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Abstract. In this paper, we develop an efficient reduction technique that leads us to study particular
classes of linear non-homogenous system of operator equations with constant coefficients. The key concept
is assigning a matrix polynomial to the system, and its Smith canonical form provide a reduced system of
independent equations. As a consequence of independent structure, each equation of the reduced system
contains one unknown.

1. Introduction

Consider a linear system of n operator equations with constant coefficients in unknowns xi from [11]:

L (x̄) = Cx̄ + φ̄, (1)

such that
∑n

j=1 ci, jx j =: L (xi)−φi, n > 2, where L : V → V is a linear operator, and V is a vector space over
an arbitrary field F. In the system (1), the constant nonzero matrix C = [ci, j] ∈ Mn×n(F), (the class of n × n
matrices whose elements belong to F), φ̄ = [φ1, · · · , φn]T ∈ Vn×1 is the right-hand vector.

System of operator equations represents one of the largest fields within the linear control theory [3, 7, 13]
and other applied sciences. The solvability of systems of operator equations has been widely investigated
by many authors. Jia et al. [6] have discussed the conditions on operators which would make the system
of linear operator equations solvable. The results of [2] deal with the numerical solution of the the system
of operator equations via least square methods. A general approach to the case of iterative solutions has
also been studied in [17]. Further details about solvability of systems of operator equations may be found
in [6, 8, 10, 12, 14].

There are some reduction procedures for transforming a linear system of operator equations to an
equivalent solvable form. The strategy which is usually employed is based on the general canonical forms
such as Jordan forms [1] and rational canonical forms [11]. A partial reduction procedure based on rational
canonical forms has been presented for linear system of operator equations (1) in [11], and recently, the
Smith canonical form has been applied for the reduction of the system of integral equations [15, 16].

In this paper, our aim is to extend the applicability of matrix polynomial theory to reduce a system
of operator equations. First, an overview on the matrix polynomial concepts and notations is presented
in Section 2. Then a matrix polynomial equation equivalent to the linear system of operator equations is
introduced in Section 3. Such presentations are useful in applying the Smith canonical form for obtaining
a class of independent equations. This concern will be addressed in Section 4, and we show how to use the
proposed idea to reduce the system of linear operator equations in special cases. Finally, the conclusion is
presented in Section 5.
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2. Matrix polynomials

In this section, some well-known properties of matrix polynomial theory have been collected which
will be helpful subsequently. Such matrices arise in the mathematical treatment of various types of linear
systems which were studied in, for example [5, 13]. For detailed proofs, the reader may refer to standard
references like [4, 5, 9].

Let us recall that a matrix polynomial is simply a matrix with polynomial elements which can alternatively
be considered as a polynomial with matrix coefficients. We are mainly concerned with the ring of square
matrix polynomials Mn×n(F[L ]), (where F[L ] is the set of all polynomials in L ) consists of polynomials
with coefficients belonged to Mn×n(F). Note that we also need GL(n,F[L ]), the group of invertible matrix
polynomials in Mn×n(F[L ]), more precisely:

Definition 2.1. A matrix P ∈ Mn×n(F[L ]) is called unimodular (belongs to GL(n,F[L ])) if and only if detP is a
nonzero constant in F.

It is easily deduced from this property that a matrix polynomial is unimodular if and only if its inverse
is a matrix polynomial, which will also be unimodular. Using unimodular matrices, an equivalence relation
can be defined on Mn×n(F[L ]), as follows:

Definition 2.2. Let P, Q ∈ Mn×n(F[L ]). Then P is equivalent to Q over F[L ], if there exist matrix polynomials
R, S ∈ GL(n,F[L ]), such that

R(L )P(L )S(L ) = Q(L ).

Definition 2.3. For every P ∈Mn×n(F), the determinantal rank, ρ(P), is defined to be the largest integer r for which
there exists a nonzero r × r minor of P.

