Scientia Magna

Vol. 3 (2007), No. 4, 104-104

A note on primes of the form $a^{2}+1$

Juan López González
9, December 2007
Madrid, Spain

Abstract In this note I prove using an algebraic identity and Wilson's Theorem that if $a^{2}+1$ is an odd prime, thus this prime must has the form $4 k^{2}+1$, then $5 \nmid 2 k-3$.
Keywords Pseudo Smarandache function, mean value, asymptotic formula.

If $n=a^{2}+1$ is prime and $n \neq 2$, then n is odd, thus a^{2} is even and n must has the form $4 k^{2}+1$, where $k \geq 1$ is an integer. The integers $4 k^{2}+1$ can be written as

$$
\begin{equation*}
4 k^{2}+1=(2 k-3)^{2}+3(4 k-3)+1 . \tag{1}
\end{equation*}
$$

If $2 k-3=-1$ then $k=1$, and $5 \nmid-1$. If $2 k-3=1$ then $k=2,17$ is a prime with $(2 \cdot 2-3,5)=1$. If $2 k-3>1$ then

$$
\begin{aligned}
4 k^{2}+1 & \equiv 0+3(2 k)+1(\bmod 2 k-3) \\
& \equiv 3(2 k-3)+9+1(\bmod 2 k-3) \\
& \equiv 10(\bmod 2 k-3)
\end{aligned}
$$

By Wilson's Theorem

$$
\begin{equation*}
\left(4 k^{2}\right)!\equiv-1\left(\bmod 4 k^{2}+1\right) \tag{2}
\end{equation*}
$$

Thus exists an integer c such that $\left(4 k^{2}\right)!+1=c \cdot\left(4 k^{2}+1\right)$, since $4 k^{2}>2 k-3$ for all k, then $2 k-3 \mid\left(4 k^{2}\right)!$, thus

$$
\begin{equation*}
0+1 \equiv c \cdot 10(\bmod 2 k-3) \tag{3}
\end{equation*}
$$

Then there are integers s and t, such that

$$
\begin{equation*}
10 s+(2 k-3) t=1 \tag{4}
\end{equation*}
$$

thus $(5,2 k-3)=1$, by contradiction if $5 \mid 2 k-3$, then $0+0 \equiv 1(\bmod 5)$. Thus I've proved the following

Proposition. If $a^{2}+1$ is an odd prime different of 5 , then $(a-3,5)=1$.

References

[1] Richard K. Guy, Unsolved Problems in Number Theory, Springer, Second Edition, I(1994).

Scientia Magna

Vol. 3 (2007), No. 4, 105-110

The natural partial order on U-semiabundant semigroups ${ }^{1}$

Dehua Wang ${ }^{\dagger}$, Xueming Ren † and X. L. Ding ${ }^{\ddagger}$
\dagger Department of Mathematics, Xi'an University of Architecture and Technology Xi'an, 710055, P.R. China
Email: xmren@xauat.edu.cn
\ddagger Department of Mathematics, Inner Mongolia University of Science and Technology Baotou 014100, P.R. China

Abstract

The natural partial order on an U-semiabundant semigroup is introduced in this paper and some properties of U-semiabundant semigroups are investigated by the natural partial order. In addition, we also discuss a special class of U-semiabundant semigroups in which the natural partial order is compatible with the multiplication.

Keywords U-semiabundant semigroups, natural partial orders.

§1. Introduction

In generalizing regular semigroups, a generalized Green relation $\widetilde{\mathcal{L}}^{U}$ was introduced by M. V. Lawson [4] on a semigroup S as follows:

Let E be the set of all idempotents of S and U be a subset of E. For any $a, b \in S$, define

$$
\begin{array}{llll}
(a, b) \in \widetilde{\mathcal{L}}^{U} & \text { if and only if } & (\forall e \in U) & (a e=a \Leftrightarrow b e=b) ; \\
(a, b) \in \widetilde{\mathcal{R}}^{U} & \text { if and only if } & (\forall e \in U) & (e a=a \Leftrightarrow e b=b) .
\end{array}
$$

