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1 How to prove analytic (holomorphic, complex differ-

entiable)?

Note: let Ω be an open set in C and f be a complex-valued function on Ω.

1.1 Definition (Difference Quotient)

Definition 1.1. Say f is complex differentiable (holomorphic) at z0 ∈ Ω, if

DQ =
f(z0 + h)− f(z0)

h

converges to a limit when h → 0. Call the limit f ′(z0).
If f is complex differentiable at all points in Ω, then call f holomorphic on Ω.

Remark 1.1. It should be emphasized that in the above limit, h is a complex number that may
approach 0 from any direction.

Remark 1.2. A holomorphic function will actually be infinitely many times complex differen-
tiable, that is, the existence of the first derivative will guarantee the existence of derivatives of
any order. For proof, see Section 1.4.3 and Theorem 2.4.

For more application of this method, see Lemma 2.3, Theorem 2.2, Theorem 2.4.

1.2 Cauchy-Riemann Equations

Theorem 1.1 (C-R ⇒ analytic). Suppose u, v ∈ C1(Ω) and satisfy the C-R equations

{

ux = vy,
uy = −vx,

(1.1)

then f(x, y) = u(xy) + iv(x, y) is analytic on Ω.

Remark 1.3. Actually, by Looman-Monchoff Theorem, we just need that u, v are continuous
and all their first partial derivatives exit (may be not continuous) and satisfy the C-R equations,
then f = u+ iv is analytic.

1.3 Integration along closed curves equals zeros

Theorem 1.2 (Morera). Suppose f is continuous on an open set Ω and for any triangle T
contained in Ω,

∫

T

f(z)dz = 0,

then f is holomorphic.
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1.4 Power series

1.4.1 From holomorphic to power series

Lemma 1.1. Let

SN(z) = 1 + z + · · ·+ zN , (1.2)

EN(z) =
zN+1

1− z
, (1.3)

then
1

1− z
= SN(z) + EN (z).

Furthermore, if |z| < ρ < 1, then |EN(z)| ≤
ρN+1

1−ρ
.

Theorem 1.3 (holomorphic ⇒ analytic). Suppose f is holomorphic on Ω and Dr(z0) ⊂ Ω.
Then f has a power series expansion in Dr(z0),

f(z) =
∞
∑

n=0

an(z − z0)
n, ∀z ∈ Dr(z0),

with an = f(n)(z0)
n!

= 1
2πi

∫

Cr(z0)
f(w)

(w−z0)n+1dw.

Proof. Without loss of generality, we can take z0 = 0 and ρ < r. By Cauchy formula (Thm
2.3) and Lemma 1.1,

f(z) =
1

2πi

∫

Cr

f(w)

w − z
dw

=
1

2πi

∫

Cr

f(w)

w

1

1− z
w

dw

=
1

2πi

∫

Cr

f(w)

w
SN (z/w) dw +

1

2πi

∫

Cr

f(w)

w
EN (z/w) dw

=

N
∑

n=0

(

1

2πi

∫

Cr

f(w)

wn+1
dw

)

zn + εN(z),

where

|εN(z)| ≤
1

2π

supCr
|f |

r

(ρ/r)N+1

1− ρ/r
(2πr) → 0.

as N → ∞.
Besides,

an =
1

2πi

∫

Cr

f(w)

wn+1
dw =

f (n)(0)

n!
.
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1.4.2 From power series to holomorphic

Definition 1.2. Say {fn} converges uniformly on compact subsets of Ω to f , if for any compact
subsect K ⊂ Ω, and ∀ε > 0, there is an N such that |fn(z)− f(z)| < ε, ∀z ∈ K, n > N .

Remark 1.4. Power series converge uniformly on compact subsects inside the circle.

Theorem 1.4 (uniformly limit ⇒ analytic). Suppose {fn} analytic on Ω and converges uni-
formly on compact subsets of Ω to f . Then f is analytic.

Consequently, power series converge to analytic functions.

Proof. Let D be any disc whose closure is contained in Ω and T be any triangle in that disc.
Then, since each fn is holomorphic, Goursat’s theorem (Lemma 2.4) implies

∫

T

fn(z) dz = 0, ∀n.

By assumption, fn → f uniformly on D̄, so f is continuous and

∫

T

fn(z)dz →

∫

T

f(z) dz.

As a result, we find
∫

T
f(z)dz = 0 for ∀T ⊂ D. By Morera theorem (Thm 1.2), we conclude

that f is holomorphic in D. Since this conclusion is true for every D whose closure is contained
in Ω, we find that f is holomorphic in all of Ω.

1.4.3 Differentiate

Theorem 1.5 (Can differentiate power series term by term). Suppose

f(z) =
∞
∑

n=0

an(z − z0)
n

with radius of convergence R. Then power series for f ′ has the same radius of convergence and

f ′(z) =
∞
∑

n=0

nan(z − z0)
n−1.

Theorem 1.6 (Derivative convergence). Suppose {fn} analytic on Ω and converges uniformly

on compact subsets of Ω to f . Then {f
(k)
n } converges uniformly on compact subsets of Ω to

f (k).
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2 Integration along curves

2.1 Preliminaries

Definition 2.1. Given a curve γ ∈ C with para z(t) : [a, b] → C. Suppose f : γ → C is
continuous. Then

∫

γ

f(z)dz =

∫ b

a

f(z(t))z′(t)dt = lim
|∆z|→0

N−1
∑

j=0

f(zj)(zj+1 − zj),

where ∆zj = zj+1 − zj, |∆z| = max
j

|∆zj |.

Lemma 2.1 (Basic estimate).

∣

∣

∣

∣

∫

γ

f(z)dz

∣

∣

∣

∣

≤ length (γ) sup
z∈γ

|f(z)|

where length (γ) =
∫ b

a
|z′(t)| dt.

Lemma 2.2 (Reverse orientation). If γ− is γ with reverse orientation, then

∫

γ

f(z)dz = −

∫

γ−

f(z)dz.

Proof. Let γ be parameterized by z(t) : [a, b] → C and γ− parameterized by z−(t) : [a, b] → C.
The relationship between z(t) and z−(t) is z−(t) = z(a + b− t).

Let i = 0, · · · , n,∆x = b−a
n
, xi = a+ i∆x, x0 = a, xn = b, and yi = a+ b−xi,∆y = ∆x, y0 =

b, yn = a. By the definition of integration along curves (Def 2.1),

∫

γ−

f(z)dz =

∫ b

a

f(z−(t))(z−)′(t)dt

= lim
n→∞

n
∑

i=1

f(z−(xi))(z
−)′(xi)∆x

= lim
n→∞

n
∑

i=1

f(z(yi)) (−z′(yi))∆y

= −

∫ b

a

f(z(t))z′(t)dt

= −

∫

γ

f(z).
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2.2 Fundamental Theorem of Calculus

Definition 2.2. A primitive for f on Ω is a function F that is holomorphic on Ω and such
that

F ′(z) = f(z), ∀z ∈ Ω.

Theorem 2.1 (Fundamental Theorem of Calculus #2). Let Ω be an open set in C and γ be a
curve (or path) in Ω that begins at w1 and ends at w2.

Version I: If f is analytic on Ω, then

∫

γ

f ′(z)dz = f(w2)− f(w1).

Version II: If f has a primitive in Ω, then

∫

γ

f(z)dz = F (w2)− F (w1).

Proof. Chain Rule + Fundamental Theorem of Calculus # 1.

Corollary 2.1. If γ is a closed curve and f is holomorphic, then
∫

γ
f(z)dz = 0.

Corollary 2.2. Any two primitives of f (if they exist) differ by a constant.

Proof. Suppose both F and G are the primitives of function f . According to Thm 2.1 (version
II), we know that if γ is a curve in Ω from w0 to w, then

∫

γ

f(z)dz = F (w)− F (w0) = G(w)−G(w0).

Fix w0, then ∀w ∈ Ω, F (w)−G(w) = F (w0)−G(w0) = constant.

Corollary 2.3. If Ω is a region (open+connected), f is complex differentiable at each point in
Ω, and f ′(z) = 0 for all z ∈ Ω, then f is a constant.

