
Journal of Physics: Conference Series

A Parallel Algorithm for Connected Component
Labelling of Gray-scale Images on Homogeneous
Multicore Architectures

To cite this article: Mehdi Niknam et al 2010 J. Phys.: Conf. Ser. 256 012010

View the article online for updates and enhancements.

Related content
Bioinformatics algorithm based on a
parallel implementation of a machine
learning approach using transducers
Abiel Roche-Lima and Ruppa K
Thulasiram

-

Plain Polynomial Arithmetic on GPU
Sardar Anisul Haque and Marc Moreno
Maza

-

Mapping the MPM maximum flow
algorithm on GPUs
Steven Solomon and Parimala
Thulasiraman

-

Recent citations
Parallelization of Connected-Component
Labeling on TILE64 Many-Core Platform
Chien-Wei Chen et al

-

An Algorithm for Connected-Component
Labeling, Hole Labeling and Euler Number
Computing
Li-Feng He et al

-

This content was downloaded from IP address 185.141.168.50 on 13/10/2019 at 08:19

https://doi.org/10.1088/1742-6596/256/1/012010
http://iopscience.iop.org/article/10.1088/1742-6596/341/1/012034
http://iopscience.iop.org/article/10.1088/1742-6596/341/1/012034
http://iopscience.iop.org/article/10.1088/1742-6596/341/1/012034
http://iopscience.iop.org/article/10.1088/1742-6596/385/1/012014
http://iopscience.iop.org/article/10.1088/1742-6596/256/1/012006
http://iopscience.iop.org/article/10.1088/1742-6596/256/1/012006
http://dx.doi.org/10.1007/s11265-013-0780-0
http://dx.doi.org/10.1007/s11265-013-0780-0
http://dx.doi.org/10.1007/s11390-013-1348-y
http://dx.doi.org/10.1007/s11390-013-1348-y
http://dx.doi.org/10.1007/s11390-013-1348-y
http://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsucC8KTKG5eFzaCjryeOcfuhCs9s-mk1WrprT2lC2H45ISZUEADa4hD7LMbXMB4G8br460zl7KhG8QEChLpMFVDzSO51DBtxpXayawf9w00Ye9v8VIy8YBwOCah6_8J6TAT2LcOeWD7fnwUr2WsrQUoBGdWUTWF_PT9dZAxD2-_4-ZHR_RH_e5J8KRqGjpNc_gEUPTh7OPPl7LH11q7xsKWxZkNh7_KwZ5_FPCLem6MVqMGrhjG&sig=Cg0ArKJSzLXiXPg9m0IX&adurl=http://iopscience.org/books

A Parallel Algorithm for Connected Component Labelling of

Gray-scale Images on Homogeneous Multicore Architectures

Mehdi Niknam
1,2

, Parimala Thulasiraman
1,2

, Sergio Camorlinga
2,1

1
Department of Computer Science - University of Manitoba,

2
Telecommunication Research Labs

mhniknam@cs.umanitoba.ca, thulasir@cs.umanitoba.ca, scamorlinga@trlabs.ca

Abstract. Connected component labelling is an essential step in image processing. We provide a parallel

version of Suzuki’s sequential connected component algorithm in order to speed up the labelling process.

Also, we modify the algorithm to enable labelling gray-scale images. Due to the data dependencies in the

algorithm we used a method similar to pipeline to exploit parallelism. The parallel algorithm method

achieved a speedup of 2.5 for image size of 256 X 256 pixels using 4 processing threads.

1. Introduction

Computer-aided diagnosis (CAD) systems are examples of diagnostics, screening and detection tools

for medical purposes. CAD provides clinicians (e.g. radiologists) a computerized analysis of medical

images as a ‘second opinion’ in detecting lesions, assessing extent and progression of disease, and

supporting diagnostic decisions among other things. CAD systems utilize image processing

techniques in order to detect and diagnose different diseases from medical images.

The pre-processing techniques such as image filtering and image registration play an important

role in enhancing the accuracy of image analysis and later steps in CAD systems. Connected

component labeling is a useful tool used in pre-processing stages as well as in image analysis and in

post processing stages [1]. In connected component labeling of an image, every set of connected

pixels having same gray-scale values are assigned the same unique region label. This region later will

be used to identify the suspicious lesions. The fact that the connected component labeling is a

fundamental module in medical image processing, optimizing the existing algorithm will result in an

improvement of many medical diagnoses and procedures [2, 3, 4].

Medical applications are computationally and data intensive problems. With the recent

advancement in multicore architectures, these problems are gaining insight from a whole new

perspective [5]. The focus of this paper is to parallelize the sequential connected component labeling

algorithm presented by Suzuki et al. [6] on a homogenous multicore architecture in order to study the

speedup of the parallel algorithm.