It is clear that $\mathcal{L} \subseteq \mathcal{L}^{*} \subseteq \widetilde{\mathcal{L}}^{U}$ and $\mathcal{R} \subseteq \mathcal{R}^{*} \subseteq \widetilde{\mathcal{R}}^{U}$.
It is easy to verify that if S is an abundant semigroup and $U=E(S)$ then $\mathcal{L}^{*}=\widetilde{\mathcal{L}}^{U}$, $\mathcal{R}^{*}=\widetilde{\mathcal{R}}^{U}$; if S is a regular semigroup and $U=E(S)$ then $\mathcal{L}=\widetilde{\mathcal{L}}^{U}, \mathcal{R}=\widetilde{\mathcal{R}}^{U}$.

Recall that a semigroup S is called U-semiabundant if each $\widetilde{\mathcal{L}}^{U}$-class and each $\widetilde{\mathcal{R}}^{U}$-class contains an element from U.

It is clear that regular semigroups and abundant semigroups are all U-semiabundant semigroups.

The natural partial order on a regular semigroup was first studied by Nambooripad [7] in 1980. Later on, M. V. Lawson [1] in 1987 first introduced the natural partial order on an abundant semigroup. The partial orders on various kinds of semigroups have been investigated by many authors, for example, H. Mitsch [5], Sussman [6], Abian [8] and Burgess[9].

[^0]In this paper, we will introduce the natural partial order on U-semiabundant semigroups and describe the properties of such semigroups by using the natural partial order.

We first cite some basic notions which will be used in this paper. Suppose that e, f are elements of $E(S)$. The preorders ω^{r} and ω^{l} are defined as follows:

$$
e \omega^{r} f \Leftrightarrow f e=e \quad \text { and } \quad e \omega^{l} f \Leftrightarrow e f=e .
$$

In addition, $\omega=\omega^{r} \cap \omega^{l}$, the usual ordering on $E(S)$.
We use \mathcal{D}_{E} to denote the relation $\left(\omega^{r} \cup \omega^{l}\right) \cup\left(\omega^{r} \cup \omega^{l}\right)^{-1}$. Assume (S, U) is an U semiabundant semigroup.

It will be said that U is closed under basic products if $e, f \in U$ and $(e, f) \in \mathcal{D}_{E}$ then $e f \in U$.

For terminologies and notations not given in this paper, the reader is referred to Howie [3].

§2. The natural partial order

Let $S(U)$ be an U-semiabundant semigroup and $a \in S$. The $\widetilde{\mathcal{L}}^{U}\left(\widetilde{\mathcal{R}}^{U}\right)$ - class containing the element a will be denoted by $\widetilde{L}_{a}^{U}\left(\widetilde{R}_{a}^{U}\right)$ respectively.

We will denote an element of $\widetilde{L}_{a}^{U} \cap U$ by a^{*} and an element of $\widetilde{R}_{a}^{U} \cap U$ by a^{+}.
Recall in [4] that a right ideal I of a semigroup S is said to be an U-admissible right ideal if for every $a \in I$ we have $\widetilde{R}_{a}^{U} \subseteq I$.

For $a \in S$, we define the principal U-admissible right ideal containing a, denoted by $\widetilde{R}^{U}(a)$, to be the intersection of all U-admissible right ideals containing a. Similarly, we may give the definitions of an U-admissible left ideal and the principal U-admissible left ideal.

Let S be a semigroup and $x, y \in S$. We say that $\widetilde{R}_{x}^{U} \leqslant \widetilde{R}_{y}^{U}$ if $\widetilde{R}^{U}(x) \subseteq \widetilde{R}^{U}(y)$. A partial order on the $\widetilde{\mathcal{L}}^{U}$-classes can be defined in the usual left-right dual way.

