
© Eoin Woods, 2005; http://www.eoinwoods.info

V1.1, 12 July 2005 page 1 / 6

OCL Quick Reference
Eoin Woods, Zuhlke Engineering, July 2005.
This document provides a quick reference summary of the Object Constraint Language, as I
understand it to be as of the UML 1.5 standard. It should not be taken as a definitive statement of
OCL and does not attempt to provide formal semantic definitions. Refer to the Resources section
at the end of the document for sources of further information on OCL. Reports of errors and
omissions are gratefully received by email to eoin@copse.org.uk. This document is not a
product or service provided by Zuhlke Engineering and has no implied warranty or endorsement
from Zuhlke.

Uses of OCL
• Class model invariants; operation pre and post conditions; query bodies (definitions).

• Definition of guards in statechart models.

Basic Points
• All OCL expressions are side-effect free.

• No statement terminators (“;” or similar).

• Comments can be “-- rest of line” or “/* block */” (latter is OCLE
only).

• Naming rules are implementation specific, the reference manual simply stating that “::”
is used as a scope separator (e.g. package::class::method()).

• The term “operation” refers to a method with side-effects, the term “query” for a method
that does not change the state (state = state@pre holds in the post-condition).

Setting Context
To define the model, package and scope of an expression:

model my_model –- OCLE specific
 package my_package
 context Class1
 inv ... (invariant or whatever)
 context Class1::operation1(v1: Integer)
 inv ...
 endpackage
endmodel

The context can be set to any model element (package, class, interface, component) or some sub-
elements such as operation, attribute and in some cases (e.g. interaction diagram) an instance.

The reserved name “self” refers to the current object (a la “this” in C++ or Java).

OCLE extends this slightly by allowing context on inner classes to be specified using the syntax
“context Outer.Inner inv inv1 ...”.

© Eoin Woods, 2005; http://www.eoinwoods.info

V1.1, 12 July 2005 page 2 / 6

Constraints
Can define invariants over model state or sets or pre/post conditions for operations or bodies (i.e.
definitions) for queries.

Invariants:
context Class1
 inv attr1 > 100
context Class2
 inv secondInvariant: attr2 < 10

Can have as many “inv” statements as required, optionally named, and the resulting invariant is
their conjunction (“i1 and i2 and ...”).

Pre and Post Conditions:
context Class1::method1(v1: Integer) : Integer
pre valueIsLargeEnough: v1 >= 100
post: attr1 >= attr1@pre + 100 and result > v/10

The “@pre” notation refers to the “before” state (VDM’s “hook” notation) and “result” is a
reserved word for the result of the operation (if it has one).

Can have as many “pre” and “post” statements as required (optionally named) and the
resulting pre/post conditions are their conjunction (“p1 and p2 and ...”).

Can also use the notation “item^method(val)” in the post-condition to indicate that a
method must have been called on a particular object reference by the operation.

Query Definitions

Queries don’t change state and so pre/post-condition form isn’t used to define them. Instead, they
use a single expression in a “body” statement.

context Class1::query1(v: Integer) : Integer
body: v + 100 + attr1

The body statement defines the value for the query.

Definitions
Definitions, indicated by the “def”, “init” or “derive” statements, are used to introduce new
elements to the model or define further structural information about the model.

Introduce a Query
context Class1
def: getTotal() : Integer = items.value->sum()

Define an Initial Value
context Class1::attr1
init: 100

Define a Derived Attribute
context Class1::attr2
derive: attr1/100

© Eoin Woods, 2005; http://www.eoinwoods.info

V1.1, 12 July 2005 page 3 / 6

Introduce a New Derived Value
context Class1
def: attr2 : Integer = attr1/100

Basic Types
The following atomic types (and their operations) are provided as part of the language:

• Integer, Real: =, <>, <=, >=, +, -, *, /, x.mod(y), x.div(y) (div is integer
division)

• String: s.concat(t), s.size(), s.toLower(), s.toUpper(),
s.subString(start, end) (indexing is “1-based”).

o OCLE also offers contains(subStr : String):Boolean,
pos(subStr : String):Integer and
split(separators : String):Sequence(String).

• Boolean: and, or, not, xor, =, <>, implies, “if b1 then ... else ...
endif”.

Collection Types
The following types are provided for collections, all of which are subtypes of an abstract base
called Collection.

• Set – no duplicates, no order.

• Bag – duplicates, no order.

• OrderedSet – no duplicates, ordered.

• Sequence – duplicates, ordered.

Collection type objects can be converted between types using built-in cast-like operators such as
seq1->asSet() (see below).

An important rule in navigation expressions (e.g. item1.subItems.value) is that
navigation through a single 1:m relationship (e.g. item.subItem) returns a set, while
navigation through more than one such relationship (e.g. item1.subItems.value) returns a
bag, while navigation through an {ordered} relationship results in a sequence.

A related rule is that as collections (e.g. sets) are merged, they are flattened into a single
collection of times, rather than forming a structured collection. The collectNested()
operation can be used to avoid this (see below).

Collection Expressions
Type{initialiser}

Set{1, 2, 3}

Bag{‘one’, ‘two’, ‘three’, ‘two’}

OrderedSet{true, false}

Sequence{1..30} – Special case for integers

Set{Set{1,2}, Set{2,3}} = Set{1,2,3} -- flattening

© Eoin Woods, 2005; http://www.eoinwoods.info

V1.1, 12 July 2005 page 4 / 6

Collection Manipulation Operations

Operations are applied to collections using the “->” operator (e.g. items->isEmpty(),
where “items” is a collection).