We use OpenMP to parallelize the algorithm. We also apply a similar method mentioned in [1] to

enhance Suzuki’s algorithm to label the gray-scale images since the original algorithm labels only

binary images and the medical images are normally gray-scale. Section 2 provides a brief discussion

regarding the existing connected component labeling algorithms. Section 3 presents Suzuki’s

algorithm in detail. Our parallel algorithm is explained in the section 4. Section 5 outlines the

experimental framework we used and the section 6 provide a discussion of the experimental results.

Finally, section 7 describes conclusion and future work.

High Performance Computing Symposium (HPCS2010) IOP Publishing
Journal of Physics: Conference Series 256 (2010) 012010 doi:10.1088/1742-6596/256/1/012010

c© 2010 IOP Publishing Ltd

1

2. Background and Related Work

Suzuki et al. [6] classified the connected component labeling methods into 4 different categories: A)

Algorithms that repeat passes through an image in forward and backward directions alternately to

propagate the label equivalences until no labels change. B) Algorithms using two passes in a way that

they assign provisional labels to the connected components and store the label equivalences in an

array. Then they resolve the label equivalences using a search algorithm such as union-find algorithm

[7] and store the resolved result in a one-dimensional table. In the second pass, they replace the

provisional labels with the smallest equivalent label. C) Algorithms that represent the image using

hierarchical tree structures and resolve the label equivalences using union-find algorithm. D) And

parallel algorithms developed for specific parallel architectures such as mesh and hypercube parallel

processors.

Suzuki et al. [6] introduce an algorithm which optimizes the algorithms in category A. Suzuki’s

algorithm promises a linear time complexity. Suzuki et al. show that maximum of four scans is

sufficient for the images with complex geometrical shapes. Wu et al. [8, 9] provide an optimization on

Suzuki algorithm that reduces the number of neighboring pixels needed to be examined during the

scans. He et al. [10], present a similar algorithm which scans the whole image once and then resolves

the label equivalences using recorded run data.

We chose the Suzuki algorithm to parallelize due to its linear time complexity. There are several

sequential algorithms to enhance the performance of the Suzuki algorithm; however, due to our best

knowledge there is no parallel version for this algorithm. We decided to investigate the performance

improvement of the parallel version of the algorithm.

3. Suzuki Algorithm
The Suzuki algorithm scans through the image in forward and backward directions using masks shown

in Figure 1, in order to assign a provisional label to each pixel. Also, it stores the label equivalences in

an additional one dimensional array called label connection table. The provisional labels propagate

through the image as well as the label connection table that reduces the number of scans needed to

complete the labeling.

Figure 1- a) Forward scan mask b) backward scan mask c) 8-connected neighborhood

Suppose that a binary image b(x,y) consists of pixel values F
O
(indicating objects), and F

B

(indicating the background); and a provisional label m is initialized to 1. In the first scan, the Suzuki

algorithm assigns a provisional label to each pixel at position “e” according to the following equation:

High Performance Computing Symposium (HPCS2010) IOP Publishing
Journal of Physics: Conference Series 256 (2010) 012010 doi:10.1088/1742-6596/256/1/012010

2

Where g(x,y) stores the provisional labels, T[m] is the label connection table, (m=m+1) indicates

an increment of m, min(.) an operator calculating the minimum value, and M
S
the region of the mask

except the object pixel, i.e. b(x-1,y-1), b(x,y-1), b(x+1,y-1), and b(x-1,y).

Also, the label connection table T[m] is updated at the same time as g(x,y) according to the

following equation:

In the next scans, the forward and backward scans are performed alternately and the tables are

updated using the following equations:

The forward and backward scans will be performed repeatedly while the following condition is not

satisfied:

The end result is the image with the final label for each pixel. Figure 2 shows an example of

labeling according to the Suzuki algorithm.

a) A binary image to be scanned

b) After first scan c) After second scan

Figure 2- Example of labeling using Suzuki algorithm

High Performance Computing Symposium (HPCS2010) IOP Publishing
Journal of Physics: Conference Series 256 (2010) 012010 doi:10.1088/1742-6596/256/1/012010

3

The following is a pseudo code of the Suzuki algorithm:

4. Solution Strategy
In this section we describe our proposed method to parallelize the Suzuki algorithm and its

implementation in OpenMP.

