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Abstract In this note I prove using an algebraic identity and Wilson’s Theorem that if a2 +1

is an odd prime, thus this prime must has the form 4k2 + 1, then 5 - 2k − 3.
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If n = a2 + 1 is prime and n 6= 2, then n is odd, thus a2 is even and n must has the form
4k2 + 1, where k ≥ 1 is an integer. The integers 4k2 + 1 can be written as

4k2 + 1 = (2k − 3)2 + 3(4k − 3) + 1. (1)

If 2k − 3 = −1 then k = 1, and 5 - −1. If 2k − 3 = 1 then k = 2, 17 is a prime with
(2 · 2− 3, 5) = 1. If 2k − 3 > 1 then

4k2 + 1 ≡ 0 + 3(2k) + 1(mod 2k − 3)

≡ 3(2k − 3) + 9 + 1(mod 2k − 3)

≡ 10 (mod 2k − 3).

By Wilson’s Theorem
(4k2)! ≡ −1(mod 4k2 + 1). (2)

Thus exists an integer c such that (4k2)! + 1 = c · (4k2 + 1), since 4k2 > 2k − 3 for all k, then
2k − 3|(4k2)!, thus

0 + 1 ≡ c · 10(mod 2k − 3). (3)

Then there are integers s and t, such that

10s + (2k − 3)t = 1, (4)

thus (5, 2k − 3) = 1, by contradiction if 5|2k − 3, then 0 + 0 ≡ 1(mod 5). Thus I’ve proved the
following

Proposition. If a2 + 1 is an odd prime different of 5, then (a− 3, 5) = 1.
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Abstract The natural partial order on an U -semiabundant semigroup is introduced in this

paper and some properties of U -semiabundant semigroups are investigated by the natural

partial order. In addition, we also discuss a special class of U -semiabundant semigroups in

which the natural partial order is compatible with the multiplication.
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§1. Introduction

In generalizing regular semigroups, a generalized Green relation L̃U was introduced by M.
V. Lawson [4] on a semigroup S as follows:

Let E be the set of all idempotents of S and U be a subset of E. For any a, b ∈ S, define

(a, b) ∈ L̃U if and only if (∀ e ∈ U) ( ae = a ⇔ be = b );

(a, b) ∈ R̃U if and only if (∀ e ∈ U) ( ea = a ⇔ eb = b ).

It is clear that L ⊆ L∗ ⊆ L̃U and R ⊆ R∗ ⊆ R̃U .
It is easy to verify that if S is an abundant semigroup and U = E(S) then L∗ = L̃U ,

R∗ = R̃U ; if S is a regular semigroup and U = E(S) then L = L̃U , R = R̃U .
Recall that a semigroup S is called U -semiabundant if each L̃U -class and each R̃U -class

contains an element from U.

It is clear that regular semigroups and abundant semigroups are all U -semiabundant semi-
groups.

The natural partial order on a regular semigroup was first studied by Nambooripad [7]
in 1980. Later on, M. V. Lawson [1] in 1987 first introduced the natural partial order on an
abundant semigroup. The partial orders on various kinds of semigroups have been investigated
by many authors, for example, H. Mitsch [5], Sussman [6], Abian [8] and Burgess[9].

1This research is supported by National Natural Science Foundation of China (Grant No:10671151)
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In this paper, we will introduce the natural partial order on U -semiabundant semigroups
and describe the properties of such semigroups by using the natural partial order.

We first cite some basic notions which will be used in this paper. Suppose that e, f are
elements of E(S). The preorders ωr and ωl are defined as follows:

eωrf ⇔ fe = e and eωlf ⇔ ef = e.

In addition, ω = ωr ∩ ωl, the usual ordering on E(S).
We use DE to denote the relation (ωr ∪ ωl) ∪ (ωr ∪ ωl)−1. Assume (S,U) is an U -

semiabundant semigroup.
It will be said that U is closed under basic products if e, f ∈ U and (e, f) ∈ DE then

ef ∈ U .
For terminologies and notations not given in this paper, the reader is referred to Howie [3].

§2. The natural partial order

Let S(U) be an U -semiabundant semigroup and a ∈ S. The L̃U (R̃U )- class containing the
element a will be denoted by L̃U

a (R̃U
a ) respectively.

