Parallel Algorithms

COMP 215 Lecture 22



Terminology

e SIMD - single instruction, multiple data stream.

— Each processor must perform exactly the same operation at
each time step, only the data differs.

e MIMD — multiple instruction multiple data stream

— Each processor can perform a different operation



Shared Address Space Architectures

e UMA - uniform memory access

— Each processor has its own memory. Each can access a
common shared memory.

e NUMA — non-uniform memory access

— Each processor has its own memory, which can be accessed by
other processors.

— Faster to access your own memory than that of another
processor.



Message Passing Architectures

* Processors communicate by sending messages to each
other, instead of through memory.
e Static interconnection networks:
— Many possible topologies:
- Fixed degree
— Hypercube

— In graph terms, the goals are usually:
* keep the maximum degree small.

* keep the diameter small.

* Dynamic interconnection networks:
— crossbar switching network

— bus based networks, (e.g. Ethernet)



PRAM

Parallel random access machine

A straightforward generalization of standard serial
computers.

p processors that each have local memory, and
symmetrical access to a large shared memory.

MIMD UMA



Parallel Max

Sequential Max algorithm required n-1 comparisons.

Parallel Max also requires that many comparisons, but
many of them can take place at the same time.

We no longer count total operations, we count the
maximum number of operations performed by any
pProcessor.

The tournament algorithm for Max has an easy parallel
implementation.



Parallel Max

keytype parlargest(int n, keytype S[]) {
index step, size;
local index p;
local keytype first, second;

p = index of this processor;

size = 1;

for (step = 1; step <=1lg n; step++) {
first = S[2*p - 1];
second = S[2*p - 1 + size];
S[2*p - 1]= max(first,second);
size = 2 * gsize;

}

return S[1]




Parallel Max Analysis

* Algorithm 1s assuming input size 1s a power of 2.

* Main loop executes Ig n times.



Parallel Binomial Coefficient

Recall the recursive approach for computing the
binomial coefficient:

n—1
k—1

_|_

n_w O<k<n
k

1 k=0 or k=n

This can be calculated via dynamic programming:
- B[i][j] = B[1-1][j-11 + B[1-1][j]
Since entries 1n a particular row do not depend on each

other, every entry in a row can be computed
simultaneously.



Parallel Binomial Coefficient

int parbin(int n, int k)
{
B[0..n][0..k];
int 1i;
local int 7j;
jJ = index of this processor;
for (i = 0; 1 <= n; i++) {
if (j <= min(i,k)) {

if (3 == 0 || § == 1)
B[i][k] = 1;
else

B[1][k] = B[1i-1][]J-1] + B[i-1][3]]:
}

}
return B[n][k]




Parallel Binomial Coefficient Analysis

* Run time of sequential algorithm @ (nk) .

* Run time of parallel algorithm @ (n) .



Dynamic Programming in General

* [s it always possible to speed up dynamic programming
algorithms with more processors?

* How about computing the nth Fibonacci term?



Parallel Sorting

e With n? processors it is possible to sort n items in 1g n
time.

 Unknown whether there 1s a Ig n time algorithm that uses
only n processors.

* Let's look at a linear time sorting algorithm...

Introduction to Parallel Algorithms and Architectures. F. Thompson Leighton. 1992.



Parallel Merge Sort

Recall the non-recursive merge-sort implementation:
— divide the unsorted list into pairs, sequentially merge pairs
— sequentially merge sorted sets of two.

— merge sets of four. etc.

In a parallel implementation all merges of the same size
can occur simultaneously.

The individual merges are performed sequentially.

Most comparisons done by any one processor:
Wn)=Wmn/2)+n-1
- O(n)



Odd Even Merge Sort

The previous algorithm would be much improved if we
could parallelize the merge operation - It can be done!

In order to merge to sorted lists A and B:
— First partition A and B into odd and even indexed sublists:
- even(A) =4, 4a,,a,,..0ddA) =a,,a, a, ...
— Recursively merge even(A) and odd(B) to get a new list C.
— merge odd(A) with even(B) to get D.
- Now merge C and D:

e interleave them: L' = ¢, d, c,,d,, ...
* swap any neighbors that are out of order (just once) to get L.

* Magically, L is sorted.

Introduction to Parallel Algorithms and Architectures. F. Thompson Leighton. 1992.



Correctness

We haven't spent much time proving algorithm
correctness — usually i1t has been obvious.

T'his 1s a non-obvious case.

The proot (which we won't do 1n detail) uses the 0-1
sorting lemma:

— Any oblivious comparison exchange sort that correctly sorts
any list of O's and 1's, correctly sorts arbitrary lists.

The gist 1s:

— C and D each have about the same number of O's, they each
have half the 0's from A and half from B.

— So when C and D are interleaved, there won't be many 0's and
1's out of order.



Running Time

e O(lgn)



