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Preface

Optimal control theory—which is playing an increasingly important role
in the design of modern systems—has as its objective the maximization of the

return from,

or the minimization of the cost of, the operation of physical,

social, and economic processes.

This book introduces three facets of optimal control theory—dynamic
programming, Pontryagin’s minimum principle, and numerical techniques
for trajectory optimization—at a level appropriate for a first- or second-year
graduate course, an undergraduate honors course, or for directed self-study.
A reasonable proficiency in the use of state variable methods is assumed;
however, this and other prerequisites are reviewed in Chapter 1. In the interest
of flexibility, the book is divided into the following parts:

Part I:

Part II:

Part I11:

Part IV:

Part V:

Describing the System and Evaluating Its Performance
(Chapters 1 and 2)

Dynamic Programming

(Chapter 3)

The Calculus of Variations and Pontryagin’s Minimum Principle
(Chapters 4 and 5)

Iterative Numerical Techniques for Finding Optimal Controls
and Trajectories

(Chapter 6)

Conclusion

(Chapter 7)

Because of the simplicity of the concept, dynamic programming (Part IT)
is presented before Pontryagin’s minimum principle (Part III), thus enabling

v



vi Preface

the reader to solve meaningful problems at an early stage, and providing
motivation for the material which follows. Parts IT and III are self-contained;
they may be studied in either order, or either may be omitted without affect-
ing the treatment in the other. The problems provided in Parts I through IV
are designed to introduce additional topics as well as to illustrate the basic
concepts.

My experience indicates that it is possible to discuss, at a moderate pace,
Chapters 1 through 4, Sections 5.1 through 5.3, and parts of Sections 5.4
and 5.5 in a one-quarter, four-credit-hour course. This material provides
adequate background for reading the remainder of the book and other
literature on optimal control theory. To study the entire book, a course of
one semester’s duration is recommended.

My thanks go to Professor Robert D. Strum for encouraging me to
undertake the writing of this book, and for his helpful comments along the
way. I also wish to express my appreciation to Professor John R. Ward
for his constructive criticism of the presentation. Professor Charles H.
Rothauge, Chairman of the Electrical Engineering Department at the Naval
Postgraduate School, aided my efforts by providing a climate favorable for
preparing and testing the manuscript. I thank Professors Jose B. Cruz, Jr.,
William R. Perkins, and Ronald A. Rohrer for introducing optimal control
theory to me at the University of Illinois; undoubtedly their influence is
reflected in this book. The valuable comments made by Professors James
S. Demetry, Gene F. Franklin, Robert W. Newcomb, Ronald A. Rohrer,
and Michael K. Sain are also gratefully acknowledged. In proofreading the
manuscript I received generous assistance from my wife, Judy, and from
Ledr. D. T. Cowdrill and Ledr. R. R. Owens, USN. Perhaps my greatest
debt of gratitude is to the students whose comments were invaluable in
preparing the final version of the book.

DonaLD E. Kirk

Carmel, California
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Introduction

Classical control system design is generally a trial-and-error process in
which various methods of analysis are used iteratively to determine the design
parameters of an “acceptable” system. Acceptable performance is generally
defined in terms of time and frequency domain criteria such as rise time,
settling time, peak overshoot, gain and phase margin, and bandwidth. Radi-
cally different performance criteria must be satisfied, however, by the com-
plex, multiple-input, multiple-output systems required to meet the demands
of modern technology. For example, the design of a spacecraft attitude
control system that minimizes fuel expenditure is not amenable to solution
by classical methods. A new and direct approach to the synthesis of these
complex systems, called optimal control theory, has been made feasible by
the development of the digital computer.

The objective of optimal control theory is to determine the control signals
that will cause a process to satisfy the physical constraints and at the same
time minimize (or maximize) some performance criterion. Later, we shall
give a more explicit mathematical statement of “the optimal control prob-
lem,” but first let us consider the matter of problem formulation.

1.1 PROBLEM FORMULATION

The axiom “A problem well put is a problem half solved” may be a slight
exaggeration, but its intent is nonetheless appropriate. In this section, we

3



4 Describing the System and Evaluating Its Performance Sec. 1.1

shall review the important aspects of problem formulation, and introduce
the notation and nomenclature to be used in the following chapters.
The formulation of an optimal control problem requires:

1. A mathematical description (or model) of the process to be controlled.
2. A statement of the physical constraints.
3. Specification of a performance criterion.

The Mathematical Model

A nontrivial part of any control problem is modeling the process. The
objective is to obtain the simplest mathematical description that adequately
predicts the response of the physical system to all anticipated inputs. OQur
discussion will be restricted to systems described by ordinary differential
equations (in state variable form).t Thus, if

x,(0), x,(0, ..., x(D)

are the state variables (or simply the states) of the process at time ¢, and

u (), uy(t), . . ., U, (0

are control inputs to the process at time ¢, then the system may be described
by n first-order differential equations

%,(0) = a,(x,(1), %50, - ., X0, wy (1, u, (D), .. ., u,(6), 1)
xz(t) = az(xl(t)s xz(t)’ LS ] x,,(t), ul(t)’ uz(t), DI | um(’): t)
: (1.1-1)

X(1) = a,(x,(0), x3(0), . - o, X,(8), w4y (2), uy(0), . . ., UL (D), 1).F
We shall define
x,(2)
x,(8)

x(1) &

x,(1)
as the state vector of the system, and
+ The reader will find the concepts much the same for discrete systems (see [A-1]).

1 Note that x;(¢) is in general a nonlinear time-varying function g; of the states, the
control inputs, and time.
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u, ()

u,(9)
u(?) &

u,(t)

as the control vector. The state equations can then be written

x(t) = a(x(®), u(r), 1), (1.1-1a)

where the definition of a is apparent by comparison with (1.1-1).

Car

T ;

(0] e

d

Figure 1-1 A simplified control problem

Example 1.1-1. The car shown parked in Fig. 1-1 is to be driven in a
straight line away from point O. The distance of the car from O at time
t is denoted by d(r). To simplify the model, let us approximate the car
by a unit point mass that can be accelerated by using the throttle or

decelerated by using the brake. The differential equation is

d@) = a(@) + @),

(1.1-2)

where the control a is throttle acceleration and-f is braking deceleration.

Selecting position and velocity as state variables, that is,

x1(t) 2 d(f) and x,() 2 d(r),
and letting
u(f) 2 o) and (1) 2 (),
we find that the state equations become
X, (1) = t
"fl() x2(0) (1.13)
X,(8) = u (1) + w0,
or, using matrix notation,
cn [01 00
() = [o 0} x() + [1 l]u(t). (1.1-3a)

This is the mathematical model of the process in state form.
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Before we move on to the matter of physical constraints, let us consider
two definitions that will be useful later. Let the system be described by Eq.
(1.1-1a) for t € [t,, t;].t

DEFINITION 1-1
A history of control input values during the interval [z, ¢,] is de-
noted by u and is called a control history, or simply a control.

DEFINITION 1-2

A history of state values in the interval [, ¢/] is called a state tra-
Jectory and is denoted by x.

The terms “history,” “curve,” “function,” and “trajectory” will be used
interchangeably. It is most important to keep in mind the difference between
a function and the value of a function. Figure 1-2 shows a single-valued func-
tion of time which is denoted by x. The value of the function at time ¢, is
denoted by x(,).

x(1)

> %

!

x(ty)

I

t 1

e ——

+ Time

-~
o

Figure 1-2 A function, x, and its value at time #1, x(f1)

Physical Constraints

After we have selected a mathematical model, the next step is to define
the physical constraints on the state and control values. To illustrate some
typical constraints, let us return to the automobile whose model was deter-
mined in Example 1.1-1.

Example 1.1-2. Consider the problem of driving the car in Fig. 1-1
between the points O and e. Assume that the car starts from rest and
stops upon reaching point e.

1 This notation means 1, <<t < t.
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First let us define the state constraints. If ¢, is the time of leaving O,
and 7 is the time of arrival at e, then, clearly,

x1(ty) =0
1(t0) (1.1-4)
xi(ty) =e.
In addition, since the automobile starts from rest and stops at e,
X2(to) =0
2(to) (1.1-5)
xZ(tf) = 0.
In matrix notation these boundary conditions are
0 e
x(to) = [ } =0 and x() = [ ] 1.1-6)
0 0
If we assume that the car does not back up, then the additional constraints
0 x(t e
<)< WL
0< x,(0

are also imposed.

What are the constraints on the control inputs (acceleration)? We
know that the acceleration is bounded by some upper limit which depends
on the capability of the engine, and that the maximum deceleration is
limited by the braking system parameters. If the maximum acceleration
is M, > 0, and the maximum deceleration is M, > 0, then the controls
must satisfy

0 ul(’) SMl

(1.1-8)
_Mz S "2(’) S 0.

In addition, if the car starts with G gallons of gas and there are no service
stations on the way, another constraint is

[ st + kpxa01dr < 6 (1.1-9)

which assumes that the rate of gas consumption is proportional to both
acceleration and speed with constants of proportionality k&, and k.

Now that we have an idea of typical constraints that may be encountered,
let us make these concepts more precise.

DEFINITION 1-3

A control history which satisfies the control constraints during the
entire time interval [t,, ¢, is called an admissible control.
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We shall denote the set of admissible controls by U, and the notationu € U
means that the control history u is admissible.

To illustrate the concept of admissibility Fig. 1-3 shows four possible
acceleration histories for Example 1.1-2. »{® and u{* are not admissible;

u({)(t)

i

M-

() Iy t

u(f) )

A 4

~
=]
~4

!

(b)

(© fo 4

/\IL ¢
fo] SN—

(d) s

Figure 1-3 Some acceleration histories
u{t and u{® are admissible if they satisfy the consumed-fuel constraint of

Eq. (1.1-9). In this example, the set of admissible controls U is defined by the
inequalities in (1.1-8) and (1.1-9).

DEFINITION 1-4

A state trajectory which satisfies the state variable constraints
during the entire time interval [z,, 7,] is called an admissible tra-
Jectory.
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The set of admissible state trajectories will be denoted by X, and x € X
means that the trajectory x is admissible.

In Example 1.1-2 the set of admissible state trajectories X is specified by
the conditions given in Eqs. (1.1-6), (1.1-7), and (1.1-9). In general, the final
state of a system will be required to lie in a specified region S of the (n + 1)-
dimensional state-time space. We shall call S the target set. If the final state
and the final time are fixed, then S is a point. In the automobile problem of
Example 1.1-2 the target set was the line shown in Fig. 1-4(a). If the auto-
mobile had been required to arrive within three feet of e with zero terminal
velocity, the target set would have been as shown in Fig. 1-4(b).

Admissibility is an important concept, because it reduces the range of
values that can be assumed by the states and controls. Rather than consider
all control histories and their trajectories to see which are best (according to
some criterion), we investigate only those trajectories and controls that are
admissible.

xy(t)

X (1)

e—3 !
et+3
xy (1)
(b)

Figure 1-4 (2) The target set for Example 1.1-2. (b) The target set
defined by | x1(#) —e]<<3,x2(t) =0
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The Performance Measure

In order to evaluate the performance of a system quantitatively, the
designer selects a performance measure. An optimal control is defined as one
that minimizes (or maximizes) the performance measure. In certain cases
the problem statement may clearly indicate what to select for a performance
measure, whereas in other problems the selection is a subjective matter.
For example, the statement, “Transfer the system from point A to point B
as quickly as possible,” clearly indicates that elapsed time is the performance
measure to be minimized. On the other hand, the statement, “Maintain the
position and velocity of the system near zero with a small expenditure of
control energy,” does not instantly suggest a unique performance measure.
In such problems the designer may be required to try several performance
measures before selecting one which yields what he considers to be optimal
performance. We shall discuss the selection of a performance measure in
more detail in Chapter 2.

Example 1.1-3. Let us return to the automobile problem begun in
Example 1.1-1. The state equations and physical constraints have been
defined; now we turn to the selection of a performance measure. Suppose
the objective is to make the car reach point e as quickly as possible;
then the performance measure J is given by

J=t; —to. (1.1-10)

In all that follows it will be assumed that the performance of a system is
evaluated by a measure of the form

J = hx(t,),t,) + f g(x(0), u(t), 1) dt, (1.1-11)

where ¢, and ¢, are the initial and final time; 4 and g are scalar functions.
t; may be specified or “free,” depending on the problem statement.

Starting from the initial state x(z,) = x, and applying a control signal
u(?), for t € [t,, t;], causes a system to follow some state trajectory; the
performance measure assigns a unique real number to each trajectory of the
system.

With the background material we have accumulated it is now possible
to present an explicit statement of “the optimal control problem.”

The Optimal Control Problem

The theory developed in the subsequent chapters is aimed at solving
the following problem.
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Find an admissible control u* which causes the system

x(1) = a(x(?), u(?), 9 (1.1-12)

to follow an admissible trajectory x* that minimizes the performance meas-
ure

T = hxtt), 1) + [ gx(o),ue), 1 . (11-13)

u* is called an optimal control and x* an optimal trajectory.

Several comments are in order here. First, we may not know in advance
that an optimal control exists; that is, it may be impossible to find a control
which (a) is admissible and (b) causes the system to follow an admissible
trajectory. Since existence theorems are in rather short supply, we shall,
in most cases, attempt to find an optimal control rather than try to prove
that one exists.

Second, even if an optimal control exists, it may not be unique. Nonunique
optimal controls may complicate computational procedures, but they do
allow the possibility of choosing among several controller configurations.
This is certainly helpful to the designer, because he can then consider other
factors, such as cost, size, reliability, etc., which may not have been included
in the performance measure.

Third, when we say that u* causes the performance measure to be mini-
mized, we mean that

T & e, 1) + [ g, wr ), 1) de
" . (1.1-14)
<hx(ep) 1) + [ gx(o), (o), 1) d

for all u € U, which make x € X. The above inequality states that an
optimal control and its trajectory cause the performance measure to have a
value smaller than (or perhaps equal to) the performance measure for any
other admissible control and trajectory. Thus, we are seeking the absolute
or global minimum of J, not merely local minima. Of course, one way to find
the global minimum is to determine all of the local minima and then simply
pick out one (or more) that yields the smallest value for the performance
measure,

It may be helpful to visualize the optimization as shown in Fig. 1-5.
™M, 4 4 and u4’ are “points” at which J has local, or relative, minima ;
u'V is the “point” where J has its global, or absolute, minimum.

Finally, observe that if the objective is to maximize some measure of
system performance, the theory we shall develop still applies because this
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re—— Admissible control region ———

JH--—

|
|
|
!
[
l
1
|
i
uD =y ) ) @

Figure 1-5 A representation of the optimization problem

is the same as minimizing the negative of this performance measure. Hence-
forth, we shall speak, with no lack of generality, of minimizing the perfor-
mance measure.

Example 1.1-4. To illustrate a complete problem formulation, let us now
summarize the results of Example 1.1-1, using the notation and definitions
which have been developed.

The state equations are

x1(1) = x,(t)

(1.1-3)
X, (8) = uy(t) + ux(2).

The set of admissible states X is partially specified by the boundary condi-
tions

x(ts) =0,  x(t)) = [g]

and the inequalities

0<x(H<e

d-

The set of admissible controls U is partially defined by -the constraints

0 g ul(t) ng

(1.1-8)
“"Mz S uz(t) S 0.
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The inequality constraint
[ tem® + kaxorar < @ (1.1-9)
completes the description of the admissible states and controls.
The solution to this problem (which is left as an exercise for the reader
at the end of Chapter 5) is shown in Fig. 1-6 for the situation where M, =

M, 2 M. We have also assumed that the car has enough fuel available to
reach point e using the control shown.

a*(1)
M
- } -
Iy 3 (to + tf) tf
g1
t Litg +1p) t o
{ >
-M
x3(8)
+ t — ¢
1y 3 (g +1p) ty
x{() }
e
t 3 +1tp t

Figure 1-6 The optimal control and trajectory for the automobile
problem

Example 1.1-5. Let us now consider what would happen if the preceding

problem had been improperly formulated. Suppose that the control
constraints had not been recognized. If we let

a@) + B = e;,‘—i,—lé(t — to)] 1.1-15)
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where 0(t — 1,) is a unit impulse function that occurs at time 7,1 then
(1) = e O(t — to) (1.1-16)
and
x1() = e 1(t — t0) (1.1-17)

[1(+ — o) represents a unit step function at ¢ = t,]. Figure 1-7 shows
the state trajectory which results from applying the “optimal” control
in (1.1-15). Unfortunately, although the desired transfer from point O

x50
(e)
] —t
o
x1(0)
e L o
>t
to

Figure 1-7 The optimal trajectory resulting from unconstrained
controls

to point e is accomplished in infinitesimal time, the control required,
apart from being rather unsafe, is physically impossible! Thus, we see
the importance of correctly formulating problems before attempting
their solution.

- Form of the Optimal Control

DEFINITION 1-5

If a functional relationship of the form

ur(f) = f(x(¢), Ot (1.1-18)

1 See reference [Z-1].
} Here we write x(¢) instead of x*(¢#) to emphasize that the control law is optimal for all
admissible x(¢), not just for some special state value at time ¢.
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can be found for the optimal control at time ¢, then the function £
is called the optimal control law, or the optimal policy.t

Notice that Eq. (1.1-18) implies that f is a rule which determines the
optimal control at time ¢ for any (admissible) state value at time ¢. For
example, if

u*(?) = Fx(), 1.1-19)

where F is an m X n matrix of real constants, then we would say that the
optimal control law is linear, time-invariant feedback of the states.

DEFINITION 1-6

If the optimal control is determined as a function of time for a speci-
fied initial state value, that is,

u*(f) = e(x(y), 1), (1.1-20)

then the optimal control is said to be in open-loop form.

Thus the optimal open-loop control is optimal only for a particular initial
state value, whereas, if the optimal control law is known, the optimal con-
trol history starting from any state value can be generated.

Conceptually, it is helpful to imagine the difference between an optimal
control law and an open-loop optimal control as shown in Fig. 1-8; notice,

u’(t) x(¢)
CONTROLLER [~ % PROCESS

(a) Opens at ¢y
] K

u’ (1) x(¢)
CONTROLLER | PROCESS

(b)

Figure 1-8 (a) Open-loop optimal control. (b) Optimal control law

however, that the mere presence of connections from the states to a con-
troller does not, in general, guarantee an optimal control law.¥

t The terms optimal feedback control, closed-loop optimal control, and optimal control
Strategy are also often used.
1 This is pursued further in reference [K-1].
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Although engineers normally prefer closed-loop solutions to optimal
control problems, there are cases when an open-loop control may be feasible.
For example, in the radar tracking of a satellite, once the orbit is set very
little can happen to cause an undesired change in the trajectory parameters.
In this situation a pre-programmed control for the radar antenna might well
be used.

A typical example of feedback control is in the classic servomechanism
problem where the actual and desired outputs are compared and any devia-
tion produces a control signal that attempts to reduce the discrepancy to
Zero.

1.2 STATE VARIABLE REPRESENTATION OF
SYSTEMS

The starting point for optimal control investigations is a mathematical
model in state variable form. In this section we shall summarize the results
and notation to be used in the subsequent discussion. There are several
excellent texts available for the reader who needs additional background
material.t

Why Use State Variables?

Having the mathematical model in state variable form is convenient
because

1. The differential equations are ideally suited for digital or analog
solution.
2. The state form provides a unified framework for the study of non-
linear and linear systems.
. The state variable form is invaluable in theoretical investigations.
4. The concept of state has strong physical motivation,

w

Definition of State of a System

When referring to the state of a system, we shall have the following
definition in mind.

DEFINITION 1-7

The state of a system is a set of quantities x,(¢), x,(¢), . . . , x,(¢)

t See [D-1], [O-1], [S-1], [S-2], [T-1}, [W-1], [Z-1].
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which if known at ¢t = ¢, are determined for ¢z > ¢, by specifying
the inputs to the system for ¢ > ¢,.

System Classification

Systems are described by the terms linear, nonlinear, time-invariant,t
and time-varying. We shall classify systems according to the form of their
state equations.} For example, if a system is nonlinear and time-varying,
the state equations are written

x(¢) = a(x(z), u(z), 1. (1.2-1)

Nonlinear, time-invariant systems are represented by state equations of the
form

x(2) = a(x(2), u(?)). (1.2-2)
If a system is /inear and time-varying its state equations are
x() = A@Ox() + B(H)u(y), (1.2-3)

where A(¢) and B(z) are n X nand n X m matrices with time-varying elements.
State equations for linear, time-invariant systems have the form

x(@) = Ax(?) + Bu(y), (1.2-4)

where A and B are constant matrices.

Output Equations

The physical quantities that can be measured are called the outputs and are
denoted by y,(2), y.(2), . . ., ¥,(2). If the outputs are nonlinear, time-varying
functions of the states and controls, we write the output equations

¥(#) = e(x(2), u(2), 9. (1.2-5)

If the output is related to the states and controls by a linear, time-invariant
relationship, then

¥(#) = Cx(z) + Du(), (1.2-6)
where C and D are ¢ X n and g X m constant matrices. A nonlinear, time-

1 Time-invariant, stationary, and fixed will be used interchangeably.
1 See Chapter 1 of [S-1] for an excellent discussion of system classification.
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varying system and a linear, time-invariant system are shown in Fig. 1-9.
r(¢), which has not been included in the state equations and represents any
inputs that are not controlled, is called the reference or command input.

In our discussion of optimal control theory we shall make the simplify-
ing assumption that the states are all available for measurement; that is,

y(#) = x(2).

Solution of the State Fquations—Linear Systems

For linear systems the state equations (1.2-3) have the solution

X(t) = (1, 1x(t0) -+ | o(1, DB(u() de (1.2-7)

where @(t, t,) is the state transition matrixt of the system. If the system is
time-invariant as well as linear, 7, can be set equal to 0 and the solution of
the state equations is given by any of the three equivalent forms

X(t) = & ~{[sT — A]"'x(0) + [sI — A]"*BU(s)}, (1.2-8a)
x(f) = £ H{®(s)x(0) + H(SHU(S)}, (1.2-8b)
x(f) = €Ax(0) + €M j €~ ABu(7) dr, (1.2-8¢)
0
where U(s) and ®(s) are the Laplace transforms of u(z) and @(s), £ {-}
denotes the inverse Laplace transform of { -}, and € is the n X n matrix

€A AT 4 Ar+ %Am + %AW NR %A"t"+ e (12:9)

Equation (1.2-8a) results when the state equations (1.2-4) are Laplace trans-
formed and solved for X(s). Equation (1.2-8b) can be obtained by drawing
a block diagram (or signal flow graph) of the system and applying Mason’s
gain formula.} Notice that H(s) is the transfer function matrix. The solution
in (1.2-8¢) can be found by classical methods. The equivalence of these three
solutions establishes the correspondences

A = ZHD(s)} =2 {[sT — A]™'} 2 o(1), (12-10)

e [ €M Bur) dr = £ {HHU()} =2 {is — A]"BU))
’ , (1.2-11)
2 0@ Jo ¢(—17)Bu(z) dt.

T 9(1, t,) is also called the fundamental matrix.
§ See [W-1].
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Properties of the State Transition Matrix

It can be verified that the state transition matrix has the properties shown
in Table 1-1 for all ¢, ¢,, ¢,, and ¢,.

Table 1-1 PROPERTIES OF THE LINEAR SYSTEM STATE TRANSITION MATRIX

Time-invariant systems Time-varying systems
0 =1 o 1) =1
o(t, — 10t — 1) = @t — 1;) (12, 1)9( 1, 20) = @lt2, 1)
o1(t, — 1) = oty — 17) 971y, 1) = oty 13)
L o) = Ag(®) 2 o1, 10) = AW, 1)

Determination of the State Transition Matrix

For systems having a constant A matrix, the state transition matrix, @(z),
can be determined by any of the following methods:

1. Inverting the matrix [sI — A] and finding the inverse Laplace trans-
form of each element.

2. Using Mason’s gain formula to find ®(s) from a block diagram or
signal flow graph of the system [the ijth element of the matrix d(s) is
given by the transmission X(s)/x,(0)] and evaluating the inverse La-
place transform of ®(s).

3. Evaluating the matrix expansion

€M 2T AL LA 4 AN L ARt (12:9)

For high-order systems (n > 4), evaluating €*' numerically (with the
aid of a digital computer) is the most feasible of these methods.

For systems having a time-varying A matrix the state transition matrix

can be found by numerical integration of the matrix differential equation

g;«p(t, 1) = A(DQ(t, to) (1.2-12)

with the initial condition @(¢,, t,) = L

1 Although a digital computer program for the evaluation of this expansion is easy to
write, the running time may be excessive because of convergence properties of the
series. For a discussion of more efficient numerical techniques see [O-1], p. 315ff.
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Controllability and Observabilityt

Consider the system

x(2) = a(x(s), u(z), 9 (1.2-13)
for t > t, with initial state x(¢,) = X,.

DEFINITION 1-8

If there is a finite time z, > ¢, and a control u(¢), ¢ € [¢,, ¢,], which
transfers the state x, to the origin at time ¢, the state X, is said to be
controllable at time t,. If all values of x, are controllable for all
t,, the system is completely controllable, or simply controllable.

Controllability is very important, because we shall consider problems
in which the goal is to transfer a system from an arbitrary initial state to
the origin while minimizing some performance measure; thus, controlla-
bility of the system is a necessary condition for the existence of a solution.

Kalmani has shown that a linear, time-invariant system is controllable
if and only if the n X mn matrix

E2 [BIABEAZBi . EA”“‘B}
! | ) !

has rank n. If there is only one control input (m = 1), a necessary and suffi-
cient condition for controllability is that the n X » matrix E be nonsingular.

The concept of observability is defined by considering the system (1.2-13)
with the control u(t) = 0 for t > #,,.§

DEFINITION 1-9

If by observing the output y(¢) during the finite time interval [¢,, ¢,]
the state x(¢z,) = X, can be determined, the state x, is said to be
observable at time t,. If all states x, are observable for every ¢, the
system is called completely observable, or simply observable.

Analogous to the test for controllability, it can be shown that the linear,
time-invariant system

x(2) = Ax(?) + Bu() (1.2-14)
y() = Cx(1) (1.2-15)
1 See [K-2], [K-3].

I See [K-2].
§ If the system is linear and time-invariant, u can be any known function—see [Z-1], p. 502.
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is observable if and only if the n X gn matrix
rf TOT | (AT\2 r:.“' n-1 T:]
Gé[C!ACI:(A)C: ary-ic

has rank n. If there is only one output (¢ = 1) G is an # X n matrix and a
necessary and sufficient condition for observability is that G be nonsingular.
Since we have made the simplifying assumption that all of the states can
be physically measured (y(¢) = x(£)), the question of observability will not
arise in our subsequent discussion.

1.3 CONCLUDING REMARKS

In control system design, the ultimate objective is to obtain a controller
that will cause a system to perform in a desirable manner. Usually, other
factors, such as weight, volume, cost, and reliability also influence the con-
troller design, and compromises between performance requirements and
implementation considerations must be made. Classical design procedures
are best suited for linear, single-input, single-output systems with zero initial
conditions. Using simulation, mathematical analysis, or graphical methods,
the designer evaluates the effects of inserting various physical devices into
the system. By trial and error either an acceptable controller design is ob-
tained, or the designer concludes that the performance requirements cannot
be satisfied.

Many complex aerospace problems that are not amenable to classical
techniques have been solved by using optimal control theory. However, we
are forced to admit that optimal control theory does not, at the present time,
constitute a generally applicable procedure for the design of simple con-
trollers. The optimal control law, if it can be obtained, usually requires a
digital computer for implementation (an important exception is the linear
regulator problem discussed in Section 5.2), and all of the states must be
available for feedback to the controller. These limitations may preclude
implementation of the optimal control law; however, the theory of optimal
control is still useful, because

1. Knowing the optimal control law may provide insight helpful in
designing a suboptimal, but easily implemented controller.

2. The optimal control law provides a standard for evaluating proposed
suboptimal designs. In other words, by knowing the optimal control
law we have a quantitative measure of performance degradation caused
by using a suboptimal controller.
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PROBLEMS

1-1. The tanks 4 and B shown in Fig. 1-P1 each have a capacity of 50 gal. Both
tanks are filled at ¢+ = 0, tank A with 60 Ib of salt dissolved in water, and

A B

L

Water — —_— — Out
I [

Figure 1-P1
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tank B with water. Fresh water enters tank A at the rate of 8 gal/min, the
mixture of salt and water (assumed uniform) leaves 4 and enters B at the
rate of 8 gal/min, and the flow is incompressible. Let g(f) and p(r) be
the number of pounds of salt contained in tanks A and B, respectively.
(a) Write a set of state equations for the system.

(b) Draw a block diagram (or signal flow graph) for the system.

(¢) Find the state transition matrix @(#).

(d) Determine ¢(t) and p(¢) for t > 0.

1-2. (a) Using the capacitor voltage v,(¢) and the inductor current i,(¢) as states,
write state equations for the RLC series circuit shown in Fig. 1-P2,

R L e(t)
w
+ AN -
G) (O TC .
1 2
Figure 1-P2

(b) Find the state transition matrix () if R=3Q,L =1H, C=4}F.
(©) If v (0) =0, iL(0) =0, and e(r) is as shown, determine v.(f) and i.(¢)
for t > 0.

1-3. (a) Write a set of state equations for the mechanical system shown in. Fig.
1-P3. The applied force is f(¢), the block has mass M, the spring constant
is K, and the coefficient of viscous friction is B. The displacement of the
block, y(z), is measured from the equilibrium position with no force

applied.
T 7
g
K B
\ I $20)
M
1 7
fin

Figure 1-P3

(b) Draw a block diagram (or signal flow graph) for the system.

(c) Let M =1kg, K=2N/m, B =2N/m/sec, and determine the state
transition matrix @(z).

(d) If »(0) =0.2m, y(0) =0, and f(t) = 2¢-2 N for ¢t > 0, determine y(t)
and y(r) for t > 0.
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1-4. Write a set of state equations for the electrical network shown in Fig. 1-P4.

1-5.

1-6.

Ry

Figure 1-P4

Write state equations for the mechanical system in Fig. 1-P5. 4 is the applied
torque, I is the moment of inertia, K is the spring constant, and B is the
coefficient of viscous friction. The angular displacement 6(¢) is measured
from the equilibrium position with no torque applied.

Z
B

| 3: x U
A(t) a8
7

Figure 1-P5

A chemical mixing process is shown in Fig. 1-P6. Water enters the tanks
at rates of w,;(t) and w,(¢) ft3/min, and m(z) ft3/min of dye enters tank 1.
v,(t) and v,(t) ft* of dye are present in tanks 1 and 2 at time . The
tanks have cross-sectional areas &, and o,. Assume that the flow rate between
the two tanks, g(¢), is proportional to the difference in head with propor-

Wl(t)

m(t):m j: w0
l Area a,

N
& 5

q() hy (1)

hy ()

Tank 1 Tank 2
Figure 1-P6
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tionality constant k ft3/ft-min, and that the mixtures in the tanks are homo-
geneous. Write the differential equations of the system, using h;(z), h;(2),
v,(t), and »,(¢) as state variables.

1-7. Write a set of state equations for the electromechanical system shown in
Fig. 1-P7. The amplifier gain is K,, and the developed torque is A(t) = K,i(?),
where K, and K, are known constants.

1, = constant

|5,

Amphfler+ i£( ) L,
R iz
+ Gain ! »
Ce) X G I Coefficient of
a viscous friction, B
Ly WONIOY 77777

Figure 1-P7
1-8. Write a set of state equations for the mechanical system shown in Fig. 1-P8.

The displacements y,(¢) and y,(f) are measured from the equilibrium posi-
tion of the system with no force applied.

Equilibrium position of M,

% —‘r{“ lf(t)
My

y1(0)
¥ Y
Equilibrium position of M,
K

B 1 -4

2 % REN y2(0)
'

M,

B % X,

Figure 1-P8
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1-9. Write a set of differential equations, in state form, for the coupled RLC
network shown in Fig. 1-P9.

C
by
LAY
R R
+ 1 2
© :
L, 3MB L,
Figure 1-P9

1-10. Write a set of state equations for the network shown in Fig. 1-P10. R,(¢)
is a time-varying resistor, and the circuit also contains a nonlinear resistor.

R,

i=f(,)

P +
e) C v () No_nlinear
resistor

Figure 1-P10

1-11. Show that the state transition matrix satisfies the properties given in Table
1-1.
Hint:
x(1) = @(t, 1)x(t;)
is a solution of
X(1) = A@x(@).

1-12, Draw a block diagram, or signal flow graph, and write state and output
equations that correspond to the transfer functions

Yy . _ 5 Y(s) _
@ U6 =51 ® 7 =

Y(s) 10 Y(@s) _ 8
(C)T/—(?)~s3+5s2+6s+3 @ U(s) 25 + 653 1452 + Ts + 1
e _@ — S[s + 2] ®) Y(S) [s + 1][s + 2]

U@s) sls + 1] UGs) ~ 52
@ %(i) _ _10[s? f 2s + 3] ) Y(s) _ 4

() s34+ 5s2+6s+3 U@) s+ s + 2]

@) Y(s) [s2+ Ts + 12] G) Y(s) _ 8[s3 + s + 2]

UGs) ~ sls + 1Is + 2] U(s)  2s* + 655 + 1452 + Ts + 1
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1-13. Find the state transition matrices @(¢) for the systems (a), (b), (¢), (f), (h),
and (i) in Problem 1-12.

1-14. For each of the following systems determine;
(i) If the system is controllable.
(ii) If the system is observable.
(iii) The block diagram or signal flow graph of the system.

@20 = [0 o Jx0+[T]u >0 =x0,
® 20 =, (ﬂ x(t) + muo); o) = %00,

ot
(c) The coupled circuit in Problem 1-9 with M = 0, y(t) = [v ( )}

iL:(t) '
(d) The coupled circuit in Problem 1-9 with M = 0.5H,L, = 1.0H, L, =
0.5H, R; = 2.0Q, R, =1.0Q, C = 0.5F, and y(t) = »,(?).

M—2 0 1 01
(e x()=| 0 -1 0 X@® +{0 0fu@); yt) =x0).
| -3 —4 10
-2 0 01
) x@)=; 0 -1 }((1) +10 O fu(); ¥(t) = x4().
-3 0 10
r o 1 0 0
. 0 0 1 0
(®) x() = 0 0 0 1 x() + 0 u(t);
L—ay, —a, —a, —a, 1
¥ =x); a;#0,i =0,1,2,3.
1-15. What are the requirements for the system
Ay 0 0 O b,
=0 f o o+ Z ue);
0 0 0 A, b,

) =lc1 ¢ ¢35 cslx(@)

to be:

(i) Controllable?

(ii) Observable?

Assume that A;, i = 1, ..., 4 are real and distinct.
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The Performance Measure

Having already considered the modeling of systems and the determination
of state and control constraints, we are now ready to discuss performance
measures used in control problems. Our objective is to provide physical
motivation for the selection of a performance measure.

Classical design techniques have been successfully applied to linear, time-
invariant, single-input single-output systems with zero initial conditions. Typical
performance criteria are system response to a step or ramp input—charac-
terized by rise time, settling time, peak overshoot, and steady-state accuracy
—and the frequency response of the system—characterized by gain and phase
margin, peak amplitude, and bandwidth. Classical techniques have proved
to be successful in many applications; however, we wish to consider systems
of a more general nature with performance objectives not readily described
in classical terms.

2.1 PERFORMANCE MEASURES FOR OPTIMAL
CONTROL PROBLEMS

The “optimal control problem” is to find a control u* € U which causes
the system

%(2) = a(x(2), u(s), 1) 2.1-1)

29



30 Describing the System and Evaluating Its Performance Sec. 2.1

to follow a trajectory x* € X that minimizes the performance measure

J = hext), 1) + | g(x(0), u(o), 1) dt. (2.1-2)

Let us now discuss some typical control problems to provide some physical
motivation for the selection of a performance measure.

Minimum-Time Problems

Problem: To transfer a system from an arbitrary initial state x(¢,) = x,
to a specified target set S in minimum time.
The performance measure to be minimized is

J=t,—t,
¢ 2.1-3

~ (“a (2.1-3)
to

with ¢, the first instant of time when x(¢) and S intersect. The automobile
example discussed in Section 1.1 is a minimum-time problem. Other typical
examples are the interception of attacking aircraft and missiles, and the
slewing mode operation of a radar, or gun system,

Terminal Control Problems

Problem: To minimize the deviation of the final state of a system from its
desired value r(z,).
A possible performance measure is

J =3 [x(ty) — rtp)]* (2.1-4)

n
i=1

Since positive and negative deviations are equally undesirable, the error is
squared. Absolute values could also be used, but the quadratic form in Eq.
(2.1-4) is easier to handle mathematically. Using matrix notation, we have

J = [x(t;) — x@AT[x(t,) —x(tp), 1(2.1-5)
or this can be written as
J = |x(t) — x(t) |- (2.1-5)
[1x(t;) — x(t,) || is called the norm of the vector [x(t,) — r(z,)].

T T denotes the matrix transpose.
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To allow greater generality, we can insert a real symmetric positive
semi-definite n X n weighting matrix Ht to obtain

J = [x(t;) — r(t,)JTH[x(z;) — x(z,)]. (2.1-6)
This quadratic form is also written

y
4

(a)

Nominal flight path

Missile at time ¢

(b)
Figure 2-1 A ballistic missile aimed toward the target S
t A real symmetric matrix H is positive semi-definite (or nonnegative definite) if for all

vectors z, 27Hz > 0. In other words, there are some vectors for which Hz = 0 in which
case zTHz = 0, and for all other z, z7THz > 0.
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I =1x(ty) —x(t) |l (2.1-6a)

If H is the identity matrix,T (2.1-6) and (2.1-5) are identical.

Suppose that H is a diagonal matrix. The assumption that H is positive
semi-definite implies that all of the diagonal elements are nonnegative. By
adjusting the element values we can weight the relative importance of the
deviation of each of the states from their desired values. Thus, by increasing
h,t we attach more significance to deviation of x,(,) from its desired value;
by making 4, zero we indicate that the final value of x; is of no concern
whatsoever.

The elements of H should also be adjusted to normalize the numerical
values encountered. For example, consider the ballistic missile shown in Fig.
2-1. The position of the missile at time ¢ is specified by the spherical coordi-
nates I(t), a(¢), and 0(z). ! is the distance from the origin of the coordinate
system, and o and @ are the elevation and azimuth angles. If L = 5000 miles
and /(t;) = L, an azimuth error at impact of 0.01 rad results in missing the
target S by 50 miles! If the performance measure is

J = hy,[l(t;) — 5000]* + hy,[60()]2 @.1-7)

then we would select h,, = [50/0.01]2-h,, to weight equally deviations in
range and azimuth, Alternatively, the variables § and ! could be normalized,
in which case h,, = h,,.