We will denote an element of L̃U
a ∩ U by a∗ and an element of R̃U

a ∩ U by a+.
Recall in [4] that a right ideal I of a semigroup S is said to be an U -admissible right ideal

if for every a ∈ I we have R̃U
a ⊆ I.

For a ∈ S, we define the principal U -admissible right ideal containing a, denoted by R̃U (a),
to be the intersection of all U -admissible right ideals containing a. Similarly, we may give the
definitions of an U -admissible left ideal and the principal U -admissible left ideal.

Let S be a semigroup and x, y ∈ S. We say that R̃U
x 6 R̃U

y if R̃U (x) ⊆ R̃U (y). A partial
order on the L̃U -classes can be defined in the usual left-right dual way.

Lemma 2.1. R̃U
ax 6 R̃U

a , for any elements a and x of S.
Proof. Clearly, the product ax lies in aS, which is the smallest right ideal containing a.

Since R̃U (a) is a right ideal containing a, we have aS ⊆ R̃U (a). Thus ax ∈ R̃U (a).
It follows immediately that

R̃U (ax) ⊆ R̃U (a).

Lemma 2.2. Let U ⊆ E(S) and e, f ∈ U . Then R̃U
e 6 R̃U

f if and only if Re 6 Rf .
Proof. Suppose first that R̃U

e 6 R̃U
f . Then we immediately have R̃U (e) ⊆ R̃U (f). We

claim that eS is an U -admissible right ideal.
In fact, for each a ∈ eS, a = ea and so, for any b ∈ R̃U

a , we have b = eb ∈ eS. But R̃U (e)
is a right ideal and e ∈ U , so that eS ⊆ R̃U (e).

Since eS is an U -admissible right ideal, we have that R̃U (e) = eS. Similarly R̃U (f) = fS.
It follows that eS ⊆ fS, that is, R(e) ⊆ R(f). Hence Re 6 Rf .

Conversely, suppose that Re 6 Rf . Then eS ⊆ fS and so e = fx for some x in S1. Thus,
by Lemma 2.1, we have R̃U

e = R̃U
fx 6 R̃U

f .
Corollary 2.3. The following statements hold on an U -semiabundant semigroup S(U)

for any e, f ∈ U :
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(i) (e, f) ∈ L̃U if and only if (e, f) ∈ L;

(ii) (e, f) ∈ R̃U if and only if (e, f) ∈ R.

Theorem 2.4. Let S(U) be an U -semiabundant semigroup such that U is closed under
basic products. Define two relations on S(U) as follows:

For any x and y of S(U),
x6̃ry if and only if R̃U

x 6 R̃U
y and there exists an idempotent x+ ∈ R̃U

x ∩ U such that
x = x+y;

x6̃ly if and only if L̃U
x 6 L̃U

y and there exists an idempotent x∗ ∈ L̃U
x ∩ U such that

x = yx∗.
Then 6̃r and 6̃l are respectively two partial orders on S(U) which coincide with ω on U .
Proof. We only need to prove that 6̃r is a partial order on S(U) which coincides with ω

on U since the proof of 6̃l is similar.
Reflexivity follows from the fact that S(U) is U -semiabundant. Now suppose that x6̃ry

and y6̃rx. Then R̃U
x = R̃U

y and there exist x+ ∈ R̃U
x ∩ U and y+ ∈ R̃U

y ∩ U such that x = x+y

and y = y+x. By Corollary 2.3, we have x = (x+y+)x = y+x = y. Next, suppose that x6̃ry

and y6̃rz.
It follows that R̃U

x 6 R̃U
y 6 R̃U

z and there exist x+ ∈ R̃U
x ∩ U and y+ ∈ R̃y ∩ U such that

x = x+y and y = y+z. Thus x = (x+y+)z and R̃U
x+ = R̃U

x 6 R̃U
y = R̃U

y+ which gives Rx+ 6 Ry+

by Lemma 2.2.
It follows that x+S(U) ⊆ y+S(U) and so x+ = y+x+. Since U is closed under basic

products and (x+, y+) ∈ ωr ⊆ DE , we deduce that x+y+ ∈ U . Clearly, (x+, x+y+) ∈ R and so
(x, x+y+) ∈ R̃U by Corollary 2.3. This leads to x6̃rz.

In fact, we have already shown that 6̃r is a partial order on an U -semiabundant semigroup
S(U). It is easy to verify that 6̃r coincides with the order ω on U .