4.1. Proposed Method

The Suzuki algorithm is sequential in nature. That is, the result of the previous iteration will be used

for the next iteration. Two data structures storing the provisional label and the label connection table

(see section 3) are updated after labeling a pixel and their updated versions are used to label the next

pixel. Due to these data dependencies, it is not possible to perform the labeling using multiple threads

without specifying the order of execution. We used a method similar to pipeline in order to exploit

parallelism. The following is a detail description of the proposed method to parallelize the algorithm.

a) Th1 labeling its portion and Th2 is waiting b) Th1 and Th2 are labeling concurrently

Figure 3- Example of the algorithm with 2 threads

High Performance Computing Symposium (HPCS2010) IOP Publishing
Journal of Physics: Conference Series 256 (2010) 012010 doi:10.1088/1742-6596/256/1/012010

4

As indicated in the pseudo code, the algorithm examines each pixel’s neighbors and assigns a

provisional label to it accordingly. In our algorithm, the image pixels are distributed between threads

row-wise. Assuming there are 2 threads (Th1 and Th2) and the image has 128 rows and 128 columns.

The first 64 pixels in the first row will be labeled by Th1 and the next 64 pixels by Th2. However, Th2

cannot start labeling in the same row as Th1, until Th1 is done with labeling its portion due to the

sequential nature of the Suzuki algorithm. The Th2 can start labeling when Th1 is done, also Th1 can

start labeling the first 64 pixels of the second row at the same time. After Th1 is done with labeling the

first portion of the second row, Th2 can label its portion of the second row, and so forth. With this

method, we maintain the order of execution of the algorithm as well as exploiting parallelism.

In order to synchronize the thread in the manner mentioned above, we utilized a two dimensional

array of size: “number of thread” by “number of rows” called “condition”. The thread cannot label its

portion of a row and need to wait, if the corresponding value in the array is 0. As soon as Th1 finished

the labeling of its portion, it will change the value for Th2 in the condition array to 1. Then Th2 labels

its portion and Th1 labels its portion in the next row. Figure 3 shows the image and the condition array

for two iterations.

4.2. OpenMP Implementation

As can be seen in the iterations example in section 4.1, after the first iteration Th1 and Th2 label their

portions concurrently. However, there is some overhead for the synchronization. Each scan in the

sequential algorithm includes two loops. In order to parallelize the scan portion of the algorithm in

OpenMP as described in the example, we can add pragma omp parallel for on the inside loop as

shown below:

In the above code, the data will be distributed properly; however the overhead is very high. The

number of forking and joining in this code is equal to the number of columns in the image which

causes high overhead. In order to deal with this overhead, we use pragma omp parallel on the top of

the first loop. The cost for the pragma omp parallel is only one time fork and joins. We also provide a

suitable code to perform the data distribution in the program. Following is the parallel pseudo code

that is implemented for the scan portions of the algorithm:

In addition, we used pragma omp critical in order to synchronize the access to the label connection

table (T[m]). The pragma omp critical provides synchronization in a way that only one thread can

update the T[m] at a time. There are three scan loops in the Suzuki algorithm as shown in section 3.

All three scan loops are replaced with above parallel code. We made some modifications to the Suzuki

algorithm to enable labeling of gray-scale images. To distinguish between region of interest (ROI) and

High Performance Computing Symposium (HPCS2010) IOP Publishing
Journal of Physics: Conference Series 256 (2010) 012010 doi:10.1088/1742-6596/256/1/012010

5

background in the images we defined a threshold value. We also modified the algorithm to compare

gray values instead of binary values.

5. Experiment
We performed a set of experiments to measure the speedup of our proposed parallel version of

Suzuki’s algorithm. We used 30 gray-scale images in 3 sizes: 128 X 128, 256 X 256, and 512 X 512

pixels from University of Massachusetts Vision Image Archive [11]. The images were labeled using

the sequential and parallel algorithm. We examine the sequential algorithm against parallel version

using four different numbers of threads: 2, 4,8,16.

The algorithms were implemented in C and OpenMP. The algorithms were tested on one of the five

computing nodes of a cluster called helium. The helium cluster has one head node (Sun Fire X4200)

and five computing nodes. Each computing node is a Sun Fire X4600 machine which has eight Dual-

Core (16 Cores) AMD Opteron 885 2.6 GHZ.

6. Results
The Figure 4 shows the speedup of the parallel version of the algorithm. For the small size images

(128 X 128), the sequential version is faster than the parallel version. The reason of no speedup for

small size images is due to the overhead caused by synchronization of the threads.

Figure 4- The speedup for different image sizes and different numbers of threads

For the medium size images (256 X 256), the algorithm achieved the best speedup in comparison to

other image sizes. The best speedup of 2.5 belongs to the 4 threads while labeling the medium size

images. However, in medium size images using 2 and 16 threads the speed up is not significant. While

using 16 threads the size of data allocated to each thread reduces. Consequently, the overhead is higher

than the amount of exploited parallelism.

For large size images (512 X 512), the speedup is almost similar in all different number of threads.

As can be seen there is a trade-off between the data size and the number of threads. The

synchronization cost will not be covered by parallelism exploitation in small size images. Similarly,

the synchronization overhead is high when using too many threads since the data size allocated to each

thread reduces.

