Solutions to review questions \#2

I use parentheses (as in $\left(\begin{array}{cc}1 & 3 \\ 0 & -1\end{array}\right)$) instead of Strang's brackets (as in $\left[\begin{array}{cc}1 & 3 \\ 0 & -1\end{array}\right]$) for matrices and vectors. As a consequence, when I write (a, b, c), I mean the row vector $\left[\begin{array}{lll}a & b & c\end{array}\right]$, and not (an abbreviation for) the column vector $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$. Sorry for this! I am just more used to parentheses, and if I try changing my notations, chances are you'll see a mix of both of them in the below.
(When I want to write the column vector $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ in a compact form, I write $\left.(a, b, c)^{T}.\right)$
ad problem 1: (a) Let $v_{1}=\left(\begin{array}{c}1 \\ -1 \\ 0 \\ 0\end{array}\right), v_{2}=\left(\begin{array}{c}0 \\ 1 \\ -1 \\ 0\end{array}\right)$ and $v_{3}=\left(\begin{array}{c}0 \\ 0 \\ 1 \\ -1\end{array}\right)$ be our
three vectors. Gram-Schmidt orthogonalization will yield three vectors q_{1}, q_{2}, q_{3} given by the formulas

$$
\begin{aligned}
& q_{1}=v_{1} ; \\
& q_{2}=v_{2}-\frac{q_{1}^{T} v_{2}}{q_{1}^{T} q_{1}} q_{1} ; \\
& q_{3}=v_{3}-\frac{q_{1}^{T} v_{3}}{q_{1}^{T} q_{1}} q_{1}-\frac{q_{2}^{T} v_{3}}{q_{2}^{T} q_{2}} q_{2} .
\end{aligned}
$$

(These are the same formulas as the equality $A=a$ and the equalities (7) and (8) given on page 234, but here we call $v_{1}, v_{2}, v_{3}, q_{1}, q_{2}, q_{3}$ what has been called
a, b, c, A, B, C in the book. ${ }^{1}$) Plugging in, we obtain

$$
\begin{aligned}
& q_{1}=v_{1}=\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right) ; \\
& q_{2}=v_{2}-\frac{q_{1}^{T} v_{2}}{q_{1}^{T} q_{1}} q_{1}=\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
-1 \\
0
\end{array}\right) ; \\
& q_{3}=v_{3}-\frac{q_{1}^{T} v_{3}}{q_{1}^{T} q_{1}} q_{1}-\frac{q_{2}^{T} v_{3}}{q_{2}^{T} q_{2}} q_{2}=\left(\begin{array}{c}
\frac{1}{3} \\
\frac{1}{3} \\
\frac{1}{3} \\
-1
\end{array}\right) .
\end{aligned}
$$

These three vectors are only orthogonal so far, not yet orthonormal. To make them orthonormal, divide each of them by its length, thus obtaining $\left(\begin{array}{c}\frac{1}{2} \sqrt{2} \\ -\frac{1}{2} \sqrt{2} \\ 0 \\ 0\end{array}\right)$, $\left(\begin{array}{c}\frac{1}{6} \sqrt{6} \\ \frac{1}{6} \sqrt{6} \\ -\frac{1}{3} \sqrt{6} \\ 0\end{array}\right)$ and $\left(\begin{array}{c}\frac{1}{6} \sqrt{3} \\ \frac{1}{6} \sqrt{3} \\ \frac{1}{6} \sqrt{3} \\ -\frac{1}{2} \sqrt{3}\end{array}\right)$.
[Remark: There is a pattern here. Applying Gram-Schmidt orthogonaliza-

[^0]$$
q_{i}=v_{i}-\frac{q_{1}^{T} v_{i}}{q_{1}^{T} q_{1}} q_{1}-\frac{q_{2}^{T} v_{i}}{q_{2}^{T} q_{2}} q_{2}-\cdots-\frac{q_{i-1}^{T} v_{i}}{q_{i-1}^{T} q_{i-1}} q_{i-1}
$$

tion (without normalizing the vectors to length 1) to the $n-1$ vectors $\left(\begin{array}{c}1 \\ -1 \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right)$,
$\left(\begin{array}{c}0 \\ 1 \\ -1 \\ 0 \\ \vdots \\ 0\end{array}\right), \ldots,\left(\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ -1\end{array}\right)$ in \mathbb{R}^{n}, we obtain the $n-1$ vectors $\left(\begin{array}{c}1 \\ -1 \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right),\left(\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ 0 \\ \vdots \\ 0\end{array}\right)$,
$\left(\begin{array}{c}\frac{1}{n-1} \\ \frac{1}{n-1} \\ \vdots \\ \frac{1}{n-1} \\ -1\end{array}\right)$ (the i-th vector consists of i coordinates equal to $\frac{1}{i}$, then a single
coordinate equal to -1 , and all remaining coordinates are 0). This can be proven by checking that these $n-1$ vectors are mutually orthogonal and the i-th of them is a linear combination of the first i of the original vectors.]
(b) $A=\left(\begin{array}{cc}15 & 6 \\ 8 & 61\end{array}\right)=Q R$ for $Q=\left(\begin{array}{cc}\frac{15}{17} & -\frac{8}{17} \\ \frac{8}{17} & \frac{15}{17}\end{array}\right)$ and $R=\left(\begin{array}{cc}17 & 34 \\ 0 & 51\end{array}\right)$.

