approximate linear correlations are observed between the surface energy
and the number of broken bonds the deviations from linearity are essential for a correct
description of the equilibrium crystal shape.

In addition to the example of Pb just discussed a second example of the first-principles
based prediction of equilibrium crystal shapes, involving a semiconductor (Si), can be
found in ref. [107].
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7. Surface Electronic Structure

Let’s now consider how the electronic structure at the surface differs from that in the
bulk. We have already seen for semiconductors that the loss of translational symmetry
along the surface normal has important consequences for the electronic structure, notably
through the formation of dangling bonds which, as we have seen, have profound impli-
cations for the surface structures that form. Now we focus on the electronic structures
of metal surfaces and take this as an opportunity to discuss important concepts such
as the surface dipole, the work function, surface core level shifts, and surface states.
First we look at the surfaces of simple metals, where we find that again jellium pro-
vides useful insight, we then move on to the transition metals and tight binding arguments.

7.1 Jellium Surfaces: Electron overspill; Surface Dipole; and ©

Take the jellium model that we introduced earlier for the infinite crystal and terminate
the positive background (n+) abruptly along a plane at z = 0, with the positive uniform
background now filling the half-space z ∑ 0 with the form:

n+(z) = n, z ∑ 0

= 0, z > 0 (35)

where n is the mean density of the positive charge in the ionic lattice. For a range of
densities (rs = 2 ° 6) Lang and Kohn [148, 149] considered how the density (within the
LDA) would behave at such an interface. The now famous plot displayed in Fig. 19(a)
was obtained, which shows that: (i) the electron density spills into the vacuum; and
(ii) the density within the boundary oscillates in a Friedel manner with an amplitude
that decreases asymptotically with the square of the distance from the surface. The
characteristic wavelength is one half of the Fermi wavelength, kF , where kF = (3º2n)1/3

[150]. The amount of overspill into the vacuum and the amplitude of the Friedel
oscillations depends on rs. The smaller rs is, the larger the overspill. The larger rs is, the
greater the amplitude of the oscillations.

The potentials associated with such density distributions are sketched in Fig. 19(b). In
particular the total effective (Kohn-Sham) potential, V eÆ , and the electrostatic potential,
V es are plotted. The difference between them is the exchange-correlation contribution to
the total effective potential which one can see comprises the largest part of V eÆ . This is
generally true for low and intermediate densities. Two aspects of the potentials are worth
commenting upon. First, as a result of the local-density approximation, V eÆ vanishes
exponentially into the vacuum. This asymptotic behavior is not correct. Instead, since
as an electron moves out of a metal surface its exchange-correlation hole stays behind,
flattening out on the surface, the effective potential should follow an image-like form:

V eff(z) ª 1

4|z ° zimage|
. (36)

Here zimage is the so-called image plane, which for many purposes is considered the
“effective surface plane” [116, 151]. For typical values of rs the image plane (from LDA
predictions) of clean jellium surfaces resides about 2-3 Å to the vacuum side of the



39

FIG. 19: (a) Self-consistent electron density distributions at a jellium surface for rs=2 and rs=5.
(b) Schematic illustration of the potentials that develop at the jellium surface within the local
density approximation for an rs ª 5. All symbols are defined in the text (after ref. [148]).

positive uniform background (z = 0) [151]. As we will see, however, the LDA error in
the asymptotic behavior of V eff has little effect on the properties of interest here such as
the ground-state electron density and work function which are determined largely by the
position and height of the potential rather than its detailed shape.

The second feature of the potentials sketched in Fig. 19(b) that we comment upon is V es,
the electrostatic potential. Although V es is a relatively small component of the barrier,
it is of the utmost importance since it is closely related to the work function, ©. V es

arises because the spread of electrons beyond the edge of the positive background renders
the electrostatic potential in the vacuum, V es(1), higher than that in the metal interior,
V es(°1). Thus an electron trying to leave the metal encounters an electrostatic surface
dipole layer, D, with a electrostatic potential energy difference of height

D = V es(1)° V es(°1) . (37)
From Poisson’s equation this can be written as

D = 4º

Z 1

°1
z[n(z)° n+(z)]dz . (38)

This integral across the surface boundary is obviously an electric dipole, the surface dipole,
which is related to © through

© = D ° µ , (39)
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FIG. 20: Computed work function of jellium as a function of rs along with measured experimental
values for polycrystalline surfaces (after ref. [149]).

where µ is the electron chemical potential, which in a metal at 0 K is equal to the Fermi
level (as discussed in section 4). Thus we arrive at the definition of the work function as
the minimum work necessary to remove an electron from a metal at 0 K [152].

