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In this lecture, we complete our third and final proof of the Arnold relation, following [Sin06].

Recollection. One version of Poincaré duality for oriented, connected, boundaryless, possibly
non-compact n-manifolds of finite type is the isomorphism

H̃i(M
+) ∼= Hn−i(M),

where M+ denotes the one-point compactification of M and we reduce with respect to the point

at infinity. In particular, such a manifold has a fundamental class [M ] ∈ H̃n(M+), defined as
the preimage of 1 ∈ H0(M) under this isomorphism. This duality can sometimes be interpreted
geometrically.

(1) If N ⊆M is a proper submanifold of dimension r and P ⊆M is a compact submanifold
of dimension n− r, we may contemplate the composite

H̃r(N+)⊗Hn−r(P ) // H̃r(M+)⊗Hn−r(M) ∼= Hr(M)⊗Hn−r(M)
〈−,−〉

// Z.

(note that the existence of the first map uses the fact that N is properly embedded).
If N and P intersect transversely, then the value of this composite on [N ] ⊗ [P ] is the
signed intersection number of N and P .

(2) Since cohomology is a ring, we may likewise contemplate the composite

H̃r(N+
1 )⊗ H̃s(N

+
2 ) // Hn−r(M)⊗Hn−s(M)

^ // H2n−r−s(M) ∼= H̃r+s−n(M+),

where N1 and N2 are proper submanifolds of dimension r and s, respectively. If N1 and
N2 intersect transversely, then the value of this composite on [N1]⊗ [N2] is [N1 ∩N2].

Now, consider the submanifold of Conf3(Rn) defined by requiring that x1, x2, and x3 be
collinear. This manifold has three connected components, and we let Ca denote the component
in which xa lies between xb and xc. Then the map

Ca → Rn × R>0 × R>0 × Sn−1

(x1, x2, x3) 7→
(
xa, |xb − xa|, |xc − xa|,

xc − xb
|xc − xb|

)
is a homeomorphism. In particular, dimCa = 2n + 1. Note that Ca is closed as a subspace of
Conf3(Rn) and hence proper as a submanifold.

Sinha’s proof of the Arnold relation. Pushing forward [C1] and applying Poincaré duality as above,
we obtain an element of Hn−1(Conf3(Rn)). By our homology calculation, this class is determined
by evaluating it on P(12) and P(13). These values are given by the respective intersection numbers
with C1, which are ±1 with opposite signs. Thus, with the appropriate choice of orientation, C1
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is Poincaré dual to α12−α13. Similar remarks apply to C2, and, since C1 ∩C2 = ∅, we conclude
that

0 = (α12 − α13)(α23 − α21)

= α12α23 − α12α21 − α13α23 + α13α21

= α12α23 + (−1)n(n−1)α23α31 + (−1)2nα31α12

= α12α23 + α23α31 + α31α12.

�

The Arnold relation has its reflection in homology. For trees T1 and T2, we write [T1, T2] for
the tree obtained by grafting the roots of T1 and T2 to the leaves of (12), in this order.

Proposition (Jacobi identity). The relation [[T1, T2], T3] + [[T2, T3], T1] + [[T3, T1], T2] = 0 holds
in H∗(Confk(Rn)). More generally, if R is any tree, then the trees resulting from grafting the
roots of [[T1, T2], T3], [[T2, T3], T1], and [[T3, T1], T2] to any fixed leaf of R sum to zero.

It is possible to give a geometric derivation of the Jacobi identity—see [Sin06]—but we will
pursue in an alternate route. We begin by observing that the most basic case of the identity, in
which T1, T2, T3, and R are all trivial trees with no internal vertices, is essentially immediate
from what we have already done.

Proof of proposition, trivial case. We calculate that

〈((23)1), α12α23〉 = 〈((23)1),−α23α31 − α31α12〉

= −〈((23)1), α23α31〉+ (−1)1+2n+(n−1)2 〈((23)1), α21α13〉
= −〈((13)2), α13α32〉+ (−1)n 〈((13)2), α12α23〉
= −1,

where we have applied the permutation τ12 in going from the second to the third line, and the last
equality follows from the perfect pairing between tall trees and the corresponding cohomology
classes. A similar calculation shows that 〈((23)1), α31α12〉 = −1, and it follows that

((23)1) = −((31)2)− ((12)3),

as desired. �

The general form of the Jacobi identity follows from this basic case once we are assured that
grafting of trees is linear. In order to see why this linearity might hold, we turn to an alternative
model for the homotopy types of configuration spaces. For original references, see [BV73, May72].

Definition. A little n-cube is an embedding f : (0, 1)n → (0, 1)n of the form f(x) = Dx + b,
where b ∈ (0, 1)n and D is a diagonal matrix with positive eigenvalues.

We write Cn(k) for the space of k-tuples of little n-cubes with pariwise disjoint images, topol-
ogized either as a subspace of Map(qk(0, 1)n, (0, 1)n). Note that little cubes are closed under
composition, we have a collection of maps of form

Cn(m)× Cn(k1)× · · ·Cn(km)→ Cn(k)

whenever k1 + · · · + km = k. These maps furnish the collection {Cn(k)}k≥0 of spaces with the
structure of an operad [May72], but we will not need to make use of the full strength of this
notion.

Proposition. The map Cn(k)→ Confk((0, 1)n) ∼= Confk(Rn) given by evaluation at (1/2, . . . , 1/2)
is a homotopy equivalence.
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Sketch proof. A section of the map in question is defined by sending a configuration x to the
unique k-tuple of little cubes (f1, . . . , fk) with the following properties:

(1) fi(1/2, . . . , 1/2) = xi for 1 ≤ i ≤ k;
(2) all sides of each fi have equal length, and all fi have equal volume;
(3) the images of the fi do not have pairwise disjoint closures.

One checks that this map is continuous, so that we may view the configuration space as a subspace
of Cn(k). Scaling defines a deformation retraction onto this subspace. �

For further details, see [May72, 4.8].

Proof of the Jacobi identity, general case. By considering planetary systems of little cubes rather
than configurations, one obtains the dashed lifts depicted in the diagram

Cn(k)

��

(Sn−1)V (F )

P�
F

77

PF // Confk(Rn).

With these maps in hand, the combinatorics of grafting trees becomes the combinatorics of
composing little cubes; that is, the tree [[T1, T2], T3] is the image of (((12)3), T1, T2, T3) under
the composition map

Cn(3)× Cn(3)× Cn(k1)× Cn(k2)× Cn(k3)→ Cn(k),

and similar remarks pertain to grafting roots of trees onto a fixed leaf of a tree R. Thus, grafting,
as the map induced on homology by a map of spaces, is linear, and the general identity follows
from the basic case proven above. �

A similar argument as in our earlier cohomology calculation, using the Jacobi identity to
rebracket forests into sums of long forests, proves the following.

Theorem (Cohen). The graded Abelian group H∗(Confk(Rn)) is isomorphic to the quotient of
the free Abelian group with basis the set of k-forests by the Jacobi relations and signed antisym-
metry.

Remark. This isomorphism may be promoted to an isomorphism of the operad {H∗(Confk(Rn))}k≥0

with the operad controlling (n− 1)-shifted Poisson algebras.

We close with a calculation in the unordered case.

Proposition. For k ≥ 2 and n ≥ 1, there is an isomorphism

Hi(Bk(Rn);Q) ∼=

{
Q if either i = 0 or i = n− 1 is odd

0 otherwise.

Remark. Note the vast difference in size and complexity between the rational homology of Bk(Rn)
and that of Confk(Rn). This disparity, which may at first seem surprising, is characteristic of
the relationship between ordered and unordered configuration spaces in characteristic zero. In
finite characteristic, as we will see, this relationship is reversed, and it is the homology in the
unordered case that is by far more complex.

One obvious indicator of the rational difference between ordered and unordered is the fact that
ith Betti number of Confk(Rn) tends to infinity with k, while that of Bk(Rn) quickly stabilizes
to a fixed value. This observation is a simple example of the general phenomenon of homological
stability for configuration spaces of manifolds [Chu12, RW13]. Although the Betti numbers in
the ordered case do not stabilize, the analogous of representation stability, which takes the action
of Σk into account, does [Far].
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In making this calculation, we will use the following basic fact.

Lemma. Let π : E → B be a finite regular cover with deck group G. If F is a field in which |G|
is invertible, then the natural map

π̄∗ : H∗(E;F)G → H∗(B;F)

is an isomorphism.

This result is a consequence of the existence and basic properties of the transfer map. Recall
that the transfer is a wrong-way map on homology

tr : H∗(B)→ H∗(E)

defined by sending a singular chain to the sum over its |G| lifts to E, which is clearly a chain
map. It is obvious from the definition that π∗(tr(α)) = |G|α.