To find this, apply Gram-Schmidt orthogonalization (including normalizing the lengths to 1) to the two columns of A (the result is $q_{1}=\binom{\frac{15}{17}}{\frac{8}{17}}$ and $q_{2}=$ $\binom{-\frac{8}{17}}{\frac{15}{17}}$), and then use the formula (9) on page 236 (but here, the matrices are 2×2).

The inverses are $Q^{-1}=\left(\begin{array}{cc}\frac{15}{17} & \frac{8}{17} \\ -\frac{8}{17} & \frac{15}{17}\end{array}\right), R^{-1}=\left(\begin{array}{cc}\frac{1}{17} & -\frac{2}{51} \\ 0 & \frac{1}{51}\end{array}\right)$ and $A^{-1}=$
$\left(\begin{array}{cc}\frac{61}{867} & -\frac{2}{289} \\ -\frac{8}{867} & \frac{5}{289}\end{array}\right)$. An easy way to invert Q is to recall that Q is orthogonal, whence $Q^{-1}=Q^{T}$. An easy way to invert A is to recall that $A=Q R \Longrightarrow A^{-1}=$ $(Q R)^{-1}=R^{-1} Q^{-1}$.
ad problem 2: (a) The four *'s stand for unknowns (not necessarily equal); let us call them x, y, z, w (from top to bottom) instead. The matrix Q then becomes

$$
Q=c\left(\begin{array}{cccc}
1 & -1 & -1 & x \\
-1 & 1 & -1 & y \\
-1 & -1 & -1 & z \\
-1 & -1 & 1 & w
\end{array}\right)
$$

For Q to be orthogonal, the columns of Q have to be orthogonal. Equivalently, the columns of the matrix $\left(\begin{array}{cccc}1 & -1 & -1 & x \\ -1 & 1 & -1 & y \\ -1 & -1 & -1 & z \\ -1 & -1 & 1 & w\end{array}\right)$ have to be orthogonal (because the scaling factor c does not matter, unless it is 0 in which case Q surely will not be orthogonal). It is easy to see that the first three columns of this matrix already are orthogonal, so it only remains to choose x, y, z, w such that the fourth column is orthogonal to them all. In other words, we must have

$$
\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
-1
\end{array}\right)^{T}\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)=0 ; \quad\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
-1
\end{array}\right)^{T}\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)=0 ; \quad\left(\begin{array}{c}
-1 \\
-1 \\
-1 \\
1
\end{array}\right)^{T}\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right)=0
$$

This rewrites as a system of linear equations for x, y, z, w :

$$
\left\{\begin{array}{c}
x-y-z-w=0 \\
-x+y-z-w=0 \\
-x-y-z+w=0
\end{array}\right.
$$

The solutions of this system are scalar multiples of the vector $\left(\begin{array}{c}1 \\ 1 \\ -1 \\ 1\end{array}\right)$, so we can definitely set $\left(\begin{array}{c}x \\ y \\ z \\ w\end{array}\right)=\lambda\left(\begin{array}{c}1 \\ 1 \\ -1 \\ 1\end{array}\right)$ for some scalar $\lambda \in \mathbb{R}$. Thus, $x=\lambda 1=\lambda$, $y=\lambda 1=\lambda, z=\lambda(-1)=-\lambda$ and $w=\lambda 1=\lambda$.

Thus,

$$
\begin{align*}
Q & =c\left(\begin{array}{cccc}
1 & -1 & -1 & x \\
-1 & 1 & -1 & y \\
-1 & -1 & -1 & z \\
-1 & -1 & 1 & w
\end{array}\right)=c\left(\begin{array}{cccc}
1 & -1 & -1 & \lambda \\
-1 & 1 & -1 & \lambda \\
-1 & -1 & -1 & -\lambda \\
-1 & -1 & 1 & \lambda
\end{array}\right) \\
& =\left(\begin{array}{cccc}
c & -c & -c & \lambda c \\
-c & c & -c & \lambda c \\
-c & -c & -c & -\lambda c \\
-c & -c & c & \lambda c
\end{array}\right) . \tag{1}
\end{align*}
$$

Now, for Q to be orthogonal, not only must the columns of Q be mutually orthogonal; they also have to have length 1 . But the lengths of the four columns of the matrix on the right hand side of (1) are $2|c|, 2|c|, 2|c|$ and $2|\lambda c|$ (for example, $\left\|\left(\begin{array}{c}c \\ -c \\ -c \\ -c\end{array}\right)\right\|=\sqrt{c^{2}+(-c)^{2}+(-c)^{2}+(-c)^{2}}=\sqrt{4 c^{2}}=2 \sqrt{c^{2}}=2|c|$; do not forget the absolute values!). So $2|c|, 2|c|, 2|c|$ and $2|\lambda c|$ must be 1. In other words, $|c|=|\lambda c|=\frac{1}{2}$. This gives rise to four solutions:

$$
\begin{array}{ll}
\left(c=\frac{1}{2} \text { and } \lambda=1\right) ; & \left(c=\frac{1}{2} \text { and } \lambda=-1\right) ; \\
\left(c=-\frac{1}{2} \text { and } \lambda=1\right) ; & \left(c=-\frac{1}{2} \text { and } \lambda=-1\right) .
\end{array}
$$