Lemma 2.1. $\widetilde{R}_{a x}^{U} \leqslant \widetilde{R}_{a}^{U}$, for any elements a and x of S.
Proof. Clearly, the product $a x$ lies in $a S$, which is the smallest right ideal containing a. Since $\widetilde{R}^{U}(a)$ is a right ideal containing a, we have $a S \subseteq \widetilde{R}^{U}(a)$. Thus $a x \in \widetilde{R}^{U}(a)$.

It follows immediately that

$$
\widetilde{R}^{U}(a x) \subseteq \widetilde{R}^{U}(a)
$$

Lemma 2.2. Let $U \subseteq E(S)$ and $e, f \in U$. Then $\widetilde{R}_{e}^{U} \leqslant \widetilde{R}_{f}^{U}$ if and only if $R_{e} \leqslant R_{f}$.
Proof. Suppose first that $\widetilde{R}_{e}^{U} \leqslant \widetilde{R}_{f}^{U}$. Then we immediately have $\widetilde{R}^{U}(e) \subseteq \widetilde{R}^{U}(f)$. We claim that $e S$ is an U-admissible right ideal.

In fact, for each $a \in e S, a=e a$ and so, for any $b \in \widetilde{R}_{a}^{U}$, we have $b=e b \in e S$. But $\widetilde{R}^{U}(e)$ is a right ideal and $e \in U$, so that $e S \subseteq \widetilde{R}^{U}(e)$.

Since $e S$ is an U-admissible right ideal, we have that $\widetilde{R}^{U}(e)=e S$. Similarly $\widetilde{R}^{U}(f)=f S$. It follows that $e S \subseteq f S$, that is, $R(e) \subseteq R(f)$. Hence $R_{e} \leqslant R_{f}$.

Conversely, suppose that $R_{e} \leqslant R_{f}$. Then $e S \subseteq f S$ and so $e=f x$ for some x in S^{1}. Thus, by Lemma 2.1, we have $\widetilde{R}_{e}^{U}=\widetilde{R}_{f x}^{U} \leqslant \widetilde{R}_{f}^{U}$.

Corollary 2.3. The following statements hold on an U-semiabundant semigroup $S(U)$ for any $e, f \in U$:
(i) $(e, f) \in \widetilde{\mathcal{L}}^{U}$ if and only if $(e, f) \in \mathcal{L}$;
(ii) $(e, f) \in \widetilde{\mathcal{R}}^{U}$ if and only if $(e, f) \in \mathcal{R}$.

Theorem 2.4. Let $S(U)$ be an U-semiabundant semigroup such that U is closed under basic products. Define two relations on $S(U)$ as follows:

For any x and y of $S(U)$,
$x \widetilde{\leqslant}_{r} y$ if and only if $\widetilde{R}_{x}^{U} \leqslant \widetilde{R}_{y}^{U}$ and there exists an idempotent $x^{+} \in \widetilde{R}_{x}^{U} \cap U$ such that $x=x^{+} y$;
$x \widetilde{太}_{l} y$ if and only if $\widetilde{L}_{x}^{U} \leqslant \widetilde{L}_{y}^{U}$ and there exists an idempotent $x^{*} \in \widetilde{L}_{x}^{U} \cap U$ such that $x=y x^{*}$.

Then $\widetilde{\leqslant}_{r}$ and $\widetilde{\leqslant}_{l}$ are respectively two partial orders on $S(U)$ which coincide with ω on U.
Proof. We only need to prove that $\widetilde{\leqslant}_{r}$ is a partial order on $S(U)$ which coincides with ω on U since the proof of $\widetilde{\leqslant}_{l}$ is similar.

Reflexivity follows from the fact that $S(U)$ is U-semiabundant. Now suppose that $x \widetilde{\leqslant}_{r} y$ and $y \widetilde{\leqslant}_{r} x$. Then $\widetilde{R}_{x}^{U}=\widetilde{R}_{y}^{U}$ and there exist $x^{+} \in \widetilde{R}_{x}^{U} \cap U$ and $y^{+} \in \widetilde{R}_{y}^{U} \cap U$ such that $x=x^{+} y$ and $y=y^{+} x$. By Corollary 2.3, we have $x=\left(x^{+} y^{+}\right) x=y^{+} x=y$. Next, suppose that $x \widetilde{\leqslant}_{r} y$ and $y \widetilde{\leqslant}_{r} z$.