Proof of lemma. We claim that the composite

f : H∗(B;F)
1

|G| tr
// H∗(E;F) // H∗(E;F)G

is an inverse isomorphism to π̄∗. Note that we have used the assumption that |G| is invertible
in F in defining f . In one direction, we compute that

π̄∗(f(α)) = π∗

(
1

|G|
tr(α)

)
=

1

|G|
π∗(tr(α)) = α,

and in the other we have

f(π̄∗([β])) = f(π∗(β)) =
1

|G|
[tr(π∗(β))] =

1

|G|

∑
g∈G

g · β

 =
1

|G|

∑
g∈G

β

 = β.

�

With the identification H∗(Bk(Rn);Q) ∼= H∗(Confk(Rn);Q)Σk
in hand, we proceed by first

identifying the coinvariants in top degree.

Lemma. For k > 1, there is an isomorphism

H(n−1)(k−1)(Confk(Rn);Q)Σk
∼=

{
Q k = 2 and n even

0 otherwise.

Proof. If n is odd, then any tall tree T is equal to the additive inverse of the tree obtained by
switching the labels of the first two leaves of T . Since this operation may be achieved by the
action of the symmetric group, it follows that 2[T ] = 0 in the coinvariants, whence [T ] = 0. Since
tall trees span the top homology, their images span its coinvariants, and the claim follows in this
case.

Assume that n is even. If k ≥ 3, then the Jacobi identity applied to the bottom three leaves
of a tall tree T shows that 3[T ] = 0, and so [T ] = 0, and we conclude as before. In the remaining
case k = 2, we note that Hn−1(Conf2(Rn)) ∼= Z〈P(12)〉, and that Σ2 acts trivially. �

Proof of proposition. As a consequence of our description in terms of tall forests, we have the
following calculation:

H∗(Confk(Rn)) ∼=
⊕

partitions of [k]

⊗
i

H(n−1)(ki−1)(Confki(Rn))

∼=
⊕
r≥0

( ⊕
k1+···+kr=k

r⊗
i=1

H(n−1)(ki−1)(Confki(Rn))⊗Σk1
×···×Σkr

Z[Σk]

)
Σr

.
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Thus, tensoring with Q, forming the Σk-coinvariants, and using that k! is invertible, we find that

H∗(Bk(Rn);Q) ∼=
⊕
r≥0

( ⊕
k1+···+kr=k

r⊗
i=1

H(n−1)(ki−1)(Confki
(Rn);Q)Σki

)
Σr

.

The claim now follows easily from the previous lemma, since the only nonvanishing terms up to
the action of Σr are (k1, . . . , km) = (1, . . . , 1) and possibly (k1, . . . , km) = (2, 1, . . . , 1). �

With a few more definitions in hand, this calculation may be packaged in a more succint form.

Definition. A symmetric sequence of graded Abelian groups is a collection {Vk}k≥0 where V (k)
is a graded Abelian group equipped with an action of Σk.

Thus, a symmetric sequence is equivalent to the data of a functor from the category Σ of finite
sets and bijections to graded Abelian groups. There is a notion of tensor product of symmetric
sequences, which is given by the formula

(V ⊗Σ W )k =
⊕

i+j=k

Vi ⊗Wj ⊗Σi×Σj Z[Σk].

Defining a symmetric sequence by H∗(Conf(Rn))k = H∗(Confk(Rn)), we now recognize the
identification

H∗(Conf(Rn)) ∼= SymΣ(Htop(Conf(Rn)))

with the symmetric algebra for this tensor product.
Now, a symmetric sequence V determines a bigraded Abelian group VΣ by the formula

VΣ =
⊕
k≥0

(Vk)Σk
,

and it is immediate from the formula that

(V ⊗W )Σ
∼= VΣ ⊗WΣ.

Thus, we have an isomorphism of bigraded vector spaces⊕
k≥0H∗(Bk(Rn);Q) ∼= H∗(Conf(Rn))Σ

∼= SymΣ(Htop(Conf(Rn)))Σ

∼= Sym(Htop(Conf(Rn))Σ)

∼= Sym(Q[0, 1]⊕Q[n− 1, 2]).

Remark. From the operadic point of view, this bigraded Abelian group is the free shifted Poisson
algebra on one generator.

This calculation illustrates a valuable lesson, namely that configuration spaces tend to exhibit
more structure when taken all together. This insight will be indispensable to us in our future
investigations. Before pursuing this direction, however, we will need to invest in some new tools.
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