These result in the following four values of Q :

$$
\begin{aligned}
& Q=\frac{1}{2}\left(\begin{array}{cccc}
1 & -1 & -1 & 1 \\
-1 & 1 & -1 & 1 \\
-1 & -1 & -1 & -1 \\
-1 & -1 & 1 & 1
\end{array}\right) ; \quad Q=\frac{1}{2}\left(\begin{array}{cccc}
1 & -1 & -1 & -1 \\
-1 & 1 & -1 & -1 \\
-1 & -1 & -1 & 1 \\
-1 & -1 & 1 & -1
\end{array}\right) ; \\
& Q=-\frac{1}{2}\left(\begin{array}{cccc}
1 & -1 & -1 & 1 \\
-1 & 1 & -1 & 1 \\
-1 & -1 & -1 & -1 \\
-1 & -1 & 1 & 1
\end{array}\right) ; \quad Q=-\frac{1}{2}\left(\begin{array}{cccc}
1 & -1 & -1 & -1 \\
-1 & 1 & -1 & -1 \\
-1 & -1 & -1 & 1 \\
-1 & -1 & 1 & -1
\end{array}\right) .
\end{aligned}
$$

It is easy to check that all these four matrices are indeed orthogonal (and distinct).
(Does the exercise ask for all of them or one of them? I don't know.)
(b) This does not depend on which of the four possible choices for Q we take, because these choices only differ in the signs of the columns (and these don't
matter when projecting). Let us take the first choice:

$$
Q=\frac{1}{2}\left(\begin{array}{cccc}
1 & -1 & -1 & 1 \\
-1 & 1 & -1 & 1 \\
-1 & -1 & -1 & -1 \\
-1 & -1 & 1 & 1
\end{array}\right)
$$

Then, the first column of Q is $\frac{1}{2}\left(\begin{array}{c}1 \\ -1 \\ -1 \\ -1\end{array}\right)=\left(\begin{array}{c}\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2}\end{array}\right)$. Since this column is orthonormal, we can compute the projection of b onto this column using formula (5) on page 233 (with $n=1$ and $q_{1}=\left(\begin{array}{r}\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2}\end{array}\right)$). We obtain

$$
p=q_{1}\left(q_{1}^{T} b\right)=\left(\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right)\left(\left(\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right)^{T}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)\right)=\left(\begin{array}{c}
-\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right)
$$

as the projection of b onto the first column of Q.
To project b onto the plane spanned by the first two columns of Q, we use formula (5) on page 233 again, taking $n=2$ and taking q_{1} and q_{2} to be the first two columns $\left(\begin{array}{c}\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2}\end{array}\right)$ and $\left(\begin{array}{c}-\frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2}\end{array}\right)$ of Q. The resulting projection is

$$
p=q_{1}\left(q_{1}^{T} b\right)+q_{2}\left(q_{2}^{T} b\right)=\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right)
$$

(c) So we are to run the Gram-Schmidt algorithm on the columns
$v_{1}=\left(\begin{array}{c}1 \\ -1 \\ -1 \\ -1\end{array}\right), \quad v_{2}=\left(\begin{array}{c}-1 \\ 1 \\ -1 \\ -1\end{array}\right), \quad v_{3}=\left(\begin{array}{c}-1 \\ -1 \\ -1 \\ 1\end{array}\right) \quad$ and $\quad v_{4}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$.
of the matrix $A=\left(\begin{array}{cccc}1 & -1 & -1 & 1 \\ -1 & 1 & -1 & 1 \\ -1 & -1 & -1 & 1 \\ -1 & -1 & 1 & 1\end{array}\right)$. Let us first make the columns orthogonal, and only then normalize them to have length 1 . The first three columns v_{1}, v_{2}, v_{3} of A are already mutually orthogonal, so they survive the orthogonalization unchanged:

$$
q_{1}=v_{1}, \quad q_{2}=v_{2}, \quad q_{3}=v_{3} .
$$

The fourth column gives rise to the fourth vector

$$
q_{4}=v_{4}-\frac{q_{1}^{T} v_{4}}{q_{1}^{T} q_{1}} q_{1}-\frac{q_{2}^{T} v_{4}}{q_{2}^{T} q_{2}} q_{2}-\frac{q_{3}^{T} v_{4}}{q_{3}^{T} q_{3}} q_{3}=\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
-\frac{1}{2} \\
\frac{1}{2}
\end{array}\right) .
$$