Lemma 2.1. (From [4]) Let P, Q ∈Mn×n(F[L ]). If P is equivalent to Q over F[L ], then ρ(P) = ρ(Q).

Lemma 2.2. (From [4, 5]) For every nonzero matrix P ∈Mn×n(F[L ]) with r = ρ(P), there exist matrix polynomials
R, S ∈ GL(n,F[L ]) such that P is equivalent to a matrix Γ ∈Mn×n(F[L ]) in the form

R(L )P(L )S(L ) = Γ(L ), (2)

where

Γ(L ) = Dia1[d1(L ), · · · , dr(L ), 0, · · · , 0], (3)

called the Smith canonical form of P(L ), with monic scalar polynomials di(L ) such that di(L ) is divisible by
di−1(L ).

Definition 2.4. The polynomials d1(L ), · · · , dr(L ) in the Smith canonical form (3) are called the invariant factors
of P(L ). Moreover, R(L ) and S(L ) are named the pre- and post-multipliers, respectively.

Definition 2.5. The invariant factors of the characteristic matrix of C ∈Mn×n(F), (i.e. L I−C ) are called similarity
invariants of C.

3. The Smith canonical form

To proceed in depth, we investigate the system (1) in two special cases Č, Ĉ ∈Mn×n(F) as:

Č =
n∑

i, j=1

c jEi, j, Ĉ =
n∑

i, j=1

ciEi, j, (4)
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where Ei, j stands for the matrix with entry (i, j) equal to 1, all other entries equal to zero, and ci , 0 for
i = 1, · · · ,n. First, the matrix polynomials

P̌(L ) = (L I − Č), P̂(L ) = (L I − Ĉ), (5)

can be assigned to the system (1). In particular, we can impose the additional requirement that ρ(L I− Č) =
ρ(L I − Ĉ) = n, for the solvability of the system. Let Γ(L ) be the Smith canonical form of (L I − Č) and
(L I − Ĉ). Since P(L ) and Γ(L ) are equivalent, Lemma 2.1 indicates that ρ(Γ) = n.

The following lemma is devoted to some preliminary relations needed in the sequel, and its proof is a
matter of computation.

Lemma 3.1. For i > 1 and j > 0, define: λi, j =
(−1) j

j!

j−1∏
k=0

(i − k − 2). It is easy to see that λi,0 = 1, and λi, j = 0, for

j > i − 2. Moreover, λi, j, i > 2 satisfies:

i−2∑
j=0

λi, j = 0, (6)

i−2∑
k=0

λi,kλk+2, j−2 = δi, j, (7)

i−2∑
k=1

λi,kλk+1, j−2 = δi, j − 1, (8)

where throughout the rest of this paper, δi, j stands for the Kronecker delta.

The main result of the paper (see Theorem 4.1) is based on the Smith factorization of the matrix
polynomial. Using Mapler symbolic computation package, we implement the algorithms on a digital
computer, automating the factorization process of the Smith canonical form for (L I − Č) and (L I − Ĉ).

Case 1. In considering the matrix polynomials (5), first we establish the results for Č ∈Mn×n(F):

Theorem 3.1. (I).The pre-multiplier unimodular matrix Ř =
n∑

i=1

Ři, where

Ř1 =
−1
c2
E1,1,

Ř2 = −E2,1 + E2,n,

Ři =

n∑
j=n−i+2

λi,n− jEi, j, i = 3, · · · , n − 1,

Řn = ηnEn,1 + c2En,2 +

n∑
j=3

θ j,nEn, j,

(9)

in which:

ηn = c1 + 2
(
L −

n∑
i=1

ci

)
, θ j,n = c j + λn,n− j+1(L −

n∑
i=1

ci), j = 3, · · · ,n.