Proof. Method I: Path connected + Theorem 2.1.
Fix a point w0 ∈ Ω. It is suffices to show that f(w) = f(w0) for all w ∈ Ω.
Since Ω is connected, for any w ∈ Ω, there exists a curve γ which joins w0 to w. By Thm

2.1 (version I),
∫

γ

f ′(z)dz = f(w)− f(w0).

By assumption, f ′ = 0 so the integral on the left is 0 and we conclude that f(w) = f(w0) as
desired.
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Method II: Definition + C-R equations.

f ′(z) = 0,

⇒
∂f

∂z
=

1

2

(

∂f

∂x
+

1

i

∂f

∂y

)

= 0,

⇒ (ux + ivx)− i(uy + ivy) = 0, since fx = ux + ivx, fy = uy + ivy,

⇒ (ux + vy) + i(vx − uy) = 0,

⇒ ux + vy = 0, vx − uy = 0.

Besides, by C-R Eqn.(1.1), we can get that

ux = uy = vx = vy = 0

⇒ u(x, y) = constant, v(x, y) = constant

⇒ f = constant.

2.3 Cauchy Theorem

Lemma 2.3 (Deferential under integral). Suppose that ϕ(z) is continuous function on the trace
of a path γ. Prove that the function

f(z) =

∫

γ

ϕ(w)

w − z
dw,

is analytic on C \ γ.

Idea: just need to show that

f ′(z) =

∫

γ

ϕ(w)

(w − z)2
dw. (2.1)

Proof. Recall the DQ method, for ∀z0 ∈ C \ γ,

f(z)− f(z0)

z − z0
−

∫

γ

ϕ(w)

(w − z)2
dw

=

∫

γ

ϕ(w)

[

1

(w − z)(w − z0)
−

1

(w − z0)2

]

dw

=

∫

γ

ϕ(w)

[

z − z0
(w − z)(w − z0)2

]

dw

= (z − z0)

∫

γ

[

ϕ(w)

(w − z)(w − z0)2

]

dw.
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Let

E(z) =

∫

γ

[

ϕ(w)

(w − z)(w − z0)2

]

dw,

D = dist (z0, tr(γ)) = min
w∈tr (γ)

|z0 − w|,

M = max
w∈tr(γ)

|ϕ(w)|.

Choose a disc DD/2(z0), ∀z ∈ DD/2(z0), ∀w ∈ γ, we have

|z − w| ≥ D/2, |z0 − w| ≥ D/2.

By Lemma 2.1, we have

|E(z)| ≤ M
1

(D/2)(D/2)2
length (γ),

⇒

∣

∣

∣

∣

f(z)− f(z0)

z − z0
−

∫

γ

ϕ(w)

(w − z)2
dw

∣

∣

∣

∣

≤ |z − z0|
M

(D/2)(D/2)2
length (γ) → 0, as z → z0.

It implies Eq.(2.1).

Lemma 2.4 (Goursat). If Ω is an open set in C, and T ⊂ Ω a triangle whose interior is also
contained in Ω, then

∫

T

f(z)dz = 0,

whenever f is continuous on Ω and analytic on Ω\{p}.

Theorem 2.2 (Cauchy’s theorem on a convex open set). Suppose Ω is convex and open, p ∈ Ω.
If f is continuous on Ω and analytic on Ω\{p}, then

∫

γ

fdz = 0,

for any closed γ in Ω.

Idea: Construct F holomorphic with F ′ = f , Then f is continuous so F is continuous and
by Thm 2.1,

∫

γ

fdz =

∫

γ

F ′dz = F (end)− F (start) = 0. (2.2)
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Proof. Fix a ∈ Ω. Let Lz
a be the line segement from a to z. Ω is convex indicates that Lz

a is
contained in Ω.

Define

f(z) =

∫

Lz
a

f(w)dw.

Fix z0 ∈ Ω and consider z near z0. By Lemma 2.4,

(

∫

L
z0
a

+

∫

Lz
z0

+

∫

−Lz
a

)

f(w)dw = 0,

⇒ F (z0) +

∫

Lz
z0

f(w)dw − F (z) = 0,

⇒
F (z)− F (z0)

z − z0
=

1

z − z0

∫

Lz
z0

f(w)dw.

Since f is continuous at z0, then

f(z) = f(z0) +R(z),

with R(z) → 0, as z → z0. So for ε > 0, ∃δ > 0 so that if |z − z0| < δ then |R(z)| < ε.
Also,

∫

Lz
z0

f(z0)dw =

∫

Lz
z0

d

dw
[f(z0)w]dw = f(z0)(z − z0).

Hence,

F (z)− F (z0)

z − z0
=

1

z − z0

∫

Lz
z0

(f(z0) +R(w))dw = f(z0) +
1

z − z0

∫

Lz
z0

R(w)dw,

⇒

∣

∣

∣

∣

F (z)− F (z0)

z − z0
− f(z0)

∣

∣

∣

∣

≤ sup
w∈Lz

z0

|R(w)| → 0, as z → z0.

It indicates that F ′(z0) = f(z0). Then F ′ = f . By Eq.(2.2), we can get the conclusion.

2.4 Cauchy Integral Formula

Theorem 2.3 (Cauchy Integral Formula on a disc). Suppose f is holomorphic on DR(z0) and
0 < r < R. Then ∀a ∈ Dr(z0),

f(a) =
1

2πi

∫

Cr(z0)

f(z)

z − a
dz. (2.3)
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Proof. Let

G(z) =

{

f(z)−f(a)
z−a

z 6= a,

f ′(a) z = a.
(2.4)

It is easy to know that G(z) is continuous and G(z) is holomorphic on Dr(z0)\{a}. By Thm
2.2, we have

∫

Cr(z0)

G(z)dz = 0,

⇒

∫

Cr(z0)

(

f(z)

z − a
−

f(a)

z − a

)

dz = 0,

⇒

∫

Cr(z0)

f(z)

z − a
dz =

∫

Cr(z0)

f(a)

z − a
dz = 2πif(a).

Theorem 2.4 (Cauchy Integral Formula with derivatives). If f is holomorphic in an open
set Ω, then f has infinitely many complex derivatives in Ω. Moreover, if Dr(z0) ⊂ Ω, then
∀z ∈ Dr(z0),

f (n)(z) =
n!

2πi

∫

Cr(z0)

f(w)

(w − z)n+1
dw. (2.5)

Proof. Here, we give three methods to prove this.
Method I Induction on n and by Def 1.1.
n = 0, by Thm 2.3,

f(z) =
1

2πi

∫

C

f(w)

w − z
dw.

Suppose f has desideratives 0, 1, · · · , n− 1 and the formula (2.5) is ture. Then

DQ =
f (n−1)(z + h)− f (n−1)(z)

h
=

(n− 1)!

2πi

∫

C

f(w)

h

(

1

(w − z − h)n
−

1

(w − z)n

)

dw

Let A = 1
w−z−h

, B = 1
w−z

, then

A− B =
h

(w − z − h)(w − z)
,

An − Bn = (A− B)(An−1 + An−2B + · · ·+Bn−1).

11
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So we have

lim
h→0

DQ

= lim
h→0

(n− 1)!

2πi

∫

C

f(w)

(w − z − h)(w − z)
(An−1 + An−2B + · · ·+Bn−1)dw,

=
(n− 1)!

2πi

∫

C

lim
h→0

f(w)

(w − z − h)(w − z)
(An−1 + An−2B + · · ·+Bn−1)dw,

=
n!

2πi

∫

C

f(w)

(w − z)n+1
dw.

Method II Induction on n and differential under integral (Lemma 2.3).

d

dz
f (n−1)(z)

=
(n− 1)!

2πi

∫

C

[

d

dz

f(w)

(w − z)n

]

dw

=
n!

2πi

∫

C

f(w)

(w − z)n+1
dw.

Method III Power series expansion By Eq.(2.3),

f(z) =
1

2πi

∫

Cr(z0)

f(w)

w − z
dw.

Do power expansion

1

w − z

=
1

(w − z0)− (z − z0)

=
1

w − z0

1

1− z−z0
w−z0

=
1

w − z0

∞
∑

n=0

(

z − z0
w − z0

)n

.