These four vectors $q_{1}, q_{2}, q_{3}, q_{4}$ are mutually orthogonal, but not orthonormal. To get orthonormal vectors, we have to divide them by their lengths:

$$
\begin{array}{cl}
\frac{q_{1}}{\left\|q_{1}\right\|}=\frac{1}{2}\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
-1
\end{array}\right), & \frac{q_{2}}{\left\|q_{2}\right\|}=\frac{1}{2}\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
-1
\end{array}\right), \quad \frac{q_{3}}{\left\|q_{3}\right\|}=\frac{1}{2}\left(\begin{array}{c}
-1 \\
-1 \\
-1 \\
1
\end{array}\right) \\
\text { and } \quad \frac{q_{4}}{\left\|q_{4}\right\|}=\frac{1}{2}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) .
\end{array}
$$

[Notice that the lengths of all four vectors were 2. This was a happy coincidence; most often these lengths will be distinct and contain square roots.]
ad problem 3: (a) We can write the system as $A x=b$ for $A=\left(\begin{array}{cc}1 & 0 \\ 0 & 1 \\ -1 & 0\end{array}\right)$ and $b=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$. To find the least-squares solution, we follow the strategy on
page 218 and solve $A^{T} A \widehat{x}=A^{T} b$ for \widehat{x}. This rewrites as $\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right) \widehat{x}=\binom{0}{1}$, and the solution is $\widehat{x}=\binom{0}{1}$.
(b) The equations are

$$
\begin{aligned}
7 & =C+D(-1) ; \\
7 & =C+D 1 ; \\
21 & =C+D 2 .
\end{aligned}
$$

In other words, $\left(\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 1 & 2\end{array}\right)\binom{C}{D}=\left(\begin{array}{c}7 \\ 7 \\ 21\end{array}\right)$. In yet other words, $A x=b$ for $A=\left(\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 1 & 2\end{array}\right), x=\binom{C}{D}$ and $b=\left(\begin{array}{c}7 \\ 7 \\ 21\end{array}\right)$. To find the least-squares solution, we follow the strategy on page 218 and solve $A^{T} A \widehat{x}=A^{T} b$ for \widehat{x}. This rewrites as $\left(\begin{array}{ll}3 & 2 \\ 2 & 6\end{array}\right) \hat{x}=\binom{35}{42}$, and the solution is $\widehat{x}=\binom{9}{4}$. That is, $C=9$ and $D=4$.
ad problem 4: (a) Using the big formula:

$$
\operatorname{det} A=1 \cdot 3 \cdot 1+1 \cdot 1 \cdot 4+2 \cdot 1 \cdot 1-1 \cdot 1 \cdot 1-1 \cdot 1 \cdot 1-2 \cdot 3 \cdot 4=-17
$$

(b) Here it is easier to first simplify the determinant:
$\operatorname{det} B=\operatorname{det}\left(\begin{array}{cccc}1 & 1 & 1 & 2 \\ 1 & 1 & 3 & 1 \\ 1 & 4 & 1 & 1 \\ 5 & 1 & 1 & 1\end{array}\right)=\operatorname{det}\left(\begin{array}{cccc}1 & 1 & 1 & 2 \\ 1 & 1 & 3 & 1 \\ 1 & 4 & 1 & 1 \\ 4 & -3 & 0 & 0\end{array}\right)$
(here, we subtracted row 3 from row 4)
$=\operatorname{det}\left(\begin{array}{cccc}1 & 1 & 1 & 2 \\ 1 & 1 & 3 & 1 \\ 0 & 3 & -2 & 0 \\ 4 & -3 & 0 & 0\end{array}\right) \quad$ (here, we subtracted row 2 from row 3)
$=\operatorname{det}\left(\begin{array}{cccc}1 & 1 & 1 & 2 \\ 0 & 0 & 2 & -1 \\ 0 & 3 & -2 & 0 \\ 4 & -3 & 0 & 0\end{array}\right)$
$=\underbrace{(-1)^{4+1}}_{=-1} 4 \underbrace{\operatorname{det}\left(\begin{array}{ccc}1 & 1 & 2 \\ 0 & 2 & -1 \\ 3 & -2 & 0\end{array}\right)}_{=-17}+\underbrace{(-1)^{4+2}}_{=1}(-3) \underbrace{\operatorname{det}\left(\begin{array}{ccc}1 & 1 & 2 \\ 0 & 2 & -1 \\ 0 & -2 & 0\end{array}\right)}_{=-2}$
$+\underbrace{(-1)^{4+3} 0 \operatorname{det}\left(\begin{array}{ccc}1 & 1 & 2 \\ 0 & 0 & -1 \\ 0 & 3 & 0\end{array}\right)}_{=0}+\underbrace{(-1)^{4+4} 0 \operatorname{det}\left(\begin{array}{ccc}1 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 3 & -2\end{array}\right)}_{=0}$
(by cofactor expansion in the fourth row)
$=74$.
[Remark: There is a pattern to these determinants. The determinant of the $n \times n$-matrix $\left(\begin{array}{cccccc}1 & 1 & 1 & \cdots & 1 & 2 \\ 1 & 1 & 1 & \cdots & 3 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & n-1 & \cdots & 1 & 1 \\ 1 & n & 1 & \cdots & 1 & 1 \\ n+1 & 1 & 1 & \cdots & 1 & 1\end{array}\right)$ is $(-1)^{\lfloor n / 2\rfloor} n!\left(1+\sum_{k=1}^{n} \frac{1}{k}\right)$. This can be proven by induction over n; the idea is to clear out most of the 1 's from the matrix by subtracting row 2 from row 1 , row 3 from row 2 , etc., row n from row $n-1$, and then applying the cofactor expansion with respect to the first column, and recalling that the determinant of a triangular matrix is the product of its diagonal entries.]
(c) The matrix B is invertible since its determinant $\operatorname{det} B=74$ is nonzero.

