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ABSTRACT
We present cosmological results from the final galaxy clustering data set of the Baryon Oscil-
lation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. Our combined galaxy
sample comprises 1.2 million massive galaxies over an effective area of 9329 deg2 and vol-
ume of 18.7 Gpc3, divided into three partially overlapping redshift slices centred at effective
redshifts 0.38, 0.51, and 0.61. We measure the angular diameter distance DM and Hubble
parameter H from the baryon acoustic oscillation (BAO) method after applying reconstruc-
tion to reduce non-linear effects on the BAO feature. Using the anisotropic clustering of the
pre-reconstruction density field, we measure the product DMH from the Alcock-Paczynski
(AP) effect and the growth of structure, quantified by fσ8(z), from redshift-space distortions
(RSD). We combine individual measurements presented in seven companion papers into a set
of consensus values and likelihoods, obtaining constraints that are tighter and more robust
than those from any one method; in particular, the AP measurement from sub-BAO scales
sharpens constraints from post-reconstruction BAO by breaking degeneracy betweenDM and
H . Combined with Planck 2015 cosmic microwave background measurements, our distance
scale measurements simultaneously imply curvature ΩK = 0.0003 ± 0.0026 and a dark en-
ergy equation of state parameter w = −1.01 ± 0.06, in strong affirmation of the spatially flat
cold dark matter model with a cosmological constant (ΛCDM). Our RSD measurements of
fσ8, at 6 per cent precision, are similarly consistent with this model. When combined with
supernova Ia data, we find H0 = 67.3 ± 1.0 km s−1 Mpc−1 even for our most general dark
energy model, in tension with some direct measurements. Adding extra relativistic species as
a degree of freedom loosens the constraint only slightly, to H0 = 67.8 ± 1.2 km s−1 Mpc−1.
Assuming flat ΛCDM we find Ωm = 0.310 ± 0.005 and H0 = 67.6 ± 0.5 km s−1 Mpc−1,
and we find a 95% upper limit of 0.16 eV/c2 on the neutrino mass sum.
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1 INTRODUCTION

Observations and theoretical studies over the past four decades
have led to the emergence of a standard cosmological model,
ΛCDM, based on a spatially flat universe, cold dark matter, a cos-
mological constant that drives accelerated expansion at late times,
and structure seeded by quantum fluctuations during an epoch of
inflation at very early times. The goals of “precision cosmology”
are to test the underlying assumptions of this model and to mea-
sure its parameters with sufficient precision to yield new physi-
cal insights, such as the mass scale of neutrinos, the presence of
unknown relativistic species, possible small departures from flat-
ness, and the physics of inflation or alternative scenarios of the
early universe. Observations on galactic and sub-galactic scales can
test the hypothesis that dark matter is weakly interacting and cold
(in the sense that its primordial velocity dispersion was too small
to affect structure formation). The biggest question of contempo-
rary cosmology is the origin of cosmic acceleration: does it arise
from a constant vacuum energy as assumed in ΛCDM, or from an-
other form of dark energy that varies in time and space, or from
a breakdown of General Relativity (GR) on cosmological scales?
This question can be addressed by precisely measuring the cosmic
expansion history over a wide span of redshift and by comparing
measurements of the growth of matter clustering to the predictions
of ΛCDM+GR.

This paper presents cosmological results from the final galaxy
clustering data set of the Baryon Oscillation Spectroscopic Survey
(BOSS; Dawson et al. 2013), conducted as part of the Sloan Digi-
tal Sky Survey III (SDSS-III; Eisenstein et al. 2011). As the name
suggests, the defining goal of BOSS is to measure the cosmic ex-
pansion history by means of baryon acoustic oscillations (BAO),
which imprint a characteristic scale detectable in the clustering of
galaxies and of intergalactic Lyα forest absorption. BOSS is the
premier current data set for measurements of large scale galaxy
clustering, which can also be used to constrain cosmological pa-
rameters through the full shape of the galaxy power spectrum and
the anisotropy induced by redshift-space distortions (RSD). As dis-
cussed further below, this paper draws on results from a number
of supporting papers, which present analyses of BAO, RSD, and
full shape constraints using a variety of measurement and mod-
elling techniques and provide the infrastructure to derive statisti-
cal uncertainties and test for systematic effects. Here we synthe-
size these results into “consensus” cosmological constraints from
BOSS galaxy clustering, in combination with a variety of external
data sets. The galaxy data set that underpins these measurements
comes from SDSS Data Release 12 (DR12; Alam et al. 2015a) and
the large scale structure catalogue with the additional information
(masks, completeness, etc.) required for clustering measurements
appears in Reid et al. (2016).

The first direct evidence for cosmic acceleration came from
surveys of Type Ia supernovae (SNe) in the late 1990s (Riess et
al. 1998; Perlmutter et al. 1999). This evidence had immediate
impact in part because studies of cosmic microwave background
(CMB) anisotropy and large scale structure (LSS) already favoured
ΛCDM as an economical explanation for observed cosmic struc-
ture (see, e.g., Efstathiou, Sutherland, & Maddox 1990; Krauss &
Turner 1995; Ostriker & Steinhardt 1995). The case for ΛCDM
sharpened quickly with balloon-based CMB measurements that
found the first acoustic peak at the angular location predicted for
a flat universe (de Bernardis et al. 2000; Hanany et al. 2000; see
Netterfield et al. 1997 for earlier ground-based results pointing in
this direction). Today the web of evidence for cosmic acceleration
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is extremely strong, and nearly all observations remain consistent
with a cosmological constant form of dark energy. CMB measure-
ments from the Wilkinson Microwave Anisotropy Probe (WMAP;
Bennett et al. 2013), ground-based experiments such as the Ata-
cama Cosmology Telescope (Das et al. 2014) and the South Pole
Telescope (George et al. 2015), and, especially, the Planck satel-
lite (Planck Collaboration I 2015) now provide strong constraints
on the cosmic matter and radiation density, the angular diameter
distance to the surface of last scattering, and the shape and am-
plitude of the matter power spectrum at the recombination epoch
zrec ≈ 1090. These measurements also probe lower redshift matter
clustering through gravitational lensing and the integrated Sachs-
Wolfe (ISW; Sachs & Wolfe 1967) effect. Within ΛCDM, CMB
data alone are sufficient to provide tight parameter constraints, but
these weaken considerably when non-zero curvature or more flex-
ible forms of dark energy are allowed (Planck Collaboration XIII.
2015, hereafter Planck2015). Supernova measurements of the ex-
pansion history have improved dramatically thanks to large ground-
based surveys that span the redshift range 0.2 < z < 0.8, im-
proved local calibrator samples, Hubble Space Telescope searches
that extend the Hubble diagram to z ≈ 1.5, and major efforts
by independent groups to place different data sets on a common
scale and to identify and mitigate sources of systematic error (see
Suzuki et al. 2012; Betoule et al. 2014; and references therein).
BAO measurements, now spanning z = 0.1 − 0.8 and z ≈ 2.5,
complement the SN measurements by providing an absolute dis-
tance scale, direct measurement of the expansion rate H(z), and
robustness to systematic errors (see discussion and references be-
low). Direct “distance ladder” measurements of H0 constrain the
present day expansion rate, providing the longest lever arm against
the CMB (Riess et al. 2011, 2016; Freedman et al. 2012). RSD and
weak gravitational lensing measurements provide complementary
probes of structure growth that have somewhat different parame-
ter sensitivity and very different systematics. Consistency of RSD
and weak lensing can also test modified gravity models that predict
different effective potentials governing light-bending and acceler-
ation of non-relativistic tracers. At present, these structure growth
measurements are substantially less precise than expansion history
measurements (∼ 5 − 10% vs. ∼ 1 − 2%), so they serve pri-
marily to test departures from GR and constrain neutrino masses
rather than measure dark energy parameters. This situation is likely
to change in next-generation experiments. Observational probes of
dark energy are reviewed by, e.g., Albrecht et al. (2006), Frieman,
Turner, & Huterer (2008), Blanchard (2010), Astier & Pain (2012),
and more comprehensively by Weinberg et al. (2013). Reviews fo-
cused more on theories of dark energy and modified gravity include
Copeland, Sami, & Tsujikawa (2006), Jain & Khoury (2010), and
Joyce, Lombriser, & Schmidt (2016). Reviews focused on future
observational facilities include LSST Science Collaboration et al.
(2009), Kim et al. (2015), Huterer et al. (2015), and Amendola et
al. (2016).

While acoustic oscillations were already incorporated in early
theoretical calculations of CMB anisotropies (Peebles & Yu 1970;
Sunyaev & Zel’dovich 1970), interest in using the BAO feature as
a “standard ruler” in galaxy clustering grew after the discovery of
cosmic acceleration (Eisenstein, Hu, & Tegmark 1998; Blake &
Glazebrook 2003; Seo & Eisenstein 2003). The physics of BAO
and contemporary methods of BAO analysis are reviewed at length
in Ch. 4 of Weinberg et al. (2013), and details specific to our anal-
yses appear in the supporting papers listed below. In brief, pressure
waves in the pre-recombination universe imprint a characteristic
scale on late-time matter clustering at the radius of the sound hori-

zon,

rd =

∫ ∞
zd

cs(z)

H(z)
dz , (1)

evaluated at the drag epoch zd, shortly after recombination, when
photons and baryons decouple (see Aubourg et al. 2015 for more
precise discussion). This scale appears as a localized peak in the
correlation function or a damped series of oscillations in the power
spectrum. Assuming standard matter and radiation content, the
Planck 2015 measurements of the matter and baryon density de-
termine the sound horizon to 0.2%. An anisotropic BAO analysis
that measures the BAO feature in the line-of-sight and transverse
directions can separately measure H(z) and the comoving angular
diameter distance DM (z), which is related to the physical angu-
lar diameter distance by DM (z) = (1 + z)DA(z) (Padmanabhan
et al. 2008). Adjustments in cosmological parameters or changes
to the pre-recombination energy density (e.g., from extra relativis-
tic species) can alter rd, so BAO measurements really constrain
the combinations DM (z)/rd, H(z)rd. An angle-averaged galaxy
BAO measurement constrains a combination that is approximately

DV (z) =
[
czD2

M (z)/H(z)
]1/3

. (2)

An anisotropic BAO analysis automatically incorporates the so-
called Alcock-Paczynski (1979; AP) test, which uses the require-
ment of statistical isotropy to constrain the parameter combination
H(z)DM (z).

The localized three-dimensional nature of the BAO feature
makes BAO measurements robust to most observational system-
atics (see Ross et al. 2012, 2016), which tend to introduce only
smooth distortions in clustering measurements. Similarly, non-
linear evolution and galaxy bias are expected to produce smooth
rather than localized distortions of clustering. Our BAO analy-
sis methods introduce parametrized templates to marginalize over
smooth distortions of observational or astrophysical origin, and re-
sults are insensitive to details of these templates and to many other
analysis details (Vargas-Magaña et al. 2014, 2016). Non-linear evo-
lution broadens the BAO peak in the correlation function (or damps
high-k oscillations in the power spectrum), and simulations and
perturbation theory calculations indicate that non-linear evolution
and galaxy bias can shift the location of the BAO peak at a level
of 0.2 − 0.5% (Eisenstein et al. 2007b; Padmanabhan & White
2009; Seo et al. 2010; Mehta et al. 2011; Sherwin & Zaldarriaga
2012). Measurements of the BAO scale using samples with consid-
erable differences in galaxy bias that share the same volume have
obtained results consistent with such small shifts (Ross et al. 2014;
Beutler et al. 2016a). A key element of recent BAO analyses is re-
construction, which attempts to reverse non-linear effects so as to
sharpen the BAO peak and thereby restore measurement precision
(Eisenstein et al. 2007; Padmanabhan et al. 2012; Burden, Percival
& Howlett 2015; Schmittfull et al. 2015). Simulation tests and per-
turbation theory calculations show that reconstruction also removes
the small shifts induced by non-linearity and galaxy bias, to a level
of ≈ 0.1% or better (Padmanabhan, White, & Cohn 2009; Noh,
White, & Padmanabhan 2009; Seo et al. 2010; Mehta et al. 2011;
Tassev & Zaldarriaga 2012; White 2015). The combination of pre-
cision, complementarity to SNe, and robustness to systematics has
made BAO a pillar of contemporary cosmology.

Early analyses of the power spectrum of the 2-Degree Field
Galaxy Redshift Survey (2dFGRS; Colless et al. 2003) showed
strong hints of baryonic features (Percival et al. 2001), but the first
clear detections of BAO came in 2005 with analyses of the final
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2dFGRS data set (Cole et al. 2005) and the SDSS DR3 data set
(Eisenstein et al. 2005). These detections were already sufficient to
yield 3 − 4% distance scale constraints. The SDSS measurement
was based on the luminous red galaxy (LRG) sample, constructed
to provide sparse but relatively uniform sampling over a large vol-
ume (Eisenstein et al. 2001). Subsequent milestones in BAO mea-
surement include: isotropic BAO analyses of the final (DR7) SDSS-
I/II LRG and main galaxy redshift surveys (Percival et al. 2007);
detection of BAO in clustering of SDSS galaxies with photomet-
ric redshifts (Padmanabhan et al. 2007); analyses of anisotropic
BAO signals in SDSS-I/II (Okumura et al. 2008; Gaztañaga et al.
2009; Chuang & Wang 2012; Chuang et al. 2013a; Chuang & Wang
2013b); the first BAO measurements at z > 0.5 from the WiggleZ
survey (Blake et al. 2011a); a low redshift (z ≈ 0.1) BAO measure-
ment from the 6-degree Field Galaxy Survey (6dFGS; Beutler et al.
2011); improved measurements from applying reconstruction to the
SDSS LRG survey (Padmanabhan et al. 2012) and main galaxy sur-
vey (MGS; Ross et al. 2015); BAO measurements from the BOSS
DR9 and DR11 galaxy redshift surveys (Anderson et al. 2012,
2014a,b; Tojeiro et al. 2014); and BAO measurements at z ≈ 2.5
in the BOSS Lyα forest using auto-correlations in DR9 (Busca et
al. 2013; Slosar et al. 2013) and both auto-correlations and quasar-
Lyα cross-correlations in DR11 (Font-Ribera et al. 2014; Delubac
et al. 2015). The BOSS DR11 measurements achieve distance scale
precision of 2.0% at z = 0.32, 1.0% at z = 0.57, and ≈ 2% at
z = 2.5 (where the best constrained combination is D0.3

M H−0.7

rather than DV ). Aubourg et al. (2015) present cosmological con-
straints and model tests derived from these measurements in con-
cert with other data, and they provide a high-level discussion of the
interplay between BAO measurements and complementary probes.
Section 9 of this paper updates these constraints and model tests
to our final DR12 galaxy clustering results. The DR12 Lyα forest
BAO measurements are in process and will be reported in future
work (J. Bautista et al., in prep.).

The linear theory description of RSD is three decades old
(Kaiser 1987), but progress on high-precision RSD constraints has
been slow because a variety of non-linear effects influence RSD
signals even out to very large scales (Cole, Fisher, & Weinberg
1994; Scoccimarro 2004; Tinker, Weinberg, & Zheng 2006). RSD
constraints thus require both large survey volumes and analytic or
numerical models for non-linear evolution and galaxy bias. Mile-
stones in large scale RSD analysis include measurements from the
1.2-Jy (Cole, Fisher, & Weinberg 1995) and PSCz (Tadros et al.
1999) IRAS redshift surveys, the Stromlo-APM redshift survey
(Loveday et al. 1996), the 2dFGRS (Peacock et al. 2001; Hawkins
et al. 2003; Percival et al. 2004b), the VVDS (Guzzo et al. 2008),
VIPERS (de la Torre et al. 2013), the SDSS LRG sample (Okumura
et al. 2008; Chuang et al. 2013a; Chuang & Wang 2013b; Oka et al.
2014) and main galaxy redshift survey (Howlett et al. 2015), and
the 6dFGS (Beutler et al. 2012) and WiggleZ (Blake et al. 2012)
surveys. RSD measurements from earlier BOSS data releases, us-
ing a variety of technical approaches, include Reid et al. (2012,
2014); Tojeiro et al. (2012); Chuang et al. (2013a); Samushia et al.
(2013, 2014); Sánchez et al. (2013, 2014); Beutler et al. (2014a);
Gil-Marı́n et al. (2016b); Alam et al. (2015b). Modern RSD analy-
ses usually frame their results in terms of constraints on f(z)σ8(z),
where σ8(z) describes the normalization of the linear theory matter
power spectrum at redshift z (via the rms fluctuation in 8h−1Mpc
spheres) and

f(z) ≡ d lnG

d ln a
(3)

is the logarithmic growth rate of the linear fluctuation amplitude
G(t) with respect to expansion factor a(t) = (1 + z)−1 (see Per-
cival & White 2009; Song & Percival 2009; §7.2 of Weinberg et
al. 2013 and references therein). The papers above adopt a variety
of approaches to RSD measurement and, crucially, to modelling
non-linear effects. There is frequently a trade-off between decreas-
ing statistical errors and increasing theoretical systematics as one
probes to smaller scales. There is also partial degeneracy between
clustering caused by peculiar velocities and the geometric distor-
tion from the AP effect. Analyses that reach to BAO scales, or that
include BAO as an external constraint, can achieve better fσ8 con-
straints because the BAO themselves constrain the AP distortion.
Conversely, AP constraints from anisotropic clustering analysis on
sub-BAO scales can help break the degeneracy between DM (z)
and H(z) in BAO. Thus, the potential gains from combining BAO
analyses with analyses of the full shape of the galaxy power spec-
trum or correlation function are large.

This paper derives cosmological constraints from the com-
bination of BAO-only measurements that incorporate reconstruc-
tion and full shape (FS) measurements of galaxy clustering without
reconstruction. FS measurements do not have the precision gains
available from reconstruction at the BAO scale, and their interpre-
tation relies more heavily on non-linear modelling. However, FS
analyses take advantage of the rich information on cosmological
parameters encoded in the broad band power spectrum, they use
broad band information to improve measurement of the AP effect,
and, most importantly for purposes of this paper, they yield con-
straints on structure growth through RSD. The input measurements
for our analysis are summarized in this paper and detailed in seven
supporting papers (Table 1). The BAO scale is measured using the
anisotropic two-point correlation function in Ross et al. (2016) and
Vargas-Magaña et al. (2016) and using the anisotropic power spec-
trum in Beutler et al. (2016b). The full shape of the anisotropic two-
point correlation function is computed and analysed using multi-
poles in Satpathy et al. (2016) and using µ-wedges in Sánchez et al.
(2016a). The equivalent measurements in Fourier space are made
using power-spectrum multipoles in Beutler et al. (2016c) and µ-
wedges in Grieb et al. (2016). Other key supporting papers are Reid
et al. (2016), who describe the LSS catalogues used for all of these
analyses, Kitaura et al. (2016), who describe the MultiDark-Patchy
mock catalogues used to test analysis methods and derive covari-
ance matrices, Tinker et al. (2016), who present high-resolution
mock catalogues and use them to test the RSD performance of our
FS methods, and Sánchez et al. (2016b), who describe and test our
statistical methodology for combining results from these analyses.
The resulting final consensus likelihoods are publicly available1.

While each of these analyses is individually a major endeav-
our, this multi-faceted approach has two key virtues. First, we ob-
tain results from several groups working semi-independently with a
variety of analysis tools and modelling assumptions, allowing pow-
erful cross checks for errors or for systematic effects that might in-
fluence one method more than another. Second, even though they
are applied to the same data set, these methods extract information
in different ways that are not entirely redundant, even within the
BAO-only or FS subsets. We evaluate the covariance of their re-
sults using mock catalogues, and even though the covariances are
often strong, the combined precision is higher than that of any indi-

1 https://sdss3.org/science/boss_publications.php.
The MCMC chains used to infer cosmological parameters will be made
available after acceptance of the paper.
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Table 1. Supporting papers providing input to this analysis, based on the galaxy correlation function ξ(s) or power spectrum P (k). BAO-only analyses
use post-reconstruction galaxy distributions, while full shape (FS/RSD) analyses use pre-reconstruction distributions. The last four papers provide technical
underpinnings for our analysis.

Ross et al. (2016) BAO, ξ(s) multipoles, observational systematics
Vargas-Magaña et al. (2016) BAO, ξ(s) multipoles, modelling systematics
Beutler et al. (2016b) BAO, P (k) multipoles
Satpathy et al. (2016) FS/RSD, ξ(s) multipoles
Beutler et al. (2016c) FS/RSD, P (k) multipoles
Sánchez et al. (2016a) FS/RSD, ξ(s) µ-wedges
Grieb et al. (2016) FS/RSD, P (k) µ-wedges

Reid et al. (2016) LSS catalogues
Kitaura et al. (2016) MD-Patchy mock catalogues
Tinker et al. (2016) High-resolution mock catalogues, FS/RSD tests
Sánchez et al. (2016b) Combined likelihoods methodology

vidual input (Sánchez et al. 2016b). Even a 10% gain of precision
is equivalent to a 20% increase of data volume, or a full year of
BOSS observations.

