Numerical Optimization Techniques

Léon Bottou

NEC Labs America

COS 424 - 3/2/2010

Today's Agenda

Goals	Classification, clustering, regression, other.
Representation	Parametric vs. kernels vs. nonparametric Probabilistic vs. nonprobabilistic Linear vs. nonlinear
	Deep vs. shallow
Capacity Control	Explicit: architecture, feature selectionExplicit: regularization, priorsImplicit: approximate optimizationImplicit: bayesian averaging, ensembles
Operational Considerations	Loss functions Budget constraints Online vs. offline
Computational Considerations	Exact algorithms for small datasets. Stochastic algorithms for big datasets. Parallel algorithms.

Introduction

General scheme

- Set a goal.
- Define a parametric model.
- Choose a suitable loss function.
- Choose suitable capacity control methods.
- Optimize average loss over the training set.

Optimization

- Sometimes analytic (e.g. linear model with squared loss.)
- Usually numerical (e.g. everything else.)

Summary

- 1. Convex vs. Nonconvex
- 2. Differentiable vs. Nondifferentiable
- 3. Constrained vs. Unconstrained
- 4. Line search
- 5. Gradient descent
- 6. Hessian matrix, etc.
- 7. Stochastic optimization

Convex

Definition

 $\begin{array}{l} \forall \, x,y, \; \forall \, 0 \leq \lambda \leq 1 \text{,} \\ f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y) \end{array}$

Property

Any local minimum is a global minimum.

Conclusion

Optimization algorithms are easy to use. They always return the same solution.

Example: Linear model with convex loss function.

- Curve fitting with mean squared error.
- Linear classification with log-loss or hinge loss.

Nonconvex

Landscape

- local minima, saddle points.
- plateaux, ravines, etc.

Optimization algorithms

- Usually find local minima.
- Good and bad local minima.
- Result depend on subtle details.

Examples

- Multilayer networks.
- Learning features.
- Semi-supervised learning. Transfer learning.

- Mixture models.
- Clustering algorithms.
 Hidden Markov Models.
 - Selecting features (some).

Differentiable vs. Nondifferentiable

No such local cues without derivatives

- Derivatives may not exist.
- Derivatives may be too costly to compute.

Examples

- Log loss versus Hinge loss.

Constrained vs. Unconstrained

Compare

```
\min_w f(w) subject to w^2 < C
\min_w f(w) + \lambda w^2
```

Constraints

- Adding constraints lead to very different algorithms.

Keywords

- Lagrange coefficients.
- Karush-Kuhn-Tucker theorem.
- Primal optimization, dual optimization.

Line search - Bracketing a minimum

Three points a < b < c such that f(b) < f(a) and f(b) < f(c).

Split the largest half and compute f(x).

- Redefine a < b < c. Here $a \leftarrow x$.
- Split the largest half and compute f(x).

- Redefine a < b < c. Here $a \leftarrow b$, $b \leftarrow x$.
- Split the largest half and compute f(x).

- Redefine a < b < c. Here $c \leftarrow x$.
- Split the largest half and compute f(x).

Line search - Golden Section Algorithm

- Optimal improvement by splitting at the *golden ratio*.

Line search - Parabolic Interpolation

- Fitting a parabola can give much better guess.

Line search - Parabolic Interpolation

– Fitting a parabola sometimes gives much better guess.

Line search - Brent Algorithm

Brent Algorithm for line search

- Alternate golden section and parabolic interpolation.
- No more than twice slower than golden section.
- No more than twice slower than parabolic section.
- In practice, almost as good as the best of the two.

Variants with derivatives

- Improvements if we can compute f(x) and f'(x) together.
- Improvements if we can compute f(x), f'(x), f''(x) together.

Coordinate Descent

Perform successive line searches along the axes.

- Tends to zig-zag.

Gradient

The gradient $\frac{\partial f}{\partial w} = \left(\frac{\partial f}{\partial w_1}, \dots, \frac{\partial f}{\partial w_d}\right)$ gives the steepest descent direction.

Steepest Descent

Perform successive line searches along the gradient direction.

- Beneficial if computing the gradients is cheap enough.
- Line searches can be expensive

Gradient Descent

Repeat $w \leftarrow w - \gamma rac{\partial f}{\partial w}(w)$

- Merge gradient and line search.
- Large gain increase zig-zag tendencies, possibly divergent.
- High curvature direction limits gain size.
- Low curvature direction limits speed of approach.