Minimum-Control-Effort Problems

Problem: To transfer a system from an arbitrary initial state x(¢,) = x,
to a specified target set S, with a minimum expenditure of control effort.

The meaning of the term “minimum control effort” depends upon the
particular physical application; therefore, the performance measure may
assume various forms. For example, consider a spacecraft on an interplane-
tary exploration—Ilet u(¢) be the thrust of the rocket engine, and assume that
the magnitude of thrust is proportional to the rate of fuel consumption. In
order to minimize the total expenditure of fuel, the performance measure

t The identity matrix is

1 000 0
0100 0
12 010 0
0000 1

1 h; denotes the iith element of H,
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7= :’lu(t)|dt (2.1-8)

would be selected. If there are several controls, and the rate of expenditure
of control effort of the ith control is ¢,|u )}, i=1,...,m (¢, is a con-
stant of proportionality), then minimizing

r={ Lz'"l Beludd) |J dat (2.1-8a)

would minimize the control effort expended. The fs are nonnegative
weighting factors.

As another example, consider a voltage source driving a network con-
taining no energy storage elements. Let u(z) be the source voltage, and sup-
pose that the network is to be controlled with minimum source energy
dissipation. The source current is directly proportional to u(¢) in this case,
so to minimize the energy dissipated, minimize the performance measure

J= f (1) dt. (2.1-9)

For several control inputs the general form of performance measure corre-
sponding to (2.1-9) is

7= 7 [wn()Ru(r)] dt
: (2.1-9a)
= [ @i ar,

where R is a real symmetric positive definitet weighting matrix. The elements
of R may be functions of time if it is desired to vary the weighting on con-
trol-effort expenditure during the interval [¢, ¢/].

Tracking Problems

Problem: To maintain the system state x(f) as close as possible to the
desired state r(¢) in the interval [7,, ¢].
As a performance measure we select

7= [ 11%0) — ¥ Il o 2.1-10)

t A real symmetric matrix R is positive definite if

zTRz > 0
for all z = 0.
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where Q(¢) is a real symmetric » X »n matrix that is positive semi-definite
for all t € [t,, t;]. The elements of the matrix Q are selected to weight the
relative importance of the different components of the state vector and to
normalize the numerical values of the deviations. For example, if Q is a con-
stant diagonal matrix and g, is zero, this indicates that deviations of x; are
of ndconcern.

If the set of admissible controls is bounded, e.g., |u ()| <1, i=1,
2,...,m, then (2.1-10) is a reasonable performance measure; however, if
the controls are not bounded, minimizing (2.1-10) results in controls with
impulses and their derivatives. To avoid placing bounds on the admissible
controls, or if control energy is to be conserved, we use the modified per-
formance measure

7= [" %) — ¥©) 1o + ll00) o] . @1-11)

R(?) is a real symmetric positive definite m X m matrix for all ¢ € [t,, ¢,].
We shall see in Section 5.2 that if the plant is linear this performance measure
leads to an easily implemented optimal centroller.

It may be especially important that the states be close to their desired
values at the final time. In this case, the performance measure

T =11%t) =¥l + [ [1%0) = @) 1o + 119 ] de
(2.1-12)

could be used. H is a real symmetric positive semi-definite # X » matrix.

Regulator Problems

A regulator problem is the special case of a tracking problem which re-
sults when the desired state values are zero (r(f) = 0 for all ¢ € [t,, t/]).

2.2 SELECTING A PERFORMANCE MEASURE

In selecting a performance measure the designer attempts to define a
mathematical expression which when minimized indicates that the system is
performing in the most desirable manner. Thus, choosing a performance
measure is a translation of the system’s physical requirements into mathe-
matical terms. In particular, suppose that two admissible control histories
which cause admissible state trajectories are specified and we are to select
the better one. To evaluate these controls, perform the test shown in Fig.
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uD <«
PERFORMANCE| .
SYSTEM [ N I URER >J
(a)
. X«

NC
e EEL ) m— O S

Figure 2-2 Evaluating two specified control histories

(b)

2-2. First, apply the control u‘’ to the system and determine the value of the
performance measure J¢'’; then repeat this procedure with u‘?’ applied to
obtain J IfJV < J then we designate u‘!’ as the better control; if J 2’
<J, u?® is better; if JV = J® the two controls are equally desirable.
An alternative test is to apply each control, record the state trajectories, and
then subjectively decide which trajectory is better.

If the performance measure truly reflects desired system performance,
the trajectory selected by the designer as being “more to his liking” should
yield the smaller value of J. If this is not the case, the performance measure
or the constraints should be modified.

Example 2.2-1. Figure 2-3 shows a manned spacecraft whose attitude is
to be controlled by a gas expulsion system. As a simplification, we shall

QW
= - (1)

w \

Reference axis

Figure 2-3 Attitude control of a spacecraft
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consider only the control of the pitch angle (¢). The differential equation
that describes the motion is

2
12 160)] = A, @2.2-1)
where I is the angular moment of inertia and A(f) is the torque produced

by the gas jets. Selecting x(t) 2 6(:) and x,(t) 2 0(:) as state variables,
and u(t) = A@t)/I as the control gives the state equations

10.
8.
6'—
xp=0*
of
2.4
6. 8 10. 12 14
+ -+ + t { t

Figure 2-4(a) Position and velocity as functions of time

Q= [3 g];R=.1;X(0)= [1:]
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x,(0) = x(0)

2.2-2
xz(t) = u(t). ( )

The primary objective of the control system is to maintain the angular
position near zero. This is to be accomplished with small acceleration.
As a performance measure we select

J= J : [90:%3() + 2233() + Ruw*@)] at, (2.2-3)

where qyi, g2, > 0, and R > 0 are weighting factors. In Figs, 2-4, 2-5,
2-6, and 2-7 the optimal trajectories for q;; = 4.0, g;, = 0, and several

u* (0

-56.}-

Figure 2-4(b) Acceleration as a function of time



38 Describing the System and Evaluating Its Performance Sec. 2.2

p—

10.

—4,

Figure 2-5(a) Position and velocity as functions of time

0=[! Sfn=rix0-[?]

values of R are shown.T Increasing R places a heavier penalty on acceler-
ation and control energy expenditure. All of these trajectories are optimal,
each for a different performance measure. If we are most concerned
about reducing the angular displacement to zero quickly, then the tra-
Jjectory in Fig, 2-4 would be our choice. The astronauts, however, would
probably prefer the trajectory shown in Fig. 2-7 because of the much
smaller accelerations.

We must be very careful when interpreting the numerical value of the

t These trajectories were obtained by using the techniques discussed in Sections 3.12
and 5.2.
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u" ()4

-8.

—16.

Figure 2-5(b) Acceleration as a function of time

minimum performance measure. By multiplying every weighting factor in
the performance measure by a positive constant &, the value of the measure
would be k times its original value, but the optimal control and trajectory
would remain exactly the same. In fact, it may be possible to adjust the weight-
ing factors by different amounts and still retain the same optimal control
and trajectory.t

The physical interpretation of the value of the performance measure is
also a factor to be considered. The minimum value of a performance measure
such as elapsed time or consumed fuel has a definite physical significance;
however, for problems in which the performance measure is a weighted

1 See Chapter 8 of reference [S-2].
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Figure 2-6(a) Position and velocity as functions of time
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Figure 2-6(b) Acceleration as a function of time
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combination of different physical quantities—as in the preceding spacecraft
example—the numerical value of the performance measure does not rep-
resent a physically meaningful quantity.

2,3 SELECTION OF A PERFORMANCE MEASURE:
THE CARRIER LANDING OF A JET AIRCRAFT

The following example, which is similar to a problem considered by
Merriam and Ellert [M-1], illustrates the selection of a performance measure.
The problem is to design an automatic control system for landing a high-
speed jet airplane on the deck of an aircraft carrier.

The jet aircraft is shown in Fig. 2-8. The x direction is along the velocity
vector of the aircraft, and the y and z directions are as shown. o is the angle
of attack, @ is the pitch angle, and y is the glide path angle.

y
!

)
!
!
LIFT

Center of gravity

Horizontal

-

/
P’ WEIGHT

Figure 2-8 Aircraft coordinates and angles

We shall make the following simplifying assumptions:

1. Lateral motion is ignored; only motion in the x-y plane is considered.

2. Random disturbances, such as wind gusts and carrier deck motion, are
neglected.

3. The nominal glide path angle p is small, so that cosy =~ 1 and siny
= p in radians (it will be shown that the nominal y is —0.0636 rad).

4. The velocity of the aircraft with respect to the nominal landing point
is maintained at a constant value of 160 mph (235 ft/sec) by an auto-
matic throttle control device.
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5. The longitudinal motion of the aircraft is controlled entirely by the

elevator deflection angle [J,(¢), shown in Fig. 2-9], which has been
trimmed to a nominal setting of 0° at the start of the automatic land-

ing phase.
- 5‘7\ L Horizontal tail surface
e

Figure 2-9 Elevator deflection angle

6. The aircraft dynamics are described by a set of differential equations
that have been linearized about the equilibrium flight condition.

Since we desire to have readily available information concerning the
system states to generate the required control, the altitude above the flight
deck 4, altitude rate A, pitch angle 8, and pitch rate @ are selected as the state
variables. # is measured by a radar altimeter, 4 by a barometric rate meter,
6 and 8 by gyros. If we define x, 2 h, x, 2k, x, 2 0,x, 2 6,andu 2 &,
the state equations that result from the linearization of the aircraft motion
about the equilibrium flight condition aret

x,(1) = x,(2)

X,(8) = @y, %,(t) + a33%5(0)

. (2.3-1)
x3(t) = x,()
X4(£) = g, x,(8) + A43%5() + agex, () + byu(n),
where the a’s and b, are known constants. In matrix form
x(2) = Ax(?) + bu(); (2.3-2)
01 0 © 0
0 a;, a,; 0 0
00 0 1 0
0 a,, a,; au, b

4

Next, the desired behavior for the aircraft must be defined. The nominal
flight path is selected as a straight line which begins at an altitude of 450 ft
and at a range of 7,050 ft measured from the landing point on the carrier
deck. This results in 30 seconds’ being the nominal time required for the
terminal phase of the landing. The desired altitude trajectory A, is shown
in Fig. 2-10. This selection for h; implies that the desired altitude rate

1 See [M-1].
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h, is as shown in Fig. 2-11. It is desired to maintain the attitude of the
aircraft at 5°. This is most important at touchdown because it is required
that the main landing gear touch before the nose or tail gear. Since §,(t) = 5°
for ¢ € [0, 30], 4,(t) = O during this time interval, and the desired attitude
and attitude rate profiles are shown in Figs. 2-12 and 2-13. The desired atti-

hy(0) (ft)

450 v=-3.65° = —.0636 rad

Nominal glide path

0|0 30 Time (sec)
-7,050 0 Range (ft)
Figure 2-10 Desired altitude history
hg(t) (ft/sec)

0 30 Time (sec)
0]-7,050 10 Range (ft)

|

|

|

I

—15 )

Figure 2-11 Desired rate of ascent history

64(1) (deg)

’ 1
|
olo : 30 Time (sec)
-7,050 0 Range (ft)
Figure 2-12 Desired attitude profile
0,4(2) (degfsec)
olo0 30 Time (sec)

[ -7,050 0  Range(ft)

Figure 2-13 Desired attitude rate profile
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tude and glide path angle profiles imply that the desired angle of attack
o, is 8.65° during the entire 30 sec interval.

It is assumed that large deviations of J, from the nominal 0° setting
are indicative of a suboptimal landing and should be avoided; therefore, the
desired value of &, is 0° throughout the terminal phase of landing.

The assumption is also made that there are limits on allowable departure
from nominal values during descent. If any of these limits are exceeded, a
wave-off is given, and the pilot takes control.

The translation of the performance requirements into a quantitative
measure is the next task. The performance measure is selected as the integral
of a sum of quadratic terms in the state and control variables and some addi-
tional terms to account for quantities which are crucial at touchdown. The
index selected is

J = k,[(30) — h,(30)]* + Ki[ A(30) — h,(30)]* + ke[0(30) — 6,(30)]?
+ [ {a @@ — h@] + a@A® — A @]

+ go(@)[0(z) — 0,0 + 9/D[0(x) — 0.0 ]
+ 1 (@)[0,1) — 3.()]*} dr,

where 7 is a dummy variable of integration. The k’s, ¢’s, and r,, are weight-
ing factors that are specified to assign relative importance to each of the terms
in the performance measure and to account for differences in the relative
size of numerical values encountered. The ¢’s and r,, are written as time-
varying functions because deviations of some of the variables from nominal
values may be more critical during certain periods of time than others. For
example, rate of ascent errors are more critical over the flight deck than at
earlier instants, so g,(¢) should increase as ¢ approaches 30 sec. The terms
outside of the integral are there to help ensure that the attitude, rate of
ascent, and altitude are close to nominal at ¢ = 30 sec. Notice that the term
containing #(30) penalizes a landing that occurs too soon or too late.
There is no term in the measure containing the angle of attack a explicitly;
however, if the values for  and @ are maintained “close” to their desired
values, then it is reasonable to expect that a will be satisfactory. Certainly a
term could be added containing the deviation of angle of attack from its
nominal value, but this would necessitate the selection of an additional
weighting factor, and it is generally desirable to keep the problem simple for
the initial solution. The desired, or nominal, aircraft trajectory is specified
by Figs. 2-10 through 2-13. Figure 2-10 gives A (r) = 450 — 15¢ ft as the
desired altitude history, and the desired altitude at z = 30 (the nominal time
touchdown occurs) is 4,30) = O ft. From Fig. 2-11 the desired altitude rate
history is —15 ft/sec throughout the interval [0, 30]; thus, A,(f) = —15
ft/sec and A, (30) = —15 ft/sec. The desired aircraft attitude is +5° in the

(2.3-3)



46 Describing the System and Evaluating Its Performance Sec. 2.3

entire landing interval; therefore, 8,(¢) = 0.0873 rad, and 6,(30) = 0.0873
rad. From Fig. 2-13 we have 6,(f) = 0 rad/sec as the nominal attitude rate,
and 6,(30) = 0 rad/sec. Substituting the desired values in (2.3-3) gives

J = k[h(30)}? + ki[A(30) + 15]* + k,[6(30) — 0.0873]
+ [ (@@l — 450 + 152 + g ) + 15

+ go(D)[8(z) — 0.0873]% + gy(0)[0(x)]*
+ £ (D)[0.(D)]*} dr,

where @ is in radians, @ in radians per second, 4 in feet, and 4 in feet per
second. In matrix form

(2.3-4)

J = [x(30) — £(30)]"H[x(30) — (30)]

30 2.3-5
+ J.o {[x(®) — x(@FQ)[x(z) — x(x)] + r;(D)u*(7)} dr, ( )

where x(¢) is the state at time ¢, r(¢) is the desired or nominal value of the
state at time ¢, u(¢) is the control, r,, is a positive function of time,

k, 0 0 0
ol kO O
0 0 k, O
0 0 0 O

and

@ 0 0 0

A 0 q,,-(t) 0 0
R R
0 0 0 q4(t)

The designer must select functional relationships for g,, g;, g, ¢4, and
rs,, and numerical values for k,, k,, and k,. In this example the deviation
from the desired trajectory is to be minimized; therefore, the ¢’s and k’s
would assume only nonnegative values, and r,, would be positive for all
t € [0, 30]. This performance measure allows sufficient flexibility to satisfy
system requirements, and also leads to an optimal control law that is rela-
tively easy to implement. Reference [M-1] discusses implementation in more
detail and also shows trajectories that illustrate the effects of varying weighting
parameters in a performance measure.
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PROBLEMS

2-1. Refer to the chemical mixing process of Problem 1-6. The amount of dye
in tank 2, v,(f), is to be maintained as closely as possible to M ft3 during
a one-day interval.
(a) What would you suggest as a performance measure to be minimized?
(b) Determine a set of physically realistic state and control constraints.

2-2. Repeat Problem 2-1 if the objective is to maximize the amount of dye in
tank 2 at the end of one day. It is specified that the total volume of dye that
enters tank 1 in the one-day period cannot be more than N ft3.

2-3. An unmanned roving vehicle has been proposed as part of the Mariner Mars
exploration series of space missions. The roving vehicle is designed to navigate
on the Martian surface and transmit television pictures and other scientific
data to earth. Suppose that the rover is to be driven by a dc motor supplied
from rechargeable storage batteries; a simplified model is shown in Fig. 2-P3.

1, = constant

io(t)
A R,
+ Coefficient of
Ry L viscous friction, B
+ Voltage a R
= regulating | e(r) m/
I
b b ;
N 0 77777222 N (D

Figure 2-P3

The output of the voltage regulating system is the control signal e(r). The
developed torque is A(f) = Kis(f), where K, is a known constant; A.(f) is the
load torque caused by hills on the Martian surface. The vehicle’s speed is to
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deviate as little as possible from 5 mph without requiring excessive energy
output from the voltage regulating system (to prolong the life of the batteries).
Let if(f) and 0(1) be state variables.

(a) Write state equations for the motor-load combination.

(b) Determine a physically reasonable set of state and control constraints.
(c) Suggest a performance measure if:

() L;=0.
(i) Ly # 0.

2-4, Refer to the simplified spacecraft model used in Example 2.2-1. Suppose
that the objective is to change the spacecraft attitude from an arbitrary initial
value to an angle of +15° 4 0.1° with respect to the reference axis shown
in Fig. 2-3. This maneuver is to be accomplished in 30 sec with minimum

fuel expenditure.

(a) Determine the state and control constraints.
(b) Suggest an appropriate performance measure.

2-5. Repeat Problem 2-4 if the maneuver is to be accomplished in minimum time.

2-6. Figure 2-P6 shows a rocket that is to be approximated by a particle of instan-
taneous mass m(¢). The instantaneous velocity is »(t), T(¢) is the thrust, and

[ 2 x

Figure 2-P6

B(® is the thrust angle. If we assume no aerodynamic or gravitational forces,
and if we select x; & x, x; 2 %, X3 2y, x4 AV, xs A mu AT, u, 2 B,

the state equations are

X1(5) = x,(1)

. o [y () cos uy(1)]
xl(t) - x5(t) 2
x3(t) = x4(t)

Lo [ug(2) sin uy(2)]
X4(1) = Y ()

25(0) = —uy(0),
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where ¢ is a constant of proportionality. The rocket starts from rest at the

point x =0,y = 0.

(a) Determine a set of physically reasonable state and control constraints.

(b) Suggest a performance measure, and any additional constraints imposed,
if the objective is to make y(¢;) = 3 mi and maximize x(¢,); ¢, is specified.

(c) Suggest a performance measure, and any additional constraints imposed,
if it is desired to reach the point x = 500 mi, y = 3 mi in 2.5 min with
maximum possible vehicle mass.
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Dynamic Programming

Once the performance measure for a system has been chosen, the next task
is to determine a control function that minimizes this criterion. Two methods
of accomplishing the minimization are the minimum principle of Pontryagin
[P-1], and the method of dynamic programming developed by R. E. Bellman
[B-1, B-2, B-3]. The variational approach of Pontryagin (Chapter 5) leads
to a nonlinear two-point boundary-value problem that must be solved
(Chapter 6) to obtain an optimal control. In this chapter we shall consider
the method of dynamic programming and see that.it leads to a functional
equation that is amenable to solution by use of a digital computer.

3.1 THE OPTIMAL CONTROL LAW

In Chapter 1 we defined an optimal control of the form

uw*(t) = f(x(z), 1) @3.1-1)

as being a closed-loop or feedback optimal control. The functional relation-
ship f is called the optimal control law, or the optimal policy. Notice that the
optimal control law specifies how to generate the control value at time ¢
from the state value at time ¢, The presence of ¢ as an argument of f indicates
that the optimal control law may be time-varying.

53
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In the method of dynamic programming, an optimal policy is found by
employing the intuitively appealing concept called the principle of optimality.
3.2 THE PRINCIPLE OF OPTIMALITY}

The optimal path for a multistage decision process is shown in Fig. 3-1(a).
Suppose that the first decision (made at a) results in segment g-b with cost

(a) (b)

Figure 3-1 (a) Optimal path from ato e. (b) Two possible optimal
paths from b to e

J,, and that the remaining decisions yield segment b-¢ at a cost of J,,. The
minimum cost J* from a to e is therefore

Jr=J, + J,.. 3.2-1)
ASSERTION: If g-b-e is the optimal path from a to e, then b-e is the optimal
path from b to e.
Proof by contradiction: Suppose b-c-e in Fig. 3-1(b) is the optimal path from
b to e; then

Jice < Jpes (3.2:2)
and

Jab + Jbu < an + Jbs = Ja": (3-2—3)

but (3.2-3) can be satisfied only by violating the condition that a-b-e is the
optimal path from a to e. Thus the assertion is proved.

Bellman [B-1] has called the above property of an optimal policy the
principle of optimality:

An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.

t Sections 3.2 through 3.6 follow the presentation given in [K-4].
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3.3 APPLICATION OF THE PRINCIPLE OF
OPTIMALITY TO DECISION-MAKING

The following example illustrates the procedure for making a single
optimal decision with the aid of the principle of optimality.

Consider a process whose current state is . The paths resulting from all
allowable decisions at b are shown in Fig. 3-2(a). The optimal paths from
¢, d, and e to the terminal point f are shown in Fig. 3-2(b). The principle of

s G : G
’ ch/'
e f /
/
/ Jya d f / Joa d f
b‘(..._-o b(,_,_
\
\k.. \\
Jbe e "be
J:f _]:}
(a) (b) (©)

Figure 3-2 (a) Paths resulting from all allowable decisions at b.
(b) Optimal paths from ¢, d, e to f. (c) Candidates for optimal
paths from b to f

optimality implies that if b-c is the initial segment of the optimal path from
b to f, then c-fis the terminal segment of this optimal path. The same reason-
ing applied to initial segments b-d and b-e indicates that the paths in Fig.
3-2(c) are the only candidates for the optimal trajectory from & to f. The
optimal trajectory that starts at b is found by comparing

Cbtf = "bc + Jc)’;'
Citr = Joa + ¥ (3.3-1)
Cb’tf = Jbe + Je*;'

The minimum of these costs must be the one associated with the optimal
decision at point b.

Dynamic programming is a computational technique which extends the
above decision-making concept to sequences of decisions which together
define an optimal policy and trajectory. The optimal routing problem in
the next section illustrates the procedure.
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3.4 DYNAMIC PROGRAMMING APPLIED TO A
ROUTING PROBLEM

A motorist wishes to know how to minimize the cost of reaching some
destination 4 from his current location. He can only travel (one-way as indi-
cated) on the streets shown on his map (Fig. 3-3), and at the intersection-
to-intersection costs given.

Final
a > d > e A 1* point
8 3 8
N
5 5 2 2 w ——}—— E
S
9 3 3
b Rt c f g

Figure 3-3 The road map

Instead of trying all allowable paths leading from each intersection to A
and selecting the one with lowest cost (an exhaustive search), consider the
application of the principle of optimality. In this problem, “state” refers to
the intersection and a “decision” is the choice of heading (control) elected by
the driver when he leaves an intersection.

Suppose the motorist is at c; from there he can go only to d or f, and then
on to h. Let J_, denote the cost of moving from ¢ to d and J,, the cost from
c to f. Assume that the motorist already knows the minimum costs, J} and
J}, to reach the final destination 4 from 4 and f. (In this example, J} = 10
and J} = 5.) Then the minimum cost J% to reach 4 from c is the smaller of

Ck, =J, + J} = minimum cost to reach s from ¢ viad 3.4-1)
and
C¥i = J.; + J# = minimum cost to reach 4 from c via f. 3.4-2)
Thus,
J% = min{C}%,, C¥,}
= min {15, 8} (3.4-3)
=8

and the optimal decision at ¢ is to go to f.
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How does the motorist know the values for J3 and JX ? These quantities
must have been calculated previously by working backward from 4. For
example, J%, = 2—there is only one path from g to 4. J} is then used to find
J}, from

I =st + J5

=342 (3.4-9)
= 5.
Then
J& = min {J,, V., + JHl} (3.4-5)

and so on. The general approach should now be evident. It remains to for-
malize the computational algorithm. In this connection it will be convenient
to introduce the following notation:

oo is the current state (intersection).

u, is an allowable decision (control) elected at the state . In this
example i can assume one or more of the values 1, 2, 3, 4, corre-
sponding td the headings N, E, S, W.

x, is the state (intersection) adjacent to & which is reached by applica-
tion of u, at «.

h is the final state.

J.., Iis the cost to move from & to x,.

J¥, is the minimum cost to reach the final state 4 from x,.

C# , is the minimum cost to go from & to 4 via x,.

J% is the minimum cost to go from & to 4 (by any allowable path).

u*(e) is the optimal decision (control) at a.

When this notation is used, the principle of optimality implies that
Cin = Jax + T3 (3.4-6)
and, as before, the optimal decision at a, u*(e), is the decision that leads to
J¥* =min{C¥ , CXu ., C¥pr- ..} 3.4-7)

These two equations define the algorithm called dynamic programming. To
illustrate the procedure, the automobile routing problem has been “solved”
in Table 3-1, where only the consequences of lawful decisions are included.
Notice particularly that the intersections nearest the destination A are con-
sidered first, and that the optimal trajectories (routes) are built up from 4
backwards toward the earlier states (intersections). This is necessary in order
that J*, be known prior to the calculation of C*,, (= J,,, + JX.).
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Once the table has been completed, the optimal path from any intersection
to 4 can be obtained by entering the table at the appropriate intersection
and reading off the optimal heading at each successive intersection along
the trajectory. For example, if the motorist starts at b, the table tells him to
head east. Heading east, he arrives at ¢, where the table indicates he should
again move east. Continuing the process, we find the optimal path from
b to h to be b-c-f~g-h and the minimum cost to be 17.

The information in the table also allows the motorist to adjust his route
if he is forced to deviate from the optimal path. Suppose he started at b
and reached ¢ only to find the road to f closed for repairs; he is forced to
move to d. After doing so, he enters the table and finds that from d the
optimal path to 4 is d-e-f-g-h.

Notice that a motorist at intersection a who heads south instead of east
is being misled by the prospect of a short-term gain. His overall cost will
be higher, even if he thereafter follows the optimal route.

Table 3-1 CALCULATION OF OPTIMAL HEADINGS BY DYNAMIC PROGRAMMING

Current Heading Next Minimum cost from Minimum Optimal
intersection intersection o to h via x; cost to heading
reach h at o
from a
o U X Jaxe + 50 = Clxn T & u*(@)
g N h 24+ 0= 2 2 N
f E g 34 2= 5 5 E
e E h 8+ 0= 8
S f 24 5=17 7
d E e 34 7=10 10 E
¢ N d 54+10=15
E f 34 5= 8 8
b E c 9+ 8=17 17
a E d 8-+10=18 18
S b 5417=22

3.5 AN OPTIMAL CONTROL SYSTEM

Consider a system described by the first-order differential equation

2 [x(0)] = ax() + bus), (3.5-1)
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where x(f) and u(f) are the state and control variables, respectively, and a
and b are constants. The admissible values of the state and control variables
are constrained by

0.0<x(®) < 1.5
and
—1.0 < ut) < 1.0, (3.5-2)

and the performance measure (cost) to be minimized is
T
J = x¥T) + A j u*(2) dt, (3.5-3)
0

where T is the specified final time, and 4 is a weighting factor included to
permit adjustment of the relative importance of the two termsin J. x(T) and
u(t) are squared because positive and negative values of these quantities are
of equal importance. This performance measure reflects the desire to drive
the final state x(7") close to zero without excessive expenditure of control
effort.

Before the numerical procedure of dynamic programming can be applied,
the system differential equation must be approximated by a difference equa-
tion, and the integral in the performance measure must be approximated by
a summation. This can be done most conveniently by dividing the time inter-
val 0 <t << T into N equal increments, A¢. Then from (3.5-1)

%_XLQ = ax(t) + bu(t), (3.5-4)

or
x(t + At) = [1 + a Ae}x(t) + b At u(z). (3.5-5)

It will be assumed that Az is small enough so that the control signal can be
approximated by a piecewise-constant function that changes only at the
instants t = 0, At, ..., (N — 1) A¢; thus, for ¢ = k At,

x(k + 1] Af) = [1 + a Aflx(k A) + b At u(k Ar);  k=0,1,..., N—1.
(3.5-6)

x(k Ar) is referred to as the kth value of x and is denoted by x(k). The
system difference equation can then be written

x(k 4+ 1) = [1 + a Aflx(k) + b At u(k). (3.5-7)
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In a similar way the performance measure becomes

J=xNA)+ 1 UA' u*(0)dt + f“‘ ur(At)dt 4 ---

ar a (3.5-8)

+ w(IN — 11 At) dt] ,
(N-1) At

or,
J = x*(N) + A A[ur(0) + uX(1) + -+ + w (N — 1)]

N-1 (3.5-9)
= x?(N) + A At kzo u*(k).

Now the method of dynamic programming can be applied as in the auto-
mobile routing problem. For numerical simplicity let a =0, 5 =1, 1 = 2,
T =2, At = 1, in which case N = 2; i.e., this is a two-stage process described
by the difference equation

x(k 4+ 1) = x(k) + u(k); k=0,1 (3.5-10)

where 4(0) and «(1) are to be selected to minimize the performance measure
(cost)

J = x*(2) 4+ 2u*(0) + 2u2(1) (3.5-11)
subject to the constraints
00<x(k) <15, k=0,1,2
and (3.5-12)
—10<uk)<10; k=0,1.

The first step in the computational procedure is to find the optimal policy
.for the last stage of operation, This is essentially a matter of trying all of the
allowable control values at each of the allowable state values. The optimal
control for each state value is the one which yields the trajectory having the
minimum cost. To limit the required number of calculations, and thereby
make the computational procedure feasible, the allowable state and control
values must be quantized. In this problem it will be assumed that the quan-
tized values are x(k) = 0.0,0.5, 1.0, 1.5, and u(k) = —1.0, —0.5, 0.0, 0.5, 1.0.

Using these values, we find that the computational procedure for deter-
mining the optimal policy over the last stage is

1. Put k = 1, select one of the quantized values of x(1), try all quantized
values of u(l), and calculate the resulting trajectories. The optimal
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control for this state value is the one which yields the minimum cost.
2. Repeat the procedure in step 1 for the remaining quantized levels of

x(1).

The resulting calculations are shown in Table 3-2, where calculations leading
to a violation of the constraints have been omitted. Notice that the cost
J,, of going from state x(1) to state x(2) is dependent on the value of the
state x(1) and on the value of the control applied, #(1); hence the notation
J, . (x(1), u(1)). Similarly, the minimum cost J#,(x(1)) and the optimal control
u*(x(1), 1) applied at k = | are dependent on the value of the state x(1).t

Now consider the next-to-last stage of the process by putting & = 0. At
each quantized value of the state x(0) all quantized values of the control #(0)
are tried. The trajectory from x(0) to x(1) is computed for each trial, together
with the cost J,;. Then, knowing the value of x(1) at the end of each such
trajectory, we may follow the optimal trajectory over the last stage with the
aid of the data available in Table 3-2, In mathematical terms this means that

C2(x(0), u(0)) = Jo,(x(0), u(0)) + J¥,(x(1)), (3.5-13)
and thus the cost of the optimal trajectory is

J82(x(0)) = min [o1(x(0), u(0)) + JH(x(1))], (3.5-14)

where

C#,(x(0), u(0)) is the minimum cost of operation over the last two stages
for one quantized value of x(0) given a particular trial
quantized value of u(0).

Jo1(x(0), u(0)) is the cost of operation in the interval k =0 to k= 1
for specified quantized values of x(0) and u(0).

JE (1) is the cost of the optimal last-stage trajectory which is
a function of the state x(1).
J&(x(0)) is the minimum cost of operation over the last two stages

for a specified quantized value of x(0).

Notice that (3.5-13) and (3.5-14) are analogous to (3.4-6) and (3.4-7) in the
automobile routing problem.

Finally, (3.5-13) and (3.5-14) are mechanized in Table 3-3 to complete
the dynamic programming algorithm.

The information contained in Tables 3-2 and 3-3 may now be used to
determine the optimal trajectory from any allowable quantized value of x(0)

t Rather than adhere to the form of (3.1-1) for the optimal control law, u*(k) = f(x(k), k),
we will shorten the notation by writing simply u*(x(k), k).
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to the final state x(2). For example, if x(0) = 1.5, Table 3-3 indicates that
u*(1.5, 0) = —0.5and J&(1.5) = 1.25. Application of u*(1.5, 0) at x(0) = 1.5
makes x(1) = 1.0, and Table 3-2 gives the optimal control applied at k = 1
as u*(1.0, 1) = —0.5. Thus, for x(0) = 1.5 the optimal control sequence is
{—0.5, —0.5}, and the minimum cost is 1.25.

In a similar way, the optimal policies and trajectories can be determined
from the tables for the other values of x(0). Observe that if x(0) = 1.0 the
optimal policy is nonunique—the control sequences {0, —0.5} and {—0.5, 0}
are both optimal. Notice also that in this problem there is no requirement
that all the trajectories end at the same value of x(2). A problem in which
x(T) is specified is included in the problems at the end of the chapter (Problem
3-3).

If a problem is segmented into more than two stages, the procedure must
simply be extended by repeating the calculations of Table 3-3 for each preced-
ing stage. In general, to determine the optimal control applied at ¢ = k At
in an N-stage process the appropriate forms for (3.5-13) and (3.5-14) are

CinGx(k), (k) = Jg, p0 (x(R), u(k)) + T MOk + 1)), | (3.5-13a)
Ti((k) = min [CH(x(K), u(kD]. (3.5-14a)

Taken together, equations (3.5-13a) and (3.5-14a) form the functional equation
of dynamic programming; we shall have more to say about this in Section 3.7.

In more practical problems a digital computer would normally be needed,
and it often becomes important to minimize the amount of storage required
for the retention of intermediate results. The calculations in Table 3-3 and the
determination of the optimal policy and trajectory for any allowable value of
x(0) require only the data in the last two columns of Tables 3-2 and 3-3;
therefore, only these data need be stored.

3.6 INTERPOLATION

In the preceding control example all of the trial control values drive
the state of the system either to a computational “grid” point or to a value
outside of the allowable range. Had the numerical values not been carefully
selected, this happy situation would not have been obtained and interpola-
tion would have been required. For example, suppose that the trial values
for u(k) had been —1, —0.75, —0.5, —0.25, 0, 0.25, 0.5, 0.75, 1. The values
of J(x(1)) and u*(x(1), 1) shown next to the state points in Fig. 3-4(a) are
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X X
[Jl*,(xu», W x(1), 1)] r
u(0)= 0.00
1.5+ 0[1.5000, —0.50] 1.5 g =4 _~u(0)=-0.25
ST u0)=-0.50
- . | \\‘\‘/ ’
1.0 0[0.6875, 0.25] 1.0 ‘\:\;:/u(O) ==0.75
N u(0) = —1.00
05k -[0.1875, —0.25] 05k >
[0.0000, 0.00]
y Py >k & ° 1 k
1 2 1 2
(a) (b)

Figure 3-4 (a) Minimum costs and optimal controls for quantized
values of x(1). (b) Paths resulting from the application of quantized
control values at x(0) = 1.5

the results of repeating the calculations in Table 3-2 with the new trial values
for u(1).

Next, suppose that all of the quantized values of the control are applied
for a state value of x(0) = 1.5. The resulting values of x(1) are shown in Fig.
3-4(b), where it can be seen that two of the end points do not coincide with
the grid points of Fig. 3-4(a). But, by linear interpolation,

J%(1.25) = 0.68750 -+ 4[1.50000 — 0.68750]

3.6-1
= 1.09375 ( )

and

J#(0.75) = 0.18750 + $[0.68750 — 0.18750]

= 0.43750 @62

Finally, the result of repeating the calculations in Table 3-3 [for x(0)
= 1.5 only], the interpolated values of J¥(x(1)) being used where required,
is shown in Table 3-4.

Interpolation may also be required when one is using stored data to
calculate an optimal control sequence. For example, if the optimal control
applied at some value of x(0) drives the system to a state value x(1) that is
halfway between two points where the optimal controls are —1 and —0.5,
then by linear interpolation the optimal control is —0.75.

In summary, although a finite grid of state and control values must be
employed in the numerical procedure, interpolation makes available approxi-
mate information about intermediate points, Naturally, the degree of approxi-
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mation depends on the separation of the grid points, the interpolation scheme
used, and the system dynamics and performance measure. A finer grid gener-
ally means greater accuracy, but also increased storage requirements and
computation time. The effects of these factors are illustrated in some of the
exercises at the end of the chapter (Problems 3-14 through 3-18).

3.7 A RECURRENCE RELATION OF DYNAMIC
PROGRANMMING

In this section we shall begin to formalize some of the ideas introduced
intuitively in preceding sections. In particular, we wish to generalize the
procedure in Section 3.5 which led to equations (3.5-13a) and (3.5-14a).
Since our attention is focused on control systems, a recurrence relation will
be derived by applying dynamic programming to a control process.

An nth-order time-invariant system? is described by the state equation

x(2) = a(x(), u(®)). 3.7-1)

It is desired to determine the control law which minimizes the performance
measure

7= hx(e) + [ gx(o), ue) d, (37-2)

where ¢, is assumed fixed. The admissible controls are constrained to lie in
aset U;l.e.,ue U. As before, we first approximate the continuously operating
system of Eq. (3.7-1) by a discrete system this is accomplished by considering
N equally spaced time increments in the interval 0 < ¢ < ¢,. From (3.7-1)

XA 8D = X0  ae(r), u()) (3.73)
or
x(t + At) = x(¢) + At a(x(2), u()). (3.7-9)
Using the shorthand notation developed earlier for x(k Af) gives
x(k + 1) = x(k) + At a(x(k), u(k)), (3.7-5)
which we will denote by
x(k + 1) £ ay(x(k), u(k)). (3.7-6)

1 The following derivation can be applied to time-varying systems as well; time-
invariance is assumed only to simplify the notation.
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Operating on the performance measure in a similar manner, we obtain

T = hx(V An) + [ gar + [“gar+ - + 7 gar, (37)
0 At w-nac”
which becomes for small At,
—1

T~ V) + At 3y g(x(k), u(k)), (3.7-8)

which we shall denote by
N-—-1
J = h(x(N)) + kgo go(x(k), u(k)). (3.7-8a)

By making the problem discrete as we have done, it is now required that
the optimal control law u*(x(0), 0), w*(x(1), 1), ..., w*(x(N — 1), N — 1)
be determined for the system given by Eq. (3.7-6) which has the performance
measure given by (3.7-8a). We are now ready to derive the recurrence equa-
tion.

