Full text available at: http://dx.doi.org/10.1561/2200000070

A Tutorial on Thompson
Sampling



Full text available at: http://dx.doi.org/10.1561/2200000070

Other titles in Foundations and Trends® in Machine Learning

Non-convex Optimization for Machine Learningy
Prateek Jain and Purushottam Ka

ISBN: 978-1-68083-368-3

Kernel Mean Embedding of Distributions: A Review and Beyond
Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur and
Bernhard Scholkopf

ISBN: 978-1-68083-288-4

Tensor Networks for Dimensionality Reduction and Large-scale
Optimization: Part 1 Low-Rank Tensor Decompositions
Andrzej Cichocki, Anh-Huy Phan, Qibin Zhao, Namgil Lee,
Ivan Oseledets, Masashi Sugiyama and Danilo P. Mandic
ISBN: 978-1-68083-222-8

Tensor Networks for Dimensionality Reduction and Large-scale
Optimization: Part 2 Applications and Future Perspectives
Andrzej Cichocki, Anh-Huy Phan, Qibin Zhao, Namgil Lee,
Ivan Oseledets, Masashi Sugiyama and Danilo P. Mandic
ISBN: 978-1-68083-276-1

Patterns of Scalable Bayesian Inference
Elaine Angelino, Matthew James Johnson and Ryan P. Adams
ISBN: 978-1-68083-218-1

Generalized Low Rank Models
Madeleine Udell, Corinne Horn, Reza Zadeh and Stephen Boyd
ISBN: 978-1-68083-140-5



Full text available at: http://dx.doi.org/10.1561/2200000070

A Tutorial on Thompson Sampling

Daniel J. Russo
Columbia University

Benjamin Van Roy
Stanford University

Abbas Kazerouni
Stanford University

lan Osband
Google DeepMind

Zheng Wen
Adobe Research

now

the essence of knowledge

Boston — Delft



Full text available at: http://dx.doi.org/10.1561/2200000070

Foundations and Trends® in Machine Learning

Published, sold and distributed by:
now Publishers Inc.

PO Box 1024

Hanover, MA 02339

United States

Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.

PO Box 179

2600 AD Delft

The Netherlands

Tel. +31-6-51115274

The preferred citation for this publication is

D. J. Russo, B. Van Roy, A. Kazerouni, I. Osband and Z. Wen. A Tutorial on
Thompson Sampling. Foundations and Trends® in Machine Learning, vol. 11, no. 1,
pp. 1-96, 2018.

ISBN: 978-1-68083-471-0
© 2018 D. J. Russo, B. Van Roy, A. Kazerouni, I. Osband and Z. Wen

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works,
or for resale. In the rest of the world: Permission to photocopy must be obtained from the
copyright owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA;
Tel. +1 781 871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com



Full text available at: http://dx.doi.org/10.1561/2200000070

Foundations and Trends® in Machine Learning
Volume 11, Issue 1, 2018

Editor-in-Chief
Michael Jordan

Editorial Board

University of California, Berkeley

United States

Editors

Peter Bartlett
UC Berkeley

Yoshua Bengio
Université de Montréal

Avrim Blum
CMU

Craig Boutilier
University of Toronto

Stephen Boyd
Stanford University

Carla Brodley
Tufts University

Inderjit Dhillon
Texas at Austin

Jerome Friedman
Stanford University

Kenji Fukumizu
ISM

Zoubin Ghahramani
Cambridge University

David Heckerman
Microsoft Research

Tom Heskes
Radboud University

Geoffrey Hinton
University of Toronto

Aapo Hyvarinen
Helsinki IIT

Leslie Pack Kaelbling
MIT

Michael Kearns
UPenn

Daphne Koller
Stanford University

John Lafferty
University of Chicago
Michael Littman

Brown University

Gabor Lugosi
Pompeu Fabra

David Madigan

Columbia University

Pascal Massart
Université de Paris-Sud

Andrew McCallum
University of
Massachusetts Amherst

Marina Meila

University of Washington

Andrew Moore
CMU

John Platt
Microsoft Research

Luc de Raedt
Albert-Ludwigs-
Universitaet
Freiburg

Christian Robert
Paris-Dauphine

Sunita Sarawagi
IIT Bombay

Robert Schapire
Princeton University

Bernhard Schoelkopf
Maz Planck Institute

Richard Sutton
University of Alberta

Larry Wasserman
CMU

Bin Yu
UC Berkeley



Full text available at: http://dx.doi.org/10.1561/2200000070

Editorial Scope

Topics

Foundations and Trends® in Machine Learning publishes survey and tutorial
articles in the following topics:

e Adaptive control and signal e Inductive logic programming

processing o Kernel methods

Applications o stidies
e Applications and case studies o Markov chain Monte Carlo