To find the entry $(1,4)$ of the inverse, use formula (6) on page 270 . It gives
$\left(B^{-1}\right)_{1,4}=\frac{C_{4,1}}{\operatorname{det} B}$, where

$$
C_{4,1}=\underbrace{(-1)^{4+1}}_{=-1} \underbrace{\operatorname{det}\left(\begin{array}{lll}
1 & 1 & 2 \\
1 & 3 & 1 \\
4 & 1 & 1 \\
&
\end{array}\right)}_{=-17}=17 .
$$

Thus (and because of $\operatorname{det} B=74$), we have

$$
\left(B^{-1}\right)_{1,4}=\frac{C_{4,1}}{\operatorname{det} B}=\frac{17}{74} .
$$

ad problem 5: See http://web.mit.edu/18.06/www/Fall09/exam2soln.pdf.
ad problem 6: (a) One way to do is using the big formula, which (for an arbitrary $n \times n$-matrix $\left.\left(a_{i, j}\right)_{1 \leq i, j \leq n}\right)$ looks as follows:

$$
\operatorname{det}\left(\left(a_{i, j}\right)_{1 \leq i, j \leq n}\right)=\sum_{\pi \text { is a permutation of }\{1,2, \ldots, n\}}(-1)^{\pi} a_{1, \pi(1)} a_{2, \pi(2)} \cdots a_{n, \pi(n)} .
$$

Each addend of this sum corresponds to a way to pick an entry of row 1, an entry of row 2 , etc., an entry of row n, such that no two entries lie in the same column. ${ }^{2}$
For our peculiar matrix $\left(\begin{array}{cccc}a & b & c & d \\ l & 0 & 0 & e \\ k & 0 & 0 & f \\ j & i & h & g\end{array}\right)$, most of these addends are 0 . We can, of course, restrict ourselves to the nonzero addends. To obtain a nonzero addend, one has to pick an entry of row 1 , an entry of row 2 , etc., an entry of row n, such that no two entries lie in the same column, and such that no 0 entry is picked. This doesn't leave us many choices: in fact, we must pick either l or e from row 2 , which then forces us to pick f (if we have picked l) or k (if we have picked $e)$ from row 3 (because we must not pick two entries lying in the same column); then, our only choices in row 1 are b and c, and correspondingly we are forced to pick h (if we took b) or i (if we took c) from row 4. Altogether, we get four addends:

- an addend blfh corresponding to the permutation $(2,1,4,3)$ (because it picks the 2 nd entry of row 1 , the 1 st entry of row 2 , etc.) with sign 1 ;

[^1]- an addend - clfi corresponding to the permutation (3,1,4,2) (because it picks the 3rd entry of row 1 , etc.) with sign -1 ;
- an addend $-b e k h$ corresponding to the permutation $(2,4,1,3)$ with sign -1 ;
- an addend ceki corresponding to the permutation $(3,4,1,2)$ with sign 1 .

The big formula thus shows that the determinant is

$$
b l f h-c l f i-b e k h+c e k i=(b h-c i)(l f-e k) .
$$

[You are not required to find the factorization.]
Here is an alternative solution: Recall that the determinant of a matrix changes sign every time we switch two rows or switch two columns. Thus,
$\operatorname{det}\left(\begin{array}{llll}a & b & c & d \\ l & 0 & 0 & e \\ k & 0 & 0 & f \\ j & i & h & g\end{array}\right)=-\operatorname{det}\left(\begin{array}{cccc}a & b & c & d \\ j & i & h & g \\ k & 0 & 0 & f \\ l & 0 & 0 & e\end{array}\right) \quad$ (here, we switched two rows)

$$
\begin{aligned}
& =\operatorname{det}\left(\begin{array}{llll}
c & b & a & d \\
h & i & j & g \\
0 & 0 & k & f \\
0 & 0 & l & e
\end{array}\right) \quad \text { (here, we switched two columns) } \\
& =\operatorname{det}\left(\begin{array}{ll}
c & b \\
h & i
\end{array}\right) \operatorname{det}\left(\begin{array}{cc}
k & f \\
l & e
\end{array}\right) \quad(\text { by Exercise } 23 \text { (a) on page 266) } \\
& =(c i-b h)(k e-f l)=(b h-c i)(l f-e k) .
\end{aligned}
$$