(II).The Smith matrix of Č is Γ(L ) = E1,1 +L
n−1∑
i=2

Ei,i + (L 2 −L
n∑

i=1

ci)En,n, and L 2 (power of operator L )

is defined as usual: L 2 = L o L .
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(III). The post-multiplier unimodular matrix is: Š =
n∑

j=2

E1, j + E2,1 +

n∑
j=2

σ j,nE2, j +

n∑
i=3

n∑
j=2

µi, j,nEi, j,

where:

σ j,n =
1
c2

(L − c1 −
n∑

k=3

µk, j,nck), j = 2, · · · ,n,

µi, j,n = 1 + λn−i+2, j−2, i = 3, · · · ,n, j = 2, · · · ,n.
(10)

Proof. The similarity invariants of Č are exactly the diagonal elements of Γ(L ), and it will be enough to
show that the multipliers satisfy Γ = ŘP̌Š, which can be done as follows:

First row: It can be easily checked that Γ1,1 = 1, and for j = 2, · · · ,n :

Γ1, j =

n∑
k=1

n∑
i=1

Ř1,iP̌i,kŠk, j =
−1
c2

n∑
k=1

P̌1,kŠk, j =
−1
c2

[
P̌1,1+ P̌1,2σ j,n+

n∑
k=3

P̌1,kµk, j,n

]
= −L − c1

c2
+σ j,n+

1
c2

n∑
k=3

ckµk, j,n,

due to the definition of σ j,n (10), it is clear that Γ1, j = 0. Then in the second row, we have:

Γ2,1 =

n∑
k=1

(ŘP̌)2,kŠk,1 = (ŘP̌)2,2 = Ř2,1P̌1,2 + Ř2,nP̌n,2 = P̌n,2 − P̌1,2,

which clearly vanishes since P̌ satisfies (5). Moreover, for j = 2, · · · ,n :

Γ2, j =

n∑
k=1

n∑
i=1

Ř2,iP̌i,kŠk, j =

n∑
k=1

(P̌n,k − P̌1,k)Šk, j = (P̌n,1 − P̌1,1)Š1, j + (P̌n,n − P̌1,n)Šn, j = L (µn, j,n − 1).

Since µn, j,n = 1 + δ j,2, it straightforwardly follows that Γ2, j = L δ2, j. Next, Part I of Theorem shows that
the first column Γi,1, for i = 3, · · · ,n − 1, satisfies the following pattern:

Γi,1 =

n∑
k=1

(ŘP̌)i,kŠk,1 = (ŘP̌)i,2Š2,1 =

n∑
k=1

Ři,kP̌k,2 = −c2

n∑
j=n−i+2

λi,n− j.

It follows that Γi,1 =
∑i−2

k=0 λi,k, and the result is obvious using (6). Besides, we remark that according to
(9), the n-th row have a different pattern, particularly:

Γn,1 =

n∑
k=1

(ŘP̌)n,kŠk,1 = (ŘP̌)n,2Š2,1 = Řn,1P̌1,2 + Řn,2P̌2,2 +

n∑
k=3

Řn,kP̌k,2 = c2

[
L − ηn − c2 −

n∑
k=3

θk,n

]
.

On the other hand, it is straightforward to show that

ηn + c2 +

n∑
k=3

θk,n = L , (11)

and taking it into account, we get Γn,1 = 0. Then for j = 2, · · · ,n, we have:

Γn, j =

n∑
k=1

[
Řn,1P̌1,k + Řn,2P̌2,k +

n∑
i=3

Řn,iP̌i,k

]
Šk, j

= −(ηn + c2 +

n∑
k=3

θk,n)
[
c1 + c2σ j,n +

n∑
k=3

ckµk, j,n

]
+L
[
ηn + c2σ j,n +

n∑
k=3

θk,nµk, j,n

]
.



N. Shayanfar, M. Hadizadeh / Filomat 27:8 (2013), 1447–1454 1451

Apart from that, it can be easily checked that

c1 + c2σ j,n +

n∑
k=3

ckµk, j,n = L , (12)

and considering λi,0 = 1, a similar argument shows that

ηn + c2σ j,n +

n∑
k=3

θk,nµk, j,n = L + (L −
n∑

j=1

c j)
[
1 +

n∑
k=3

λn−k+2, j−2λn,n−k+1

]
.