In addition to these papers providing direct input to our con-
sensus analysis, a number of other BOSS Collaboration papers in-
vestigate cosmological constraints from DR12 galaxy clustering
using different approaches. Cuesta et al. (2016a) and Gil-Marı́n
et al. (2016a) measure BAO in configuration space and Fourier
space, respectively, using the DR12 LOWZ and CMASS galaxy
samples instead of the optimally binned combined sample (see §2).
Gil-Marı́n et al. (2016b) carry out a Fourier space RSD analysis
on these samples. Slepian et al. (2016a) present a ∼4.5σ detec-
tion of BAO in the 3-point correlation function of BOSS CMASS
galaxies. Slepian et al. (2016b), following a method suggested by
Yoo et al. (2011), use the CMASS 3-point correlation function
to constrain the impact of baryon-dark matter relative velocities
(Tseliakhovich & Hirata 2010) on galaxy clustering, setting a 0.3%
rms limit of a shift of the BAO distance scale from this coupling.
Chuang et al. (2016) use DR12 clustering as a “single-probe” con-
straint on H(z), DM (z), fσ8, and Ωmh

2, adopting only broad
priors in place of external data. Pellejero-Ibañez et al. (2016) add
Planck CMB data to this analysis to derive “double-probe” con-
straints. Wang et al. (2016) and Zhao et al. (2016) extract “to-
mographic” constraints from the BOSS combined sample adopt-
ing redshift-binning that is much finer than used here, in config-
uration space and Fourier space, respectively. Salazar-Albornoz et
al. (2016) derive constraints from the angular auto-correlations and
cross-correlations of BOSS galaxies divided into redshift shells.

Our analyses make use of a fiducial cosmological model to
convert redshifts to comoving distances before calculating the clus-
tering signal. Thus the configuration-space and Fourier-space clus-
tering statistics we present are slightly distorted from their true co-
moving values to the extent that the fiducial cosmological model
is not exactly correct. We allow for this distortion when comparing
models with the data, so our results are not biased by this step, even
though we do not recompute the correlation function and power
spectrum from the galaxy data for each set of cosmological pa-
rameters that we consider. One can think of this use of a fiducial
model as a form of “data-compression”, summarizing clustering
by statistics that can be modelled in an unbiased way by including
the conversion of length scales in the model predictions. The fidu-
cial cosmological model used in this paper is a flat ΛCDM model
with the following parameters: matter density Ωm = 0.31, Hubble
constant h ≡ H0/(100 km s−1 Mpc−1) = 0.676, baryon den-

sity Ωbh
2 = 0.022, fluctuation amplitude σ8 = 0.8, and spectral

tilt ns = 0.97. These parameters are generally within 1σ of the
best-fit Planck2015 values (the CMB value of σ8 is sensitive to
the choice of polarization data). The sound horizon for this fiducial
model is rd,fid = 147.78 Mpc, and convenient scalings of rd with
cosmological parameters can be found in Aubourg et al. (2015). We
quote constraints on distances in Mpc with a scaling factor, e.g.,
DM (z)× (rd,fid/rd), so that the numbers we provide are indepen-
dent of the fiducial model choice. Our inferences of f(z)σ8(z) and
the Alcock-Paczynski parameter FAP(z) are likewise independent
of the choice of fiducial model.

The current paper is organised as follows: in Section 2 we
summarise the SDSS data and define the BOSS combined sam-
ple. Section 3 summarises our general methodology and introduces
some relevant formalism. Our mock catalogues for the estimation
of the covariance matrices are presented in Section 4. The BAO
scale is measured in Section 5 whereas Section 6 presents AP and
growth rate measurements using the full-shape of the two-point
clustering statistics. Our error analysis, including tests on high-
fidelity mocks and systematic error budget, is presented in Sec-
tion 7. We combine our measurements and likelihoods in Section 8,
where we present our final consensus constraints and likelihoods.
Finally, we use the latter to infer cosmological parameters in Sec-
tion 9. We conclude in Section 10.

2 THE DATA

2.1 SDSS-III data

The Sloan Digital Sky Survey (York et al. 2000) observed more
than one quarter of the sky using the 2.5-meter Sloan Telescope
(Gunn et al. 2006) in Apache Point, New Mexico. Photometry in
five passbands was obtained using a drift-scanning mosaic CCD
camera (Gunn et al. 1998), to a depth of 22.5 magnitudes in
the r−band. Details on the camera, photometry and photometric
pipeline can be found in Fukugita et al. (1996), Lupton et al. (2001),
Smith et al. (2002), Pier et al. (2003), Padmanabhan et al. (2008),
and Doi et al. (2010). All the photometry was re-processed and re-
leased in the eighth data release (Aihara et al. 2011). Since 2008,
the Baryon Oscillation Spectroscopic Survey (BOSS; Dawson et
al. 2013) of SDSS-III (Eisenstein et al. 2011) has collected optical
spectra for over 1.5 million targets, distributed across a footprint
of nearly 10,000 deg2. Using double-armed spectrographs, signifi-
cantly upgraded from those used for SDSS-I and II, BOSS obtained
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Ngals Veff (Gpc3) V (Gpc3)

0.2 < z < 0.5
NGC 429182 2.7 4.7
SGC 174819 1.0 1.7
Total 604001 3.7 6.4

0.4 < z < 0.6

NGC 500872 3.1 5.3
SGC 185498 1.1 2.0
Total 686370 4.2 7.3

0.5 < z < 0.75

NGC 435741 3.0 9.0
SGC 158262 1.1 3.3
Total 594003 4.1 12.3

Table 2. Number of galaxies and effective volume for the combined sample
in each of the three redshift bins used in this paper. The number of galax-
ies quoted is the total number of galaxies used in the large-scale clustering
catalogue, constructed as described in Reid et al. (2016). Please see their
Table 2 for further details. The effective volume is computed according to
their Eq. 52 with P0 = 10000h−3Mpc3 and includes the effects of sec-
tor completeness and veto mask. Also included is the total volume within
each redshift bin. The expected BAO uncertainty scales closely with

√
Veff ,

which would equal the total volume given an infinite sampling density. It is
quoted here in Gpc3 for our fiducial model value of h = 0.676.

medium-resolution spectra (R ≈ 1500 to 2600) in the wavelength
range from 3600 to 10000 Å through 2-arcsecond fibres. Smee
et al. (2013) provide a detailed description of the spectrographs,
and Bolton et al. (2012) describe the spectroscopic data reduction
pipeline and redshift determination. Discussions of survey design,
spectroscopic target selection, and their implications for large scale
structure analysis can be found in Dawson et al. (2013) and Reid et
al. (2016).

2.2 Catalogue creation

The creation of the large-scale structure catalogues from the BOSS
spectroscopic observations is detailed in Reid et al. (2016). In brief,
we consider the survey footprint, veto masks and survey-related
systematics (such as fibre collisions and redshift failures) in order
to construct data and random catalogues for the DR12 BOSS galax-
ies. The veto masks exclude 6.6% (9.3%) of the area within the
north (south) galactic cap footprint, mostly due to regions of non-
photometric quality but we also consider plate centerposts, colli-
sion priorities, bright stars, bright objects, Galactic extinction and
seeing. The DR12 footprint is shown in Fig. 1 and Table 2 sum-
marises our sample, which spans a completeness-weighted effec-
tive area of 9329 deg2 (after removing the vetoed area). The total
un-vetoed area with completeness c > 0.7 is 9486 deg2.

BOSS utilizes two target selection algorithms: LOWZ was de-
signed to target luminous red galaxies up to z ≈ 0.4, while CMASS
was designed to target massive galaxies from 0.4 < z < 0.7. The
spatial number density of these samples can be seen in Fig. 2. In
previous papers, we analyzed these two samples separately, split-
ting at z = 0.43 and omitting a small fraction of galaxies in the
tails of both redshift distributions as well as the information from
cross-correlations between the two samples. For the current anal-
ysis, we instead construct a combined sample that we describe in
Section 2.3. With the combined map, we more optimally divide
the observed volume into three partially overlapping redshift slices.
As in Anderson et al. (2014b), the CMASS galaxies are weighted
to correct for dependencies between target density and both stel-
lar density and seeing. The definitions and motivations for these
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Figure 2. Number density of all four target classes assuming our fiducial
cosmology with Ωm = 0.31, along with the sum of the CMASS and
LOWZ number densities (black).

weights are described in Reid et al. (2016) and Ross et al. (2016).
Clustering analyses of the DR12 LOWZ and CMASS samples, us-
ing two-point statistics, can be found in Cuesta et al. (2016a) and
Gil-Marı́n et al. (2016a).

In addition to the LOWZ and CMASS samples, we use data
from two early (i.e., while the final selection was being settled on)
LOWZ selections, each of which are subsets of the final LOWZ
selection. These are defined in Reid et al. (2016) and denoted
‘LOWZE2’ (total area of 144 deg2) and ‘LOWZE3’ (total area of
834 deg2). Together with the LOWZ sample, these three samples
occupy the same footprint as the CMASS sample. As detailed in
Ross et al. (2016), the ‘LOWZE3’ sample requires a weight to cor-
rect for a dependency with seeing. The LOWZ and LOWZE2 sam-
ples require no correction for systematic dependencies, as these
were found to be negligible. We thus have four BOSS selections
that we can use to construct a combined sample. This combined
sample uses all of the CMASS, LOWZ, LOWZE2, and LOWZE3
galaxies with 0.2 < z < 0.75 and allows us to define redshift slices
of equal volume, thereby optimising our signal over the whole sam-
ple (see Section 2.3).

2.3 The Combined BOSS Sample

In this section, we motivate the methods we use to combine the four
BOSS samples into one combined sample.

In principle, when combining galaxy populations with differ-
ent clustering amplitudes, it would be optimal to apply a weight to
each sample to account for these differences (Percival et al. 2004a).
Ross et al. (2016) present measurements of the redshift-space cor-
relation function for each of the four BOSS selections. Section 5.1
of that paper shows that the clustering amplitudes of each selec-
tion match to within 20 per cent and that combining the selections
together where they overlap in redshift has no discernible system-
atic effect. Given the small difference in clustering amplitudes, a
weighting scheme would improve the results by a negligible factor
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Figure 1. The footprint of the subsamples corresponding to the Northern and Southern galactic caps of the BOSS DR12 combined sample. The circles indicate
the different pointings of the telescope and their colour corresponds to the sector completeness. The total area in the combined sample footprint, weighted by
completeness, is 10,087 deg2. Of these, 759 deg2 are excluded by a series of veto masks, leaving a total effective area of 9329 deg2. See Reid et al. 2016 for
further details on completeness calculation and veto masks.

while imparting considerable additional complexity. We therefore
choose to weight each sample equally when combining the cata-
logues. Each galaxy in this combined sample is then weighted by
the redshift-dependent FKP weight (Feldman, Kaiser, & Peacock
1994).

The clustering amplitude of different selections within the
CMASS sample varies considerably more than the individual tar-
get selections (LOWZ/LOWZE2/LOWZE3/CMASS): the differ-
ence in clustering amplitude between the reddest and bluest galax-
ies within CMASS is a factor of two (Ross et al. 2014; Favole et
al. 2015; Patej & Eisenstein 2016). However, even when optimally
weighting for this difference, the forecasted improvement in the
statistical power of BOSS is 2.5 percent and our attempts to em-
ploy such a weighting in mock samples were unable to obtain even
this improvement. Therefore, we have chosen to not introduce this
additional complexity into our analysis.

We define the overall redshift range to consider for BOSS
galaxies as 0.2 < z < 0.75. Below z = 0.2, the sample is af-
fected by the bright limit of r > 16, and the BAO scale has been
measured for z < 0.2 galaxies in the SDSS-I/II main galaxy red-
shift survey (Strauss et al. 2002) by Ross et al. (2015). The upper
limit of 0.75 is higher than in our previous analyses as we find no
systematic concerns associated with using the z > 0.7 data, but
the number density has decreased to 10−5h3Mpc−3 at z = 0.75
(a factor of 40 below its peak at z ≈ 0.5; see Fig. 2) and any ad-
ditional data at higher redshift offer negligible improvement in the
statistical power of the BOSS sample.

We defined the redshift bins used in this analysis based on an
ensemble of 100 mock catalogues of the combined BOSS sample
in the range 0.2 < z < 0.75. We tested several binning schemes
by means of anisotropic BAO measurements on these mock cat-
alogues. For each configuration, we ran an MCMC analysis us-
ing the mean value and errors from the BAO measurements, com-
bining them with synthetic CMB measurements (distance priors)
corresponding to the same cosmology of these mock catalogues.
We chose the binning that provides the strongest constraints on
the dark energy equation-of-state parameter wDE. It consists of
two independent redshift bins of nearly equal effective volume for
0.2 < z < 0.5 and 0.5 < z < 0.75. In order to ensure we have
counted every pair of BOSS galaxies, we also define an overlapping
redshift bin of nearly the same volume as the other two, covering
the redshift range 0.4 < z < 0.6. Using our mock catalogues,

with the original LOWZ and CMASS redshift binning we obtain
a 3.5% (9.6%) precision measurement of the transverse (line-of-
sight) BAO scale in the LOWZ sample and a 1.8% (4.3%) precision
measurement for the CMASS sample. With our chosen binning for
the combined sample, we instead obtain transverse (line-of-sight)
precision of 2.5% (6.3%) in our low redshift bin and 2.3% (5.6%)
in our high redshift bin , comparable for the two samples by design.
Our results in § 8.3 are consistent with these expected changes of
precision relative to the LOWZ and CMASS samples. Measure-
ments in the overlapping redshift bin are of course covariant with
those in the two independent bins, and we take this covariance (es-
timated from mock catalogues) into account when deriving cosmo-
logical constraints. See Table 2 for a summary of the combined
sample.

2.4 The NGC and SGC sub-samples

The DR12 combined sample is observed across the two Galactic
hemispheres, referred to as the Northern and Southern galactic caps
(NGC and SGC, respectively). As these two regions do not overlap,
they are prone to slight offsets in their photometric calibration. As
described in appendix A, we find good evidence that the NGC and
SGC subsamples probe slightly different galaxy populations in the
low-redshift part of the combined sample, and that this difference
is consistent with an offset in photometric calibration between the
NGC and the SGC (first reported by Schlafly & Finkbeiner 2011).
Having established the reason for the observed difference in clus-
tering amplitude, we decide not to re-target the SGC but rather to
simply allow sufficient freedom when fitting models to the clus-
tering statistics in each galactic cap, as to allow for this slight
change in galaxy population. In particular, the different Fourier-
space statistics are modelled with different nuisance parameters in
the two hemispheres, as appropriate for each method. Using fits of
the MD-Patchy mocks, we find that this approach brings no penalty
in uncertainty of fitted parameters. We refer the reader to the indi-
vidual companion papers for details on how this issue was tackled
in each case.
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3 METHODOLOGY

3.1 Clustering measurements

We study the clustering properties of the BOSS combined sample
by means of anisotropic two-point statistics in configuration and
Fourier space. Rather than studying the full two-dimensional cor-
relation function and power spectrum, we use the information con-
tained in their first few Legendre multipoles or in the clustering
wedges statistic (Kazin et al. 2012).

In configuration space, the Legendre multipoles ξ`(s) are
given by

ξ`(s) ≡ 2`+ 1

2

∫ 1

−1

L`(µ)ξ(µ, s) dµ, (4)

where ξ(µ, s) is the two-dimensional correlation function,L` is the
Legendre polynomial or order `, and µ is the cosine of the angle
between the separation vector s and the line-of-sight direction. The
power spectrum multipoles P`(k) are defined in an analogous way
in terms of the two-dimensional power spectrum P (µ, k)

P`(k) ≡ 2`+ 1

2

∫ 1

−1

L`(µ)P (µ, k) dµ, (5)

and are related to the configuration-space ξ`(s) by

ξ`(s) ≡ i`

2π2

∫ ∞
0

P`(k)j`(ks) k
2dk, (6)

where j`(x) is the spherical Bessel function of order `. We use
the information from the monopole, quadrupole and hexadecapole
moments (` = 0, 2 and 4), which are a full description of the µ de-
pendence of ξ(s, µ) in the linear regime and in the distant observer
approximation.

The configuration- and Fourier-space wedges, ξµ2
µ1

(s) and
Pµ2
µ1

(k) correspond to the average of the two-dimensional correla-
tion function and power spectrum over the interval ∆µ = µ2−µ1,
that is

ξµ2
µ1

(s) ≡ 1

∆µ

∫ µ2

µ1

ξ(µ, s) dµ (7)

and

Pµ2
µ1

(k) ≡ 1

∆µ

∫ µ2

µ1

P (µ, k) dµ. (8)

Here we define three clustering wedges by splitting the µ range
from 0 to 1 into three equal-width intervals. We denote these mea-
surements by ξ3w(s) and P3w(k).

The information content of the multipoles and the wedges is
highly covariant, as they are related by

ξµ2
µ1

(s) =
∑
`

ξ`(s) L̄`, (9)

where L̄` is the average of the Legendre polynomial of order ` over
the µ-range of the wedge,

L̄` ≡ 1

∆µ

∫ µ+∆µ

µ

L`(µ) dµ. (10)

More details on the estimation of these statistics using data from
the BOSS combined sample can be found in the supporting papers
listed in Table 1.

3.2 Parametrizing the Distance Scale

The BAO scale is measured anisotropically in redshift-space in
both the two-point correlation function and the power spectrum.
We measure the shift of the BAO peak position with respect to its
position in a fiducial cosmology, which directly gives the Hubble
expansion rate,H(z), and the comoving angular diameter distance,
DM (z), relative to the sound horizon at the drag epoch, rd (eq. 1).
We define the dimensionless ratios

α⊥ =
DM (z)rd,fid

Dfid
M (z)rd

, α‖ =
Hfid(z)rd,fid

H(z)rd
, (11)

to describe shifts perpendicular and parallel to the line of sight. The
anisotropy of galaxy clustering is also often parametrized using an
isotropically-averaged shift α and a warping factor ε with

α = α
2/3
⊥ α

1/3

‖ , ε+ 1 =

(
α‖
α⊥

)1/3

. (12)

Converting equation (12) to more physical quantities, we can define
a spherically-averaged distance DV (z) and an anisotropy parame-
ter (often referred to as the Alcock-Paczynski parameter) FAP(z)
as

DV (z) =

(
D2
M (z)

cz

H(z)

)1/3

, (13)

FAP(z) = DM (z)H(z)/c . (14)

Although these quantities are trivially interchangeable, we
will adopt in each section the most natural parametrization. In
particular, we quote our measurements in physical units: DA(z),
H(z), DV(z), FAP(z) and DM(z). We generally use α⊥ and α‖
when referring to studies and checks on our mock catalogues and
α and ε when describing our systematic error budget. In our fidu-
cial cosmological model, rd,fid = 147.78 Mpc, and convenient
approximations for the scaling of rd with cosmological parameters
(including neutrino mass) can be found in Aubourg et al. (2015).
Within ΛCDM, the uncertainty in rd given Planck CMB constraints
is 0.2%, substantially smaller than our statistical errors. However,
changes to the pre-recombination energy density, such as additional
relativistic species or early dark energy, can change rd by altering
the age-redshift relation at early epochs.

4 MOCK CATALOGUES AND THE COVARIANCE
MATRIX

We use mock galaxy catalogues to estimate the covariance ma-
trix of our clustering measurements and to extensively test our
methods. For this work, we utilized two distinct methods of mock
galaxy creation: MultiDark-Patchy (hereafter MD-Patchy; Kitaura
et al. 2016) and Quick Particle Mesh (QPM; White et al. 2014).
MD-Patchy simulates the growth of density perturbations through
a combination of second-order Lagrange perturbation theory and
a stochastic halo biasing scheme calibrated on high-resolution N-
body simulations. QPM uses low-resolution particle mesh simu-
lations to evolve the density field, then selects particles from the
density field such that they match the one- and two-point statistics
of dark matter halos. Both mock algorithms then use halo occupa-
tion methods to construct galaxy density fields that match the ob-
served redshift-space clustering of BOSS galaxies as a function of
redshift. Each mock matches both the angular selection function of
the survey, including fibre collisions, and the observed redshift dis-
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tribution n(z). A total of 1000 MD-Patchy mocks and 1000 QPM
mocks were utilized in this analysis.

Analyses of previous data releases utilized mocks created
from the PTHalos method (Manera et al. 2015). Comparison of the
QPM and PTHalos in the context of our BAO analysis can be found
in Vargas-Magaña et al. (2015), and a comparison of MD-Patchy to
PTHalos, as well as other leading methods for generating mock cat-
alogues, can be found in Chuang et al. (2015). Vargas-Magaña et
al. (2016) directly compared the values and errors found in pre-
reconstructed BAO analysis between PTHalos and QPM for the
large-scale structure sample of the SDSS 11th data release (DR11).
They found that the derived quantities, α and ε, and their uncertain-
ties, were consistent between the two methods.

Our reconstruction and BAO fitting procedures, as well as
tests of the clustering measurements, have been applied to both sets
(Vargas-Magaña et al. 2016; Ross et al. 2016). For details on the use
of the mocks in the full shape analyses, see the respective papers
(Table 1) for each individual analysis. Having two sets of mock
simulations allows us to test the dependence of our errors on the
mock-making technique. QPM and MD-Patchy differ in their meth-
ods of creating an evolved density field, as well as their underlying
cosmology. As a conservative choice, our final error bars on all
measurements, both BAO and RSD, are taken from the MD-Patchy
covariance matrix because the errors obtained using the MD-Patchy
covariance matrix are roughly 10−15 per cent larger, and the clus-
tering of the MD-Patchy mocks is a better match to the observed
data. The larger derived error bar from the MD-Patchy covariance
matrix is obtained both when fitting the observations and when fit-
ting mock data.

For each clustering measurement, we use the distribution of
the measured quantity measured from the mocks to estimate the co-
variance matrix used in all fittings. For the MD-Patchy mocks for
the DR12 combined sample, distinct boxes were used for the NGC
and SGC footprints, a change in practice compared to our analy-
ses of previous data releases. Thus, the covariance matrices for the
NGC and the SGC are each estimated from 997 total mocks2. The
full procedure for estimating the covariance matrices is described
in Percival et al. (2014), which includes the uncertainties in the co-
variance matrix when derived from a finite sample of simulations.