According to the results, the overhead of our approach is not decreased linearly with the problem

size. One possible reason could be an additional overhead caused by cache miss for image size of 512

X 512 since the image cannot be transferred completely to the cache. The other possible reason could

be an extra overhead caused by Non-Uniform Memory Access (NUMA) effect related to the specific

architecture used to test the algorithm.

High Performance Computing Symposium (HPCS2010) IOP Publishing
Journal of Physics: Conference Series 256 (2010) 012010 doi:10.1088/1742-6596/256/1/012010

6

Considering the sequential nature of the Suzuki algorithm, the speedup achieved for medium size

(256 X 256) is reasonable and it can be used to label specific medical images. However, to achieve a

higher performance as a future work we can investigate using a method which divides the image to

number of processes and run the Suzuki algorithm locally, then provide a way to merge the portions in

order to achieve a consistent labeling for the image.

7. Conclusion
Connected component labeling is a fundamental module in image processing. We provide a parallel

version of Suzuki’s sequential connected component algorithm in order to speed up the labeling

process. We also modified the algorithm to enable labeling of gray-scale images. Due to the data

dependencies in the algorithm, we used a method similar to pipeline in order to exploit parallelism.

The parallel algorithm achieved the best speedup when labeling medium sized images. Explicitly, the

speedup of 2.5 is achieved while labeling image size of 256 X 256 using 4 threads.

As a future work, we can investigate a method to provide a parallel connected component

algorithm which divides the image between several threads and each thread utilizes the Suzuki

algorithm enhancement ideas proposed in this paper for its local data. Then we integrate the local

results to provide a consistent label for the whole image. Also, examining a connected component

algorithm on other parallel architectures such as Graphics Processing Unit (GPU) can be performed.

 References
[1] R. D. Yapa, K. Harada, “ Connected Component Labeling Algorithms for Gray-Scale Images

and Evaluation of Performance using Digital Mammograms,” IJCSNS International Journal

of Computer Science and Network Security, 8(6), pp. 33–41, 2008.

[2] J. Freixenet, X. Mu˜noz, D. Raba, M. Marti, and X. Cuf´ı, “Yet another survey on image

segmentation: Region and boundary information integration,” in Proceedings of the

European Conference on Computer Vision (ECCV 2002), pp. 408–422, 2002.

[3] B. van Ginneken, B. M. ter Haar Romeny, and M. A. Viegever, “Computer-aided diagnosis in

chest radiography: A survey,” IEEE Transcations on Medical Imaging 20(12), pp. 1228–

1241, 2001.

[4] T. W. Nattkemper, “Automatic segmentation of digital micrographs: a survey,” in Proceedings

of MEDINFO 2004, San Francisco, Americal Medical Informatics Association, 2004.

[5] M. Knaup, S. Steckmann, O. Bockenbac and M. Kachelriess, “ Tomographic Image

Reconstruction using the Cell Broadband Engine (CBE) General Purpose Hardware”,

Proceedings Electronic Imaging, Computational Imaging V, SPIE Vol 6498, 64980P, pp. 1-

10, January 2007.

[6] K. Suzuki, I. Horiba, and N. Sugie, “Linear-time connected-component labeling based on

sequential local operations,” Comput. Vis. Image Underst. 89(1), pp. 1–23, 2003.

[7] C. Fiorio, J. Gustedt, “Two linear time union-find sterategies for image processing,” Theoretical

Computer Science, 154(2), pp. 165–181, Feb. 1996.

[8] K. Wu, E. Otoo, and A. Shoshani, Optimizing Connected Component Labeling Algorithms, In

Proceedings of SPIE Medical Imaging Conference, pp. 1965-1976, Apr. 2005.

[9] K. Wu, E. Otoo, and K Suzuki.: Optimizing two-pass connected-component labelling

algorithms. Pattern Analysis and Applications 12, pp.117-135, 2009

[10] L. He, Y. Chao, K. Suzuki, T. Nakamura, and H. Itoh: A label-equivalence-based one-scan

labeling algorithm. Journal of Information Processing Society of Japan 50, pp. 1660-1667,

2009.

[11] Computer Vision Research Laboratory at UMass. University of Massachusetts Vision Image

Archive, http://vis-www.cs.umass.edu/~vislib/, Retrieved May 2010.

[12] OpenMP. The OpenMP API Speccification for Parallel Programming, http://openmp.org/wp,

Retrieved May 2010.

[13] OpenMP. OpenMP tutorial, https://computing.llnl.gov/tutorials/openMP/, Retrieved May 2010.

High Performance Computing Symposium (HPCS2010) IOP Publishing
Journal of Physics: Conference Series 256 (2010) 012010 doi:10.1088/1742-6596/256/1/012010

7