Hessian matrix

Hessian matrix

$$H(w) = \begin{bmatrix} \frac{\partial^2 f}{\partial w_1 \partial w_1} & \cdots & \frac{\partial^2 f}{\partial w_1 \partial w_d} \\ \vdots & & \vdots \\ \frac{\partial^2 f}{\partial w_d \partial w_1} & \cdots & \frac{\partial^2 f}{\partial w_d \partial w_d} \end{bmatrix}$$

Curvature information

– Taylor expansion near the optimum w^* :

$$f(w) \approx f(w^*) + \frac{1}{2}(w - w^*)^\top H(w^*) (w - w^*)$$

- This paraboloid has ellipsoidal level curves.
- Principal axes are the eigenvectors of the Hessian.
- Ratio of curvatures = ratio of eigenvalues of the Hessian.

Idea

Since Taylor says
$$\frac{\partial f}{\partial w}(w) \approx H(w) (w - w^*)$$
 then $w^* \approx w - H(w)^{-1} \frac{\partial f}{\partial w}(w)$.

Newton algorithm

$$w \leftarrow w - H(w)^{-1} rac{\partial f}{\partial w}(w)$$

- Succession of paraboloidal approximations.
- Exact when f(w) is a paraboloid, e.g. linear model + squared loss.
- Very few iterations needed when H(w) is definite positive!
- Beware when H(w) is not definite positive.
- Computing and storing $H(w)^{-1}$ can be too costly.

Quasi-Newton methods

- Methods that avoid the drawbacks of Newton
- But behave like Newton during the final convergence.

Conjugate Gradient algorithm

Conjugate directions

-u, v conjugate $\iff u^{\top}H v = 0$. Non interacting directions.

Conjugate Gradient algorithm

- Compute $g_t = \frac{\partial f}{\partial w}(w_t)$.
- Determine a line search direction $d_t = g_t \lambda d_{t-1}$
- Choose λ such that $d_t H d_{t-1} = 0$.
- Since $g_t g_{t-1} \approx H(w_t w_{t-1}) \propto H d_{t-1}$, this means $\lambda = \frac{g_t(g_t g_{t-1})}{d_t(g_t g_{t-1})}$.
- Perform a line search in direction d_t .

- Loop.

This is a fast and robust quasi-Newton algorithm.

A solution for all our learning problems?

Empirical cost

- Usually $f(w) = rac{1}{n} \sum_{i=1}^n L(x_i, y_i, w)$
- The number n of training examples can be large (billions?)

Redundant examples

- Examples are redundant (otherwise there is nothing to learn.)
- Doubling the number of examples brings a little more information.
- Do we need it during the first optimization iterations?

Examples on-the-fly

- All examples may not be available simultaneously.
- Sometimes they come on the fly (e.g. web click stream.)
- In quantities that are too large to store or retrieve (e.g. click stream.)

Offline vs. Online

Minimize
$$C(w) = \frac{\lambda}{2} ||w||^2 + \frac{1}{n} \sum_{i=1}^n L(x_i, y_i, w).$$

Offline: process all examples together

- Example: minimization by gradient descent

Repeat:
$$w \leftarrow w - \gamma \left(\lambda w + \frac{1}{n} \sum_{i=1}^{n} \frac{\partial L}{\partial w}(x_i, y_i, w) \right)$$

Offline: process examples one by one

- Example: minimization by stochastic gradient descent

Repeat: (a) Pick random example x_t, y_t (b) $w \leftarrow w - \gamma_t \left(\lambda w + \frac{\partial L}{\partial w}(x_t, y_t, w) \right)$

Stochastic Gradient Descent

- Very noisy estimates of the gradient.
- Gain γ_t controls the size of the cloud.
- Decreasing gains $\gamma_t = \gamma_0 (1 + \lambda \gamma_0 t)^{-1}$.
- Why is it attractive?

Redundant examples

- Increase the computing cost of offline learning.
- Do not change the computing cost of online learning.

Imagine the dataset contains 10 copies of the same 100 examples.

• Offline Gradient Descent

Computation is 10 times larger than necessary.

• Stochastic Gradient Descent

No difference regardless of the number of copies.

Practical example

Document classification

- Similar to homework#2 but bigger.
- 781,264 training examples.
- 47,152 dimensions.

Linear classifier with Hinge Loss

- Offline dual coordinate descent (svmlight): 6 hours.
- Offline primal bundle optimizer (svmperf): 66 seconds.
- Stochastic Gradient Descent: 1.4 seconds.

Linear classifier with Log Loss

- Offline truncated newton (tron): 44 seconds.
- Offline conjugate gradient descent: 40 seconds.
- Stochastic Gradient Descent: 2.3 seconds.

These are times to reach the same <u>test set error</u>.

The wall