5 POST-RECONSTRUCTION BAO MEASUREMENTS

5.1 Reconstruction

Following our previous work, we approximately reconstruct the lin-
ear density field in order to increase the significance and precision
of our measurement of the BAO peak position. The reconstruction
algorithm we use is described in Padmanabhan et al. (2012). This
algorithm takes two input parameters: the growth rate parameter
f(z) (eq. 3) to correct for redshift-space distortion effects and the
galaxy bias parameter b to convert between the galaxy density field
and the matter density field. In the case of BOSS galaxies we find
that the galaxy bias is a rather shallow function of redshift except
for the very high redshift end, so a single value is assumed for the
three redshift bins in our analysis. Furthermore, for a ΛCDM cos-
mology the value of f is not strongly redshift-dependent either,

2 Three MD-Patchy mocks were removed from the final analysis due to
unusual, non-Gaussian, clustering properties that were likely due to errors
in the simulations.

varying by ∼10 per cent in the range 0.20 < z < 0.75. Varia-
tions of this size in the input parameters have been proven not to
affect in any significant way the post-reconstruction BAO measure-
ments (Anderson et al. 2012). This allows us to run reconstruction
on the full survey volume (as opposed to running the code on in-
dividual redshift bins) and thus take into account the contributions
from larger scales to bulk flows. The values of the input parameters
we used correspond to the value of the growth rate at z = 0.5 for
our fiducial cosmology, f = 0.757, and a galaxy bias of b = 2.2
for the QPM and MD-Patchy mocks. For the data, we assumed a
bias of b = 1.85. The finite-difference grid is 5123 (each cell be-
ing roughly 6h−1Mpc on a side), and we use a Gaussian kernel of
15h−1Mpc to smooth the density field, a choice found to provide
conservative error bars in BAO fitting (Vargas-Magaña et al. 2015;
Burden, Percival & Howlett 2015).

Fig. 3 displays the post-reconstruction BAO feature in the
combined sample data. Each panel uses different means to isolate
the BAO information. The upper panels represent the BAO infor-
mation in the monopole of the clustering measurements; this infor-
mation provides the spherically averaged BAO distance constraint.
For the power spectrum, we display (P0 − P0,smooth)/P0,smooth

and for the correlation function ξ0 − ξ0,smooth, where the sub-
script ‘smooth’ denotes the best-fit model but substituting a tem-
plate with no BAO feature for the nominal BAO template. One
can observe that the spherically-averaged BAO feature is of nearly
equal strength in each redshift bin, as expected given their similar
effective volumes. Note that data points in ξ0(s) are strongly corre-
lated, while those in P0(k) are more nearly independent. Qualita-
tively, our ability to measure the isotropic BAO scale comes down
to our ability to centroid the BAO peaks in ξ0(s) or to determine
the phases of the oscillations in P0(k). Best-fit models are slightly
offset horizontally because the best-fit values of α are slightly dif-
ferent in the low, middle, and high-redshift bins. (Vertical offsets
are added for visual clarity.)

The middle panels of Fig. 3 illustrate the information pro-
vided by the quadrupole of the clustering measurements, which
constrains the anisotropy parameter ε (or, equivalently, FAP). The
nature of the BAO signature is more subtle here, since if recon-
struction perfectly removed redshift-space distortions and the fidu-
cial cosmological were exactly correct then clustering would be
isotropic and the quadrupole would vanish. For the power spec-
trum, we display (P2 − P2,smooth)/P0,smooth and for the correla-
tion function ξ2 − ξ2(ε = 0), where ξ2(ε = 0) is computed using
the same parameters as the best-fit model but with ε = 0. For the
0.4 < z < 0.6 redshift bin, ε is close to zero (the significance is
0.3σ for both the power spectrum and the correlation function; see
Table 3 in Beutler et al. 2016b), and thus no clear feature is ob-
served in the data or the model. In the low and high redshift bins,
ε is marginally significant (∼ 1σ for both) and of opposite signs.
Thus, the data points and best-fit curves show weak features that
are opposite in sign in the two redshift bins.

The bottom panel of Fig. 3 displays the BAO ring(s) in the
0.4 < z < 0.6 redshift bin, as reconstructed from the monopole
and quadrupole, thereby filtering the higher-order multipoles that
are treated as noise in our analysis. The results are decomposed
into the component of the separations transverse to and along the
line of sight, based on x(p, µ) = x0(p) + L2(µ)x2(p), where
x represents either s2 multiplied by the correlation function or
(P` − P`,smooth)/P0,smooth(k) for the power spectrum, p repre-
sents either the separation, s, or the Fourier mode, k, L2 is the 2nd
order Legendre polynomial, p|| = µp, and p⊥ =

√
p2 − µ2p2.

Plotted in this fashion, the radius at which the BAO feature(s) rep-
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Figure 3. BAO signals in the measured post-reconstruction power spectrum (left panels) and correlation function (right panels) and predictions of the best-fit
BAO models (curves). To isolate the BAO in the monopole (top panels), predictions of a smooth model with the best-fit cosmological parameters but no BAO
feature have been subtracted, and the same smooth model has been divided out in the power spectrum panel. For clarity, vertical offsets of ±0.15 (power
spectrum) and ±0.004 (correlation function) have been added to the points and curves for the high- and low-redshift bins, while the intermediate redshift
bin is unshifted. For the quadrupole (middle panels), we subtract the quadrupole of the smooth model power spectrum, and for the correlation function we
subtract the quadrupole of a model that has the same parameters as the best-fit but with ε = 0. If reconstruction were perfect and the fiducial model were
exactly correct, the curves and points in these panels would be flat; oscillations in the model curves indicate best-fit ε 6= 0. The bottom panels show the
measurements for the 0.4 < z < 0.6 redshift bin decomposed into the component of the separations transverse to and along the line of sight, based on
x(p, µ) = x0(p) + L2(µ)x2(p), where x represents either s2 multiplied by the correlation function or the BAO component power spectrum displayed in the
upper panels, p represents either the separation or the Fourier mode, L2 is the 2nd order Legendre polynomial, p|| = µp, and p⊥ =

√
p2 − µ2p2.
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Figure 4. Two-dimensional 68 and 95 per cent marginalized constraints on DM (z) × (rd,fid/rd) and H(z) × (rd/rd,fid) obtained by fitting the BAO
signal in the post-reconstruction monopole and quadrupole in configuration and Fourier space. The black solid lines represent the combination of these results
into a set of consensus BAO-only constraints, as described in Section 8.2. The blue solid lines correspond to the constraints inferred from the Planck CMB
temperature and polarization measurements under the assumption of a ΛCDM model.

Table 3. Summary table of post-reconstruction BAO-only constraints on DM ×
(
rd,fid/rd

)
and H ×

(
rd/rd,fid

)
Measurement redshift Beutler et al. (b) Vargas-Magaña et al. Ross et al.

P (k) ξ(s) ξ(s)

DM ×
(
rd,fid/rd

)
[Mpc] z = 0.38 1507± 25 1507± 22 1512± 23

DM ×
(
rd,fid/rd

)
[Mpc] z = 0.51 1976± 29 1975± 27 1971± 27

DM ×
(
rd,fid/rd

)
[Mpc] z = 0.61 2307± 35 2291± 37 2296± 37

H ×
(
rd/rd,fid

)
[km s−1Mpc−1] z = 0.38 80.7± 2.4 80.4± 2.4 81.1± 2.2

H ×
(
rd/rd,fid

)
[km s−1Mpc−1] z = 0.51 90.8± 2.2 91.0± 2.1 91.1± 2.1

H ×
(
rd/rd,fid

)
[km s−1Mpc−1] z = 0.61 98.8± 2.3 99.3± 2.5 99.4± 2.2

resents the spherically-averaged BAO measurement and the degree
to which the ring(s) is(are) circular represents the AP test as applied
to BAO measurements.

5.2 Measuring the BAO scale

Our companion papers Ross et al. (2016), Vargas-Magaña et al.
(2016) and Beutler et al. (2016b) use the BAO signal in the post-
reconstruction monopole and quadrupole, in configuration space
and Fourier space, to constrain the geometric parameter combina-
tions DM (z)/rd and H(z)rd. We now present a brief summary of
these analyses and refer the reader to those papers for more details.

Ross et al. (2016) and Vargas-Magaña et al. (2016) measure
the anisotropic redshift-space two-point correlation function. Both
methods rely on templates for ξ0 and ξ2, which have BAO fea-
tures that are altered as function of the relative change in DM (z)
and H(z) away from the values assumed in the fiducial templates
(which are constructed using the fiducial cosmology). These tem-
plates are allowed to vary in amplitude and are combined with
third-order polynomials, for both ξ0 and ξ2, that marginalize over
any shape information. This methodology follows that of Xu et
al. (2013); Anderson et al. (2014a) and Anderson et al. (2014b).
Small differences between Ross et al. (2016) and Vargas-Magaña
et al. (2016) exist in the modelling of the fiducial templates and the
choices for associated nuisance parameters. The choices in Ross
et al. (2016) are motivated by the discussion in Seo et al. (2015)
and Ross et al. (2015), and they carry out detailed investigations

to show that observational systematics have minimal impact on
the BAO measurement. Vargas-Magaña et al. (2016) use as their
fiducial methodology the templates and choices used in previous
works (Cuesta et al. 2016a; Anderson et al. 2014a,b) enabling di-
rect comparison of the results with those previous papers. In addi-
tion, Vargas-Magaña et al. (2016) perform a detailed investigation
of possible sources of theoretical systematics in anisotropic BAO
measurements in configuration space, examining the various steps
of the analysis and studying the potential systematics associated
with each step. This work extends the previous effort in Vargas-
Magaña et al. (2014), which focused on systematic uncertainties
associated with fitting methodology, to more general aspects such
as the estimators, covariance matrices, and use of higher order mul-
tipoles in the analysis.

Beutler et al. (2016b) extract the BAO information from
the power spectrum. The analysis uses power spectrum bins of
∆k = 0.01hMpc−1 and makes use of scales up to kmax =
0.3hMpc−1. The covariance matrix used in this analysis has been
derived from the MD-Patchy mocks described in Section 4. The
reduced χ2 for all redshift bins is close to 1.

The two-dimensional 68 and 95 per cent confidence lev-
els (CL) on DM (z)/rd and H(z)rd recovered from these fits
are shown in Fig. 4, where we have scaled our measurements
by the sound horizon scale in our fiducial cosmology, rd,fid =
147.78 Mpc, to express them in the usual units of Mpc and
km s−1Mpc−1. The corresponding one-dimensional constraints
are summarised in Table 3. The results inferred from the three
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methods are in excellent agreement. As expected, given the small
differences in methodology and data, the results of Ross et al.
(2016) and Vargas-Magaña et al. (2016) are very similar. Tests on
the results obtained from mock samples show that the results are
correlated to a degree that combining them affords no improvement
in the statistical uncertainty of the measurements. Differences be-
tween the results are at most 0.5σ and are typically considerably
smaller; these differences are consistent with expectations (further
details of tests on mock samples are presented in Section 7.1).
Thus, for simplicity, we select only the measurements and likeli-
hoods presented in Ross et al. (2016) to combine with the power-
spectrum BAO results and full-shape measurements. The consensus
values are computed and discussed in Section 8.

6 PRE-RECONSTRUCTION FULL-SHAPE
MEASUREMENTS

Fig. 5 shows the two-dimensional correlation function, ξ(s⊥, s‖)
(left panel), and power spectrum, P (k⊥, k‖) (middle and right pan-
els), of the NGC BOSS combined galaxy sample, in the redshift
range 0.5 < z < 0.75. The figures for other redshifts and the
SGC would look similar. The full shape of these measurements en-
codes additional information beyond that of the BAO feature. If we
had access to the real-space positions of the galaxies and in the
absence of AP distortions, the contours of these functions would
correspond to perfect circles. However, the RSD caused by the pe-
culiar velocities of the galaxies distort these contours, compress-
ing (stretching) them along the line-of-sight direction in configura-
tion (Fourier) space. These anisotropies encode information on the
growth rate of cosmic structures, which can be used to constrain
the parameter combination fσ8(z), where f ≡ d lnD/d ln a.

On large scales most of the information contained in ξ(s⊥, s‖)
and P (k⊥, k‖) can be compressed into a small number of one-
dimensional projections such as the their first few Legendre multi-
poles (e.g. Padmanabhan & White 2008), or the clustering wedges
statistic (Kazin et al. 2012). Each of the four supporting papers
(Satpathy et al. 2016; Sánchez et al. 2016a; Beutler et al. 2016c;
Grieb et al. 2016) uses the information of either multipoles or
wedges in µ, in configuration or Fourier Space, employing differ-
ent approaches to model the clustering statistics in the non-linear
regime. The four methods were tested in high-fidelity mocks, via a
blind challenge that we describe in Section 7.2 and that will later
inform our systematic error budget. These measurements simulta-
neously capture the impact of the expansion rate, AP-effect and
growth rate on the distribution of galaxies, allowing us to determine
the parameter combinations DM(z)/rd, H(z)rd (or some combi-
nation thereof) and fσ8(z). Here we give a brief description of
these analyses and refer the reader to those papers for more details
on the measurements, modelling, fitting procedures and tests with
mocks, as well as figures showing each of the measurements indi-
vidually.

Satpathy et al. (2016) analyses the monopole and quadrupole
of the two-point correlation function. The covariance matrix of
these measurements is estimated using 997 MD-Patchy mock cata-
logues. The multipoles are modelled using Convolution Lagrangian
Perturbation Theory (CLPT) and the Gaussian Streaming model
(GSM) (Carlson et al. 2013; Wang et al. 2014). This model has
been tested for both dark matter and biased tracers using N-body
simulations (Wang et al. 2014) and has been tested for various ob-
servational and theoretical systematic errors (Alam et al. 2015b).
Satpathy et al. (2016) fit scales between 25 and 150h−1Mpc with

bin width of 5h−1Mpc and extract the cosmological and growth
parameters with a Markov Chain Monte Carlo (MCMC) algorithm
using COSMOMC (Lewis & Bridle 2002).

Sánchez et al. (2016a) extract cosmological information from
the full shape of three clustering wedges in configuration space,
defined by dividing the µ range from 0 to 1 into three equal-width
intervals, whose covariance matrix was obtained from a set of 2045
MD-Patchy mock catalogues. This analysis is based on a new de-
scription of the effects of the non-linear evolution of density fluctu-
ations (gRPT, Blas et al. in prep.), bias and RSD that is applied to
the BOSS measurements for scales s between 20 and 160h−1Mpc
with a bin width of 5h−1Mpc. Sánchez et al. (2016a) perform ex-
tensive tests of this model using the large-volume Minerva N-body
simulations (Grieb et al. 2015) to show that it can extract cosmolog-
ical information from three clustering wedges without introducing
any significant systematic errors.

Beutler et al. (2016c) analyse the anisotropic power spectrum
using the estimator suggested in Bianchi et al. (2015) and Scoc-
cimarro (2015), which employs Fast Fourier Transforms to mea-
sure all relevant higher order multipoles. The analysis uses power
spectrum bins of ∆k = 0.01hMpc−1 and makes use of scales
up to kmax = 0.15hMpc−1 for the monopole and quadrupole
and kmax = 0.1hMpc−1 for the hexadecapole. These measure-
ments are then compared to a model based on renormalized pertur-
bation theory (Taruya et al. 2010). This model has been extensively
tested with N-body simulations in configuration space (e.g. de la
Torre and Guzzo 2012) and Fourier space (e.g. Beutler et al. 2012).
The covariance matrix used in this analysis has been derived from
2048 Multidark-Patchy mock catalogues (The NGC uses only 2045
mock catalogues) and the reduced χ2 for all redshift bins is close
to 1.

The methodology in Grieb et al. (2016) extends the applica-
tion of the clustering wedges statistic to Fourier space. In order
to make use of new estimators based on fast Fourier transforms
(FFT; Bianchi et al. 2015; Scoccimarro 2015), their analaysis uses
the power spectrum clustering wedges, filtering out the informa-
tion of Legendre multipoles ` > 4. This information is combined
to three power spectrum wedges, measured in wavenumber bins
of ∆k = 0.005hMpc−1, up to the mildly non-linear regime,
k < 0.2hMpc−1. The full shape of these measurements is fitted
with theoretical predictions based on the same underlying model of
non-linearities, bias and RSD as in Sánchez et al. (2016a). Thus,
these two complementary analyses represent the first time that the
same model is applied in configuration and Fourier space fits. The
methodology has been validated using the Minerva simulations and
mock catalogues and found to give unbiased cosmological con-
straints. Besides the covariance matrix, which is derived from 2045
MD-Patchy mock catalogues, this analysis depends on a framework
for the wedge window function, which was developed based on the
recipe for the power spectrum multipoles of Beutler et al. (2014a).
The power spectrum wedges of the NGC and SGC sub-samples
in the low-redshift bin are modelled with two different bias, RSD,
and shot noise parameters, while the intermediate and high redshift
bins are fitted with the same nuisance parameters for the two sub-
samples.

The constraints on DM (z)/rd, H(z)rd, and f(z)σ8(z) pro-
duced by each of the four individual methods are shown in Fig. 6
where, as before, we have rescaled our measurements by the sound
horizon scale in our fiducial cosmology. The corresponding one-
dimensional constraints are summarised in Table 4. The agreement
between the results inferred from the different clustering statistics
and analysis methodologies is good, and the scatter between meth-
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Figure 5. The measured pre-reconstruction correlation function (left) and power spectrum (middle) in the directions perpendicular and parallel to the line of
sight, shown for the NGC only in the redshift range 0.50 < z < 0.75. In each panel, the color scale shows the data and the contours show the prediction of the
best-fit model. The anisotropy of the contours seen in both plots reflects a combination of RSD and the AP effect, and holds most of the information used to
separately constrain DM (z)/rd, H(z)rd, and fσ8. The BAO ring can be seen in two dimensions on the correlation function plot. To more clearly show the
anisotropic BAO ring in the power spectrum, the right panel plots the two-dimensional power-spectrum divided by the best-fit smooth component. The wiggles
seen in this panel are analogous to the oscillations seen in the top left panel of Fig 3.

Table 4. Summary table of pre-reconstruction full-shape constraints on the parameter combinationsDM×
(
rd,fid/rd

)
,H×

(
rd/rd,fid

)
, and fσ8(z) derived

in the supporting papers for each of our three overlapping redshift bins

Measurement redshift Satpathy et al. Beutler et al. (b) Grieb et al. Sánchez et al.
ξ(s) multipoles P (k) multipoles P (k) wedges ξ(s) wedges

DM ×
(
rd,fid/rd

)
[Mpc] z = 0.38 1476± 33 1549± 41 1525± 25 1501± 27

DM ×
(
rd,fid/rd

)
[Mpc] z = 0.51 1985± 41 2015± 53 1990± 32 2010± 30

DM ×
(
rd,fid/rd

)
[Mpc] z = 0.61 2287± 54 2270± 57 2281± 43 2286± 37

H ×
(
rd/rd,fid

)
[km s−1Mpc−1] z = 0.38 79.3± 3.3 82.5± 3.2 81.2± 2.3 82.5± 2.4

H ×
(
rd/rd,fid

)
[km s−1Mpc−1] z = 0.51 88.3± 4.1 88.4± 4.1 87.0± 2.4 90.2± 2.5

H ×
(
rd/rd,fid

)
[km s−1Mpc−1] z = 0.61 99.5± 4.4 97.0± 4.0 94.9± 2.5 97.3± 2.7

fσ8 z = 0.38 0.430± 0.054 0.479± 0.054 0.498± 0.045 0.468± 0.053
fσ8 z = 0.51 0.452± 0.058 0.454± 0.051 0.448± 0.038 0.470± 0.042

fσ8 z = 0.61 0.456± 0.052 0.409± 0.044 0.409± 0.041 0.440± 0.039

ods is consistent with what we observe in mocks (see Section 7.2
and Fig. 10). In all cases the µ-wedges analyses give significantly
tighter constraints than the multipole analyses, in both configura-
tion space and Fourier space. The consensus constraints, described
in §8.2 below, are slightly tighter than those of the individual wedge
analyses. At all three redshifts and for all three quantities, mapping
distance, expansion rate, and the growth of structure, the 68% con-
fidence contour for the consensus results overlaps the 68% confi-
dence contour derived from Planck 2015 data assuming a ΛCDM
cosmology. We illustrate the combination of these full shape results
with the post-reconstruction BAO results in Fig. 11 below.
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Figure 6. Two-dimensional 68 and 95 per cent marginalized constraints on DM (z)×
(
rd,fid/rd

)
, H(z)×

(
rd/rd,fid

)
, and f(z)σ8(z) obtained from our

pre-reconstruction full-shape fits to multipoles and wedges in configuration and Fourier space. The solid lines represent the combination of these results into a
set of consensus constraints, as described in Section 8.2. The blue solid lines correspond to the constraints inferred from the Planck CMB measurements under
the assumption of a ΛCDM model. Top, middle, and bottom rows show our low, intermediate, and high redshift bins. Comparison to and combination with
post-reconstruction BAO measurements appears in Fig. 11 below.

7 SYSTEMATIC ERROR ESTIMATION

7.1 Tests using MD-Patchy mock catalogues

Here we examine the consistency and correlation among the three
methods applied to obtain post-reconstruction BAO measurements
(described in Section 5) and the four methods applied to obtain
pre-reconstruction full-shape constraints (described in Section 6).
We do these comparisons using the results obtained from the fits to
the MD-Patchy mock catalogues, which enabled at least 996 com-
parisons in all cases. These comparisons are used to inform the
final systematic uncertainties, to be described in Section 7.4, that
we apply to our measurements.

