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The Mathematics of
Paul Erdős

László Babai, Carl Pomerance, and Péter Vértesi

P
aul Erdős died September 20, 1996, and
a memorial article appears elsewhere in
this issue. This feature article gives a cross
section of his monumental oeuvre. Most
of Erdős’s work falls roughly into the fol-

lowing categories:
• number theory
• finite combinatorics (including graph theory)
• combinatorial geometry
• set theory, set-theoretical topology
• constructive theory of functions (approxima-

tion theory)
• other areas of classical analysis (polynomials,

theory of series, functions of a complex vari-
able)

• probability theory, ergodic theory
The first two areas are represented in Erdős’s

work by more than 600 articles each, the next
three by more than 100 articles each. There are
some overlaps in this rough count. A large num-
ber of articles fall into a “miscellaneous” category.

In what follows, Pomerance gives a glimpse into
the variety of topics Erdős worked on in number
theory. Babai discusses (infinite) set theory, finite
combinatorics, combinatorial geometry, combina-
torial number theory, and probability theory.
Vértesi treats approximation theory, with a hint of
related work on polynomials.

Paul Erdős, Number
Theorist
Extraordinaire
Carl Pomerance

Nearly half of Paul Erdős’s 1,500 papers were in
number theory. He was a giant of this century,
showing the power of elementary and combinato-
rial methods in analytic number theory, pioneer-
ing the field of probabilistic number theory, mak-
ing key advances in diophantine approximationand
arithmetic functions, and until his death leading
the field of combinatorial number theory. Paul
Erdős was also a kind and generous man, one who
would seek out young mathematicians, work with
them, give them ideas, teach them, and in the
process make a lifelong friend and colleague. I
was one of these lucky ones, but more on that
later.

Perhaps the single most famous paper of Erdős
is [3], wherein he described an elementary proof
of the prime number theorem.

The history of the prime number theorem seems
to be punctuated by major developments at half-
century intervals and often in two’s. At the end of
the eighteenth century Gauss and Legendre inde-
pendently conjectured that the number of primes
up to x, denoted π (x), is asymptotically x/ logx
as x→∞ . (This came some fifty years after Euler
had proved that the sum of the reciprocals of the
primes is infinite.) In the mid-nineteenth century
Chebyshev showed by an elementary method that
there are positive constants c1 , c2 with
c1x/ logx < π (x) < c2x/ logx for all large x, and

—László Babai, Organizer
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Note: Except where otherwise noted, all
photographs in this article are from the col-
lection of Vera T. Sós.
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Riemann laid down a plan to prove the prime num-
ber conjecture of Gauss and Legendre via analytic
methods. It is in this paper that Riemann stated
what came to be known as the “Riemann hypoth-
esis,” one of the most famous and important un-
solved problems in mathematics.

At the close of the nineteenth century, de la Val-
lée Poussin and Hadamard independently suc-
ceeded in giving complete proofs of the prime
number theorem. (Though roughly following Rie-
mann’s plan, they avoided an outright assault on
the Riemann hypothesis.) A tour de force for ana-
lytic methods in number theory, it was thought by
many that an elementary proof of the prime num-
ber theorem was impossible. It was thus quite a sen-
sation when Erdős and Atle Selberg actually did
come up with elementary proofs in 1948.

Another fifty years have passed. Will there soon
be another great advance?

In response to the theory of quantum mechan-
ics, Einstein exclaimed, “God does not play dice
with the universe.” Though this never happened,
I would like to think that Paul Erdős and the great
probabilist, Mark Kac, replied, “Maybe so, but some-
thing is going on with the primes.” In 1939 Erdős
and Kac [10] proved one of the most beautiful and
unexpected results in mathematics. Their theo-
rem states that the number of prime factors in a
number is distributed, as the number varies, ac-
cording to a Gaussian distribution, a bell curve.

Let ω(n) denote the number of distinct prime
factors of n. In 1917 Hardy and Ramanujan proved
that ω(n) is normally log logn. What this means
is that for each ε > 0, the density of the set of nat-

ural numbers n with (1− ε) log log n < ω(n) <
(1 + ε) log logn is 1. (A set S of natural numbers
has density d if the number of members of S up
to x, when divided by x, tends to d as x→∞ . So,
for example, the odd numbers have density 1/2,
the prime numbers have density 0, and the set of
numbers with an even number of decimal digits
does not have a density.) Later, Paul Turán, a close
friend of Erdős, came up with a greatly simplified
proof of the Hardy-Ramanujan theorem by show-
ing that the sum of (ω(n)− log logn)2 for n up to
x is of order of magnitude x log logx . This would
later come to be thought of as a variance calcula-
tion as in probability theory, but it was not con-
ceived of in this way.

Mark Kac viewed the number theoretic func-
tion ω(n) probabilistically. He reasoned that being
divisible by 2,3,5, etc., should be thought of as “in-
dependent events,” and so ω(n) could be viewed
as a sum of independent random variables. Since
the sum of 1/p for p prime, p ≤ x , is about
log logx, Kac reasoned that this is what is behind
the Hardy-Ramanujan-Turán theorem and that in
fact a Gaussian distribution should be involved,
with standard deviation 

√
log logx. That is, Kac

conjectured that for each real number u, the den-
sity of the set of n with ω(n) ≤ log logn+
u
√

log logn exists and is equal to

1√
2π

∫ u
−∞
e−t2/2dt,

the area under the bell curve from −∞ to u.

How the collaboration of Erdős and Kac came
about is best left to Kac’s own words, as quoted
by Peter Elliott in [2]:

“If I remember correctly, I first stated (as a conjec-
ture) the theorem on the normal distribution of the
number of prime divisors during a lecture in Prince-
ton in March 1939. Fortunately for me and possi-
bly for Mathematics, Erdős was in the audience, and
he immediately perked up. Before the lecture was
over he had completed the proof, which I could not
have done, not having been versed in the number
theoretic methods, especially those related to the
sieve.”

What Erdős knew quite well was that via the
methods of sieves, as developed by Brun early in
this century, it could be shown that the primes up
to xε actually do distribute themselves “indepen-
dently” among the numbers up to x, and of course
no number n ≤ x can have more than 1/ε prime
factors that exceed xε.

This result opened the book on probabilistic
number theory, the branch of mathematics that
studies number theoretic functions, such as ω(n),
via probabilistic methods.