Behavioral iti d
e Behavioral, cognitive an o Model choice
neural learning

. . e Nonparametric methods
e Bayesian learning

e Classification and prediction ¢ Online learning

e Clustering e Optimization

e Data mining e Reinforcement learning

e Dimensionality reduction * Relational learning

e Evaluation o Robustness

e Game theoretic learning * Spectral methods

e Graphical models e Statistical learning theory

o Independent component e Variational inference

analysis e Visualization

Information for Librarians

Foundations and Trends® in Machine Learning, 2018, Volume 11, 6
issues. ISSN paper version 1935-8237. ISSN online version 1935-8245.
Also available as a combined paper and online subscription.



Full text available at: http://dx.doi.org/10.1561/2200000070

Contents

Introduction

Greedy Decisions

Thompson Sampling for the Bernoulli Bandit
General Thompson Sampling

Approximations

5.1 Gibbs Sampling . . . ... ...
5.2 Laplace Approximation . . . . .. ... ... ... ... .
5.3 Langevin Monte Carlo . . . . . .. ... ... .......
5.4 Bootstrapping . . . . . . ..o
55 Sanity Checks . . . . . .. ...
5.6 Incremental Implementation . . . . . . ... ... ... ..

Practical Modeling Considerations

6.1 Prior Distribution Specification . . . . . . ... ... ...
6.2 Constraints, Context, and Caution . . . . . . . .. . ...
6.3 Nonstationary Systems . . . . .. ... ... ... ...
6.4 Concurrence . . . . . .. ...

13

18

26
28
29
31
33
35
36



Full text available at: http://dx.doi.org/10.1561/2200000070

7 Further Examples

7.1 News Article Recommendation . . . . . .. ... .. ...

7.2 Product Assortment . .

7.3 Cascading Recommendations . . . . . . ... ... ....
7.4 Active Learning with Neural Networks . . . . . . . .. ..
7.5 Reinforcement Learning in Markov Decision Processes . . .

8 Why it Works, When it Fails, and Alternative Approaches
8.1 Why Thompson Sampling Works . . . . ... ... ....
8.2 Limitations of Thompson Sampling . . . . . ... ... ..

8.3 Alternative Approaches
Acknowledgements

References

48
48
51
54
58
62

67
79
86

88

89



Full text available at: http://dx.doi.org/10.1561/2200000070

A Tutorial on Thompson Sampling

Daniel J. Russo!, Benjamin Van Roy?, Abbas Kazerouni?, Ian

Osband? and Zheng Wen*

1

L Columbia University
2 Stanford University
3Google DeepMind

4 Adobe Research

ABSTRACT

Thompson sampling is an algorithm for online decision prob-
lems where actions are taken sequentially in a manner that
must balance between exploiting what is known to maxi-
mize immediate performance and investing to accumulate
new information that may improve future performance. The
algorithm addresses a broad range of problems in a compu-
tationally efficient manner and is therefore enjoying wide
use. This tutorial covers the algorithm and its application,
illustrating concepts through a range of examples, including
Bernoulli bandit problems, shortest path problems, product
recommendation, assortment, active learning with neural
networks, and reinforcement learning in Markov decision
processes. Most of these problems involve complex informa-
tion structures, where information revealed by taking an
action informs beliefs about other actions. We will also dis-
cuss when and why Thompson sampling is or is not effective
and relations to alternative algorithms.

Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband and Zheng
Wen (2018), “A Tutorial on Thompson Sampling”, Foundations and Trends® in
Machine Learning: Vol. 11, No. 1, pp 1-96. DOI: 10.1561,/2200000070.
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1

Introduction

The multi-armed bandit problem has been the subject of decades of
intense study in statistics, operations research, electrical engineering,
computer science, and economics. A “one-armed bandit” is a somewhat
antiquated term for a slot machine, which tends to “rob” players of their
money. The colorful name for our problem comes from a motivating
story in which a gambler enters a casino and sits down at a slot machine
with multiple levers, or arms, that can be pulled. When pulled, an arm
produces a random payout drawn independently of the past. Because
the distribution of payouts corresponding to each arm is not listed, the
player can learn it only by experimenting. As the gambler learns about
the arms’ payouts, she faces a dilemma: in the immediate future she
expects to earn more by ezploiting arms that yielded high payouts in
the past, but by continuing to explore alternative arms she may learn
how to earn higher payouts in the future. Can she develop a sequential
strategy for pulling arms that balances this tradeoff and maximizes the
cumulative payout earned? The following Bernoulli bandit problem is a
canonical example.

Example 1.1. (Bernoulli Bandit) Suppose there are K actions, and
when played, any action yields either a success or a failure. Action
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k € {1,..., K} produces a success with probability 6, € [0,1]. The
success probabilities (01, ..,0x) are unknown to the agent, but are
fixed over time, and therefore can be learned by experimentation. The
objective, roughly speaking, is to maximize the cumulative number of
successes over T’ periods, where T is relatively large compared to the
number of arms K.

The “arms” in this problem might represent different banner ads
that can be displayed on a website. Users arriving at the site are shown
versions of the website with different banner ads. A success is associated
either with a click on the ad, or with a conversion (a sale of the item
being advertised). The parameters 0}, represent either the click-through-
rate or conversion-rate among the population of users who frequent the
site. The website hopes to balance exploration and exploitation in order
to maximize the total number of successes.

A naive approach to this problem involves allocating some fixed
fraction of time periods to exploration and in each such period sampling
an arm uniformly at random, while aiming to select successful actions
in other time periods. We will observe that such an approach can be
quite wasteful even for the simple Bernoulli bandit problem described
above and can fail completely for more complicated problems.

Problems like the Bernoulli bandit described above have been studied
in the decision sciences since the second world war, as they crystallize the
fundamental trade-off between exploration and exploitation in sequential
decision making. But the information revolution has created significant
new opportunities and challenges, which have spurred a particularly
intense interest in this problem in recent years. To understand this,
let us contrast the Internet advertising example given above with the
problem of choosing a banner ad to display on a highway. A physical
banner ad might be changed only once every few months, and once
posted will be seen by every individual who drives on the road. There is
value to experimentation, but data is limited, and the cost of of trying
a potentially ineffective ad is enormous. Online, a different banner ad
can be shown to each individual out of a large pool of users, and data
from each such interaction is stored. Small-scale experiments are now a
core tool at most leading Internet companies.
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Our interest in this problem is motivated by this broad phenomenon.
Machine learning is increasingly used to make rapid data-driven deci-
sions. While standard algorithms in supervised machine learning learn
passively from historical data, these systems often drive the generation
of their own training data through interacting with users. An online
recommendation system, for example, uses historical data to optimize
current recommendations, but the outcomes of these recommendations
are then fed back into the system and used to improve future recom-
mendations. As a result, there is enormous potential benefit in the
design of algorithms that not only learn from past data, but also explore
systemically to generate useful data that improves future performance.
There are significant challenges in extending algorithms designed to
address Example 1.1 to treat more realistic and complicated decision
problems. To understand some of these challenges, consider the problem
of learning by experimentation to solve a shortest path problem.

Example 1.2. (Online Shortest Path) An agent commutes from home
to work every morning. She would like to commute along the path that
requires the least average travel time, but she is uncertain of the travel
time along different routes. How can she learn efficiently and minimize
the total travel time over a large number of trips?

Figure 1.1: Shortest path problem.
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We can formalize this as a shortest path problem on a graph
G = (V,E) with vertices V. = {1,...,N} and edges E. An example
is illustrated in Figure 1.1. Vertex 1 is the source (home) and vertex N
is the destination (work). Each vertex can be thought of as an intersec-
tion, and for two vertices i,j € V, an edge (i,j) € E is present if there
is a direct road connecting the two intersections. Suppose that traveling
along an edge e € E requires time 6. on average. If these parameters
were known, the agent would select a path (ey, .., e,), consisting of a
sequence of adjacent edges connecting vertices 1 and N, such that the
expected total time 6, +...46,,, is minimized. Instead, she chooses paths
in a sequence of periods. In period ¢, the realized time y, . to traverse
edge e is drawn independently from a distribution with mean .. The
agent sequentially chooses a path x;, observes the realized travel time
(Yt,e)ece, along each edge in the path, and incurs cost ¢; = > ey, Yte
equal to the total travel time. By exploring intelligently, she hopes to
minimize cumulative travel time 3 2, ¢; over a large number of periods
T.