This gives the result in the factorized form.
(b) Use the big formula as in part (a), but notice that the analysis becomes simpler (despite the matrix being larger!): there is no way to pick nonzero entries from each row in such a way that no two entries are picked from the same column. In fact, we can only pick p or f from row 2 ; then, we can only pick g (if we chose p) or o (if we chose p) from row 3; then, there are nonzero entries left to pick from row 4 anymore. Hence, there are no nonzero terms in the big formula. Consequently, the determinant is 0 .
ad problem 7: Let us simplify the determinant by subtracting row 1 from row 3 and subtracting row 2 from row 4 (we do these two operations in one step because they don't interfere with each other):

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
8 & 7 & 6 & 5 \\
9 & 10 & 11 & 12 \\
16 & 15 & 14 & 13
\end{array}\right)=\operatorname{det}\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
8 & 7 & 6 & 5 \\
8 & 8 & 8 & 8 \\
8 & 8 & 8 & 8
\end{array}\right)
$$

The matrix on the right hand side has two equal rows, and so its determinant is 0 (because equal rows are linearly dependent). Consequently, the determinant we are looking for is 0 .
[Remark: The same argument goes through for the $n \times n$-matrix which is filled in in the same way as our 4×4-matrix, for every $n \geq 4$. The determinant is 0.]
ad problem 8: (a) If P is the projection matrix onto a subspace V, then V is the column space of $P \quad{ }^{3}$ The subspace we are looking for is therefore the column space of our 4×4-matrix. To find its basis, it is enough to find the rank r of our matrix and pick r linearly independent columns of the matrix. This is straightforward: $r=2$, and we can take (for example) the first two columns of the projection matrix to obtain a basis. (Actually, any two columns would work, except for the second and third column.)
(b) The formula for the projection matrix P on the line spanned by a column vector a is $P=\frac{a a^{T}}{a^{T} a}$ (see the very bottom of page 208). Setting $a=\left(\begin{array}{lll}1 & 2 & -1\end{array}\right)$, we obtain $P=\left(\begin{array}{ccc}\frac{1}{6} & \frac{2}{6} & \frac{-1}{6} \\ \frac{2}{6} & \frac{4}{6} & \frac{-2}{6} \\ \frac{-1}{6} & \frac{-2}{6} & \frac{1}{6}\end{array}\right)$.
(c) Of course, one can do this the usual way (finding the characteristic polynomial of P, then the eigenvalues, then the eigenvectors), but it is much easier to remember that P is a projection matrix on the line L spanned by the column vector $\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$. Thus, every vector on the line L (in particular, the vector $\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$ itself) is an eigenvector for eigenvalue 1 (because the projection matrix P sends this vector to itself), whereas every vector orthogonal to the line L is an eigenvector for eigenvalue 0 (because the projection matrix P sends it to 0). In more detail:

- The vectors in L are eigenvectors of P for eigenvalue 1 ; this gives us one linearly independent eigenvector $\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$.

[^2]- The vectors orthogonal to L (that is, the vectors in L^{\perp}) are eigenvectors of P for eigenvalue 0 ; this gives us two linearly independent eigenvectors $\left(\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$. (These two vectors are a basis of L^{\perp}; any other basis would do the trick just as well. ${ }^{4}$)

Altogether, we have thus obtained three eigenvectors $\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right),\left(\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ for the eigenvalues 1,0 and 0 , respectively. These three eigenvectors are easily seen to be linearly independent, and so we can diagonalize P using the formula (1) on page 298. So let S be the eigenvector matrix $\left(\begin{array}{ccc}1 & -2 & 1 \\ 2 & 1 & 0 \\ -1 & 0 & 1\end{array}\right)$ whose columns are these three eigenvectors is invertible. Then, $S^{-1} P S$ is the eigenvalue matrix $\Lambda=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. Now, we can diagonalize P as follows: $P=S \Lambda S^{-1}$.
(Of course, other choices of S and Λ are also possible, though the diagonal entries of Λ will always be $1,0,0$ in some order.)
(d) See http://web.mit.edu/18.06/www/Spring05/exam2sol.pdf.
ad problem 9:
(a) The eigenvalues of A are the roots of the characteristic polynomial of A, which is $\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}1-\lambda & 4 \\ 2 & 3-\lambda\end{array}\right)=(1-\lambda)(3-\lambda)-4 \cdot 2=\lambda^{2}-$ $4 \lambda-5=(\lambda+1)(\lambda-5)$ (where λ is the indeterminate). Thus, the eigenvalues of A are -1 and 5 . The respective eigenvectors are:

- all multiples of $\binom{2}{-1}$ for eigenvalue -1 ;
- all multiples of $\binom{1}{1}$ for eigenvalue 5.
(To obtain this, it suffices to recall that the eigenvectors for eigenvalue -1 are the vectors in the nullspace of $A-(-1) I=A+I$, wheras the eigenvectors for eigenvalue 5 are the vectors in the nullspace of $A-5 I$. You know how to find a basis of a nullspace.)