Table 5 compares the mean BAO results for the post-

reconstruction correlation function and the power spectrum mea-
surements and then the mean result when the individual results are
combined as described in Section 8.1. The standard deviations are
improved by the combination, as they are not perfectly correlated.
The correlations between the correlation function and power spec-
trum results range between 0.88 and 0.90. The correlations between
the two correlation function results are such that the optimal com-
bination does not affect the standard deviation at the quoted pre-
cision. The results differ by an average of 0.002 for both α and
for ε, with the P (k) results having greater ε and lesser α. These
differences are smaller than the systematic modelling uncertainties
will we adopt for each parameter (0.003 and 0.005), described in
Section 7.4.
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Table 5. Post-reconstruction combined sample 2D BAO fits for ξ(s) and
P (k) in MD-Patchy mock samples. The ∆ values are the mean with the
expected value subtracted. S denotes standard deviation. ‘R’ denotes results
from Ross et al. (2016) and ‘V’ denotes results from Vargas-Magaña et al.
(2016). The P (k) results are from Beutler et al. (2016b).

sample ∆〈α〉 Sα ∆〈ε〉 Sε

0.2 < z < 0.5:
consensus –0.001 0.012 0.002 0.014
ξ R 0.000 0.013 0.001 0.015
ξ V –0.001 0.014 0.001 0.016
P (k) –0.001 0.013 0.003 0.015

0.4 < z < 0.6:
consensus 0.001 0.011 0.002 0.013
ξ R 0.001 0.012 0.001 0.014
ξ V 0.000 0.012 0.002 0.013
P (k) 0.000 0.012 0.002 0.014

0.5 < z < 0.75:
consensus 0.000 0.011 0.002 0.013
ξ R 0.002 0.012 –0.001 0.015
ξ V 0.000 0.012 0.001 0.014
P (k) –0.001 0.012 0.001 0.015

The detailed tests presented in Beutler et al. (2016b) and
Vargas-Magaña et al. (2016) suggest no reason to believe any of
the results should be biased relative to the others and they can be
thus combined to produce the consensus results. The consensus re-
sults are obtained as described in Sánchez et al. (2016b). The P (k)
results are slightly more precise and the consensus results are thus
weighted towards these results. The consensus α results are biased
by at most 0.001 and the mean bias is 0.000. The consensus ε re-
sults are each biased by 0.002; this is 0.15σ and is substantially
smaller than the systematic uncertainty we adopt for ε.

Fig. 7 is an illustration of the results presented in Table 5, with
the α and ε values converted to DM and H values. Visually, it is
clear that differences between the results using each methodology
are negligibly small and that the consensus results match those ex-
pected for the MD-Patchy cosmology.

Table 6 presents results for the four methods that apply pre-
reconstruction full-shape fits to the DR12 BOSS galaxy data, in-
cluding results for fσ8. Their combination, obtained as described
in Section 8.1, produces the ‘combined’ results, and this combina-
tion reduces the standard deviations of the recovered results, taking
advantage of partial complementarity (i.e., not complete correla-
tions) among the methods. See Sánchez et al. (2016b) for further
details.

The biases in the combined α and ε values from these pre-
reconstruction analyses are below 0.3σ compared to the mock-to-
mock dispersion, and they are smaller than the systematic uncer-
tainty defined in §7.4. The biases on the recovered fσ8, 0.024,
0.016, and 0.003 in the three redshift bins, are up to 0.6σ com-
pared to the mock-to-mock dispersion. Fig. 8 compares the results
of our RSD fitting methods to the natural cosmology of the MD-
Patchy mocks. When setting the systematic error for fσ8, we com-
pare the bias inferred from the MD-Patchy mocks to the systematic
error obtained using high resolution N-body simulations described
in the next subsection. We use the maximum of these two numbers
in each redshift bin as the systematic error.

7.2 RSD Tests using High Resolution Mocks

In addition to the large suite of covariance mocks, we also utilize
a small series of high-fidelity mocks to test the accuracy and pre-
cision of our multiple RSD methods. Details of this “mock chal-
lenge” are presented in Tinker et al. (2016). There are two comple-
mentary sets of mocks. The first is a homogeneous set in which all
mocks have the same underlying galaxy bias model built upon on
the same cosmology, but each mock is an independent realization.
These mocks have the same angular and radial selection function as
the NGC DR12 CMASS sample. There are 84 mocks in total. The
N-body simulations from which these cut-sky mocks were created
use the high-resolution code GADGET2 (Springel 2005), using in-
put parameters to ensure sufficient mass and spatial resolution to
resolve the halos that BOSS galaxies occupy. The second is a het-
erogeneous set in which different galaxy bias models are built upon
the same simulation. Thus these mocks have not just the same un-
derlying cosmology, but also the same large scale structure. But the
galaxy bias varies at the ±5 per cent level. These mocks are built
on periodic cubes of ∼ 2.5h−1 Gpc per side—roughly 4 times the
volume of the DR12 CMASS sample. We use three different bias
models in the second set of simulations. The second set of mocks
are based on the Big MultiDark simulation (Riebe et al. 2013).

The first set of high resolution mocks tests quantifies the ac-
curacy of the methods, including all aspects of the cut-sky analysis,
while the second tests for possible theoretical systematics associ-
ated with the complexities of galaxy bias. Although the second set
of mocks does not span the full possible range of galaxy bias mod-
els, they provide confidence that the methods are accurately recov-
ering fσ8 for the conventional space of cosmologies and galaxy
evolution models. We use the quadrature sum of the errors on fσ8

from these two sets of mocks as an estimate of the systematic error
from the high-resolution mocks. As we will show, in some cases
the error from the high-resolution mocks is smaller than the error
obtained from the MD-Patchy mocks described in the previous sec-
tion (the ‘∆fσ8’ column in Table 6). To be conservative, we adopt
the larger of the errors obtained from the high resolution mocks
and the MD-Patchy mocks as our final systematic error for a given
redshift bin.

Each of the four RSD methods used in our consensus results
were applied to 84 cut-sky mocks. Figure 10 shows how the differ-
ences among all four methods in the fσ8 values derived from the
DR12 data compare to the expectations from the cut-sky mocks.
Each panel shows ∆fσ8 between two methods for each redshift
bin, and the distribution of ∆fσ8 from the 84 mocks. The differ-
ences between the four methods applied to BOSS data, listed in
Table 4, are in line with expectations from the differences between
methods applied to the same mock survey.

The top panel in Figure 9 shows the bias in each full shape
method when applied to the cut-sky mocks. The error bars repre-
sent the standard error in the mean. For each cut-sky mock, the
results of the four RSD methods were combined in the same man-
ner as our consensus results. Averaging over all 84 mocks, we find
only a modest mean bias in the measured value of fσ8 of 0.0018.
This value is smaller than the statistical precision of the mean fσ8

derived from 84 mocks, which is 0.0037, and so is not statistically
significant. We adopt 0.0037 as an estimate of the potential bias of
fσ8 based on these mocks. To quantify a systematic variance in our
RSD methods, we also applied the same analysis to the three cubic
mocks with different bias models. Because these mocks are built on
the same N-body simulation, there is little statistical significance in
the comparison between the derived fσ8 and the expected value.
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Figure 7. The mean distance and Hubble factor recovered from post-reconstruction MD-Patchy mocks (points) compared to the expected
results for the input cosmology of MD-Patchy (curves). Error bars on the points show the mock-to-mock dispersion (the standard
deviation of the mean would be smaller by ≈ 10001/2 ≈ 30). Red circles display the results from the combination of correlation
function and power spectrum measurements and are plotted at the measurement redshift; other points are offset in redshift for visual
clarity.

Table 6. Pre-reconstruction combined sample full-shape fits in MD-Patchy mock samples. The ∆ values are the mean with the expected value subtracted. S
denotes standard deviation.

sample ∆〈α〉 Sα ∆〈ε〉 Sε ∆fσ8 Sfσ8

0.2 < z < 0.5:
consensus –0.003 0.018 0.000 0.011 –0.024 0.038
ξ3w 0.004 0.020 0.001 0.012 –0.019 0.050
P` –0.001 0.021 –0.004 0.020 –0.012 0.053
P3w –0.002 0.019 0.000 0.013 –0.022 0.043
ξ` –0.008 0.020 –0.004 0.025 –0.011 0.067

0.4 < z < 0.6:
consensus 0.002 0.015 0.003 0.009 –0.016 0.035
ξ3w 0.003 0.017 0.002 0.010 –0.012 0.044
P` 0.001 0.019 –0.005 0.018 0.002 0.049
P3w 0.005 0.017 0.005 0.010 –0.016 0.038
ξ` –0.006 0.017 –0.007 0.022 0.004 0.060

0.5 < z < 0.75:
consensus 0.002 0.015 0.001 0.009 –0.003 0.034
ξ3w 0.004 0.016 0.002 0.011 –0.004 0.045
P` –0.001 0.017 –0.005 0.017 0.011 0.045
P3w 0.006 0.016 0.000 0.009 0.002 0.036
ξ` –0.005 0.016 –0.006 0.022 0.009 0.058

However, given that the mocks are built on the same large scale
structure, any differences in the derived fσ8 values from mock-to-
mock represent systematic variations in the accuracy of the meth-
ods under different galaxy bias models. Thus, we use the maximal
difference in fσ8 between the three mocks as our systematic error
from this test. The bottom panel of Figure 9 shows the quantity for
all four full-shape methods as well as the consensus value. For the
consensus value, we find the range in fσ8 values to be 0.008. We
then place a total systematic error on fσ8 from the high-resolution
mocks by adding 0.0037 and 0.008 in quadrature, yielding a value
of 0.009 rms; however, we note that more exotic galaxy formation
models might produce larger effects.

In principle, we can use these same high resolution mocks to
quantify a systematic error on ε from the full shape analyses. Using
the same procedure described above, where the cut-sky mocks de-
fine a bias and the cubic mocks estimate a systematic variance, we
find a total error in ε of 0.0021. We will discuss this further in the
following subsection.

The bottom panel of Figure 9 also shows the bias in the con-
sensus fσ8 values with respect to the MD-Patchy mocks. These
bias values are shown with the horizontal dotted lines. From top to
bottom, respectively, they represent the low redshift bin, the mid-
dle redshift bin, and the high redshift bin. The error from the MD-
Patchy mocks is larger than that derived from the high-resolution
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Figure 8. The mean distance, Hubble parameter, and fσ8 recovered from pre-reconstruction MD-Patchy mocks (points) compared to the expected results for
the input cosmology of MD-Patchy (curves). Error bars show the mock-to-mock dispersion. Red circles display the results recovered by combining the four
methods and are plotted at the correct redshift. Other points are offset in redshift for visual clarity. The two blue bands indicate the systematic error on fσ8

estimated from as the maximum of the biases found from the MD-Patchy mocks and the high resolution boxes of section 7.2.

Figure 9. Top Panel: The bias in fσ8 in each full-shape analysis, includ-
ing the consensus value, when applied to the 84 cut-sky mock galaxy cata-
logues. Here, bias is defined as the difference between the mean fσ8 value
from all mocks and the expected value given the input cosmology. The error
on each point is the standard error in the mean. The bias in the consensus
fσ8 is smaller than the error in the mean, 0.0037, so this value is adopted as
the bias in the consensus fσ8 value. Bottom Panel: The systematic variance
of the fσ8 in each full-shape analysis, including the consensus value, for
three different galaxy bias models imprinted on the same N-body simulation
(and thus the same intrinsic value of fσ8). The y-axis is the maximal differ-
ence among the three values of fσ8 obtained. For the consensus value, this
is 0.008. The total systematic error on fσ8 from the high-resolution mocks
is the quadrature sum of the values in the top and bottom panels. See the text
for more details. The three dashed lines represent the bias in fσ8 compared
to the MD-Patchy mocks for the three redshift bins. The low, middle, and
high lines represent the high, middle and low redshift bins, respectively.

mocks for the low and middle redshift bins (see the exact values in
Table 6). Thus, for the systematic error in fσ8, we use the values
from the MD-Patchy mocks for those two redshift bins, and we use
the value from the high resolution mocks for the high redshift bin.

7.3 Tests of BAO Fitting Methodologies

Anderson et al. (2014b) provides an extensive discussion of sys-
tematic errors for the BAO measurements from the reconstructed
density field. The adopted estimate was 0.003 in α for systematics
in the clustering measurements and fitting systematics, 0.003 in α
for astrophysical systematics involving galaxy bias, and 0.005 in ε
for additional clustering and fitting systematics, all taken in quadra-
ture. Anderson et al. (2014b) does not identify any dominant sys-
tematic of this type, arguing that all known effects were plausibly
below 0.001. The clustering and fitting systematics in the monopole
include effects such as mismatching of the power spectrum tem-
plate and averaging across a finite redshift range. The clustering
and fitting systematics in the quadrupole were additionally due to
uncertainties in the redshift distortion modelling, possible small ef-
fects due to averaging over the finite redshift range, and a persistent
small bias in the estimation of ε in our mock catalogues. The astro-
physical systematics were due to potentially uncorrected shifts due
to galaxy bias, despite past experience that reconstruction tends to
null these shifts.

For the present work, we believe that several aspects of the
results have improved. We have used several different fitting codes
among the various methods and found good performance with all.
Thepsuriya & Lewis (2015) further limits the template errors, in
particularly finding only small shifts with changes in the extra rel-
ativistic species Nrel, a parameter that in any case has been more
sharply limited by recent Planck results (Planck Collaboration XIII
2015). Most notably, the measurement of ε is less biased than be-
fore, giving us substantially more confidence in the anisotropic
measurement.

Vargas-Magaña et al. (2016) provides an additional explo-
ration of potential sources of theoretical systematic uncertainty in
the anisotropic BAO analysis of the completed BOSS galaxy sam-
ples. This paper also incorporates results from previous system-
atic error analyses (Vargas-Magaña et al. 2014; Cuesta et al. 2016a;
Vargas-Magaña et al. 2015; Ross et al. 2016; Beutler et al. 2016b)
to obtain a fuller accounting of potential systematic uncertainties.
Vargas-Magaña et al. (2016) explores the anisotropic BAO method-
ology in a step-by-step manner, studying concerns such as (but not
limited to): the effect of using different 2-point estimators in con-
figuration space; the effect of using a finite sample of random cat-
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Figure 10. The gray shaded histograms show the distribution of differences in fσ8 between pairs of RSD methods (four methods, hence six pairs) applied
to the 84 high-resolution cut-sky mocks described in §7.2. The cut-sky mocks are at z = 0.5. The vertical coloured lines indicate the differences in fσ8

when each pair of methods is applied to the DR12 combined sample, as listed in Table 4. Different coloured lines indicate different redshift bins. The pairwise
differences found for the data are typical of those found in application to the cut-sky mocks.

alogues; the manner in which the covariance matrix is produced;
and the fiducial cosmology assumed in the analysis. Most varia-
tions were found to be very small, below 0.0005. The more im-
portant terms are variations induced by changes in reconstruction
smoothing length, by changes in covariance matrix estimation, and
by variations in the fiducial cosmology for the distance-redshift re-
lation. However, these are all modest in size, around 0.001.

Adding the various terms in quadrature, Vargas-Magaña et al.
(2016) estimates the systematic errors due to analysis and fitting
procedures to be 0.002 for α and 0.003 for ε.

7.4 Summary Model of Systematic Errors

Having discussed these tests of our methodologies, we now bring
the results together to estimate a systematic error budget for the
consensus results. We note that while we have tested a wide range
of variations in our analysis procedures, as well as several sets of
mock catalogues, this necessarily depends on some extrapolation to
the unknown. As such, we opt to round up to an estimate of 0.003 in
α and 0.005 in ε for systematics in the clustering measurements and
fitting methodologies. This is the same as the estimate in Anderson
et al. (2014b). We treat these two errors as uncorrelated.

As stated in the previous subsection, we believe that the sys-
tematic control on BAO fitting has continued to improve relative to
Anderson et al. (2014b). However, these improvements in the BAO
analysis must be balanced against the fact that the reconstructed
results are now being combined with fits to the full anisotropic
clustering of the unreconstructed density field. In particular, while
much of the ε information comes from the BAO, some results from
the Alcock-Paczynski signal from the broadband clustering, which
is partially degenerate with the RSD anisotropies. Therefore, errors
in the RSD modelling could create systematic biases in ε. We there-

fore opt to keep the ε error at 0.005, even though the BAO fitting
studies themselves do not indicate this much uncertainty.

We also continue to estimate an additional systematic error
on α of 0.003, to be added in quadrature so as to yield a total of
0.0042, resulting from astrophysical systematics involving galaxy
bias, following Anderson et al. (2014b). We note that our fits to
mock catalogues continue to return smaller shifts than this, despite
variations in the physical models. However, more extensive work
with N-body simulations and more complicated halo occupation
models is needed to confidently shrink this error term.

As in Anderson et al. (2014b), we explicitly exclude from the
systematic error budget the possible shift in the acoustic peak due to
a coupling of the low-redshift galaxy density field to the small rela-
tive velocity between baryons and cold dark matter at high redshift
(Tseliakhovich & Hirata 2010; Dalal et al. 2010; Yoo et al. 2011;
Slepian & Eisenstein 2015; Blazek et al. 2016; Schmidt 2016).
Whether this effect exists at a measurable level remains speculative,
but observational work from BOSS argues that it is subdominant as
a systematic error. Yoo & Seljak (2013) first investigated relative
velocities in the power spectrum of BOSS DR9 galaxies, placing an
upper limit on their impact. Beutler et al. (2016a) sought the effect
in the cross-correlation of the WiggleZ and BOSS survey, again
finding no detection. More recently, Slepian et al. (2016b) search
for the distinctive acoustic-scale signature of this coupling in the
three-point correlation function of DR12 CMASS galaxies. They
find no detection and use the results of Blazek et al. (2016) to place
an 0.3% rms limit on the bias on the BAO-inferred distance scale
resulting from the relative velocities. We have also tested whether
including these velocities in the BAO template, following Blazek et
al. (2016) and marginalizing over a free amplitude, alters the best
fit to our pre-reconstruction measurements. We find at most a 0.3σ
shift in α, consistent with the results of Slepian et al. (2016b), in-
dicating no preference for relative velocities in the two-point clus-
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tering. Schmidt (2016) argues for further acoustic-scale imprints of
the relative variations of the baryon and dark matter density fields,
highlighting the possibility that galaxy bias could depend on the
small large-scale variations in the baryon fraction (Barkana & Loeb
2011). This remains an open topic — see Soumagnac et al. (2016)
for a novel but inconclusive search for a related effect.

Turning now to the RSD fits, Fig. 8 compares the two values
for the systematic error on fσ8 from the MD-Patchy mock com-
parison and the high-resolution challenge mocks described in sec-
tions 7.1 and 7.2. The MD-Patchy bias is larger for the low- and
intermediate-redshift bins, while the error from the high resolution
mocks is larger for the high redshift bin. We follow a conservative
approach and define the systematic errors for each redshift bin as
the maximum of these two estimates. We therefore adopt system-
atic errors on fσ8 given by 0.024, 0.015 and 0.009 for our low,
intermediate and high redshift bins, respectively. We note that the
middle bin differs (negligibly) from the 0.016 in Section 7.2 due to
slight evolution late in the development of the paper.

In principle, this systematic error in fσ8 would be correlated
with the systematic error in ε. However, the correlations in the sta-
tistical errors of these parameters are not particularly large (≈ −0.6
for all redshift bins) due to the sizeable role of the BAO, which
is less degenerate with modulations of the quadrupole amplitude
caused by the RSD. Taking the slope of the statistical error corre-
lation as an indication of the coupling in the quadrupole between
the broadband Alcock-Paczynski effect and the RSD, our system-
atic errors on fσ8 would map to errors on ε of 0.0033, 0.0018,
and 0.0012 for each of the redshift bins. These are smaller than
the 0.005 rms error from Anderson et al. (2014b), as is the error
estimated directly from the high resolution mocks in section 7.2,
0.0021. Coupled with the improved fitting of ε, we opt to keep the
systematic error on ε at 0.005 rms. We neglect the correlations of
this with the fσ8 systematic error for simplicity and assume the
same systematic errors in α and ε for out BAO-only, full-shape and
final BAO+FS constraints.

Having specified our estimate of independent systematic un-
certainty in α, ε, and fσ8, we also need to specify how these might
correlate between our three redshift bins. Declaring the systematic
errors to be independent between the redshift bins would be over-
optimistic as regards redshift-independent shifts if in fact the errors
in the three bins are highly correlated. We do expect substantial
correlations across redshift: our fitting methodologies are the same
at each redshift, and the galaxies in the three samples are rather
similar, all red galaxies with rather little change in luminosity or
clustering amplitude. We see little reason, for example, that astro-
physical shifts of the acoustic scale due to galaxy bias would differ
much between z = 0.6 LRGs and those at z = 0.3. On the other
hand, treating the errors as fully correlated is also an extreme, as it
excludes mild systematic variation in redshift. We therefore adopt
an intermediate ansatz by introducing off-diagonal redshift cou-
plings of 0.75 in the reduced covariance matrix representing our
systematic errors on all parameters. This corresponds to superpos-
ing a fully correlated error that is 0.87 of the total with additional
independent errors per redshift bin that are 0.50 of the total. Alter-
natively stated, in this ansatz, the variance of the common mode is
10-fold larger than the variance of the two other modes.