Note that all indexing is “1-based” rather than “0-based”.

OCL provides a rich set of operations for use in collection expressions, including:
= / <> Are the collections identical (not identical).

- Return the value of the set difference of the arguments
(Set and OrderedSet only).

append(obj) Append obj to an ordered collection.

asBag(), asSet(),
asOrderedSet(),
asSequence()

Type conversion operations (available to/from all
collection types).

at(idx) Return object at index of ordered collection.

count(obj) Number of times that obj appears in a collection.

excludes(obj) Does count(obj) = 0 ?

excludesAll(coll) Does count(obj) = 0 hold for all items in collection
coll?

excluding(obj) Value of collection with object obj removed.

first() The first item in the ordered collection.

includes(obj) Is count(obj) > 0 ?

includesAll(coll) Does count(obj) > 0 hold for all items in collection
coll?

including(obj) Value of collection with object obj added.

indexOf(obj) The index value of the (first) occurrence of an object in
an ordered collection.

insertAt(idx,obj) Value of the collection with the specified object inserted
at the index of the ordered collection.

intersection(coll) Value of the intersection of the unordered collection and
the unordered collection coll.

isEmpty() Is collection’s size() = 0 ?

last() The last item in the ordered collection.

notEmpty() Is collection’s size() > 0 ?

prepend(obj) Value of the ordered collection with the object obj pre-
pended to it.

size() Number of items in the collection.

subOrderedSet(start,end) Value of a subset of an ordered set based on indexing.

subSequence(start,end) Value of part of a sequence, based on indexing.

sum() Sum all items in the collection (Integer/Real only).

© Eoin Woods, 2005; http://www.eoinwoods.info

V1.1, 12 July 2005 page 5 / 6

symmetricDifference(coll) A collection containing the symmetric difference (items
in either, not both – XOR) between a set and coll
(defined on set only).

union(coll) Return a collection which contains the combination of
collection and coll.

Loop Operations

A another important set of operations on collections are the “loop” operators like select(),
collect() and forAll(), which are used for applying predicates to collections.

one(expr) Returns an item from the collection, for which the expression
expr holds. If this applies to more than one, the particular
item returned is non-deterministic. If expr does not hold
for any items, the result is undefined.

collect(expr) Returns a bag containing the value of the expression for each
of the items in the collection (e.g.
items->collect(value)). A simpler synonym for
this operation is the period (“.”) operator (e.g.
items.value).

collectNested(expr) Behaves as collect() but does not flatten the collections,
so resulting in a structured collection if a number of
collections are merged (e.g. set of sets).

exists(expr) Does expression expr hold for any items in the collection?

forAll(expr) Does expression expr hold for all items in the collection?

isUnique(expr) Returns true if the expression evaluates to a different value
for each item in the collection, returns false otherwise.

iterate(i : Type; a :
Type | expr)

Base iteration operation, from which others are defined. The
“i” variable is the iterator, while “a” is the accumulator,
assigned the value of the expression after each evaluation of
it.

one(expr) Returns the value of the expression
coll->select(expr)->size()=1

reject(expr) Returns the sub-collection of items in a collection for which
expression expr does not hold.

select(expr) Returns the sub-collection of items in a collection for which
expression expr holds.

sortedBy(expr) Returns a sequence containing all of the items from the
collection, ordered by the value of the expression expr (the
type of which much have the “<” operator defined for it).

The operations that select collection elements based on a condition can be used with two
syntaxes, as follows. These two examples are equivalent.

set1->select(attr1 > 10)
set1->select(i | i.attr1 > 10)

In the second case the “i” is an “iterator” variable and can be thought of as being set to each of
the elements of set1 in turn.

© Eoin Woods, 2005; http://www.eoinwoods.info

V1.1, 12 July 2005 page 6 / 6

Other Features
Let Expressions

Used to define temporary attributes or operations to allow them to be used in constraints to
simplify the constraint or avoid repetition. For example:

context Class1
 inv abc:
 let value1:Boolean = att1 > 100 and att2 < 25
 let largeEnough(v :Integer):Boolean = v > 100
 in (val1 and attr3.mod(5)=0) or
 (val1 and attr4/5 > 10) or
 (largeEnough(val3))

OCLE Extensions

Some of the useful OCLE extensions are:

• model ... endmodel

• Block comments /* ... */

• Inner class contexts like “Outer.Inner”.

• Static access to members of a class.

• Support for enumerations specified via the “<<enumeration>>” stereotype instead of
using the more specific meta-class.

• Print operations called dump(), which always returns true and dumpi(), which returns
the value it was called with.

o Parameter is a string containing “%n” placeholders, “%0” is expression on which
the operation is called, %1, %2, ... are values after the message.

o Example: attr1.dump(“Attr1: %0 other=%1”, “other value”).

• The pos(), contains() and split() string operations.

Resources
• Annke Kleppe’s company and OCL centre: http://www.klasse.nl/ocl.

• The Object Constraint Language, 2nd Edition, Jos Warmer and Anneke Kleppe, Addison
Wesley, 2003.

• OCLE, a freely available OCL tool: http://lci.cs.ubbcluj.ro/ocle.

• OCL 1.5 Specification:
 http://www.omg.org/cgi-bin/apps/doc?formal/03-03-13.

• OCL 2.0 Specification:
 http://www.omg.org/cgi-bin/apps/doc?ptc/2003-10-14.

