6-6 Trapezoids and Kites

Learning Targets:

I can apply properties of trapezoids

I can apply properties of kites

What characteristic differentiates a trapezoid from a parallelogram?

: Why?

In gymnastics, vaulting boxes made out of high compression foam are used as spotting platforms, vaulting horses, and steps. The left and right side of each section is a trapezoid.

Why would a vaulting horse shaped like a trapezoid be

more stable than one that is shaped like a rectangle?

Look at the illustration of the four staked vaulting boxes. What conjectures can you make about the angles of the trapezoids that form the end of the box?

Jan 23-7:07 AM

Feb 5-11:47 AM

Trapezoid: a quadrilateral with exactly one pair of parallel sides.

Bases: the parallel sides Legs: the nonparallel sides

Base angles: formed by the base and the one

of the legs

leg leg base C

Isosceles trapezoid: a trapezoid that has congruent legs

Jan 23-7:27 AM

Jan 23-7:31 AM

Example 1:

Each side of the basket shown is an isosceles trapezoid. If m < JML = 130, KN = 6.7 feet, and MN = 3.6 feet, find each measure.

1. m<MJK 13/0 + x = -y302. JL = 3.6+ 6.7 = 1

To save space at a square table, cafeteria trays often incorporate trapezoids into their design. If WXYZ is an isosceles trapezoid and m<YZW = 45, WV = 15 centimeters, and VY = 10 centimeters, find each measure.

- 3. m< *XWZ* =
- 4. m<WXY 180-45=
- 5. XZ = 15 + 10 = 25
- 6. XV = 10

Jan 23-7:39 AM

Example 2 Isosceles Trapezoids and Coordinate Geomerty

COORDINATE GEOMETRY Quadrilateral ABCD has vertices A(-3, 4), B(2, 5), C(3, 3), and D(-1, 0). Show that \overrightarrow{ABCD} is a trapezoid and determine whether it is an isosceles trapezoid.

Graph and connect the vertices of ABCD.

Step 1 Use the Slope Formula to compare the slopes of opposite sides \overline{BC} and \overline{AD} and of opposite sides \overline{AB} and \overline{DC} . A quadrilateral is a trapezoid if exactly one pair of opposite sides are parallel.

Opposite sides \overline{BC} and \overline{AD} :

slope of
$$\overline{BC} = 3 - \frac{5}{3} - 2 = -\frac{2}{1}$$
 or -2

slope of
$$\overline{AD} = \frac{0-4}{-1-(-3)} = \frac{-4}{2}$$
 or -2

Since the slopes of \overline{BC} and \overline{AD} are equal, $\overline{BC} \parallel \overline{AD}$.

Opposite sides \overline{AB} and \overline{DC} :

slope of
$$\overline{AB} = \frac{5-4}{2-(-3)} = \frac{1}{5}$$
 slope of $\overline{DC} = \frac{0-3}{-1-3} = \frac{-3}{-4}$ or $\frac{3}{4}$

Since the slopes of \overline{AB} and \overline{DC} are *not* equal, $\overline{BC} \not | \overline{AD}$. Since quadrilateral ABCD has only one pair of opposite sides that are parallel, quadrilateral ABCD

Step 2 Use the Distance Formula to compare the lengths of legs \overline{AB} and \overline{DC} . A trapezoid is isosceles if its legs are congruent.

$$AB = \sqrt{(-3-2)^2 + (4-5)^2} \text{ or } \sqrt{26}$$

$$DC = \sqrt{(-1-3)^2 + (0-3)^2} = \sqrt{25} \text{ or } 5$$

Since $AB \neq DC$, legs \overline{AB} abd \overline{DC} are *not* congruent. Therefore, trapezoid ABCDis not isosceles.

Example 2:

7. Quadrilateral *ABCD* has vertices A(5, 1), B(-3, -1), C(-2, 3), D(2, 4). Show that *ABCD* is a trapezoid and determine whether it is an isosceles trapezoid.

Jan 23-7:50 AM

Jan 23-8:04 AM

Example 3:

9. In the figure, \overline{MN} is the midsegment of trapezoid FGJK. What is the value of x?

Jan 23-8:14 AM

10. Trapezoid ABCD is shown. If \overline{FG} is parallel to \overline{AD} , what is the x-coordinate of point G?

Kite: a quadrilateral with exactly two pairs of consecutive congruent sides. Opposite sides of a kite are not congruent or parallel.

Jan 23-8:24 AM

Jan 23-8:26 AM

Jan 23-8:27 AM

Jan 23-8:36 AM