It follows that $\widetilde{R}_{x}^{U} \leqslant \widetilde{R}_{y}^{U} \leqslant \widetilde{R}_{z}^{U}$ and there exist $x^{+} \in \widetilde{R}_{x}^{U} \cap U$ and $y^{+} \in \widetilde{R}_{y} \cap U$ such that $x=x^{+} y$ and $y=y^{+} z$. Thus $x=\left(x^{+} y^{+}\right) z$ and $\widetilde{R}_{x^{+}}^{U}=\widetilde{R}_{x}^{U} \leqslant \widetilde{R}_{y}^{U}=\widetilde{R}_{y^{+}}^{U}$ which gives $R_{x^{+}} \leqslant R_{y^{+}}$ by Lemma 2.2.

It follows that $x^{+} S(U) \subseteq y^{+} S(U)$ and so $x^{+}=y^{+} x^{+}$. Since U is closed under basic products and $\left(x^{+}, y^{+}\right) \in \omega^{r} \subseteq \mathcal{D}_{E}$, we deduce that $x^{+} y^{+} \in U$. Clearly, $\left(x^{+}, x^{+} y^{+}\right) \in \mathcal{R}$ and so $\left(x, x^{+} y^{+}\right) \in \widetilde{\mathcal{R}}^{U}$ by Corollary 2.3. This leads to $x \widetilde{\leqslant}_{r} z$.

In fact, we have already shown that $\widetilde{\star}_{r}$ is a partial order on an U-semiabundant semigroup $S(U)$. It is easy to verify that \approx_{r} coincides with the order ω on U.

Now the natural partial order $\widetilde{\leqslant}$ on an U-semiabundant semigroup $S(U)$ is defined by $\widetilde{\leqslant}=\widetilde{\leqslant}_{r} \cap \widetilde{太}_{l}$. We first give an alternative description of the natural partial order $\widetilde{\leqslant}$ in terms of idempotents.

Theorem 2.5. Let $S(U)$ be an U-semiabundant semigroup such that U is closed under basic products and $x, y \in S(U)$. Then $x \widetilde{\leqslant} y$ if and only if there exist idempotents e and f in U such that $x=e y=y f$.

Proof. We first prove the sufficiency part of Theorem 2.5. Suppose that $x=e y=y f$. From $x=y f$ and Lemma 2.1 we have $\widetilde{R}_{x}^{U} \leqslant \widetilde{R}_{y}^{U}$. Choosing an idempotent x^{+}in $\widetilde{R}_{x}^{U} \cap U$, we obtain that $x=x^{+} x=\left(x^{+} e\right) y$.

Since $e x=x$ and $\left(x, x^{+}\right) \in \widetilde{\mathcal{R}}^{U}$, we have $e x^{+}=x^{+}$. This implies $\left(x^{+}, e\right) \in \omega^{r} \subseteq \mathcal{D}_{E}$. By assumption, $x^{+} e \in U$. Certainly, $\left(x^{+}, x^{+} e\right) \in \mathcal{R}$ and so $\left(x^{+}, x^{+} e\right) \in \widetilde{\mathcal{R}}^{U}$ by Corollary 2.3. Thus $\left(x, x^{+} e\right) \in \widetilde{\mathcal{R}}^{U}$. Hence $x \widetilde{\leqslant}_{r} y$. A similar argument shows that $x \widetilde{\leqslant}_{l} y$.

The necessity part of Theorem 2.5 is straightforward from Theorem 2.4.
Theorem 2.6. Let $S(U)$ be an U-semiabundant semigroup in which U is closed under basic products and $x, y \in S(U)$. Then $x \widetilde{\leqslant}_{r} y$ if and only if for each idempotent $y^{+} \in \widetilde{R}_{y}^{U} \cap U$ there exists an idempotent $x^{+} \in \widetilde{R}_{x}^{U} \cap U$ such that $x^{+} \omega y^{+}$and $x=x^{+} y$. The dual result holds for $\widetilde{\leqslant}_{l}$.