Consequently, on account of (8), (11) and (12), we can check that Γn, j = (L 2 −L
∑n

j=1 c j)δn, j.We are now
in a position to consider Γi, j, for i = 3, · · · ,n − 1 and j = 2, · · · ,n, which can be obtained with some tedious
manipulation:

Γi, j = −(
i−2∑
k=0

λi,k)
[
c1 + c2σ j,n +

n∑
k=3

ckµk, j,n

]
+L
[ i−2∑

k=0

λi,kµn−k, j,n

]
, (13)

considering (12) and (6), shows that Γi, j = L
i−2∑
k=0

λi,kλk+2, j−2, and to complete the proof, it is enough to use

(7) to see that Γi, j = L δi, j.

Case 2. A theorem similar to Theorem 3.1 can be given for the Smith canonical form of Ĉ ∈ Mn×n(F),
and it can be proved with a similar argument.

Theorem 3.2. (I).The pre-multiplier unimodular matrix R̂ =
n∑

i=1

R̂i, where

R̂1 =
−1
c1
E1,1,

R̂i = αi,nEi,1 +

n∑
j=n−i+2

λi,n− jEi, j, i = 2, · · · , n − 1,

R̂n = γnEn,1 + c1En,2 +

n∑
j=3

β j,nEn, j,

in which:

αi,n = −
i−2∑
k=0

λi,k
cn−k

c1
, i = 2, · · · ,n − 1,

γn = c1 +
(
1 −

n∑
k=3

λn,n−k+1
ck

c1

)(
L −

n∑
i=1

ci

)
,

β j,n = c1 + (−1)nλn, j−3(L −
n∑

i=1

ci), j = 3, · · · ,n.

(II). The similarity invariants of Ĉ are 1,L , · · · ,L︸      ︷︷      ︸
(n−2)

,L 2 −L
n∑

i=1

ci.
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(III). The post-multiplier unimodular matrix is: Ŝ =
n∑

j=2

E1, j + E2,1 +

n∑
j=2

ρ j,nE2, j +

n∑
i=3

n∑
j=2

νi, j,nEi, j,

in which:

ρ j,n =
1
c1

(
L + c2 + λn, j−1c1 −

n∑
i=1

ci

)
, j = 2, · · · ,n,

νi, j,n = λn+2−i, j−2 +
ci

c1
, i = 3, · · · ,n, j = 2, · · · ,n.

4. The main results

We develop structural formulas for reducing the system (1) to a system of independent equations. The
following lemma initiates our strategy of the reduction process based on the Smith canonical form:

Lemma 4.1. (From [5]) Let Γ(L ) be the Smith normal form of P(L ) = L I − C. Then the system P(L )x̄ = φ̄, can
be reduced to the system

Γ(L )ȳ = ψ̄, (14)

where ψ̄ = R(L )φ̄ is its free column and x̄ = S(L )ȳ is a column of the unknowns.

Now, we state the main theorem dealing with the reduction of the system (1). It is worthy to mention
that since the major objective of this paper is the study of corresponding independent system which arises
in (14), we only need the Smith matrix and the pre-multipliers.

Theorem 4.1. Suppose the assumption of Lemma 4.1 for P(L ) = (L I−C). The reduced system of (1) in two special
cases of (4) is:

y1 = ψ1,

L yi = ψi, i = 2, · · · ,n − 1, (15)

(L 2 −L
n∑

i=1

ci)yn = ψn,

where the column ψ̄ = [ψ1, · · · , ψn]T is determined by ψ̄ = R(L )φ̄.