We note, however, that because the systematic error for fσ8

changes with redshift (unlike for α and ε), the common mode
favoured by this ansatz is not redshift independent. A redshift-
independent shift in fσ8 is constrained to have 0.008 rms in our
model. For comparison, had we chosen the three bins to be fully in-
dependent, the constraints on the redshift-independent shift would

have been 6% stronger. A correlation coefficient around 0.45 max-
imizes the error for this shift, but at a level only 12% worse than
our model. Noting that the systematic errors are subdominant to
statistical errors in all cases, we conclude that the choice of corre-
lation coefficients for α, ε, or fσ8 does not substantially impact our
cosmological conclusions.

8 RESULTS FROM THE BOSS COMBINED SAMPLE

8.1 Combining measurements and likelihoods

As described in the previous sections, we have computed the pa-
rameter combinations DM (z)/rd, H(z)rd and fσ8(z) in three
overlapping redshift slices using multiple clustering statistics and
modelling assumptions. Although they are of course covariant,
these estimates do not contain the same information nor are they af-
fected by noise in the same way. This implies that their combination
can have a higher constraining power than each individual measure-
ment. With this in mind, we combine the posterior distributions ob-
tained from our BAO-only and full-shape measurements into sets
of consensus constraints that optimally capture all of the informa-
tion they provide. To do this we follow the method of Sánchez et
al. (2016b), which we summarize below.

We wish to combine the results of m different statistical anal-
yses applied to a given data set, each leading to an estimate of the
same set of p parameters. If the posteriors of these parameters are
well described by a multivariate Gaussian distribution, the results
of any given method i can be represented by an array of p mea-
surements Di and their corresponding p×p covariance matrix Cii.
The full set of measurements obtained from the m different meth-
ods corresponds to a set of m× p highly correlated measurements.
As shown in Sánchez et al. (2016b), it is possible to compress the
full information contained in these measurements into a single set
of p consensus values, Dc, with its corresponding p×p covariance
matrix, Cc. A crucial ingredient for this combination is the total
covariance matrix

Ctot =

 C11 · · · C1m

...
. . .

...
Cm1 · · · Cmm

 , (15)

where each off-diagonal block Cij represents the cross-covariance
matrix between the results of methods i and j. In order to write
down the explicit solutions for Dc and Cc we first define a total
precision matrix as

Ψtot ≡ C−1
tot, (16)

which we divide in blocks of size p× p as

Ψtot =

 Ψ11 · · · Ψ1m

...
. . .

...
Ψm1 · · · Ψmm

 . (17)

The general expression for Cc can then be written as

Cc ≡ Ψ−1
c ≡

(
m∑
i=1

m∑
j=1

Ψij

)−1

, (18)

while Dc is given by

Dc = Ψ−1
c

m∑
i=1

(
m∑
j=1

Ψji

)
Di. (19)
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Table 7. Final consensus constraints on DM
(
rd,fid/rd

)
, H
(
rd/rd,fid

)
, and f(z)σ8(z) for the BAO-only, full-shape and joint (BAO+FS) measurements .

Note that BAO-only results are post-reconstruction while full-shape results are pre-reconstruction, and the (strong) covariance between them is accounted for
when combining to obtain the BAO+FS column. In each column, the first error corresponds to the statistical uncertainty derived from the combination of the
posterior distributions, while the second value represents the systematic error assigned to these results as described in Section 7. In our fiducial cosmology,
rd,fid = 147.78 Mpc. The cosmological analysis presented in Section 9 is based on these values.

Measurement redshift BAO-only Full-shape BAO+FS

DM
(
rd,fid/rd

)
[Mpc] z = 0.38 1512± 22± 11 1529± 24± 11 1518± 20± 11

DM
(
rd,fid/rd

)
[Mpc] z = 0.51 1975± 27± 14 2007± 29± 15 1977± 23± 14

DM
(
rd,fid/rd

)
[Mpc] z = 0.61 2307± 33± 17 2274± 36± 17 2283± 28± 16

H
(
rd/rd,fid

)
[km s−1Mpc−1] z = 0.38 81.2± 2.2± 1.0 81.2± 2.0± 1.0 81.5± 1.7± 0.9

H
(
rd/rd,fid

)
[km s−1Mpc−1] z = 0.51 90.9± 2.1± 1.1 88.3± 2.1± 1.0 90.5± 1.7± 1.0

H
(
rd/rd,fid

)
[km s−1Mpc−1] z = 0.61 99.0± 2.2± 1.2 95.6± 2.4± 1.1 97.3± 1.8± 1.1

fσ8 z = 0.38 - 0.502± 0.041± 0.024 0.497± 0.039± 0.024
fσ8 z = 0.51 - 0.459± 0.037± 0.015 0.458± 0.035± 0.015

fσ8 z = 0.61 - 0.419± 0.036± 0.009 0.436± 0.034± 0.009

Table 8. The covariance matrix and precision matrix of the BAO+FS consensus constraints, including systematic errors. The matrices cij and fij are the
reduced covariance and reduced precision matrix, multiplied by 104 for conciseness. cij is in the lower triangle; fij is the upper triangle. σi is square root of
the diagonal of the covariance matrix; si is the square root of the diagonal of the precision matrix. Hence, the full matrices would be σiσjcij and sisjfij .
The row labels omit factors of (rd/rd,fid) and the units for conciseness; these are supplied in Table 7. The on-line files have the full numerical precision,
which we recommend for parameter fits.

Mean σi 104cij (lower) or 104fij (upper) 1/si

DM (0.38) 1518 22 10000 -750 -3675 -4686 239 1781 495 -166 -85 18
H(0.38) 81.5 1.9 2280 10000 -2904 126 -4426 1196 -380 465 -73 1.6

fσ8(0.38) 0.497 0.045 3882 3249 10000 1764 1588 -4669 299 -79 625 0.034
DM (0.51) 1977 27 4970 1536 1639 10000 -737 -3662 -4764 375 1922 18
H(0.51) 90.4 1.9 1117 4873 1060 2326 10000 -2855 253 -5140 1452 1.4

fσ8(0.51) 0.458 0.038 1797 1726 4773 3891 3039 10000 1733 1631 -4990 0.025
DM (0.61) 2283 32 1991 984 237 5120 1571 2046 10000 -906 -4042 24
H(0.61) 97.3 2.1 520 2307 108 1211 5449 1231 2408 10000 -2565 1.7

fσ8(0.61) 0.436 0.034 567 725 1704 1992 1584 5103 4358 2971 10000 0.026

This methodology can also be used to combine posterior dis-
tributions with different number of parameters. In this case the fi-
nal consensus constraints will correspond to the parameter space
defined by the union of those of the individual measurements. In
particular, in order to combine our BAO-only and full-shape con-
straints we are interested in the case in which a given method i
gives constraints on the first p − 1 parameters only, with an asso-
ciated (p − 1) × (p − 1) covariance matrix C̃ii. These results can
be considered as including a constraint on the remaining parameter,
but with an infinite uncertainty, that is

Cii =

(
C̃ii 0
0 ∞

)
. (20)

In the total covariance matrix Ctot the rows and columns corre-
sponding to the undetermined parameter will be zero. This struc-
ture will be inherited by Ψtot, where also the diagonal entry corre-
sponding to this parameter will cancel. It is then possible to apply
equations (18) and (19) to derive the final consensus values that
combine the information from all measurements.

Sánchez et al. (2016b) tested this technique by using it to com-
bine the results obtained from the application of the BAO-only and
full-shape analyses described in Sections 5 and 6 to a sub-set of
999 MD-Patchy mock catalogues described in Section 4, showing
that in all cases the obtained consensus constraints represent a re-

duction of the allowed region of the parameter space with respect
to the results of each individual method.

8.2 Consensus constraints from BOSS

As shown in our companion papers, the posterior distributions re-
covered from the different analysis methodologies applied to BOSS
are well described by Gaussian multivariate distributions, which
means that we can apply the methodology described in the previ-
ous section to obtain our consensus results. We will obtain three
sets of consensus results, from the following measurements: post-
reconstruction BAO (denoted as BAO-only), pre-reconstruction
full-shape measurements (denoted as full-shape or FS), and finally,
a final consensus set from combining post-reconstruction BAO with
pre-reconstruction full-shape measurements, denoted as BAO+FS.
For BAO-only measurements, which are only sensitive to the geo-
metric quantities DM (z)/rd and H(z)rd, we have p = 2, while
for full-shape fits, which can also constrain fσ8(z), p = 3.

The application of equations (18) and (19) requires the knowl-
edge of the total covariance matrices Ctot for each case. For the di-
agonal blocks Cii, we use the covariance matrices derived from the
posterior distributions of each analysis method. We construct the
off-diagonal blocks Cij using the cross-correlation coefficients de-
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Figure 11. Likelihood contours, showing the 68 per cent and 95 per cent confidence intervals for various combinations of parameters in our three redshift bins.
From left to right we show the constraints on:H(z)(rd/rd,fid) andDM (z)(rd,fid/rd), FAP(z) andDV (z)/rd, fσ8(z) andDV (z)/rd, and finally fσ8(z)
and FAP(z). The black contours show the constraints from post-reconstruction BAO only, the green contours show the constraints from the pre-reconstruction
full-shape measurements, and the red filled contours show our final BAO+FS combined constraints. These contours include of the systematic error bars quoted
in Section 7. The blue solid lines correspond to the constraints inferred from the Planck CMB measurements under the assumption of a ΛCDM model.

rived by Sánchez et al. (2016b) from the application of the different
methods to the MD-Patchy mock catalogues.

The solid black contours in Figures 4 and 6 correspond to
the BAO-only and full-shape consensus constraints, respectively,
derived by applying equations (18) and (19) to the results of our
companion papers. The final covariance matrices of our consensus
constraints are obtained by adding the matrices Cc derived from
the combination of the posterior distributions, which represent the
statistical uncertainties of our results, with that of the systematic er-
rors described in Section 7.4. The corresponding one-dimensional
marginalized constraints are listed in the third and fourth columns
of Table 7, where the first error accompanying each value corre-
spond to the statistical 68 per cent CL, and the second one repre-
sents the systematic error assigned to these results (see Section 7.4).

Fig. 11 illustrates the principal observational results of this
paper in the form of confidence contours from the BAO-only
(black) and full-shape (green) consensus constraints in each of
our three redshift bins, for different pairwise combinations of

DM (z)×(rd,fid/rd),H(z)×(rd/rd,fid),DV (z)/rd, fσ8(z), and
the Alcock-Paczynski parameter FAP(z). The filled contours rep-
resent the combination of these results into the final set of BAO+FS
consensus constraints representing the full information obtained
from our pre- and post-reconstruction clustering measurements.
The corresponding one-dimensional constraints are quoted in the
last column of Table 7 and shown as a function of redshift alongside
the ΛCDM best-fit Planck prediction in Fig. 12. The covariance and
precision matrices are in Table 8.

The statistical uncertainties in DM (z)/rd, H(z)rd, and
fσ8(z) are all reduced in our final consensus values, with respect to
those in any individual method or in the BAO-only and full-shape
consensus constraints. The improvement in the statistical uncer-
tainty, with respect to the smallest quoted uncertainty in each of
the individual measurements, is typically 15% for DM (z), 20%
for H(z), and 10% for fσ8. These improvements are in agree-
ment with what is expected from tests on the mocks (Sánchez et al.
2016b). Figure 9 further shows that, on high-fidelity mocks, con-
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Figure 12. Final consensus constraints on DM(z), H(z) and fσ8(z), shown against the ΛCDM predictions from the Planck observations of the CMB
temperature and polarization. The error bars correspond to the total error including statistical variations and systematics. The results from the middle redshift
bin are shown as a open symbol as a reminder that this bin overlaps with the other two. This figure represents the values presented in the last column of Table 7,
and the error bars shown include both the statistical and systematic error.

sensus results show a smaller systematic bias than each individual
method. It is this final set of consensus values and derived likeli-
hoods that we use in our cosmological analysis in Section 9.

When expressed in terms of the average distance DV (z), our
final BAO+FS consensus constraints correspond to

DV (0.38) = (1477± 16 Mpc)

(
rd
rd,fid

)
, (21)

DV (0.51) = (1877± 19 Mpc)

(
rd
rd,fid

)
, (22)

DV (0.61) = (2140± 22 Mpc)

(
rd
rd,fid

)
. (23)

These values correspond to distance measurements of 1.1% pre-
cision for our low-redshift bin and 1.0% for the intermediate and
high-redshift bins. The 0.2% statistical error on rd, based on Planck
2015 CMB constraints assuming standard matter and radiation con-
tent, makes a negligible contribution when added in quadrature.
These DV values are covariant, though the first and third are only
weakly so; one should use the full likelihood for fitting models.

Although it is not appropriate for cosmological fits, it can be
useful as a metric to compute the aggregate precision of the mea-
surement by combining across the three redshift bins, including our
systematic error estimates. Doing this, we find a precision of 1.0%
on the transverse distance scale, 1.6% on the radial distance scale,
and 0.8% on the spherically averaged DV . We also find a 5.7%
aggregate precision on fσ8. In all cases, these were computed as
the error on a single rescaling of the best-fit measurements in the
three redshift bins for the chosen parameter, holding the other six
measurements fixed. In the case of DV , we held FAP fixed. If in-
stead one marginalizes over the other six dimensions, the aggre-
gate errors degrade slightly by a factor of 1.1–1.2. We note that the
performance on specific parametrized models, such as in Section
9, can be different than these values, as they correspond to other
weightings of the various measurements.

In Table 7, the 1-dimensional errors onDM (z) andH(z) from
the full-shape analyses are only slightly worse than those of the
BAO-only analyses even though the constraints on these quanti-
ties come mainly from BAO and the BAO-only analyses take ad-
vantage of precision gains from reconstruction. Figure 11 helps
to resolve this conundrum. The values of DM (z) and H(z) are
more strongly correlated for the BAO-only analysis, so while the

DV (z) constraints from post-reconstruction BAO-only are appre-
ciably tighter than those from pre-reconstruction full-shape, the
marginalized constraints on DM (z) and H(z) are not. The con-
straints on FAP(z) from sub-BAO scales in the full-shape anal-
yses help to break the degeneracy between DM and H , leading
to rounder confidence contours and smaller errors on FAP. The
combined BAO+FS contours are able to take advantage of both the
sharpening of the BAO feature by reconstruction and the improved
degeneracy breaking from the sub-BAO Alcock-Paczynksi effect.
In all of the projections shown here, the 68% CL contour from
our consensus constraints overlaps the 68% CL contour from the
Planck 2015 CMB results assuming a ΛCDM cosmological model,
demonstrating impressive success of this model in reproducing the
expansion history and rate of structure growth over the redshift
range 0.2 < z < 0.75. We provide more detailed assessment of
the cosmological implications of these measurements in §9.

8.3 Comparison to Past Work

In this section, we compare our results to previous work. We begin
by summarizing BAO-distance measurements made by the BOSS
team since DR9, which we collect in Table 9 and Fig. 13. We quote
values at zeff = 0.32 and zeff = 0.57, corresponding to the ef-
fective redshifts of the LOWZ and CMASS samples. To put the re-
sults of this paper in the same context, we extrapolate our distance
measurements to the above values of effective redshift, assuming a
flat ΛCDM cosmology (Ωm = 0.31). The DR9, DR10, and DR11
measurements use 2-point statistics in configuration and Fourier
space, and the improvement of precision with the growing BOSS
footprint is evident in the statistical error bars, while the agreement
between the measurements is reassuring. The DR12 measurements
come from a variety of methods including 3-point statistics in both
configuration and Fourier space as well as different approaches to
redshift binning and quantifying anisotropy to separate DM and
H . Some of these analyses use full-shape information and others
use BAO only. Most of the DR12 analyses listed in Table 9 use the
LOWZ and CMASS catalogues, while this paper and its supporting
papers use a combined sample that is optimized to have better sta-
tistical power. The Zhao et al. (2016) and Wang et al. (2016) results
listed in Table 9 also use the combined sample.

We briefly review the different approaches of the previous
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Table 9. Comparison of BOSS BAO measurements from DR9, DR10, DR11, and DR12. The new DR12 Combined Sample measurements (BAO-only)
reported here for the low and high redshift bins have been extrapolated to z = 0.32 and z = 0.57 respectively, (assuming a ΛCDM model with Ωm = 0.31)
for direct comparison to previous measurements based on the LOWZ and CMASS samples. A fiducial sound horizon rd,fid = 147.78 Mpc is assumed. The
last two lines under DR12 are combinations of the indicated results listed earlier in the table, accounting for covariance.

DV
(
rd,fid/rd

)
DM

(
rd,fid/rd

)
H
(
rd/rd,fid

)
DV

(
rd,fid/rd

)
DM

(
rd,fid/rd

)
H
(
rd/rd,fid

)
z = 0.32 z = 0.32 z = 0.32 z = 0.57 z = 0.57 z = 0.57

[Mpc] [Mpc] [km s−1Mpc−1] [Mpc] [Mpc] [km s−1Mpc−1]

DR9 Anderson et al. (2012, 2014a) — — — 2073± 33 2188± 70 93.8± 7.9

DR10 Anderson et al. (2014b) 1262± 36 — — 2034± 28 2154± 40 95.1± 4.7
Tojeiro et al. (2014)

DR11 Anderson et al. (2014b) 1251± 25 — — 2035± 20 2209± 31 97.8± 3.4

DR12

Chuang et al. 2016 1268± 26 1262± 37 75.0± 4.0 2050± 22 2204± 36 95.5± 2.7

Cuesta et al. 2016a 1270± 22 1301± 27 78.8± 5.6 2037± 21 2210± 33 99.8± 3.7
Gil-Marı́n et al. 2016a 1274± 22 1299± 31 78.5± 4.1 2025± 18 2186± 30 98.5± 2.5

Gil-Marı́n et al. 2016b — 1239± 37 77.2± 3.8 — 2186± 35 94.2± 3.0

Gil-Marı́n et al. 2016c — 1315± 43 79.5± 3.7 — 2165± 35 93.2± 1.9
Pellejero-Ibañez et al. 2016 — 1262± 36 79.1± 3.3 — 2206± 39 96.7± 3.1

Slepian et al. 2016a — — — 2025± 35 — —
Wang et al. 2016 — 1229± 46 74.3± 5.7 — 2159± 56 92.7± 4.0

Zhao et al. 2016 — 1229± 52 78.3± 4.1 — 2153± 36 94.2± 3.6

Cuesta + G-M 2016 a 1272± 22 1301± 29 78.7± 4.7 2030± 19 2197± 28 99.3± 2.8
G-M et al. 2016 (a+b+c) — 1287± 25 78.2± 2.6 — 2179± 23 94.9± 1.5

Final This work 1270± 14 1294± 21 78.4± 2.3 2033± 21 2179± 35 96.6± 2.4
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Figure 13. A summary and evolution of BOSS measurements since DR9. The left hand panel shows measurements done at low-redshift and the right-hand
panel shows measurements done at high-redshift. All values are presented in Table 9. Error bars are 1σ and the grey band shows the results of this paper.

DR12 papers. Because the underlying galaxy data are the same,
we expect consistency at the 1σ level or better, but the robustness
of distance-scale inferences across such a wide range of analysis
methods is reassuring nonetheless. Chuang et al. (2016) use 2-
point functions in configuration space and seek to achieve the best
systematic free measurement of distances and growth rate measure-
ments by marginalizing over several nuisance terms in their anal-
ysis. Cuesta et al. (2016a) follows exactly the same methodology
as in our DR10 and DR11 analysis (Anderson et al. 2014b) with
the same type of catalogues (LOWZ and CMASS). We expect the
increase of statistical power of the derived parameters from An-

derson et al. (2014b) to Cuesta et al. (2016a) to be purely due to
the increase in our survey volume. Gil-Marı́n et al. (2016a) and
Gil-Marı́n et al. (2016b) used line of sight power-spectrum to mea-
sure the BAO position and growth rate respectively. Slepian et al.
(2016a) uses the 3-point function in configuration space to measure
the BAO position. Gil-Marı́n et al. (2016c) uses full-shape mea-
surement of the 3-point statistics and 2-point statistics in Fourier
space to constrain the BAO and RSD parameters. Our analysis pre-
sented in this paper does not involve using any 3-point function
statistics. In principle, there is additional information that can come
from the higher order correlation function (see discussions of infor-
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mation correlation between 2- and 3-point functions in Slepian et
al. (2016a) and Gil-Marı́n et al. (2016c)). Wang et al. (2016) and
Zhao et al. (2016) analyzed the BAO distances in nine redshift bins
instead of the three in our analysis in both configuration space and
Fourier space. Pellejero-Ibañez et al. (2016) analyzed the sample
with minimal assumptions of cosmological priors and found con-
sistent results as our analysis.

A comparison with Cuesta et al. (2016a) and Gil-Marı́n et al.
(2016a) is of particular interest, as those papers present similar con-
figuration and Fourier space analyses to the ones used here, for
the same BOSS data set, but breaking the samples by the LOWZ
and CMASS target selections rather than the finer redshift binning
adopted in this paper. In the following discussion we will focus on
their consensus results, obtained from combining the likelihoods
derived from the correlation and power spectrum. Those consen-
sus results are presented in Gil-Marı́n et al. (2016a). The perfor-
mance of our updated methodology can be tested against the above
consensus results by comparing the precision in cosmic distance
measurements. We make an approximate comparison by equating
LOWZ to our low redshift bin, and CMASS to our high redshift
bin. Note that our low redshift bin has a larger effective volume
than the LOWZ sample Veff,low/Veff,LOWZ = 1.7, and our high
redshift bin has a smaller effective volume than the CMASS sam-
ple, Veff,high/Veff,CMASS = 0.8. There is a trade-off in the preci-
sion of the low redshift bin, at the expense of having less precision
in the high redshift bin, motivated by the redshift boundary being
shifted from z = 0.43 to z = 0.50. To clarify the comparison,
we will rescale in the following discussion the LOWZ uncertain-
ties by a factor of

√
Veff,LOWZ/Veff,low = 0.77 and the CMASS

uncertainties by a factor of
√
Veff,CMASS/Veff,high = 1.12, so the

reader should assume this factor implicitly in all text throughout
this section. However, Fig. 13 and Table 9 have no such corrections
applied to them.

For comparison, we focus on theDV constraints, as these pro-
vide the most information from the post-reconstruction BAO anal-
ysis and we regard the LOWZ volume as too small to obtain robust
H(z) likelihoods (the LOWZ DV likelihood is what was used in
the Cuesta et al. 2016a cosmological analysis). The consensus pre-
cision onDV from the combination of the Cuesta et al. (2016a) and
Gil-Marı́n et al. (2016a) results is 1.3 per cent for LOWZ and 1.0
per cent for CMASS, after the above scaling by

√
Veff . The consen-

susDV precision we obtain (see Section 8.2) is 20 per cent better at
low redshift and the same at high redshift, and theseDV constraints
come almost entirely from the post-reconstruction BAO analysis
(see the second column of Fig. 11). Our improvement at low red-
shift is compatible with the fact that our error in DV is smaller
than the standard deviation of the mock samples (see Table 5) by
20 per cent, while the results presented in Cuesta et al. (2016a) ob-
tained slightly worse precision than the equivalent quantity from
the mocks. Such fluctuations in precision are consistent with those
found in our mock samples. In terms of the standard deviation, the
consensus mock results for DV in Cuesta et al. (2016a) agree with
the consensus results presented in Table 5, at the number of sig-
nificant digits we quote. Thus, results from this comparison are
consistent with the expectation from the tests in mock catalogues
described in Section 2.3.

Figure 14 plots our BAO-only results in the wider con-
text of other surveys and higher redshift measurements from the
BOSS Lyα forest. Blue, green, and red curves/points showDV (z),
DM (z), and DH(z) ≡ c/H(z), divided by rd and with redshift
scalings that fit all three curves on the same plot with visible er-
ror bars. The three lines show the predictions of a ΛCDM model

with the Planck 2015 parameters. Symbols show BAO measure-
ments from z ≈ 0.1 to z ≈ 2.2 collected from 6dFGS (Beut-
ler et al. 2011), SDSS-I/II (Percival et al. 2010; Ross et al. 2015),
WiggleZ (Blake et al. 2011a,b), and the BOSS Lyα forest auto-
and cross-correlations (Delubac et al. 2015 and Font-Ribera et al.
2014, respectively), in addition to the BOSS galaxy measurements
described here. The Percival et al. (2010) analysis includes SDSS
LRGs and overlaps significantly with BOSS, while the main galaxy
sample (MGS) analyzed, with reconstruction, by Ross et al. (2015)
is essentially independent. The WiggleZ survey volume also over-
laps BOSS, but 6dFGS is again independent. We find consistency
across all galaxy BAO measurements. Moderate tension with the
Lyα forest BAO measurements remains, as discussed in detail by
Delubac et al. (2015) and Aubourg et al. (2015). BAO analyses of
the DR12 Lyα forest data set are in process (J. Bautista et al., in
prep.).

Next we compare our fσ8 results to those from the literature.
As before, we begin by collecting the work done by the BOSS
team, which we summarize on the left-hand side of Fig. 15. We
include measurements and quoted uncertainties from DR11 stud-
ies (Alam et al. 2015b; Beutler et al. 2014a; Samushia et al. 2014;
Sánchez et al. 2014) and DR12 (Gil-Marı́n et al. 2016b; Chuang
et al. 2016). The improved precision at low redshift in the present
analysis greatly helps to test the predictions of structure growth in
the universe, showing consistency with ΛCDM and GR. We find
excellent consistency among different methods and data releases.
Given the small area increase between DR11 and DR12, the dif-
ferences seen in Figure 15 are likely a consequence of different
redshift binning and analysis/modelling methods. A more detailed
study of the impact of different methodologies on fσ8 measure-
ments, using high-fidelity mocks, can be found in Tinker et al.
(2016) for DR12 measurements.

The right panel of Figure 15 compares our measurements
of fσ8 results those from other surveys: 2dfGRS (Percival et al.
2004b), 6dFGS (Beutler et al. 2012), GAMA (Blake et al. 2013),
WiggleZ (Blake et al. 2012), VVDS (Guzzo et al. 2008), and
VIPERS (de la Torre et al. 2013), as well as the measurements from
the SDSS-I and -II main galaxy sample (Howlett et al. 2015, MGS)
and the SDSS-II LRG sample (Oka et al. 2014, DR7). The mea-
surements plotted are conditional constraints on fσ8 based on the
Planck 2015 ΛCDM cosmological model. This can be seen as a di-
rect test of General Relativity. We find that our results confirm the
validity of General Relativity. We also find reassuring consistency
between our measurements and those by different surveys.

It is also interesting to compare this paper’s full-shape re-
sults (Table 7) with the full-shape analysis of the DR12 LOWZ
and CMASS samples, done in Fourier space by Gil-Marı́n et al.
(2016b) (scaled again by

√
Veff factors). Approximating LOWZ to

our low redshift bin and CMASS to our high redshift bin, we find a
DM measurement of 1.7% in the low redshift bin and 1.8% in the
high redshift bin, which compares to 2.3% and 1.8% in Gil-Marı́n
et al. (2016b), respectively. Regarding H(z), our measurement of
2.8% in both the low and high redshift bins compares to 3.8% and
3.6% in Gil-Marı́n et al. (2016b), again showing a clear improve-
ment in the precision when using our new methodology. Finally
our fσ8 constraint of 9.5% and 8.9% in the low and high redshift
bin compares to the LOWZ constraint of 12.1% and 9.6% in Gil-
Marı́n et al. (2016b), which similarly to DM and H , shows a clear
improvement in the low redshift bin.

Additionally, we display the results based on the combina-
tion of the pre-reconstructed power spectrum, bispectrum and post-
reconstruction BAO (from Gil-Marı́n et al. 2016a,b,c), which is
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points are plotted at the correct effective redshift. Measurements shown by open points are not incorporated in our cosmological parameter analysis because
they are not independent of the BOSS measurements.

presented in Table 9 and denoted as G-M et al. (2016 a+b+c). The
combination of these three sets of results is presented at the end
of Gil-Marı́n et al. (2016c). As before, this case is compared to
our full-shape column of Table 7, approximating LOWZ to our low
redshift bin and CMASS to our high redshift bin, where the vol-
ume difference factor has been taken into account. Our DM mea-
surement of 1.7% in the low redshift bin and 1.8% in the high red-
shift bin compares to 1.5% and 1.1%, respectively, in Gil-Marı́n
2016 a+b+c. Regarding H(z), our measurement of 2.8% in both
the low and high redshift bins compares to 2.5% and 1.8% in Gil-
Marı́n 2016 a+b+c. Finally our fσ8 constraint of 9.5% and 8.9% in
the low and high redshift bin compares to the LOWZ and CMASS
measurements of 9.2% and 6.0% by Gil-Marin 2016a+b+c. One
can attribute the improvement in Gil-Marı́n 2016a+b+c when com-
pared to our measurement to the use of the bispectrum, which has
not been used in our analysis.
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-II main galaxy sample (Howlett et al. 2015, MGS) and the SDSS-II LRG sample (Oka et al. 2014, DR7). We have plotted conditional constraints on fσ8

assuming a Planck ΛCDM background cosmology. This is one of the best evidence of how growth rate measurements from BOSS again reaffirm the validity
of General Relativity in large scales.

9 COSMOLOGICAL PARAMETERS

9.1 Data sets

We now turn to cosmological interpretation of our results. We will
use the consensus measurements, including our estimated system-
atic error contribution to the covariance matrix, from the BAO-only
and BAO+FS columns of Table 3. In our subsequent figures and ta-
bles, the former case is simply labeled “BAO.”

Following Aubourg et al. (2015), we include the 6dFGS and
SDSS MGS BAO measurements and the BOSS DR11 Lyα forest
BAO measurements (see Fig. 14 and §8.3). These are largely in-
dependent and have utilized similar methodologies. We opt not to
include other BAO measurements, notably those from photomet-
ric clustering and from the WiggleZ survey (Blake et al. 2011a,
2012), as the volumes partially overlap BOSS and the errors are
sufficiently large that a proper inclusion would not substantially
affect the results. As shown in Aubourg et al. (2015), these mea-
surements are in good agreement with those from BOSS. We note
in particular the good match to the WiggleZ results, as this was a
sample of strongly star-forming galaxies in marked contrast to the
red massive galaxies used in BOSS. The dual-tracer opportunity
was studied extensively with a joint analysis of the overlap region
of WiggleZ and BOSS (Beutler et al. 2016a).

We further opt not to include other RSD measurements be-
yond BOSS, as they come from a variety of analysis and modelling
approaches. One can see from Figure 15 that the measurements
from other surveys are consistent with those from BOSS within
their quoted errors, and the error bars in all cases are large enough
that there are potential gains from combining multiple measure-
ments. However, in contrast to BAO measurements, systematic er-
rors associated with non-linear clustering and galaxy bias are a ma-
jor component of the error budget in any RSD analysis, and these
systematics may well be covariant from one analysis to another in
a way that is difficult to quantify. Because of systematic error con-
tributions, we do not consider it feasible to carry out a robust joint
RSD analysis with other measurements.

In all cases, we combine with CMB anisotropy data from the

Planck 2015 release (Planck Collaboration XIII 2015). We use the
power spectra for both temperature and polarization; in detail, we
use the likelihoods plik dx11dr2 HM v18 TTTEEE and lowTEB
for the high and low multipoles, respectively. We do not include
the information from the lensing of the CMB in the 4-point corre-
lations of the CMB temperature anisotropies. We will discuss the
impact of the recent (Planck Collaboration XLVI 2016) large-angle
polarization results in §9.4.

We note that there is some mild tension between the Planck
2015 results and those from combining WMAP, SPT, and ACT
(Calabrese et al. 2013; Spergel et al. 2015; Bennett et al. 2016).
The Planck data set yields a mildly higher matter density Ωmh

2,
which for ΛCDM implies a higher Ωm and σ8 and a lower H0.
As in the DR11 results, our BOSS results for ΛCDM fall in be-
tween these two and therefore do not prefer either CMB option.
We have presented non-Planck results in Anderson et al. (2014b)
and Aubourg et al. (2015) and do not repeat that here, as the sense
of the differences has not changed.

Finally, for some cases, we utilize measurements of the
distance-redshift relation from Type Ia supernovae (SNe) from the
Joint Lightcurve Analysis (JLA, Betoule et al. 2014), which com-
bined SNe from the SDSS-II Supernova Survey (Sako et al. 2014)
and the Supernova Legacy Survey 3-year data set (Conley et al.
2011) together with local and high-z data sets. The combination
of SN measurements with BAO is particularly powerful for con-
straining the low-redshift distance scale (e.g., Mehta et al. 2012;
Anderson et al. 2014b). The SNe provide a higher precision mea-
surement of relative distance at lower redshift where the BAO is
limited by cosmic volume, but the BAO provides an absolute scale
that connects to higher redshift and particularly to the CMB acous-
tic scale at z = 1000. The combination of BAO and SN data also
allows an “inverse distance ladder” measurement of H0 that uses
the CMB-based calibration of rd but is almost entirely insensitive
to the dark energy model and space curvature over the range al-
lowed by observations (Aubourg et al. 2015).
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9.2 Cosmological Parameter Results: Dark Energy and
Curvature

We now use these results to constrain parametrized cosmological
models. We will do this using Markov Chain Monte Carlo, follow-
ing procedures similar to those described in Aubourg et al. (2015),
but due to use of the full power spectrum shape data we do not
run any chains using that paper’s simplified “background evolu-
tion only” code. Instead, we calculate all our chains using the July
2015 version of the workhorse COSMOMC code (Lewis & Bridle
2002). The code was minimally modified to add the latest galaxy
data points and their covariance, the Lyα BAO datasets, and two
optional Afσ8 and Bfσ8 parameters described later in the text. We
use a minimal neutrino sector, with one species with a mass of 0.06
eV/c2 and two massless, corresponding to the lightest possible sum
of neutrino masses consistent with atmospheric and solar oscilla-
tion experiments (Abe et al. 2014; Adamson et al. 2014; Gando et
al. 2013), unless otherwise mentioned.

We first consider models that vary the cosmological distance

scale with spatial curvature or parametrizations of the dark energy
equation of state viaw(a) = w0+wa(1−a) (Chevallier & Polarski
2001; Linder 2003). These results are shown in Table 10 for vari-
ous combinations of measurements. In all cases, the table shows the
mean and 1σ error, marginalized over other parameters. Of course,
some parameters are covariant, as illustrated by contours in some
of our figures. Our model spaces always include variations in the
matter density Ωmh

2, the baryon density Ωbh
2, the amplitude and

spectral index of the primordial spectrum, and the optical depth to
recombination. However, we do not show results for these param-
eters as they are heavily dominated by the CMB and are not the
focus of our low-redshift investigations.

We begin with the standard cosmology, the ΛCDM model,
which includes a flat Universe with a cosmological constant and
cold dark matter. As is well known, CMB anisotropy data alone
can constrain this model well: the acoustic peaks imply the baryon
and matter density, and thereby the sound horizon, allowing the
acoustic peak to determine the angular diameter distance to re-
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Cosmological Data Sets Ωmh2 Ωm H0 ΩK w0 wa
Model km/s/Mpc

ΛCDM Planck 0.1429 (14) 0.317 (9) 67.2 (7) ... ... ...
ΛCDM Planck + BAO 0.1418 (10) 0.309 (6) 67.7 (5) ... ... ...
ΛCDM Planck + BAO + FS 0.1419 (10) 0.311 (6) 67.6 (5) ... ... ...
ΛCDM Planck + BAO + FS + SN 0.1419 (10) 0.310 (6) 67.6 (5) ... ... ...

oCDM Planck + BAO 0.1422 (14) 0.309 (7) 67.9 (7) +0.0007 (20) ... ...
oCDM Planck + BAO + FS 0.1422 (14) 0.310 (6) 67.7 (6) +0.0004 (20) ... ...
oCDM Planck + BAO + FS + SN 0.1421 (14) 0.310 (6) 67.8 (6) +0.0005 (20) ... ...

wCDM Planck + BAO 0.1424 (13) 0.302 (12) 68.8 (14) ... −1.05 (6) ...
wCDM Planck + BAO + FS 0.1421 (11) 0.309 (10) 67.9 (12) ... −1.01 (5) ...
wCDM Planck + BAO + FS + SN 0.1420 (11) 0.308 (9) 67.9 (9) ... −1.01 (4) ...

owCDM Planck + SN 0.1418 (14) 0.379 (37) 61.4 (31) −0.0252 (121) −1.19 (11) ...
owCDM Planck + BAO 0.1423 (14) 0.301 (14) 68.8 (16) −0.0003 (27) −1.05 (8) ...
owCDM Planck + BAO + FS 0.1421 (14) 0.310 (11) 67.8 (12) +0.0003 (26) −1.01 (6) ...
owCDM Planck + BAO + FS + SN 0.1421 (14) 0.309 (9) 67.9 (9) +0.0002 (23) −1.01 (4) ...

w0waCDM Planck + SN 0.1428 (14) 0.294 (16) 69.8 (18) ... −0.85 (13) −0.99 (63)
w0waCDM Planck + BAO 0.1427 (11) 0.336 (21) 65.2 (21) ... −0.63 (20) −1.16 (55)

w0waCDM Planck + BAO + FS 0.1427 (11) 0.334 (18) 65.5 (17) ... −0.68 (18) −0.98 (53)

w0waCDM Planck + BAO + FS + SN 0.1426 (11) 0.313 (9) 67.5 (10) ... −0.91 (10) −0.39 (34)

ow0waCDM Planck + BAO 0.1422 (14) 0.331 (21) 65.6 (21) −0.0022 (30) −0.66 (19) −1.22 (53)

ow0waCDM Planck + BAO + FS 0.1422 (14) 0.333 (16) 65.4 (16) −0.0020 (28) −0.67 (18) −1.12 (59)
ow0waCDM Planck + BAO + FS + SN 0.1420 (14) 0.314 (10) 67.3 (10) −0.0023 (28) −0.87 (11) −0.63 (45)

Table 10. Cosmological constraints for models varying the expansion history because of spatial curvature and/or evolving dark energy. oCDM varies the
spatial curvature, wCDM allows a constant equation of state of dark energy, and w0waCDM allows a time-evolving w(a) = w0 + (1− a)wa. The models
owCDM and ow0waCDM combine these factors. All errors are 1σ rms from our Markov chains.

combination, which in turn breaks the degeneracy between Ωm
and H0 (e.g., Spergel et al. 2003). The Planck 2015 measurements
do this exquisitely well, yielding Ωmh

2 = 0.1429 ± 0.0014,
Ωm = 0.317 ± 0.009, and H0 = 67.2 ± 0.7 km s−1 Mpc−1

(Planck Collaboration XIII 2015).
As shown already in Figures 11 and 12, our BOSS measure-

ments are fully consistent with the Planck ΛCDM model results.
The ΛCDM predictions from the Planck model fits for our distance
and growth observables match our measurements well, typically
within 1σ. The combined Lyman-α data do deviate at the 2− 2.5σ
level, which has been extensively discussed in literature (Aubourg
et al. 2015; Delubac et al. 2015; Font-Ribera et al. 2014; Sahni,
Shafieloo, & Starobinsky 2014), but the overall χ2 is consistent
with a minimal model. As such, the BOSS data do not require more
complicated cosmologies.

As was seen in Anderson et al. (2014b) and Planck Collab-
oration XIII (2015), the addition of BOSS clustering data to the
Planck results for the minimal ΛCDM model does further improve
the constraints on cosmological parameters. In particular, we find
Ωmh

2 = 0.1419 ± 0.0010 (0.6 per cent), Ωm = 0.311 ± 0.006,
and H0 = 67.6 ± 0.5 km s−1 Mpc−1 (0.6 per cent). Adding the
JLA SNe data does not further improve the errors.

We next turn to extensions that affect the distance scale, no-
tably spatial curvature and variations in the dark energy density.
In these cases, the most precise aspects of the CMB data sets suf-
fer from a geometrical degeneracy: the CMB determines the angu-
lar diameter distance to recombination very accurately, but models
that trade off low-redshift behaviour while holding this quantity
fixed are more difficult to distinguish. The latest CMB data, such
as from Planck, does offer ways to break the geometrical degener-
acy, most effectively with gravitational lensing of the CMB, but the

measurement of the low-redshift distance scale with BAO and the
Alcock-Paczynski effect offers a more direct route.

As reported in Table 10, the BOSS data do this very well.
Combining Planck and BOSS for the non-flat model with a cosmo-
logical constant yields a spatial curvature measurement of ΩK =
0.0004 ± 0.0020, confirming flatness at the 10−3 level. Similarly,
for the flat model with a constant dark energy equation of state, we
measure a valuew = −1.01±0.05, highly consistent with the cos-
mological constant. Opening both of these parameters yields a joint
measurement of ΩK = 0.0003± 0.0026 and w = −1.01± 0.06.
Focusing only on BAO, excluding the full-shape information, de-
grades this to ΩK = −0.0003± 0.0027 and w = −1.05± 0.08.

We stress that this consistency is a stringent test of the cosmo-
logical standard model. The clustering of galaxies is based on the
same underlying physics as that of the CMB anisotropies. This is
most obvious for the acoustic scale, but it is also true of the broad-
band power. We are now measuring the imprints of this physics
over a wide range of redshifts, including at recombination, and find-
ing a cosmic distance scale that returns the simple, flat, cosmolog-
ical constant model while opening not one but two new degrees of
freedom. The 6 per cent measurement of w is a compelling demon-
stration of the power of galaxy clustering to measure dark energy
and is an excellent counterpart to the dark energy evidence from
supernovae.

Beyond this, one can consider more complicated dark energy
models. However, current data do not constrain these tightly. We
use here the common w(a) = w0 + (1−a)wa model. For the case
with non-flat curvature, this is the fitting space for the Dark Energy
Task Force Figure of Merit (Albrecht et al. 2006). We continue to
find superb agreement with a flat Universe, with only 0.0028 errors
on ΩK with or without inclusion of SNe. Including the SNe data
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does sharpen the dark energy constraints, and we find a 0.45 error
on wa. While this constraint still allows order unity change in w
over ∆z ≈ 1, it is one of the strongest limits (perhaps the strongest)
yet obtained on equation-of-state evolution.

Because of the permissive limits on evolution, the errors on
w at z = 0 in these models are correspondingly worse. How-
ever, there is an intermediate “pivot” redshift zp where the er-
rors on w are minimized and where the covariance between w(z)
and wa disappears (Albrecht et al. 2006). For the combination
Planck+BAO+FS+SN in the w0waCDM model, we find that the
pivot redshift zp = 0.37 and w(zp) = −1.05 ± 0.05. For
ow0waCDM, we find zp = 0.29 and w(zp) = −1.05 ± 0.06.
We conclude that the current combination of data is able to say
that Universe is flat at the 10−3 level and that the dark energy was
within ∆w ∼ 10−1 of a cosmological constant at some epoch in
the fairly recent past, but our knowledge of w(z) remains limited.