Begin by defining

Inn(X(N)) & h(x(N)); (3.7-9)
Jyw 1s the cost of reaching the final state value x(N). Next, define
Jy-1, NX(N — 1), u(N — 1)) & gp(x(N — 1), w(N — 1)) + A(X(N))
= gp(X(N — 1), u(N — 1)) + Jyn(X(N)),
(3.7-10)

which is the cost of operation during the interval (N — 1) At <t < N At
Observe that Jy_, y is also the cost of a one-stage process with initial state
x(N — 1). The value of J,._,  is dependent only on x(N — 1) and u(¥ — 1),
since x(N) is related to x(N — 1) and u(N — 1) through the state equation
(3.7-6), so we write

Jy-1, NN — 1), w(N — 1)) = gp(x(N — 1), u(N — 1))

3.7-11
+ JNN(aD(x(N — 1), u(N — 1))) ( )

The optimal cost is then
JE_, NN — 1) éug}iﬂl){gp(x(lv —D,u(N —1)) + JNN(aD(x(N — 1),
ulN — )}t (3.7-12)

T Notice that the minimization is performed with only admissible control values being
used.
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We know that the optimal choice of u(N — 1) will depend on x(N — 1), so
we denote the minimizing control by w*(x(N — 1), N — 1).

The cost of operation over the last two intervals is given by
Jy—2, NN — 2), u(N — 2), u(N — 1))

= go(X(N — 2), (N — 2)) + go(x(N — 1),u(N — 1)) + h(x(N)) (3.7-13)

= &o(X(V — 2), u(N — 2)) + Jy_,, XN — 1), u(N — 1)),
where again we have used the dependence of x(N) on x(N — 1) and u(N — 1).
As before, observe that Jy,_, » is the cost of a two-stage process with initial
state X(N — 2). The optimal policy during the last two intervals is found from
T2, NN — 2))

A min (g — 2, W — 2) + Ty, o — D, uV — 1)}

' (3.7-14)

The principle of optimality states that for this two-stage process, whatever
the initial state x(N — 2) and initial decision u(N — 2), the remaining deci~

sion w(N — 1) must be optimal with respect to the value of x(N — 1) that
results from application of u(N — 2); therefore,

J¥oa, n(X(N — 2)) = “r(rhlli_r;) {go(xX(N — 2), (N — 2)) + J¥_,, f(x(N — 1)}
3.7-15)
Since x(N — 1) is related to x(N — 2) and u(N — 2) by the state equation,
J¥_, n depends only on x(N — 2); thus
I¥-2 NN — 2))
= min {8,V —2), N — 2) + Jif-1, a(3:0N — 2, uV — 2)}
(3.7-15a)
By considering the cost of operation over the final three stages—a three-
Stage process with initial state x(N — 3)—we can follow exactly the same
reasoning which led to Egs. (3.7-13) through (3.7-15a) to obtain
I¥-s, NN — 3))
= min {g,(x(N — 3), UV = 3) + T, w(aolx(N — 3), N — )}
(3.7-16)

Continuing backward in this manner, we obtain for a K-stage process
the result

I3 w6V = K)
- min (B + 5 eax(h), wh)l,

u(N-K), o(N—-K+1), ..., u(N—-1)

(3.7-17)
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which by applying the principle of optimality becomes

J¥-x, nN(X(N — K)) = “(mNi_rll() {gb(x(N — K), (N — X))

(3.7-18)
+ J¥- -0, M(ao(X(N — K), (N — K))}.t

Equation (3.7-18) is the recurrence relation that we set out to obtain. By
knowing J¥_ ), n, the optimal cost for a (K — I)-stage policy, we can
generate Ji . y, the optimal cost for a K-stage policy. To begin the process
we simply start with a zero-stage process and generate J3y A Jyy (the * is
just a notational convenience here; no choice of a control is implied). Next,
the optimal cost can be found for a one-stage process by using Ji¥y and (3.7-
18), and so on. Notice that beginning with a zero-stage process corresponds
to starting at the terminal state 4 in the routing problem of Section 3.4 and
starting at the final time ¢+ = 2 At in the control example of Section 3.5.

This derivation of the recurrence equation has also revealed another
important concept—the imbedding principle. J%_, n(x(N — K)) is the
minimum cost possible for the final K stages of an N-stage process with
state value x(N — K) at the beginning of the (N — K)th stage; however,
Ji¥ k, ¥(X(N — K)) is also the minimum cost possible for a K-stage process
with initial state numerically equal to the value x(N — K). This means that
the optimal policy and minimum costs for a K-stage process are contained
(or imbedded) in the results for an N-stage process, provided that N > K.

Our discussion has been concerned primarily with the solution of optimal
control problems; however, dynamic programming can also be applied to
other types of optimization problems. For a more general treatment of
dynamic programming and its applications, see references [B-2] and [N-1].

3.8 COMPUTATIONAL PROCEDURE FOR SOLVING
OPTIMAL CONTROL PROBLEMS

Let us now summarize the dynamic programming computational pro-
cedure for determining optimal policies.

1 An alternative notation often used is
JEX(N — K)) = g}i_nm {epx(N — K), w(N — K)) + J¥_,(apx(N — K), u(N — K))},
where the subscripts of J* indicate the number of stages. We shall use the notation

of Eq. (3.7-18) because it more clearly indicates the computational procedure to be
followed.
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A system is described by the state difference equationt
x(k + 1) = ap(x(k), u(k)); k=01,..,N—1. (3.8-1)

It is desired to determine the control law that minimizes the criterion

J = h(x(N)) + :Z;]:gn(x(k), u(k)).1 (3.8-2)

As shown in Section 3.7, the application of dynamic programming to this
problem leads to the recurrence equation

J¥x, NN — K)) = 1(1)31_1110 {go(x(N — K), u(N — K))

+ ¥, N(aD(x(N -~ K), (N — K)))}a (3.8-3)
kK=1,2,...,N

with initial value
Jain(X(N)) = h(x(N)). (3.8-4)

It should be re-emphasized that Eq. (3.8-3) is simply a formalization of the
computational procedure followed in solving the control problem in Section
3.5.

The solution of this recurrence equation is an optimal control law or
optimal policy, u*(x(N — K), N— K), K=1, 2, ..., N, which is obtained
by trying all admissible control values at each admissible state value. To
make the computational procedure feasible it is necessary to quantize the
admissible state and control values into a finite number of levels. For example,
if the system is second order, the grid of state values.would appear as shown
in Fig. 3-5. The heavily dotted points are the state values at which each of
the quantized control values is to be tried. In this second-order example,
the total number of state grid points for each time, k A¢, is s,5,, where s,
is the number of points in the x, coordinate direction and s, is the number
of points in the x, coordinate direction. s, and s, are determined by the
relationship

— Xrmx  Xrmin . —_ -
s, = . v +1; r=1,2, (3.8-5)

where it is assumed that Ax, is selected so that the interval x,_ — x,_.

t This difference equation and the performance measure may be a discrete approximation
to a continuous system, or they may represent a system that is actually discrete.

} To simplify the notation, it is assumed that the state equations and performance measure
do not contain & explicitly. The algorithm is easily modified if this is not the case.
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contains an integer number of points, For an nth-order system the number of
state grid points for each time, # = k A¢, is

N S=2u5,8+--- S, (3.8-6)
where

sp= TS 4 1 r=1,2,..,n, (3.8-7)

if it is assumed that the ratio [x,_, — x,_J/Ax, is an integer. The admis-~
sible range of control values is quantized in exactly the same way; if C is the
total number of quantized values of u(k), then

C=ci+Cpovvr> Cm (3.8-8)
where

; —'E‘:M+l; qg=12,...,m (3.8-9)

In the following development x(k)(i = 1,2,...,S) and u” (k) (j =1,

2,..., C) denote the admissible quantized state and control values at time
t =k At

The first step in the computational procedure is to calculate the values
of JFvWP(N)) (i=1,2,...,8) which are used to begin solution of the
recurrence equation.

Next, we set K = 1, and select the first trial state point by puttingi = 1
in the subroutine which generates the points x*(N — K). Each control value,
wWW(N—-K)(j=1,2,...,0C), is then tried at the state value x*’(N — K)
to determine the next state value, x“”(N — K + 1), which is used to look
up the appropriate value of J¥ ;) y(X*?(N — K+ 1)) in computer
memory—interpolation will be required if x*?(N — K + 1) does not fall
exactly on a grid value. Using this value of J¥ ), (N — K + 1))
we evaluate

Cé_x. (XN — K),u’(N — K)) = gpo(x*’(N — K), u’(N — K))
+ Ik nxEN — K + 1)),
(3.8-10)

which is the minimum cost of operation over the final K stages of an N-stage
process assuming that the control value u’(N — K) is applied at the state
value x”(N — K). The idea is to find the value of > (N — K) that yields
JE kNP (N — K)), the minimum of C¥_y y(x(N — K), u/(N — K)).
Only the smallest value of C_, NyxX’(N — K), u>(N — K)) and the asso-
ciated control need to be retained in storage; thus, as each control value is
applied at X”(N — K) the C¥_x y(x(N — K), u/’(N — K)) that results is
compared with the variable named COSMIN—the COSt which is the MINi-
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mum of those which have been previously calculated. If C¥_, y(x V(N — K),
u’(N — K)) < COSMIN, then the current value of COSMIN is replaced
by this new smaller value. The control that corresponds to the value of
COSMIN is also retained—as the variable named UMIN. Naturally, when
COSMIN is changed, so is UMIN.

After all control values have been tried at the state value x‘”(N — K),
the numbers stored in COSMIN and UMIN are transferred to storage in
arrays named COST(N — K,I) and UOPT(N — K, I), respectively. The
arguments (N — K) and I indicate that these values correspond to the state
value x)(N — K).

The above procedure is carried out for each quantized state value; then
K is increased by one and the procedure is repeated until X = N, at which
point the COST(N — K, I) and UOPT(N — K, I) arrays are printed out for
K=1,2,...,Nand I=1,2,...,S. A flow chart of the computational
procedure is shown in Fig. 3-6.

The result of the computational procedure is a number for the optimal

READ input data:
number of stages=N,
number of state values =S,
number of control values = C,
other required information

SETK=0;
CALCULATE and STORE
Ty (XHND) = (x D (N))
for afl admissible quantized values
of x(M (I=1,2,..., 5)

[
I
INCREASE Kby |
SET x(V — K) equal to the starting
quantized value by makingi = |

— CHANGE x®(N — K) to the
I next ized state value by,
SET “COSMIN" to a large positive number ; increasing i by 1

SET u(N — K) equal to the starting
quantized value by makingj =1

I
I

Ne

CALCULATE the value of
XN~ K+1)=35 (xON - K), u PN — K)
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Figure 3-6 Flow chart of the computational procedure

been completed for
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control and the minimum cost at every point on the (n 4+ 1)-dimensional
state-time grid. To calculate the optimal control sequence for a given initial
condition, we enter the storage location corresponding to the specified initial
condition and extract the control value u*(0) and the minimum cost. Next,
by solving the state equation we determine the state of the system at k = 1
which results from applying u*(0) at k = 0. The resulting value of x(1) is
then used to reenter the table and extract u*(1), and so on. We see that the
optimal controller is physically realized by a table look-up device and a
generator of piecewise-constant signals.

3.9 CHARACTERISTICS OF DYNAMIC
PROGRAMMING SOLUTION

In Section 3.8 we formalized the algorithm for computing the optimal
control law from the functional equation

Ji-en@EWN — K)) = “I(%igo {gD(X(N — K), u(N — K))
+ J¥- k- v, 720XV — K), u(N — K)))}. (3.8-3)

Let us now summarize the important characteristics of the computational
procedure and the solution it provides.

Absolute Minimum

Since a direct search is used to solve the functional recurrence equation
(3.8-3), the solution obtained is the absolute (or global) minimum. Dynamic
programming makes the direct search feasible because instead of searching
among the set of all admissible controls that cause admissible trajectories,
we consider only those controls that satisfy an additional necessary con-
dition—the principle of optimality. This concept is illustrated in Fig. 3-7.
S, is the set of all controls; S, is the set of admissible controls; S, is the set
of controls that yield admissible state trajectories; .S, is the set of controls
that satisfy the principle of optimality. Without the principle of optimality
we would search in the intersection of sets .S, and S;.t The dynamic program-
ming algorithm, however, searches only in the shaded region—the intersec-
tion of S,, S, and S, (S, N S; N Sy).

1 The set that is the intersection of S and S5, denoted by S, N 3, is composed of the
elements that belong to both S, and S;.
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S, (all controls)

controls
S which cause
3 | admissible

trajectories

S, (admissible controls)

S4 (controls which satisfy
principle of optimality)

Figure 3-7 Subsets of the control space

Presence of Constraints

As shown in Fig. 3-7, the presence of constraining relations on admissible
state and/or control values simplifies the numerical procedure. For example,
if the control is a scalar and is constrained by the relationship

—1.0 < u(r) < 1.0, (3.9-1)

then in the direct search procedure we need to try only values of u in the
allowed interval instead of values of u throughout the interval

—oo < u(f) < oo. (3.9-2)

Form of the Optimal Control

Dynamic programming yields the optimal control in closed-loop or
feedback form—for every state value in the admissible region we know
what the optimal control is. However, although u* is obtained in the form
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w*(f) = f(x(2), 1), (3.9-3)

unfortunately the computational procedure does not yield a nice analytical
expression for f. It may be possible to approximate f in some fashion, but
if this cannot be done, the optimal control law must be implemented by
extracting the control values from a storage device that contains the solution
of Eq. (3.8-3) in tabular form.

A Comparison of Dynamic Programming and
Direct Enumeration

Dynamic programming uses the principle of optimality to reduce dra-
matically the number of calculations required to determine the optimal
control law. In order to appreciate more fully the importance of the principle
of optimality, let us compare the dynamic programming algorithm with
direct enumeration of all possible control sequences.

Consider a first-order control process with one control input. Assume
that the admissible state values are quantized into 10 levels, and the admissible
control values into four levels. In direct enumeration we try all of the four
control values at each of the 10 initial state values for one time increment
At. In general, this will allow x(A?) to assume any of 40 admissible state
values. Assuming that all of these state values are admissible, we apply all
four control values at each of the 40 state values and determine the resulting
values of x(2 At). This procedure continues for the appropriate number of

Table 3-5 AN EXAMPLE COMPARISON OF DYNAMIC PROGRAMMING AND
DIRECT ENUMERATION

Number of Number of calculations Number of calculations Number of calculations

stages required by dynamic required by direct required by direct
in the programming enumeration enumeration (assuming
process 50% of state values
N admissible and distinct)
1 40 40 40
2 80 200 120
3 120 840 280
4 160 3,400 600
5 200 13,640 1,240
6 240 54,600 2,520

L L
L 40L 3 [10-44] 3 [20-2]
k=1 k=1
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stages. In dynamic programming, at every stage we try four control values at
each of 10 state values. Table 3-5 shows a comparison of the number of
calculations required by the two methods. The table also includes the number
of calculations required for direct enumeration if it is assumed that at the end
of each stage only half of the state values are distinct and admissible. The
important point is that the number of calculations required by direct enumera-
tion increases exponentially with the number of stages, while the computa-
tional requirements of dynamic programming increase linearly.

The Curse of Dimensionality

From the preceding discussion it may seem that perhaps dynamic pro-
gramming is the answer to all of our problems; unfortunately, there is one
serious drawback: for high-dimensional systems the number of high-speed
storage locations becomes prohibitive. Bellman calls this difficulty the “curse
of dimensionality.” To appreciate the nature of the problem, recall that to
evaluate J¥_, , we need access to the values of J¥ ._;,, which have
been previously computed. For a third-order system with 100 quantization
levels in each state coordinate direction, this means that 102 x 10% x 102
= 10° storage locations are required; this number approaches the limit of
rapid-access storage available with current computers. There is nothing to
prevent us from using low-speed storage; however, this will drastically in-
crease computation time. Of the techniques that have been developed to
alleviate the curse of dimensionality, Larson’s “state increment dynamic
programming”[L-1]seems to be themost promising. There are other methods,
however, several of which are explained in [N-1]. [L-2] contains an excellent
survey of computational procedures used in dynamic programming.

3.10 ANALYTICAL RESULTS—DISCRETE LINEAR
REGULATOR PROBLEMS

In this section we consider the discrete system described by the state
equation

x(k + 1) = A(R)x(k) + B(k)u(k). (3.10-1)

The states and controls are not constrained by any boundaries. The problem is
to find an optimal policy u*(x(k), k) that minimizes the performance measure

J = 3xT(N)HX(N) + 4 12: [X"(k)QUeX(K) + w(k)R(K)u(k)], (3.10-2)
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where
H and Q(k) are real symmetric positive semi-definite » X n matrices.
R(k) is a real symmetric positive definite m X m matrix.
N is a fixed integer greater than 0.

The above problem is the discrete counterpart of the continuous linear
regulator problem considered in Sections 3.12 and 5.2.f To simplify the
notation in the derivation that follows, let us make the assumption that A,
B, R, and Q are constant matrices. The approach we will take is to solve
the functional equation (3.7-18). We begin by defining

Inn(X(N)) = $XT(NHX(N) = JEn(x(N)) & X" (VPOx(N)  (3.10-3)
where P(0) 2 H. The cost over the final interval is given by

In- 1, WV — 1), u(N — 1)) = 3x7(N — DQx(N — 1)

(3.10-4)
-+ 4u"(N — DRu(N — 1) + $x"(N)P0)x(N),

and the minimum cost is

T v — 1)) & min {1 nEWN — 1), u(¥ — 1))} (3.10-5)

Now x(N) is related to u(N — 1) by the state equation, so
T — D) = min X7V — DQXQV — 1) -+ 40"V — DRuN — 1)

+ 4{AX(V — 1) + Bu(N — DFPO[AX(NV — 1) + Bu¥ — D]}.
(3.10-6)

It is assumed that the admissible controls are not bounded; therefore, to
minimize Jy_, 5 With respect to u(N — 1) we need to consider only those
control values for which

Wy_yn
du, (N — 1)
0JN—1.N
du,(N — 1)

0Ty

aJN— LN
._0um(N - 1)_

1 Equations (3.10-1) and (3.10-2) may be the result of a discrete approximation to a con-
tinuous problem, or the formulation for a linear, sampled-data system (see Appendix 2).
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Evaluating the indicated partial derivatives gives
Ru(N — 1) + B"P(0)[AX(N — 1) + Bu(N — 1)] = 0.t (3.10-8)

The control values that satisfy this equation may yield a minimum of Jy_, y,
a maximum, or neither. To investigate further, we form the matrix of second
partials given by

B ‘92JN—1.N aZJN«I,N . ‘92JN-1,N ]
Jdui(N—1) du,(N—1)du,(N—1) Ju, (N —1)du,(N—1)
0ZJN-I.N 02JN—1,N .. dZJN~l,N
du,(N—1)du,(N—1) Juz(N—1) Ju,(N—1)du,(N—1)

0y _1,n 0%y _1.n e Oy
| 0u,(N—1)3u,(N—1)  u,,(N—1)du,(N—1) duL(N—1)
A dzJN—l.N
T ow¥(N — 1) (3.10-9)
= R + BP(0)B.

By assumption H [and hence P(0)] is a positive semi-definite matrix, and R
is a positive definite matrix. It can be shown that since P(0) is positive semi-
definite, so is B'P(0)B. This means that R + B"P(0)B is the sum of a posi-
tive definite matrix and a positive semi-definite matrix, and this implies that
R + B"P(0)B is positive definite. Since Jy_, 5 is a quadratic function of
u(N — 1) and the matrix 0*Jy_, y/Ou*(N — 1) is positive definite, the control
that satisfies Eq. (3.10-8) yields the absolute, or global, minimum of Jy_, 4.
Solving (3.10-8) for the optimal control gives

u*(N — 1) = —[R + B"P(0)B]~'B"P(0)AX(N — 1)

(3.10-10)
A F(N — Dx(N — 1).

Since R 4+ BTP(0)B is positive definite, the indicated inverse is guaranteed
to exist. Substituting the expression for u*(N — 1) into the equation for
Jy_1,n gives J¥_; n, Which after terms have been collected becomes

J¥ NN — 1)) = $x"(N — D{[A + BF(N — 1)]"P(0)[A + BF(N — 1)]
+ FT(N — DRFWV — 1) + Q}x(N — 1)
2 IXT(N — DP(Dx(N¥N — 1). (3.10-11)
t The symmetry of R and P(0) have also been used here. The reader will find the matrix

calculus relationships given in Appendix 1 helpful in following the steps of this derivation.
{ See Appendix 1.
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The definition for P(1) is clear, by inspection of (3.10-11). The important
point is that J¥_, y is of exactly the same form as JF ,, which means that
when we continue the process one stage further back, the results will have
exactly the same form; i.e.,

u¥(¥ — 2) = —[R + BTP(1)B] ' B"P()AX(N — 2)

(3.10-12)
A2 F(N — 2x(N — 2),

and
JE (XN — 2)) = 1xXT(N — 2){[A + BF(N — 2)]TP(1)[A + BF(N — 2)]
+ F'(N — 2)RF(N — 2) + Q}x(N —2)
2 IXT(N — 2)PQQ)x(N — 2). (3.10-13)

If you do not believe this, try it and see.
By induction, for the Kth stage

w¥(N — K) = —[R -+ B"P(K — 1)B]"'B"P(K — 1)AX(N — K)

A F(N — K)x(N — K) (3.10-14)

and

T3k vX(N — K)) = $x7(N — K){[A +BF(N — K)]"P(K — 1)[A+ BF(N — K)]
+F(N — K)RF(N — K) + Q}x(N — K)
A IXT(N — K)P(K)X(N — K). (3.10-15)

In the general time-varying case the same derivation gives

uw¥(N — K)= —[R(N — K)+ B"(N — K)P(K—1)B(N — K)|™*
XBT(N — K)P(K — 1)A(N — K)X(N — K) (3.10-16)
A F(N — K)x(N —K)

I kXN — K)=4x"(N — K){[A(N — K)
+BW — KF(N—K)J"
X P(K—D)[A(V—K)+B(N—K)F(N—K)]
+F(N — K)R(N — K)F(N — K)
+QW — K)}x(N—K)
23xT(N — K)P(K)X(N — K).

(3.10-17)
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What are the implications of these results? First, and most important,
observe that the optimal control at each stage is a linear combination of the
states; therefore, the optimal policy is linear state-variable feedback. Notice
that the feedback is time-varying, even if A, B, R, and Q are al/l constant
matrices—this means that the controller for the optimal policy can be
implemented by the m time-varying amplifier-summers each with » inputs
shown in Fig. 3-8. At the conclusion of Section 3.8 we remarked, “...the
optimal controller is physically realized by a table look-up device and a
generator of piecewise-constant signals”; when the system is linear and the
performance measure quadratic in the states and controls, the only table

Plant
e i .
! !
I |
| x(k + 1) I
| By UNIT x(k) |
] DELAY t
I + !
f [
| 1 |
| !
[ | -
I
! I
L e e e e ]
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—Ro=
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(a)
f11 (k)
x (k)
uy (k) St x;(k)
HE () :
x, (k)

fml(k)

Uy, (k)

Sinn(K)

(b)

Figure 3-8 (a) Plant and linear time-varying feedback controller
(b) Controller configuration
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look-up involved in the controller is to determine the appropriate gain settings
from stage to stage.

Another important result of the derivation is that the minimum cost for
an N-stage process with initial state x, is given by

J¥n(Xo) = £XTP(N)X,, (3.10-18)

which follows directly from the definition of P(N — K). This means that
storage of the P(N — K) matrices for K = 1,2,..., N provides us with a
means of determining the minimum costs for processes of from 1 to N stages.

The computational implications of these results are also important. In
order to evaluate the feedback gains and the minimum cost for any initial
state, it is necessary only to solve the equations

F(N — K) = —[RWV — K) 4 BT (N — K)P(K — 1)B(N — K)|"*

(3.10-19)
X BTN — K)P(K — DAN — K)

and

P(K) = [AN — K) + BN — K)E(N — K)"P(K — 1)
X [AN — K) + B(N — K)E(N — K)| (3.10-20)

+ FI(N — K)R(N — K)F(N — K) + QN — K)

with P(0) = H. We obtain the solution by evaluating F(N — 1) using P(0)
= H, and then substituting F(N — 1) in (3.10-20) to determine P(1). This
constitutes one cycle of the procedure, which we then continue by calculating
F(N — 2), P(2), and so on. The solution is best done by a digital computer;
for a reduction in the number of arithmetic operations, it is helpful to define

V(N —K) A AN — K)+ BN — KF(N —K)  (3.10-21)

so that the procedure is to solve (3.10-19), then (3.10-21), and finally the
equation

P(K) = VI(N — K)P(K — 1)V(NV — K)

(3.10-20a)
+ FT(N — K)R(N — K)F(N — K) + Q(N — K).
The F and P matrices are printed for use in synthesizing optimal controls
and determining minimum costs.
It is important to realize that the solution of these equations is equivalent
to the computational procedure outlined in Section 3.8; however, because



84 Dynamic Programming Sec. 3.10

of the linear plant dynamics and quadratic performance measure we obtain
the closed-form results given in Egs. (3.10-16) through (3.10-20a).

The reader may have noticed that the control problem of Section 3.5 is of
the linear regulator type. Why then are not the optimal controls in the right-
most columns of Tables 3-2 and 3-3 linear functions of the state values ? The
answer is that the quantized grid of points is very coarse, causing numerical
inaccuracies. When the quantization increments are made much smaller,
the linear relationship between the optimal control and state values is appar-
ent; this effect is illustrated in Problems 3-14 through 3-17 at the end of the
chapter.

Another important characteristic of the linear regulator problem is that
if the system (3.10-1) is completely controllablet and time-invariant, H = 0,
and R and Q are constant matrices, then the optimal control law is time-
invariant for an infinite-stage process; that is

F(N — K) —> F (a constant matrix) as N —> oo,

From a physical point of view this means that if a process is to be controlled
for a large number of stages the optimal control can be implemented by
feedback of the states through a configuration of amplifier-summers as
shown in Fig. 3-8(b), but with fixed gain factors. One way of determining
the constant F matrix is to solve the recurrence relations for as many stages
as required for F(N — K) to converge to a constant matrix.

Let us now conclude our consideration of the discrete linear regulator
problem with the following example.

Example 3.10-1. The linear discrete system

0.9974 0.0539
—0.1078 1.1591

0.0013

xe +1) = [ 0.0539

:lx(k) + [ }u(k) (3.10:22)

is to be controlled to minimize the performance measure
N—-1
J=1 kzo [0.25x%(k) + 0.05x3(k) + 0.05u2(k)]. (3.10-23)

Determine the optimal control law,
Equations (3.10-19), (3.10-21), and (3.10-20a) are most easily solved
by using a digital computer with A and B as specified in Eq. (3.10-22),

t The discrete system of Eq. (3.10-1) with A and B constant matrices is completely con-
trollable if and only if the n X mn matrix

[B{AB]...iAm1B]

is of rank n. For a proof of this theorem, see [P-2].
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0.25 0.00

= 0’ =
H Q [0.00 0.05

}, and R = 0.05.

The optimal feedback gain matrix F(k) is shown in Fig. 3-9(a) for N = 200.
Looking backward from k = 199, we observe that at k = 130 the F(k)
matrix has reached the steady-state value

F(k) = [—0.5522 —5.9668], 0 < k<130 (3.10-24)

The optimal control history and the optimal trajectory for x(0) = [2 1]7
are shown in Fig. 3-9(b). Notice that the optimal trajectory has essentially
reached 0 at k = 100. Thus, we would expect that insignificant perfor-
mance degradation would be caused by simply using the steady-state
value of F given in (3.10-24) rather than F(k) as specified in Fig. 3-9(a).

3.11 THE HAMILTON-JACOBI-BELLMAN EQUATION

In our initial exposure to dynamic programming, we approximated con-
tinuously operating systems by discrete systems. This approach leads to a
recurrence relation that is ideally suited for digital computer solution. In
this section we shall consider an alternative approach which leads to a non-
linear partial differential equation—the Hamilton-Jacobi-Bellman (H-J-B)
equation. The derivation that will be given in this section parallels the devel-
opment of the functional recurrence equation (3.7-18) in Section 3.7.

The process described by the state equation

x(0) = a(x(s), u(z), 1) (3.11-1)

is to be controlled to minimize the performance measure
J = hex(ey), 1) + | gx(x), (o), ) dr, (3.11-2)
where 4 and g are specified functions, 7, and ¢, are fixed, and 7 is a dummy
variable of integration. Let us now use the imbedding principle to include this

problem in a larger class of problems by considering the performance mea-
sure

IO, 1, 0(D)) = hx(ep), 1) + [ g, (@), D, (3113)

where ¢ can be any value less than or equal to ¢, and x(¢r) can be any admis-
sible state value. Notice that the performance measure will depend on the
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numerical values for x(¢) and ¢, and on the optimal control history in the
interval [¢, ¢/].

Let us now attempt to determine the controls that minimize (3.11-3) for
all admissible x(¢), and for all ¢ < ¢,. The minimum cost function is then

70, 1) = min { [ (@), u(@), e + hx(t), 1)} G11-4)
1<t<ts

By subdividing the interval, we obtain
. t+Af tr
J*x(1), 1) = min {j gdr+ 7 gd+ hx(ry), tf)}. (3.11-5)
u(z) t t+AL
t<t<tr
The principle of optimality requires that
. t+At
(0,9 = min { [ gdr 4 Ire+ An, £+ At)}, (3.11-6)

tSTSr+AL

where J*(x(¢ 4 At), t + At) is the minimum cost of the process for the time
interval 7 4 At < © < ¢, with “initial” state x(¢ 4- At).

Assuming that the second partial derivatives of J* exist and are bounded,
we can expand J*(x(¢t + Atr), t + At) in a Taylor series about the point
(x(#), ?) to obtain

@, 0= min {[™gar+ 17, 0+ [ % ), 0] A

1<StsetAr

+ [%(x(t), :)]T [x(t +AD — x(t):l G.11-7)
+- terms of higher order}.

Now for small Az

J¥(x(1), 1) = min {a(x(2), u(t), 1) At + J*(x(2), 1)
+ JXx(D), ©) At + TE (), D[ax(®), u(®), 1)] At (3.11-8)
+ o(An)},t

where o(Ar) denotes the terms containing [Af]* and higher orders of At that
arise from the approximation of the integral and the truncation of the Taylor
series expansion. Next, removing the terms involving J*(x(¢), 7) and J¥(x(¢), 1)

aJ* aJ* dJ* aJ *T aJ*
*a v - ver = * .
tixa ax 3x1 3xz 0x, and Je & ot
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from the minimization [since they do not depend on u(?)], we obtain
0 = J¥x(), ) At + nﬁg {g(x(D), u(?), t) At

+ JET(x(0), D]a(x(2), u(n), )] At + o(Ar)}. (3.11-9)

Dividing by Ar and taking the limit as Az — 0 givest

0==J(x(#), £)-+min {g(x(), u(0), )+ 17 (x(1); N[ax(n),u(®), D]} | (3.11-10)

To find the boundary value for this partial differential equation, set = ¢;;
from Eq. (3.11-4) it is apparent that

TEX(E))s 1)) = h(x(t), 1,). (3.11-11)

We define the Hamiltonian 2 as
(1), u(D), JE, 1) & g(x(1), u(z), 1) + JET(x(2), D{a(x(®), u®), ] (3.11-12)
and

H(x(), w (x(1), J¥, 1), J¥, 1) = min S (x(0), w(), /3, 0, (.11-13)

since the minimizing control will depend on x, J#*, and ¢. Using these defini-
tions, we have obtained the Hamilton-Jacobi equation

0 = J¥x@), 1) + A (x@0), w*(x(r), J¥, 1), JE, 1). (3.11-10a)

This equation is the continuous-time analog of Bellman’s recurrence
equation (3.7-18); therefore, we shall refer to (3.11-10a) as the “Hamilton-
Jacobi-Bellman equation.”

Example 3.11-1. A first-order system is described by the differential
equation

x(t) = x(t) + u(t); (3.11-14)

t lim “’ft’)’=o.

At—0
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it is desired to find the control law that minimizes the performance measure
J = 1xT) + f : () dt. (3.11-15)

The final time T is specified, and the admissible state and control values
are not constrained by any boundaries.

Substituting g = 1u2(¢) and @ = x(r) + u(t) into Eq. (3.11-12), we find
that the Hamiltonian is (omitting the arguments of J*)

(), ut), TE, ) = ju2(@) +THx() + u®)],  (B.11-16)

and since the control is unconstrained, a necessary condition that the
optimal control must satisfy is

%’ = 2ult) + TG, O = . (3.11-17)

Observe that

2
"ajf =5 >0; (.11-18)

thus, the control that satisfies Eq. (3.11-17) does minimize 5. From
(3.11-17)

u*(t) = =2J¥(x(r), 0, (3.11-19)
which when substituted in the Hamilton-Jacobi-Bellman equation gives
0 =J¥ + {—2J%P + [V EIx() — 2[J3T

=J¥ — [T + [T¥1x(). (3.11-20)
The boundary value is, from (3.11-15),
J¥x(T), T) = 1x¥(T). (3.11-21)

One way to solve the Hamilton-Jacobi-Bellman equation is to guess
a form for the solution and see if it can be made to satisfy the differential
equation and the boundary conditions. Let us assume a solution of the
form

TA(x(), ) = $K(E)xX), (3.11-22)

where K(t) represents an unknown scalar function of ¢ that is to be deter-
mined. Notice that

J*(x(1), 1) = K(@#)x(2), (3.11-23)
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which, together with Eq. (3.11-19), implies that
u¥(@) = —2K(x(1). (3.11-24)

Thus, if a function K(f) can be found such that (3.11-20) and (3.11-21)
are satisfied, the optimal control is linear feedback of the state—indeed,
this was the motivation for selecting the form (3.11-22).

By making K(T) = 4, the assumed solution matches the boundary
condition specified by Eq. (3.11-21).

Substituting (3.11-23) for J* and

TEX(0), 1) = $K@0x()
into Eq. (3.11-20) gives
0 = LK()x2(t) — K2()x2(t) + K(O)x2(). (3.11-25)
Since this equation must be satisfied for all x(¢),
1K@ — K2(1) + K1) = 0. (3.11-26)

K(1) is a scalar function of ¢; therefore, the solution can be obtained by
separation of variables with the result

€(Tr-0
The optimal control law is then
u*(@t) = —2J¥x(), 1)
= —2K()x(@). (3.11-28)

Notice that as T'— oo, the linear time-varying feedback approaches
constant feedback (K(r) — 1), and that the controlled system

x(1) = x(t) — 2x(@1)
= —x(f) (3.11-29)

is stable. If this were not the case, the performance measure would be
infinite.

3.12 CONTINUOUS LINEAR REGULATOR PROBLEMS

Problems like Example 3.11-1 with linear plant dynamics and quadratic
performance criteria are referred to as linear regulator problems. In this
section we investigate the use of the Hamilton-Jacobi-Bellman equation as
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a means of solving the general form of the continuous linear regulator
problem.t
The process to be controlled is described by the state equations

x(®) = A@)x(@) + B()u(), (3.12-1)

and the performance measure to be minimized is

J = 1xT(e Hx(t,) + f HXTOQUOX() + w(OREE] dt.  (3.12-2)

H and Q are real symmetric positive semi-definite matrices, R is a real,
symmetric positive definite matrix, the initial time ¢, and the final time ¢, are
specified, and u(¢) and x(¢) are not constrained by any boundaries.

To use the Hamilton-Jacobi-Bellman equation, we first form the Hamil-
tonman:

HX(2), u(t), J¥, 1) = 3xT(O)Q(NX(2) + Fu"(OR(Ou(?) + JEF(x(2), 1)
J[A@DX() + B(u()]. (3.12-3)

A necessary condition for u(¢) to minimize 5# is that d3#/0u = 0; thus

a—‘,'}uf(X(t), u(®), Jt, 1) = R(u(e) + BOTEx(), 1) = 0. (3.12-4)
Since the matrix
‘?;;;/f —RQ) (3.12-5)

is positive definite and s# is a quadratic form in u, the control that satisfies
Eq. (3.12-4) does minimize 5 (globally). Solving Eq. (3.12-4) for u*(¢) gives

w*() = —R'(O)BT()J¥x(), 1), (3.12-6)
which when substituted in (3.12-3) yields
SX(), u*(t), J¥, 1) = 3x"Qx + LJX¥"BR'BJ ¥
+ J¥TAx — J¥TBRIB7J* (3.12-7)
= IX"Qx — LJ¥TBRIBTJ¥ + J¥TAx.I
The Hamilton-Jacobi-Bellman equation is
0 =J% 4+ 1x7Qx — LJ¥"BR'B7J% | J*TAx, (3.12-8)
1 Refer also to Section 5.2, where this same problem is considered and the variational

approach is used.
I Where no ambiguity exists, the arguments will be omitted.
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From Eq. (3.12-2) the boundary condition is
T*x(tp), ;) = $x7(2, ) HX(1). (3.12-9)

Since we found in Section 3.10 that the minimum cost for the discrete
linear regulator problem is a quadratic function of the state, it seems reason-
able to guess as a solution the form

JEx(t), 1) = 1xT(O)K()x(2), (3.12-10)

where K(¢) is a real symmetric positive-definite matrix that is to be deter-
mined. Substituting this assumed solution in Eq. (3.12-8) yields the result

0 = 4x"Kx + 1x7Qx — $x"KBR!B"Kx

KA (3.12-11)

The matrix product KA appearing in the last term can be written as the
sum of a symmetric part and an unsymmetric part,
KA = }[KA + (KA)"] + $[KA — (KA)7]. (3.12-12)

Using the matrix property (CD)” = D7CT and the knowledge that the trans-
pose of a scalar equals itself, we can show that only the symmetric part of
KA contributes anything to (3.12-11). Thus Eq. (3.12-11) can be written

0 = 1x"Kx + 1x"Qx — $x”KBR™'B7Kx

(3.12-13)
+ ix"KAx 4 IxTATKx.
This equation must hold for all x(¢), so
0 = K(1) + Q) — K(®B®R™(1)B7(1)K(r) (3.12.14)
+ K(DA(1) + AT(OK(), '
and the boundary condition is [from (3.12-9) and (3.12-10)}
K(¢;) = H. (3.12.15)

Let us consider the implications of this result: first, the H-J-B partial
differential equation reduces to a set of ordinary nonlinear differential equa-
tions. Second, the K(¢r) matrix can be determined by numerical integration
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of Eq. (3.12-14) from ¢t =t; to t = t, by using the boundary condition
K(t;) = H. Actually, since the n X n K(#) matrix is symmetric, we need to
integrate only n(n + 1)/2 differential equations.

Once K(¢) has been determined, the optimal control law is given by

u(t) = —R-1()BT()K()X(). (3.12-16)

Thus, by assuming a solution of the form (3.12-10) the optimal control law
is linear, time-varying state feedback. It should be pointed out, however,
that other forms are possible as solutions of the Hamilton-Jacobi-Bellman
equation. Reference [J-1] gives an alternative approach which, under certain
conditions, leads to a nonlinear but time-invariant form for the optimal
control law.

Our approach in this section leads to Eq. (3.12-14), which is a differen-
tial equation of the Riccati type, and thus is referred to as “the Riccati
equation”; in Section 5.2 this same equation is developed by variational
methods—in linear regulator problems all routes lead to the same destina-~
tion.

3.13 THE HAMILTON-JACORBI-BELLMAN
EQUATION—-SOME OBSERVATIONS

We have derived the Hamilton-Jacobi-Bellman equation and used it
to solve two examples of the linear regulator type. Let us now make some
observations concerning the H-J-B functional equation.

Boundary Conditions

In our derivation we have assumed that ¢, is fixed; however, the results
still apply if 7, is free. For example, if S represents some hypersurface in the
state space and ¢, is defined as the first time the system’s trajectory intersects
S, then the boundary condition is

THX(1), 1) = h(x(ty), 1). (3.13-1)

A Necessary Condition

The results we have obtained represent a necessary condition for opti-
mality; that is, the minimum cost function J*(x(¢), ) must satisfy the Hamil-
ton-Jacobi-Bellman equation.
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A Sufficient Condition

Although we have not derived it here, it is also true that if there is a cost
function J'(x(¢), t) that satisfies the Hamilton-Jacobi-Bellman equation, then
J' is the minimum cost function; i.e.,

J'(x(0), 1) = J*(x(@), 1). (3.13-2)

Rigorous proofs of the necessary and sufficient conditions embodied in the
H-J-B equation are given in [K-5] and also in [A-2], which contains several
examples.

Solution of the Hamilton-Jacobi-Bellman Equation

In both of the examples that we considered, a solution was obtained by
guessing a form for the minimum cost function. Unfortunately, we are nor-
mally unable to find a solution so easily. In general, the H-J-B equation
must be solved by numerical techniques—see [F-1], for example. Actually,
a numerical solution involves some sort of a discrete approximation to the
exact optimization relationship [Eq. (3.11-10)]; alternatively, by solving the
recurrence relation [Eq. (3.7-18)] we obtain the exact solution to a discrete
approximation of the Hamilton-Jacobi-Bellman functional equation.

Applications of the Hamilton-Jacobi-Bellman Equation

Two examples of the use of the H-J-B equation to find a solution to
optimal control problems have been given; in these examples we used the
necessary condition.

Alternatively, if we have in our possession a proposed solution to an
optimal control problem, the sufficiency condition can be used to verify the
optimality. Several examples of this type are given in [A-2]. It should be
pointed out that the derivation of the sufficient condition requires that
trajectories remain in certain regions in state-time space. Unfortunately,
these regions are not specified in advance—they must be determined in order
to use the Hamilton-Jacobi-Bellman equation.

In Chapter 7 we shall see that the Hamilton-Jacobi-Bellman equation
provides us with a bridge from the dynamic programming approach to varia-
tional methods.

3.14 SUMMARY

The central theme in this chapter has been the development of dynamic
programming as it applies to a class of control problems. The principle of
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optimality is the cornerstone upon which the computational algorithm is
built. We have seen that dynamic programming leads to a functional recur-
rence relation [Eq. (3.7-18)] when a continuous process is approximated by
a discrete system. Alternatively, when we deal with a continuous process,
the H-J-B partial differential equation results. In either case, a digital com-
puter solution is generally required, and the curse of dimensionality rears
its ugly head. In solving the recurrence equation (3.7-18) we obtain an
exact solution to a discrete approximation of the optimization equation, where-
as in performing a numerical solution to the H-J-B equation we obtain an
approximate solution to the exact optimization equation. Both approaches
lead to an optimal control law (closed-loop optimal control). In linear regula-
tor problems we are able to obtain the optimal control law in closed form.
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PROBLEMS

3-1. To apply (discrete) dynamic programming to a continuously operating system
it is necessary to use discrete approximations to the state differential equations
and the performance measure.

(a) Determine the discrete approximations to use for the system
() = x2(t)
Xa(f) = —x:(0) + [1 — x3Oea() + u(@),

which is to be controlled to minimize the performance measure
T
J =[x = 5P+ [ {30 + 20000 — 5P + w20} ar.

The final time T is 10.0; use an interval At equal to 0.01.

(b) What adjustments are required to apply the dynamic programming
algorithm to this system because of the nonlinearity of the differential
equations ?

3-2. A first-order discrete system is described by the difference equation
x(k + 1) = —0.5x(k) + u(k).

The performance measure to be minimized is

J=3 2@,
k=0

and the admissible states and controls are constrained by

—0.2 < x(k) < 0.2, k=012
—0.1 <u(k) <0.1, k=01.
(a) Carry out by hand the computational steps required to determine the
optimal control law by using dynamic programming. Quantize both u(k)

and x(k) in steps of 0.1 about zero, and use linear interpolation.
(b) What is the optimal control sequence for an initial state value of 0.2?

3-3. The first-order discrete system

x(k + 1) = 0.5x(k) + u(k)
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is to be transferred to the origin in two stages (x(2) = 0) while the perfor-
mance measure

7 =k2:0[| xR + 5|utk)|]

is minimized.

(a) Use the method of dynamic programming to determine the optimal
control law for each of the heavily dotted points in Fig. 3-P3. Assume
that the admissible control values are quantized into the levels 1, 0.5,
0, —0.5, —1.

Y ~
Final
—1 state
-2
-3
0 1 2
k —
Figure 3-P3

(b) Find the optimal control sequence {#*(0), #*(1)} that corresponds to the
initial state x(0) = —2.

. The discrete approximation to a nonlinear continuously operating system is

given by
x(k + 1) = x(k) — 0.4x2(k) + u(k).
The state and control values are constrained by

0.0 < x(k)<1.0
—0.4 < uk) <04.

Quantize the state into the levels 0, 0.5, 1, and the control into the levels
—0.4, —0.2, 0, 0.2, 0.4. The performance measure to be minimized is

J=41x)| + k.’goiu(k)l.

(a) Use dynamic programming with linear interpolation to complete the
tables shown below.
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Dynamic Programming Problems

x(0) | J§(x(0) | u*(x(0),0) x(1) | TEG(1) | wr(D), D)
0.0 0.0
0.5 0.5
1.0 1.0

(b) Frora the results of part (a) find the optimal control sequence {u*(0),
u*(1)} and the minimum cost \f the initial state is 1.0.

. The approximating difference equation representation for a continuously

operating system is
x(k + 1) = 0.75x(k) + u(k).
It is desired to bring the system state to the target set .S defined by
0.0 < x(2) <20
with minimum expenditure of control effort; i.e., minimize
J = u2(0) + u2(1).
The allowable state and control values are constrained by

0.0 < x(k) < 6.0
—1.0 < ulk) < 1.0.
Quantize the state values into the levels x(k) = 0, 2:0, 4.0, 6.0 for k = 0, 1,2
and the control values into the levels #(k) = —1.0, —0.5, 0.0, 0.5, 1.0 for
k=0,1.
(a) Find the optimal control value(s) and the minimum cost for each point

on the state grid. Use linear interpolation.
(b) What is the optimal control sequence {u*(O), u*(1)} if x(0) = 6.0?

A discrete system described by the difference equation
x(k + 1) = x(k) + u(k)

is to be controlled to minimize the performance measure
2
J = kznl[z | x(k) — 0.1k2| + |utk — 1)]].

The state and control values must satisfy the constraints

00 < x(k) <04, k=012
—02<uk) <02, k=0,1.
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3-10.

(a) Use the dynamic programming algorithm to determine the optimal
control law u*(x(k), k). Quantize the state into the values x(k) = 0, 0.1,
0.2,0.3,04 (k =0, 1,2) and the control into the values u(k) = —0.2,
—0.1,0,0.1,0.2 (k =0, 1).

(b) Determine the optimal control sequence {u*(O), u*(l)} if the initial state
value is x(0) = 0.2.

. The first step in using the Hamilton-Jacobi-Bellman equation

0 =J¥x(®, N + T(I,? {g(x(®), u(®), ) + T x(), D]ax(@), (), N]}

is to determine the admissible control w*(¢) [in terms of x(¢), ¢, and J*] that
minimizes { - }. Find w*(f)—expressed as a function of x(¢), ¢, and J*—for
the system

X310 = %20
Xo() = —x1(t) + x,(t) + u(®),

and the performance measure
T
7= [ 3010 + 240 + wO]d,  01,0,> 0.
The admissible controls are constrained by

[u@] < 1.

., The first-order linear system

x@) = —10x(t) + u()
is to be controlled to minimize the performance measure
0.04
J = $x%0.04) + _/; [3x2(f) + 3u2(D)] dt.

The admissible state and control values are not constrained by any bounda-
ries. Find the optimal control law by using the Hamilton-Jacobi-Bellman
equation.

. Assume that A, B, R, and Q may be dependent on k and derive the recur-

rence relations (3.10-19) and (3.10-20) for the discrete nth-order linear
regulator problem with m control inputs. Appendix 1 contains some useful
matrix relationships.

(a) Follow the steps in the derivation given in Section 3.10 to determine
the optimal control law for the first-order system

x(k 4+ 1) = Ax(k) -+ Bu(k).
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3-11.

3-12.

ae

Dynamic Programming Problems

To minimize the performance measure
= $x(N)Hx(N) + :}:}: [[xtk) — r]Q[x(k) — r} + u(k)Ru(k)],

r is a specified constant, and R, Q > 0 are scalar weighting factors.
(b) Repeat part (a) for N = 3 with

r = r(k) (a known function of k).

Consider the system

X(r) = a(x(), u(1), 1)

which is to be controlled to minimize some performance measure J. The
admissible state and control values are bounded, and, in addition, the control
must satisfy the total energy constraint

f:’ W) dt < M;

M is a specified positive number. Can this problem be solved by applying
dynamic programming ? Explain.

Figure 3-P12 illustrates a routing problem that is to be solved by using
dynamic programming, Table 3-P12 gives the costs (elapsed time, consumed
fuel, etc.) of moving between any two nodes. For example, entry i in the
matrix is the cost of going from node i directly to node j. It is desired to find
the minimum-cost route between any two nodes. One way to solve this
problem is to determine the cost matrices C¥) (k = 1, 2, 3), where ¢{®
denotes the minimum cost to go from node i to node j via at most k inter-
mediate nodes. Table 3-P12 gives the matrix C®. This technique is called
“approximation in policy space”t because at each stage the original problem

a b c d e

a 0 1 5 10 2
be
b| 1 0 6 3 9
ocC
od
c| § 6 0 2 15
. d| 10 3 2 0 4
e 2 9 15 4 0
Figure 3-P12 Table 3-P12

tSee [B-1] and [B-2].
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3-13.

is solved subject to a simplifying approximation involving the allowable

decisions.

(a) Determine the appropriate functional recurrence equation to find Ctx+1>
from C%,

(b) Find the cost matrices C'*’ (i,j = a, b, c,d,e; k = 1,2, 3).

(c) Why is it unnecessary to determine C¢*’ for k > 3?

(d) What are the properties of the cost matrices? In particular, compare
C(O), C(l)’ C(Z)’ C(S)_

(¢) What changes in the computational procedure are required if the costs
are not independent of direction, i.e., ¢ # ¢ ?

In addition to routing and control problems, dynamic programming can be
advantageously applied to allocation problems. For example, suppose that
a truck of capacity 11,000 1b is to transport automobiles, refrigerators, and
kitchen sinks between points X and Y. The items to be transported have
the weights and values shown in Table 3-P13B. The problem is to determine
the number of each item that should be transported to maximize the total
value of a shipment. If noninteger quantities of the items could be taken,
the solution would be to carry as many as possible of the item having the
highest dollar-to-weight ratio. In this case, we would take 2.75 automobiles
with a shipment value of $8250. Since this is not a feasible solution, the
optimal strategy is to take

Table 3-P13a

Value Weight
2 automobiles $6000 8000 1b
7 refrigerators $1960 2800 1b
2 kitchen sinks $ 100 200 1b
38060 11,000 Ib

How was this strategy determined ?

Table 3-P13b

Description Wtlunit Value[unit Value[wt
Automobile 4000 1b $3000 30.75
Refrigerator 400 Ib $ 280 $0.70
Kitchen sink 100 1b $ 50 $0.50

Let us now generalize this problem. Let W represent the total available
resources (W = load-carrying capacity in the preceding problem). The
problem is to ascertain the portion of the available resources to allocate to
each of N activities in order to maximize the total return. Let

w; = the quantity of available resources allocated to activity i.

»; = the per-unit value of carrying out activity i.
In the shipping problem w, = 8000 1b, w, = 2800 Ib, w; = 200 Ib, »; = $0.75,
vy = $0.70, v; = $0.50. Let J¥(W) be the maximum return that can be
obtained by allocating resources of amount W among N activities. Clearly,

N
JEW) = max {_2 w,v,} (1)
Wi, Wa, .., WN20 \i=1
Witwete o +wNSW
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(a) Show that Eq. (I) leads to the functional recurrence equation

JH(W) = max {wyon + JE_ (W — wy)}. (In

0<wNSW

Hine: Start with a one-activity process, then consider a two-activity
process, and so on.
(b) Use Eq. (II) to verify the solution of the shipping problem given above.
(c) Suppose that in the shipping problem the value of the second car is
$2500, and each refrigerator after the tenth is valued at only $250. The
kitchen sinks remain at $50 apiece. Use dynamic programming to
determine the optimal loading schedule.

Use a digital computer to solve the following problems
3-14. A system is described by the first-order difference equation

xtk + 1) =1 + a Atlx(k) + b At u(k), k=01,...,N—1,

and the performance measure
N-1
J = x2(N) + A At Y, ui(k)
k=0

is to be minimized subject to the constraints
—-10<ukk) <10, k=0,1,..., N—1
and
0.0 < x(k) < 1.5, k=0,1,...,N.

(a) Use the dynamic programming algorithm to find the optimal control
value(s) and minimum cost for each state value on the grid x(k) = 0.0,
0.02,...,1.5. Assume quantization levels for the control of u(k) =
—1.00, —0.98, . .., 0.98, 1.00; and assume a = 0.0; Az = 1.0; b6 = 1.0;
A =2.0; N =2, (This is the same problem as considered in Section 3.5,
but with a finer grid structure.)

(b) Repeat part (a) with N = 3, i.e.,

J=x3) +2 ’f:‘,o w(k).

(c) Repeat part (a) with 4 = 4.0.
(d) Repeat part (a) with 4 = 0.5.

3-15, Repeat Problem 3-14 with the state constraints
0.0 < x(k) < 3.0.

Use the same quantization increments as in Problem 3-14,
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3.16. Put a = —0.4 and repeat Problem 3-14 with the other data unchanged.
3-17. Put a = —0.4 and repeat Problem 3-15 with the other data unchanged.

3-18. Find the control law to transfer the system described by the difference
equation

x(k + 1) = [1 + a Arlx(k) + b At u(k)

precisely to the origin in one stage with no penalty for control expenditure.
The numerical values are a = 0.0; b = 1.0; At = 1.0. The state values are
to be quantized in steps of 0.02, and the control values in steps of 0.02.
These values are constrained by

—1.0 < ulk) < 1.0, k=0
and
0.0 < x(k) < 3.0, k=0,1.

Problems 3-19 through 3-22 pertain to the digital computer results obtained for
Problems 3-14 through 3-17.

3-19. Use the results of Problems 3-14(a), (¢), (d) with x(0) = 1.5 to explain
qualitatively
() The effect of varying 4 on the optimal control sequence.
(b) The effect of varying A on the final state value x(2)
Show all applicable numerical results used.

3-20. (a) Use the results of Problems 3-14(a) and 3-16(a) with x(0) =1.5 to
explain qualitatively the effect of the system dynamics (state equation)
on the optimal control sequence, final state value, and minimum cost.
Show all work.

(b) What would you expect if in Problem 3-16(a) the parameter a had been
+0.4 instead of —0.4?

3-21. For the plant and performance measure of Problem 3-15(b)
(a) Find the optimal control sequence {u*(O), w*(1), u*(2)}, the minimum cost,
and the final state value x(3), if the initial state value is x(0) = 2.5.
(b) Suppose that there is an unpredictable disturbance such that at k = 1
the actual value of x(k) is 0.1 larger than expected. Find the optimal
control sequence and the final state value, if x(0) = 2.5.

3-22. The statement “This means that the optimal policy and minimum costs for
a K-stage process are contained (or imbedded) in the results for an N-stage
process, provided that N > K” appears on page 70 of the text.

(a) Demonstrate that this statement is true for Problems 3-14(a) and 3-14(b).
A brief, but clear, explanation is sufficient.
(b) Is this statement valid for time-varying processes? Explain.

3-23. 1t is desired to determine the control law that causes the plant

X1(1) = x,(9)
X2(t) = —x;(1) — 2x,(8) + u(t)
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to minimize the performance measure
T
J = 10xX(T) + § fo [¥3() + 2x3() + w2(0)] d.

The final time T is 10, and the states and control are not constrained by

any boundaries. Find the optimal control law by

(a) Integrating the Riccati equation (3.12-14) with an integration interval
of 0.02.

(b) Solving the recurrence equations (3.10-19), (3.10-21), and (3.10-20a).
Use At = 0.02 in approximating the state differential equations by a set
of difference equations.

3-24. Repeat Problem 3-23 for the plant

x1(8) = x5(0)
X(0) = —x,(O) + 2x,(t) + u(e).
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and
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4

The Calculus of Variations

A branch of mathematics that is extremely useful in solving optimization
problems is the calculus of variations. Queen Dido of Carthage was appar-
ently the first person to attack a problem that can readily be solved by using
variational calculus.t Dido, having been promised all of the land she could
enclose with a bull’s hide, cleverly cut the hide into many lengths and tied
the ends together. Having done this, her problem was to find the closed curve
with a fixed perimeter that encloses the maximum area. We know that she
should have chosen a circle. The calculus of variations enables us to prove
this fact and, in addition, other results that are more useful, since real estate
transactions are performed somewhat differently today.

Although the history of the calculus of variations dates back to the ancient
Greeks, it was not until the seventeenth century in western Europe that
substantial progress was made. Sir Isaac Newton used variational principles
to determine the shape of a body moving in air that encounters the least
resistance. Another problem of historical -interest is the brachistochrone
problem shown in Fig. 4-1, posed by Johann Bernoulli in 1696. Under the
influence of gravity, the bead slides along a frictionless wire with fixed end
points 4 and B. The problem is to find the shape of the wire that causes the
bead to move from 4 to B in minimum time. The solution, a cycloid lying
in the vertical plane, is credited to Johann and Jacob Bernoulli, Newton,
and L’Hospital.

1 See [M-2].
107
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A

Bead

B

Figure 4-1 The brachistochrone problem

In Dido’s problem, and in the brachistochrone problem, curves are sought
which cause some criterion to assume extreme values. The connection with
the optimal control problem, wherein we seek a control function that mini-
mizes a performance measure, should be apparent.

41 FUNDAMENTAL CONCEPTS

In optimal control problems the objective is to determine a function that
minimizes a specified functional—the performance measure. The analogous
problem in calculus is to determine a point that yields the minimum value
of a function. In this section we shall introduce some new concepts concern-
ing functionals by appealing to some familiar results from the theory of
functions.t

Functionals

To begin, let us review the definition of a function.

DEFINITION 4-1

A function f'is a rule of correspondence that assigns to each element
qin a certain set 9 a unique element in a set . 9 is called the domain
of fand Z is the range.

We shall be considering functions that assign a real number to each point
(or vector) in n-dimensional Euclidean space.}

Example 4.1-1. Suppose ¢,,49,,...,q, are the coordinates of a point
in n-dimensional Euclidean space and

1 Appropriate references for functions of real variables are {B-4] and [0-2]. For additional
reading on the calculus of variations see [G-1] and [E-1].

1 It is assumed that the reader is familiar with the concept of a Euclidean space. See
[0-2], pp. 293-301 for a detailed exposition.
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f@=E +a+- F4& @.1-1)
The real number assigned by fis the distance of the point q from the origin.
The definition of a functional parallels that of a function.

DEFINITION 4-2

A functional J is a rule of correspondence that assigns to each func-
tion x in a certain class Q a unique real number. Q is called the
domain of the functional, and the set of real numbers associated
with the functions in Q is called the range of the functional.

Notice that the domain of a functional is a class of functions; intuitively,
we might say that a functional is a “function of a function.”

Example 4.1-2. Suppose that x is a continuous function of ¢ defined in
the interval [z, ¢/] and

76 = {7 xte) #.1-2)

the real number assigned by the functional J is the area under the x(¢)
curve,

Linearity of Functionals

Let us review the concept of linearity, which will be useful to us later,
by considering a function f of q, defined for q € 2.

DEFINITION 4-3

[ is a linear function of q if and only if it satisfies the principle of
homogeneity

Sleq) = of(q) (4.1-3)

for all q € 2 and for all real numbers & such that aq € 2, and
the principle of additivity

£@P + q®) = f@®) + /@) @.1-4)
for all 'V, ¢®, and q© + q in .1

1 In our applications we shall be concerned only with functions of real variables, so o
and the components of q will be real numbers.
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Example 4.1-3. If f(¢) = 5t for all ¢, then

f(our) = S[ou] (4.1-5a)
and

af() = a[5t]; (4.1-5b)
therefore, since

Sfour] = a[51] (4.1-5¢)

for all ¢, the principle of homogeneity is satisfied. Now, let us test to see
if the property of additivity is satisfied.

SO 4 @) = 5[ 1) 4 @] (4.1-6a)
and
FAW) + f1@) = 510 51D, (4.1-6b)
thus, since
5[0 4 £0] = 5¢1) 4 5p2) (4.1-6¢c)

for all £V, ¢, the principle of additivity is satisfied. Since the principle
of homogeneity and the principle of additivity are both satisfied, fis a
linear function.

Now consider the function g; with g(¢) = 2/t for all ¢ > 0, then

gat) = az—, (4.1-72)
and
ag(t) = a| 2| (4.1-7b)
Clearly,
e [%] (4.1-7)

for all o; therefore, the principle of homogeneity is not satisfied, and g
is a nonlinear function.

Next, we shall define a linear functional. Assume that x is a function
which is a member of some class Q, and J is a functional of x; that is, to each
x in Q, J assigns a unique real number.
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DEFINITION 4-4

J is a linear functional of x if and only if it satisfies the principle of
homogeneity

J(ox) = aJ(x) (4.1-8a)

for all x € Q and for all real numbers & such that ax € Q, and the
principle of additivity

Jx 4 x2) = J(x) 4 J(x?) (4.1-8b)
for all x‘V, x», and x*’ 4+ x‘? in Q.

Example 4.1-4. Consider the functional
J(x) = f “ x(t) dt, 4.1-9)
to

where x is a continuous function of ¢. Let us see if this functional satisfies
the principles of homogeneity and additivity.

Homogeneity:
tr
®J(x) =« f x(f) dt, (4.1-102)
to
tr
J(@x) = .[ ox(e) dt; (4.1-10b)
to
therefore,
J(x) = aJ(x) (4.1-10c)
for all real & and for all x and ax in Q.
Additivity:
J(xD + x@) = f T x00) + x @) at, 4.1-11a)
fo
tr
J(x) = j x D) dt, (4.1-11b)
to
r
J(x®) = f x@(f) dt; (4.1-11¢)
to
therefore,
JGD 4 x®) = J(x D) + I (x2) (4.1-11d)

for all xt), x2), and x> + x» in Q.
Since additivity and homogeneity are both satisfied, the functional is
linear.
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Now consider the functional
[
J(x) = f " x(r) dt, (4.1-12)
fo

where x is a continuous function of ¢. Again let us ascertain whether
homogeneity and additivity are satisfied.

Homogeneity:
J(x) = j" [ax()]? dt
. (4.1-13a)
—_ 2 2,
" Lx(t)dt,
173
®J(x) = o f x2(1) dt. (4.1-13b)
to
Clearly,
J(0x) % aJ (x) (4.1-13¢)

for all &, so the functional (4.1-12) is nonlinear.

Closeness of Functions

If two points are said to be close to one another, a geometric interpreta-
tion springs immediately to mind. But what do we mean when we say two
Sfunctions are close to one another? To give a precise meaning to the term
“close” we next introduce the concept of a norm.

DEFINITION 4-5

The norm in n-dimensional Euclidean space is a rule of correspon-
dence that assigns to each point q a real number. The norm of q,
denoted by || q]|, satisfies the following properties:

1. ||g]l > 0 and ||q|| = 0 if and only if q = 0. (4.1-14a)
2. |leq|l = |«|-||q] for all real numbers «. (4.1-14b)
30 g < gl g™ - (4.1-14¢c)

When we say that two points q¢!? and q‘?’ are close together, we
mean that

[1q*? — q || is small.

Example 4.1-5. What is a suitable norm for two-dimensional Euclidean
space? It is easily verified that

lall £ 4/at +43, or llqlli &1q9:]1 + 42|
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satisfies properties (4.1-14). Now suppose that a point q‘!? is specified and
it is required that |[q» — q‘’|| < J. What are the acceptable locations
for q2) ?1f|| q||, is used as the norm, q‘2? must lie within the circle centered
at q‘V having radius § as shown in Fig. 4-2(a). On the other hand, if
Ilq]l; is used as the norm, the acceptable locations for ¢‘2’ are as shown
in Fig, 4-2(b).

q;

q‘? must lie
within this
circle
>q,

(a)
2

q@ must lie

within this
@ region

5

(b)

Fig. 4-2 (a) The set of points that satisfy ||q‘2) — q1 |, < &
(b) The set of points that satisfy ||q2} — qV}j; < &

Next, let us define the norm of a function.

DEFINITION 4-6

The norm of a function is a rule of correspondence that assigns to
each function x € Q, defined for ¢ € [¢,, t/], a real number. The
norm of x, denoted by || x||, satisfies the following properties:

1. ||x]| =0 and ||x|| = O if and only if x(¢) = 0 for all

4.1-15
t e [t,, ty]. ( 3)
2. lax|{ = |e]-||x|| for all real numbers ¢. (4.1-15b)
1% 4 x P [ XV | x (41-150)

To compare the closeness of two functions y and z that are defined for
t € [ty, t/], let x(2) = y(£) — z(D).
Intuitively speaking, the norm of the difference of two functions should
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be zero if the functions are identical, small if the functions are “close,” and
large if the functions are “far apart.”

Example 4.1-6. x is a continuous scalar function of ¢ defined in the
interval [¢,, ¢/]. Define an acceptable norm for x.

[lx|] = max {|x(t)[} (4.1-16)
to<t<ts

is a suitable norm because it satisfies the three properties given in (4.1-15).

The Increment of a Functional

In order to consider extreme values of a function, we now define the
concept of an increment.

DEFINITION 4-7

If q and q 4+ Aq are elements for which the function f is defined,
then the increment of f, denoted by Af, is

AfA f(q+ Ag) — f(@). (4.1-17)

Notice that Af depends on both q and Aq, in general, so to be more
explicit we would write A f (q, Aq).

Example 4.1-7. Consider the function

f@) =gt + 29,4, for all real gy, . (4.1-18)
The increment of f'is
Af=fla+ A9 — f(@ = [q, + Agq,T?

+ 2[q; + Aqx][qz + Ag,] — (4% + 24:9.1 4.1-19)
=2q1Aq; +[Aq P +2Aq:19, +2Aq,9, +2Aq,Ag,

In an analogous manner, we next define the increment of a functional.

DEFINITION 4-8
If x and x 4 dx are functions for which the functional J is defined,
then the increment of J, denoted by AJ, is
AJ A J(x + 6x) — J(X). (4.1-20)

Again, to be more explicit, we would write AJ(x, dX) to emphasize
that the increment depends on the functions x and dx. dx is called
the variation of the function x.
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Example 4.1-8. Find the increment of the functional
10 = [0 a, @.1-21)
to

where x is a continuous function of ¢.
The increment is

AJ = J(x + 0x) — J(x)
= .f: [x(t) + Ox(D]> dr — f: x*(t) dt 4.1-22)
- j :’ [2x(0)0x(f) + [x()]] .

The Variation of a Functional

The preceding definitions have laid the foundation for considering the
variation of a functional. The variation plays the same role in determining
extreme values of functionals as the differential does in finding maxima and
minima of functions. As review, we next state the definition of the differential
of a function.

DEFINITION 4-9

The increment of a function of » variables can be written as

Af(g, Aq) = df(q, Ag) + g(q, Ag)-||Aqll,  (4.1-23)

where df is a linear function of Aq. If

lim {g(qa Aq)} =0,

llagli-0

then fis said to be differentiable at q, and df is the differential of f
at the point q.

If fis a differentiable function of one variable #, then the differential can
be written

df(t, AD) = f'(2) At; (4.1-24)

f'(¢) is called the derivative of f at ¢t. Figure 4-3 gives a geometric interpreta-
tion of the increment A f, the differential df, and the derivative f: f'(¢,) is the
slope of the line that is tangent to f at the time ¢,; f'(¢,) At is a first-order
(linear) approximation to A f (the smaller At, the better the approximation).

Example 4.1-9. Find the differential of

f@) =gt + 2q192 (4.1-25)
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i)

Slope equals f(¢;)

Figure 4-3 Geometric interpretation of Af, df, f*

In Example 4.1-7 we found that the increment is

Af(q, Ag) = [2¢; + 29,1 Agq, + 211 Ag.

4.1-26
+ [Aq\]* + 2 Ag, Ag,. ¢ )

The first two terms are linear in Aq. Letting

llAqll & A/TAq: 1 + [Ags]%, (4.1-27)

we can write the last two terms as

[Aq1]2 -} ZAfh qu . '\/_*_2____~2 )
VAT Ay VAP + AP, (4.1-28)

which is of the form g(q, Aq)-||Aq||. To show that fis differentiable we
must verify that

; [Agi)® + 2Aq, Aq,) )
!IAI::trlno { [Aq:]? + [Aqa)? } =0. (4.1-29)

It will be left as an exercise for the interested reader to verify that this
limit exists and is zero; hence f is differentiable, and the differential is

df(a, Aq) = [2g, + 2¢,] Aq, + 29,1 Ag,. (4.1-30)

Rather than go through all of these steps, we can use Definition 4-9 to
develop a rule for finding the differential of a function. In particular, if f
is a differentiable function of n variables, the differential df is given by

d

df = 3 8g, + JL Mg+ + L g, (4.1-31)

We shall also find it convenient to develop a formal procedure for finding
the variation of a functional rather than starting each time from the defini-
tion which follows.
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DEFINITION 4-10
The increment of a functional can be written as

AJ(x, 0x) = dJ(x, 0x) + g(x, 0x)-|| o], (4.1-32)
where 6/ is linear in dx. If

lim {g(x,dx)} =0,

lléx|i~0

then J is said to be differentiable on x and 8J is the variation of J
evaluated for the function x.

Example 4.10. Let x be a continuous scalar function defined for ¢ € [0, 1].
Find the variation of the functional

7 = [ o) + 2101 . 4.1-33)

First, find the increment of J,

AJ(x, 6x) = J(x + 6x) — J(x)

= f‘ {[x() + 0x(O]2 + 2[x()) + Ox()]} dt
i (@134
— [ 120 + 2x0] a.

Expanding, and combining these integrals, we obtain
AJ(x, 5x) = f : {[2x() + 2] 8x(t) + [6x(]} dr.  (4.1-35)

Separating the terms which are linear in dx, we have
AJ(x, 6x) = [ {[2x(6) + 2] 6x()} i + | ; [6x()? dr.  (4.1-36)

Now let us verify that the second integral can be written

j ; [0x(]? dt = g(x, 6x)-]| 5| 4.1-37)
and that
lim {g(x, dx)} = 0. (4.1-38)
lsx|l-0

Since x is a continuous function, let

l16x1] £ max {|6x(r)]}. (4.1-39)
0<t<1
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Multiplying the left side of (4.1-37) by || dx||/|| dx|| gives

dgin f [Ox(n)} dt = || Ox]| - f [ﬁ’(‘s(')‘]] dt;  (4.1-40)

the right side of Eq. (4.1-40) follows because ||dx || does not depend on .
Comparing (4.1-40) with (4.1-37), we observe that

50500 = | [(sl)é(t)ﬁ (4.1-41)
Writing [0x(1)]? as | 6x(1) || 0x(¢) | gives
| 6x(6) |1 0x() | 1
f _T|'67c"|‘_df Sfoléx(t)ldt, (4.1-42)

because of the definition of the norm of dx, which implies that
[|0x]| = |0x(?)| for alt ¢ € [0, 1]. Clearly, if ||dx|] — 0, | dx(¢)| — O for all
t € [0, 1], and thus

1
li } —0. 1-
Jim {fﬂlax(:)ld: 0 (4.1-43)

We have succeeded in verifying that the increment can be written in
the form of Eq. (4.1-32) and that g(x, dx) — 0 as |{dx|| — 0; therefore,
the variation of J is

81(x, ) = [ {[2x(t) + 2] 6x(0} . (4.1-44)

This expression can also be obtained by formally expanding the
integrand of AJ in a Taylor series about x(f) and retaining only the terms
of first order in dx(f).

It is very important to keep in mind that J is the linear approximation
to the difference in the functional J caused by two comparison curves. If
the comparison curves are close (|| dx|| small), then the variation should be
a good approximation to the increment; however, 6J may be a poor approxi-
mation to AJ if the comparison curves are far apart. The analogy in cal-
culus is illustrated in Fig. 4-3, where it is seen that df'is a good approximation
to Af for small At.

As with differentials, we would prefer to avoid using the definition each
time the variation of a functional is to be determined; in Section 4.2 we shall
develop a formal procedure for finding variations of functionals.

Maxima and Minima of Functionals

Let us now review the definition of an extreme value of a function.
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DEFINITION 4-11

A function f with domain @ has a relative extremum at the point
q* if there is an € > 0 such that for all points q in & that satisfy
[l@ — q*|| < € the increment of f has the same sign. If

Af=f@—fg9=0, (4.1-45)
f(q*) is a relative minimum, if
Af=f—f@g9 <0, (4.1-46)

f(q*) is a relative maximum.

If (4.1-45) is satisfied for arbitrarily large e, then f(q*) is a global,
or absolute, minimum. Similarly, if (4.1-46) holds for arbitrarily large
€, then f(q*) is a global, or absolute, maximum.

Recall the procedure for locating extrema of functions. Generally, one
attempts to find points where the differential vanishes—a necessary con-
dition for an extremum at an interior point of 9. Assuming that there are
such points and that they can be determined, then one can examine the
behavior of the function in the vicinity of these points.

Example 4.1-11. Consider the function of one variable illustrated in Fig.
4-4. The function is defined for ¢ € [z, /]. Since the interval is bounded

(0]
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Figure 4-4 A function with several extrema

and closed, candidates for extrema are located at points where the
differential vanishes and also at the end points. For this function, the
differential vanishes at t,, ¢,, t3, t4, and ¢s—these are called stationary
points. ¢,, however, is not an extreme point; it is a horizontal inflection
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point. t; and 1, are relative maxima, and ¢; and t5 are relative minima,
Examining the function at the end points, we see that t, is a relative
minimum and #; is a relative maximum. It is easily shown for a function
of one variable that at the left end point

% > 0 implies that ¢, is a relative minimum,

and

af

=< 0 implies that ¢, is a relative maximum.

For the right-hand end point the sense of the inequalities is reversed.
Finally, observe that ¢, is the absolute or global maximum point and ¢,
is the global minimum.

Next, consider a functional J which is defined for all functions x in a
class Q.

DEFINITION 4-12

A functional J with domain Q has a relative extremum at x* if
there is an € > 0 such that for all functions x in Q which satisfy
[|x — x*|] < € the increment of J has the same sign. If

AJ = J(x) — J(x*) > 0, (4.1-47)
J(x*) is a relative minimum; if
AJ = J(x) — J(x*) <0, (4.1-48)

J(x¥) is a relative maximum.

If (4.1-47) is satisfied for arbitrarily large €, then J(x*) is a
global, or absolute, minimum. Similarly, if (4.1-48) holds for arbi-
trarily large €, then J(x*) is a global, or absolute, maximum. x* is
called an extremal, and J(x*) is referred to as an extremum.

The Fundamental Theorem of the Calculus of Variations

The fundamental theorem used in finding extreme values of functions
is the necessary condition that the differential vanish at an extreme point
(except extrema at the boundaries of closed regions). In variational prob-
lems, the analogous theorem is that the variation must be zero on an extremal
curve, provided that there are no bounds imposed on the curves. We next
state this theorem and give the proof.

Let x be a vector function of ¢ in the class , and J(x) be a differentiable
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functional of x. Assume that the functions in Q are not constrained by any
boundaries.

The fundamental theorem of the calculus of variations is
If x* js an extremal, the variation of J must vanish on x*; that is,
0J(x*, 6x) = 0 for all admissible dx.t (4.1-49)

Proof by contradiction: Assume that x* is an extremal and that
0J(x*, 0x) = 0. Let us show that these assumptions imply that the
increment AJ can be made to change sign in an arbitrarily small
neighborhood of x*.

The increment is

AJ(x*, 6x) = J(x* 4 dx) — J(x*)
= §J(x*, 0x) + g(x*, x)-

where g(x*, dx) — 0 as ||dx|| — O; thus, there is a neighborhood,
[|0x|| < €, where g(x*, dx)-|| 6x|| is small enough so that §J domi-
nates the expression for AJ.

Now let us select the variation

(4.1-50)

ox|],

ox = adx v (4.1-51)

shown in Fig.4-5 (for a scalar function), where & > 0 and || adx‘?? ||
< €. Suppose that

x(t)

s x"—adx®

R e > !
ty - t

Figure 4-5 An extremal and two neighboring curves

1 By admissible dx we mean that x + dx must be a member of the class Q; thus, if Q is
the class of continuous functions, x and dx are required to be continuous,
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SJ(x*, 4dx V) < 0. (4.1-52)

Since dJ is a linear functional of dx, the principle of homogeneity
[see Eq. (4.1-8a)] gives

OJ(x*, adx‘ V) = adJ(x*, 6xV’) < 0. (4.1-53)
The signs of AJ and 8J are the same for || dx|| < €; thus,
AJ(x*, adx‘ V) < 0. (4.1-54)
Next, we consider the variation
ox = —adx‘!

shown in Fig. 4-5. Clearly, ||adx‘? || < € implies that || —adx‘D ||
< €; therefore, the sign of AJ(x*, —adx‘!’) is the same as the sign
of §J(x*, —adx‘?). Again using the principle of homogeneity, we
obtain

SJ(x*, —adx' V) = —adJ(x*, 5x1); (4.1-55)

therefore, since 8J(x*, adx‘") < 0, §J(x*, —adx‘"’) > 0, and this
implies

AJ(x*, —adx1) > 0. (4.1-56)

To recapitulate, we have shown that if dJ(x*, x) = 0, then in
an arbitrarily small neighborhood of x*

AJ(x*, adxV) < 0 (4.1-57)
and
AJ(x*, —adx‘V) > 0, (4.1-58)

thus contradicting the assumption that x* is an extremal (see Defi-
nition 4-12). Therefore, if x* is an extremal it is necessary that

0J(x*, dx) = 0 for arbitrary dx. (4.1-59)
The assumption that the functions in Q are not bounded guaran-
tees that adx !’ and —adx‘?’ are both admissible variations.
Summary

In this section important definitions have been given and the fundamental
theorem of the calculus of variations has been proved. The analogy between
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certain concepts of calculus and the calculus of variations has been exploited.
It is helpful to think in terms of the analogies that exist; by doing so, we can
appeal to familiar geometric ideas from the calculus. At the same time, we
must be careful not to extrapolate results from calculus to the calculus of
variations merely by using “intuitive continuation.” In the next section we
shall apply the fundamental theorem to problems that become progressively
more general; eventually, we shall be able to attack the optimal control
problem.

4.2 FUNCTIONALS OF A SINGLE FUNCTION

In this section we shall use the fundamental theorem to determine extrema
of functionals depending on a single function. To relate our discussion to
“the optimal control problem” posed in Chapter 1 we shall think in terms of
finding state trajectories that minimize performance measures. In control
problems state trajectories are determined by control histories (and initial
conditions); however, to simplify the discussion it will be assumed initially
that there are no such constraints and that the states can be directly and
independently varied. Subsequently, this assumption will be removed.

The Simplest Variational Problem

Problem 1: Let x be a scalar function in the class of functions with con-
tinuous first derivatives. It is desired to find the function x* for which the
functional

96 = [ gx(e), 300), 1) e (421)

has a relative extremum, The notation J(x) means that J is a functional of
the function x; g(x(z), X(¢), 1), on the other hand, is a function—g assigns a
real number to the point (x(¢), x(¢), ¢). It is assumed that the integrand g
has continuous first and second partial derivatives with rgspect to all of its
arguments; ¢, and ¢, are fixed, and the end points of the curve are specified
as x, and x;.

Curves in the class Q which also satisfy the end conditions are called
admissible. Several admissible curves are shown in Fig. 4-6.

We wish to find the curves (if any exist) that extremize J(x). The search
begins by finding the curves that satisfy the fundamental theorem. Let x be
any curve in Q, and determine the variation dJ(x, dx) from the increment
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x(t)

Figure 4-6 Admissible curves for Problem 1
AJ(x, %) = J(x + 0x) — J(x)
= j g(x(t) + Ox(e), 2(t) + 6x(6), ) dt (4.2-2)
— [ e, 10, 0 ot
Combining the integrals gives
AJ(x,8%) = [ [g(x(0) + 0x(0), 5(0) + 530), 1) — &(x(0), 5(0), O] .
(4.2-3)

Notice that the dependence on % and dx is not indicated in the argument of
AJ, because x and %, dx and Jx are not independent;

. d . d
X(1) = E[x(t)], 8x(t) = a;[éx(t)].
Eventually, AJ will be expressed entirely in terms of x, % and dx.

Expanding the integrand of (4.2-3) in a Taylor series about the point
x(t), %(¢) gives

AJ = f:, {g(x(®), %D, 1) + {:g%(x(t), #(1), ;)] 5x(f)
+ [, 30, 0] 630

i %[[%;%(x(t), X(1), t)] [ox(0)]* (4.2-4)
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+ 2[ T8 G0, 500, 1] 8x0)55(0)

+ [ B0, 50, 0] [5:07 ]
+ o([Bx(O] [6(B)]2) — g(x(2), %(0), 1)} dt.

The notation o([6x()]?, [0%(z)]?) denotes terms in the expansion of order
three and greater in dx(¢) and dx(f)—these terms are smaller in magnitude
than [6x(2)]? and [6x(r)]> as 6x(r) and 8x(¢) approach zero. As indicated,
the partial derivatives in Eq. (4.2-4) are evaluated on the trajectory x, X.

Next, we extract the terms in AJ that are linear in dx(f) and dx(¢) to
obtain the variation

tr

51(x, 6x) = [ {[gg x(0), %(0), z)] Sx(2)

to

(4.2-5)
+ [Fex0, 30, 0] 8300} a.
ox(t) and J%(¢) are related by
x(0) = | ’ Sx(t) dt + Ox(t,); (4.2-6)

thus, selecting dx uniquely determines dx. We shall regard dx as being the
function that is varied independently. To express (4.2-5) entirely in terms
containing dx, we integrate by parts the term involving dx to obtain

8J(x, 6x) = [%(x(t), (1), t)} 8x(1) ]
Floson] e

_4 [g_i (), (D), t)]} Sx() dt.

Since x(z,) and x(¢,) are specified, all admissible curves must pass through
these points; therefore, dx(¢,) = 0, dx(z,) = 0, and the terms outside the
integral vanish.
If we now consider an extremal curve, applying the fundamental theorem
yields
tr
83(x%, 8%) = 0 = " {Eev(e), 440,

d

(4.2-8)
-4 [g%(x*(t), (1), t)]} 5x(t) dt.
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Thus, the integral must be zero; does this tell us anything about theintegrand ?

To answer this question, consider the function Jx; it has continuous
derivatives, and must be zero at 7, and #,, but aside from these requirements
it is completely arbitrary. The assumptions made regarding the function g
guarantee that the term which multiplies dx(¢) in Eq. (4.2-8) is continuous.
It can be shown that if a function 4 is continuous and

| " h(t) Sx(¢) dt = 0 (4.2-9)

for every function dx that is continuous in the interval [¢,, ¢,], then h must be
zero everywhere in the interval [t,, 7/].

This result, called the fundamental lemma of the calculus of variations, is
proved in references [E-1] and [G-1]. The essence of the proof is as follows:
Suppose that h is not zero everywhere in the interval; then, since 4 is con-
tinuous, there is a neighborhood in [t,, #,] in which & has the same sign
everywhere. Select dx, which is arbitrary, to be positive (or negative) through-
out the neighborhood where A4 has the same sign, and zero elsewhere. By
selecting dx in this manner the integral in Eq. (4.2-9) will be nonzero; thus,
h must be identically zero for (4.2-9) to be satisfied.

Figure 4-7 shows a function 4 that is not identically zero in the interval

h(t)
/\l ] '
P L t
1!
P!
I
8x(t) b
1o
[
Ul
Inl
| N \ ,
to h t

Figure 4-7 A nonzero 4 and an admissible dx

[t t5]. Selecting dx as shown makes the product A(¢) dx(f) greater than zero
in the interval [¢,, ¢,], and zero elsewhere. By inspection, the integral of
h(r) 0x(¢) is certainly not zero. Notice that it does not matter what values
h assumes outside of the interval [¢,, t,].

An intuitive way of looking at this lemma is the following: Given any
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continuous function 4 that is not identically zero in the interval [¢,, ¢/, a
function dx, with continuous derivatives, can be selected which makes the

integral [ " h(t) 6x(r) dt # .

Applying the fundamental lemma to (4.2-8), we find that a necessary
condition for x* to be an extremal is

gé;(x*(t), ¥, 1) — %[g%(x*(t), (), t)} =0 (4.2-10)

for all ¢ € [¢,, t,].

Let us now examine Eq. (4.2-10), called the Euler equation, in more
detail. The presence of d/dt and/or %*(¢f) means that this is a differential
equation.

[gﬁ(x*(t), *(2), t)]

is, in general, a function of x*(¢), x*(¢), and ¢; thus, when this function is
differentiated with respect to ¢, *(¢) may be present. This means that the
differential equation is generally of second order. There may also be terms
involving products or powers of X*(f), x*(¢), and x*(¢), in which case the
differential equation is nonlinear, and the presence of ¢ in the arguments
indicates that the coefficients may be time-varying. Differential equations of
this type are normally hard to solve analytically. There are, however, certain
special cases (summarized in Appendix 3) in which the Euler equation can
be reduced to a first-order differential equation, or solved by evaluating
integrals.

In summary then, the Euler equation for Problem 1 is generally a
nonlinear, ordinary, time-varying, hard-to-solve, second-order differential
equation.

Since the Euler equation usually cannot be solved analytically, one natu-
rally thinks of using numerical integration. The characteristics of the Euler
equation which make analytical solution difficult do not present serious
difficulties numerically. Unfortunately, there is another factor that prevents
us from simply solving the Euler equation by numerical integration—the
boundary conditions are split. Instead of having x(¢,) and x(z,) specified [or
x(tp), %(t,)], we know x(z,) and x(t,). To integrate numerically, we need values
for all of the boundary conditions at one end. Thus, we see that to obtain
the optimal trajectory x*, a nonlinear, two-point boundary-value problem
must be solved. The problem is difficult because of the combination of split
boundary values and the nonlinearity of the differential equation. Separately,
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either of these difficulties can be surmounted without tremendous effort, but
together they present a formidable challenge. For the moment we shall
consider only problems that can be solved analytically. In Chapter 6 we
shall consider some numerical techniques for solving nonlinear, two-point
boundary-value problems.

It should be emphasized that since the Euler equation is a necessary con-
dition, further investigation is required to ascertain whether a solution x*
is a minimizing curve, a maximizing curve, or neither.

Example 4.2-1. Find an extremal for the functional
/2
J(x) = f V) — ] e “.2-11)

which satisfies the boundary conditions x(0) = 0 and x(n/2) = 1.
The Euler equation is

0= gi(x’k(f), X*(0), t) - (;it [gé);(x*(t), 20, t)] (4.2-12)
= —2x%() — Dpe)],
or
(1) + x*(1) = 0. (4:2-13)

Since Eq. (4.2-13) is linear and has constant coefficients, it can be readily
solved by using classical differential equation theory. Assuming a solution
of the form x*(tf) = ket and substituting this in (4.2-13), we obtain

ks2est + kest = 0, 4.2-149)
Since (4.2-14) must be satisfied for all ¢,

s24+1=0. (4.2-15)

The roots of this characteristic equation are s = 4-j1,t so the solution
has the form

x*(t) = c €7t 4 c,€M, (4.2-16)
or
x*(t) = c3 cos () + ¢4 sin (1), 4.2-17)

where the ¢’s are constants of integration.
To determine the constants that satisfy the boundary conditions
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x(0) = 0, x(m/2) = 1, we use the form of the solution in (4.2-17) to obtain

0 = ¢3 cos (0) + ¢4 sin(0) == ¢; = Of (4.2-18)
and
1= crcon () casin (§) —>eu -
= €308 {5 + ¢4 sin 5 )= = 1. (4.2-19)

Thus, the solution to the Euler equation is
x*(t) = sin (¢). (4.2-20)

The problem, as stated, has been solved, but let us investigate the
increment for a neighboring curve to see if x* is a minimum. As a com-
parison curve, consider the family

o in
x(t) = sin (¢) + o sin (2f) @2:21)
= x*(1) + 5x(2),
with o as a real constant. Several curves for various values of & are shown
in Fig. 4-8. Observe that each dx curve goes through zero at ¢ = 0 and
at ¢ = m/2; thus x* + dx satisfies the required boundary conditions.

5x(t)
o 0, <03 <0<ay<ayy
<~ :
0 k)
v 2
Oy

Figure 4-8 Several admissible dx curves
Substituting x*(r) = sin (¢) and x*(t) = cos (¢) into the integrand
of (4.2-11), we find that J(x*) = 0. If x(t) = sin (¢) + & sin (2r) and

X(t) = cos (1) + 20 cos (21) are substituted into (4.2-11) and the inte-
gration performed, the result is

I + 6x) = [, 4.2-22)

t == denotes “implies that.”
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Since J(x* + dx) > O for all & = 0, we conclude that
J(x* + 0x) > J(x*¥) for & £ 0. (4.2-23)

What does this mean? It certainly indicates that x* is not a maximizing
curve, because we have just constructed a family of neighboring curves that
gives larger values of J. Is x* a minimizing curve? Our evidence is not
conclusive, but it looks very much as if x* does minimize J. We could
try other neighboring curves to reinforce our suspicions, or else test x*
to see if it satisfies sufficient conditions for a minimum. Sufficient con-
ditions for minima are beyond the scope of this book, so we shall content
ourselves with investigating a few neighboring curves to ascertain whether
a curve is maximal, minimal, or neither.

Now let us consider problems having end points that are not fixed. We
shall consider only free end conditions at the final time; problems with
unspecified boundary conditions at the initial time can be treated in a similar
manner.

Final-Time Specified, x(t;) Free

Problem 2: Find a necessary condition for a function to be an extremal
for the functional

J(x) = f 8(x(2), (1), 1) dt; (4.2-24)

to, x(2,), and ¢, are specified, and x(z,) is free. The admissible curves all begin
at the same point and terminate on a vertical line, as, for example, is the case
in Fig. 4-9. To use the fundamental theorem, we first find the variation as
in Problem 1. After integrating by parts, we have [see Eq. (4.2-7)]

x(!)
1

Xo ———

ty ty

Figure 4-9 Several admissible curves for Problem 2
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83(x, %) = [ 3B, 30, 0] 8x0)[ + [ {[Exto), 30, 0]

(4.2:25)
- #0050 0]} sxt0

Now 0x(t,) = 0 for all admissible curves, but dx(z,) is arbitrary.

For an extremal x*, we know that dJ(x*, dx) must be zero. Let us next
show that the integral in (4.2-25) must be zero on an extremal. Suppose that
the curve x* shown in Fig. 4-10 is an extremal for the free end point problem.

x()

Figure 4-10 An extremal for a free end point problem

The value of x*(¢,) is x,. Now consider a fixed end point problem with the
same functional, the same initial and final times, and with specified end points
x(t,) = x, and x(¢,) = x, that are the same as for the extremal x* in the
free end point problem. The curve x* in Fig. 4-10 must be an extremal for
this fixed end point problem; therefore, x* must be a solution of the Euler
equation (4.2-10), and the integral term must be zero on an extremal. In
other words, an extremal for a free end point problem is also an extremal for
the fixed end point problem with the same end points, and the same func-
tional; thus, regardless of the boundary conditions, the Euler equation must be
satisfied.

Since

SJ(x*,6%) = 0, and g—i(x*(t), ), £) — %[g%(x*(t), (), :)] ~0
for all # € [, ¢, from Eq. (4.2-25) we have

[g%(x*(t,), (1)), t,)] dx(t;) = 0. (4.2-26)
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But since x(¢,) is free, dx(z,) is arbitrary; therefore, it is necessary that
98 (¥t 34t ), 1) = O. (4.227)

The Euler equation is second order, and Eq. (4.2-27) provides the second
required boundary condition [x(¢,) = x, is the other boundary condition]. We
shall call Eq. (4.2-27) the natural boundary condition; notice that again we
are confronted by a problem with split boundary values.

Example 4.2-2. Determine the smooth curve of smallest length connecting
the point x(0) =1 to the line ¢t = 5.

It can be shown that the length of a curve lying in the ¢ — x(¢) plane,
witht, =0and t, = 5, is

1) = [*[t + @] . (4.2-28)
The Euler equation
~al e = 4229
reduces to
£*(@) =0, (4.2-30)
which has the solution
x*({¢) = eyt + ¢y, (4.2-31)

where ¢, and ¢, are constants of integration. x*(0) = 1, so from (4.2-31)
we have ¢, = 1. From Eq. (4.2-27),

2*(5)

¥ G =0, (4.2-32)

which implies that £*(5) = 0. Substituting x*(5) = 0 into the equation
X*(1) = ¢y, (4.2-33)

obtained by differentiating (4.2-31), gives ¢; = 0. The solution then is

x*) =1, (4.2-34)

a straight line parallel to the ¢ axis.
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Example 4.2-3. Determine an extremal for the functional
() = J'z [£2(t) + 2x(O)%() + 4x2()] dr; (4.2-35)

x(0) = 1, and x(2) is free.
From (4.2-10) the Euler equation is

—X*() + 4dx*() = 0. (4.2-36)
The solution has the form
x*(t) = ¢,€72t + €%, 4.2-37)

To evaluate the constants of integration, use the boundary condition
x(0) = 1, and the natural boundary condition

%(X*(Z), x*(2)) = 0. (4.2-38)

Equation (4.2-38) gives
X*(2) + x*(2) =0, (4.2-39)
and from Eq. (4.2-37) we find that
X*(@) = —2¢,€72% 4 2¢,€2, (4.2-40)

Evaluating (4.2-37) and (4.2-40) with ¢+ = 2 and substituting in Eq. (4.2-39)
we obtain

—C1€7% 4 3,64 = 0. 4.2-41)
The boundary value x(0) = 1 provides the equation
¢ +e, =1 (4.2-42)
Solving these simultaneous algebraic equations for ¢; and c, yields

o 3e4
T € ¥ 3ev’

€4

and ¢, = e e

Cy

The final time was fixed in Problems 1 and 2; consequently, the vari-
ations of the functionals involved two integrals having the same limits of
integration. If the final time is free, however, this is no longer the case;
therefore, let us now generalize the results of our previous discussion. This
is accomplished by separating the total variation of a functional into two
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partial variations: the variation resulting from the difference dx(¢) in the
interval [z, ¢,] and the variation resulting from the difference in end points
of two curves. The sum of these two variations is called the general variation
of a functional. First, let us consider the case where x(¢,) is specified.

Final Time Free, x(t;) Specified
In Problem 2 we considered the situation where x(¢,) was free, but the
final time ¢, was specified. Let us now investigate problems in which x(¢,)

is specified, but 7, is free.

Problem 3: Find a necessary condition that must be satisfied by an
extremal of the functional

Jx) = f 8(x(2), (1), 1) dt; (4.2-43)

1y, X(¢y) = X, and x(t;) = x, are specified, and ¢, is free.
The admissible curves, several of which are shown in Fig. 4-11, all begin
at the point (x,, 7,) and terminate on the horizontal line with ordinate x,.

x(t)
X'I - ——————— —_,
Xp -—
|
!
L t
fo

Figure 4-11 Several admissible curves for Problem 3

Because of the free final time, the development in Problem 2 must be
modified. In Fig. 4-12 an extremal curve x*, terminating at the point (x,, ¢,),
and a neighboring comparison curve x, terminating at the point (x,, ¢, -+ 6¢,),
are shown.

From Fig. 4-12 it is apparent that x(r) = [x(f) — x*(¢)] has meaning
only in the interval [t,, #,], since x* is not defined for ¢ € (¢, t, + d¢,1.t

t t € (tr,tr + Otgl means ty < t=<<t5 + Oty.
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x(t)
8x(tf)
X = J'-::
|
R
!
I
| |
X b — l :
| [l
] | '
’0 tf tf +8'r

Figure 4-12 An extremal, x*, and a neighboring comparisoncurve, x

First, we form the increment

AT= | :“" gx(t), X(2), 1) dt — f: 2(*(6), %(¢), 1) dt
= [ {860, 50 ) — gG*(), £, D} (42:44)
+ [ gxon 20, 0 at,
or
AJ = f:' {8Ge*() + 8x(8), #*(t) + 63(2), 1)

— g(*(1), 3%(0), 0} di (82:45)
+ [ g 30, 0 .

The first integrand can be expanded about x*(¢), i*(¢) in a Taylor series to
give

a7 = [ [ e, 220 0] 8200
+ [%(x*(t), (D), t)] ax(:)} dt (4.2-46)
+ 0@x(e), 53 + [ ge(e), 20, 1) it

1 0(8x(t), 6x(t)) denotes terms of higher than first order in dx(¢t) and dx(¢); subsequently
we will write simply o(+).
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The second integral can be written

[ gtxto), 30, 0 dt =[xt 360, 1)] 3t 4 0(Bt). (4247)

Integrating by parts the term in Eq. (4.2-46) containing dx(¢), and substitut-
ing (4.2-47), we obtain

AJ = [%(X*(tf); X*(tp), tf)] Ox(t,) + [g(x(ty), %(2,), t,)] Ot
+ [ o 20,0 w248)
— %[%%(x*(t), *(6), t)]} Sx(t) dt + o(+),

where we have also used the fact that dx(z,) = 0. Next, we shall express
g(x(t,), X(t)), ) in terms of g(x*(z,), X*(¢,), t,) by the expansion

g(x(ty), 2t ) 1) = g4t 4 1)
+ [, 34 1] 0xte) (4.2-49)
+ [ 2 1] 832 + o),

Substituting this expression in Eq. (4.2-48) yields

AJ N [g%(x*(tf)’ x*(tf)’ tf)] ax(tf) + [g(x*(tf)3 ).C*(tf), tf)] 5tf
H (o0 (4.2-50)
— A%, 40, 0]} 830 dr + o),

0x(t,), which is neither zero nor free, depends on d¢,. The variation of
J, 8J, consists of the first-order terms in the increment AJ; therefore, the

dependence of dx(¢,) on d¢, must be linearly approximated. By inspection of
Fig. 4-12 we have

Ox(t;) + x*(t;) 0t, == Of (4.2-51)

or

8x(t;) == —3*(t,) 6t (4.2-52)

= means “equal to first order.”
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Substituting (4.2-52) into Eq. (4.2-50), and retaining only first-order terms,
we have the variation

JJ(X*, 5x) =0= {[— g%(x*(ff), x*(tf), tf)il J.C*(tf)
+ g(x*(ty), X*(2,), tf)} ot,
+ [ {0,

- % [g—%(x*(t), X*(1), t)]} ox(t) dt.

(4.2-53)

Notice that the integral term represents the partial variation of J caused by
0x(t), t € [t,,;], and the term involving ¢, is the partial variation of J
caused by the difference in end points; together, these partial variations
make up the general (or total) varjation.

As in Problem 2, we argue that the extremal for this free end point
problem is also an extremal for a particular fixed end point problem; there-
fore, the Euler equation

B0 20,0 — F @, #00] =0 @250

must be satisfied, and the integral is zero. d¢, is arbitrary, so its coefficient
must be zero, and the required boundary condition at ¢, is

80, £ 1) — [JEG2), 21D 1) | 34 = 0. (4259)

The following example illustrates the procedure for solving a problem
with x(¢,) specified and 7, free.

Example 4.2-4. Find an extremal for the functional
J(x) = _[ Y 2x0) + 3] dt; (4.2-56)

the boundary conditions are x(1) = 4, x(¢;) = 4, and ¢, > 1 is free.
The Euler equation

) =2 4.2-57)
has the solution

x*(1t) =12 4 ¢yt +c,. (4.2-58)
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tr is unspecified, so the relationship

0 = 8(x¥tp), ¥4, 1) — [ BG4, #4199

= 2x%(t;) — 3%t

(4.2-59)
must be satisfied. From (4.2-59) and the specified values of x(1) and x(¢,)
we obtain

x*N)=4=14+c;+coreci +c3=3 (4.2-60a)
x*(t,) =4 = t% -+ City + ¢, (4.2-60b)

2
2x4(1y) — 5 U1) =0 =20, — G- (4.2-600)

Solving Egs. (4.2-60) for c;, c,, and ¢ gives the extremal

x*@)=12—6t+9, and t;=>5. (4.2-61)

Problems with Both the Final Time t; and x(t;) Free

We are now ready to consider problems having both t, and x(z,) unspeci-
fied. Not surprisingly, we shall find that the necessary conditions of Problems
2 and 3 are included as special cases.

Problem 4: Find a necessary condition that must be satisfied by an
extremal for a functional of the form

J6) = [ gx(0), 200, 0 d; (426

t, and x(t,) = x, are specified, and ¢, and x(z,) are free.
Figure 4-13 shows an extremal x* and an admissible comparison curve x.

x(1)

X ———— ———

Xo—

Figure 4-13 An extremal and a neighboring comparison curve for
Problem 4
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Notice that dx(z,) is the difference in ordinates at ¢ = ¢, and dx; is the dif-
ference in ordinates of the end points of the two curves. It is important to
keep in mind that, in general, dx(z,) 7 dx;.

To use the fundamental theorem, we must first determine the variation
by forming the increment. This is accomplished in exactly the same manner
as in Problem 3 as far as the equation

AT = [ 3862t 1%t 1| 65(0,) + [8Gx2(e) 34t 1 )]
+ [T {60, 5@, (42:50)
— F @, 24, ]} 630 dr + o)
Next, we must relate 6x(t,) o 3¢, and Jx,. From Fig. 4-13 we have

Ox, == 8x(t,) + ¥*(t,) Ot,, (4.2-63)
or

Substituting this in Eq. (4.2-50) and collecting terms, we obtain as the varia-
tion

83(x*,85) = 0 = [JEGr ), #% 1) 0,
+ | 8G*(2,), X*(2,), )
— [Jeran 2 1|5 8t
+ [ (6@, 0.0

_ % [g%(x*(t), (D), t):l} 8x(6) dt.

(4.2-65)

As before, we argue that the Euler equation must be satisfied; therefore, the
integral is zero. There may be a variety of end point conditions in practice;
however, for the moment we shall consider only two possibilities:

1. t, and x(¢,) unrelated. In this case dx, and d¢, are independent of one
another and arbitrary, so their coefficients must each be zero. From
Eq. (4.2-65), then,

%(X*(tf)’ X*(tf), tf) = 0, (4.2‘66)
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and
gO¥(L,), $4(1,), 1)) — [%(x*(t,), (), t,)]x*(t,) —0, (42-67)
which together imply that

g0x*(t,), #4(¢,), 1) = O. (4.2-68)

2. t, and x(¢,) related. For example, the final value of x may be con-
strained to lie on a specified moving point, 6(t); that is,

x(t;) = 0t,). (4.2-69)

In this case the difference in end points dx, is related to dt, by
6x, =B, (4.2-10)

The geometric interpretation of this relationship is shown in Fig.
4-14. The distance a is a linear approximation to dx,; that is,

a— [‘-fg(z,)} 5t,. 4.2-71)

x(t)

N I 7

0(t), the locus

Tangc?nt I of admissible
Xo— at point b f' | values for x(t)
I |
[
| L
tg ly 1+t

Figure 4-14 x(tf) and 75 free, but related

Substituting (4.2-70) into Eq. (4.2-65) and collecting terms gives

+ g(x*(t,), X*(t,), t;) =0
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because d¢, is arbitrary. This equation is called the transversality
condition.

In either of the two cases considered, integrating the Euler equation gives
a solution x*(c,, ¢,, t), where ¢, and ¢, are constants of integration. ¢,, ¢,,
and the unknown value of ¢, can then be determined from x*(c,, ¢, t,) = x,
and Egs. (4.2-66) and (4.2-68) if x(¢,) and ¢, are unrelated, or Egs. (4.2-69)
and (4.2-72) if x(t,) and ¢, are related. Let us illustrate the use of these equa-
tions with the following examples.

Example 4.2-5. Find an extremal curve for the functional
ts
T = [t + ] ar; #273)
to

the boundary conditions 7, = 0, x(0) = 0 are specified, ¢, and x(t,) are
free, but x(z,) is required to lie on the line

0(t) = —5¢ + 15. 4.2-74)

The functional J(x) is the length of the curve x; thus, the function
that minimizes J is the shortest curve from the origin to the specified line.
The Euler equation is

il e O 4275
Performing the differentiation with respect to time and simplifying, we
obtain
X*(@) =0, (4.2-76)
which has the solution
x*(1t) = eqt + c,. 4.2-77)

We know that x*(0) = 0, so ¢, = 0. To evaluate the other constant of
integration, we use the transversality condition. From Eq. (4.2-72), since
x(t,) and ¢, are related,

vt J
[ i[5 = £l + [+ 2720) 7 = 0. (4278
Simplifying, we have
—5%%t;) +1=0, (4.2-79)

from which, using Eq. (4.2-77), we obtain ¢; = }. The value of ¢,



142

The Calculus of Variations and Pontryagin's Minimum Principle Sec. 4.2

found from
(1) = 0(
X (ff) (f) (4.2-80)
%.tf = —'Sff + 15,
is
ty =2 =288, 4.2-81)
Thus, the solution is
x*() = it 4.2-82)

Figure 4-15 shows what we knew all along: the shortest path is along
the perpendicular to the line that passes through the origin.

x(1)|

1s)

8(t), the locus of
admissible values
for x ( l,)

X t
3

Figure 4-15 The extremal curve for Example 4.2-5

Example 4.2-6. Find an extremal for the functional in Eq. (4.2-73) which
begins at the origin and terminates on the curve

0¢) = it — 51 — & (4.2-83)

The Euler equation and its solution are the same as in the previous
example, and since x*(0) = 0 we again have ¢, = 0. From Eq. (4.2-72)
the transversality condition is

Mﬁw__:(%)f)]‘—” lty = 5 — 2] + [1 + 222 = 0. (4.2-84)

Simplifying, and substituting x*(¢;) = ¢;, we obtain

ety — 51+ 1 =0, (4.2-85)
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Equating x*(¢,) and 0(t,) yields
city =ty — 5P - 4. (4.2-86)

Solving the simultaneous equations (4.2-85) and (4.2-86), we find that
¢, = % and ¢, = 3, so the solution is

XM(E) = 4. 4.287)

Summary

We have now progressed from “the simplest variational problem” to
problems having rather general boundary conditions. The key equation is
(4.2-65), because from it we can deduce all of the results we have obtained
so far. We have found that regardless of the boundary conditions, the Euler
equation must be satisfied; thus, the integral term of (4.2-65) will be zero.
If ¢, and x(t,) are specified (Problem I), then dt, = 0 and dx, = dx(z,)
=0 in Eq. (4.2-65). To obtain the boundary condition equations for
Problem 2 [t, specified, x(¢,) free], simply let éz, = 0 and dx, = dx(t,) in
(4.2-65). Similarly, to obtain the equations of Problem 3, substitute dx, = 0
in Eq. (4.2-65).

Since the equations obtained for Problems I through 3 can be obtained
as special cases of Eq. (4.2-65), we suggest that the reader now consider the
results of Problem 4 as the starting point for solving problems of any of the
foregoing types.

4.3 FUNCTIONALS INVOLVING SEVERAL
INDEPENDENT FUNCTIONS

So far, the functionals considered have contained only a single function
and its first derivative. We now wish to generalize our discussion to include
functionals that may contain several independent functions and their first
derivatives. We shall draw heavily on the results of Section 4.2—in fact, our
terminal point will be the matrix version of Eq. (4.2-65).

Problems with Fixed End Points

Problem la: Consider the functional

Hoxi %) = [ 8OO, o XD 5O, - 2, D A, @3-
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where x,, x,, . . ., x, are independent functions with continuous first deriva-
tives, and g has continuous first and second partial derivatives with respect
to all of its arguments. ¢, and ¢, are specified, and the boundary conditions are

x,(t) = xy3 xl(tf) = X1,

xn(to) = xm; xn(tf) = xnl'

We wish to use the fundamental theorem to determine a necessary condition
for the functions x¥, x¥, ..., x* to be extremal.

To begin, we find the variation of J by introducing variations in
X, ..., X, determining the increment, and retaining only the first-order
terms:

AT = [ (g0 + 05,0, ..., x,(0) + 8x,0),

X,(0) + 0x,(0), ..., %) + 6%,(D), D) (4.3-2)
— 8(x, (D), .., X, (1), X,(0)s . . ., X(0), D} dt.

Expanding in a Taylor series about x,(¢), ..., x,(t), X,(®), ..., x(f) gives
[ {2 [["g RO IO O 1O} t)] 0]
[586@n ox. 2@, o 20.0]050)] @39

[t

b
é\ﬂ‘_‘ erms of higher order in dx,(), 5x,(t)]} dt.

The variation dJ is determined by retaining only the terms that are linear
in dx, and §x,. To eliminate the dependence of dJ on J%, we integrate by
parts the terms containing %, to obtain

67 =3, [["g a0, 50,50, 0,0 850 |
+ [N B (Lo 010, 50,0] (43-4)
-4 [ LD, s 70 510, 0 100 0] 8x (0]} ar
Since the boundary conditions for all of the x;s are fixed at £, and ¢, 6x,(to)

=0 and dx(t;)=0 (/=1,...,n), and the terms outside the integral
vanish. On an extremal [add*’s to the arguments in (4.3-4)], the variation
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must be zero. The dx,’s are independent; let us select all of the dx,’s except
dx, to be zero. Then

61=0= | " {%g;(x’{‘(t), e X5, B, . D), D) 435
d [%(x?(r), T O (O 0) t)]} Sx,(6) dt.

dt

But dx, can assume arbitrary values as long as it is zero at the end points
t, and ¢,; therefore, the fundamental lemma applies, and the coefficient of
0x,(r) must be zero everywhere in the interval [¢,, #,]. Repeating this argument
for each of the dx’s in turn gives

3—5‘2 G, - . X2, XEQ), ..., XK, 1)

_ % I:g%(x’f(t), e XX, XE@Q), ... 2RO, t):| (4.3-6)

=0 forallte[ty,t;] and i=1,...,n

We now have n Euler equations. Notice that the same adjectives apply to
these equations as in Problem I; that is, each equation is, in general, a
nonlinear, ordinary, hard-to-solve, second-order differential equation with
split boundary values. The situation is further complicated by the fact that
these differential equations are simultaneous—each differential equation
generally contains terms involving all of the functions and their first and
second derivatives.

Throughout the preceding development we have painfully (very!) written
out each of the arguments. It is much more convenient and compact to use
matrix notation; in the future we shall do so. To gain familiarity with the
notation, let us re-derive the preceding equations using vector-matrix nota-
tion. Starting with the problem statement, we have

560 = [ gx(e), %), 1) d 43-12)

and the boundary conditions x(¢,) = X,, X(¢,) = X;, where

~d -
x,(t) a?xl(t)

x() A - and x(¢) A

%0

|0
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The expression for the increment becomes

A= | (g(x(t) + Ox(1), X(£) + Ok(0), 1) — g(x(t), X(¢), )} dt, (4.3-2a)

which after expansion is

. tr og . T &g . T,

AJ = L x(), %(8), £) | OX(1) + | 2 (X(D), X(D), )| k(1)
J‘lo {[ax } [ax ] (4.3_3a)
+ [terms of higher order in dx(t), 6)'1(:)]} dt,

where
00,30, 1) £ [ 60,500, .., EC0, 30,0

(an n x 1 column matrix), and similarly for dg/dx. Discarding terms that
are nonlinear in dx(¢) and dx(¢) and integrating by parts, we have

0
5J(X, 5X) = [ggi(x(tf)) ’.‘(tf)’ tf):r/&{(;f)

0
_ [%(x(to), x(t,), to)]T)(('to)

+ , {g%(x(t), (0), 1)

-4 [gg‘(x(t), (1), t)} }T 8x(0) dt.

(4.3-4a)

0is an n X 1 matrix of zeros. Finally, the matrix representation of the Euler
equations is

Lo, 10,0 — 4B, 20,0 =05 | @36a)

Notice that Eq. (4.2-10), obtained previously, is the special case that results
when x is a scalar.

Example 4.3-1. Find the Euler equations for the functional
10 = [ [0%0 + 2510 - HonOlas @37

the end points ¢, ¢, x;(2o), X;(to), x3(t5), and x,(¢s) are specified.
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The Euler equations are given in Eq. (4.3-6a); writing out the indicated
derivatives gives

0= $E0(0, 2200 — 2 FE 0, 140,

= 2xF(Ox5() — dit[thfc‘{‘(t) — 22(0)] (4.3-8)
= 2XHORE) — 4510 — 200 + 2HOHO),
and
0= $Lae0, x°0,0 — 4 [T, 000.0)]
(4.3-9)

= x}30) — S [-2430#10)]
= x{2(0) -+ 2x3()FF(@) + 225 (OEF).

These differential equations are nonlinear and have time-varying coef-
ficients.

Example 4.3-2. Find an extremal curve for the functional

J(x) = f:“ [x3@®) + 4x3(0) + %:1(0)%,()) dt (4.3-10)

which satisfies the boundary conditions

o =[2} e x3)=[1]

The Euler equations, found from (4.3-6a),

2x¥(t) — 2F() =0 (4.3-11a)
8xF(t) — x¥(@) =0, (4.3-11b)

are linear, time-invariant, and homogeneous. Solving these equations by
classical methods (or Laplace transforms) gives

x¥(t) = ¢,€% 4 €2 + ¢3 cOs 2t + ¢4 sin 2, 4.3-12)

where ¢y, ¢,, ¢3, and ¢4 are constants of integration. Differentiating x¥*(¢)
twice and substituting into Eq. (4.3-11b) gives

x¥(t) = 1c €2 + Jc,€72 — Leycos 2t — ey sin 2. (4.3-13)

Putting ¢ = 0 and ¢ = 71/4 in (4.3-12) and (4.3-13), we obtain four equa-
tions and four unknowns; that is,

XK0) = 0;  x0) = 1; x;"(%) —1; xg‘(%) —o.
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Solving these equations for the constants of integration yields

'2' + €~n/2 61:/2

G =gmmm _emzy 27 6_—”—“-”/2 ez

¢ = —1; c4=—12~-

Problems with Free End Points

Problem 4a: Consider the functional

I = [ gx(, x(0), ) (4.3-14)

where x and g satisfy the continuity and differentiability requirements of
Problem 1a. x(t,) and ¢, are specified; x(¢,) and ¢, are fre¢. Find a necessary
condition that must be satisfied by an extremal.

To obtain the generalized variation, we proceed in exactly the same
manner as in Problem 4 of Section 4.2. The only change is that now we are
dealing with vector functions. Forming the increment, integrating by parts
the term involving 6x(¢), retaining terms of first order, and relating dx(z,)
to dx, and Jt, [see Fig. 4-13and Eq. (4.2-64)] by

ox(t,) = 0x, — X*(z;) dt,, (4.3-15)
we obtain for the variation
83(x%, %) = 0 = [ %0, 10, 1) | 0%,
+ [g (20, X*(2), t)
[‘98 (X*(t,), }¥(2,), t,)] x*(t,)] 5, (43-16)
+ |7 { B, 0,0
~ &% 0, %20, ]} 6x() .
As before, we argue that an extremal for this free end point problem must

also be an extremal for a certain fixed end point problem; therefore, x*
must be a solution of the Euler equations

L@, 10,0 - L0200 =0 | @31
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The boundary conditions at the final time are then specified by the relation-
ship

SI(X*, 6%) = 0 — [g%(x*(z,), (1), t,)]T 5x,
+ [s0ce 2 1) (4318)

— I:g%(x*(tf), x*(t,), tf):]TX*(tf)] ot,.

Equations (4.3-17) and (4.3-18) are the key equations, because they summarize
necessary conditions that must be satisfied by an extremal curve. The bound-
ary condition equations are obtained by making the appropriate substitutions
in Eq. (4.3-18). The equations obtained by making these substitutions, which
are contained in Table 4-1, are simply the vector analogs of the equations
derived in Section 4.2. Notice that regardless of the problem specifications
the boundary conditions are always split; thus, to find an optimal trajec-
tory, in general, a nonlinear, two-point boundary-value problem must be
solved.

Situations not included in Table 4-1 may arise; however, these can be
handled by returning to Eq. (4.3-18). For example, suppose that ¢, is fixed,
x(t,), i=1,2,...,r are specified, and x,(z,),j=r +1,..., n are free.
In this case, the appropriate substitutions are

Ot, = 0;
ox(t) =0, i=12...,r;
Ox(t,) arbitrary, j=r+1,...,n.

Let us now consider several examples that illustrate the use of Table
4-1 and the key equations (4.3-17) and (4.3-18).

Example 4.3-3. Find an extremal for the functional
/4 . . .

100 = [T 1510 + 5000 + 0] a. @319

The functions x, and x, are independent, and the boundary conditions are
x@=1 x(F)=2

x,(0) ='%; X3 (—}) free.
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The Buler equations are, from Eq. (4.3-17),

254() — £3¢) = 0; (4.3-20a)
() — 282() = 0. (4.3-20b)

Multiplying Eq. (4.3-20a) by 2 and subtracting (4.3-20b), we obtain

() + 4xX(@) = 0, (4.3-21)
which has the solution
x¥(@) = ¢ cos 2t + ¢, sin 2, (4.3-22)
therefore,
5@ = 2¢, cos 2t + 2c, sin 2¢. (4.3-23)
Integrating twice yields
x$() = —52—1 cos2t — % sin 2t + ¢t + cq. (4.324)

Notice that the boundary conditions are such that this problem does
not fit into any of the categories of Table 4-1, so we return to Eq. (4.3-18).
x,(t;) is specified, which means that dx;, = dx(t;) = 0. x,(t,), however,
is free, so dx,(t;) is arbitrary. We also have that dt, = O because ¢, is
specified. Making these substitutions in Eq. (4.3-18) gives

B Dmrmo wos
which implies [since dx,(t,) is arbitrary] that
Ee@e@)- o

But

(D) (5) - 415+ 24(3) -
so ¢; = 0. From the specified boundary conditions we have

x,(0)=1=cl-l+c2-0: Cl=1;

3
xz(0)=-2"=—%-l—%-0+c3-0+c4: c4=1.5+£2‘-_—._2;

x,(%—)=c1-0+c2-1=2: ¢ =2
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The extremal curve is, then,

x¥(t) = cos 2t 4 2 sin 2¢

. 4.3-27)
x¥(t) = —% cos 2t — sin 27 4 2.

Example 4.3-4. Find the Euler equations for the functional

769 = [0 + 510 + 2600 1,0 + 1) Ol dr,  (4328)

and determine the relationships required to evaluate the constants of
integration. The specified boundary conditions are

X(0) = [f] x(t7) = ["ﬂ

and ¢, is free. The functions x; and x, are independent.
From Eq. (4.3-17) the Euler equations are

312 + 225() + X2 — 225() =0

(4.3-29)
2xF()xF () — 25%(@1) = 0.

The solution of these two nonlinear second-order differential equations,
x*(cy, ¢y, €3, €4, 1), Will contain the four constants of integration,
¢, €y, €3, ¢4. From the specified boundary conditions we have

XT(C“ €3, €3,€4,0) =2
x¥(cy, €p, €3, C4,0) =1
2( 15 L2, ©35 C4y ) (4'3_30)
XT(CI, €2, C3, Ca, tf) = —1
x?(ch €y €3, Cay tf) = 47

but since ¢ is unspecified, there are five unknowns. The other relation-
ship that must be satisfied is obtained from Eq. (4.3-18) with dx; = 0:

KRty + xF2ty) — 285t )RE(y) + xR )x3ey) = 0. (4.3-31)

Thus, to determine ¢y, ¢,, ¢3, ¢4, and ¢, the (nonlinear) algebraic equations
(4.3-30) and (4.3-31) would have to be solved.

Example 4.3-5. Find the equation of the curve that is an extremal for the
functional

J) = f : [15() + (O]t (t; > 0) (4.3-32)

for the boundary conditions specified below.
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From (4.3-17) the Euler equation is
—%[r + 2X*(#)] =0, (4.3-33)
or
14 2x8%@) =0. (4.3-34)

The solution of this equation is

x*(¢) = =2 4 ¢yt + ¢y (4.3-35)
(a) What is the extremal if the boundary conditions are ¢, = 1, x(0) = 1,
x(1) = 2.75?
*0) = ] =
=) €2 (4.3-36)
x*(1) =275 = —-025 +¢; + ¢, and ¢, =2,
so
x*¥() = —L2 + 2t + 1. 4.3-37)

(b) Find the extremal curve if x(0) = 1, ¢, = 2, and x(2) is free.
Again we have

x*0) =1, so ¢, =1.
From entry 2 of Table 4-1,

t 2x*tp) =0
r + 2% (f) (4.3-38)
24+ 2[—32) + 1] =0;
therefore, ¢; = 0, so
x*) = —312 4+ 1. (4.3-39)
(c) Find the extremal curve if x(0) = 1, x(t;) = 5, and ¢, is free.
As before, x*(0) = 1 implies that ¢, = 1. From entry 3 of Table
4-1

te[RFE ] + %2ty — [ty + 25%())e*(¢) =0 (4.3-40)
or
[tr + 2*@y) — t; — 2% )]x*(¢ts) = O, (4.3-41)
which implies that x*(¢;) = 0, so

—‘%tf +c = 0, (4.3'42)
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and
5= "‘%—t} + Cltf + 1, (4.3'43)

since ¢, = 1. Solving these equations simultaneously gives ¢, = 4
and ¢, = 2; therefore,

X)) = —i2 42 + 1. (4.3-44)

Summary

In Sections 4.2 and 4.3 we have progressed from the very restricted
problem of a functional of one function with fixed end points to a rather
general problem in which there can be several (independent) functions and
free end points. Equations (4.3-17) and (4.3-18) are the important equations,
because from them we can obtain the necessary conditions derived for more
restricted problems.

To recapitulate, we have found that:

1. Regardless of the boundary conditions, the Euler equations
og * ok d [‘k * .k — "
Lo, 20,0 — 5| Fer0,x20.0] =0 @317)

must be satisfied.
2. The required boundary condition equations are found from the equa-
tion

|S8een, 220, 19 0%, + [8Ge 5501

] (4.3-18)
. [g_fi(x*(tf)’ X*(t,), z‘,)] x*(t,)] ot; =0

by making the appropriate substitutions for dx, and dt,.

4.4 PIECEWISE-SMOOTH EXTREMALS

In the preceding sections we have derived necessary conditions that must
be satisfied by extremal curves. The admissible curves were assumed to be
continuous and to have continuous first derivatives; that is, the admissible
curves were smooth. This is a very restrictive requirement for many practical
problems. For example, if a control signal is the output of a relay, we know
that this signal will contain discontinuities and that when such a control
discontinuity occurs, one or more of the components of x(¢) will be discontin-
uous. Thus, we wish to enlarge the class of admissible curves to include
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functions that have only piecewise-continuous first derivatives; that is, %
will be continuous except at a finite number of times in the interval (z,, ¢,).1
At a time when x is discontinuous, x is said to have a corner. Let us begin
by considering functionals involving only a single function.

The problem is to find a necessary condition that must be satisfied by ex-
trema of the functional

J(x) = f g0x(), %(2), 1) di. (4.4-1)

It is assumed that g has continuous first and second partial derivatives with
respect to all of its arguments, and that ¢,, ¢, x(¢,), and x(¢;) are specified.
* is a piecewise-continuous function (or we say that x is a piecewise-smooth
curve). Assume that % has a discontinuity at some point ¢, € (¢,,,); ¢,
is not fixed, nor is it usually known in advance.

Let us first express the functional J as

16 = [ g0, 300, 0 de + [ gat0), 300, D e
27,00 + J().

We assert that if x* is a minimizing extremal for J, then x*(¢), t & [¢,, ¢,], is
an extremal for J, and x*(¢), ¢ € [¢,, ¢,], is an extremal for J,. To show this,
assume that the final segment of an extremal for J is known; that is, we know
x*(0), t € [t,, t;]. Then to minimize J, we seek a curve defined in the interval
[£,, £,] which minimizes J,; this curve is, by definition, an extremal of J,.
Similarly, if x*(¢), ¢ € [t,, ¢,], is known, to minimize J we seek a curve that
minimizes J,—an extremal for J,.

Figure 4-16 shows an extremal curve x* and a neighboring comparison

x(t)

(4.4-2)

|
|
|
|
|
L

to 1+ 81, t

Figure 4-16 A piecewise-smooth extremal and a neighboring com-
parison curve

1 The notation ¢ € (fo,¢f) means £, <t < ty.
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curve x. ¢, and dx, are free, and from the fundamental theorem we know
it is necessary that 8J(x*, dx) = 0. Since the coordinates of the corner point

are free, we can use the results of Problem 4 in Section 4.2 [see Eq. (4.2-65)]
to obtain

8J(x*,63) = 0 — | SBer(eD), %), 1) | B, -+ {gGrH(en), 4 17)
— [, e m | ) o,
“ (08 Ky o
+ [ @, 0.0
— L%, w@, 0|} s
— [ Feern, 22 | 6x, (443
—{eeran, e,
~ [Beran, e, ) s} e,
+ [7{Eero 2.0
— 1% o, 1), )|} 630 .
ox, is the difference x(¢, + d¢,) — x*(¢,), and ¢7 and ¢} denote the times
just before and just after the discontinuity of x*. The terms that multiply
dt, and dx, are due to the presence of ¢, as the upper limit of the first integral
and as the lower limit of the second integral. We have shown that x* is an
extremal in both of the intervals [¢,, ¢,], and [¢,, ¢,]; thus the Euler equation

must be satisfied, and the integral terms are zero. In order that dJ(x*, dx)
be zero, it is then necessary that

|2 e, 240, ) — JExre), 25D, 1) | o3,
+ {0, 2500, 1) — [ o), 2400, 1) 346) (“4-4)
— ge*(e), #4), 1) + | ), . 1) | an) 81, = 0

If ¢, and x(¢,) are unrelated, dx, and d¢, are independently arbitrary, so their
coefficients must each be zero and we have

T Notice that we have retained the ¢, #7 notation only where the distinction needs to
be made.
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g—ﬁ(x*(tx), *(7) 1) = gf—’.c (x*(t,), X*(t1), 1), (4.4-52)
and

gO(1), 5112, 1) — | 0 (e, #4019 i)
(4.4-5b)
= g0e(0), £%0D, 1) — | JEGHE, D, 1) 57D

These two equations, called the Weierstrass-Erdmann corner conditions, are
necessary conditions for an extremal. If there are several times ¢,, ¢,, ..., ¢,
when corners exist, then at each such time these corner conditions must be
satisfied.

It may be that x(¢,) and ¢, are related by x(¢,) = 8(¢,). If so, dx, and
dt, in Eq. (4.4-4) are not independently arbitrary; they are related by

Sx, = Z—f(t,) St (4.4-6)

Substituting (4.4-6) into (4.4-4) and equating the coefficient of dz, equal to
zero (since Jt, is arbitrary), we obtain

[ 0 200, 1] [0 — 2400 ] + g2, 350, 1)

(4.4-7)
= [, a7, 1) [ G200 — 34D + 862, 346D, 1),

The extension of the Weierstrass-Erdmann corner conditions to the case
where J involves several functions is straightforward. The reader can show
that

%8 (xx(e,), %4070, 1) = O, 1), (448a)

and

B0, K30, 1) — | (1), 14, 1) | %°0)
. (4.4-8b)
= g(x3(1), K1), 1) — [ JECere), 3. 1)] %)

are the appropriate equations when x represents n independent functions and
x(¢,) and ¢, are not constrained by any relationship.

1 For a geometric interpretation of this relationship, refer to Problem 4, Fig. 4-14.
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To illustrate the role of the corner conditions, let us consider the following
examples.

Example 4.4-1. Find a piecewise-smooth curve that begins at the point
x(0) = 0, ends at the point x(2) = 1, and minimizes the functional

J(x) = J: #2O[1 — X)) 4t. (4.4-9)

The integrand g depends only on x(t); therefore, the solution of the
Euler equation is (see Appendix 3, Case 1)

xX*@E) = ¢yt + ¢, (4.4-10)
The Weierstrass-Erdmann corner conditions are

221 — 22*(D][1 — #*¢7))

4.4-11
= 2% [1 — 2x* D] — D] ¢ 2)

and

wH2( k(= ekl

J'C D[ —* (tl)][3x. @) —1] (4.4-11b)
= 2201 — *eD][BE*¢) — 1].
Equation (4.4-11a) is satisfied by x*(¢r7) =0, 4,1 and i*¢{) =0, 4,1
in any combinations. Equation (4.4-11b) is satisfied by x*(t;) =0, 1, }
and x*(t) =0, 1, { in any combinations. Together these requirements
give

X*¢7) =0 and X*¢7) =1,
or
) =1 and x*¢f)=0

as the only nontrivial possibilities.

The curves labeled a, b, ¢ in Fig. 4-17 are all extremals for this example.
By inspection of the functional we see that each of these curves makes
J = 0. Notice that if the admissible curves had been required to have
continuous derivatives, the extremal would have been the straight line
joining the points x(0) = 0 and x(2) = 1 (curve d in Fig. 4-17). The reader
can verify that this curve makes J = 0.125,

Example 4.4-2. Find an extremal for the functional
”/2
J(x) = L [£2(r) — x2(n)] dt (4.4-12)

with x(0) = 0 and x(/2) = 1. Assume that % may have corners.
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>/
Figure 4-17 Extremal curves for Example 4.4-1

This problem was previously solved (see Example 4.2-1) under the
assumption that x was required to be a smooth curve. The Euler equation

X*@t) + x*1) =0 (4.4-13)
has a solution of the form
x*(t) = c3cost + ¢, sint, “44-19
The Weierstrass-Erdmann corner conditions are
Feran) = v, (4.4-153)
and

XReT) — x¥2(ty) — [24(D)Prer)

= xn(,-!o-) — xn(,l) — [2**0.:.)]**(‘_{). (4-4‘15b)

From Eq. (4.4-15) we see that there can be no corners, because x*(t7)
must equal x*(¢7). So the extremal is, as in Example 4.2-1,
x*(t) = sin ¢, (4.4-16)

Let us now consider an example in which the coordinates of the corner
are constrained.

Example 4.4-3. Find the shortest piecewise-smooth curve joining the
points x(0) = 1.5 and x(1.5) = 0 which intersects the line x(t) = —t + 2
at one point.

The functional to be minimized is (see Example 4.2-2)

J(x) = f:s [1 + #2()]"/> ar. (44-17)
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The solutions of the Euler equation are of the form
x*(t) = ¢t + ¢,. (4.4-18)
In this case the corner condition of Eq. (4.4-7) becomes
x*(17)
[1 + ,&*2(,;)]1/2

_ X*(tt)
- [1 + J'c*z(t}”)]‘/z

[=1 = 2D} + [1 + 242)] 2
(4.4-19)
[—1 = &*@D)] + [1 + 22 )] 2.

Putting both sides over common denominators and reducing, we obtain

=¥y 1 —3*)
[1 + j*z(,l—)]i/z - [1 + _,'C*Z(t-:-)]l/z

(4.4-20)

The extremal subarcs have the form given by Eq. (4.4-18), but the con-
stants of integration will generally be different on the two sides of the
corner, so let

x*(t) =cit + ¢, for t € [0, 1,] (4.4-21a)
x¥@) =cst + ¢4 for t €[z, 1.5] (4.4-21b)

Substituting the derivatives of Egs. (4.4-21) into (4.4-20) yields

1 — Cy — 1— Cj3
0+l 1+ g

(4.4-22)

The extremals must also satisfy the boundary conditions x(0) = 1.5 and
x(1.5) =0, so

0+, =15=c¢,=15 (4.4-23)
1.5¢; + ¢4 = 0. (4.4-24)
At a corner, it must also be true that x(¢,) = —t, + 2; therefore, we

have the additional equations

ety ey =—t, +2 (4.4-25)
Ccity + Cy = —Iy + 2. (4.4-26)

Equations (4.4-22) through (4.4-26) are a set of five nonlinear algebraic
equations in the five unknowns c,, c,, c3, ¢4, and ¢,. These equations can
be solved by using (4.4-23) through (4.4-26) to express c, and c; solely
in terms of ¢, substituting these expressions in Eq. (4.4-22), and solving
for t;. Doing this gives

x*(f) = —0.5t+ 15, ¢ el0,1.0]

(4.4-27)
x*() = —2t + 3, t € [1.0, 1.5]
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and ¢, = 1.0. This solution is shown in Fig. 4-18. The reader can show
that we have found the shortest path to be the one whose angle of incidence
0, equals its angle of reflection 8,. For further generalizations see refer-
ence [E-1], Chapter 2.

x()

2
Z
2.

0 I, 2. -t

Figure 4-18 An extremal with a reflection

4.5 CONSTRAINED EXTREMA

So far, we have discussed functionals involving x and x, and we have
derived necessary conditions for extremals assuming that the components of
X are independent. In control problems the situation is more complicated,
because the state trajectory is determined by the control u; thus, we wish to
consider functionals of n <+ m functions, x and u, but only m of the func-
tions are independent—the controls. Let us now extend the necessary con-
ditions we have derived to include problems with constraints.

To begin, we shall review the analogous problem from the calculus, and
introduce some new variables—the Lagrange multipliers—that will be
required for our subsequent discussion.

Constrained Minimization of Functions

Example 4.5-1. Find the point on the line y; + y, = 5 that is nearest
the origin.

To solve this problem we need only apply elementary plane geometry
to Fig. 4-19 to obtain the result that the minimum distance is 5/a/ 2,
and the extreme point is y¥ = 2.5, y¥ = 2.5,
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— ¥,

Figure 4-19 Geometrical interpretation of Example 4.5-1

Most problems cannot be solved by inspection, so let us consider
alternative methods of solving this simple example.

The Elimination Method. If y* is an extreme point of a function, it is
necessary that the differential of the function, evaluated at y*, be zero.}
In our example, the function

S, y2) =y} + ¥} (the square of the distance) 4.5-1)

is to be minimized subject to the constraint

Y1+y.=5. (4.5-2)

The differential is

Fonr = 30 |y + [%fz(yl, | An 659
and if (y¥, y¥) is an extreme point,

A% ) = L%j:l(yi“, yé‘)] Ay + [}yfi(ﬁ,y;ﬂ Ay, =0. (4.54)

If y, and y, were independent, then Ay, and Ay, could be selected arbi-
trarily and Eq. (4.5-4) would imply that the partial derivatives must both
be zero. In this example, however, y, and y, are constrained to lie on
the specified line, so Ay, and Ay, are not independent. Solving Eq. (4.5-2)
for y, and substituting into (4.5-1), we obtain

1 Only interior points of bounded regions are considered.
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f) =105 —») + 2

(4.5-5)
=25 — 10y, + 2y?%
The differential of f at the point y¥ is then
df (y$) =[—10 + 4y§] Ay, =0, 4.5-6)

so y¥ = 2.5. From (4.5-2) we then find that y¥ = 2.5. The minimum
value of the function is 2%, and the minimum distance is 5/a/ 2 .1

The Lagrange Multiplier Method. Consider the augmented function

Ji¥1, v, 0) 2y} +y3 4+ plys + ¥, —3), 4.5-7

with p a variable (the Lagrange multiplier) whose value is yet to be
determined. For values of y, and y, that satisfy the constraining relation
(4.5-2) (these are the only values of interest), the augmented function
/. equals f regardless of the value of p—we have simply added zero to
f to obtain f,. By satisfying the constraint and minimizing f,, the con-
strained extreme point of f can be found. To find an extreme point of £,
we use the necessary condition

GOtV =0 =t + 1A + F + 1Ay, oo
+ [yt +v§ —S1Ap. '

Since only points that satisfy the constraining relation are acceptable,
yF+yF—-5=0, 459

but this is the coefficient of Ap. The remaining two terms must add to
zero, but Ay, and Ay, are not independent—if Ay, is selected Ay, is
determined, and vice versa; however, p comes to the rescue. Since the
constraint must be satisfied, p can be any value, so we make a convenient
choice—we select p so that the coefficient of Ay, (or Ay,) is zero, and
we denote this value of p by p*. Then we have

2y¥ + p* =0. (4.5-10)

Ay, can assume arbitrary values; for each value of Ay, there is an
associated dependent value of Ay,, but this does not matter, because p
was selected to make the coefficient of Ay, equal to zero. Since df, must
be zero and Ay, is arbitrary, the coefficient of Ay, must be zero; therefore,

2% + p* = 0. 4.5-11)

1 Alternatively, we could reach the same final result by substituting y; = 5 — y, and
Ayr = Ayz into Eq. (4.5-4), setting the coefficient of Ay, to zero, and solving for y3.
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Solving (4.5-9), (4.5-10), and (4.5-11) simultaneously gives
y¥ =25, Y =25, p* = —5. 4.5-12)

The reasoning that led to Egs. (4.5-9), (4.5-10), and (4.5-11) is very
important; we shall use it again shortly. Notice, however, that the same
equations are obtained by forming f,(y,, ¥,, p) and then treating the
three variables as if they were independent.

Let us now consider the “elimination method” and the method of La-
grange multipliers as they are applied in a general problem.

The problem is to find the extreme values for a function of (n 4 m)
variables, y,, ..., Y,.,. The function that is to be extremized is given by
S Vs« + o s Varm) There are n constraints among the variables of the form

al(yli .. -:yn+m) = 0
4.5-13)
(Y15 oo o5 Vorm) = 0;

thus, only (# 4+ m) — n = m of the variables are independent. Using the
elimination method, we solve Eq. (4.5-13) for n of the variables in terms of
the remaining m variables. For example, solving for the first n variables gives

Y1 = el(ynﬂs . "yn+m)
(4.5-14)
Vo =€(Vnsts <+ s Yuim)-

Substituting these relations into f, we obtain a function of m independent
variables, f(¥ns1s -+« » Vosm)- 1O find the minimum value of this function,
we solve the equations

n+1

a;&L(yfﬂ, e YEa) =0

(4.5-15)
I (% * ) —
0y"+m(yn+h .« -syn+m) - 0
for y¥.,,...,¥¥5. and substitute these values in (4.5-14) to obtain y¥,

., y¥. The extreme value of f can then also be obtained. This procedure is
conceptually straightforward; the principal difficulty is in obtaining the
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relations (4.5-14). The solution of (4.5-15) may also be difficult, but this
problem is also present in the method of Lagrange multipliers.

Now let us consider the method of Lagrange multipliers. First, we form
the augmented function

fa(yla v '$yn+m’p1’ .. "pn) éf(yl’ . "yn+m)

4.5-16
+pl[a1(y11 ---,y..+m)] + .. +Pn[an(}’1s ""yn-l-m)]' ( )

Then

_ 9 of, of, L9
df, = EA})‘ + + dy Ayum + a;;Apx + + ap, Ap,

n+m

0fa “ e ofﬂ P
ayl Ayl + + ay’ﬂ_m Ayn+m + al Apl + + an Apn' )
(4.5-17

If the constraints are satisfied, the coefficients of Ap,,..., Ap, are zero.
We then select the n p,’s so that the coefficients of Ay, (( = 1, .. ., n) are zero.
The remaining m Ay,’s are independent, and for df, to equal zero their
coefficients must vanish. The result is that the extreme point y¥, ..., yX .
is found by solving the equations

ai(y?"---:yhm):o’ i=l,2,...,n }2n+m
g_{i(yf, e Vhm P . pn) =0, J=L2 .. .,n+m equations
(4.5-18)

We shall now conclude our consideration of the calculus problem with
another illustrative example.

Example 4.5-2 [H-1]. Find the point in three-dimensional Euclidean space
that is nearest the origin and lies on the intersection of the surfaces

= 5
Ys=wny, + 4.5-19)
yi+ya+yi=1
The function to be minimized is
S y2, ¥3) = ¥} + 33 + ¥4 (4.5-20)

The elimination method is left as an exercise for the reader. To use the
‘method involving Lagrange multipliers, first form the augmented function

Sy 1 92, 93,21, 02) =¥} + 93 + 3+ pilyiyva + 5 — ysl
+payy +y2 +ys — 11 4.5-21)
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Using the same reasoning as before, we find that the equations corre-
sponding to (4.5-18) are
Y+t —1=0
WE+5—yt=0
¥+ ¥y +p¥=0 (4.5-22)
2yf +p¥y¥+pf =0
2% —pt +p7 =0.

Solving these five equations gives

(2; _25 1)
(y;kn yz‘s y;‘) = ( or ) (4.5-23)
-2,2,1

and f,... = 9, so the distance is 3.

Constrained Minimization of Functionals

We are now ready to consider the presence of constraints in variational
problems. To simplify the variational equations, it will be assumed that the
admissible curves are smooth.

Point Constraints. Let us determine a set of necessary conditions for a func-
tion w* to be an extremal for a functional of the form

J(w) = f:’ g(w(t), (1), 1) dt; (4.5-24)

w is an (n 4+ m) x 1 vector of functions (n, m > 1) that is required to
satisfy » relationships of the form

fw(@®), ) =0, i=12,...,n (4.5-25)

which are called point constraints. Constraints of this type would be present
if, for example, the admissible trajectories were required to lie on a specified
surface in the n -+ m 4+ 1-dimensional w(f) — ¢ space. The presence of these
n constraining relations means that only m of the n + m components of w
are independent.

We have previously found that the Euler equations must be satisfied
regardless of the boundary conditions, so we will ignore, temporarily, terms
that enter only into the determination of boundary conditions.

One way to attack this problem might be to solve Egs. (4.5-25) for n
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of the components of w(¢) in terms of the remaining m components—which
can then be regarded as m independent functions—and use these equations
to eliminate the n dependent components of w(z) and w(z) from J. If this
can be done, then the equations of Sections 4.2 and 4.3 apply. Unfortunately,
the constraining equations (4.5-25) are generally nonlinear algebraic equa-
tions, which may be quite difficult to solve.

As an alternative approach we can use Lagrange multipliers. The first
step is to form the augmented functional by adjoining the constraining rela-
tions to J, which yields

1y
7w = [ {800, W), ) + pOLAW(), )]
+ BOLAME, D] + -+ + O, D]} de - (45-26)
2,
= [ {ew®. %), 0 + FOIw, O]}
Since the constraints must be satisfied for all ¢ € [¢,, ¢,], the Lagrange multi-
pliers p,, ..., p, are assumed to be functions of time. This allows us the
flexibility of multiplying the constraining relations by a different real number
for each value of ¢; the reason for desiring this flexibility will become clear
as we proceed.

Notice that if the constraints are satisfied, J, = J for any function p.
The variation of the functional J,,

81,w, 5w, m, 60) = [ {[ %5 (o), W), ) + 570 S w0, 0] | aweo)
+ [% v, w0, 0] 89) + [0, 0] 8000}
4.527)

is found in the usual manner by introducing variations in the functions w,
w, and p. df/dw denotes the n X (n + m) matrix

[9fy .. _Ofi ]
W; awn+m
% ... 9

L dw, W,

Integrating by parts the term containing dw and retaining only the terms
inside the integral, we obtain
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51,(w, &, v, 6p) = | {[%(w(t), WO, 1) -+ pr(,)[ gv_fv wio, t)]
— % o0, w0, 0| v (45:28)
+ [£7(w(2), ] 5[)(1)} d.

On an extremal, the variation must be zero; that is, 8J,(w*, p) = 0. In addi-
tion, the point constraints must also be satisfied by an extremal; therefore,

fw*@©), =0, telttl (4.5-29)

and the coefficient of dp(¢) in Eq. (4.5-28) is zero. Since the constraints are
satisfied, we can select the n Lagrange multipliers arbitrarily—let us choose
the p’s so that the coefficients of n of the components of dw(z) are zero through-
out the interval [ty, ¢,]. The remaining (n + m) — n = m components of
Jow are then independent; hence, the coefficients of these components of
ow(t) must be zero. The final result is that, in addition to Eq. (4.5-29), the
equations

92 (wi(1), W), 1) + | L), t)]’p*(t)

; (4.5-30)
_ _[ g (W (1), WH (1), t)} -0

must be satisfied.
If we define the augmented integrand function as

8w(), W), p(2), 1) & g(w(®), W(r), 1) + P (O[f(w(2), )], (4.5-31)

then Eq. (4.5-30) can be written

08 (w(2), W (1), B4(0), )
(4.5-30a)
— 2 Bewr (0, (@), B0, 0] = 0

Equations (4.5-30a) are a set of n 4 m second-order differential equations,
and the constraining relations (4.5-29) are a set of n algebraic equations.
Together, these 2n 4+ m equations constitute a set of necessary conditions
for w* to be an extremal.

The reader may have already noticed that Eqgs. (4.5-29) and (4.5-30a) are
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the same as if the results from Problem 1a had been applied to the functional
174
T ) = [ gne), W(e), BCe), 1) (4.5-32)

with the assumption that the functions w and p are independent. It should be
emphasized that, although the results are the same, the reasoning used is
quite different.

Example 4.5-3. Find necessary conditions that must be satisfied by the
curve of smallest length which lies on the sphere w?(¢) + w3(t) + t2 = R2,

for t € [t4, ¢/}, and joins the specified points wy, ¢y, and wy, ¢,.
The functional to be minimized is

Jon = 711+ w30 + Wi a, (4.5-33)

so the augmented integrand function is

&.w(t), W), p(2), 1) 4.5-34)
=[1 +wi® + wi]/2 + pO[wi() + wi(r) + 12 — R2].
Performing the operations indicated by Eq. (4.5-30a) gives
d U] -
2wE@OPp*® — Z {[1 TR + w;d(:)]l/Z} =0 (4.5-353)
4 W) _ :
OV O {[ T w;*=2(r)2+ RO /2} =0. (4.5-35b)

In addition, of course, it is necessary that the constraining relation
wk2(r) + w§2(t) + 12 = R2 (4.5-35¢)
be satisfied.

Differential Equation Constraints. Let us now find necessary conditions for
a function w* to be an extremal for a functional

Jw) = f:g(w(t), (), 1) dt. (4.5-36)

w is an (n + m) X 1 vector of functions (#, m > 1) which must satisfy the
n differential equations

S w(@®), w(), 1) = 0, i=12...,n (4.5-37)

Because of the n differential equation constraints, only m of the n + m
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components of w are independent. Constraints of this type may represent
the state equation constraints in optimal control problems where w corre-
sponds to the n -+ m vector [xiu]".

As with point constraints, it is generally not feasible to eliminate n
dependent functions and their derivatives from the functional J, so we shall
again use the method of Lagrange multipliers. The derivation proceeds along
the same lines as for problems with point constraints; that is, we first form
the augmented functional

7001 = [ {5V, W), )+ DL/ OHD), W), )]

+ D, (O fo(w(®), W(D), )] + - - -
+ O[S, W(2), 1)]} dt

= [ {g (o, #(e), 0 + POIw@, W), O]} .

(4.5-38)

Again notice that if the constraints are satisfied, J, = J for any p(¢). The
variation of the functional J,,

81,0w, 5w, m, 69) = [ {2 v, 90,
+ PO S, WD, )| | o)
+ [ oo w0, 0 (4539)
+ 10 3500, w0, 0] | 00
+ [E7Ov(e), W, 0] S0}

is found in the usual manner by introducing variations in the functions w,
w, and p. The notation df/dw means

(9 ... 94
awl wn+m
U ...
..awl awn+m__

Integrating by parts the terms containing dw and retaining only the terms
inside the integral, we obtain
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81w, 3w, p,0m) = | {[%%(w(r), W(0) 1)
+ 50 [ S (0, ¥, 1)
AT (0, W), 1) (4.5-40)
10 [ 200, 90,0]] | w0
+ [, w0, 0] 300} .

On an extremal, the variation must be zero, that is, dJ,(w*, p) = 0, and the
differential equation constraints must also be satisfied; therefore,

f(w*(2), w*(2), 1) = 0, (4.5-41)

and the coefficient of dp(z) in Eq. (4.5-40) is zero. Since the constraints are
satisfied, we can choose the n Lagrange multipliers arbitrarily—let us select
the p’s so that the coefficients of n of the components of dw(s) are zero
throughout the interval [¢,, ¢,]. The remaining (n + m) — n = m components
of dw are then independent; hence, the coefficients of these components of
ow(z) must be zero. The final result is that, in addition to Eq. (4.5-41), the
equations

9% (wr(0), WH(0), ) + [—(w*(t) (@, 0] 20

(4.5-42)
— 98w, w0, 0 + [ S0, 90, 0| 90 =
must be satisfied.
If we define the augmented integrand function as
&(w(t), w(1), p(1), 1)
4.5-43
= g(w(), W(2), 1) + pT(O[EwW(), W(D), 1)] (3349
then Eq. (4.5-42) can be written
aga * * * 6ga * * *
w0, W, 00,0 — | S0, W 01,0 = 0. | (45420)

Equations (4.5-41) and (4.5-42a) comprise a set of (2n 4 m) second-order
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differential equations. We shall see in Chapter 5 that in optimal control
problems m of these equations are algebraic, and the remaining 2 differential
equations are first order.

Equations (4.5-41) and (4.5-42a) are the same as if the results of Problem
Ia had been applied to the functional

7w ) = [ g.w(0), ¥(2), 0D, ) e (4.5-44)

with the assumption that the functions w and p are independent. Again we
emphasize that although the results are the same, the reasoning is quite
different!

Example 4.5-4. Find the equations that must be satisfied by an extremal
for the functional

T = [7 3[wie) + wion dr, (4.5-45)
where the functions w, and w, are related by
W,(l) = Wz(t). (45-46)
There is one constraint, so the function f in Eq. (4.5-41) is

Sw(@), W) = wy () — w, (), (4.5-47)

and one Lagrange multiplier p(f) is required. The function g, in Eq.
(4.5-43) is

&w(), W(t), p()) = 3wi(®) + $wi(t) + p(O)w,(t) — p(Iy (). (4.5-48)
From Eq. (4.5-42a) we have

w@) + p*() =0

(4.5-49)
wi(®) + p*@® =0,
and satisfaction of (4.5-46) requires that
wk(@) = wk(@®. (4.5-46a)

Equations (4.5-49) and (4.5-46a) are necessary conditions for w* to be
an extremal,

Example 4.5-5. Suppose that the system

X1(0) = x,() — x,(®)

(4.5-50)
x,(8) = —2x,(t) — 3x,() + u(t)
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is to be controlled to minimize the performance measure
J(x, u) = L 3[x3) + x3() + w2()] dt. (4.5-51)

Find a set of necessary conditions for optimal control.

If we define x; 2 w,, x, & w,, and u 2 w;, the problem statement
and solution, using the notation of this section, are the following.

Find the equations that must be satisfied for a function w* to be
an extremal for the functional

J(w) = f :’ W) + wi() + win)] dt, (4.5-52)

where the function w must satisfy the differential equation constraints

Wi(t) = wy(t) — wi ()

(4.5-53)
W) = 2w (1) — 3w, () + wi().

The function f is

Siw(®), W) = wa () — wi()) — wi() =0

(4.5-54)
L2 (), W(D) = —2w, (1) — 3w, (1) + wi(t) — Wwa(1) = O,
and g, is given by

£w(), W), p(t)) = $wi(r) + $wi@) + $wi()
+ 21 @O[wa () — wi () — W, ()] (4.5-55)
+ pz(t)[»~2w,(t) = 3w, () + wi() —w, ()]

From Eq. (4.5-42a), we obtain the differential equations

PO = —wi(@®) + pF®) + 2pF(®)

(4.5-56)
PO = —wi(®) — p¥(®) + 3pF(),
and the algebraic equation (since w; does not appear in g,),
wi(®) + p3@) = 0. (4.5-57)

The two additional equations that must be satisfied by an extremal are
the constraints
W) = wi(e) — w¥ ()

(4.5-58)
Wwi(D) = —2wi (@) — 3wi() + wi().

Isoperimetric Constraints. Queen Dido’s land transaction was perhaps the
original problem with an isoperimetric constraini—she attempted to find the
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curve having a fixed length which enclosed the maximum area. Today, we
say that any constraints of the form

[ Yewn), W), dt =¢, (=1,2...,7 (4.5-59)

are isoperimetric constraints. The ¢’s are specified constants. In control
problems such constraints often enter in the form of total fuel or energy
available to perform a required task.

Suppose that it is desired to find necessary conditions for w* to be an
extremal for

aw) = [ gwta), W, oy de (4.5-60)

subject to the isoperimetric constraints given in Eq. (4.5-59).
These constraints can be put into the form of differential equation con-
straints by defining the new variables

20 2 | , e(w(t), W(e), ) dt, i=1,2,...,rt  (4.561)

The required boundary conditions for these additional variables are z(¢,)
=0 and z(¢;) = c,. Differentiating Eq. (4.5-61) with respect to time gives

2(t) = e(w(®), w(2), 1), i=1,2,...,r, (4.5-62)
or, in vector notation,

() = e(w(t), w(2), 1). (4.5-62a)

Equation (4.5-62a) is a set of r differential equation constraints which we
treat, as before, by forming the augmented function

&(W(), W(t), p(2), &(t), 1) & g(w(2), W(2), 1)
+ pT(D[e(w(r), w(2), 1) — Z(1)].

Corresponding to Eq. (4.5-42a), we now have the set of n + m equations

(4.5-63)

28 (1), WHO, D0, 2900, 1) — 20| S w0, W0, O, 240, D] =,
(4.5-64)

and the set of r equations

% (w0, W0, D0 240, ) — 25| Zew ), W0, 940, 220, 0] = 0,

(4.5-65)
+ Notice that the upper limit on the integral is ¢, not 5.
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a total of (n +m -+ r) equations involving (n + m -+ r + r) functions
(w*, p*, z*). The additional r equations required are

Z*(t) = e(w*(t), w*(1), 1) (4.5-66)

whose solution must satisfy the boundary conditions z}(¢;) = ¢, i=1,..., r.
Notice that g, does not contain z(¢), so dg,/dz = 0. In addition, dg /%
= —p*(?); therefore, Eq. (4.5-65) always gives

p*(@) =0, (4.5-67)

which implies that the Lagrange multipliers are constants.

To summarize, for problems with isoperimetric constraints, the necessary
conditions for an extremal are given by Eqs. (4.5-64), (4.5-66), and (4.5-67).
The following examples illustrate the use of these equations.

Example 4.5-6. Find necessary conditions for w* to be an extremal of the
functional

o0 = [T WO + Wi + 20 @@l @568)
subject to the constraint
j ' wi(e) dt = c; (4.5-69)

c is a specified constant.
Let 2(r) 2 wi(); then

2:w(D), w(t), p(1), 2(1)) = 4wi(®) + $wi(e) + W (W, ()

+ O[O — 0] 570
From (4.5-64),
*(1) — W) =
::8 + :‘:;()r)p*(:r) — W) =0, @0
and Eq. (4.5-65) gives
prt) =0. 4.5-72)
In addition, the solution of the differential equation
M) =wiD, M) =0 (4.5-73)

must satisfy the boundary condition

™Mip) = c. @574
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In control problems, there are always state differential equation con-
straints, in addition to any isoperimetric constraints. Let us now consider
an example having both types of constraints.

Example 4.5-7. The system with state equations

£1(8) = —x1(0) + x,(0) + u()

(4.5-75)
X,(1) = —2x,(t) — 3x,(t) + u(t)
is to be controlled to minimize the performance measure
T(x, ) = j’ X3 + x40 dt. (4.5-76)
The total control energy to be expended is
|MGOLET (4.5-77)

where ¢ is a specified constant. Find a set of necessary conditions for
optimal control.

If we define x; & w,, x, A w,, and u & w;, then the problem stated
in the notation of this section is as follows.

Find necessary conditions that must be satisfied by an extremal for
the functional

J(w) = j" WA () + wi@)] dt. (4.5-78)
The constraining relations are

W) = —wi(8) + wy(t) + wi()

(4.5-79)
Wa(®) = —2w, (1) — 3w, (@) + wi(®)

and

tr
f wi(r) dt = c. (4.5-80)
to
First, we form the function

84w (1), W(1), p(t), 2(t)) = $wi(®) + wi(®)
+P1(f)[—wx(1) + wy(t) + wi(®) — Wl(f)]
+ P2 —2w1 (1) — 3w, (1) + wa(e) — W, ()]
+ ps(O[wi() — 2()].

The required equations are
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bE® = pF(® + 2p¥(@) — wi@®)

PE@) = —p¥(@) + 3pf() — wi(®

P¥® + 3O + 2wi(OpF®) =0

) =0 (4.5-81)
WO = —wi©) + wi@) + wi@)

WEW) = —2wX() — 3wk + wi(@)

2¥(f) = wii(D), z¥(tp) = 0.

The boundary condition z*(t;) = ¢ must also be satisfied.

To recapitulate, the important result of this section is that a necessary
condition for problems with differential equation constraints, or point con-
straints, is

g_f;.’vz(w*(t), WX(D), p*(1), 1)

(4.5-42a)
_ %[gi“’:(w*(t), Ww¥(1), p*(0), t)J —~0,
where
£uW(2), W(1), B(1), 1) 2 g(w(e), W(), 1) (4.5-43)

+ p(O[f(w(), W(0), 1)].

This means that to determine the necessary conditions for an extremal we
simply form the function g, and write the Euler equations as if there were
no constraints among the functions w. Naturally, the constraining relations

f(w*(), W*(@), 1) =0 1(4.5-41)

must also be satisfied.

4.6 SUMMARY

In this chapter, some basic ideas of the calculus of variations have been
introduced. The analogy between familiar results of the calculus and corre-
sponding results in the calculus of variations has been established and

t If w(r) does not appear explicitly in f, then we have point constraints.
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exploited. First, some basic definitions were stated, and used to prove the
fundamental theorem of the calculus of variations. The fundamental theorem
was then applied to determine necessary conditions to be satisfied by an ex-
tremal. Initially, the problems considered were assumed to have trajectories
with fixed end points; subsequently, problems with free end points were
considered. We found that regardless of the boundary conditions, the funda-
mental theorem yields a set of differential equations (the Euler equations)
that are the same for a specified functional. Furthermore, we observed that
the Euler equations are generally nonlinear differential equations with split
boundary values; these two characteristics combine to make the solution of
optimal control problems a challenging task.

In control problems the system trajectory is determined by the applied
control—we say that the optimization problem is constrained by the dynamics
of the process. In the concluding section of this chapter we considered con-
strained problems and introduced the method of Lagrange multipliers.

With this background material, we are at last ready to tackle “the optimal
control problem.”
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PROBLEMS

4-1. fis a differentiable function of n variables defined on the domain 2. If q*
is an interior point of 2 and f(q*) is a relative extremum, prove that the
differential of f must be zero at the point g*.
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4-2. Prove the fundamental lemma; that is, show that if A(r) is continuous for
t € [to, t7], and if

f :’ h() Ox(6) dt = 0

for every function dx(¢) that is continuous in the interval [tq,t,] with

Ox(to) = dx(ts) = 0, then h(r) must be identically zero in the interval [to, 7/].
4-3, Using the definition, find the differentials of the following functions:

@) f() =43 + 5/t, t > 0.

(b) f(g1,92) = 5S¢}, + 6419, + 243

©) f@ =gt + 4% + 5019:95 + 2q,9; + 3¢s.

Compare your answers with the results obtained by using formal procedures

for determining the differential.

4-4. Determine the variations of the functionals:

@ J(x) = f : [x3(r) — x2(O)x(D)] dt.

®) 70 = [ [0 + 2Ox0) + O + 2:0OnR)] d.
© I = | T e an.

Assume that the end points are specified.

4-5

Consider Problem 1 of Section 4.2 and let # be a specified continuously
differentiable function that is arbitrary in the interval [t,, ;] except at the
end points, where #7(t,) = #(t;) = 0. If € is an arbitrary real parameter,
then x* + €n represents a family of curves. Evaluating the functional

I = f :’ gx(t), %(0), 1) dt

on the family x* 4 €n makes J a function of €, and if x* is an extremal this
function must have a relative extremum at the point € = 0.

Show that the Euler equation (4.2-10) is obtained from the necessary
condition

aJ(x* + €n)
T de

= 0.

e=0

4-6. Euler derived necessary conditions to be satisfied by an extremal using finite
differences. The first step in the finite-difference approach to Problem 1 of

Section 4.2 is to approximate the functional

I = [ g, ), 1y dt

by the summation

L="3 gk, 50, B A,
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4-9.

4-10.

4-11.
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where x(k) & x(t, + k At). The derivative is approximated by

2y ~ X E 1A)t— x(k)

By making these approximations, the problem becomes one of determining
the N — 1 independent parameters x(1), ..., x(N — 1) [x(0) and x(N) are
fixed] that minimize (or maximize) J,. Show that by using the necessary
conditions

0y _ _
Gx(k)_o’ k=1 ...,N—1,

and by letting N — oo, the Euler equation (4.2-10) is obtained.

. Find the extrema for the functions:

(a) f(r) = 0.333¢3 + 1.5¢2 + 2.0t + 5.
(b) f(t) =te~%, t >0.
© f(@ =4q} +24% + 99, —q, + q:19, + 22.

. Find the extremals for the following functionals:

@ J0) = [ [¥20) + 2] dr; x©) =0, (1) = 1.
®) J6) = L [0 + 240x0) + £30)] de; x(0) = 1, x2) = 3.
© 00 = [ 1510 + 50 + 2, @x@) d; 7O =0 @D =1

Find the curve x* that minimizes the functional
6 = [ 1820 + 35030 + 262(0) + 4x(®)]

and passes through the points x(0) = 1, x(1) = 4.

Find extremals for the functionals:

@ I = | : [x2(r) + #2()] dt; x(0) = 1, x(1) free.

(b) J(x) = f : [322(1) + x()X(t) + %) + x(D)] dt; x(0) = 4, x(1) free.
w2 . 0) =0, x,(x/2) free,

© 769 = [ [0 + 30 + 210m0) dr; J10 ~ 0 XD e

Consider the functional

J() = f::g(x(x), i@, ..., 20, t) .

to and ¢, are specified, and 2r boundary conditions (x(¢,), x(¢,) and the first
(r — 1) derivatives of x at ¢, and ¢/) are given.
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Show that the Euler equation is

kgo (—1)* P I:dx(") ( @), . drxt*'(t)’ )] 0,

where x®) has been used to denote d¥x(¢)/dt*.

4-12. Use the Euler equation from Problem 4-11 to find extremals for the func-
tionals:

@ I = [ [x30) + s T Z 53D~
® 76 = [7 (20 + 20 +[50) + 30P}dr; Tl FO R

4-13. Determine an extremal for the functional

1@ = [ TFEG a,

which has x(0) = 2 and terminates on the curve 8(t) = —4¢ + 5.
4-14. Find the extremal curves for the functional

=" [V%@] dar.

x(0) = 0, and x(t,) must lie on the line () = ¢ — 5.
4-15. Find a curve that is an extremal for the functional

J(x) = fo T F 220 dr.

x(0) = 5, and the end points must lie on the circle x2(¢) + (r — 5)> — 4 = 0.
Verify your solution geometrically.

Hint: This is an end point constraint of the form m(x(¢t/), ts) = 0. Draw a
picture to determine the relationship between dx, and dt;.

4-16. Repeat Problem 4-14 with x(0) =0 and x(t;) lying on the circle
@t —92 +x2(r)=09.

Determine the equations that would have to be solved to find the constants
of integration for the functional in Problem 4-8(c) if the boundary conditions
are

(@) x;(0) = 0, x,(0) = 0, 1, is free, and x(t,) must lie on the curve

0() — [51+ 3:|_

3

4-17

(b) x,(0) =0, x,(0) =0, t, is free, and x(t;) must lie on the surface
x,(2) + 3x,(t) + 5t = 15.
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4-18.

4-19.

4-20.

4-21.

4-22.

4-23.

4-24.
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Find the shortest piecewise-smooth curve joining the points x(~2) = 0 and
x(1) = 0 that intersects the curve x(t) = t2 + 2 at one point.

Show that extremals for the functional
tr
J(x) = f [a%2() + bx(e)i(t) + cx()] dt
to

can have no corners. a, b, and ¢ are constants, and it is given that @ = 0,
x(to) = xo, and x(t;) = x;.

Determine the extremals for the functional
4
I = 1[0 — 1P[x0) + 1] dt

which have only one corner. The boundary conditions are x(0) = 0, x(4) = 2.
Find a point on the curve

v, =y} —45

that minimizes the function f(y,, y,) = y} + »3.

Using calculus, find the point in three-dimensional Euclidean space that
satisfies the constraints

Y14y, +ys=5
Vi+yit+y;=9

and is nearest the origin.

In Section 4.5, functions constrained by differential equations were con-
sidered. In deriving necessary conditions for an extremal, the terms that
determine boundary values at ¢ = ¢, were ignored. Suppose that 7, and
w(;) are free; what are the terms that would appear in addition to the
integral in Eq. (4.5-40)?

Determine necessary conditions (excluding boundary conditions) that must
be satisfied by extremals for the functionals:

@) ) = [ W0 + wi@wa) + whO) + wi@)] dr,
where the constraining equations
wi(#) = w,(0)
wat) = —wy(0) + [1 — wi(O]w2() + w3 ()
must be satisfied.
®Jw = "2+ wiOla,  A>0,
and the differential equation constraints
wi() = wy(r)

Wa(t) = wi(t)
must be satisfied.
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© Jw) = f "I+ wiold, >0,
and the differential equations
Wi () = w,()

W) = —wy (@) | wa ()] + wy(1)
must be satisfied.

4-25. Find the extremals for the functional
1
J(x) = f O + elar
which satisfy the boundary conditions x(0) = 0, x(1) = 0, and the constraint
J‘: X3t dt = 2.

4-26. A particle of unit mass moves on the surface f(w,(t), w,(t), w3(z)) = 0 from
the point (w,,, w;,, w3,) to the point (w,,, w,,, w;,) in fixed time 7. Show
that if the particle moves so that the integral of the kinetic energy is mini-
mized, then the motion satisfies the equations

iy s
9 9 9f
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The Variational Approach to
Optimal Control Problems

In this chapter we shall apply variational methods to optimal control prob-
lems. We shall first derive necessary conditions for optimal control
assuming that the admissible controls are not bounded. These necessary
conditions are then employed to find the optimal control law for the impor-
tant linear regulator problem. Next, Pontryagin's minimum principie is
introduced heuristically as a generalization of the fundamental theorem of
the calculus of variations, and problems with bounded control and state
variables are discussed. The three concluding sections of the chapter are
devoted to time-optimal problems, minimum control-effort systems, and
problems involving singular intervals.

5.1 NECESSARY CONDITIONS FOR
OPTIMAL CONTROL

Let us now employ the techniques introduced in Chapter 4 to determine
necessary conditions for optimal control. As stated in Chapter 1, the problem
is to find an admissible control u* that causes the system

x(r) = a(x(®), u(z), 1) (5.1-1)

to follow an admissible trajectory x* that minimizes the performance
measure

184
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I = hex(ep), 1) + [ gx(e), w(e), 1) dt (5.1:2)

We shall initially assume that the admissible state and control regions are
not bounded, and that the initial conditions x(¢,) = X, and the initial time
t, are specified. As usual, x is the n X 1 state vector and uis the m X 1 vector
of control inputs.

In the terminology of Chapter 4, we have a problem involving n 4+ m
functions which must satisfy the » differential equation constraints (5.1-1).
The m control inputs are the independent functions.

The only difference between Eq. (5.1-2) and the functionals considered
in Chapter 4 is the term involving the final states and final time. However,
assuming that 4 is a differentiable function, we can write

W), 1) = [ Thx(o), O] de + hx(e) 1), (513)
so that the performance measure can be expressed as
20) = [ {g0xe), w), 1 + 20 [Hx), O]}t + Bxce), 1), (51:4)

Since x(7,) and ¢, are fixed, the minimization does not affect the A(x(z,), £,)
term, so we need consider only the functional

1w = [ {gexo, w, ) + 5 o, 0]} ar (5.1-5)
Using the chain rule of differentiation, we find that this becomes
Ju) = f {g(x(t), u(e), 1) + [g—f‘( (o), t)]T)'((t) + g—f(x(t), t)} dr. (5.1-6)

To include the differential equation constraints, we form the augmented
functional
tr T
| a0 = [ oo wo, o + [Fsw, 0] 30 + Fex, o
+ PR, ), ) — X1} di (5.17)

by introducing the Lagrange multipliers p,(?), . . ., p.(¢). Let us define

1 In general, the functional J depends on x(#o), 7o, X, u, the target set .S, and 7,. However,
here it is assumed that x(¢y) and ¢, are specified; hence, x is determined by u and we write
J(u)—the dependence of J on S and 7, will not be explicitly indicated.
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£06(0), X(0), 0(2), DO, 1) & B0, 0D, D) + PO, ut), ) — %(0)]
+ [P, 0] 10 + Gexn

so that

s
T = [ {80, %(0), uCe), pC0), 03} (5.1-8)
We shall assume that the end points at ¢ = ¢, can be specified or free. To
determine the variation of J,, we introduce the variations dx, 0%, du, dp, and

0t;. From Problem 4a in the preceding chapter this gives {see Eq. (4.3-16)],
on an extremal,

83,(0%) = 0 = | %Bn(er(e,), X720, wep), 0¥Cep) 1) 6%,
+ [xr e, 52, w3, 0¥, 1)
— [Setxr ), 270, W), 10, 1] K7 o1,
+ [ [, 20, v v, 0] (519)
— & [ Feeer@, x40, w0, 2, 0] ] 8x00)
+ [%‘;—“(x*(t), 1), w(0), (), t)]r du(r)
+ [ B0, 520, w0, 020, 0 om0} .
Notice that the above result is obtained because (1) and p(r) do ot appear
in g,

Next, let us consider only those terms inside the integral which involve
the function 4; these terms contain

T T
[, o] 20 + G, 0] - 4 {5 [ oo, o] 20)]}-
(5.1-10)
Writing out the indicated partial derivatives gives

[, o]0 + [ 20, 0] — & [P, 0] 611

or, if we apply the chain rule to the last term,
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|G, 0 i) + [0, 0] - [ J 60, 0] %0
[ gxgt(x*(t), } (5.1-12)

If it is assumed that the second partial derivatives are continuous, the order
of differentiation can be interchanged, and these terms add to zero. In the
integral term we have, then,

[ {[[ S0 o, o] + 2 [ FEeer, w0
-2 [__p*r(t)]] ox(t) + [[%(x*(’): u (0), t)}
1 () ]:%(x*(t), u*(2), t)ﬂ ou(®)+ [[a(x*(t), uk(s), ,)_,-(*(,)]T] (51,(,)} dr.

(5.1-13)

This integral must vanish on an extremal regardless of the boundary con-
ditions. We first observe that the constraints

XX(1) = a(x*(2), u*(r), 1) (5.1-14a)

must be satisfied by an extremal so that the coefficient of dp(¢) is zero. The
Lagrange multipliers are arbitrary, so let us select them to make the coeffi-
cient of dx(¢) equal to zero, that is,

k() — 98 % * - 0g (yx *
P = — | &0, w0, 0| PHO) — G2 (FO), wr (), 1) (5.1-14b)
We shall henceforth call (5.1-14b) the costate equations and p(¢) the costate.

The remaining variation du(?) is independent, so its coefficient must be
zero; thus,

0— "g(x*(z) w0), 1) + [ (), wH (D), t)} PQ).  (5.1-140)

Equations (5.1-14) are important equations; we shall be using them through-
out the remainder of this chapter. We shall find that even when the admis-
sible controls are bounded, only Eq. (5.1-14c) is modified.

There are still the terms outside the integral to deal with; since the varia-
tion must be zero, we have

G20 19— 0| 0%, + [865 0, ) 1) + e 1)

+ p¥T() [aGA(E ), W), z,)]] 5t, = 0. (5.1-15)
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In writing (5.1-15), we have used the fact that x*(¢,) = a(x*(¢;), u*(¢;), ).
Equation (5.1-15) admits a variety of situations, which we shall discuss
shortly.

Equations (5.1-14) are the necessary conditions we set out to determine.
Notice that these necessary conditions consist of a set of 2n, first-order
differential equations—the state and costate equations (5.1-14a) and (5.1~
14b)—and a set of m algebraic relations—(5.1-14c)—which must be satisfied
throughout the interval [#,, ¢,]. The solution of the state and costate equations
will contain 2n constants of integration. To evaluate these constants we use
the n equations x*(¢,) = X, and an additional set of n or (n + 1) relationships
—depending on whether or not ¢, is specified—from Eq. (5.1-15). Notice
that, as expected, we are again confronted by a two-point boundary-value
problem.

In the following we shall find it convenient to use the function J#, called
the Hamiltonian, defined as

Hx(1), u(t), p(r), 1) & g(x(t), u(®), H) + pT(O[ax(?), u(®), H]. (5.1-16)

Using this notation, we can write the necessary conditions (5.1-14) through
(5.1-15) as follows:

x*(1) = ‘%(X*(t), u*(1), p*(t), 1) (5.1-17a)
) = — 92 (o), w0, 240, 1 f°;a[1,'o g | G
0 = 9 ex(), wh(e), 140, 1) (5.1-17¢)
and
| G260, 1)—9%) | Sx 4 [ A ), W), 9
ax X () 1)—P*(tg) | 0%, | (), WXt ), PH(2)s 1))
(5.1-18)

+ ‘;—};(x*(t,), t,):‘ ot, = 0.

Let us now consider the boundary conditions that may occur.
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Boundary Conditions

In a particular problem either g or h may be missing; in this case, we
simply strike out the terms involving the missing function. To determine the
boundary conditions is a matter of making the appropriate substitutions
in Eq. (5.1-18). In all cases it will be assumed that we have the n equations
x*(t,) = X,.

Problems with Fixed Final Time. If the final time ¢, is specified, x(¢,) may be
specified, free, or required to lie on some surface in the state space.

CASE 1. Final state specified. Since x(t;) and ¢, are specified, we substitute
0x, = 0 and J¢; = 0 in (5.1-18). The required n equations are

x*(t;) = x,. (5.1-19)
CASE Il. Final state free. We substitute d¢, =0 in Eq. (5.1-18); since

0x, is arbitrary, the n equations

kvt ) — pe) = ot (5.1-20)
must be satisfied.

CASE 1ll. Final state lying on the surface defined by m(x(t)) = 0. Since
this is a new situation, let us consider an introductory example. Suppose
that the final state of a second-order system is required to lie on the circle

mx(t)) = [%,(t) — 3] + [x,(8) — 4P — 4 =0 (5.1-21)

shown in Fig. 5-1. Notice that admissible changes in x(¢,) are (to first-order)
tangent to the circle at the point (x*(z), ;). The tangent line is normal to
the gradient vector

dm _ [2[x%(,) — 3]
X)) = [2[)6? ) — 4]} (5.1-22)
at the point (x*(t;), ¢;). Thus, dx(¢,) must be normal to the gradient (5.1-22),
so that
[‘;—’:(x*(t,))]r 0x(t,) = 2[x%(t,) — 3] 0x,(t,) + 2[x§(t,) — 4] Ox,(¢;) = 0.
(5.1-:23)

t Since the final time is fixed, 4 will not depend on #;.
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x,(t)
)

Xg

Sxf = SX(I/)

xp ()

Figure 5-1 An extremal and a comparison curve that terminate on
the curve [x((f) — 312 + [x2(f) — 4]2 — 4 = 0 at the specified final
time, 75

Solving for dx,(t,) gives

—[x*@¢,) — 3
Ox,(t,) = ——E,{EZ—*;—:E% 6x,(,)s (5.1-24)

which, when substituted in Eq. (5.1-18), gives

1
[%’:(X*(t,)) — p*(t,)} —[x%(¢t,) —3]| =0 (5.1-25)
[x3¢,) — 4]

since d¢; = 0 and dx,(¢) is arbitrary. The second required equation at the
final time is

mx*(t ) = [x5(t) — 3] + [xi¢t) — 4P —4=0.  (5.1:26)

In the general situation there are n state variables and 1 <k <n-—1
relationships that the states must satisfy at # = #,. In this case we write
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m, (x(1))
m(x(¢)) = :
m(x(9)

I
=

(5.1-27)

and each component of m represents a hypersurface in the n-dimensional
state space. Thus, the final state lies on the intersection of these k hypersur-
faces, and Ox(f;) is tangent to each of the hypersurfaces at the point
(x*(t,), t;). This means that dx(t;) is normal to each of the gradient vectors

I, vt I, (5.1-28)

which are assumed to be linearly independent. From Eq. (5.1-18) we have,
since d¢, = 0,

d

[‘7’—’:()(*(:,)) ~ p*(t,)]T Sx(t,) 2 v 8x(1,) = 0. (5.1-29)

It can be shown that this equation is satisfied if and only if the vector vis a
linear combination of the gradient vectors in Eq. (5.1-28), that is,

T e) — 1) = 4, [FReee| + -+ di[Freer)]-
(5.1-30)

To determine the 2n constants of integration in the solution of the state-
costate equations, and d,, ..., d;, we have the n equations x*(¢,) = x,,
the n equations (5.1-30), and the k equations

m(x*(t;)) = 0. (5.1-31)

Let us show that Eqgs. (5.1-30) and (5.1-31) lead to the results obtained
in our introductory example. The constraining relation is

mx(e)) = [x,(6) — 3] + [x,06) — 4] — 4 = 0. (5.1-21)

From Eq. (5.1-30) we obtain the two equations

OBy wy e — g] 26T =3 )
X)) —p (")_d[z[x;*(z,)_ 4]] (5.1-32)
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and (5.1-31) gives
m(x*(t,)) = [x¥(ty) — 3]* + [x5(t) —4]* —4=0. (5.1-33)

By solving the second of Eqs. (5.1-32) for 4 and substituting this into the
first equation of (5.1-32), Eq. (5.1-25) is obtained.

Problems with Free Final Time. If the final time is free, there are several
situations that may occur.

CASE 1. Final state fixed. The appropriate substitution in Eq. (5.1-18) is
0x, = 0. Jt, is arbitrary, so the (2n + 1)st relationship is

HEE), W) ), 1)+ T, 1) =0, (5.134)

CASE II. Final state free. 6x, and §t, are arbitrary and independent;
therefore, their coefficients must be zero; that is,

p*(t;) = g-’—}:(x*(t,), ty) (n equations) (5.1-35)

HOHE), W), ) 1) + PR, 1) =0 (1 equation),

(5.1-36)

Notice thatif 4 = 0
pX(t;) =0 (5.1-37)
H(X(t,), W¥(t,), p*(t)), ;) = O. (5.1-38)

CASE TI1. x(t,) lies on the moving point 6(t). Here dx, and ¢, are related by
ox, = [‘?11’?01‘)} oty
making this substitution in Eq. (5.1-18) yields the equation
x*(t;), w¥(¢;), p*(2p), 1) + gt—(x (t5), t7) + (9_x(x (o), 1) — p*(ty)
do
X [‘—1;(:,)} —o. (5.1-39)

This gives one equation; the remaining n required relationships are

X¥(1,) = 6().
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CASE 1V. Final state lying on the surface defined by m(x(t)) = 0. As an
example of this type of end point constraint, suppose that the final state is
required to lie on the curve

mx(D) = [x,(£) — 3] + [x,() — 4> — 4 =0. (5.1-40)

Since the final time is free, the admissible end points lie on the cylindrical
surface shown in Fig. 5-2. Notice that

1. To first-order, the change in x(f,) must be in the plane tangent to the
cylindrical surface at the point (x*(¢;), ¢,).
2. The change in x(¢;) is independent of d¢,.

xz(f)

x*,)
'
oty

> !

Xl(f)

Figure 5-2 An extremal and a comparison curve that terminate on
the surface [x;(¢) — 312 + [x2(1) — 4]2 — 4 =0

Since dx, is independent of dt,, the coefficient of d¢, must be zero, and
a
At ), W), DR, 1) + P, 1) = . (5.1-41)

The plane that is tangent to the cylinder at the point (x*(¢,), ¢,) is described
by its normal vector or gradient; that is, every vector in the plane is normal
to the vector

Om v v _ [2xEt) — 3]
X)) = [Z[xf(r; ) 4]} (5.1-42)
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This means that
[‘i”(x*(t ))]Trsx = 2[x¥(t,) — 3] 6y, + 2[xk(t,) — 4] x5, = O
ox X Uy s = 4xi(ty i+ 2[x%(t;) — 4] 0x,, = 0. (5.1-43)

Solving for dx,, gives

—[x¥(t,) — 3]
[xf(ff) —4]

Substituting this for dx,, in Eq. (5.1-18) gives

0xy, = x4, (5.1-44)

1
(G2t 19 — %0 | | ety — 3] |62, = 0. (5.1:45)
[x3(,) — 4]

Since dx,, is arbitrary, its coefficient must be zero. Equations (5.1-41) and
(5.1-45) give two relationships; the third is the constraint

mx*(e,)) = [x5(t,) — 3 + [x5(t) — 4P —4 =0.  (5.1-46)

In the general situation we have n state variables, and there may be
1 <k <n—1 relationships that the states are required to satisfy at the
terminal time. In this case we write

m, (x(5))

i
)

m(x(t)) = (5.1-47)

m(x(1))

and each component of m describes a hypersurface in the n#-dimensional
state space. This means that the final state lies on the intersection of the
hypersurfaces defined by m, and that dx; is (to first order) tangent to each
of the hypersurfaces at the point (x*(¢,), t;). Thus, dx, is normal to each
of the gradient vectors

O, (e, - T, (5.1-48)

which we assume to be linearly independent. It is left as an exercise for the
reader to show that the reasoning used in Case III with fixed final time also
applies in the present situation and leads to the (2n + k - 1) equations
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X*(to) = X,
Zhe 1) — () = dy [ SO )| + o+ T,
m(x*(z;)) =0
A, W), B, 1) + (), 1) = 0 (5.1-49)
involving the 2n constants of integration, the variables d,, ..., d;, and ¢,.

It is also easily shown that Eqgs. (5.1-49) give Egs. (5.1-41), (5.1-45), and
(5.1-46) in the preceding example.

CASE V. Final state lying on the moving surface defined by m(x(¢), t) = 0.
Suppose that the final state must lie on the surface

mx(t), 1) = [%,() — 3P +[x,() —4— 12 —4=0  (5.1-50)

shown in Fig. 5-3. Notice that d¢, does influence the admissible values of
0x,; that is, to remain on the surface m(x(t), r) = 0 the value of dx, depends
on J¢;. The vector with components dx,,, dx,,, 0, must be contained in a
plane tangent to the surface at the point (x*(¢/), ¢,). This means that the
normal to this tangent plane is the vector

x2(8)

ﬁ}

X X*(tf)

8Xf

x(8)

Figure 5-3 An extremal and a comparison curve that terminate on
the surface [x;(t) — 312 + [x2(t) —4 — ]2 —4=0
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dm
97 (ke 1)
G M), 1)

g—x’?(x*(tf), )| Al ————— (5.1-51)
2 Im, 4

om W(x @) ty)

W(X*(tf)$ ty)

in the three-dimensional space. Thus, admissible variations must be normal
to the vector (5.1-51), so

l:g“z?;(x*(tf), !f):l ox,, + {g%(x*(t,), t,)] O0x,, + [QL:'(X*(Q), t’):l 5t, = 0.
(5.1-52)

For the surface specified we have

2[x¥(t;) — 3] 0xy, + 2xi(t;) — 4 — t;]6x,, — 2[x¥(t;) — 4 —t,] 61, = 0.
(5.1-53)

Solving for dt, gives

[xt@) — 3]

5’f = [—xm Jxl, + 6x2,. (5.1"54)

Substituting in Eq. (5.1-18) and collecting terms, we obtain
dh * * H(x* * *
a}“’(x () ty) — i) + (x (tf)’ u*(t,), p*(¢,), tf)

+ %I(X*(tf)’ ’f)} [%3—”]] 5)‘1/

Bt 1) — PHE) + A W) 20, 1)
+ ‘;—f(x*(t,), z,)] 0x,, = 0. (5.1-55)

Since there is one constraint involving the three variables (dx,,, 0x,,, dt,),
0x,, and dx,, can be varied independently; therefore, the coefficients of
0x,, and dx,, must be zero. This gives two equations; the third equation is

mx*(1,), t;) = 0. (5.1-56)

In general, we may have 1 <{ k < » relationships
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m, (x(?), ¥)

m(x(6), 1) = | - =0, (5.1-57)
m,(x(2), t)

which must be satisfied by the (n + 1) variables x(z,) and ?,. Reasoning as

in the situation where m is not dependent on time, we deduce that the admis-
sible values of the (n + 1) vector

are normal to each of the gradient vectors

W y] [ 1)
______ e, (5.1-58)
0%, (x*(1,), 1) I (1), 1)

which are assumed to be linearly independent. Writing Eq. (5.1-18) as

Ok x * 3
&(X (7). t;) — P*(p) ox, X,
_________________ —_—— = 0 é vT ———
), W) W) 1) + P e || o 5t
(5.1-59)

and again using the result that v must be a linear combination of the gradient
vectors in (5.1-58), we obtain

I 1), 1) W oe¥(1,), 1)

D81 (¥t 1) e (1), 1)
or

BH) 1) — 2 = 4, [ G e 1)

R [%ﬂx’s(x*(tf), tf)]
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and
FHX*(t ), wi(ty), P*(ty), ty) + %’?(x*(tf)’ ty) =d, [%"#(x*(t,), tf):l
a1 G

Equations (5.1-61), the k equations
m(x*(t,), t;) = 0, (5.1-62)

and the n equations x*(#,) = x, comprise a set of (2n 4 k 4 1) equations
in the 2n constants of integration, the variables d,, d, ..., d;, and #,. It is
left as an exercise for the reader to verify that (5.1-62) and (5.1-61) yield
Eqgs. (5.1-55) and (5.1-56).

The boundary conditions which we have discussed are summarized in
Table 5-1. Of course, mixed situations can arise, but these can be handled
by returning to Eq. (5.1-18) and applying the ideas introduced in the preced-
ing discussion.

Although the boundary condition relationships may look foreboding,
setting up the equations is not difficult; obtaining solutions is another matter.
This should not surprise us, however, for we already suspect that numerical
techniques are required to solve most problems of practical interest. Let us
now illustrate the determination of the boundary-condition equations by
considering several examples.

Example 5.1-1. The system

x1(1) = x,(1)

5.1-63
x(8) = —x(0) + u(®) ( )

is to be controlled so that its control effort is conserved; that is, the
performance measure

16 = [ ey dr (5.1-64)
to
is to be minimized. The admissible states and controls are not bounded.

Find necessary conditions that must be satisfied for optimal control.
The first step is to form the Hamiltonian

Hx(1), ut), p(1)) = 3uP(t) + p1(Ox2(t) — p2)x2(t) + p2(Du(e). (5.1-65)

From Egs. (5.1-17b) and (5.1-17¢) necessary conditions for optimality are
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9

) = — F 0
o (5.1-66)
pr) = — o —p¥®) + p¥(@),
and
0= ‘Z—f = u(0) + prQ). (5.1-67)

If Eq. (5.1-67) is solved for #*(¢) and substituted into the state equations
(5.1-63), we have

() = x5

5.1-68
() = — x§®) — pfO. ¢ )

Equations (5.1-68) and (5.1-66)—the state and costate equations—are a
set of 2 linear first-order, homogeneous, constant-coefficient differential
equations. Solving these equations gives

¥ =cy + e[l — €1+ cs[—t — € + f€)
+ell — €t —fel
x5() = €7 + c3[—1 + 3¢ + €] + cul3€™ — 361 (5.1-69)
p¥(@®) = c;
PE(t) = c;3[1 — €] + cu€.

Now let us consider several possible sets of boundary conditions.

a. Suppose x(0) =0 and x(2) =[5 2J. From x(0) =0 we obtain
¢; = ¢; = 0; the remaining two equations to be solved are

5= esl—2 — 4672 + 4€2] + el — je — j€7]

(5.1-70)
2 = e3[—1 + J€7% + 3€7] + cyl3€72 — 3€7).
Solving these linear algebraic equations gives ¢; = —7.289 and
¢, = —6.103, so the optimal trajectory is
x¥(1) = 7.289t — 6.103 + 6.696¢~* — 0.593¢*
(5.1-71)

x¥(r) = 7.289 — 6.696¢~* — 0.593¢.

b. Let x(0) = 0 and x(2) be unspecified; consider the performance measure

J@) = 3x:2) — S| + xa(® — 22 + 4 f : w@ydt.  (G.1-72)
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The modified performance measure affects only the boundary condi-
tions at ¢ == 2, From entry 2 of Table 5-1 we have

P2 ==x¥(2) — 5
PFQ) = x$(@2) — 2. (5.1-73)
¢, and ¢, are again zero because x*(0) = 0. Putting ¢ = 2 in Eq.

(5.1-69) and substituting in (5.1-73), we obtain the linear algebraic
equations

[0.627 ~2.762} [03}2[5]. (5.1-74)
9.151 —11.016] L4 2

Solving these equations, we find that c¢; = —2.697, ¢, = —2.422;
hence,

x¥(t) = 2.697t — 2.422 + 2.5606~* — 0.137¢*

(5.1-75)
x¥(1) = 2.697 — 2.560¢~* — 0.137¢.

¢. Next, suppose that the system is to be transferred from x(0) = 0 to
the line

x1(t) + Sx,(1) = 15 (5.1-76)

while the original performance measure (5.1-64) is minimized. As
before, the solution of the state and costate equations is given by
Eq. (5.1-69), and ¢, == ¢, = 0. The boundary conditions at t =2
are, from entry 3 of Table 5-1,

x¥(2) + 5x%(2) = 15
—p¥Q2) = d (5.177)
—p¥(2) = 5d.

Eliminating d and substituting ¢t = 2 in (5.1-69), we obtain the equations
{15.437 —20.897:} !:c;} _ [15} (5.1-78)
11.389  —7.389] Lc4 0
which have the solution c¢; = —0.894, ¢, = —1.379. The optimal
trajectory is then

x¥(t) = 0.894¢ — 1.379 + 1.136€~* +- 0.242¢’

5.1-79
x¥(1) = 0.894 — 1.1366~* + 0.242¢". ( )
Example 5.1-2. The space vehicle shown in Fig. 5-4 is in the gravity field
of the moon. Assume that the motion is planar, that aerodynamic forces
are negligible, and that the thrust magnitude T is constant. The control
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Reference axis  Space vehicle

4
!
!
I
|

q

Figure 5-4 A space vehicle in the gravity field of the moon

variable is the thrust direction B(r), which is measured from the local
horizontal. To simplify the state equations, we shall approximate the
vehicle as a particle of mass M. The gravitational force exerted on
the vehicle is F, (1) = MgoR2[r¥(t); g, is the gravitational constant at the
surface of the moon, R is the radius of the moon, and r is the distance
of the spacecraft from the center of the moon. The instantaneous velocity
of the vehicle is the vector v, and & is the angular displacement from the
reference axis. Selecting x; & r, x, & 0, x; 2 7, and x, & rd as the
states of the system, letting u 2 f#, and neglecting the change in mass
resulting from fuel consumption, we find that the state equations are

%1(1) = x3(t)

X () = ?:—8

230 = ’-;3% -£ gg; + [ ] sin utt) (5.1-80)

X4(0) = x’g)?t;(t) o+ [ } cos u(t).

Notice that these differential equations are nonlinear in both the states
and the control variable. Let us consider several possible missiohs for
the space vehicle.

Mission a. Suppose that the spacecraft is to be launched from the point g
on the reference axis at ¢ = 0 into a circular orbit of altitude D, as shown in
Fig. 5-5(a), in minimum time. &(¢,) is unspecified, and the vehicle starts from
rest; thus, the initial conditions are x(0) =[R 0 0 O]

From the performance measure

Iy = | 0 dt (5.1:81)
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and the state equations, the Hamiltonian is

G, w(D), B0 = 1+ py(D)x,(0) + 220%D

Cox, ()
+p0[50 ~ S + o) o u(t)]T (5.1-82)
O[] w0

The costate equations are, from (5.1-17b),

) = — 9 _ pEOXI®) | p,;(,)[xfz(t) _ 2goR2] pEOxX3(Ox3(1)

T 0x, T X P xP() xF2(1)
10— — % =

s 2 (5.1-83)
PO = =52 — —pr(n + EEOHQ)
sk — 9 pE() _ 2p¥(0)xi(t) | pE)xi()
P =—50 = ~50 x0T 0
The state equations

X*(1) = a(x*(2), w* (1)) (5.1-84)

must be satisfied by an optimal trajectory, and Eq. (5.1-17c) gives the alge-
braic relationship

0=%%_ [ ][p (1) cos u*(t) — pi() sinu* ()] (5.1-85)
Solving Eq. (5.1-85) for u*(z) gives

w¥(1) = tan~ 15}8 (5.1-86)

or, equivalently,
- pi(®) 1-87a
sin u*(t) = ~TFD + PO (. )

N Pa(t) . -
cos u*(t) = —_—_p;"z(t) T 770 (5.1-87b)

1 Notice that s is not explicitly dependent on time; hence, the argument ¢ is omitted.
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By substituting (5.1-87a) and (5.1-87b) in the state equations, w*(¢) can
be eliminated ; unfortunately, as is often the case, the resulting 2n first-order
differential equations are nonlinear.