Proof. Suppose that $x \widetilde{\leqslant}_{r} y$. Then $\widetilde{R}_{x}^{U} \leqslant \widetilde{R}_{y}^{U}$ and $x=e y$ for some idempotent $e \in \widetilde{R}_{x}^{U} \cap U$ by Theorem 2.4.

Let f be an idempotent in $\widetilde{R}_{y}^{U} \cap U$. Then $\widetilde{R}_{e}^{U}=\widetilde{R}_{x}^{U} \leqslant \widetilde{R}_{y}^{U}=\widetilde{R}_{f}^{U}$ and so, by Lemma 2.2, $R_{e} \leqslant R_{f}$. This leads to $e S(U) \subseteq f S(U)$ and so $e=f e$ giving $e f \in U$ by hypothesis. Clearly, $(e, e f) \in \mathcal{R}$ which gives ef $\widetilde{\mathcal{R}}^{U} e \widetilde{\mathcal{R}}^{U} x$ by Corollary 2.3. Hence $e f \omega f$ and $x=e y=(e f) y$, where $e f \in \widetilde{R}_{x}^{U} \cap U$.

Conversely, suppose that for each idempotent $y^{+} \in \widetilde{R}_{y}^{U} \cap U$ there exists an idempotent $x^{+} \in \widetilde{R}_{x}^{U} \cap U$ such that $x^{+} \omega y^{+}$and $x=x^{+} y$. Then $x=y^{+} x^{+} y$ and so $\widetilde{R}_{x}^{U}=\widetilde{R}_{y^{+} x^{+} y}^{U} \leqslant \widetilde{R}_{y^{+}}^{U}=$ \widetilde{R}_{y}^{U}. By Theorem 2.4, $x \widetilde{\leqslant}_{r} y$. The proof is completed.

§3. Locally V-semiadequate semigroups

In this section we want to find the conditions on an U-semiabundant semigroup $S(U)$ which make that the natural partial order $\widetilde{\leqslant}$ is compatible with multiplication of $S(U)$.

Recall in [2] that an U-semiabundant semigroup $S(U)$ is called reduced if $\omega^{r}=\omega^{l}$ on U. A reduced U-semiabundant semigroup $S(U)$ is idempotent connected $(I C)$ if it satisfies the two equations
$I C_{l}$: For any $f \in \omega\left(x^{*}\right) \cap U, x f=(x f)^{+} x$;
$I C_{r}$: For any $e \in \omega\left(x^{+}\right) \cap U$, ex $=x(e x)^{*}$.
Lemma 3.1. Let $S(U)$ be a reduced U-semiabundant semigroup then
(i) If $I C_{l}$ holds then $\widetilde{\leqslant}_{l} \subseteq \widetilde{\leqslant}_{r}$;
(ii) If $I C_{r}$ holds then $\widetilde{\leqslant}_{r} \subseteq \widetilde{\leqslant}_{l}$.

Proof. We only need to prove (i) because the proof of (ii) is similar. If $x \widetilde{\leqslant}_{l} y$ then $x^{*} \omega y^{*}$ and $x=y x^{*}$ by the dual result of Theorem 2.6. Thus, by applying the condition $I C_{l}$, we can obtain $x=y x^{*}=\left(y x^{*}\right)^{+} y=x^{+} y$.

Certainly, $y^{+}\left(y x^{*}\right)=y x^{*}$ and so $y^{+}\left(y x^{*}\right)^{+}=\left(y x^{*}\right)^{+}$. Since $S(U)$ is a reduced U semiabundant semigroup, we can easily see that $x^{+}=\left(y x^{*}\right)^{+} \omega y^{+}$. It follows from Theorem 2.6 that $x \widetilde{\leqslant}_{r} y$.

Lemma 3.2. Let $S(U)$ be an U-semiabundant semigroup in which U is closed under basic products and $e \in U$. Then $e S(U) e$ is a V-semiabundant semigroup, where $V=U \cap E(e S(U) e)$.

Proof. Let a be an element of $e S(U) e$ and let f be an element of U with $(f, a) \in \widetilde{\mathcal{L}}^{U}$. Certainly, $a e=a$ so that $f e=f$, that is, $(e, f) \in\left(\omega^{l}\right)^{-1} \subseteq \mathcal{D}_{E}$.

Since U is closed under basic products, the element ef $\in V$. Clearly, $(e f, f) \in \mathcal{L}$ so that $(e f, f) \in \widetilde{\mathcal{L}}^{U}$ by Corollary 2.3. It is easy to verify that $(e f, a) \in \widetilde{\mathcal{L}}^{V}(e S(U) e)$. This implies that each element of $e S(U) e$ is $\widetilde{\mathcal{L}}^{V}$-related in $e S(U) e$ to an idempotent belonging to V.

A similar result for $\widetilde{\mathcal{R}}^{V}$ gives us the required V-semiabundancy.
An U-semiabundant semigroup $S(U)$ is said to be $\widetilde{\mathcal{L}}^{U}$-unipotent if U forms a right regular band. $S(U)$ is called U-semiadequate if U forms a semilattice.

For any $e \in U$, we call $e S(U) e$ a local submonoid of $S(U)$. We shall say that $S(U)$ is locally $\widetilde{\mathcal{L}}^{V}$-unipotent(locally V-semiadequate) if every local submonoid is $\widetilde{\mathcal{L}}^{V}$-unipotent $(V$ semiadequate).

A subset A of a poset $(X, \widetilde{\leqslant})$ is said to be an order ideal if for each $a \in A$ and for any $x \in X$ with $x \approx a$ then $x \in A$ (see [1]). An U-semiabundant semigroup satisfies the congruence condition if $\widetilde{\mathcal{L}}^{U}$ and $\widetilde{\mathcal{R}}^{U}$ are right and left congruences on an U-semiabundant semigroup, respectively (see [4]).

Now we arrive at the main result of this section.
Theorem 3.3. Let $S(U)$ be an $I C$ reduced U-semiabundant semigroup, in which U is closed under basic products, satisfying the two conditions:
(C1) For any $e \in U, U \cap e S(U) e$ is an order ideal of $E \cap e S(U) e$;
(C2) The congruence condition holds.
Then the natural partial order $\approx \mathfrak{*}$ is right compatible with the multiplication if and only if $S(U)$ is locally $\widetilde{\mathcal{L}}^{V}$-unipotent, where $V=U \cap e S(U) e$.

Proof. Suppose first that the natural partial order $\widetilde{\leqslant}$ is right compatible and $x, y \in V$. Then $x \widetilde{\leqslant} e$ and so $x y \approx e y=y$.

Thus, by Theorem 2.6, there exists $f \in U$ such that $x y=y f=y(y f)=y x y$. It follows that $(x y)(x y)=x(y x y)=x(x y)=x y$ and so that $x y \in E \cap e S(U) e$. According to (C1), $x y \in V$. We have shown that V forms a right regular band. But, by Lemma 3.2, the local submonoid $e S(U) e$ is V-semiabundant. Hence $S(U)$ is locally $\widetilde{\mathcal{L}}^{V}$-unipotent.

Conversely, suppose that $S(U)$ is locally $\widetilde{\mathcal{L}}^{V}$-unipotent, that is, for any $e \in U, V=$ $U \cap e S(U) e$ forms a right regular band and $a, b, c \in S(U)$ with $a \widetilde{\leqslant} b$. Then $a \widetilde{太}_{r} b$ and so for each idempotent $b^{+} \in \widetilde{R}_{b}^{U} \cap U$ there exists an idempotent $a^{+} \in \widetilde{R}_{a}^{U} \cap U$ such that $a^{+} \omega b^{+}$and $a=a^{+} b$.