Using our constraints to compute the Dark Energy Task Force
Figure of Merit (Albrecht et al. 2006), we find a result of 32.6 with
SNe and 22.9 without SNe for [σ(w(zp))σ(wa)]−1. For compari-
son, the BAO-only analysis of Cuesta et al. (2016a) found a Figure
of Merit of 24.3 with Planck+BAO+SN and only 8.3 without SNe.
These comparisons show that the present analysis with 3 redshift
bins and including the full-shape fits has notably improved the Fig-
ure of Merit. If we construct the Figure of Merit while assuming
flatness (and thereby different from the Dark Energy Task Force),
we find 75.4 with SNe and 44.6 without.

Our results are consistent with the distance-redshift relation
from the JLA SNe. For example, adding the SNe does not signifi-
cantly alter the best-fit model parameters. But the errors on a con-
stant w do continue to improve, to 0.04 in both the flat case and
in the joint fit with curvature. Figure 17 shows a comparison for
both owCDM and w0waCDM for galaxy clustering and SN results
separately as well as the combination. We see that in owCDM, the
dark energy constraints even without SNe are now very tight, but
the SN results are consistent and decrease the errors. It is notable
that the two data sets have sharply different degeneracy directions
and therefore will continue to be good partners in our cosmological
constraints. For w0waCDM, the two data sets are of more compa-
rable power, again with different degeneracy directions, so that the
combination is substantially tighter.

9.3 Cosmological Parameter Results: Dark Radiation

We next consider models with variations in the relativistic energy
density. These are parametrized by Neff , the effective number of
neutrino species. Any new density above the 3.046 expected from
standard model neutrino decoupling (Mangano et al. 2005) is as-
sumed to be a massless species, sometimes referred to as “dark
radiation” (e.g., Archidiacono et al. 2011; Calabrese et al. 2011),
which may or may not result from the neutrino sector (Steigman
et al. 1997; Seljak et al. 2006; Ichikawa et al. 2007; Mangano et
al. 2007). Such models are important in BAO studies because the
extra density in the early Universe results in a higher Hubble pa-
rameter before recombination, which in turn produces a smaller
sound horizon rd. Since the BAO method actually measures the ra-
tio of distance to the sound horizon, this results in smaller inferred
distances and larger low-redshift Hubble parameters (Eisenstein &
White 2004; Archidiacono et al. 2011; Mehta et al. 2012; Ander-
son et al. 2014b; Aubourg et al. 2015). This is of substantial current
interest because several high-precision direct measurements of H0

yield values about 10 per cent higher than that inferred from combi-
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Figure 18. The constraints on H0 and the relativistic energy density,
parametrized byNeff . (Top) Constraints for the ΛCDM parameter space us-
ing Planck+BAO+FS, with and without direct H0 measurements. (Bottom)
Constraints for the owCDM parameter space using Planck+BAO+FS+SNe,
with and without direct H0 measurements. In both cases, the combination
with the H0 = 73.0 ± 1.8 km s−1 Mpc−1 measurement of Riess et al.
(2016) causes a shift toward higher Neff and higher H0, with χ2 rising by
8.

nations of Planck and BOSS BAO data (Riess et al. 2011; Freedman
et al. 2012; Riess et al. 2016).

However, the Planck 2015 results appear to largely close the
window for altering the sound horizon enough to reconcile the
BAO+SN “inverse distance ladder” H0 with these higher direct
measurements. (Planck Collaboration XIII 2015). The physics un-
derlying this constraint is that Silk damping (Silk 1968) is a dif-
fusion process whose lengthscale depends on the square root of
time, while the sound horizon depends linearly on time. The am-
plitude of the small-angle CMB fluctuations, when standardized by
the angular acoustic scale, thereby measures the Hubble parameter
at recombination and thus constrains Neff .

Table 11 shows our parameter results for models with free
Neff , for several model and data combinations. Like Planck Col-
laboration XIII (2015), our chains for ΛCDM find tight constraints,
Neff = 3.03 ± 0.18. As this central value matches that of the
standard model, the central values of Ωm and H0 move negligi-
bly; however, the error on H0 with free Neff increases from 0.5 to
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Cosmological Data Sets Ωmh2 Ωm H0 ΩK w0 Neff

Model km/s/Mpc

ΛCDM + Neff Planck 0.1418 (32) 0.320 (12) 66.6 (16) ... ... 2.97 (20)

ΛCDM + Neff Planck + BAO + FS 0.1418 (32) 0.311 (7) 67.5 (12) ... ... 3.03 (18)
ΛCDM + Neff Planck + BAO + FS + H0 0.1452 (28) 0.302 (6) 69.3 (10) ... ... 3.28 (16)

owCDM + Neff Planck + BAO + FS 0.1418 (34) 0.311 (11) 67.6 (15) +0.0006 (30) −1.00 (6) 3.02 (23)
owCDM + Neff Planck + BAO + FS + SN 0.1417 (32) 0.308 (9) 67.8 (12) +0.0003 (23) −1.01 (5) 3.02 (21)

owCDM + Neff Planck + BAO + FS + SN + H0 0.1446 (30) 0.299 (8) 69.5 (11) −0.0003 (23) −1.03 (4) 3.22 (19)

Table 11. Cosmological constraints for models varying amount of relativistic energy density, as parametrized by the effective number of neutrino speciesNeff .
We consider both the ΛCDM and owCDM case. All errors are 1σ rms from our Markov chains.

Cosmological Data Sets
∑
mν [eV/c2]AL Afσ8 Bfσ8 σ8 Ω0.5

m σ8

Model 95% limit

ΛCDM + mν Planck + BAO + FS < 0.16 ... ... ... 0.829 (16) 0.462 (9)
ΛCDM + mν + AL Planck + BAO + FS < 0.23 1.19 (8) ... ... 0.795 (22) 0.441 (12)

ΛCDM + mν + Afσ8 Planck + BAO + FS < 0.15 ... 0.96 (6) ... 0.833 (16) 0.464 (9)

ΛCDM + mν + AL + Afσ8 Planck + BAO + FS < 0.25 1.19 (8) 1.00 (7) ... 0.793 (25) 0.440 (14)

ΛCDM + Afσ8 Planck + BAO + FS ... ... 0.96 (6) ... 0.833 (13) 0.464 (9)
ΛCDM + Afσ8 + Bfσ8 Planck + BAO + FS ... ... 0.97 (6) −0.62 (40) 0.832 (13) 0.463 (9)

owCDM + mν Planck + BAO + FS + SN < 0.31 ... ... ... 0.826 (21) 0.459 (11)
owCDM + Afσ8 + Bfσ8 Planck + BAO + FS + SN ... ... 0.96 (6) −0.60 (39) 0.840 (18) 0.464 (9)

Table 12. Cosmological constraints for models varying the neutrino mass or allowing a modification of the growth rate. The parametersAL,Afσ8 , andBfσ8
are described in the text; the notation +AL means that this parameter has been varied, which means that the information from CMB lensing has been decoupled
from the rest of the cosmological parameter inference. The model +Bfσ8 also allows Afσ8 to vary. All errors are 1σ rms from our Markov chains, save that
the neutrino masses are given as 95 per cent upper limits. We include Ω0.5

m σ8 (evaluated at z = 0) as this is a well-constrained parameter combination in
cluster abundance and lensing studies.

1.2 km s−1 Mpc−1. The error on Ωm increases only from 0.006 to
0.007, indicating that Neff is primarily degenerate with H0, not
Ωm. Figure 18 shows the covariance between H0 and Neff . If
we add Neff as a degree of freedom to the owCDM model, then
constraints on ΩK and w are not substantially affected, as one
can see by comparing the owCDM lines in Tables 10 and 11. If
SNe are added as an observational constraint, then owCDM con-
straints on Neff and H0 remain tight, with Neff = 3.02± 0.21 and
H0 = 67.8± 1.2 km s−1 Mpc−1 (see Fig. 18, right).

Riess et al. (2016) present a measurement of H0 of 73.0 ±
1.8 km s−1 Mpc−1 (2.4 per cent), while Freedman et al. (2012)
find 74.3 ± 2.1 km s−1 Mpc−1 (2.8 per cent). If we include the
Riess et al. (2016) measurement as a constraint in our fits, then
the preferred values of H0 and Neff shift upward (see Table 11
and Fig. 18), as one would expect given the disagreement between
the direct H0 and the value inferred from Planck+BAO+FS+SN.
Addition of this one observation increases χ2 of the best-fit model
by 8.

In the most flexible dark energy model that we consider,
ow0waCDM, with Neff = 3.046 we find H0 = 67.3 ±
1.0 km s−1 Mpc−1. This can be taken as the updated value of the
“inverse distance ladder”H0 measurement assuming standard mat-
ter and radiation content from Aubourg et al. (2015). They obtained
the same central value and a 1.1 km s−1 Mpc−1 error bar using a
flexible polynomial description of the low redshift energy density
with Planck 2013, DR11 BAO, and JLA SN data.

Our inference of H0 rests on (1) the inference of the matter
density from the CMB, (2) the inference of the sound horizon from
the CMB, (3) the measurement of the BAO peak in the galaxy dis-

tribution, and (4) the tracking of the expansion history from z ∼ 0
to z ∼ 0.6 with SNe. The good agreement between Planck 2013
and 2015 parameter determinations argues that ingredient (1) is ro-
bust. Pre-Planck CMB data implied somewhat lower values of the
matter density (Calabrese et al. 2013), which would go in the di-
rection of reconciliation (Bennett et al. 2016), but even this shift is
small if one includes BAO information in addition to CMB (Ander-
son et al. 2014b). A substantial change in ingredient (2) appears less
likely with the improved Neff constraints from Planck 2015 dis-
cussed above. Continued improvement in the measurement of the
CMB damping tail from larger aperture ground-based experiments
should clarify any remaining systematic concerns and tighten the
sound horizon constraints. Regarding (3), as discussed throughout
the paper, we do not see a plausible way to systematically shift
the BAO measurement of DM/rd at the several per cent level that
would be needed to substantially reduce the tension with the di-
rect H0 measurements. There are some rather contrived possibili-
ties, which would be physically interesting in themselves, such as
a well-tuned admixture of isocurvature perturbations that remains
undetected in the CMB and yet affects fitting templates enough to
distort our distance measurements, or a very large coupling of late-
time galaxy bias to the the relative baryon-CDM velocity field at
high redshift, which has escaped our searches due to cancellation
with a second unexpected effect. Ingredient (4) is what makes our
H0 inference insensitive to the assumed dark energy model, since
the SNe provide an empirical measurement of the distance ratios
needed to transfer our precise BAO measurements at z ∼ 0.5 down
to z = 0. Our analysis includes the systematic error contributions
to the covariance matrix estimated by Betoule et al. (2014), and
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Figure 19. Posterior distribution for the sum of the mass of neutrinos in the
ΛCDM cosmological model. The blue curve includes the growth measure-
ment from the lensing impacts on the CMB power spectrum and from the
BOSS RSD measurement of fσ8. The green curve exclude both of these
constraints; one still gets constraint on the neutrino mass from the impact
on the distance scale. Red and grey curves relax one of the growth mea-
surements at a time; showing that most of the extra information comes from
the CMB lensing. The vertical dashed lines indicate the 95% upper limits
corresponding to each distribution.

Aubourg et al. (2015) show that similar results are obtained using
the Union 2 SN compilation of Suzuki et al. (2012). Our modeling
adopts flexible but smooth parametric forms for the evolution of
dark energy density, and it is possible that a model with more rapid
low-redshift changes could shift the value of H0 while remaining
consistent with the SN data.

It is also possible that systematic errors in the direct H0 mea-
surement are larger than estimated by Riess et al. (2016). For ex-
ample, Efstathiou (2014) presents an alternative analysis of the
local data, arguing for a lower value of 70.6 ± 3.3 or 72.5 ±
2.5 km s−1 Mpc−1, depending on the choice of primary standards.
Rigault et al. (2015) argue that the dependence of the supernova
luminosity after correction for light-curve fitting on the host galaxy
star-formation rate causes a net calibration offset between the SNe
in the Hubble flow and those with nearby Cepheid measurements;
they find that this reduces H0 by 3.3% (but see discussion by Riess
et al. 2016). It is also possible that everyone’s error estimates are
correct and we are simply being unlucky, e.g., if the cosmologically
inferred H0 is 2σ low and the direct measurement is 2σ high. For
now, we continue to see this tension as provocative, but not conclu-
sive. Further work that tightens the statistical errors and examines
systematic uncertainties in directH0 measurements is clearly desir-
able, as this tantalizing tension could yet reveal either astrophysical
or cosmological exotica.

9.4 Cosmological Parameter Results: Growth of Structure

We next turn to models that assume a simpler distance scale
but consider parameters to vary the growth of structure, notably
through massive neutrinos or modifications of the growth rates pre-
dicted by General Relativity. These results are found in Table 12.

We start with ΛCDM models that include an unknown total
mass of the three neutrino species. In detail, we assume that all of
the mass is in only one of the three weakly coupled species, but
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Figure 20. Results for modification of the growth function in the ΛCDM
cosmological model. The results are consistent with the predictions of Gen-
eral Relativity: Afσ8 = 1, Bfσ8 = 0.

the difference between this assumption and three nearly degener-
ate species of the same total mass is small for our purposes. Neu-
trinos of sub-eV mass serve as a sub-dominant admixture of hot
dark matter. Because of their substantial velocity, they fail to fall
into small-scale structure at low redshift, thereby suppressing the
growth of structure from recombination until today (Bond & Sza-
lay 1983; Hu et al. 1998). The measurement of the amplitude of the
CMB anisotropy power spectrum and the optical depth to recom-
bination τ implies the amplitude of the matter power spectrum at
z ≈ 1000. The measurement of the expansion history along with
the assumptions of GR and minimal neutrino mass then determines
the amplitude of the matter power spectrum at z = 0, typically
reported as σ8. Variations in the neutrino mass then cause the ex-
pected σ8 to vary.

Measurements of the low-redshift amplitude of structure can
therefore measure or limit the neutrino mass. Here, we utilize two
measurements: the lensing effects on the Planck CMB anisotropy
power spectrum and the BOSS RSD. Using these, we find a 95 per
cent upper limit on the neutrino mass of 0.16 eV/c2.

We then consider how the constraints vary if one relaxes these
measurements, as shown in Figure 19. We include additional nui-
sance parameters AL that scale the impact of the CMB lensing and
Afσ8 that scales the RSD following as

fσ8 → fσ8 [Afσ8 +Bfσ8(z − zp)] (24)

with zp = 0.51 (chosen to be the central measurement redshift and
also close to actual redshift pivot point for these two parameters).
However, for the discussion of neutrinos, we keep Bfσ8 = 0. We
note that AL is defined scaling the power spectrum of fluctuations,
whereas Afσ8 varies the amplitude. This means that errors on AL
will be double those on Afσ8 .

From this, we find that the measured CMB lensing power
spectrum is about 19±8 per cent stronger (so about 9.5 per cent on
the amplitude of fluctuations) than what the ΛCDM model would
prefer, while the measured RSD is within 1σ of the base level:
Afσ8 = 0.96± 0.06. This means that the RSD measured in BOSS
is a 6 per cent test of the expected amplitude of structure, with
the central value of the measurement being slightly lower than the
ΛCDM prediction.

Interestingly, even with AL and Afσ8 varying and hence with
no low-redshift measurement of the growth of structure save for
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a weak contribution from the Integrated Sachs Wolfe effect in the
large-angle CMB anisotropies, we find a 95 per cent upper limit
of mν < 0.25 eV/c2. This comes from the impact of the neu-
trino mass on the expansion history of the Universe (Aubourg et al.
2015). Essentially, the CMB inference of the balance of matter and
radiation at recombination yields the density of baryons and CDM,
while the measurements of the low-redshift distance scale infer a
matter density that now includes the massive neutrinos as well.

Considering growth measurements one at a time, we find
that including the CMB lensing effect is primarily responsible for
shrinking the 95 per cent upper limit from 0.25 eV/c2 to 0.16 eV/c2.
The RSD measurement alone only reaches<0.23 eV/c2. This is not
surprising: a 1σ variation of order 0.13 eV/c2 corresponds to a 1 per
cent mass fraction of neutrinos, which yields a roughly 4 per cent
change in the small-scale growth function to low redshift. This is
somewhat smaller than the 6 per cent rms measurement from RSD.
But the relative improvements are also being impacted by the cen-
tral values of the RSD and CMB lensing inferences. RSD prefers a
slightly lower normalization of small-scale power, thereby favour-
ing a larger neutrino mass. Meanwhile, the CMB power spectrum
appears to indicate a larger AL and hence a higher normalization
of small-scale power, which pulls neutrino masses lower and makes
the upper limit stronger.

As the distance scale itself is providing some constraint on
the neutrino mass, we also consider fits in the owCDM model.
These degrade the limits to 0.31 eV/c2. While this is a moderate
degradation, it demonstrates that the distance scale data are suffi-
ciently good that one can simultaneously fit for expansion history
and growth rate.

These limits on the neutrino mass are comparable to numerous
other recent measurements. The strongest bound so far, 0.12 eV/c2

at 95 per cent, is presented in Palanque-Delabrouille et al. (2015)
for the combination of Planck 2015 data and the one-dimensional
flux power spectrum of the BOSS Lyman-α forest in quasar absorp-
tion spectra. Recent attempts to combine the galaxy power spec-
trum with with Planck 2015 data (Giusarma et al. 2016; Cuesta et
al. 2016b) produce bounds between 0.25 and 0.30 eV/c2, depend-
ing on the power spectrum datasets used and the number of massive
neutrino states assumed in the analysis (or ∼0.20 eV/c2 if a com-
pilation of recent BAO data is used instead of the power spectrum).
This can be brought further down to ∼0.12 eV/c2 if a Hubble con-
stant prior from direct H0 measurements is imposed additionally.
However, the combination of cosmological datasets in tension with
each other can drive a spurious neutrino mass signal, so it is impor-
tant to address these issues before naively interpreting as a neutrino
mass detection a signature of systematic effects. For example Beut-
ler et al. (2014b) showed that a somewhat large neutrino mass of∑
mν = 0.36± 0.14 eV/c2 is favoured when combining CMASS

Data Release 11 with WMAP9 data. A similar result is confirmed
when combining CMASS DR11 with Planck 2013 if the AL lens-
ing parameter is marginalized out. If AL is not marginalized over,
this is not the case, as reported in the Planck paper. Finally, the
identification and removal of systematic effects on large angular
scales in the polarization data of Planck has resulted in a stronger
bound on neutrino mass from CMB data alone, placing a limit of
0.59 eV/c2 without polarization and 0.34 eV/c2 with polarization
(Planck Collaboration XLVI 2016).

Instead of explaining any variations in the amplitude of struc-
ture by a non-minimal neutrino mass, one could instead view it
as a test of the growth rate of structure under General Relativity.
In this sense these nuisance parameters can be regarded as a test
similar to that usually carried out using the phenomenological γ

parameter (Wang & Steinhardt 1998; Linder et al. 2007). This has
the advantage of being independent of the model of structure for-
mation, simple to interpret and directly measured by the data, at
the expense of not constraining any concrete theories of modified
gravity. Again for ΛCDM, we findAfσ8 = 0.96±0.06; that is, via
the BOSS RSD measurement, we infer fσ8 to be within 6 per cent
of the ΛCDM prediction. While this level of precision on σ8 can be
achieved by several methods, such as cluster abundances or weak
lensing, the measurement of the time derivative f of the growth
function is harder to access with methods that measure only the
single-redshift amplitude of the power spectrum.

Extending the model to include a redshift-dependent variation
Bfσ8 , we find Bfσ8 = −0.62 ± 0.40. This is a mild indication
of evolution, with the ratio of the measured to the predicted value
decreasing toward higher redshift. The results for LCDM are vi-
sualized in Figure 20. This is consistent with the trend from Fig-
ure 12. As this slope is only non-zero at 1.5σ, we do not regard
this as a statistically significant detection of this second parameter.
We conclude that our RSD measurements indicate that structure is
growing in a manner consistent with General Relativity even in the
epoch dominated by dark energy.

Table 12 further shows that the constraints on Afσ8 and
Bfσ8 change negligibly if we extend the expansion history to the
owCDM model. This implies that the distance scale information is
setting the GR prediction for fσ8 to a level that is well better than
we can measure it with RSD.

We note that the Planck collaboration has recently concluded
(Planck Collaboration XLVI 2016) that the optical depth to reion-
ization inferred from large-angle E-mode polarization is τ =
0.055 ± 0.009, about 30 per cent less than the value of τ =
0.078 ± 0.019 that results from the Planck Collaboration XIII
(2015) likelihood that we use here. This has the consequence of de-
creasing the amplitude of structure at recombination by 2 per cent,
which in turn reduces the prediction of σ8 at low redshift by the
same amount. This will not affect our errors on Afσ8 , but would
increase the central value by 2 per cent. It will push the neutrino
masses toward lower values, slightly reducing our upper limits (as
well as any others based on Planck Collaboration XIII 2015), as
there is less room for a decrement of low-redshift power caused by
hot dark matter.