Now the natural partial order 6̃ on an U -semiabundant semigroup S(U) is defined by
6̃ = 6̃r ∩ 6̃l. We first give an alternative description of the natural partial order 6̃ in terms of
idempotents.

Theorem 2.5. Let S(U) be an U -semiabundant semigroup such that U is closed under
basic products and x, y ∈ S(U). Then x6̃y if and only if there exist idempotents e and f in U

such that x = ey = yf .
Proof. We first prove the sufficiency part of Theorem 2.5. Suppose that x = ey = yf .

From x = yf and Lemma 2.1 we have R̃U
x 6 R̃U

y . Choosing an idempotent x+ in R̃U
x ∩ U , we

obtain that x = x+x = (x+e)y.
Since ex = x and (x, x+) ∈ R̃U , we have ex+ = x+. This implies (x+, e) ∈ ωr ⊆ DE . By

assumption, x+e ∈ U . Certainly, (x+, x+e) ∈ R and so (x+, x+e) ∈ R̃U by Corollary 2.3. Thus
(x, x+e) ∈ R̃U . Hence x6̃ry. A similar argument shows that x6̃ly.

The necessity part of Theorem 2.5 is straightforward from Theorem 2.4.
Theorem 2.6. Let S(U) be an U -semiabundant semigroup in which U is closed under

basic products and x, y ∈ S(U). Then x6̃ry if and only if for each idempotent y+ ∈ R̃U
y ∩ U

there exists an idempotent x+ ∈ R̃U
x ∩U such that x+ωy+ and x = x+y. The dual result holds

for 6̃l.
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Proof. Suppose that x6̃ry. Then R̃U
x 6 R̃U

y and x = ey for some idempotent e ∈ R̃U
x ∩U

by Theorem 2.4.
Let f be an idempotent in R̃U

y ∩ U . Then R̃U
e = R̃U

x 6 R̃U
y = R̃U

f and so, by Lemma 2.2,
Re 6 Rf . This leads to eS(U) ⊆ fS(U) and so e = fe giving ef ∈ U by hypothesis. Clearly,
(e, ef) ∈ R which gives efR̃UeR̃Ux by Corollary 2.3. Hence efωf and x = ey = (ef)y, where
ef ∈ R̃U

x ∩ U .
Conversely, suppose that for each idempotent y+ ∈ R̃U

y ∩ U there exists an idempotent
x+ ∈ R̃U

x ∩U such that x+ωy+ and x = x+y. Then x = y+x+y and so R̃U
x = R̃U

y+x+y 6 R̃U
y+ =

R̃U
y . By Theorem 2.4, x6̃ry. The proof is completed.

§3. Locally V -semiadequate semigroups

In this section we want to find the conditions on an U -semiabundant semigroup S(U) which
make that the natural partial order 6̃ is compatible with multiplication of S(U).

Recall in [2] that an U -semiabundant semigroup S(U) is called reduced if ωr = ωl on U .
A reduced U -semiabundant semigroup S(U) is idempotent connected(IC) if it satisfies the two
equations

ICl: For any f ∈ ω(x∗) ∩ U , xf = (xf)+x;
ICr: For any e ∈ ω(x+) ∩ U , ex = x(ex)∗.
Lemma 3.1. Let S(U) be a reduced U -semiabundant semigroup then

(i) If ICl holds then 6̃l ⊆ 6̃r;

(ii) If ICr holds then 6̃r ⊆ 6̃l.

Proof. We only need to prove (i) because the proof of (ii) is similar. If x6̃ly then x∗ωy∗

and x = yx∗ by the dual result of Theorem 2.6. Thus, by applying the condition ICl, we can
obtain x = yx∗ = (yx∗)+y = x+y.

Certainly, y+(yx∗) = yx∗ and so y+(yx∗)+ = (yx∗)+. Since S(U) is a reduced U -
semiabundant semigroup, we can easily see that x+ = (yx∗)+ωy+. It follows from Theorem 2.6
that x6̃ry.

Lemma 3.2. Let S(U) be an U -semiabundant semigroup in which U is closed under basic
products and e ∈ U . Then eS(U)e is a V -semiabundant semigroup, where V = U ∩E(eS(U)e).

Proof. Let a be an element of eS(U)e and let f be an element of U with (f, a) ∈ L̃U .
Certainly, ae = a so that fe = f , that is, (e, f) ∈ (ωl)−1 ⊆ DE .

Since U is closed under basic products, the element ef ∈ V . Clearly, (ef, f) ∈ L so that
(ef, f) ∈ L̃U by Corollary 2.3. It is easy to verify that (ef, a) ∈ L̃V (eS(U)e). This implies that
each element of eS(U)e is L̃V -related in eS(U)e to an idempotent belonging to V .

A similar result for R̃V gives us the required V -semiabundancy.
An U -semiabundant semigroup S(U) is said to be L̃U -unipotent if U forms a right regular

band. S(U) is called U -semiadequate if U forms a semilattice.
For any e ∈ U , we call eS(U)e a local submonoid of S(U). We shall say that S(U)

is locally L̃V -unipotent(locally V -semiadequate) if every local submonoid is L̃V -unipotent(V -
semiadequate).
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A subset A of a poset (X, 6̃) is said to be an order ideal if for each a ∈ A and for any x ∈ X

with x6̃a then x ∈ A(see [1]). An U -semiabundant semigroup satisfies the congruence condition
if L̃U and R̃U are right and left congruences on an U -semiabundant semigroup, respectively
(see [4]).

Now we arrive at the main result of this section.
Theorem 3.3. Let S(U) be an IC reduced U -semiabundant semigroup, in which U is

closed under basic products, satisfying the two conditions:

(C1) For any e ∈ U , U ∩ eS(U)e is an order ideal of E ∩ eS(U)e;

(C2) The congruence condition holds.

Then the natural partial order 6̃ is right compatible with the multiplication if and only if S(U)
is locally L̃V -unipotent, where V = U ∩ eS(U)e.

Proof. Suppose first that the natural partial order 6̃ is right compatible and x, y ∈ V .
Then x6̃e and so xy6̃ey = y.

Thus, by Theorem 2.6, there exists f ∈ U such that xy = yf = y(yf) = yxy. It follows
that (xy)(xy) = x(yxy) = x(xy) = xy and so that xy ∈ E ∩ eS(U)e. According to (C1),
xy ∈ V . We have shown that V forms a right regular band. But, by Lemma 3.2, the local
submonoid eS(U)e is V -semiabundant. Hence S(U) is locally L̃V -unipotent.

Conversely, suppose that S(U) is locally L̃V -unipotent, that is, for any e ∈ U , V =
U ∩ eS(U)e forms a right regular band and a, b, c ∈ S(U) with a6̃b. Then a6̃rb and so for
each idempotentb+ ∈ R̃U

b ∩ U there exists an idempotent a+ ∈ R̃U
a ∩ U such that a+ωb+ and

a = a+b.
Since (bc, (bc)+) ∈ R̃U and b+(bc) = bc, we have b+(bc)+ = (bc)+. By the hypothesis that

U is closed under basic products, (bc)+b+ ∈ U ∩ b+S(U)b+. Certainly, ((bc)+b+, (bc)+) ∈ R so
that (bc)+b+R̃U (bc)+R̃Ubc by Corollary 2.3.

According to (C2), (a+(bc)+b+, ac) = (a+(bc)+b+, a+bc) ∈ R̃U . Since U ∩ b+S(U)b+

is a right regular band and a+ωb+, we have a+(bc)+b+ ∈ U ∩ b+S(U)b+ and a+(bc)+b+ =
(bc)+b+a+(bc)+b+. Again, ac = a+bc = [a+(bc)+b+]bc, where a+(bc)+b+ ∈ R̃U

ac ∩ U .
Thus

R̃U
ac = R̃U

[a+(bc)+b+]bc 6 R̃U
a+(bc)+b+ = R̃U

(bc)+b+a+(bc)+b+ 6 R̃U
(bc)+ = R̃U

bc.

It follows from Theorem 2.4 that ac6̃rbc.
By Lemma 3.1, we also have 6̃r = 6̃l. Hence ac6̃bc, as required.
Combining Theorem 3.3 with its dual, we may obtain
Corollary 3.4. Let S(U) be an IC reduced U -semiabundant semigroup in which U is

closed under basic products. If

(C1) For any e ∈ U , U ∩ eS(U)e is an order ideal of E ∩ eS(U)e,

(C2) S(U) satisfies the congruence condition,

then the natural partial order 6̃ is compatible with the multiplication if and only if S(U) is
locally V -semiadequate, where V = U ∩ eS(U)e.
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