Proof. To make the proof easier to follow, we proceed in three steps:
First step: The required step is assigning the matrix polynomial (5) to the system (1) in special cases of

(4). So, the system can be written as P(L )x̄ = φ̄.
Second step: Following Lemma 4.1, we aim to find the reduced system of (1). The left-hand side of the

equation (14) shows the necessity of the Smith matrix which is given in Part II of Theorems 3.1 and 3.2. In
fact, the matrix polynomial Γ(L ) establishes the operators who act on the vector ȳ. Making the right-hand
side of (15) needs ψ̄ to be calculated.

Third step: Take into account that ψ̄ = R(L )φ̄, and consider the matrix polynomials Ř and R̂ presented
in Part I of Theorems 3.1 and 3.2. Now, direct computation leads to the following ¯̌ψ and ¯̂ψ vectors
corresponding to the referred special cases:

ψ̌1 =
−1
c2
φ1,

ψ̌2 = −φ1 + φn,

ψ̌i =

n∑
j=n−i+2

λi,n− jφ j, i = 3, · · · ,n − 1,

ψ̌n = ηnφ1 + c2φ2 +

n∑
j=3

θ j,nφ j,
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and 

ψ̂1 =
−1
c1
φ1,

ψ̂i = αi,nφ1 +

n∑
j=n−i+2

λi,n− jφ j, i = 2, · · · ,n − 1,

ψ̂n = γnφ1 + c1φ2 +

n∑
j=3

β j,nφ j.

Actually, the vector ψ̄ completes the reduced form of the system in (14).

Note that the system (15) consists of a class of independent equations, and from an algorithmic point of
view, it is desirable to search for methods to solve independent equations of type (15) with one unknown
in each equation, rather than systems like (1).

The rest of the section deals with particular instances where the system (1) can be explicitly reduced to
yield interesting class of independent equations. The obtained results are illustrated for the special case of
n = 3. This example likely plays the role of clarifying our presented matrix polynomial based method.

Suppose the linear system of operator equations (1) for n = 3, and its assigned matrix polynomial
P(L ) = L I − C. The Smith form of P̌(L ) and P̂(L ), is as follows:

Γ(L ) = Dia1[1,L ,L 2 −L
3∑

j=1

c j], (16)

and Ř and R̂ corresponding to Č and Ĉ, respectively:

Ř(L ) =



−1
c2

0 0

−1 0 1

c1 + 2(L −
3∑

j=1

c j) c2 c3 − (L −
3∑

j=1

c j)


,

and

R̂(L ) =



−1
c1

0 0
−c3
c1

0 1

c1 + (L −
3∑

j=1

c j)(1 +
c3

c1
) c1 c1 − (L −

3∑
j=1

c j)


.

Following the proposed method leads to the computation of the reduced system (14). Since Γ in (16) is
same for Č and Ĉ, the left-hand side of the reduced system remains as (15) for n = 3, and the right-hand
side vector ψ̄ differs in two cases, as follows:

ψ̌ =
[−1

c2
φ1,−φ1 + φ3,

(
c1 + 2(L −

3∑
j=1

c j)
)
φ1 + c2φ2 +

(
c3 − (L −

3∑
j=1

c j)
)
φ3

]T
,

ψ̂ =
[−1

c1
φ1,
−c3

c1
φ1 + φ3,

(
c1 + (L −

3∑
j=1

c j)(1 +
c3

c1
)
)
φ1 + c1φ2 +

(
c1 − (L −

3∑
j=1

c j)
)
φ3

]T
.

Actually, this reduced system consists of three independent equations, supposed preferable to the main
system. It is worthy to mention that these results can be easily deduced from Theorem 4.1 for n = 3.
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5. Conclusion

In this paper, the properties of matrix polynomial theory for the linear system of operator equations
have been applied. The interesting idea of this work is assigning a matrix polynomial to the systems of
operator equations which appear in almost every branch of science and engineering. Moreover, Smith
factorization of the referred matrix polynomial transforms the system to a class of independent equations.
The proposed approach could be of interest in the theory of general systems of operator equations such as
systems of differential and integral equations which will be the focus of our future work.
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