Clearly the more the electrons spill into the vacuum, the larger D is. Indeed © generally
increases with decreasing rs as is illustrated by Fig. 20(a) where the work function
of jellium is plotted as a function of rs along with several experimental values for
polycrystalline metals. It can also be seen from the plot that the trend predicted by
jellium is indeed observed with experimental measurements on real crystals. Moreover,
the absolute values of © predicted with the jellium model fall in the range 2-4 eV and
come within 10-20 % of experiment for each of the sp metals listed.

A similar reasoning, although with the necessary introduction of a crystal lattice, explains
the well-established fact that for real crystals, © can differ from one facet to the other, a
concept known as work function anisotropy. For example, the measured values of © for
the (111), (100), and (110) surfaces of Cu are 4.74, 4.64, and 4.52 eV, respectively [51].
Since µ or EF in eqn. (39) is a bulk quantity the anisotropy in © comes directly from
the different dipoles established at the different surfaces. Generally it is known that the
more open a surface, the smaller D is and consequently the smaller © is, as we see for Cu
above. Obviously, for jellium D is the same for all surface orientations. However, for a
real crystal, say fcc, the electron density is quite smooth at the (111) surface getting more
corrugated at the more open surfaces. In the latter situations the electron density will
smoothen out parallel to the surface to lower the kinetic energy, and as a consequence the
surface dipole moment will be reduced compared to that of the closer packed surfaces.

7.2 Transition Metal Surfaces: Band Narrowing and Surface Core Level Shifts

As we know tight binding arguments are more appropriate than jellium when seeking to
gain qualitative insight of transition metal surfaces. In tight binding language the surface
suppresses a certain number of hopping integrals, since the surface atoms have lost some
neighbors in any sphere of coordination. This reduces the average width of the PDOS on a
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surface atom relative to the bulk. Such “band narrowing” is a general phenomena of solid
surfaces when the valence states are comprised of localized orbitals such as the d valence
orbitals of the transition metals. The bands of the surface atoms cannot narrow without
consequence, however. Given that the whole metal has a single Fermi level, narrowing
alone would lead to an unrealistic lack or surplus of electronic charge on the surface
atoms depending on the filling of the band. To avoid (or to at least reduce) this the
center of gravity of the narrowed bands shift; either up or down in energy. The magnitude
and direction of the shift, ¢S, can be approximated with the rectangular d band model
introduced earlier, and is given by,

¢S = EF (1°
r

Csurf

Cbulk

) , (40)

where, as before, Cbulk and Csurf are the coordination numbers of atoms in the bulk and
at the surface, respectively. The energy zero in eq. (40) is the center of the bulk d band,
Ed, and thus within this simplified model ¢S is negative for less than 1/2 filled bands,
positive for more than 1/2 filled bands, and zero for an exactly half filled band. We illus-
trate schematically the essence of this model in the upper part of Fig. 21. It is also worth
pointing out that since ¢S increases with the number of broken bonds at the surface, the
more open the surface, the larger the shift, and naturally as one descends into the bulk of
the crystal the bulk value for the band width is immediately recovered (within the model).

The qualitative behavior predicted from the rectangular d band model can actually
be seen in self-consistent DFT calculations, where the shape of the DOS is explicitly
calculated. For example, we show this in the lower part of Fig. 21 where the bulk and
surface PDOS projected on to the valence d orbitals is plotted for bulk Zr and Ru and for
Zr and Ru (0001) surfaces. For both Zr and Ru the d PDOS associated with the surface
atoms is narrower than that of the bulk. For Zr with < 5 d electrons the surface d PDOS
moves down in energy (ª 0.1 eV) relative to the bulk, and for Ru with > 5 electrons the
surface d PDOS moves up in energy (ª 0.3 eV) [153].