Then

f(z) =
1

2πi

∫

Cr(z0)

f(w)

w − z0

∞
∑

n=0

(

z − z0
w − z0

)n

dw

=
∞
∑

n=0

(

1

2πi

∫

Cr(z0)

f(w)

(w − z)n+1
dw

)

(z − z0)
n.

It implies Eq.(2.5).
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2.5 Liouville’s theorem

Theorem 2.5 (Cauchy inequality). If f is holomorphic in an open set that contains the closure
of a disc D centered at z0 and of radius R, then

|f (n)(z0)| ≤
n!‖f‖C
Rn

,

where ‖f‖C = supz∈C |f(z)| denotes the supremum of |f | on the boundary circle C.

Theorem 2.6 (Liouville’s theorem). If f is entire and bounded, then f is constant.

2.6 Fundamental Theorem of Algebra

Lemma 2.5 (Basic polynomial estimate). Suppose

p(z) = aNz
N + aN−1z

N−1 + · · ·+ a1z + a0,

is a complex polynomial of degree N . Then there exist constants 0 < A < B and a radius R
such that

A|z|N ≤ |p(z)| ≤ B|z|N , if |z| > R. (2.6)

Remark 2.1. Here, 0 < A < |aN | < B and A,B can be as close to aN as desired.

Theorem 2.7 (Fundamental Theorem of Algebra). Every non-constant polynomial p(z) with
complex coefficients has a root in C.

Proof. Assume that p(z) 6= 0, ∀z ∈ C. By Eq.(2.6), we know that f(z) = 1
p(z)

is bounded

entire. And by Liouville Theorem (Thm 2.6), f is constant, so p(z) is constant, which is a
contradiction.

Corollary 2.4. Every polynomial p(z) of degree n ≥ 1 has precisely n roots in C. If these roots
are denoted by w1, w2, · · · , wn, then p(z) can be factored as

p(z) = an(z − w1)(z − w2) · · · (z − wn).

3 Useful properties of holomorphic functions

3.1 Isolated zeros

Theorem 3.1 (Zero theorem). Suppose f is holomorphic on Ω and f(z0) = 0, z0 ∈ Ω. If
∃r > 0 such that Dr(z0) ∈ Ω and f(z) is not identically 0 on Dr(z0), then ∃n0 ∈ Z+ and a
function h(z) which is holomorphic on Dr(z0) so that h(z0) 6= 0 and

f(z) = (z − z0)
n0h(z), ∀z ∈ Dr(z0).

13
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Proof. From Theorem 1.3, we know that

f(z) =

∞
∑

n=0

an(z − z0)
n, ∀z ∈ Dr(z0),

with an = f(n)(z0)
n!

.
Since f is not identically 0 on Dr(z0), we know that ∃n such that an 6= 0. Also, f(z0) =

0 ⇒ a0 = 0.
Let n0 = min{n ∈ Z+ : f (n)(z0) 6= 0}, then

f(z) = (z − z0)
n0

∞
∑

n=n0

an(z − z0)
n−n0.

Let h(z) =
∑∞

n=n0
an(z − z0)

n−n0 which is holomorphic on Dr(z0). Also, h(z0) = an0 =
fn0 (z0)

n!
6= 0. Then we get the conclusion.

Corollary 3.1. Suppose f and g are analytic on a domain Ω and that f 2 = g2 on Ω. Prove
that either f = g or f = −g on Ω.

Proof. Choose F = f + g, G = f − g. Assume both of F and G do not vanish on Ω. It means
that F and G are not identically zero on Ω. It also means that F and G only have isolated
zeros in Ω.

f 2 = g2

⇒ F (z)G(z) = 0

⇒ ∃z0 such that either F (z0) = 0 or G(z0) = 0.

Without loss of generality, let F (z0) = 0. Since z0 is an isolated zero of F , ∃r1 > 0 such that
F (z) 6= 0 on D̂r1(z0) = Dr1(z0) \ {z0}. Besides, G also only has isolated zeros, so we can choose
a ∈ D̂r1(z0), such that G(a) 6= 0. ∃r2 > 0 such that G(z) 6= 0 on Dr2(a) and Dr2(a) ⊂ D̂r1(z0).
Then

F (z)G(z) 6= 0, ∀z ∈ Dr2(a),

which contradicts with the assumption.

3.2 Identity theorem

Theorem 3.2 (Identity theorem). Suppose f : Ω → C is holomorphic and Zf = {z ∈ Ω :
f(z) = 0}. Then either Zf = Ω or Zf has no limit points in Ω.

Proof. Step 1: Disc version.
Step 2: Let U be the interior of Zf . Then U is open and nonempty.
Step 3: Let V = Ω\U , then V is also open.
Step 4: Since Ω is connected and Ω = U ∪ V , U is not empty, we know that V = ∅ and

Ω = Zf .

14
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Corollary 3.2. Suppose f and g are holomorphic in a region Ω and f(z) = g(z) for all z in
some non-empty open subsets of Ω (or more generally for z in some sequence of distinct points
with limit point in Ω). Then f(z) = g(z) throughout Ω.

Corollary 3.3. Only one way to extend ex and trig functions to C. Besides, any trig identity
holds for complex angles.

Remark 3.1. An analytic function may have infinitely many (at most countable) zeros on a
bounded domain as soon as the limit point of these zeros is not in this domain. For example,
f(z) = sin

(

1
1−z

)

has infinitely many zeros on the open unit disc D1(0), i.e. zk = 1 − 1
kπ
, but

zk → 1∈̄D1(0). So each {zk} is also isolated zero. Besides, z = 1 is the essential singularity of
f(z).

3.3 Averaging property

Lemma 3.1 (Averaging property). f is holomorphic on Ω and Dr(z0) ⊂ Ω, then

f(z0) =
1

2π

∫ 2π

0

f(z0 + reit)dt (3.1)

Proof. Let Cr be a circle in Ω, centered at z0 with radius r. If we parameterize Cr by z =
z0 + reit, 0 ≤ t ≤ 2π, then by Cauchy integral formula,

f(z0) =
1

2πi

∫

Cr

f(z)

z − z0
dz

=
1

2πi

∫ 2π

0

f(z0 + reit)

reit
ireit dt

=
1

2π

∫ 2π

0

f(z0 + reit) dt

3.4 Maximum principle

Theorem 3.3 (Maximum principle #1). Suppose f is holomorphic on a domain Ω. If |f |
attains a local maximum at a point in Ω, then f ≡ constant.

Proof. Method I By Open mapping theorem
Suppose |f | has a local max at z0 ∈ Ω. Let w0 = f(z0). Then ∃r > 0 such that Dr(z0) ∈ Ω

and |f(z)| ≤ |f(z0)| for z ∈ Dr(z0).
By Open Mapping Theorem (Thm 6.3), if f is nonconstant, f(Dr(z0)) contains a disc about

f(z0). But there are points in such a disc with modulus bigger than |w0|. This is a contradiction.
Method II By averaging property
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Suppose z0 ∈ Ω and that for all z ∈ Ω, |f(z)| ≤ |f(z0)|. By Eq.(3.1), we know that

|f(z0)| ≤
1

2π

∫ 2π

0

|f(z0 + reit)| dt. (3.2)

However, the assumption |f(z0)| ≥ |f(z)| for all z ∈ Ω implies that

1

2π

∫ 2π

0

|f(z0 + reit)| dt ≤
1

2π

∫ 2π

0

|f(z0)| dt = |f(z0)|. (3.3)

From (3.2)-(3.3), we can get

|f(z0)| =
1

2π

∫ 2π

0

|f(z0 + reit)| dt. (3.4)

It follows that

0 = |f(z0)| −
1

2π

∫ 2π

0

|f(z0 + reit)| dt

=
1

2π

∫ 2π

0

(|f(z0)| − |f(z0 + reit)|) dt,

which means |f(z0)| = |f(z0 + reit)| for all t ∈ [0, 2π]. That is to say |f(z)| = |f(z0)| for all
z ∈ Cr. Since r is arbitrary, it follows that |f(z)| = |f(z0)| for all z ∈ Ω. Since f is holomorphic
and |f(z)| is a constant, f is also a constant (by Chapter One, # 13(c), Page 28).

Theorem 3.4 (Maximum principle #2). Suppose Ω is a bounded domain. f is continuous on
Ω̄ and holomorphic on Ω. Then |f | assumes its maximum value on the boundary of Ω.

3.5 Rouche’s Theorem

Theorem 3.5 (Rouche’s Theorem). Suppose f and g are meromorphic functions on a connected
open G ⊂ C and γ is a piecewise C1 closed curve in G with

(i) Indγ(w) = 0 for ∀w ∈ C \G;
(ii) no zeros or poles of f or g on γ;
(iii) |f(z)− g(z)| < |f(z)| for all z ∈ γ (that is, the difference is strictly smaller than one

of the functions |f | on γ ).
Then,

Nf − Pf = Ng − Pg, (3.5)

where

Nf =
∑

a∈G,f(a)=0

multa Indγ(a),

Pf =
∑

b∈G,f(b)=∞

orderb Indγ(b),

and similarly for Ng and Pg.
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Here are some applications.

Corollary 3.4. There are no such sequence of polynomials that uniformly converges to f(z) = 1
z

on the circle {z : |z| = 1}.

Proof. Suppose ∃ pn(z) →
1
z
uniformly on C1(0), then

|zpn(z)− 1| = |pn(z)−
1

z
| → 0, ∀z ∈ C1(0).

Then ∃ sufficient large N such that

|zpn(z)− 1| < 1, ∀n > N, ∀z ∈ C1(0).

By Rouche’s Theorem, Nzpn(z) = N1. But zpn(z) has at least one zero, while 1 has no zeros,
which is a contradiction.

Corollary 3.5. There are no such sequence of polynomials that uniformly converges to f(z) =
(z̄)2 on the circle {z : |z| = 1}.

Proof. Suppose ∃ pn(z) → (z̄)2 uniformly on C1(0), then

|z2pn(z)| → |z2 (z̄)2 | = |z|4 = 1, ∀z ∈ C1(0).

Then do the similar thing as last corollary.

3.6 Argument Principle

Theorem 3.6 (Argument principle). Let C be a simple closed path. Suppose that f(z) is ana-
lytic and nonzero on C and meromorphic inside C. List the zeros of f inside C as z1, z2, · · · , zk
with multiplicities N1, · · · , Nk, and ZC =

∑k
i=1Ni. List the poles of f inside C as w1, w2, · · · , wl

with orders M1, · · · ,Ml, and PC =
∑l

j=1Mj. Then

ZC − PC =
1

2π
△C arg f(z) (3.6)

=
1

2πi

∫

C

f ′(ζ)

f(ζ)
dζ. (3.7)

Remark 3.2. From Eqs.(3.6)-Eq.(3.7), we know that

△C arg f(z) =
1

i

∫

C

f ′(ζ)

f(ζ)
dζ. (3.8)

This formula is always true even if the curve C is not a closed path.
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Corollary 3.6. How many zeros does the polynomial

f(z) = z1998 + z + 2001

have in the first quadrant?

Proof. Chose a closed curve:
γ = LR

0 + C+
R + L0

iR,

where C+
R here means the circle in the first quadrant and R is sufficient large.

On one hand, on LR
0 and L0

iR, we know that

△LR
0
arg f(z) = 0, (3.9)

△L0
iR

arg f(z) = −π. (3.10)

Hint for Eq.(3.10): if z = iR, then f(z) = −R1998+ iR+2001. And consider R from ∞ to
0.

On the other hand, on C+
R , we know that

∫

C+
R

f ′(ζ)

f(ζ)
dζ =

∫

C+
R

1998ζ1997 + 1

ζ1998 + ζ + 2001
dζ

≈

∫

C+
R

1998

ζ
dζ

= 1998
2πi

4
= 999πi. (3.11)

By Thm. 3.6 and Eqs.(3.9)-(3.11), we know that the number of zeros of f(z) in the first
quadrant is

999π − π

2π
= 499.

4 Harmonic functions

4.1 Definition

The following definitions of harmonic functions are equivalent:

Definition 4.1. Say u : Ω → R is harmonic if u ∈ C∞ and ∆u ≡ 0.

Definition 4.2. Say u : Ω → R is harmonic if u ∈ C2 and ∆u ≡ 0.

Definition 4.3. Say u : Ω → R is harmonic if u is locally the real (imaginary) part of a
holomorphic function.

Definition 4.4. Say u : Ω → R is harmonic if u is continuous on Ω and ux, uy, uxx, uyy exist
and ∆u = 0 on Ω.

Remark 4.1. Here, ∆ = ∂2

∂x2 +
∂2

∂y2
is called Laplacian operator and ∆u ≡ 0 is called Laplacian

equation.
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4.2 Harmonic conjugate

Theorem 4.1. A harmonic function on a simply connected domain has a global harmonic
conjugate.

Remark 4.2. Suppose u be harmonic and f be the analytic function with Ref = u. Then,
f ′ = ux − iuy is also analytic.

4.3 Poisson integral formula

Definition 4.5 (Poisson kernel).

P (z, t) =
1

2π

1− |z|2

|eit − z|2
=

1

2π
Re

(

eit + z

eit − z

)

, (4.1)

P (reiθ, t) =
1

2π

1− r2

1− 2r cos(θ − t) + r2
. (4.2)

Theorem 4.2 (Dirichlet problem). Suppose u is continuous on D1(0) and harmonic on D1(0).
Then

u(z) =

∫ 2π

0

P (z, t)u(eit)dt.

Lemma 4.1. Some properties about Poisson kernel:
(i) P (a, t) > 0 if a ∈ D1(0), t ∈ [0, 2π].

(ii)
∫ 2π

0
P (a, t)dt = 1 for any a ∈ D1(0).

(iii) P (z, t) → 0 as |z| → 1.
(iv) P (z, t) is harmonic in z.

Theorem 4.3 (Convergence). Suppose {um}
∞
m=1 is a sequence of harmonic functions on Ω such

that um converges uniformly to a function u on each compact subset of Ω. Then u is harmonic
on Ω.

Moreover, for every multi-index α, Dαum converges uniformly on each compact subset of Ω.

Proof. Given Dr(a) ⊂ Ω, we need only show that u is harmonic on Dr(a). Without loss of
generality, we assume Dr(a) = D1(0).

By Thm 4.2, we know that

um(z) =

∫ 2π

0

P (z, t)um(e
it)dt,

for ∀z ∈ D1(0) and ∀m. Taking the limit of both sides, we obtain

u(z) =

∫ 2π

0

P (z, t)u(eit)dt,

for ∀z ∈ D1(0). Thus, u is harmonic on D1(0).
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4.4 Mean Value Property and Maximum Principle

Theorem 4.4 (Mean Value Property). Since holomorphic f = u + iv satisfies the averaging
property, take the real part of Eq.(3.1), we can get the mean value property of harmonic u.
More precisely,

u(z) =
1

2π

∫ 2π

0

u(z + reiθ)dθ.

An important sequence of the mean value property is the following maximum principle for
harmonic functions.

Theorem 4.5 (Maximum Principle). Suppose Ω is connected, u is real valued and harmonic
on Ω, and u has a maximum or minimum in Ω. Then u is a constant.

The following corollary is frequently useful. Note that the connectivity of Ω is not needed
here.

Corollary 4.1. Suppose Ω is bounded, u is a continuous real valued function on Ω̄ that is
harmonic on Ω. Then u attains its maximum and minimum values over Ω̄ on ∂Ω.

The next corollary is a version of maximum principle for complex valued functions.

Corollary 4.2. Let Ω be connected and u be harmonic on Ω. If |u| has a maximum in Ω, then
u is a constant.

Remark 4.3. For holomorphic cases, see Thm 1.4 and Thm 1.6.

Theorem 4.6 (Converse of the mean value property #1). A continuous function that satisfies
the mean value property must be harmonic.

Proof. Step I: Poisson Kernel
Let

v(z) =

∫ 2π

0

P (z, t)u(eit)dt,

then v(z) is harmonic and v(eit) = u(eit).
Step II: Maximum Principal
Since u(z) satisfies the mean value property, then u(z) also satisfies the maximum principal.

So u− v satisfies the maximum principal. Besides, u− v ≡ 0 on the boundary, so u− v ≤ 0 for
all z ∈ D1(0).

Repeat the argument, we can get v − u ≤ 0. Hence, u ≡ v.

Definition 4.6. Say f satisfies the weak mean value property if for each z0 ∈ Ω, ∃ε > 0, such
that

u(z0) =
1

2π

∫ 2π

0

u(z0 + ρeit)dt,

for all ρ with 0 < ρ < ε.

Theorem 4.7 (Converse of the mean value property #2). A continuous function that satisfies
the weak mean value property must be harmonic.
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4.5 Zeros of harmonic functions

Theorem 4.8. Let u be real-valued and harmonic function in the open set Ω.
(1) Let A = {z ∈ Ω : u(z) = 0}. show that A cannot be isolated.
(2) Let B = {z ∈ Ω : ∇u = 0}. Show that either B = Ω or B is isolated.

Proof. (1) Suppose z0 ∈ A and Drn(z0) ⊆ Ω, rn = 1
n
.

By Mean value property (Thm 4.4),

0 = u(z0) =
1

2π

∫

Crn

u(z)dz.

For each n, since u(z) is continuous on Crn(z0), there exists zn ∈ Crn(z0) such that u(zn) = 0.
Then we found a sequence {zn}

∞
n=1 ⊆ A such that zn → z0. So A cannot be isolated.

(2) Since u is harmonic, there exists a holomorphic function f = u+ iv on Ω.
∇u = 0 means ux = 0, uy = 0. So we have f ′(z) = ux − iuy = 0, ∀z ∈ B.
Let g(z) = f ′(z), then g is also holomorphic on Ω, and A is the set of zeros of g. So either

g(z) ≡ 0 or z0 is isolated for ∀z0 ∈ B.
It follows that either B = Ω or B is isolated.

Remark 4.4. Suppose u is a non-constant real-valued function on the whole complex plane.
Then the zero set {z ∈ C : u(z) = 0} is an unbounded set.

5 Isolated singularity

Note: let punctured domain Ω̂ = Ω\{z0}, and punctured disk D̂r(z0) = Dr(z0)\{z0}, where Ω
is an open and connected domain and Dr(z0) is an open disc centered at z0 with radius r.

5.1 Definition

A point singularity of a function f is a complex number z0 such that f is defined in a neigh-
borhood of z0 but not at the point z0 itself. We also call such points isolated singularities.

5.1.1 Removable singularity

Let f be holomorphic in Ω̂. If we can define f at z0 in such a way that f becomes holomorphic
in all of Ω, we say that z0 is a removable singularity of f .

5.1.2 Pole

We say that a function f defined in D̂r(z0) has a pole at z0, if the function 1
f
, defined to be

zero at z0, is holomorphic in Dr(z0).
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5.1.3 Essential singularity

f oscillates and may grow faster than any power at z0, which is called essential singularity.

Remark 5.1. f has an isolated singularity at ∞ means f(1
z
) has an isolated singularity at 0.

Remark 5.2. f is meromorphic on Ω means that at each z ∈ Ω, either f is holomorphic or f
has a pole.

5.1.4 From the view of power series

Consider the Laurent expansion of a function in the punctured disk D̂r(z0):

f(z) =
∞
∑

n=−∞

an(z − z0)
n

where

an =
1

2πi

∫

Cr(z0)

f(ζ)

(ζ − z0)
dζ.

• If

f(z) =

∞
∑

n=0

an(z − z0)
n,

then f(z) has a removable singularity at z = z0, which means f(z) may be extended by
defining f(z0) = a0, and the resulting function is analytic in the open disk Dr(z0).

• If

f(z) =
∞
∑

n=N

an(z − z0)
n, N > 0, aN 6= 0,

then f(z) has a zero of multiply N at z = z0. Near z0, f(z) = (z − z0)
Ng(z), where g(z)

is analytic in Dr(z0), g(z0) 6= 0.

• If

f(z) =

∞
∑

n=−M

an(z − z0)
n, M > 0, a−M 6= 0,

then f(z) has a pole of order M at z = z0. Near z0, f(z) = (z − z0)
−Mg(z), where g(z)

is analytic in Dr(z0), g(z0) 6= 0.

• If

f(z) =

∞
∑

n=−∞

an(z − z0)
n, an 6= 0 for infinitely many negative n,

then f(z) has a essential singularity at z = z0.
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• The coefficient of (z− z0)
−1 is called the residue of f(z) at z0. Suppose z0 is the m order

pole of f(z), then

Resz0f(z) = (m− 1)!
dm−1

dzm−1
[(z − z0)

mf(z)] .

Remark 5.3. Here, from this point of view, we make the summary of Thm.1.3, Thm.3.1,
Thm.5.1, Thm.5.2 and Thm.5.3.

5.2 Riemann removable singularities theorem

Theorem 5.1. Suppose f is holomorphic and bounded in Ω̂, then f has a removable singularity
at z0.

That is to say, if ∃M > 0 such that |f(z)| < M, ∀z ∈ D̂r(z0), then ∃h(z) holomorphic in
Dr(z0) and h = f on D̂r(z0).

Proof: Here we give too methods to prove this.

5.2.1 Method I: integral formulas + estimates

We shall prove that for ∀z ∈ D̂r(z0), we have

f(z) =
1

2πi

∫

∂D

f(ζ)

ζ − z
dζ. (5.1)

By Cauchy theorem, we have

∫

∂D

f(ζ)

ζ − z
dζ +

∫

γǫ

f(ζ)

ζ − z
dζ +

∫

γ′

ǫ

f(ζ)

ζ − z
dζ = 0, (5.2)

where γǫ and γ′
ǫ are small circles of radius ǫ with negative orientation and centered at z and z0

respectively.
On one hand,

∫

γǫ

f(ζ)

ζ − z
dζ = −2πif(z). (5.3)

On the other hand, since f is bounded and ǫ is small, ζ stays away from z, we have

∣

∣

∣

∣

∫

γ′

ǫ

f(ζ)

ζ − z
dζ

∣

∣

∣

∣

≤ Cǫ. (5.4)

By (5.2)-(5.4) and letting ǫ tend to 0, then we can get (5.1).

Now it is OK to choose h(z) = 1
2πi

∫

∂D
f(ζ)
ζ−z

dζ .
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5.2.2 Method II: construct function

Consider the function g(z) defined by

g(z) =

{

0, if z = z0,
(z − z0)

2f(z), if z 6= z0.
(5.5)

By assumption, g(z) is holomorphic on D̂r(z0). Next to find g′(z0).
On one hand,

g(z) = g(z0) + 0(z − z0) + [(z − z0)f(z)](z − z0). (5.6)

Note that |(z − z0)f(z0)| ≤ |z − z0|M → 0 as z → z0.
On the other hand, consider the Taylor series

g(z) = g(z0) + g′(z0)(z − z0) +R(z)(z − z0), (5.7)

where R(z) → 0 as z → z0.
By (5.6) and (5.7), we can know that g′(z0) = 0 and g(z) is holomorphic on Dr(z0).
So we have

g(z) =
∞
∑

n=2

g(n)(z0)

n!
(z − z0)

n = (z − z0)
2

∞
∑

n=2

g(n)(z0)

n!
(z − z0)

n−2. (5.8)

Let h(z) =
∑∞

n=2
g(n)(z0)

n!
(z − z0)

n−2, which is holomorphic on Dr(z0). Besides, by (5.5) and

(5.8), we can know that h(z) = f(z) for ∀z ∈ D̂r(z0).

5.3 Pole Theorem

Lemma 5.1. z0 is a pole of f ⇔ |f(z)| → ∞ as z → z0.

Theorem 5.2 (Pole theorem). Suppose f : Ω̂ → C is holomorphic and limz→z0 |f(z)| = ∞.

Then ∃n ∈ Z+ and h(z) satisfying h(z0) 6= 0 and f(z) = h(z)
(z−z0)n

Proof. Since |f(z)| = ∞ as z → z0, ∃r > 0 such that Dr(z0) ⊆ Ω and |f(z)| > 1 on D̂r(z0).
Let g(z) = 1

f(z)
, then g(z) is holomorphic and bounded on D̂r(z0). By Theorem 5.1, g(z)

can extend to be holomorphic on Dr(z0) by defining

g(z0) = lim
z→z0

1

f(z)
= 0.

Since z0 is a isolated zero of g(z), by Theorem 3.1, there exits n ∈ Z+ and H(z) which is
holomorphic on Dr(z0) with H(z0) 6= 0 such that g(z) = (z − z0)

nH(z).
Then h(z) = 1

H(z)
is holomorphic in Dr(z0) and

f(z) =
1

g(z)
=

h(z)

(z − z0)n
.
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5.4 Casorati-Weierstrass Theorem

Theorem 5.3 (Casorati-Weierstrass). Suppose f : D̂R(z0) → C has an essential singularity at
z0. Then ∀r ∈ (0, R), f(D̂r(z0)) is dense in C.

Proof. Assume that ∃r > 0 such that f(D̂r(z0)) is not dense, then there exits a ∈ C and δ > 0
such that

|f(z)− a| > δ, for ∀z ∈ D̂r(z0).

Consider g(z) = 1
f(z)−a

. Since g(z) is holomorphic and bounded on D̂r(z0), by theorem

(5.1), there exits h(z) which is holomorphic on Dr(z0) and h(z) = g(z) on D̂r(z0).
Then f(z) = 1

h(z)
+ a. If h(z0) = 0, then f has a pole at z0; if h(z0) 6= 0, f has a removable

singularity at z0. This contradicts that f has an essential singularity at z0.

Remark 5.4. In order to prove that z0 is the essential singularity of f(z), just need to show
that ∃ two distinguishable sequences {zn}

∞
n=1 and {wn}

∞
n=1 such that

zn → z0, wn → z0, as n → ∞,

but
f(zn) → z, f(wn) → w, as n → ∞,

where z 6= w.

5.5 Meromorphic functions

5.5.1 Polynomials

Lemma 5.2. Suppose f is an entire function that satisfies an estimate of the form

|f(z)| ≤ C|z|N , if |z| > R, (5.9)

for some positive integer N and positive real constants C and R. Then f must be a polynomial
with degree N or less.

Proof. Method I: Cauchy inequality + power series
Let r > R, Mr = sup|z|=r |f(z)| ≤ CrN . By Cauchy inequality (Thm 2.5),

|f (n)(0)| ≤
n!Mr

rn
≤ Cn!rN−n → 0,

as r → ∞ if n > N . It implies that f (n)(0) = 0 if n > N .
By Theorem 1.3,

f(z) =

N
∑

n=0

f (n)(0)

n!
zn,
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which is a polynomial with degree N or less.
Method II: Principal parts + Liouville theorem
By Theorem 1.3,

f(z) =

∞
∑

n=0

anz
n,

⇒
f(z)

zN
=
( a0
zN

+
a1

zN−1
+ · · ·+

aN−1

z

)

+

∞
∑

k=0

aN+kz
k. (5.10)

Let R(z) = a0
zN

+ a1
zN−1 + · · · + aN−1

z
which is called the principal part of f(z)/zN at point

z = 0, g(z) =
∑∞

k=0 aN+kz
k = f(z)

zN
−R(z) which is entire.

Besides, claim that g(z) is bounded since

lim
z→∞

|g(z)| ≤ lim
z→∞

∣

∣

∣

∣

f(z)

zN

∣

∣

∣

∣

+ lim
z→∞

|R(z)| = C.

By Liouville theorem (Thm 2.6), g(z) = constant. Denote g(z) = aN , then by Eq.(5.10),

f(z) =
N
∑

n=0

anz
n.

Lemma 5.3. Suppose f is an entire function that satisfies an estimate of the form

|f(z)| ≥ C|z|N , if |z| > R, (5.11)

for some positive integer N and positive real constants C and R. Then f must be a polynomial
with degree N or more.

Proof. Method I: Cauchy inequality + power series
Consider the function f(1/z). By assumption,

f(1/z) ≥
C

zN
, if |z| < R,

⇒ f(1/z) =
g(z)

zm
, m ≥ N, g(z) entire,

⇒ f(z) = zmg(1/z).

Since limz→∞ g(1/z) = g(0), we can choose r > R such that

sup
|z|=r

|g(z)| ≤ |g(0) + 1|.
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By Cauchy formula,

|fn(0)| =

∣

∣

∣

∣

n!

2πi

∫

Cr

wmg(1/w)

wn+1
dw

∣

∣

∣

∣

≤
n!

2π
2πr rm−(n+1) (|g(0)|+ 1)

≤ Crm−n → 0, as r → ∞, if n > m ≥ N.

By Theorem 1.3,

f(z) =
m
∑

n=0

f (n)(0)

n!
zn,

which is a polynomial with degree N or more.
Method II: Principal parts + Liouville theorem
Eq.(5.11) implies that f has finitely many zeros.
Consider

g(z) =
1

f(z)
−
∑

principal parts at finitely zeros of f(z),

then g(z) is bounded entire. By Liouville theorem (Thm 2.6), g(z) is constant. Thus f(z) is a
rational function. Furthermore, since f(z) is entire, f should be a polynomial.

Denote Nf = degreef(z), by Lemma 2.5, ∃ positive constants c1, c2, R0 such that

c1|z|
Nf ≤ |f(z)| ≤ c2|z|

Nf , |z| > R0.

Compared with Eq.(5.11), we know that Nf ≥ N .

Theorem 5.4. Suppose f is entire and with a pole of order m at ∞. Then f is a polynomial
of degree m.

Proof. f is entire means

f(z) =

∞
∑

n=0

anz
n, ∀z ∈ C. (5.12)

⇒ f(1/z) =

∞
∑

n=0

an
zn

, ∀z 6= 0. (5.13)

That f(z) has a pole of order m at at ∞ means f(1/z) has a pole of order m at 0. Hence,
Eq.(5.13) only has finitely many terms; more precisely, ∀n > m, an = 0. It indicates that f(z)
is a polynomial of order m.

Corollary 5.1. Suppose f is entire and one-to-one, then f must be a linear function

f(z) = az + b, a 6= 0.
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Proof. Step I: Claim that f has a pole at z = ∞.
If removable, then f is bounded entire and must be a constant; if essential, then f can not

be one-to-one since f(z) is dense in any neighborhood of ∞.
Step II: Claim that f must be a polynomial.
See the proof of Theorem 5.4.
Step III: Claim that the degree of f must be one.
If the degree of f is bigger than one, then f ′ at least has one zero in C, which contradicts

with Theorem 7.3.

5.5.2 Rational functions

Theorem 5.5. Suppose P (z) and Q(z) are functions with no common factors and NQ =
deg (Q) > Np = deg P . Let {ak}

M
k=1 denote the zeroes of Q(z) with order mk, then

P (z)

Q(z)
=

M
∑

k=1

Rk(z),

where

Rk(z) =
A0

(z − ak)mk
+ · · ·+

Amk−1

z − ak
,

is the principal part of P (z)
Q(z)

at ak.

Proof. Step I: By Thm 3.1, near ak,

Q(z) = (z − ak)
mkqk(z),

where qk(z) is a polynomial and qk(ak) 6= 0.
Step II:

P (z)

Q(z)
=

1

(z − ak)mk

[

P (z)

qk(z)

]

=
1

(z − ak)mk
[A0 + A1(z − ak) + · · · ]

=
A0

(z − ak)mk
+ · · ·+

Amk−1

z − ak
+ holomorphic function

= Rk(z) + holomorphic function.

Step III: Consider f(z) = P (z)
Q(z)

−
∑M

k=1Rk(z). Claim that f(z) is bounded entire.

First, need to show that a′ks are removable singularity. Near aj ,

P (z)

Q(z)
−

M
∑

k=1

Rk(z) =

[

P (z)

Q(z)
− Rj(z)

]

−
M
∑

k 6=j

Rk(z),
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which is holomorphic and hence bounded.
Second,

lim
|z|→∞

|Rk(z)| = 0, lim
|z|→∞

∣

∣

∣

∣

P (z)

Q(z)

∣

∣

∣

∣

= 0,

⇒ lim
|z|→∞

|f(z)| = 0. (5.14)

Step IV: By Thm 2.6, f(z) is a constant. Besides, by Eq.(5.14), we know that the constant
should be 0. Then we can get the conclusion.

Theorem 5.6. f is meromorphic ⇔ f is a rational function.

Proof. “⇐” is obviously.
“⇐” : Step I: Claim that f(z) has only finitely many singularities in C.

f(1/z) has either removable singularity or a pole at 0,
⇒ ∃r > 0 such that f(1/z) is holomorphic on Dr(0) \ {0}
⇒ f(z) is holomorphic on C \D1/r(0).

Since D1/r(0) is compact and each singularity is isolated, so f(z) has only finitely many
singularities in C, say z1, z2, · · · , zn, with order m1, m2, · · · , mn.

Step II: There are two methods.
Method 1: Let Q(z) =

∏n
k=1(z− zk)

mk , then near zj , ∃ a holomorphic function hj(z) such
that

f(z) =
hj(z)

(z − zj)mj
, hj(zj) 6= 0,

⇒ f(z)Q(z) = hj(z)
∏

k=j

(z − zk)
mk ,

which is bounded near zj and holomorphic everywhere else, hence extent to be entire.
Let P (z) = f(z)Q(z) which is entire. Besides, P (z) has a pole or removable singularity at

∞. By Thm 5.4, P (z) is a polynomial and then f(z) = P (z)
Q(z)

is a rational function.

Method 2: Let Rk(z) be the principal part of f(z) at zk and R∞(z) be the principal part
of f(1/z) at 0.

Let H(z) = f(z)−R∞(z)−
∑n

k=1Rk(z). Then H(z) is holomorphic on C̄ \ {z1, · · · , zm,∞}
and has removable singularity at these points. Hence H(z) can be extent to be holomorphic
on C̄, which is bounded entire. By Thm 2.6, H(z) is a constant. So f(z) = H(z) + R∞(z) +
∑n

k=1Rk(z) is a rational function.

6 Uniform convergence

6.1 Hurwitz’ Theorem

Theorem 6.1. Suppose fn : Ω → C is holomorphic with fn 6= 0 on Ω, and fn → f uniformly
on compact subsets of Ω. Then either f ≡ 0 or f(z) 6= 0 or all z ∈ Ω.
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Proof. By Thm 1.4, f is holomorphic.
Suppose f not identically 0 but f(z0) = 0.
On one hand, by Identity theorem 3.2, ∃r > 0 so that f(z) 6= 0 for all z ∈ D̂r(z0) and

|f(z)| > δ > 0, ∀z ∈ Cr(z0). (6.1)

On the other hand, since fn → f uniformly on Cr(z0), ∃n0 such that ∀n > n0,

|fn(z)− f(z)| < δ, ∀z ∈ Cr(z0). (6.2)

By (6.1), (6.2) and Rouche’s theorem (Thm 3.5), we know that f and f + (fn − f) = fn has
the same number of zeros. But this contradicts with f(z0) = 0 and fn 6= 0 on Dr(z0).

6.2 Montel Theorem

6.2.1 Normal Family

Let F be a set of holomorphic functions on Ω. F is a normal family means any sequence
{fn} ⊆ F , ∃ a subsequence {fnk

} such that ∀ compact set K ⊆ Ω, fnk
converges uniformly on

K.

6.2.2 Uniform boundedness

The family F is said to be uniformly bounded on compact subsets of Ω if for each compact set
K ⊆ Ω, ∃M = M(K) > 0 such that

|f(z)| < M, for ∀z ∈ K, ∀f ∈ F .

6.2.3 Equicontinuity

The family F is said to be equicontinuous on a compact set K if for ∀ε > 0, ∃δ > 0 such that
∀z, w ∈ K with |z − w| < δ, then

|f(z)− f(w)| < ε, ∀f ∈ F .

6.2.4 Montel Theorem

Theorem 6.2. Let F be a set of holomorphic functions on Ω. If F is uniformly bounded on
compact subsets of Ω, then

(i) F is equicontinuous on any compact subset of Ω.
(ii) F is a normal family.

Proof:
(i) Use the Cauchy estimates on small circles.
(ii) Use pointwise convergence on a dense set plus equicontinuity and diagonalization.
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6.3 Open mapping theorem

Theorem 6.3. Suppose f : Ω → C is holomorphic, then f maps open sets to open sets.

Proof. Let w0 = f(z0) for some z0 ∈ Ω. For w near w0, let

g(z) = f(z)− w,

F (z) = f(z)− w0,

G(z) = w0 − w,

then g(z) = F (z) +G(z).
Since z0 is an isolated zero for F and for w near w0, |G| is small, we can find r > 0 such

that Dr(z0) ⊂ Ω and ∃ε > 0,

|F (z)| > ε > |G(z)|, ∀z ∈ Cr(z0).

By Rouche Theorem, g = F +G has a zero in Dr(z0), say ∃z1 ∈ Dr(z0) such that g(z1) = 0,
i.e. f(z1) = w. Hence w ∈ f(Dr(z0)) and Dε(w0) ⊆ f(Dr(z0)).

7 Univalence

7.1 Local univalence

Theorem 7.1. Suppose f : Ω → C is holomorphic and ∃z0 ∈ Ω with f ′(z0) 6= 0. Then ∃r > 0
such that f is univalent in Dr(z0).

Proof. Since f ′(z0) 6= 0, then f(z)− f(z0) has a zero of order 1 at z0. So

f(z)− f(z0) = h(z)(z − z0),

where h(z) is holomorphic in Ω and h(z0) 6= 0.
Then

∃R > 0, s.t. |h(z)| >
1

2
|h(z0)|, for ∀z ∈ DR(z0).

⇒ |f(z)− f(z0)| >
1

2
|h(z0)|R, for ∀z ∈ CR(z0).

⇒ ∃r > 0, s.t. |f(z)− f(a)| >
1

4
|h(z0)|R, for ∀z ∈ CR(z0), a ∈ Dr(z0).

For fixed a ∈ Dr(z0), let ga(z) = f(z)− f(a) and define

F (a) =
1

2πi

∫

CR(z0)

g′a(z)

ga(z)
dz.

On one hand, since ga(z) is continuous in (z, a) and uniformly bounded, F should be con-
tinuous. On the other hand, by Rouche Theorem, F (a) ∈ Z and F (z0) = 1. So F (a) = 1 for
all a ∈ Dr(z0). It implies that for ∀a ∈ Dr(z0), the equation f(z) = f(a) has unique solution,
which means f is univalent in Dr(z0).
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Corollary 7.1. Definition: A holomorphic mapping f : U → V is a local bijection on U if for
∀z ∈ U , there exists an open disc D ⊂ U centered at z such that f : D → f(D) is a bijection.

Question: A holomorphic mapping f : U → V is a local bijection on U ⇔ f ′(z) 6= 0 for
∀z ∈ U .

Proof. ”⇐” is obvious by the Theorem 7.1.
”⇒”: Suppose f ′(z0) = 0 for some z0 ∈ U . Then ∃r > 0, such that

f(z)− f(z0) = a(z − z0)
k +G(z), for ∀z ∈ Dr(z0), (7.1)

with a 6= 0, k ≥ 2 and G(z) vanishing to order k + 1 at z0.
Besides, since f is bijective in Dr(z0), z = z0 should be an isolated zero of f ′(z). Thus, for

sufficiently small r, we have

f ′(z) 6= 0, for ∀z ∈ Dr(z0)\{z0}. (7.2)

Let’s choose w ∈ C sufficiently small such that for ∀z ∈ Cr(z0), we have

|w| < |a(z − z0)
k|, (7.3)

|G(z)| < |a(z − z0)
k − w|. (7.4)

Let F (z) = a(z − z0)
k − w. By (7.3), (7.4) and Rouche’s Theorem, in the disk Dr(z0), the

function a(z − z0)
k has at least two zeros, then so does F (z) and further does f(z) − f(z0) =

F (z) +G(z). It contradicts with the fact that f(z) is bijective in Dr(z0).

Theorem 7.2. Suppose f : Ω → C is holomorphic and ∃z0 ∈ Ω with f ′(z0) = f ′′(z0) = · · · =
f (n−1)(z0) = 0, f (n)(z0) 6= 0. Then ∃V ∋ z0 with V ⊂ Ω and ϕ holomorphic on V such that

(i) ϕ(z0) = 0, ϕ′(z) 6= 0, ∀z ∈ V .
(ii) f(z) = f(z0) + [ϕ(z)]n, ∀z ∈ V .
(iii) ϕ is a univalent map from V onto Dr(0) for some r > 0.

7.2 Global univalence

Theorem 7.3. Suppose f : Ω → C is holomorphic and univalent. Then f ′(z) 6= 0, ∀z ∈ Ω.

Proof. ∀z0 ∈ Ω, let f(z0) = w0 and

g(z) = f(z)− w0, ∀z ∈ Ω.

The fact that f is univalent implies that z = z0 is a simple root of g(z), by Theorem 3.1,
∃h(z) holomorphic on Ω and h(z0) 6= 0, such that

g(z) = (z − z0)h(z) (7.5)

⇒ g′(z) = h(z) + (z − z0)h
′(z) (7.6)

⇒ f ′(z0) = g′(z0) = h(z0) 6= 0. (7.7)
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7.3 Limits univalence

Theorem 7.4. Suppose fn : Ω → C is holomorphic and univalent on Ω, and fn → f uniformly
on compact subsets of Ω. Then f is either constant or univalent in Ω.

Proof. Suppose f is not constant in Ω. Suppose z1 6= z2 but f(z1) = f(z2) = w. Let Fn = fn−w,
F = f − w.

∃r1, r2 such that Dr1(z1) ∩Dr2(z2) = ∅.
∃N such that FN and F have the same number of zeros in Dr1(z1) and Dr2(z2).
Then we get two points ξN1 ∈ Dr1(z1) and ξN2 ∈ Dr2(z2) in two discs satisfying fN(ξ

N
1 ) =

fN (ξ
N
2 ) = w. It is a contradiction.

8 Conformal mappings

Let D = D1(0), Aut(D) denote the set of all automorphism of D; UHP denote the upper half
plane.

8.1 Schwartz Lemma

Theorem 8.1 (Schwartz Lemma). Let f ∈ Aut(D) with f(0) = 0. Then
(i) |f(z)| ≤ |z| for ∀z ∈ D;
(ii) |f ′(0)| ≤ 1;
(iii) If either the equality in (i) holds for some z 6= 0 or the equality in (ii) holds, then f(z)

is a rotation.

Proof. Define

F (z) =

{

f(z)
z
, if z 6= 0,

f ′(0), if z = 0.
(8.1)

Then F (z) is holomorphic on D.
By MMP (Thm 3.3),

max
|z|≤r

|F (z)| = max
|z|=r

|F (z)| = max
|z|=r

∣

∣

∣

∣

|f(z)|

|z|

∣

∣

∣

∣

<
1

r
.

Let r → 1, we can get (i) and (ii).
For (iii), if either the equality in (i) holds for some z 6= 0 or the equality in (ii) holds, then

F (z) assumes maximum modulus at point inside the disc D, so F (z) ≡ constant.

Corollary 8.1. Let f ∈ Aut(D). If f(z) has zeros of order N , then

|f(z)| ≤ |z|N .
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Proof. Let f(z) = zNg(z), g(0) 6= 0. Define

F (z) =

{

f(z)
zN

, if z 6= 0,
g(0), if z = 0.

(8.2)

Then do the similar things as we just did.

8.2 Automorphism of the disc

Lemma 8.1 (Blashke factor). Let a ∈ D, then

ϕa =
a− z

1− āz
∈ Aut (D).

Furthermore,
(i) ϕ−1

a = ϕa;
(ii) ϕa(0) = a, ϕa(a) = 0;

(iii) ϕ′
a(z) =

|a|2−1
(1−āz)2

, ϕa(0) = |a|2 − 1, ϕa(a) =
1

|a|2−1
.

Theorem 8.2. If f ∈ Aut(D), then ∃θ ∈ R and a ∈ D such that

f(z) = eiθ
a− z

1− āz
.

Corollary 8.2. If f ∈ Aut(D), then |f ′(0)| ≤ 1− |f(0)|2.

Proof. Suppose f(0) = a, then construct ϕa = a−z
1−āz

. Let F (z) = (ϕa ◦ f)(z), then F (0) = 0.
By Schwartz Lemma (Thm 8.1) and Lemma 8.1,

|F ′(0)| ≤ 1

⇒ |ϕa(a)||f
′(0)| ≤ 1,

⇒ |f ′(0)| ≤ 1− |a|2.

8.3 From upper half plan to the unit disc

Theorem 8.3. The conformal mapping from UPH to D has the form

f(z) = eiθ
z − a

z − ā
, Im (a) > 0, θ ∈ R.
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9 Roots of functions

Theorem 9.1 (Log roots on a convex open set). Given analytic and non-vanishing function
F (z) on a convex open set Ω, there is an analytic function G(z) on Ω such that F (z) = eG(z).
Given a positive integer N , then H(z) = eG(z)/N is an N-th root of F (z), i.e. F (z) = H(z)N .

Proof. Fix a point a ∈ Ω, and define the function

G(z) =

∫

Lz
a

F ′(w)

F (w)
dw,

where Lz
a is the line from a to z. Then we have

G′ =
F ′

F
(9.1)

⇒
d

dz
(F e−G) = F ′e−G − FG′e−G = 0, (9.2)

⇒ F e−G ≡ c, (9.3)

where c is a constant.
Pick up α ∈ log(c), then

F (z) = ceG = eαeG = eG+α.

Define G̃ = G+ α, and H(z) = eG̃/N , then we have F = HN .

Corollary 9.1. Suppose that f is non-vanishing analytic function on the complex plane minus
the origin. Let γ denote the curve given by z(t) = eit where 0 ≤ t ≤ 2π. Suppose that

1

2πi

∫

γ

f ′(z)

f(z)
dz

is divisible by 3. Prove that f has an analytic cube root on C \ {0}.

Proof. Step I: Fix a ∈ Ω and define the function

F (z) = exp

(

1

3

∫

γz
a

f ′(w)

f(w)
dw

)

,

where γz
a is a curve from a to z.

Need to show that F (z) is well defined. Choose two curves γz
a and γ̃z

a, then
∫

γz
a

f ′(w)

f(w)
dw −

∫

γ̃z
a

f ′(w)

f(w)
dw =

∫

γz
a∪(−γ̃z

a)

f ′(w)

f(w)
dw = N 3m 2πi,

⇒ exp

(

1

3

∫

γz
a

f ′(w)

f(w)
dw −

∫

γ̃z
a

f ′(w)

f(w)
dw

)

= exp (2Nπi) = 1,

⇒
Fγ(z)

Fγ̃(z)
= 1,
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which implies that F (z) is independent of the curve γ.
Step II: Claim that F ′ = 1

3
f ′

f
F .

Restrict attention to a disk.

F (z) = exp

[

1

3

(

∫

γ
z0
a

f ′(w)

f(w)
dw +

∫

Lz
z0

f ′(w)

f(w)
dw

)]

.

Use chain rule and the fact that on convex disc that

d

dz

∫

Lz
z0

f ′(w)

f(w)
dw =

f ′(z)

f(z)
.

Step III: Claim that (f/F 3)′ = 0 ⇒ f/F 3 ≡ C.

(

f

F 3

)′

=
f ′F 3 − f3F 2 1

3
f ′

f
F

F 6
= 0.

⇒
f

F 3
= C.

Choose α = log(C), and define

F̃ (z) = exp

(

1

3

∫

γz
a

f ′(w)

f(w)
dw + α

)

.

It is easy to know that f = F̃ 3.

Remark 9.1. Let f(z) be holomorphic on Ω\{p0}, which has a zero at z = z0 with multiplicity
n and has a pole at z = p0 with order m. Choose a ∈ Ω \ {p0}, define a new function as

g(z) = exp

(
∫

γz
a

f ′(w)

f(w)
dw

)

.

Then we know that:

• h(z) = f ′(z)
f(z)

has a simple pole at z = z0 with residue equal to a positive integer.

• g(z) is a well defined analytic function on Ω \ {p0, z0}.

• g(z) has a removable singularity at z = z0. More precisely, if g(z) is redefined at z = z0
as g(z0) = 0, then z = z0 is also a zero of g(z) with multiplicity n.

• g(z) also has a pole at z = p0 with order m.
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