Since $\left(b c,(b c)^{+}\right) \in \widetilde{\mathcal{R}}^{U}$ and $b^{+}(b c)=b c$, we have $b^{+}(b c)^{+}=(b c)^{+}$. By the hypothesis that U is closed under basic products, $(b c)^{+} b^{+} \in U \cap b^{+} S(U) b^{+}$. Certainly, $\left((b c)^{+} b^{+},(b c)^{+}\right) \in \mathcal{R}$ so that $(b c)^{+} b^{+} \widetilde{\mathcal{R}}^{U}(b c)^{+} \widetilde{\mathcal{R}}^{U} b c$ by Corollary 2.3 .

According to $(\mathrm{C} 2),\left(a^{+}(b c)^{+} b^{+}, a c\right)=\left(a^{+}(b c)^{+} b^{+}, a^{+} b c\right) \in \widetilde{\mathcal{R}}^{U}$. Since $U \cap b^{+} S(U) b^{+}$ is a right regular band and $a^{+} \omega b^{+}$, we have $a^{+}(b c)^{+} b^{+} \in U \cap b^{+} S(U) b^{+}$and $a^{+}(b c)^{+} b^{+}=$ $(b c)^{+} b^{+} a^{+}(b c)^{+} b^{+}$. Again, $a c=a^{+} b c=\left[a^{+}(b c)^{+} b^{+}\right] b c$, where $a^{+}(b c)^{+} b^{+} \in \widetilde{R}_{a c}^{U} \cap U$.

Thus

$$
\widetilde{R}_{a c}^{U}=\widetilde{R}_{\left[a^{+}(b c)^{+} b^{+}\right] b c}^{U} \leqslant \widetilde{R}_{a^{+}(b c)^{+} b^{+}}^{U}=\widetilde{R}_{(b c)^{+} b^{+} a^{+}(b c)^{+} b^{+}}^{U} \leqslant \widetilde{R}_{(b c)^{+}}^{U}=\widetilde{R}_{b c}^{U} .
$$

It follows from Theorem 2.4 that $a c \widetilde{\leqslant}_{r} b c$.
By Lemma 3.1, we also have $\widetilde{\leqslant}_{r}=\widetilde{\leqslant}_{l}$. Hence $a c \widetilde{\leqslant} b c$, as required.
Combining Theorem 3.3 with its dual, we may obtain
Corollary 3.4. Let $S(U)$ be an $I C$ reduced U-semiabundant semigroup in which U is closed under basic products. If
(C1) For any $e \in U, U \cap e S(U) e$ is an order ideal of $E \cap e S(U) e$,
(C2) $S(U)$ satisfies the congruence condition,
then the natural partial order $\widetilde{\leqslant}$ is compatible with the multiplication if and only if $S(U)$ is locally V-semiadequate, where $V=U \cap e S(U) e$.

References

[1] M. V. Lawson, The natural partial order on an abundant semigroup, Proc. Edinburgh Math. Soc., 30(1987), 169-186.
[2] M. V. Lawson, Semigroups and ordered categories, Journal of Algebra, 141(1991), 422-462.
[3] J. M. Howie, An introduction to semigroup theory, Academic Press, 1976.
[4] M. V. Lawson, Rees matrix semigroups, Proc. Edinburgh Math. Soc., 33(1990), 23-37.
[5] H. Mitsch, A natural partial order for semigroups, Proc. Amer. Math. soc., 97(1986), 384-388.
[6] I. A. Sussman, A generalisation of Boolean rings, Math. Ann., 136(1958), 326-338.
[7] K. S. S. Nambooripad, The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc., 23(1980), 249-260.
[8] A. Abian, Direct product decomposition of commutative semisimple rings, Proc. Amer. Math. Soc., 24(1970), 502-507.
[9] W. D. Burgess, Completions of semilattices of cancellative semigroups, Glasgow Math. J., 21(1980), 29-37.

[^0]: ${ }^{1}$ This research is supported by National Natural Science Foundation of China (Grant No:10671151)