Of more significance, perhaps, is that the shifts in the valence levels correlate with shifts
in the core electrons and that the latter are now accurately and routinely measured with
x-ray absorption spectroscopy (XPS) [72, 154, 155]. Such shifts in the core electrons,
known as surface core level shifts (SCLS), have been measured on many close-packed
transition metal surfaces finding the same qualitative trend illustrated in Fig. 21 for the
valence states, i.e., a shift to deeper binding energies is observed for elements to the left
of the transition series and a shift to shallower binding energies for elements to the right.
See, for example, refs. [154, 156, 157]. Surface core level shifts can also be computed
within the framework of DFT. However, to ensure good agreement with experiment it
is often necessary to put in a little more effort with the DFT calculation than simply
computing the differences in the eigenvalues of core electrons at the surface and in the
bulk, as was done for the valence DOS (Fig. 21). Consider what is actually measured in a
core-level photoemission experiment: it is the difference in the energy it takes to remove
a core electron from an atom at the surface and from an atom in the bulk. From this
definition it follows directly that the SCLS of a particular core level is the difference in
the total energy between a sample with a core hole at the surface compared to the core
hole being in a bulk atom. This binding energy shift thus includes changes in the core
orbital energies between bulk and surface atoms and differences in the screening of the
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FIG. 21: Upper part: schematic illustration of d-band narrowing at transition metal surfaces and
its consequence for the energy levels of the surface atoms with less than 5 d electrons (Nd < 5),
exactly 5 d electrons (Nd = 5), and more than 5 d electrons (Nd > 5). Lower part: PDOS for the
d orbitals in bulk Zr and Ru and at the surface of Zr(0001) and Ru(0001), as computed from a
plane-wave pseudopotential DFT calculation within the LDA. Ed is the center of gravity of the
d PDOS and the small arrows indicate that Ed is lower at the surface than in the bulk for Zr
whereas Ed is higher at the surface than in the bulk for Ru (computed by the authors).

core hole created by the different surroundings of the core hole at the surface and in the
bulk of the material. The former effect is typically called the “initial state” contribution,
whereas the latter is called the “final” state contribution. The inclusion of such “final
state” effects can often be necessary if quantitative agreement between experimental and
theoretical values of SCLS is sought [157–160].

7.3 Surface States

As we have seen the electronic structure of metal surfaces is likely to differ from that
in the bulk. One way this altered behavior is exemplified is through the formation of
so-called surface states [161–164]. The surface states of metals represent interesting
physical phenomena in their own right, as examples of confined two-dimensional electronic
systems, but can also affect the physical and chemical properties of metallic interfaces,
playing, for example, a role in the mediation of adsorbate lateral interactions [165–167].
They are routinely observed in experiment, notably with angle-resolved photoemission
spectroscopy (ARPES) or with scanning tunnelling microscopy when they scatter from
surface defects or adsorbates [168, 169].

Consider a wavefunction in the bulk as it approaches a metal surface. If it is reflected back
into the bulk and decays exponentially into the vacuum it is a bulk state (Fig. 22(a)).
Certain bulk states may have a larger weight at the surface than in the bulk. Generally
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FIG. 22: Schematic illustration of: (a) an idealized bulk state; (b) an idealized surface resonance;
(c) an idealized surface state; and (d) an idealized image potential state.

these are referred to as surface resonances (Fig. 22(b)). However, other wavefunctions
may be localized almost exclusively at the surface and decay exponentially into the bulk
as well as into the vacuum (Fig. 22(c)). These electronic states localized near the surface
are surface states, and can be defined more precisely as states that occur in “forbidden”
[170] regions of the bulk band structure, i.e., at an energy and kk value or point-group
symmetry for which there are no bulk states into which they can decay. This implies
that surface states appear in “gaps” of the bulk band structure. Even though metals do
not (by definition) exhibit absolute band gaps there can be many regions of k -space for
which at specific energies there are no states. For example, in the bulk band structure
of Cu (Fig. 4(a)) there are no states above the d band until well above EF along the
path ° ! L. Thus this represents a potential region in which, given the appropriate
conditions, a surface state may appear. Indeed the (111) surface of Cu is perpendicular
to the ° ! L path and, as we will see, a surface state does indeed reside in this region of
the surface projected bulk band structure of Cu(111).