The Manchester bridge party (1934–1938).
Bottom to top: Harold Davenport,  Erdős,
Chao-Ko, Zilinkas.
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Paul Erdős is equally well known for his re-
markable problems. Here are a few in number the-
ory:

1. Among the integers up to x, the set of powers
of 2 have the property that the various subset
sums are all different, and of course there are
log2 x +O(1) powers of 2 up to x. Is it true that if
S is a set of integers in [1, x] with all subset sums
different, then S has at most log2 x +O(1) mem-
bers?

2. Suppose A is a subset of the nonnegative inte-
gers such that every nonnegative integer n can be
written as a1 + a2, where a1, a2 are in A . Let r (n)
be the number of such representations of n. Must
the sequence r (n) be unbounded?

3. Suppose B is a subset of the positive integers
with the sum of the reciprocals of the members of
B being infinite. Must B contain arbitrarily long
arithmetic progressions?

4. The set {2,3,4,6,12} is a “covering set”, since
there are residue classes with these moduli that
cover the integers: in particular, 0 mod 2, 0 mod 3,
1 mod 4, 1 mod 6, 11 mod 12 will do. For each k
is there a (finite) covering set with distinct mod-
uli, each > k?

Each of these problems has its own interesting
story, as do hundreds of other Erdős problems.
They are often tips of icebergs. For example, prob-
lem 2, which is joint with Turán, is related to the
famous theorem of Erdős and W. Fuchs [8], which
asserts that no matter what sequence is chosen for
A , the sum of r (n) for n up to x cannot be of the
form cx + o(x1/4/(logx)1/2). (Erdős was justifiably
proud of this beautiful result. A few years ago he
wrote (in [7]) that the Erdős-Fuchs theorem “cer-
tainly will survive the authors by centuries.”)

Problem 4 is related to an old problem of Euler,
who considered whether an odd number n > 1
can be expressed as a sum of a prime and a power
of 2. Euler noticed that 127 and 959 cannot be rep-
resented, though de Polignac conjectured in 1849
that every odd number n > 1 can be represented!
The problem was revived by Romanoff in 1934 and
solved independently by Erdős [4] and van der
Corput [1] in 1950. In fact, Erdős showed that
there is an infinite arithmetic progression of odd
numbers that cannot be represented as a sum of
a prime and a power of 2. The proof used the cov-
ering set {2,3,4,8,12,24}. If problem 4 were to
hold, then there would be, for each positive inte-
ger k, an infinite arithmetic progression contain-
ing no numbers that are a sum of a power of 2 and
a number with at most k different prime factors.
Erdős was fond of repeating Selfridge’s covering
set problem: is there a covering set with odd mod-
uli > 1? This is still unsolved.

While he was alive, Erdős offered money for
each of problems 1–4 and many others. For ex-
ample, problem 3 (which would have the sensa-
tional corollary that there are arbitrarily long arith-
metic progressions consisting of primes) was worth
$3,000. Erdős liked to joke that his prize money
violated the minimum wage law.

Paul Erdős, often through his prizes, inspired
many other mathematicians. Endre Szemerédi, for
example, earned $1,000 when he showed a slightly
weaker result than problem 3: he showed that if
B does not have density 0, then it contains arbi-
trarily long arithmetic progressions. And Helmut
Maier and Gérald Tenenbaum earned money from
Erdős when they showed that the density of those
numbers nwith two divisors a, b with a < b < 2a
is 1.

I too owe much to Paul Erdős. At the end of an
article in 1956 Erdős gave a brief heuristic argu-
ment on why he thought there should be infinitely
many Carmichael numbers and, in fact, why they
should be plentiful among all numbers. (A com-
posite number n for which an ≡ a mod n for all
a is called a Carmichael number . In 1910
Carmichael conjectured there should be infinitely
many.) Erdős and I discussed his heuristic argu-
ment several times over the years, and he was very

Erdős in deep thought, around 1960.
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pleased when Red Alford, Andrew Granville, and
I succeeded recently in making it the backbone of
a proof of the infinitude of Carmichael numbers.
We were happy to dedicate our paper to Erdős on
the occasion of his eightieth birthday.

I like to tell the story of how I first met Paul
Erdős, since it is not only a good story, but shows
a fundamental quality of Erdős as a man and a
mathematician. I was home on April 8, 1974, watch-
ing a baseball game on television. I was then an as-
sistant professor at the University of Georgia, less
than a couple of years from graduate school, with
few theorems but a love of numbers. This was not
an ordinary baseball game, but the one in which
Hank Aaron of the Atlanta Braves hit his 715th
major league home run, thus surpassing the sup-
posedly unbeatable record of 714 that had been
set by Babe Ruth some four decades earlier.

I noticed that 714 and 715 have a peculiar prop-
erty, namely, that their product is also the prod-
uct of the first 7 primes. The next morning I chal-
lenged my colleague David Penney to find an
interesting property of 714 and 715. He soon found
the same thing I had, but he also posed the prob-
lem to his numerical analysis class, where a stu-
dent came up with another interesting property:
the sum of the prime factors of 714 is equal to the
sum of the prime factors of 715. Working with an-
other student, Carol Nelson, Penney and I found
many other examples of consecutive pairs of num-
bers with this latter property and were able to
come up with a strong heuristic for why there
ought to be infinitely many. We wrote up our ob-
servations in a light-hearted article that was pub-
lished several months later in the Journal of Recre-
ational Mathematics. Calling 714 and 715 a
“Ruth-Aaron pair”, we conjectured that such pairs
have density 0: that is, the set of n, such that the
sum of the prime factors of n is equal to the sum
of the prime factors of n + 1, has density 0.

Paul Erdős, the giant of twentieth-century num-
ber theory, was also a reader of the Journal of
Recreational Mathematics. He did not know me, nor
should he have, but he wrote me a letter saying he
could prove the conjecture that Ruth-Aaron pairs
have density 0 and he would like to visit Georgia
and discuss it with me. Much of what I now know
in mathematics I learned from Erdős working on
this and subsequent joint papers. It is fair to say
that I owe my career to this serendipitous collab-
oration.

I am very grateful to have this chance to write
these words in tribute to Paul Erdős. But I am cog-
nizant of the vast amount of his work that did not
get mentioned. In fact, I cannot close without giv-
ing four more delightful results.

Amicable numbers have been studied since
Pythagoras: a pair m,n is amicable if the sum of
the proper divisors of m is n, and vice versa. The
first amicable pair with m 6= n is 220,284. Paul

Erdős [5] was the first to prove thatthe set of am-
icable numbers has density 0. It is still not known
if there are infinitely many.