This problem is conceptually similar to the Bernoulli bandit in
Example 1.1, but here the number of actions is the number of paths
in the graph, which generally scales exponentially in the number of
edges. This raises substantial challenges. For moderate sized graphs,
trying each possible path would require a prohibitive number of samples,
and algorithms that require enumerating and searching through the
set of all paths to reach a decision will be computationally intractable.
An efficient approach therefore needs to leverage the statistical and
computational structure of problem.

In this model, the agent observes the travel time along each edge
traversed in a given period. Other feedback models are also natural: the
agent might start a timer as she leaves home and checks it once she
arrives, effectively only tracking the total travel time of the chosen path.
This is closer to the Bernoulli bandit model, where only the realized
reward (or cost) of the chosen arm was observed. We have also taken the
random edge-delays y; . to be independent, conditioned on 6.. A more
realistic model might treat these as correlated random variables, reflect-
ing that neighboring roads are likely to be congested at the same time.
Rather than design a specialized algorithm for each possible statistical
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model, we seek a general approach to exploration that accommodates
flexible modeling and works for a broad array of problems. We will see
that Thompson sampling accommodates such flexible modeling, and
offers an elegant and efficient approach to exploration in a wide range
of structured decision problems, including the shortest path problem
described here.

Thompson sampling — also known as posterior sampling and probabil-
ity matching — was first proposed in 1933 (Thompson, 1933; Thompson,
1935) for allocating experimental effort in two-armed bandit problems
arising in clinical trials. The algorithm was largely ignored in the
academic literature until recently, although it was independently re-
discovered several times in the interim (Wyatt, 1997; Strens, 2000) as
an effective heuristic. Now, more than eight decades after it was intro-
duced, Thompson sampling has seen a surge of interest among industry
practitioners and academics. This was spurred partly by two influential
articles that displayed the algorithm’s strong empirical performance
(Chapelle and Li, 2011; Scott, 2010). In the subsequent five years, the
literature on Thompson sampling has grown rapidly. Adaptations of
Thompson sampling have now been successfully applied in a wide vari-
ety of domains, including revenue management (Ferreira et al., 2015),
marketing (Schwartz et al., 2017), web site optimization (Hill et al.,
2017), Monte Carlo tree search (Bai et al., 2013), A/B testing (Graepel
et al., 2010), Internet advertising (Graepel et al., 2010; Agarwal, 2013;
Agarwal et al., 2014), recommendation systems (Kawale et al., 2015),
hyperparameter tuning (Kandasamy et al., 2018), and arcade games
(Osband et al., 2016a); and have been used at several companies, includ-
ing Adobe, Amazon (Hill et al., 2017), Facebook, Google (Scott, 2010;
Scott, 2015), LinkedIn (Agarwal, 2013; Agarwal et al., 2014), Microsoft
(Graepel et al., 2010), Netflix, and Twitter.

The objective of this tutorial is to explain when, why, and how to
apply Thompson sampling. A range of examples are used to demon-
strate how the algorithm can be used to solve a variety of problems and
provide clear insight into why it works and when it offers substantial
benefit over naive alternatives. The tutorial also provides guidance on
approximations to Thompson sampling that can simplify computation
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as well as practical considerations like prior distribution specification,
safety constraints and nonstationarity. Accompanying this tutorial we
also release a Python package! that reproduces all experiments and
figures presented. This resource is valuable not only for reproducible
research, but also as a reference implementation that may help prac-
tioners build intuition for how to practically implement some of the
ideas and algorithms we discuss in this tutorial. A concluding section
discusses theoretical results that aim to develop an understanding of
why Thompson sampling works, highlights settings where Thompson
sampling performs poorly, and discusses alternative approaches studied
in recent literature. As a baseline and backdrop for our discussion of
Thompson sampling, we begin with an alternative approach that does
not actively explore.

'Python code and documentation is available at https://github.com/iosband/
ts tutorial.


https://github.com/iosband/ts_tutorial
https://github.com/iosband/ts_tutorial
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