[^3]The matrix $A+I$ has the same eigenvectors as A. Its eigenvalues are greater by 1. (This is because if $A v=\lambda v$, then $(A+I) v=A v+v=\lambda v+v=(\lambda \overline{+1) v .}$)
(b) This is solved in the same way as problem 8 (c) (with a new matrix), so I will just give one answer (again, there are multiple possible answers because one has freedom in choosing the eigenvectors):

- for the eigenvalue 1, two linearly independent eigenvectors are $\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) ;$
- for the eigenvalue 0 , one linearly independent eigenvector is $\left(\begin{array}{c}1 \\ -\frac{1}{2} \\ 0\end{array}\right)$.
ad problem 10: See http://web.mit.edu/18.06/www/Fall04/q2sol.pdf.
ad problem 11: (a) See page 537.
(b) If $A=S \Lambda S^{-1}$, then $A^{3}=S \Lambda^{3} S^{-1}$ and $A^{-1}=S \Lambda^{-1} S^{-1}$.
(Generally, $A^{k}=S \Lambda^{k} S^{-1}$ for every integer k. When k is positive, this follows from the computation $A^{k}=\left(S \Lambda S^{-1}\right)^{k}=\left(S \Lambda S^{-1}\right)\left(S \Lambda S^{-1}\right) \cdots\left(S \Lambda S^{-1}\right)=$ $S \Lambda \underbrace{\left(S^{-1} S\right)}_{=I} \Lambda \underbrace{\left(S^{-1} S\right)}_{=I} \cdots \underbrace{\left(S^{-1} S\right)}_{=I} \Lambda S^{-1}=S \Lambda \Lambda \cdots \Lambda S^{-1}=S \Lambda^{k} S^{-1}$. For negative k, it can be proven by showing that $S \Lambda^{k} S^{-1}$ and $S \Lambda^{-k} S^{-1}$ are mutually inverse.)
(c) The diagonalization of A is $A=S \Lambda S^{-1}$ for $S=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$ and $\Lambda=\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)$. (Again, this is only one of many possible correct answers.) Since Λ is a diagonal matrix, its powers are easily computed: $\Lambda^{k}=\left(\begin{array}{cc}3^{k} & 0 \\ 0 & 1^{k}\end{array}\right)=\left(\begin{array}{cc}3^{k} & 0 \\ 0 & 1\end{array}\right)$. Now, the powers of A are obtained by the formula $A^{k}=S \Lambda^{k} S^{-1}$ (that we have seen above in the solution to part (a)):

$$
A^{k}=S \Lambda^{k} S^{-1}=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
3^{k} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)^{-1}=\frac{1}{2}\left(\begin{array}{ll}
1+3^{k} & 1-3^{k} \\
1-3^{k} & 1+3^{k}
\end{array}\right)
$$

(after straightforward computation).
ad problem 12:
(a) Let $A=\left(\begin{array}{cc}-9 & 8 \\ -10 & 9\end{array}\right)$. Then, we are looking for A^{20}. We can diagonalize A as $A=S \Lambda S^{-1}$ with $S=\left(\begin{array}{ll}4 & 1 \\ 5 & 1\end{array}\right)$ and $\Lambda=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Since Λ is a diagonal matrix, its powers are easily computed: $\Lambda^{k}=\left(\begin{array}{cc}1^{k} & 0 \\ 0 & (-1)^{k}\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & (-1)^{k}\end{array}\right)$. Now, the powers of A can be obtained by the formula $A^{k}=S \Lambda^{k} S^{-1}$ (that we have seen above in the solution to problem 11 (a)):

$$
A^{k}=S \Lambda^{k} S^{-1}=\left(\begin{array}{ll}
4 & 1 \\
5 & 1
\end{array}\right)\left(\begin{array}{cc}
1^{k} & 0 \\
0 & (-1)^{k}
\end{array}\right)\left(\begin{array}{ll}
4 & 1 \\
5 & 1
\end{array}\right)^{-1}
$$

You can simplify this, but since you are only looking for A^{20}, there is a simpler way: notice that $\Lambda^{20}=\left(\begin{array}{cc}1 & 0 \\ 0 & (-1)^{20}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=I_{2}$, so that $A^{20}=S \underbrace{\Lambda^{20}}_{=I_{2}} S^{-1}=$ $S I_{2} S^{-1}=S S^{-1}=I_{2}$.
(An alternative solution proceeds by realizing that $A^{2}=I_{2}$ (by a simple computation), and thus $A^{20}=\left(A^{2}\right)^{10}=I_{2}^{10}=I_{2}$. But how would you guess that A^{2} is something as simple as I_{2} ? Diagonalization makes it obvious.)
(b) Let $u_{0}=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right)$ and $u_{\infty}=\lim _{k \rightarrow \infty} A^{k} u_{0}$. Then, u_{∞} is the vector that we are looking for.

The matrix A is Markov. While A is not positive (so the blue box on page 433 does not apply verbatim), A still has the property that it has the eigenvalue 1 with (algebraic) multiplicity 1 . Hence, up to scalar multiplication, there is a unique eigenvector of A for eigenvalue 1. This eigenvector is $v=\left(\begin{array}{c}1 \\ \frac{1}{2} \\ \frac{3}{4} \\ \frac{3}{4} \\ \frac{1}{2}\end{array}\right)$ (or any scalar multiple of it).