Can the product of consecutive integers be a
power? This problem, with roots in the eighteenth
century, was settled in the negative by Erdős and
Selfridge [11] in 1975. It is still not known whether
the Erdős-Selfridge theorem can be generalized to
arithmetic progressions—the conjecture is that a
product of four or more consecutive terms of a co-
prime arithmetic progression cannot be a power.

An additive function f (n) is a real-valued func-
tion defined on the natural numbers with the prop-
erty that f (mn) = f (m) + f (n) whenever m and n
are coprime. For example, the number-of-prime-fac-
tors function ω(n), mentioned above in connection
with the Erdős-Kac theorem, is additive, as is the
function logn. In 1944 Erdős proved that if f (n)
is additive and f (n + 1) ≥ f (n) for all large n, then
f (n) = c logn for some number c. This also holds
if one replaces the monotonicity assumption with
f (n + 1)− f (n) → 0. Others, including Feller, Wirs-
ing, Kátai, and Kovács, have added more to this the-
ory of characterizing the logarithm as an additive
function. For example, Wirsing [14] proved in 1970
the long-standing conjecture of Erdős that if f (n)
is additive and f (n + 1)− f (n) is bounded, then
there is a number c such that f (n)− c logn is
bounded.

Finally, I cannot resist describing the Erdős
“multiplication table theorem.” Let M(n) be the
number of distinct numbers in the n× n multi-
plication table. For example, in the familiar 10× 10
multiplication table (at least familiar to those of
us who did not grow up with calculators), there are
43 distinct numbers among the 100 entries, and
so M(10) = 43. Erdős asked about the behavior of
M(n)/n2 as n →∞. What do you think it is? Clearly,
since the multiplication matrix is symmetric, we
have lim sup M(n)/n2 ≤ 1/2. Is 1/2 the limit?
Erdős showed [6] in 1960 that M(n)/n2 → 0 as
n →∞, a theorem that I find as surprising as it is
delightful. (Once one sees the proof, the surprise
factor diminishes, though not the delight. As we
saw before, most numbers up to n have about
log logn prime factors, and thus most products in
the table have about 2 log logn prime factors. This
is an abnormal number of primes for a number up
to n2, so there are not very many products.) We
still do not have an asymptotic formula for M(n)
as n →∞, though from the work of Tenenbaum we
have some good estimates.

This last result illustrates a most important
point. At first glance one might think of the work
of Erdős as a collection of unconnected and ad hoc
results. Upon deeper inspection, especially of the
proofs, one finds a glorious theory, with many in-
terrelations of ideas and tools. It is this edifice of
“Erdős-theory” that Paul Erdős leaves for us, and
number theory is much the richer for it.
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For more on the number theory of Paul Erdős,
see [7, 9, 12, 13].
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Finite and
Transfinite
Combinatorics
László Babai

The Combinatorial Vein
A hallmark of much of Erdős’s work is his unique
combinatorial vision, which revolutionized several
fields of mathematics. Wherever he looked, he
found elementary, yet often enormously difficult,
combinatorial questions.

Nothing serves as a better illustration of this
point than the excitement his questions brought
to the simplest concepts of Euclidean plane geom-
etry: points, lines, triangles.

Consider a set of k points and t lines in the
plane. What would Erdős ask about them? Many
things, but perhaps the simplest question is this:
what is the maximum number f (k, t) of incidences
between the points and the lines? After many years
Szemerédi and Trotter (1983) confirmed Erdős’s
conjecture that the points of a square grid to-
gether with a certain set of lines give the optimal
order of magnitude. The proof from The Book ap-
peared in 1997 (L. Székely).

Another, even simpler, problem of Erdős asks
the maximum number g(n) of unit distances that
can occur among n points in the plane. In 1946
Erdős proved that n1+c/ log logn < g(n) < cn3/2. The
upper bound was improved by Beck, Spencer, Sze-
merédi, and Trotter to n4/3. Erdős conjectured
that the lower bound, obtained from the square
grid, has the correct order of magnitude. The prob-
lem remains wide open; the large gap between the
upper and lower bounds offers a continuing chal-
lenge.

Let me quote a related open problem Erdős vol-
unteered for the “Math Investigations” column of
George Berzsenyi in the student journal Quantum:
“Let f (n) be the largest integer for which there is
a set of n distinct points x1, x2, . . . , xn in the plane
for which for every xi there are ≥ f (n) points xj
equidistant from xi. Determine f (n) as accurately
as possible. Is it true that f (n) = o(nε) for every
ε > 0?” Erdős offered $500 for a proof and “much
less” for a counterexample. The estimate
f (n) < cn2/5 follows from a result of Clarkson et
al. (1990).

As these questions indicate, Erdős’s combina-
torics, as long as finite sets are concerned, is about
asymptotic orders of magnitude. Asymptotic think-
ing has been common in number theory (espe-
cially in the study of the distribution of prime
numbers), which was Erdős’s first love. But it seems
to be without precedent in combinatorics and in
geometry. And even within number theory, Erdős’s
style brought about a new field, combinatorial
number theory, an area expounded in hundreds of
papers by Erdős (57 of them joint with A. Sárközy).

Combinatorial ideas appear already in Erdős’s
earliest work on number theory. Erdős was greatly
influenced by a question he heard in 1934 from
Fourier analyst Simon Sidon on sequences of in-
tegers with pairwise different sums. In a paper
published in Tomsk (Siberia) in 1938 Erdős con-
siders a multiplicative version of Sidon’s problem:
what is the maximum number f (n) of positive in-

László Babai is professor of computer science and math-
ematics at the University of Chicago. His e-mail address
is laci@cs.uchicago.edu.
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tegers ai ≤ n such that all the pairwise products
aiaj are different? Erdő s proves that
f (n) = π (n) +O(n3/4) by reducing the problem to
the following lemma: If a graph on k vertices has
no 4-cycle, then it has at most O(k3/2) edges. This
result is a precursor of extremal graph theory, an-
other field Erdős set out to create more than a
decade later. In showing the near-optimality of his
error term, Erdős relies on the near-optimality of
his graph theory bound, demonstrated by former
fellow student Eszter (Esther) Klein using a pro-
jective plane of prime order (which she remarkably
rediscovered from scratch).

Master of Patterns
Elementary geometry and Ramsey the-
ory met in one of Erdős’s earliest pa-
pers (1935), written with fellow un-
dergraduate and lifelong friend, George
Szekeres, then a student of chemical
engineering. They proved that suffi-
ciently many points in the plane nec-
essarily include k points that form a
convex k-gon. Later Erdős dubbed the
question the “Happy Ending Problem”:
proposed by Eszter Klein and Erdős, the
problem was first solved by Szekeres,
who subsequently married Klein. “The
wedding took place just a day after I
learned that Vinogradov had proved
the odd Goldbach conjecture,” Erdős
recalled in 1995.

Szekeres, in a remarkable tour de
force, even rediscovered Ramsey’s the-
orem, which was then only three years
old, for his solution. This work repre-
sented a milestone in Erdős’s combi-
natorial thinking. Erdős recognized the
vast domain opened up by Ramsey’s
theorem, this “generalized pigeon hole
principle.” In the cited 1935 paper with
Szekeres, Erdős studied Ramsey num-
bers for graphs, the first step in build-
ing what at the hands of Erdős would
become Ramsey theory, a large area in
finite and transfinite combinatorics.
Transfinite Ramsey theory became a
fundamental part of modern set theory.

One of Erdős’s heroes was Georg
Cantor; Erdős learned the basics of
Cantor’s set theory from his father.
Erdős loved infinite cardinals and con-
tributed to the birth of very large ones.
(We use the term “transfinite” to em-
phasize that the focus is beyond ω,
usually far beyond.)

Although the methods of the finite
and the transfinite are almost disjoint
(counting is fundamental in the for-
mer, well-ordering in the latter), it was
Erdős’s axiom that if a question makes

sense both for finite and for infinite sets, it must
be investigated in both domains. This view is es-
pecially prominent in his fifty-four (often massive)
joint papers with  A. Hajnal.

The chromatic number of a graph is the small-
est number of colors that can be assigned to the
vertices of the graph such that adjacent vertices
receive different colors. Until the mid-1950s this
concept was mostly discussed in the limited con-
text of the 4-color conjecture. Erdős’s work, which
includes dozens of papers entitled “Chromatic
graph theory,” played a major role in establishing
the true depth of the concept. Together with Haj-

Two giants of combinatorics share a passion: Erdős and William T. Tutte
play “Go” at Tutte’s home in Westmontrose, Ontario, 1985. Another favorite
game of Erdős’s was Ping-Pong.

Erdős and Vera T. Sós in Princeton, 1985, during a period of intensive
collaboration on extremal graph theory.
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nal, Erdős also pioneered the extension of this no-
tion to set systems (no member of the set system
should be monochromatic), creating one of the
powerful unifying concepts of modern combina-
torics.

One of the great early successes of Erdős’s prob-
abilistic method in finite combinatorics was his
proof in 1957 that for any k, m there exists a
graph of chromatic number k without cycles of
length ≤m, putting an end to a long quest by the
best combinatorial minds.

While it was relatively easy to get rid of short
odd cycles, the short even cycles proved to be much
harder to eliminate. A surprising explanation of this
phenomenon came in a milestone paper by Erdős
and Hajnal, “Chromatic number of graphs and set
systems” (1966). Corollary 5.6, one of the paper’s
five dozen results, asserts: If the chromatic num-
ber of a graph is ≥ ℵ1, then the graph must con-
tain a 4-cycle! Buried in this paper, which is alephs
all over, is an important result of finite combina-
torics: Erdős’s cited result on large chromatic fi-
nite graphs without short cycles is generalized to
set systems.

Erdős was fascinated by the global nature of the
chromatic number. A striking expression of this is
his 1962 result that to every k there is an ε > 0
such that for all n > k there exist k-chromatic
graphs on n vertices such that all of their sub-
graphs on ≤ εn vertices are 3-colorable. As usual,
he pursued the idea for infinite graphs as well and
found that it led to a wealth of questions and sur-
prising answers. With Hajnal, Erdős showed (1968)
that there exist graphs of uncountable chromatic
number on (2ℵ0 )+ vertices such that all subgraphs
on ≤ 2ℵ0 vertices are countably colorable. (Here α+

denotes the successor cardinal of α.) In the nicely
shaping landscape, however, as in virtually all
areas of Erdős’s inquiry into the transfinite, “in-
dependence raised its ugly head” after Cohen’s
seminal work: a number of related questions turned
out to be independent of ZFC (Zermelo–Fraenkel
set theory with the axiom of choice), even under
the Generalized Continuum Hypothesis. Among
these is the question of the existence of an ℵ2-chro-
matic graph with ℵ2 vertices such that all sub-
graphs with ≤ ℵ1 vertices are ℵ0-colorable (Baum-
gartner, 1984; Foreman and Laver, 1988).

If combinatorics is the art of finding patterns
under virtually no assumption, Erdős was the mas-
ter of this art. Here is a simple example. A set sys-
tem {A1, . . . , Ak} is called a sunflower with k petals
(or a ∆-system in the original terminology of Erdős
and Rado) if all pairwise intersections Ai ∩Aj are
equal to 

⋂k
i=1Ai. Erdős and Rado recognized the

significance of this simple pattern in 1960 and
showed that for any k and r , any sufficiently large
family of sets of size r contains a sunflower with
k petals. Erdős offered $1,000 for deciding whether
Cr is sufficiently large to guarantee k = 3 petals

for some (large) C . The problem remains wide
open to date. At the hands of Frankl and others,
sunflowers have become a powerful tool in the
structural theory of set systems; Razborov used
them in a profound lower-bound proof in the the-
ory of Boolean circuits.

Ramsey theory provides the ultimate in the
quest for simple patterns. Assume we color each
r -subset of a set S of cardinality κ red or blue. We
say that a subset H ⊆ S is homogeneous if all r -
subsets of H have the same color. The Erdős-Rado
symbol κ → (α,β)r means that regardless of the
coloring, there must be either a red-homogeneous
subset of size α or a blue-homogeneous subset of
size β . We omit β if β = α. Ramsey’s theorem
states that ℵ0 → (ℵ0)r for every finite r . Its finite
version says that N → (k)r for sufficiently large fi-
nite N = N(k, r ). The estimation of the quantities
N(k, r ) is a major problem area. Here is an exam-
ple of a tantalizing gap: it is known that
n → (c1 log logn)3 (Erdő s-Rado, 1952) and
n 6→ (c2

√
logn)3 (from the 100-page “giant triple

paper” by Erdős, Hajnal, and Rado (1965)).
Partition calculus, the term Erdős and Rado

(1956) used for transfinite Ramsey theory, started
with a result of Erdős that κ → (κ,ℵ0)2, included
in a 1941 paper by Dushnik and Miller. Shortly af-
terwards, Erdős proved the basic result that
(2λ)+ → (λ+)2 (1942) and noted that by a result of
Sierpiński this bound is tight: (2λ) 6→ (λ+)2.

The fact that innocuous problems of transfinite
combinatorics lead to inaccessible cardinals was a
stunning discovery made in a 1943 paper by Erdős
and Tarski, especially famous for its footnotes.
Regarding the simplest of partition relations,
κ → (κ)2, they recognized that it cannot hold un-
less κ is strongly inaccessible (κ is not the sum of

Ronald L. Graham (left), Erdős, Peter Frankl finishing a paper
on “anti-Ramsey graphs” at a conference in Hakone, Japan,
1990. The interests shared by Graham and Frankl include

solving problems of Erdős, helping Erdős’s influence spread
in the Orient, and juggling (both are world-class jugglers).
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fewer, smaller cardinals, and α < κ implies
2α < κ), and it does hold if κ is measurable (ad-
mits a nontrivial < κ-additive (0,1)-measure de-
fined on all subsets of κ). Out of these observa-
tions, the theory of large cardinals, a vital
component of modern set theory, was born. Car-
dinals satisfying κ → (κ)2 are called weakly com-
pact cardinals.

Another important class of large cardinals grew
out of Erdős’s first joint paper with then graduate
student András Hajnal (1958). Erdős and Hajnal
proved that measurable cardinals satisfy the par-
tition relation κ → (κ)<ω (all finite sets are col-
ored). This relation defines what are called Ram-
sey cardinals. Amazing consequences of the weaker
relation κ → (ω1)<ω to descriptive set theory were
found in the mid-1960s by F. Rowbottom, J. H. Sil-
ver, R. Solovay, and others. In recognition of Erdős’s
pioneering role in defining large cardinals via par-
tition relations, the cardinals satisfying the rela-
tion κ → (ω1)<ω are commonly referred to as
Erdős cardinals.

We stated Ramsey’s theorem for two colors; the
generalization to a finite number of colors is im-
mediate. It is clear, however, that no homogeneous
subset is to be expected unless the set is “large”
compared to the number of colors. Nevertheless,
one of a short list of canonical structures exists re-
gardless of the number of colors! In the simplest
case (r = 2) there are only three types of canoni-
cal structure: a homogeneous set (all pairs have the
same color), a multicolored set (each pair has a dif-
ferent color), and the min-coloring: the color of
{i, j} is min(i, j) (assuming the set is well ordered).

This very useful fact is the Canonical Ramsey The-
orem of Erdős and Rado (1950).

In a series of papers starting in 1973 Erdős,
Graham, Montgomery, Rothschild, Spencer, and
Straus laid the foundations of Euclidean Ramsey
Theory, melding Ramsey theory to the geometry
of real n-space. The typical question is this: given
a geometric configuration K, is it true for all r that
any r -coloring of n-space contains a monochro-
matic copy of K, assuming n ≥ n0(r )? If K has
this property, we say that K is a Ramsey configu-
ration. Erdős et al. have shown that the bricks are
Ramsey and sets that cannot be inscribed in a
sphere are not Ramsey. A major problem left open
in their work was settled by Frankl and Rödl in
1986: all triangles are Ramsey.

Much of Erdős’s work concerns the paradigm
that “density implies pattern.” The most famous of
Erdős’s solved prize problems ($1,000) asserts
that a sequence of integers of positive upper den-
sity contains arbitrarily long arithmetic progres-
sions. Proposed by Erdős and Turán in 1936, this
conjecture was confirmed in 1975 in “a masterpiece
of combinatorial thinking” [4] by Endre Szemerédi,
a disciple of Erdős and one of the most formida-
ble problem solvers of our time. Subsequently
H. Fürstenberg gave an ergodic proof. Szemerédi’s
proof builds on his Regularity Lemma, which has
far-reaching consequences in graph theory; the
method of Fürstenberg’s proof gave a new direc-
tion to ergodic theory. This is but one of the long
list of examples demonstrating the profound rel-
evance of the problems championed by Erdős.

A great many problems in combinatorial num-
ber theory have a flavor similar to the problem of
arithmetic progressions. Young Erdős was capti-
vated by Sidon’s 1934 problem, which asks how
dense a set of integers can be if all pairwise sums
are different1. If we denote by A(n) the number of
elements ≤ n in such a sequence, it is clear that
A(n) ≤ c1n1/2, and “greedy” choice results in a se-
quence with A(n) ≥ c2n1/3. Only very recently
(1997) did Erdős protégé Imre Ruzsa succeed in
substantially reducing this sixty-year-old gap.
Ruzsa has shown the existence of a Sidon sequence
such that A(n) ≥ nα−ε with α =

√
2− 1 ≈ .41.

In extremal graph theory the fundamental Erdős-
Stone-Simonovits theorem (1946, 1966) considers
the minimum edge density of graphs that will

1One can hardly overestimate the influence of Sidon’s
problems on Erdős’s career. It is remarkable how the
twenty-year-old Erdős’s irresistible insistence on math-
ematical communication virtually compelled Sidon, a
reclusive man employed by an insurance company, to re-
veal his remarkable thoughts to the eager youth. A clas-
sic anecdote: One afternoon, when Erdős and Turán
showed up at Sidon’s doorstep, Sidon opened the door a
crack and greeted the two with these words: “Please visit
another time and especially another person.”

Paul Erdős talks about functions of a complex variable in
Hungary, 1959. Alfréd Rényi is looking on. The landmark
Erdős–Rényi papers “On the evolution of random graphs” were
born around this time. Erdős and Rényi worked together on a
wide variety of other subjects as well, including the
distribution of prime numbers, complex functions, the theory
of series, probability theory, statistics, information theory, and
statistical group theory.



JANUARY 1998 NOTICES OF THE AMS 27

force the appearance of a fixed “pattern” subgraph
H. It turns out that asymptotically, the density de-
pends solely on the chromatic number of H! This
in particular implies that the set of critical limit-
ing densities is well ordered. Erdős asked whether
this fact generalizes from graphs to systems of r -
sets (“r -hypergraphs”) for r ≥ 3; his second (and
last) $1,000 award went to Frankl and Rödl for their
negative answer, “Hypergraphs don’t jump” (1984).

Combinatorics and Probability
Erdős was not versed in probability theory at the
time he arrived in Princeton in 1938. He was not
even familiar with the central limit theorem. Yet
he deeply understood it in a flash when he first
heard about it in a lecture by Mark Kac; by the end
of the talk he had completed the proof of Kac’s con-
jecture on the normal (Gaussian) distribution of the
number of prime divisors of integers. While this
result gave birth to probabilistic number theory,
Erdős went on and made major contributions to
probability theory itself, especially the theory of
random walks and Brownian motion. He worked
with Kac, K. L. Chung, Dvoretzky, Kakutani, among
others, in these areas. Erdős’s best-known result
in probability theory is a full asymptotic expansion
of the law of the iterated logarithm (1942).

A “statistical view” of mathematical objects was
one of Erdős’s key innovations in many areas of
mathematics. Following work by Goncharov in the
1940s, Erdős and Turán developed statistical group
theory, a study of the distribution of various sets
of parameters associated with a group, in a series
of seven highly technical papers between 1965
and 1976. They showed, for instance, that the log-
arithms of the orders of elements in the symmet-
ric group Sn are asymptotically normally distrib-
uted.

The foundations of a beautiful statistical the-
ory of combinatorial structures were laid in the
landmark study by Erdős and Rényi of the “evo-
lution of random graphs” in a series of seven pa-
pers between 1959 and 1968.

Let us construct a “random” graph with n ver-
tices and m edges by picking the edge set uniformly 

at random from the set of 
(

(
n
2 )
m

)
possibilities. 

Erdős and Rényi observed the typical behavior of
these graphs as a function of m =mn and deter-
mined very sharp thresholds for various mono-
tone properties to become “typical.” For instance,
connectedness occurs around mn = n logn/2; in
fact, they prove that if (mn/n)− (logn/2)→ c, then
the probability of connectedness approaches e−e−c.

The most striking discovery of Erdős and Rényi
was a phase transition which occurs around
mn = n/2: suddenly, a giant component appears.
If mn < (1− ε)n/2, then typically all connected
components of the graph are of size O(logn) and
have very simple structure. But when

mn > (1 + ε)n/2, the largest component has size
> c(ε)n, while all other components remain of log-
arithmic size and are absorbed into the giant com-
ponent as mn increases. Béla Bollobás took the lead
in a 1984 paper in uncovering the fine structure
of this phase transition, the study of which has
yielded a series of remarkable insights and is con-
tinuing to this day.

Much of Erdős’s work had an impact on the
theory of computing, a field in which Erdős never
took an interest [2]. Richard M. Karp writes: “The
Erdős-Rényi papers on random graphs exerted
major influence on my work. The beautiful scenario
of the successive stages in the evolution of random
graphs, progressing in an essentially inevitable
way, has stimulated me to find other stochastic
processes, associated with algorithms, which un-
fold in the same kind of inevitability. Researchers
have exhibited such processes in connection with
many problems related to graphs, Boolean for-
mulas and other structures. Specific results re-
lated to random graphs have been applied to hash-
ing, storage allocation, load balancing and other
problems relevant to algorithms and computer
systems.”

Probabilistic Proof of Existence
Among the numerous techniques Paul Erdős taught
us, perhaps the probabilistic method has been the
most influential. This method establishes the ex-
istence of certain objects by selecting an object at
random from a certain probability space and prov-
ing that the object has the desired properties with
positive (usually overwhelming) probability. While
Erdős was not the first to employ an idea of this
type, it was he who recognized its vast scope and
developed it into a powerful technique.

Erdős first demonstrated the power of this
method in 1947 by proving that his Ramsey bound
with Szekeres, n → (c logn)2 , is tight apart from
the constant c; i.e., there exists a graph on n ver-
tices without homogeneous subsets (clique or in-
dependent set) of size c1 logn. The probability
bound is obtained by generously overestimating,
via simple counting, the number of graphs which
do not have the desired property.

This non-constructive proof of existence imme-
diately raised the challenge of an explicit con-
struction. Frankl (1977) was the first, via the sun-
flower technique, to construct explicit graphs
without homogeneous subsets of size nε ; an ele-
gant alternative proof was given by Frankl and
Wilson using the linear algebra method (1981).
Their bounds on homogeneous subsets are, how-
ever, still far from logarithmic.

Another great success of the probabilistic
method was Erdős’s cited result on the existence
of graphs with large chromatic number and with-
out short cycles (1959). In this case a mere random
choice alone will not suffice; the random graph ob-



sions of this result, which actually find “the nee-
dle in the haystack,” were obtained by J. Beck and
subsequently by N. Alon (1991).

Erdős not only set up derandomization chal-
lenges but also invented an important derandom-
ization tool in a 1973 paper with John Selfridge:
the “method of conditional expectations.” The
method has since been extended and resulted in
the derandomization of large classes of random-
ized algorithms.

For decades hardly anyone other than Erdős
recognized the significance of the probabilistic
method. The situation changed with the 1974 pub-
lication of Probabilistic Methods in Combinatorics
by Erdős and Joel Spencer. This thin volume had
a major impact on all areas of discrete math-
ematics.

References. We refer as [M4] to bibliography
item [4] of the memorial article by this writer ap-
pearing elsewhere in this issue. Most papers of
Erdős cited above can be found either in The Art
of Counting [M4] or the bibliographies of the sur-
vey articles in [M12]. An enormous amount of rel-
evant material appears in various chapters of the
monumental Handbook of Combinatorics ([3]
below). Further references:
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Approximation
Theory
Péter Vértesi

Paul Erdős wrote more than a hundred papers that
are closely related to the approximation of func-
tions. It is difficult to outline the wealth of these
results in such a short survey; the selection nec-
essarily reflects my taste.

As a Ph.D. student of Lipót (Leopold) Fejér,
Erdős began to work on problems closely related
to interpolation and orthogonal polynomials: mean
convergence, quadrature processes, investigations
of normal point systems, and generally to reveal
connections between the distribution of certain
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tained from a carefully chosen distribution needs
to be modified in order to satisfy the conditions.

The derandomization of this result required
major effort and was eventually successful in si-
multaneous work by Margulis and Lubotzky-
Phillips-Sarnak (1988). A key ingredient is the the-
ory of diophantine equations of the form
x2 + 4q2(y2 + z2 +w2) = n (Ramanujan conjecture,
solved for this case by Eichler (1954) and Igusa
(1959)).

Erdős applied the probabilistic method in many
other contexts, in combinatorics as well as in num-
ber theory, geometry, and analysis. Let me state a
beautiful example from analysis: In a 1959 paper
with A. Dvoretzky, Erdős demonstrated the exis-
tence of a power series of the form∑∞

1 eiαnn−1/2zn with real αn that diverges on the
whole unit circle.

To derandomize another probabilistic proof of
Erdős in graph theory, Graham and Spencer (1971)
invoked André Weil’s character sum estimates,
which imply, that, in some sense, “quadratic
residues are random.” Recently (1996) Kollár,
Rónyai, and Szabó employed the elements of com-
mutative algebra to derandomize, for infinitely
many values of the parameters, a result of Erdős
in extremal graph theory.

Our limited experience thus indicates that al-
gebraic tools of considerable depth may hold the
key to replacing probabilistic proofs of existence
by explicit construction. In most cases, however,
the Erdős-style proofs of existence cannot cur-
rently be matched by explicit constructions, a
challenge that continues to grow with the in-
creasing number of applications of the proba-
bilistic method [1].

Why should we care about derandomizing prob-
abilistic proofs of existence? The combinatorist
may find the challenge and the beauty of the ques-
tion inspiring. The reasons, however, run consid-
erably deeper in the theory of computing. The cen-
tral objective of that area is to show the intrinsic
computational difficulty of explicit functions (the
difficulty of computing a random function being
evident).

The probabilistic method is most often used to
demonstrate the existence of objects that are ac-
tually present in abundance. For instance, a ran-
dom graph is very likely to have the right Ramsey
parameter. Is the method doomed to fail when
searching for rare objects? A coloring problem for
set systems led Erdős and Lovász to the discovery
of the Local Lemma (1974), a powerful tool to de-
tect events of low but nonzero probability. Infor-
mally the lemma asserts that the intersection of a
set of events, none of which correlates with more
than a small number of others, is nonempty. This
will demonstrate the existence of certain expo-
nentially rare objects. We note that naive sampling
will not encounter these objects. Algorithmic ver-

Péter Vértesi is a senior research advisor at the Math-
ematical Institute of the Hungarian Academy of Science,
Budapest. His e-mail address is veter@math-inst.hu.
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node systems and the behavior of the generated
processes. These questions have been in the main
stream of classical approximation theory.

However, within a very short time, Erdős began
to formulate his own problems and outlined new
paths to search, such as the closer investigation
of the Lebesgue function of Lagrange interpolation,
questions on the optimal Lebesgue constant, and
rough and fine theories of different approximat-
ing tools. The first paper in his series “Problems
and results on the theory of interpolation” ap-
peared in 1958, followed by periodic updates (1961,
1968, 1976, 1980, 1983, 1991).

Over the years Erdős obtained (mainly with co-
authors) fundamental and very strong theorems.
We may mention the 1980 result on the a.e. (almost
everywhere) divergence of Lagrange interpolation
on an arbitrary system of nodes2, the Erdős con-
dition on convergent interpolatory processes (with
A. Kroó and J. Szabados, 1989), and the results on
a.e. divergence of the arithmetic mean of Lagrange
interpolation based on Chebyshev nodes (with
G. Grünwald, 1937; an error in their proof was
eliminated in a paper with G. Halász, 1991).

Questions in approximation theory are closely
related to the behavior of polynomials. So it is no
surprise that Erdős wrote many papers dealing
with the related problems about polynomials
(Remez and other inequalities, the distribution of
roots, length of polynomials, geometry of poly-
nomials, etc.). Rather than going into the details
of this subject, I conclude this survey with two in-
fluential “appetizers” and refer the interested
reader to the monographs [4, 5].

Erdős’s work invariably attracted a great deal of
attention and continues to influence the work of
many mathematicians. This survey includes sev-
eral lists of authors inspired by specific results of
Erdős. References to their papers can be found in
the bibliographies of the works listed in our “Ref-
erences.”

One of the most often-quoted results in ap-
proximation theory appeared in a 1937 paper by
Erdős and Paul Turán in the Annals of Math. In this
inaugural opus of their 3-piece series “On inter-
polation” the young authors proved the remark-
able positive result that for any continuous func-
tion f the Lagrange interpolation polynomials
converge in mean to f if the interpolation is taken
over the roots of the system of orthogonal poly-
nomials with respect to any weight function. More
precisely they proved that for every f ∈ C and
weight w

(1)
∫ 1

−1
{f (x)− Ln(f ,w, x)}2w (x)dx ≤

√
6En−1(f ).

Here X = {xkn; 1 ≤ k ≤ n; n ∈ N} ⊂ I: = [−1,1] is
an interpolatory matrix (i.e., for fixed n, xkn are
different); Ln(f ,X, x) ∈ Pn−1 is the n-th Lagrange
interpolatory polynomial based on the nodes
{xkn}, 1 ≤ k ≤ n ; w is a weight on [−1,1], i.e., 
w ≥ 0 and 

∫
I
w > 0 ; if {xkn = xkn(w )} where

xkn(w ), 1 ≤ k ≤ n are the roots of the n-th ortho-
normal polynomial (pn(w ) ) with respect to w , 
n ∈ N (i.e., 

∫
I
pn(w )pm(w )w = δnm), then Ln(f ,w )

replaces Ln(f ,X) ; finally, En(f ) = minP∈Pn ‖f − P‖
where ‖ . . .‖ stands for the maximum norm on I.
Note that by Weierstrass’s Theorem, the right-
hand side converges to 0 as n →∞.

To appreciate this mean-convergence theorem,
we state a fundamental negative result of G. Faber
(1914), which says that for every X ⊂ I there is an
f ∈ C with

(2) lim sup
n→∞

‖Ln(f ,X, x)‖ =∞.

A natural question that challenged many math-
ematicians was to replace the exponent 2 with a
larger one. Such results are known for special ma-
trices. For instance, for the case of
X = T =

{
cos 2k−1

2n π
}

(Chebyshev matrix) Erdős
and Feldheim proved in 1936 that

Erdős enjoyed working with several mathematicians on
entirely different problems simultaneously. Left to right: 

G. Grätzer, Erdős, Paul Turán, and Alfréd Rényi at Dobogókő ,
Hungary, 1959. Turán was one of Erdős’s closest friends and

his first major collaborator. Erdős and Turán worked together
on a variety of subjects in number theory, classical analysis,

combinatorics, and statistical group theory.

2Note by the organizer: The coauthor of this striking re-
sult is P. Vértesi.
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lim
n→∞

∫ 1

−1
|f (x)− Ln(f , T , x)|p 1√

1− x2
dx = 0

holds for any continuous f with arbitrary p > 0.
The corresponding trigonometric case is due to
J. Marcinkiewicz. As it turned out almost forty (!)
years later, however, generally the exponent 2 can-
not be improved. This nice result is due to P. Nevai.
Similar problems were considered by, among oth-
ers, R. Askey, V. M. Badkov, B. Della Vecchia,
G. Freud, G. Mastroianni, B. Muckenhoupt, D. S. Lu-
binsky, A. K. Varma, and Y. Xu (cf. [2]).

Lebesgue estimated the difference Ln(f )− f by

(3) |Ln(f ,X, x)− f (x)| ≤ {λn(X,x) + 1}En−1(f ).

Here the n-th Lebesgue function λn(X,x) is de-
fined as λn(X,x): =

∑n
k=1 |`kn(X,x)| , where the

`kn ∈ Pn−1 \ Pn−2 are the (unique) fundamental
polynomials corresponding to X (i .e. ,
`kn(X,xjn) = δkj , 1 ≤ k, j ≤ n , n ∈ N). Relation
(3) shows that the Lebesgue function λn(X,x) and
the Lebesgue constant Λn(X): = ‖λn(X,x)‖ play a
fundamental role concerning the convergence-di-
vergence behavior of Lagrange interpolation.

In the seminal first paper in the “Problems …”
series (1958), Erdős proved that for any fixed
X ⊂ [−1,1], real ε > 0, A > 0, the measure of the
set for which

(4) λn(X,x) ≤ A, x ∈ R, n ≥ n0(A, ε),

is less than ε.
The basic ideas of this work were used, devel-

oped, and completed by Erdős and many (co)au-
thors (G. Halász, D. Newman, J. Knoppenberger,
J. Szabados, A. K. Varma, P. Vértesi, Y. G. Shi) in a
series of papers. These papers resulted in more or
less “best possible” theorems on the behavior of
λn(X,x) and similar expressions, and they gave far-
reaching generalizations of the Faber theorem and
the Grünwald-Marcinkiewicz result (see the pa-
pers highlighted in the fourth paragraph of this sur-
vey and further references in [1]).

It is natural to investigate the sequence

(5) Λ∗n : = min
X⊂I

Λn(X), n ∈ N.

In the rather difficult second paper of the “Prob-
lems …” series (1961) Erdős, improving on a joint
result with P. Turán (1961), obtained the bound

(6) |Λ∗n − 2
π

logn| ≤ c, n ≥ n0,

but the famous Bernstein-Erdős conjectures on
the optimal matrix X∗ for which Λn(X∗) = Λ∗n and
on the behavior of λn(X∗, x) were proved only in
1978 (T. Kilgore, C. deBoor, A. Pinkus, L. Brutman

(cf. [1])). The bound (6) also attracted much in-
terest; a long list of papers on this subject is cited
in [1].

Let us now consider functions f satisfying the
Lipschitz condition |f (x)− f (y)| ≤ c|x− y|α with
some constant c; Lip(α) denotes the class of such
functions. For f ∈ Lip(α), 0 < α < 1, (3) yields the
bound

(7) ‖Ln(f ,X)− f‖ ≤ cn−αΛn(X).

In their 1955 joint paper “On the role of the
Lebesgue function in the theory of Lagrange in-
terpolation” Erdős and Turán established the fol-
lowing surprising facts.

Let us suppose that Λn(X) ∼ nβ (β > 0). Then if
α > β , we have uniform convergence for any
f ∈ Lip(α); if α < β

β+2, then for some f1 ∈ Lip(α),
‖Ln(f1, X)‖ is unbounded as n →∞. However, if
β
β+2 < α < β , then both convergence and diver-
gence can happen.

This means that in the third case the conver-
gence-divergence behavior of Ln(f ,X) is not de-
termined by the order of Λn(X) alone; we have to
take a closer look at the matrix X itself. Erdős and
Turán refer to the interval [β/(β + 2), β] as the do-
main of a finer theory and point out a number of
analogous situations for further study.

This is an extremely influential work. Over the
years dozens of papers tried to settle corre-
sponding questions (rough and fine theory) for
the trigonometric case, other operators, Hermite-
Fejér interpolation, etc. (cf. [1]).

Now here are two results on polynomials. Ac-
cording to the Bernstein-Markov inequality,

(8)
|p′n(x)| ≤min

(
n√

1− x2
, n2

)
· ‖pn‖,

|x| ≤ 1, pn ∈ Pn.

However, as Erdős has shown in a short paper
(1940), we can do better if we restrict the zeros of
the polynomial. Namely, if pn ∈ Pn has no root in
(−1,1), then

(9)
|p′n(x)| ≤min

(
4
√
n

(1− x2)2
,
en
2

)
· ‖pn‖,

|x| ≤ 1.

This result was one of the starting points of in-
vestigations on polynomials with restricted zeros
and initiated many interesting general problems
(cf. the works of P. Borwein, T. Erdélyi, M. von
Golitschek, G. G. Lorentz, Y. Makovoz, A. Máté,
J. Szabados, A. K. Varma, and others mentioned in
the monograph [3]).

Let me close this survey with comments on an-
other short paper by Erdős, “On the distribution
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of roots of orthogonal polynomials.” In this 1972
paper, which represents a bridge between ap-
proximation theory and polynomials, Erdős
showed that certain weights w with infinite sup-
port have the so-called arcsine distribution; i.e.,
the distribution of the contracted zeros of the
corresponding orthogonal polynomials is simi-
lar to the root-distribution of the Chebyshev
polynomials (“Erdős-type weights,” as they are
referred to today3).

During the last fifteen to twenty years inves-
tigations of so-called weighted approximations
on R (approximating f (x)w (x) by pn(x)w (x) ,
pn ∈ Pn, x ∈ R) have been very intensive; many
approximating tools and formulae were devel-
oped (mainly for Erdős- and Freud-type weights)
by G. Freud, A. Levin, D. S. Lubinsky, H. N.
Mhaskar, P. Nevai, E. A. Rahmanov, E. B. Saff,
J. L. Ullman, V. Totik, R. S. Varga, and their stu-
dents (cf. the monograph [5] and the references
therein). The next stage should be the investi-
gation of the previously mentioned problems
concerning weighted interpolation. The first
steps have already been done; they clearly mark
that Paul Erdős’s ideas are very much alive.
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3Let w (x) = e−Q(x). If Q(x) = |x|α, α > 1, x ∈ R (Freud-
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Qk(x) = exp(exp(. . . exp(|x|α) . . .)) (k ≥ 1 times), α > 0,
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