Surface states are usually classified as Shockley [170] and Tamm states [171], and we now
briefly discuss these two types of surface state in turn. However, we caution in advance
that while useful the distinction is somewhat arbitrary since both types of state describe
the same physical phenomenon of a wavefunction that is localized at the surface and
decays exponentially into the bulk.

(a) Shockley states: These are typical of the simple and noble metals. Indeed the
hexagaonal close-packed surfaces of Be, Mg, Al, Cu, Ag, and Au all possess an occupied
Shockley state [172]. They arise simply because the presence of the surface allows
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FIG. 23: Surface projected bulk band structure for a 12 layer Cu(111) slab as computed from a
plane-wave pseudopotential DFT calculation within the LDA (computed by the authors).

solutions of the Schrödinger equation which would otherwise be imaginary in the bulk
to become real in the semi-infinite crystal. Shockley states appear close to the low
energy (i.e., high binding energy) border of a gap and reveal a free-electron-like behavior
parallel to the surface. A particularly well characterized Shockley state is the one that
occurs on Cu(111). According to ARPES this is a free electron-like state which at
the ° point of the surface Brillouin zone resides ª 0.4 eV below EF [173, 174]. DFT
calculations agree with this finding, as can be seen from the computed band structure
of Cu(111) shown in Fig. 23. The Shockley state can be seen at the ° point just below EF .

(b) Tamm states: These are characteristic of more tightly bound systems such as the
transition metals in which the valence electrons are d states. Tamm states are split-off
states due to the reduced atomic coordination of the surface and the weaker potential
that arises (which was discussed in section 7.2). They reside also at the low energy
border of gaps and often exhibit negative effective masses. Noble metal surfaces such as
Cu(111) also exhibit Tamm states (in addition to Shockley states) and indeed in Fig. 23
an occupied Tamm state 1.8 eV below EF can be seen at the M point split off from
the top of the Cu d band. Again the computed value of this surface state agrees with
experiment [175, 176].

Finally we mention yet one more type of state that can occur at metal surfaces, these
are so-called image potential states which are localized mostly in the vacuum region of
the metal surface (Fig. 22(d)). Recall from section 7.1 how the image potential rises to
the vacuum level V1 as one moves out from the surface into the vacuum (Fig. 19(b)).
This potential can actually support unoccupied bound states, i.e., image potential states.
These states lie above the Fermi energy, in a Rydberg-like series of states converging
towards the vacuum level. Should such image potential states become populated with
electrons these states can have relatively long lifetimes. The reader interested in learning
more about image potential states, in particular, and surface states, in general, should
consult the book by Davison and M. Stȩślicka [161] or some of the excellent reviews on
these topics [164, 177, 178].
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8. Conclusions and Perspectives

Much is known about clean surfaces. In many cases we know where the atoms are,
where the electrons are, and how stable both the atoms and electrons are at their chosen
locations. We have seen how at some surfaces the atoms rearrange to form complex
structures not known elsewhere in nature, whereas at other surfaces the atoms remain
happily at their bulk-like positions. We have seen how electrons literally spill out of some
surfaces, whilst at others they become trapped finding it almost impossible to escape.
We have seen how at some surfaces the electrons signal their knowledge of the surface
by moving up in energy, at others they move down, and at yet other surfaces they do
nothing, apparently oblivious to their reduced coordination compared to the bulk. And,
we have seen that the cost in energy to make some surfaces is high, to make others it is
low, and the balance between them conspires to yield a rich variety of equilibrium shapes
for crystals. This body of knowledge comes from countless surface science experiments
over the last 30-40 years, a small few of which we have mentioned, and from theoretical
calculations, a larger number of which we have mentioned. In particular, we have focused
mainly on the contributions from density-functional theory, although the qualitative
insight obtained from simplified tight-binding schemes should not be overlooked [53, 179].

Let’s now recap some of the key points made already and outline a few challenges and
issues that remain to be addressed.

(a) Surface structures: Atoms at clean surfaces generally do not maintain their bulk-
truncated positions. Relatively simple relaxations in which the interlayer spacings in
the surface region are modified are common for metals, as are more complex recon-
structions in which the atoms in the surface region undergo lateral displacements,
experience a change in atomic density, or change in bonding topology. Metal surfaces
exhibit a rich variety of reconstructions and semiconductor surfaces an even richer variety.

In most cases the results of DFT calculations and LEED analyses agree on the structural
details of a particular relaxation or reconstruction. Further, DFT can generally provide
an adequate a posteriori explanation for why a relaxation or reconstruction take places,
such as for the hex phase of the late 5d fcc transition metals. However, there are several
surfaces where the results of LEED analysis and DFT calculations still disagree, notably
the close-packed hexagonal metal surfaces of Ru and Rh. Such discrepancies deserve
further attention and their resolution provides a challenge for experiment and theory alike.

(b) Surface energetics: The most fundamental energetic quantity of a surface is the
Gibbs surface free energy. This controls the surface that forms under conditions of
constant temperature and pressure. Periodic trends in the Gibbs surface free en-
ergy have been discussed, as have variations across different types of surface. The
statement that the surface energy is proportional to the number and strength of the
bonds which are broken in creating the surface has been shown to be qualitatively correct.

Demonstrably reliable and quantitatively correct experimental surface energies are
however generally lacking. The recent STM-based experiments for Pb are a welcome
development. There is a pressing need for more measurements of this kind.

The lack of reliable surface energies from experiment makes it difficult to evaluate the
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performance of DFT in computing surface energies. More displeasing, however, is the
conclusion that an exchange-correlation functional superior to LDA for the calculation of
surface energies has yet to be identified. Based on insight gleaned from jellium surfaces it
appears that progress in this regard can be expected soon. However, an important word of
caution on this issue is necessary. As we said in the introduction, one is typically interested
in clean surfaces as a prelude to understanding how they interact with their environment.
One may, for example, be interested in the adsorption of atoms and molecules at a surface
or the formation of steps, kinks, and vacancies. A functional that performs well for
the surface energy is only of real value if it accurately computes these other properties too.

(c) Surface electronic structures: The concept of the dangling bond at semiconductor
surfaces has been introduced and the inextricable link between dangling bonds and
semiconductor surface structure emphasized. The general qualitative behavior of the
ground-state electronic structure at metal surfaces has also been addressed. Much of this
insight comes from the pioneering studies of Lang and Kohn on jellium surfaces and the
semi-empirical tight-binding studies discussed briefly here and covered in more detail
elsewhere [53]. The former provide the basis for understanding the physical origin of the
work function and trends in the work function from one metal to another. Whereas the
latter are helpful for understanding concepts such as band narrowing and surface core
level shifts.

Further Reading

Aside from the many original articles, review papers, and books cited already, the inter-
ested reader may wish to consult the following texts for complimentary and in some cases
more detailed discussions on the physical and chemical properties of solid surfaces:

• Physics at Surfaces by A. Zangwill: The first half of this book deals exclusively with
clean solid surfaces, with large chunks devoted to metal and semiconductor surfaces.
It is positioned at a somewhat similar level to the present article.

• Theoretical Surface Science; A Microscopic Perspective by A Gross: The most up
to date of the books in this area, with detailed discussions of modern electronic
structure theories and their application to metal (and other) surfaces.

• Concepts in Surface Physics by M.C. Desjonquères and D. Spanjaard: Provides a
very detailed discussion of many aspects of the electronic structures of metals and
semiconductors, in particular the basis and application of tight-binding methodolo-
gies.

• Principles of Surface Physics by F. Bechstedt: Provides a contemporary overview of
surface physics from a theoretical microscopic perspective with a particular emphasis
on semiconductor surfaces.

• Handbook of Surface Science, Volume 2 edited by K. Horn and M. Scheffler: Con-
tains several very useful and detailed chapters on the electronic structure of solid
surfaces in general (Chapter 1 by E. Wimmer and A. J. Freeman), metal surfaces
(Chapter 3 by G. Borstel and J. E. Inglesfield), and semiconductor surfaces (Chapter
2 by J. Pollmann and K. Krüger and Chapter 7 by K. Horn).
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• Interactions of Atoms and Molecules with Solid Surfaces edited by V. Bortolani,
N. H. March, and M. P. Tosi: Although somewhat out of date Chapter 5 by J. E.
Inglesfield is excellent, and well worth a read.

• Theory of the Inhomogeneous Electron Gas edited by S. Lundqvist and N. H. March:
Chapter 5 by N. D. Lang is a good “one stop shop” for most of the early material
stemming from the work of Lang and Kohn.
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