RSD measurements are only one part of an active current de-
bate about the amplitude of low-redshift structure. Measurements
of cosmic shear and galaxy-galaxy lensing (Heymans et al. 2013;
Mandelbaum et al. 2013; MacCrann et al. 2015; Hildebrandt et al.
2016) and of cluster abundances (Vikhlinin et al. 2009; Rozo et al.
2010; Planck Collaboration XX 2014; Planck Collaboration XXIV
2015) have often yielded notably lower amplitudes than the Planck
predictions in ΛCDM or the Planck measurement of the lensing
of the CMB from 4-point correlations (Planck Collaboration XIII
2015). The tension can be up to 10 per cent in the amplitude and
2-3σ per measurement, although there are cosmic shear measure-
ments (Jee et al. 2013) and cluster mass calibrations (Mantz et al.
2015) that argue for a higher amplitude. The small-scale cluster-
ing of the Lyman α forest provides another data point, more in line
with the higher Planck prediction. Our BOSS RSD measurement
falls in the middle of the dispute, with Afσ8 = 0.96 ± 0.06 be-
ing consistent with the Planck prediction but also with the lower
values. For example, our LCDM chain with varying Afσ8 finds
Ω0.5
m σ8 = 0.464±0.009, so the RSD measurement itself would fa-

vor a value 4±6 per cent lower, e.g., Ω0.5
m σ8 = 0.445±0.03. This

might be compared, for example, to the measurement Ω0.5
m σ8 =

0.408 ± 0.02 from Hildebrandt et al. (2016). While this is not a
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provocative position, we note that all of these routes to the low-
redshift amplitude depend on controlling some thorny systematic
or modelling issue. It is therefore fortunate that there are multiple
viable methods as we attempt to reach sub-percent precision.

10 CONCLUSION

We have presented measurements of the cosmological distance-
redshift relation as well as the growth rate of large-scale structure
using an extensive analysis of the clustering of galaxies from the
completed SDSS-III Baryon Oscillation Spectroscopic Survey. The
final sample includes 1.2 million massive galaxies over 9382 deg2

covering 0.2 < z < 0.75, making it the largest spectroscopic
galaxy sample yet utilized for cosmology. We split this sample into
three partially overlapping redshift bins, each large enough for clear
detections of the baryon acoustic oscillations, so as to study the ex-
pansion history and evolving structure formation of the Universe.
These bins have effective redshifts of 0.38, 0.51, and 0.61.

The consensus results of this paper are the synthesis of the re-
sults of several companion papers studying this sample with a va-
riety of methods and with the support of large suites of mock cata-
logues. Beutler et al. (2016b); Ross et al. (2016); Vargas-Magaña et
al. (2016) have measured the distance scale by localizing the BAO
feature and estimated systematic uncertainties in these measure-
ments, while Beutler et al. (2016c); Grieb et al. (2016); Sánchez et
al. (2016a); Satpathy et al. (2016) have modelled the RSD signature
in the full-shape of the clustering measurements to add structure
growth constraints and improve AP effect measurements. Studies
of high-resolution mock samples described in Tinker et al. (2016)
have enabled the estimate of systematic uncertainties of the struc-
ture growth measurements. Sánchez et al. (2016b) describes how
the results of the independent analyses have been combined into
one 9-dimensional Gaussian likelihood that includes the covariance
between our 3 redshift slices and between our pre-reconstruction
and post-reconstruction analyses.

These results represent the first instance in which post-
reconstruction BAO distance measurements have been combined
with structure growth measurements obtained by modelling the
RSD signature. We expect this will be the standard in future
analyses, e.g., with data from the DESI experiment, and that
methods will be further improved to simultaneously model post-
reconstruction BAO information and RSD signatures (White 2015).

The consensus likelihood presented here is then used to mea-
sure parametrized models of cosmology, including variations in
dark energy, spatial curvature, neutrino masses, extra relativis-
tic density, and modifications of gravity. In all cases, we com-
bine our BOSS measurements with those from the power spectra
of CMB temperature and polarization anisotropies from Planck
Collaboration XIII (2015). The common physics and theoretical
model underlying the phenomena of CMB anisotropies and late-
time large-scale structure make this an extremely powerful cos-
mological probe. We now have compelling measurements of the
baryon acoustic oscillations at a variety of redshifts, including the
exquisite detection at z ≈ 1080, demonstrating the commonality
of the physical basis for structure formation from recombination to
today. The standard ruler provided by the BAO is a clear and robust
marker of the distance-redshift relation. Moreover, the expansion
history this implies is in excellent agreement with the inference of
the matter-radiation equality from the CMB acoustic peak heights.
This is a remarkable qualitative success of modern cosmology.

Turning to our quantitative results, we highlight the following
conclusions:

1) The results of the seven data analyses using a variety of
methodologies are demonstrated to be consistent at the level ex-
pected based on analysis of mock galaxy samples. Notably this in-
cludes four different analyses of redshift-space distortions and the
Alcock-Paczynski effect, the models of which were validated on
a variety of N-body simulations and mock catalogues. Our mea-
surements include an estimate of systematic uncertainties, but we
expect we are limited by our statistical uncertainties.

2) We measure the Hubble parameter to better than 2.4 per
cent and the angular diameter distance to better than 1.5 per cent
accuracy in each of our redshift bins. When combined, the measure-
ments represent a 1.0 per cent constraint on the transverse distance
scale and a 1.6 per cent constraint on the radial distance scale.

3) From the anisotropy of redshift-space clustering, we mea-
sure the amplitude of the peculiar velocity, parametrized as fσ8, to
9.2 per cent or better than precision in each redshift bin. In total,
we find a 6 per cent measurement of a bulk shift of fσ8 relative to
the flat ΛCDM model.

We find no tensions in our combined measurements when
they are compared to the predictions of the Planck best-fit ΛCDM
model.

4) Combining with the Planck 2015 power spectrum likeli-
hood, we find no preference for a model that includes additional
parameters beyond the vanilla spatially flat ΛCDM model. This re-
mains true when combined with JLA SNe data.

5) In the simplest spatially flat ΛCDM model, our data mod-
erately tightens the errors from Planck alone, yielding Ωm =
0.311 ± 0.006 and H0 = 67.6 ± 0.5 km s−1 Mpc−1 Allow-
ing extra relativistic density loosens the errors but does not no-
tably shift the central value, yielding Ωm = 0.311 ± 0.007,
H0 = 67.5± 1.2 km s−1 Mpc−1, and Neff = 3.03± 0.18.

6) Models simultaneously varying a constant dark energy
equation of state parameter and spatial curvature are tightly con-
strained. Using Planck and BOSS data alone yields ΩK =
0.0003± 0.0026 and w = −1.01± 0.06, in tight agreement with
the flat ΛCDM model despite having opened two new degrees of
freedom. Adding JLA SNe improves the dark energy result to w =
−1.01±0.04 while also yieldingH0 = 67.9±0.9 km s−1 Mpc−1.

7) Flat models with a time-variable equation of state are less
well constrained, with finding wa = −0.98 ± 0.53 without SNe
and−0.39± 0.34 with SNe. We do continue to find tight errors on
w(z) at a pivot redshift, w(0.37) = −1.05± 0.05.

8) We find tight and stable limits on H0 for all cases. For ex-
ample, for our most general ow0waCDM model, we find H0 =
67.3 ± 1.0 km s−1 Mpc−1 with SNe. We also find H0 = 67.8 ±
1.2 km s−1 Mpc−1 for the owCDM model with extra relativistic
species. As such, our results do nothing to reduce the tension with
the direct measurements of H0 that have found higher values, such
as the 73.0 ± 1.8 km s−1 Mpc−1 of Riess et al. (2016). Whether
this remains to be explained as some combination of statistical and
systematic errors or is an indication of a breakdown of the flat
ΛCDM model is an enticing open question; our results indicate that
curvature, smooth evolution of dark energy at low redshift, or extra
pre-recombination energy as parameterized by Neff are not enough
to resolve the discrepancy.

9) We place strong constraints on the sum of the neutrino
masses. The 95 per cent upper limit is 0.16 eV; this can be com-
pared to the minimum of 0.06 eV. Removing any growth of struc-
ture information (i.e., fσ8 information from our data set and CMB
lensing information from Planck), we find the upper limit increases
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to 0.25 eV, with the information coming primarily from the effect
of the neutrino mass on the expansion history.

10) Alternatively, if one interprets the measurement of fσ8

as a test of the GR prediction for the growth rate of large-scale
structure given the measured expansion history, we find a rescaling
ofAL = 0.96±0.06, which is a 6 per cent measurement consistent
with GR. Testing for redshift evolution, we find a mild preference,
about 1.5σ, for evolution compared to the value predicted by GR.
We do not regard this preference as statistically significant.

This work represents the culmination of large-scale structure
goals of the BOSS galaxy survey. The survey fulfilled its experi-
mental design and produced a three-dimensional map of the struc-
ture of the Universe over a volume of 18.7 Gpc3 with sufficient
sampling to be dominated by sample variance on scales modelled
by cosmological linear theory. BOSS showed that the BAO feature
exists in the distribution of galaxies to greater than 10σ significance
and that the subsequent recovery of the acoustic scale allows robust
and precise measurements of angular diameter distance to and the
expansion rate at the redshift of the galaxies. These BAO distance
measurements form a compelling low-redshift complement to the
beautifully detailed view of early structure gained from CMB ob-
servations. The ability to observe a single well-modelled physical
effect from recombination until today is a great boon for cosmol-
ogy and now underlies much of cosmological parameter estima-
tion. Further, our analyses have extended the use of the anisotropic
galaxy clustering signatures of RSD and the Alcock-Paczynski ef-
fect to the unprecedented size of the BOSS sample, producing ro-
bust measurements of the expansion history and the rate of struc-
ture growth. We believe that BOSS has marked an important cos-
mological milestone, combining precise clustering measurements
of an enormous volume with detailed modelling from cosmolog-
ical simulations and extensive observations of the primary CMB
anisotropies to produce a persuasive jump in the quality of our cos-
mological inferences from large-scale structure and a firm platform
for the search for extensions to the standard cosmological model.
We look forward to seeing this program extended with the coming
decade of large spectroscopic surveys.
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Pellejero-Ibañez, M., Chuang, C.-H., Rubiño-Martı́n, J. A., et al.

2016, submitted
Percival W. J., 2001, MNRAS, 327, 1297
Percival W. J., Verde, L., & Peacock, J. A. 2004a, MNRAS, 347,

645
Percival W. J., et al., 2004b, MNRAS, 353, 1201

Percival W.J., et al., 2007, MNRAS, 381, 1053
Percival, W. J., & White, M. 2009, MNRAS, 393, 297
Percival W.J., et al., 2010, MNRAS, 401, 2148
Percival, W. J., Ross, A. J., Sánchez, A. G., et al. 2014, MNRAS,

439, 2531
Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, ApJ, 517,

565
Pier J.R., et al., 2003, AJ, 125, 1559
Planck Collaboration I, Ade P.A.R., et al., 2015,

arXiv:1502.01582
Planck Collaboration XX, Ade P.A.R., et al., 2014, A&A, 571,

A20
Planck Collaboration XXIV, Ade P.A.R., et al., 2015,

arXiv:1502.01597
Planck Collaboration XIII, Ade, P. A. R., et al. 2015,

arXiv:1502.01589
Planck Collaboration XLVI, Ade, P. A. R., et al. 2016,

arXiv:1605.02985
Reid B.A., et al., 2012, MNRAS, 426, 2719
Reid B. A., Seo H.-J., Leauthaud A., Tinker J. L., White M., 2014,

MNRAS, 444, 476
Reid, B., Ho, S., Padmanabhan, N., et al. 2016, MNRAS, 455,

1553
Riebe, K., Partl, A. M., Enke, H., et al. 2013, Astronomische

Nachrichten, 334, 691
Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, AJ, 116,

1009
Riess A. G., et al., 2011, ApJ, 730, 119
Riess A. G., et al., 2016, arXiv:1604.01424
Rigault, M., et al., 2015, ApJ, 802, 1
Ross, A. J., Percival, W. J., Sánchez, A. G., et al. 2012, MNRAS,

424, 564
Ross, A. J., Samushia, L., Burden, A., et al. 2014, MNRAS, 437,

1109
Ross, A. J., Samushia, L., Howlett, C., et al. 2015, MNRAS, 449,

835
Ross, A. J., Percival, W., & Manera, M., 2015, MNRAS, 451,

1331
Ross, A. J., et al. 2016, submitted
Rozo, E., et al., 2010, ApJ 708, 645
Sachs, R. K., & Wolfe, A. M. 1967, ApJ, 147, 73
Sahni, V., Shafieloo, A., & Starobinsky, A. A. 2014, ApJ, 793,

L40
Sako, M., et al., 2014, arXiv:1401.3317
Salazar-Albornoz, S., Sánchez, A. G., Grieb, J. N., et al., submit-

ted
Samushia L., et al., 2013, MNRAS, 429, 1514
Samushia, L., et al., 2014, MNRAS, 439, 3504
Sánchez A. G. et al., 2013, MNRAS, 433, 1202
Sánchez A. G. et al., 2014, MNRAS, 440, 2692
Sánchez, A. G. et al. 2016a, submitted
Sánchez A. G. et al., 2016b, submitted
Satpathy et al., 2016. submitted
Scoccimarro, R. 2004, Phys Rev D, 70, 083007
R. Scoccimarro, 2015, Phys Rev D, 92, 083532
Seo, H.-J., et al. 2010, ApJ, 720, 1650
Seo H.-J., Beutler F., Ross A. J., Saito S., 2015, arXiv,

arXiv:1511.00663
Schlafly E. F., Finkbeiner D. P., 2011, Astrophys. J., 737, 103
Schmidt, F., 2016, arXiv:1602.09059
Schmittfull, M., Feng, Y., Beutler, F., Sherwin, B., & Chu, M. Y.

2015, Phys. Rev. D, 92, 123522

c© 2016 RAS, MNRAS 000, 1–38



Cosmological Analysis of BOSS galaxies 37

Seljak U., Slosar A., McDonald P., 2006, J. Cosmol. Astropart.
Phys., 10, 14

Seo, H.-J., & Eisenstein, D. J. 2003, ApJ, 598, 720
Sherwin, B. D., & Zaldarriaga, M. 2012, Phys Rev D, 85, 103523
Silk, J. 1968, ApJ, 151, 459
Slepian, Z., & Eisenstein, D. J. 2015, MNRAS, 448, 9
Slepian, Z., Eisenstein, D. J., et al., 2016a, to be submitted
Slepian, Z., Eisenstein, D. J., et al., 2016b, to be submitted
Slosar, A., et al., 2013, JCAP, 4, 26
Smith J.A., et al., 2002, AJ, 123, 2121
Smee S., et al., 2013, AJ, 146, 32
Song, Y.-S., & Percival, W. J. 2009, JCAP, 10, 004
Soumagnac, M. T., Barkana, R., Sabiu, C. G., et al. 2016, Phys.

Rev. Letters, 116, 201302
Spergel, D. N., Verde, L., Peiris, H. V., et al. 2003, ApJS, 148, 175
Spergel, D. N., Flauger, R., & Hlozek, R., 2015, PRD, 91, 3518
Springel, V. 2005, MNRAS, 364, 1105
Steigman G., Schramm D. N., Gunn J. E., 1977, Phys. Lett. B, 66,

202
Strauss, M. A., et al. 2002, AJ, 124, 1810
Sunyaev R.A., Zel’dovich Ya.B., 1970, ApSS, 7, 3
Suzuki, N., et al. 2012, ApJ, 746, 85
Tadros H., et al., 1999, MNRAS, 305, 527
Taruya A., Nishimichi T. and Saito S., 2010 Phys. Rev. D 82
Tassev, S., & Zaldarriaga, M. 2012, JCAP, 10, 006
Thepsuriya, K., & Lewis, A. 2015, JCAP, 1, 034
Tinker, J. L., Weinberg, D. H., & Zheng, Z. 2006, MNRAS, 368,

85
Tinker, J. L., et. al., in preparation.
R. Tojeiro, et al., 2012, MNRAS, 424, 2339
Tojeiro, R., Ross, A. J., Burden, A., et al. 2014, MNRAS, 440,

2222
Tseliakhovich, D., & Hirata, C. 2010, Phys. Rev. D., 82, 083520
Vargas-Magaña, M. et al. 2014, MNRAS, 445, 2
Vargas-Magaña, M. et al. 2015, arXiv:1509.06384
Vargas-Magaña, M. et al. 2016, to be submitted
Vikhlinin, A., et al., 2009, ApJ 692, 1060
Weinberg, D. H., Mortonson, M. J., Eisenstein, D. J., et al. 2013,

Phys. Rep., 530, 87
Wang L., Steinhardt P. J., 1998, ApJ, 504, 483
Wang, L., Reid, B., & White, M. 2014, MNRAS, 437, 588
Wang, Y., Zhao, G.-B., Chuang, C. H., et al., submitted
White, M., Tinker, J. L., & McBride, C. K. 2014, MNRAS, 437,

2594
White, M. 2015, MNRAS, 450, 3822
York, D.G., et al., 2000, AJ, 120, 1579
Yoo, J., Dalal, N., & Seljak, U. 2011, JCAP, 7, 018
Yoo, J. & Seljak, U., 2013, Phys. Rev. D, 88, 103520
Xu, X., Cuesta, A. J., Padmanabhan, N., Eisenstein, D. J., &

McBride, C. K. 2013, MNRAS, 431, 2834
Zhao, G.-B., Wang, Y., Saito, S., et al., submitted

APPENDIX A: NORTH-SOUTH DISCREPANCY

In Fig. A1, we show the power spectrum monopole for each sub-
sample with error bars derived from the diagonal of the MD-Patchy
covariance matrix (described in section 4) for the low (left-hand
panels) and high (right-hand panels) redshift bins. The centre pan-
els show the P0(k) up to a wavenumber of kmax = 0.3 hMpc−1,
the lower panels show the ratio of SGC power spectrum to the NGC
power spectrum. The upper panel shows the n(z) of the different

subsamples, excluding the early LOWZ regions in the North. The
comparison of the measured power spectrum monopole, P0(k), of
the NGC and SGC subsamples of the final catalogue with the pre-
dicted NGC–SGC dispersion from the MD-Patchy mocks shows
significant tension for the low redshift bin, while the differences in
the high redshift bin are consistent with the sample variance of the
mocks. In terms of the power spectrum monopole, the SGC cluster-
ing in the low redshift bin shows a 4 per cent amplitude mismatch.

As discussed in more detail in Ross et al. (2016), the discrep-
ancy can be solved by taking into account the colour shifts between
SDSS DR8 photometry (Aihara et al. 2011) in the North and South
that have been identified by Schlafly & Finkbeiner (2011). These
corrections affect the LOWZ SGC colour cut on c‖ (Reid et al.
2016, equation 9),

rcmod < 13.5 + c‖,corr/0.3, (A1)

where c‖,corr = c‖ − 0.015, and the CMASS SGC colour cuts on
d⊥ (Reid et al. 2016, equations 13 and 14),

d⊥,corr > 0.55 and

icmod < min (19.86 + 1.6(d⊥,corr − 0.8), 19.9) , (A2)

where d⊥,corr = d⊥ − 0.0064.
The selection function and power spectrum monopole of the

corrected SGC subsample are overplotted in Fig. A1. The SGC
n(z) is reduced by 10 per cent at low redshifts. The power spec-
trum monopole of the corrected SGC sample has a larger amplitude
than the original sample, but is still lower than the one of NGC for
most wavenumber bins. As the window function induces a corre-
lation between the measurement bins, only the analysis of the log
likelihood χ2, can quantify the level of consistency. We obtain the
inverse covariance matrix from the inverse of the co-added NGC
and SGC covariance matrices,

ψdiff = (1 +D)
[
CP0

diff

]−1

, where CP0
diff = CP0

NGC + CP0
SGC,

(A3)
These covariance matrices of the subsamples were obtained from
1000 MD-Patchy realizations. We correct the inverse of the co-
added covariance matrix for sampling noise using the correction
factor as proposed in Hartlap et al. (2006), (1 +D), that is given in
the figure.

The χ2 analysis shows that the amplitude mismatch in P0(k)
is lowered to a level that is consistent with the North. The low-
redshift NGC–SGC difference in the corrected sample is of the or-
der of what can be expected (χ2 = 59.78 instead of χ2 = 73.66
for 58 bins) given the distribution of the mock catalogues. Fur-
ther, the high redshift bin also shows slightly increased consistency
(χ2 = 58.548 for 58 bins), even though it was already in good
agreement in the original sample (χ2 = 61.06).

These results on the shifts of n(z) and P0(k) are in good
agreement with those obtained in the configuration space analy-
sis of the DR9 CMASS sample presented in Ross et al. (2012). In
that work, no significant effect on the galaxy clustering was found
correcting for the shifted photometry. Further tests on the DR12
combined sample in configuration space (Ross et al. 2016) show
a much better degree of consistency than what is seen in Fourier
space. The amplitude mismatch for the correlation function is not
significant as the broad-band effect seen in Fourier space corre-
sponds to scales smaller than those probed in the clustering analy-
sis (r . 20 h−1 Mpc). Also, the relative errors bars are larger in
configuration space.

Due to the significant deviations in n(z) and P0(k) between

c© 2016 RAS, MNRAS 000, 1–38
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Figure A1. The selection function (upper panels) and power spectrum monopole (centre panels) for the NGC (blue) and SGC (black lines) subsamples of
the combined sample in the low (left-hand panels) and high (right-hand panels) redshift bins. The error bars (shaded area) are given by the diagonal entries
of the covariance matrix that is obtained from the MD-Patchy mock catalogues. The red line corresponds to a corrected SGC sample taking the colour shifts
between SDSS photometry in the North and South into account (for more details, see Ross et al. 2016). The lower panels shows the P0(k) ratio to highlight
the deviations between the samples in the two hemispheres.

the NGC and SGC subsamples, we see this analysis as good ev-
idence that these two subsamples probe slightly different galaxy
populations for redshifts lower than z 6 0.5.
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