It might appear that I have pulled the eigenvector - as well as its uniqueness out of my hat. But it follows from straightforward computations: Every Markov matrix has 1 as its eigenvalue at least once. To find all eigenvalues of A for 1 , we need to find the nullspace of $A-1 I=A-I$. This can be done by Gaussian elimination (it is a system of 5 equations in 5 indeterminates), and the result is that the nullspace of $A-I$ is 1-dimensional, with basis consisting of the vector

Now, $u_{\infty}=\lim _{k \rightarrow \infty} A^{k} u_{0}$, so that $A u_{\infty}=A \lim _{k \rightarrow \infty} A^{k} u_{0}=\lim _{k \rightarrow \infty} A A^{k} u_{0}=\lim _{k \rightarrow \infty} A^{k+1} u_{0}=$ $\lim _{k \rightarrow \infty} A^{k} u_{0}=u_{\infty}$. Thus, u_{∞} is an eigenvector of A for eigenvalue 1 , therefore a scalar multiple of v. In other words, $u_{\infty}=c v$ for some $c \in \mathbb{R}$. It remains to find the scalar c.

Let j be the row vector $\left(\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right)$. Then, $j A=j$ (since every column of A has sum 1); thus, $j=j A=j A A=j A^{2}=j A A^{2}=j A^{3}=\cdots$. That is, $j=j A^{k}$ for

[^4]Theorem 0.1. Let G be a connected (undirected) graph whose vertices are labelled $1,2, \ldots, n$. For every $i \in\{1,2, \ldots, n\}$, let $u_{i} \in \mathbb{R}^{n}$ be the column vector whose k-th entry (for each $k \in\{1,2, \ldots, n\}$) is

$$
\left\{\begin{array}{c}
\frac{1}{\text { the number of edges of } G \text { from } i^{\prime}} \\
0,
\end{array} \text { if } k \text { is connected to } i ;\right.
$$

Let B be the $n \times n$ matrix whose columns are $u_{1}, u_{2}, \ldots, u_{n}$. Then, the matrix B has a unique (up to scaling) eigenvector for the eigenvalue 1. This eigenvector is the vector whose k-th coordinate (for each $k \in\{1,2, \ldots, n\}$) is the number of edges of G from k.

(up to scaling) eigenvector for the eigenvalue 1, and this eigenvector is the vector whose k-th coordinate (for each $k \in\{1,2, \ldots, n\}$) is the number of edges of G from k. This eigenvector is

$$
\left(\begin{array}{l}
4 \\
2 \\
3 \\
3 \\
2
\end{array}\right)
$$

This is exactly the same vector as the v that we are found, up to a scalar factor of 4 (and eigenvectors always can be modified by scalar factors).
every $k \in \mathbb{N}$. Hence, $j u_{0}=\lim _{k \rightarrow \infty} \underbrace{j u_{0}}_{=j A^{k} u_{0}}=\lim _{k \rightarrow \infty} j A^{k} u_{0}=j \underbrace{\lim _{k \rightarrow \infty} A^{k} u_{0}}_{=u_{\infty}=c v}=j c v=c j v$. Since $j u_{0}=1$ and $j v=\frac{7}{2}$, this becomes $1=c \cdot \frac{7}{2}$, so that $c=\frac{2}{7}$ and thus $u_{\infty}=\frac{2}{7} v=\frac{2}{7}\left(\begin{array}{l}1 \\ \frac{1}{2} \\ \frac{3}{4} \\ \frac{3}{3} \\ \frac{1}{2}\end{array}\right)$.

[^0]: ${ }^{1}$ If we had m vectors $v_{1}, v_{2}, \ldots, v_{m}$ instead of three vectors v_{1}, v_{2}, v_{3}, then the corresponding m equations for the $q_{1}, q_{2}, \ldots, q_{m}$ would look like this:

[^1]: ${ }^{2}$ The notation $(-1)^{\pi}$ stands for the sign of the permutation π; it is 1 if the list $(\pi(1), \pi(2), \ldots, \pi(n))$ is obtained from the list $(1,2, \ldots, n)$ by an even number of switches, and -1 if it is obtained by an odd number of switches. This sign is the $\operatorname{det} P$ in formula (8) on page 258 of the book. Other notations for this sign are $\operatorname{sign} \pi$ and $\operatorname{sgn} \pi$. I do not know which of these notations was used in class.

[^2]: ${ }^{3}$ Why?
 By the definition of the projection matrix, $P v$ is the projection of v on V for every $v \in \mathbb{R}^{n}$. As a consequence, $P v \in V$ for every $v \in \mathbb{R}^{n}$. This shows that the column space of P is contained in V. Conversely, every vector $v \in V$ lies in the column space of P (because for every vector v, the projection of v on V is v itself, and so we have $v=P v$), and so the column space of P contains V. Thus, V and the column space of P are identical, qed.

[^3]: ${ }^{4}$ A basis of L^{\perp} can be found using Gaussian elimination, as L^{\perp} is the nullspace of the 1×3 matrix $\left(\begin{array}{lll}1 & 2 & -1\end{array}\right)$.

[^4]: ${ }^{5}$ There is a simpler way to find the eigenvector if you know the following theorem from class:

