The hyperbolic Pythagorean theorem

The hyperbolic Pythagorean theorem is the following statement.

Proposition 1 Any right triangle \(\triangle ABC \) with \(\angle C \) being the right angle satisfies \(\cosh(c) = \cosh(a) \cosh(b) \).

Proof: See [1, page 181].

To prove the rest of the formulas of hyperbolic trigonometry, we need to show the following.

Proposition 2 Any right triangle \(\triangle ABC \) with \(\angle C \) being the right angle satisfies \(\cos(A) = \tanh(b) / \tanh(c) \).

Proof: It is your homework to fill in the details in the following proof.

Use the Poincaré disc model and assume that the vertex \(A \) is at the center of the disk. (The right angle of \(ABC_\triangle \) is at \(C \).) The lines \(AB \) and \(AC \) are represented by straight lines, the line \(BC \) is represented by an arc of a circle centered at \(O_1 \). Let \(B' \) resp. \(C' \) be the second intersection of \(OB \) resp \(OC \) with this circle and \(B_1 \) be the orthogonal projection of \(O \) to the line \(OB \).

Using that the Euclidean distance \(OB \) equals \(\tanh(c/2) \) and that \(OB \cdot OB' = 1 \) (justify why), prove that the Euclidean distance \(BB' = 2/ \sinh(c) \). Observe that the Euclidean distance \(CC' \) is similarly equal to \(2/ \sinh(b) \). Due to the Star Trek Lemma, the angle \(\angle BO_1B_1 \) is equal to \(\angle B \). (Why?) Hence

\[
\sin(B) = \frac{BB_1}{O_1B} = \frac{BB'}{2O_1C} = \frac{BB'}{CC'} = \frac{\sinh(b)}{\sinh(c)}.
\]

Finally, using that \(\cos(A) = AB_1/AO_1 \), where \(AB_1 = OB + BB'/2 \) and \(AO_1 = AC + CC'/2 \), prove that

\[
\cos(A) = \frac{\tanh(b)}{\tanh(c)}.
\]

\[\text{\large \Box}\]
Proposition 3 The previous two statements also imply the following equalities:
\[\sin(A) = \frac{\sinh(a)}{\sinh(c)}, \tag{1}\]
\[\frac{\cos(A)}{\sin(B)} = \cosh(a) \quad \text{and} \]
\[\cot(A) \cot(B) = \cosh(a) \cosh(b) \tag{3}\]

Proof: Before proving equation (1), note that this equation was actually shown during the proof of Proposition 2 (for \(B\) whose role is exchangeable with the role of \(A\)). That said, here we show that it follows algebraically from the previous two propositions. By Proposition 2 we have
\[\sin^2(A) = 1 - \cos^2(A) = \frac{\tanh^2(b) - \tanh^2(c)}{\tanh^2(c)}.\]
Using the fact that \(\tanh(x) = \sinh(x)/\cosh(x)\), the above equation may be rewritten as
\[\sin^2(A) = \frac{\sinh^2(c) \cosh^2(b) - \cosh^2(c) \sinh^2(b)}{\sinh^2(c) \cosh^2(b)}.\]
Replacing each \(\sinh^2(x)\) with \(\cosh^2(x) - 1\) in the numerator we get
\[\sin^2(A) = \frac{(\cosh^2(c) - 1) \cosh^2(b) - \cosh^2(c) \sinh^2(b)}{\sinh^2(c) \cosh^2(b)} = \frac{\cosh^2(c) - \cosh^2(b)}{\sinh^2(c) \cosh^2(b)}.\]
By Proposition 1 we may replace \(\cosh^2(c)\) with \(\cosh^2(a) \cosh^2(b)\) and get
\[\sin^2(A) = \frac{\cosh^2(a) \cosh^2(b) - \cosh^2(b)}{\sinh^2(c) \cosh^2(b)} = \frac{\cosh^2(a) - 1}{\sinh^2(c)} = \frac{\sinh^2(a)}{\sinh^2(c)}.\]
Since \(A\) is an acute angle, \(\sin(A)\) is positive and we may take the square root on both sides to obtain equation (1). Combining equation (1) with Proposition 2 yields
\[\frac{\cos(A)}{\sin(B)} = \frac{\tanh(b)}{\tanh(c) \cdot \sinh(b)} = \frac{\sinh(b)}{\cosh(b)}.\]
By Proposition 1 we may replace \(\cosh(b)\) with \(\cosh(a) \cosh(b)\) and get
\[\frac{\cos(A)}{\sin(B)} = \frac{\cosh(a) \cosh(b)}{\cosh(b)}.\]
Equation (2) follows after simplifying by \(\cosh(b)\). Finally, using equation (2) for \(\cos(A)/\sin(B)\) and for \(\cos(B)/\sin(A)\) yields
\[\cot(A) \cot(B) = \frac{\cos(A)}{\sin(B)} \cdot \frac{\cos(B)}{\sin(A)} = \cosh(a) \cosh(b).\]
\[\Box\]

References