Next, let us determine the boundary conditions at the final time. There
will be five relationships to be satisfied at ¢ = ¢,; hence, the initial and final
boundary conditions will give nine equations involving the eight constants
of integration and ¢,. From the problem statement we know that x¥ (¢,) must
equal R <+ D. In addition, to have a circular orbit, the centrifugal force must
be exactly balanced by the gravitational force; therefore, M[r*(e)a* ()2 /r*(s)
= Mg,R*/r**(¢) for t > t,. Evaluating this expression at ¢ = ¢, and using the
specified value of x*(¢;), we obtain x§(t,) = /g,R?[[R + D]. The radial
velocity must be zero at ¢ = t;, so x§(¢;) = 0. The final time is not related
to the unspecified final state value x§(z,), so in Eq. (5.1-18) the coefficients
of d¢, and dx,, must both be zero. To summarize, the required boundary
condition relationships are

x¥;)=R+D
pit,) =0
x¥t)=0

(5.1-88)
HX*(tp), p¥(t,) =0

In writing the last equation it has been assumed that 4*(¢) has been eliminated
from the Hamiltonian by using Eqs. (5.1-87).

Mission b. In this mission, shown in Fig. 5-5(b), the space vehicle is to be
launched from point 4 and is to rendezvous with another spacecraft that is
in a fixed circular orbit D miles above the moon with a period of two hours.
At t = 0 both spacecraft are on the reference axis. The rendezvous is to be
accomplished in minimum time.

Only the boundary conditions are changed from Mission a. The final
state values of the controlled vehicle must lie on the moving point

R+ D

modulo (zt)
0(t) = 2n .
0

#[R + D]

Modulo (nt) means that after each revolution 2z radians are subtracted

2r
from the angular displacement of the spacecraft. Only the final value of
x, depends on #, so we have
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Ox,, == [%qt—z(t,)] ot,
= 7 0t,. (5.1-89)
Thus, from Eq. (5.1-18), or entry 6 of Table 5-1,
—npi(ty) + A (X, p*(1) = 0, (5.1-90)
since & = 0. The remaining four boundary relationships are

R+ D

modulo (71 ,)
x*(t,) = 2 o = 0(z). (5.1-91)

2[R + D]

Mission c. A satellite is in synchronous orbit E miles above the point z
shown in Fig. 5-5(c). It is desired to investigate this satellite with a spacecraft
as quickly as possible. The spacecraft transmits television pictures to the
lunar base upon arriving at a distance of C miles from the satellite.

Again, the state and costate equations and Eq. (5.1-85) remain unchanged.
For this mission, however, the final states must lie on the curve given by

m(x(£)) = [r(r) cos (r) — [R + E] cos y]*
+ [r@)sina(t) — [R + E]sing]* — C* = 0.  (5.1-92)

Since the curve m(x(¢)) does not depend explicitly on ¢, we have from
entry 7 of Table 5-1 (putting h = 0),

om
— ) = d] SR )|
Performing the gradient operation, and simplifying, we obtain

2r%(t;) — 2[R + Elcos (a*(¢;) — 9)
2r¥(t)[R + E]sin (a*(t;) — 7)
0
0
x}(¢;) — [R + E] cos (x3(z,) — 7)
i x¥(t)[R + E]sin (x3(z,) — ¥)
0
0

—p*(t f) =d
(5.1-93)

=2

where d is an unknown variable.
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Thus, p¥(t;) = 0 and p¥(t;) = 0. The other boundary condition equa-
tions are

m(x*(t,)) = [x¥(t,) cos x}(t;) — [R + E] cos y]?
+ [xH(,) sin x3(t,) — [R + E]sinp]* —C2 =0, (5.1-94)

and
H(x*(tp), p*(ty) = 0. (5.1-95)

Equations (5.1-93) through (5.1-95) and x*(0) =[R 0 0 O give a total
of ten equations involving the eight constants of integration, the variable d,
and ¢;.

Mission d. A lunar-based radar operator detects an approaching space-
craft at ¢ = 0 in the position shown in Fig. 5-5(d), and at this time a recon-
naissance spacecraft is dispatched from point ¢g. The reconnaissance vehicle
is to close to a distance of C miles of the approaching spacecraft as quickly
as possible, and relay television pictures to the lunar base. From the radar
data the position history of the approaching spacecraft is

m(x(1), 1) = [r(r) cos a(t) — 2.78R¢t + 6.95Rt> — R}
+ [r(t) sin o(¢) — 1.85Rt + 0.32R]’- — C* =0. (5.1-96)

It is to be assumed that this position history will not change.
From Table 5-1, entry 8, we have

—Pt) =d [%(X*(tf), t,)] - (5.1-97)

Performing the gradient operation and simplifying, we obtain

—p¥(t;) = 2d[x¥(t;) + R{[—2.78¢, + 6.95t% — 1] cos x}(t,)
+ [—1.85¢, 4- 0.32] sin x$(¢,)}]

—pi(t;) = —2d[Rx¥(t,){[—2.78t, + 6.95¢3 — 1] sin x¥(¢,)
+ [1.85¢, — 0.32] cos x%(z,)}]

_Pask(tf) =0

—pi(t) = 0.

In addition, the specified constraint
[x¥(z/) cos x§(¢,) — 2.78Rt, + 6.95Rt% — R]?
+ [x¥(t,) sin x¥(z,) — 1.85Rt, 4 0.32R]* — C2 =0, (5.1-99)

(5.1-98)

must be satisfied and, from Table 5-1,
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H(X*(t,), P*(t,)) = 2 dR{[—2.78 +- 13.9¢,] [x}(t/) cos x¥(¢,)
— 2.78Rt, + 6.95Rf* — R] —1.85[x¥(t,) sin x1(t,)
— 1.85Rt, + 0.32R]}. (5.1-100)

With the specified initial conditions, we have ten equations in ten unknowns.

5.2 LINEAR REGULATOR PROBLEMS

In this section we shall consider an important class of optimal control
problems—linear regulator systems. We shall show that for linear regulator
problems the optimal control law can be found as a linear time-varying func-
tion of the system states. Under certain conditions, which we shall discuss,
the optimal control law becomes time-invariant. The results presented here
are primarily due to R. E. Kalman.t

The plant is described by the linear state equations

(1) = A@D)x(t) + B(t)u(s), (5.2-1)

which may have time-varying coefficients. The performance measure to be
minimized is

J =X Hx(t)) + f’ [X")QNX() + W (ORu(D] dt;  (5.2-2)

the final time ¢, is fixed, H and Q are real symmetric positive semi-definite
matrices, and R is a real symmetric positive definite matrix. It is assumed
that the states and controls are not bounded, and x(¢,) is free. We attach the
following physical interpretation to this performance measure: It is desired
to maintain the state vector close to the origin without an excessive
expenditure of control effort.

The Hamiltonian is

H(X(1), (@), p(2), 1) = FX(OQNX(2) + FuT(HR(u(?)
+P(OAWDX(@) + p(OBOu(),  (5.2-3)

and necessary conditions for optimality are

X*(t) = A()x*(1) + B(Hu*(r) (5.2-4)
P = — %{1 = — Q()x*(r) — AT()p*(1) (5.2-5)

T See references [K-5], [K-6], and [K-7].
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0— "0;{ = R()U*(1) + BYOp*(0). (5.2-6)

Equation (5.2-6) can be solved for u*(¢) to give
w*(r) = —R7(OBT(Np*(2); (5.2-7)

the existence of R™! is assured, since R is a positive definite matrix. Substitut-
ing (5.2-7) into (5.2-4) yields

x*() = A()x*(t) — BOR (OB ()p*(r); (5.2-8)

thus, we have the set of 2n linear homogeneous differential equations

x*(1) A@) | —B@ORIOBT(Q) || x*()
—_—_ | =—_—— | ———— —— - (529
P*() —Q() | —AT(r) P*(®)
The solution to these equations has the form
)i(t_’) = o(t, 1) 0 (5.2-10)
| | o ’

where @ is the transition matrix of the system (5.2-9). Partitioning the tran-
sition matrix, we have

x*(t/‘) @, (s 1) | @,(t || X*(1)
—_ = ——— ] ——— — |» (5.2-10a)
P*(tf) ¢21(tfs 1) | @ (tps 1) p*(®)

where @, ,, 9,5, ¢,;, and @,, are n X n matrices.

From the boundary-condition equations—entry 2 of Table 5-1—we find
that

p*(t;) = Hx*(¢)p). (5.2-11)
Substituting this for p*(#,) in (5.2-10a) gives

X*(t,) = @, (¢, OX*() + @15 Hp*(t)

. (5.2-12)
Hx (tf) = @,1(ts OX*(O) + Pua(tss np*).
Substituting the upper equation into the lower, we obtain

Ho, (1, OX*(t) + Hep,,(,, OP*(2) = @,,(t,, )X*(2)
+ @2.(t, OP*(), (5.2-13)
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which, when solved for p*(?), yields
PH(t) = [Paatys 1) — Ho,(t;, 0] '[Hp,i(ty, 1) — @2.(t DIx*(@). (5.2-14)

Kalman [K-7] has shown that the required inverse exists for all ¢ € [¢,, ¢/].
Equation (5.2-14) can also be written as

P*(t) 2 K(O)x*(), (5.2-15)
which means that p*(¢) is a linear function of the states of the system; K is

an n X n matrix. Actually, K depends on ¢, also, but ¢, is specified.
Substituting in (5.2-7), we obtain

u¥*(2) = —RY(OBT()K()x(¢)

2 Rt (5.2-16)

which indicates that the optimal control law is a linear, albeit time-varying,
combination of the system states. Notice that even if the plant is fixed, the
feedback gain matrix F is time-varying.t In addition, measurements of all of
the state variables must be available to implement the optimal control law.
Figure 5-6 shows the plant and its optimal controller.

To determine the feedback gain matrix F, we need the transition matrix
for the system given in (5.2-9). If all of the matrices involved (A, B, R, Q)
are time-invariant, the required transition matrix can be found by evaluating
the inverse Laplace transform of the matrix

PLANT

sy
CONTROLLER |

u*@) + $0)

F(1) =) B

] +

i

|

I

I

L e e e e ———————— e ——

Figure 5-6 Plant and optimal feedback controller for linear
regulator problems

T Here we drop the * notation because the optimal control law applies for all x(¢).
1 In certain cases it may be possible to implement a nonlinear, but time-invariant, optimal
control law—see [J-1].
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A | —BR-'BT
S—| —— | ———— |}

__6 | —AT

and substituting (¢, — ¢) for #. Unfortunately, when the order of the system
is large this becomes a tedious and time-consuming task. If any of the
matrices in (5.2-9) is time-varying, we must generally resort to a numerical
procedure for evaluating ¢(t/, ?).

There is an alternative approach, however; it can be shown (see Problem
5-9) that the matrix K satisfies the matrix differential equation

K(5) = —K()AQR) — AT(OK(?) — Q1) + K@BOR()BT(DK(),
(5.2-17)

with the boundary condition K(z;) = H.

This matrix differential equation is of the Riccati type; in fact, we shall
call (5.2-17) the Riccati equation.t Since K is an n X »n matrix, Eq. (5.2-17)
is a system of n? first-order differential equations. Actually, it can be shown
(see Problem 5-9), that K is symmetric; hence, not n?, but n(n + 1)/2
first-order differential equations must be solved. These equations can be
integrated numerically by using a digital computer. The integration is started
at t = t, and proceeds backward in time to ¢ = t,; K(¢) is stored, and the
feedback gain matrix is determined from Eq. (5.2-16).

Let us illustrate these concepts with the following examples.

Example 5.2-1. Find the optimal control law for the system
x(t) = ax(t) + u(t) (5.2-18)
to minimize the performance measure
J) = § HxX(T) + j: 1u2(r) dt, (5.2-19)
The admissible state and control values are unconstrained, the final time

T is specified, H > 0, and x(T") is free.
Equation (5.2-9) gives

*(t —2 *(t
o ot
p*(@®) 0 —allp*(®
t The Riccati equation is also derived in Section 3.12, where the Hamilton-Jacobi-Bellman
equation is used.
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which has the transition matrix

thus, from Egs. (5.2-14) and (5.2-15) we have
K(t) — I:e-—a(T—t) — _g[e—a(r~t) — ea(T“')]:I_I[HE”(T“')], (5.2.21)

and from Eq. (5.2-16) the optimal control law is
u*(t) = —2K@)x@) (5.2-22)

Figure 5-7(a) shows K(r) as a function of time for a = —0.2 and
T = 15, with H = 5.0, 0.5, and 0.05. The corresponding control histories
and state trajectories for x(0) = 5.0 are shown in Fig. 5-7(b), (c). Notice
that the state trajectories are almost identical and that the control signals
are small in all three cases. These qualitative observations can be ex-
plained physically by noting that with a = —0.2 the plant is stable
and tends toward zero—the desired state—even if no control is applied.
Observe in Fig. 5-7(b) that the larger the value of H, the larger the con-
trol signal required. This occurs because a larger H indicates that it is

S.
H=S5

4.+
3.+
=
.+

L i ] ] L |t
0 2 4 6. 8 10, 16.
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Figure 5-7 (a) Solution of the Riccati equation for a = —0.2, H =
5, 0.5, 0.05. (b) The optimal control histories for a = —0.2, H =
5,0.5, 0.05. (c) The optimal trajectories for a = —0.2, H = 5, 0.5,
and 0.05.

desired to be closer to x(15) = 0 than with a smaller H—even if more
control effort is required.
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If a = 0.2 the results are as shown in Fig. 5-8. Notice that the control
signals (which are essentially identical with one another) are much larger
than when a = —0.2, This is expected, because the plant with g = 0.2
is unstable.

K(t)

()
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5.

©)

Figure 5-8 (a) Solution of the Riccati equation for a = 0.2, H =
5, 0.5, 0.05. (b) The optimal control histories for a = 0.2, H = 5,
0.5, 0.05. (c) The optimal trajectories for a = 0.2, H = 5, 0.5, 0.05.

Another point of interest is the period of time in the interval [0, 15]
during which the control signals are largest in magnitude. For the stable
plant (@ = —0.2) the largest controls are applied as t — 15. This is the
case because the controller “waits” for the system to approach zero on
its own before applying control effort. On the other hand, if the con-
troller were to wait for the unstable plant to move toward zero, the
instability would cause the value of x to grow larger; hence, the largest
control magnitudes are applied in the initial stages of the interval of
operation.

Example 5.2-2. Consider the second-order system

x,(6) = x2(0)

. (5.2-23)
X2(8) = 2x,(6) — x,(t) + u(t),
which is to be controlled to minimize
Jw) = J: [X30) + 4530 + 3u2(0)] . (5.2-24)

Find the optimal control law.
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By expanding the Riccati equation with

0o 1 0 2 0
A = ) B = ) — N R=1,
[2 MJ {1} Q [o J and z

we obtain

IOES 2[k122(t) — 2k, (8) — 1]
klz(’) = 2k 2022 (t) — Jey (1) + kya(8) — 2k,,(2) (5.2-25)
Kpat) = 2k 5(6) — 2k15(6) + 2ky0(0) — 1.

In arriving at (5.2-25) the symmetry of K has been used. The boundary
conditions are k;(T) = k,,(T) = k,,(T) = 0, and the optimal control
law is

W) = =2k, (1) Jeyn()Ix(2). (5.2-26)

The solution of the Riccati equation and the optimal control and its
trajectory are shown in Fig. 5-9 for x(0) =[—4 4]".

The situation wherein the process is to be controlled for an interval of
infinite duration merits special attention. Kalman [K-7] has shown that if
(1) the plant is completely controllable, (2) H =0, and (3) A,B, R, and Q
are constant matrices, K(f) — K (a constant matrix) as #, — oo. The engineer-
ing implications of this result are very important. If the above hypotheses
are satisfied, then the optimal control law for an infinite-duration process
is stationary. This means that the implementation of the optimal controller is
as shown in Fig. 5-6, except that F(¢) is constant; thus, the controller consists
of m fixed summing amplifiers, each having n inputs. From a practical view-
point, it may be feasible to use the fixed control law even for processes of
finite duration. For instance, in Example 5.2-2 k, ,, k,,, and k,, are essentially
constants for 0 < 1 << 12. Looking at the state trajectory in Fig. 5-9(b), we
see that the states have both essentially reached zero when ¢t = 5. This means
that perhaps the constant values k,, = 6.03, k,, = 2.41, k,, = 1.28 can be
used without significant performance degradation—the designer should
compare system performance using the steady-state gains with performance
using the time-varying optimal gains to decide which should be implemented.

To determine the K matrix for an infinite-time process, we either integrate
the Riccati equation backward in time until a steady-state solution is obtained
[see Fig.5-9(a)] or solve the nonlinear algebraic equations

0= —KA — A'K — Q 4+ KBR'BK, (5.2-27)

obtained by setting K(#) = 0 in Eq. (5.2-17).
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Figure 5-9 (a) The solution of the Riccati equation. (b) The optimal
control and its trajectory
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Linear Tracking Problems

Next, let us generalize the results obtained for the linear regulator problem
to the tracking problem; that is, the desired value of the state vector is not
the origin.

The state equations are

x(t) = A@)x(©) -+ B()u(?), (5.2-28)

and the performance measure to be minimized is

= $[x(t)) — xe P HIx(e) — x(e)] + 4 [ {x0) - 0P QU[X() — x(0)]
+ W (OR@Ou(D)} dt
231t — ek + 4 [ X0 — 1Ol + 1Ollzo} dr, (5229

where r(¢) is the desired or reference value of the state vector. The final time
t, is fixed, x(¢,) is free, and the states and controls are not bounded. H and
Q are real symmetric positive semi-definite matrices, and R is real symme-
tric and positive definite.

The Hamiltonian is given by

FHX(2), u(t), p(t), 1) = +||%(6) — (@) |y + £1lu@®) |k

(5.2-30)
+ PT(DAWDX(1) + PT(NB(2u(2).
The costate equations are
pr(@) = ——% —Q(OX*(t) — AT(OP* () + QUx(r), (5.2-31)
and the algebraic relations that must be satisfied are given by
0— ‘%}_f R()*(t) + BIOPH0); (5.2-32)
therefore,
u*(t) = —R{(OBT(0)p*(1). (5.2-33)

Substituting (5.2-33) in the state equations yields the state and costate equa-
tions

[ x*1) A@) | —BOR (0B || x*¢) 0
el U iy I g e (5234
p*(0) —Q(1) | —A™(0) pX(1) Q()x(r)
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Notice that the term Q(£)r(¢) is a forcing function; these differential equations
are linear and time-varying, but not homogeneous. The solution of (5.2-34) is

X*(t,) x*(1)
N q')(tf’ 1))

. 0
e b (et 1) | ——— ldr, (5.235
) ) J/ ot ‘

Q(o)r(z)

where o is the transition matrix of the system (5.2-34). If @ is partitioned,
and the integral replaced by the 2n X 1 vector

f.(0)
50 |
these equations can be written
x*(t,) = @ (t;, DX*() + @, (1, OP*@) + £,(0) (5.2-36a)
P (1)) = @, (1, DX*(O) 4 @y, (¢, OP*() + £.(0). (5.2-36b)
The boundary conditions are
p*(t;) = Hx*(t,) — Hr(t,). (5.2-37)

Replacing p*(t,) in (5.2-36b) by the right-hand side of (5.2-37) and then
substituting x*(¢,) from Eq. (5.2-36a) into (5.2-36b), we obtain
H[‘Pl l(tf’ 0Hx*(t) -+ ‘Plz(tfa np*@) + fl(t)] - Hr(tf) = ?21(1,4-; 1x*(1)
+ @aa(ty, OPF(2) + £,(0). (5.2-38)
Solving for p*(¢) yields
p*(t) = [¢22(tp t) — H‘Plz(tf’ t)]—l [Hq’n(tfs 1) — 9’21(’/a f)] x*(1)
+ [‘Pzz(tf’ 1) — Ho,,(¢;, t)]~1 [Hfl(t) — Hr(z,) — f2(’)]
A K()x*(2) + (). (5.2-39)

The definitions of K(¢) and s(z) are apparent by inspection of Eq. (5.2-39);
therefore, the optimal control law is

u*(r) = —RT(OB(OK()x(1) — R7()BT(1)s(1)
A F(Ox(1) + (1), (5.2-40)



Sec. 5.2 Variational Approach to Optimal Control Problems 221

where F(z) is the feedback gain matrix and v(¢) is the command signal.t
Notice that v(¢) depends on the system parameters and on the reference signal
r(#). In fact, v(¢) depends on future values of the reference signal, so we might
say that the optimal control has an anticipatory quality. This is reinforced
by physical reasoning, which tells us that we must determine our present
strategy on the basis of where we are now and where we intend to go. (Actu-
ally, this same sort of situation was present, though in a more subtle way,
in regulator problems, where we utilized our desire to be at the origin.) A
diagram of the plant and controller is shown in Fig. 5-10. Notice that, as
in the regulator problem, we must be able to measure all of the statesin order
to synthesize the optimal control law.
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Figure 5-10 Plant and optimal feedback controller for linear track-
ing problems

Again we are confronted with the need to determine the transition
matrix, but, as before, there is an easier computational route to travel. We
begin with the equation

p*(1) = K(Ox*(®) -+ s(0). (5.2-41)
Differentiating both sides with respect to ¢, we obtain
P*() = K@Ox*(@) + KX + 5. (5.2-42)

Substituting from (5.2-34) for p*(¢) and %*(¢), and using (5.2-41) to eliminate
p*(¢), we obtain
[K() + Q) + K(A() + AT(OK(r) — K()B()R™'(1)BT()K(D)]x*(r)
+ [$() + AT()s() — K(OB(OR™'(1)B"(1)s(2) — Q(1)r(r)] = 0.
(5.2-43)

1 Strictly speaking, we have not shown that this extremal control does minimize J. It turns
out, however, that this extremal control is indeed the optimal control.
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Because this must be satisfied for all x*(¢) and r(f), we conclude that
K(1) = —K(DA() — A"(OK(2) — Q(¢) 4 K(1)B()R ™' (1)B(DK(z)
(5.2-44)
and
§(t) = —[A"(2) — K(OBOR(OBT(D)] s(r) + Q()x(r).  (5.2+45)

Since K is symmetric and s is an n X 1 vector, (5.2-44) and (5.2-45) are a set
of [n[n + 1]/2] 4 n first-order differential equations. Notice that (5.2-44)
is the same Riccati equation that we obtained for linear regulator problems.
To obtain the boundary conditions we have, from (5.2-37) and (5.2-39),

p*(1;) = Hx*(t,) — Hi(t,)
= K(t)x*(t) + s(t,). (5.2-46)

Since these equations must be satisfied for all x*(¢,) and r(¢,), the boundary
conditions are

K(t,)=H (5.2-47)
and
s(t;) = —Hr(t,). (5.2-48)

To determine F(¢) and v(¢), we then integrate (5.2-44) and (5.2-45) from
t; to t, using the boundary conditions (5.2-47) and (5.2-48), and store
the values for K(¢) and s(¢). F(¢) and v(¢) can then be determined by using
(5.2-40). The procedure is illustrated by the following examples.

Example 5.2-3. The system

xX(1) = x,(5)

5.2-49
X2(8) = 2x,(6) — x2(t) + u(®) ( )

is to be controlled to minimize the performance measure
J@) = [x(T) — 12 + f: (i) — 1]2 + 0.0025u2(D} dr.  (5.2-50)

The final time T is specified, x(T) is free, and the admissible states and
controls are not bounded. The optimal control law is to be found.

The performance measure indicates that the state x, is to be maintained
close to 1.0 without excessive expenditure of control effort. In the nomen-
clature of linear tracking problems, we have
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S T H R R
1.0],1

R = 0005 and r(f) = [ :

The Riccati equation and the differential equations for s are found from
Eqgs. (5.2-44) and (5.2-45) with the result

k@) = 2[100k (1) — 2k (1) — 1]
Foy2 () = 200k 5(1)eza() — ky1(6) + Kya(e) — 2ka2(1)  (5.2-51)
Kaa(t) = 200k (1) — 2k15(2) + 2k,2(t)

$1(1) = 2[100k 5 (£) — 1]s2(0) + 2

5.2-52
52(0) = —s(0) + [1 + 200k;,(0)]s2(), ( )

and, from Egs. (5.2-47) and (5.2-48) the boundary conditions are

=31 -]

The optimal control law, obtained from (5.2-40), is
u*(t) = —200[k,3()x1(t) + k22(O)x2(2) + 52()] (5.2-53)

Figure 5-11(a) shows the optimal control and its trajectory for T = 15,
and x(0) = 0. The “tail” on the x¥ curve as t — 7, results because the
controller anticipates that the final time is near and reduces the control
to values near zero at the expense of deviations in x¥. When the control
is made small, x¥() begins to increase; this occurs because the plant
(5.2-49) is unstable. The solutions of the Riccati equation and of (5.2-52)
are shown in Fig. 5-11(b), (c).

Example 5.2-4. The plant to be controlled is the same as in Example 5.2-3,
but the performance measure is

Jw) = f: {[x:(6) — 0.2¢]* + 0.025u%()} dt. (5.2-54)

T is specified, x(T) is free, and the admissible controls are-not bounded.
The optimal control law is to be determined.

In this problem the objective is to maintain the state x; close to the
ramp function ry(¢) = 0.2¢, without excessive expenditure of control
effort. By substituting

t For the matrices H and Q given in this example, r,(¢) does not affect the solution and
hence can be selected arbitrarily.
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into (5.2-44) and (5.2-45), we obtain the differential equations

kyy(r) = 20k %() — 4k12(r) — 2

Ky2(t) = 20k 2 (0Vkz2(t) — ki 1(0) + kia(t) — 2k2a(t)  (5.2-55)

kaa(£) = 20k 2(1) — 2k12(0) 4 2Kkya (1)
$1(t) = 2[10k,,(r) — 1]52() + 0.4¢

(5.2-56)
5200 = —s1(t) + [20k22() + 1]s,(0).

The boundary conditions for these five differential equations are K(T) = 0,
s(T) = 0. Figures 5-12(b) and (c) show the solution of Egs. (5.2-55) and
(5.2-56) for T = 15. The optimal control law, obtained from Eq. (5.2-40),
is

u*(t) = —20[k12(0)x1(f) + k22(Dx2 () + 52(0)]- (5.2-57)
The optimal control and its trajectory for x(0) =[—4 O] are shown

in Fig, 5-12(a). There is an initial transient period that is over at approxi-
mately ¢t = 2. Thereafter, the difference between x¥ and r, is small,
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Figure 5-12 (a) The optimal control and trajectory for a linear
tracking problem: r;(¢) = 0.2¢, x(0) = [—4 0]7. (b) Solution of
the Riccati equation for Example 5.2-4. (c) sy and s, for Example
5.2-4

although the deviation does grow larger with increasing time. This is
attributed to the penalty in the performance measure on control-effort
expenditure; as time increases, the magnitude of the control signal required
for tracking grows larger, so the contribution of control effort to the
performance measure becomes more significant. The “tail” present as
t — 15 occurs because the control law anticipates the end of the control
interval and, as a result, conserves control effort, allowing x¥ to deviate
from its desired values.

5.3 PONTRYAGIN'S MINIMUM PRINCIPLE AND
STATE INEQUALITY CONSTRAINTS

So far, we have assumed that the admissible controls and states are not
constrained by any boundaries; however, in realistic systems such constraints
do commonly occur. Physically realizable controls generally have magnitude
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limitations: the thrust of a rocket engine cannot exceed a certain value;
motors, which provide torque, saturate; attitude control mass expulsion
systems are capable of providing a limited torque. State constraints often
arise because of safety, or structural restrictions: the current in an electric
motor cannot exceed a certain value without damaging the windings; the
turning radius of a maneuvering aircraft cannot be less than a specified
minimum value; a spacecraft reentering the earth’s atmosphere must satisfy
certain attitude and velocity constraints to avoid burning up.

Let us first consider the effect of control constraints on the fundamental
theorem derived in Section 4.1, and then show how the necessary conditions
are modified.t This generalization of the fundamental thgorem leads to
Pontryagin’s minimum principle.t

Pontryagin's Minimum Principle

By definition, the control u* causes the functional J to have a relative
minimum if

J(u) — JQu*) = AJ >0 (5.3-1)

for all admissible controls sufficiently close to u*. If we let u = u* + Ju,
the increment in J can be expressed as

AJ(u*, du) = dJ(u*, du) + higher-order terms; (5.3-2)

dJ is linear in du and the higher-order terms approach zero as the norm of
Ju approaches zero. If we were to re-prove the fundamental theorem for un-
bounded controls using control system notation, the reasoning would be
exactly as given in Section 4.1. That is, if the control were unbounded, we
could use the linearity of 8J with respect to du, and the fact that du can vary
arbitrarily to show that a necessary condition for u* to be an extremal control
is that the variation dJ(u*, du) must be zero for all admissible du having a
sufficiently small norm. Since we are no longer assuming that the admissible
controls are not bounded, du is arbitrary only if the extremal control is strictly
within the boundary for all time in the interval [#y, ¢,]. In this case, the bound-
ary has no effect on the problem solution. If, however, an extremal control
lies on a boundary during at least one subinterval [¢,, ¢,] of the interval
[to, t;], as shown in Fig. 5-13(a), then admissible control variations dii exist
whose negatives (—Ji) are not admissible. One such control variation is shown
in Fig. 5-13(b). If only these variations are considered, a necessary condition
for u* to minimize J is that §J(u*, dii) > 0. On the other hand, for variations

1 The derivation given here is heuristic; for rigorous proofs see [P-1], [R-1], and [A-2].
1 In Pontryagin’s original work, [P-1], this result is referred to as the maximum principle
because of a sign difference in the definition of the Hamiltonian.
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oii, which are nonzero only for ¢ not in the interval [¢,, #,], as, for example,
in Fig. 5-13(c), it is necessary that 6J(u*, dii) = 0; the reasoning used in
proving the fundamental theorem applies. Considering all admissible varia~
tions with || du|| small enough so that the sign of AJ is determined by 8/, we
see that a necessary condition for u* to minimize J is

SJ(u*, Su) > 0. (5.3-3)

It seems reasonable to ask if this result has an analog in calculus. To
answer this question, refer to Fig. 4-4, where a function f; defined on a closed
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Figure 5-13 (a) An extremal control that is constrained by a
boundary. (b) An admissible variation 84 for which —éa is not
admissible. (¢) An admissible variation i for which —4d# is admis-
sible
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interval [t,, /], is shown. The differential df is the linear part of the increment
Af. Consider the end points 7, and ¢, of the interval, and admissible values
of the time increment A¢, which are small enough so that the sign of Afis
determined by the sign of df. If ¢, is a point where f has a relative minimum,
then df(2,, At) must be greater than or equal to zero. The same requirement
applies for f(t;) to be a relative minimum. Thus, necessary conditions for
the function f to have relative minima at the end points of the interval are

df(te, At) >0,  admissible At >0

5.3-
df(t,, At) >0, admissible A7 < 0, (53-4)

and a necessary condition for f to have a relative minimum at an interior
point ¢, t, < t <t is
df(t, At) = 0. (5.3-5)
For the control problem the analogous necessary conditions are
oJ(u*, du) >0 (5.3-6a)
if u* lies on the boundary during any portion of the time interval [t,, t;], and
dJ(u*, du) =0 (5.3-6b)

if u* lies within the boundary during the entire time interval [t,, t,].

Next, let us see how this modification affects the necessary conditions,
Eqgs. (5.1-17) and (5.1-18), which were derived by using the assumption that
the admissible control values were unconstrained. The increment of J is
[if we use Eqs. (5.1-9), (5.1-13), and the definition of the Hamiltonian]

AJ(u*, ou) = [gg(x*(tf), 1) — pX( tf):lr 5,
+ [0, ), 1), 1) + G, 1) 61,
+[1{[r0 + ZEeew w0 0] 0 530
+ [%‘;*f("*(t), u*(1), p*(2), t)]T Su(r)

+ [SE e, w20, 0 — 20 0} at
- higher-order terms.

If the state equations are satisfied, and p*(¢) is selected so that the coefficient
of 0x(?) in the integral is identically zero, and the boundary condition equa-
tion (5.1-18) is satisfied, we have
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A, 6w = [ [% e, wr o, w40, 0] du)a

+ higher-order terms.

(5.3-8)

The integrand is the first-order approximation to the change in # caused
by a change in u alone; that is,
|22 cex(a), w0, 1), )] ute) == 00, w¥(e) + Suta), B0 )
— FH(X*(1), w (D), p*(2), 1); (5.3-9)

therefore,

AJ(u*, du) = j‘ [s2(x*(D), w*(2) + ou(z), p*(), 1)

— FH(), wr(@), pH(t), )] dt (5.3-10)

+ higher-order terms.
If u* + du is in a sufficiently small neighborhood of u* (||du|l < )
then the higher-order terms are small, and the integral in Eq. (5.3-10) domi-

nates the expression for AJ. Thus, for u* to be a minimizing control it is
necessary that

[ [ tx*@), () + Su(e), p*(1), ) — K@), wHo), p¥(), ] dt =0
(5.3-11)
Jor all admissible du, such that ||du|| < f. We assert that in order for(5.3-11)

to be satisfied for all admissible du in the specified neighborhood, it is neces-
sary that

H(X*(1), u*(2) + ou(d), p*(2), 1) = A X*(1), u*(t), p*(1), 1)  (5.3-12)

for all admissible du(t) and for all ¢t € {¢y, t;]. To show this, consider the
control

u(t) = u*(); t ¢t t,]
u(?) = w¥(r) + du(r);  t e, t,),

where [t,, 1,] is an arbitrarily small, but nonzero, time interval, and du(¢) is
an admissible control variation that satisfies ||du|| < . Suppose that

(5.3-13)

1 Let
Neuli = [7[3 16u@1]ar.

Since u(?) is in a bounded region, each component of du(r) is bounded and || du|| can be
made less than B for all admissible 5u(t) by making the interval [t;, 2] small enough.
Thus the control u(z) in Eq. (5.3-13) can be any admissible control in the interval [¢,,22).
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inequality (5.3-12) is not satisfied for the control described in Eq. (5.3-13);
then in the interval [z,, ¢,]

H(X*(2), u(t), pH(), 1) <A *(@), w*(0), p*(0), 1) (5.3-14)

and, therefore,

f [ (@), u(), pHO), 1) — A OK(), w(), p¥(0), D] dt
= f [s2x*(@0), u(®), p*(©), 1) — A (X*(2), w¥(D), p*(2), ] dt < 0.
' (5.3-15)

Since the interval [¢,, #,] can be anywhere in the interval [z,, ¢/], it is clear
that if

S (X*(0), u(t), p*(2), 1) < H(X*(), w*(2), *(2), 1) (5.3-16)

for any ¢t € [t,, /], then it is always possible to construct an admissible con-
trol, asin Eq. (5.3-13), which makes AJ < 0, thus contradicting the optimality
of the control w*. Our conclusion is, therefore, that a necessary condition
for u* to minimize the functional J is

W(X*(t): ll*(t), p*(t)’ t) < '#(X*(t)’ u(t)s P*(I), t) (53'17)

for all ¢ € [t,, t;] and for all admissible controls. Equation (5.3-17), which
indicates that an optimal control must minimize the Hamiltonian, is called
Pontryagin’s minimum principle. Notice that we have established 2 neces-
sary, but not (in general) sufficient, condition for optimality. An optimal
control must satisfy Pontryagin’s minimum principle; however, there may
be controls that satisfy the minimum principle that are not optimal.

Let us now summarize the principal results of this section. A control
u* € U, which causes the system

x(t) = a(x(@®), u(®), 1) (5.3-18)
to follow an admissible trajectory that minimizes the performance measure
tr
J@) = hx(t,), 1) + [ gx0), w(), D, (5.3-19)
is sought. In terms of the Hamiltonian

HX(®), ), p(1), 1) & g(x(1), (), 1) + p"(O[a(x(®), u(2), 1}, (5.3-20)

necessary conditions for u* to be an optimal control are
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2(0) = %L (0, w0, 170, 9 (5.3-21a)
P = — %(x*(t), w (1), pH(0), 1) ,f‘: [f;‘"t || eaab
osls
H(X*(2), w¥ (D), p*(2), 1) < A (X*(@), u(t), p*(2), 1) (5.3-21c)
for all admissible u(?)

and
[g—ﬁ(X*(tf): tf) - p*(tf):|T axf

+ [%(x*(t,), wk(t,), P4, 1) + ‘%(x*(zf), z,)] 5t, = 0. (5.3-22)

It should be emphasized that

1. u*(¢) is a control that causes JZ(x*(¢), u(t), p*(¢), t) to assume its
global, or absolute, minimum.

2. Equations (5.3-21) and (5.3-22) constitute a set of necessary conditions
for optimality; these conditions are not, in general, sufficient.

In addition, the minimum principle, although derived for controls with
values in a closed and bounded region, can also be applied to problems in
which the admissible controls are not bounded. This can be done by viewing
the unbounded control region as having arbitrarily large bounds, thus
ensuring that the optimal control will not be constrained by the boundaries.
In this case, for u*(¢¥) to minimize the Hamiltonian it is necessary (but not
sufficient) that

%(X*(t), u*(8), p*(2), 1) = 0. (5.3-23)
If Eq. (5.3-23) is satisfied, and the matrix

T (e (o), w0, D*(0), 1)

is positive definite, this is sufficient to guarantee that u*(¢) causes J# to be a
local minimum; if the Hamiltonian can be expressed in the form

(X, u(®), p(r), D) = f(x(0), pO), O
+ [e(x(), p(®), DIF u(@®) + FuT(OREUD), (5.3-24)
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where ¢ is an m X 1 array that does not have any terms containing u(z), then
satisfaction of (5.3-23) and @*s#/du? > Of are necessary and sufficient for
H(x*(1), u*(2), p*(2), £) to be a global minimum.

For s of the form of (5.3-24),

G (xx(0), wh(e), pH(2), 1) = R(); (5325
W( 1), w (), p*(t), ¢ 5 . )
thus, if R(¢) is positive definite,
u¥(f) = —R7(De(x*(@®), p*(0), 1) (5.3-26)
minimizes (globally) the Hamiltonian.
Example 5.3-1. Let us now illustrate the effect on the necessary conditions
of constraining the admissible control values. Consider the system having

the state equations

X1(0) = x,(t)
X (1) = —x2(8) + u(®), (5.3-27)

with initial conditions x(t¢) = x,. The performance measure to be mini-
mized is

J) = j " 40 + 0] dis (5.3-28)

ty is specified, and the final state x(¢;) is free.

a. Find necessary conditions for an unconstrained control to minimize J.
The Hamiltonian is

A (x(), u(t), p(1)) = 3x3(t) + $u(t) + p1()x2(1)
— p2(Dx,(8) + pa(Du2), (5.3-29)

from which the costate equations are

PO = — %fc—"li )
A0 = — g—j—*-: — —pHO) + PEQ). (5.3-30)

Since the control values are unconstrained, it is necessary that

0L . u40) + 1O = . (5.3-31)

t The notation §2#/du? > O means that the mx m matrix 925 /du? is positive definite.
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Notice that the Hamiltonian is of the form (5.3-24), and

9257 .
G = U (5.3-32)
therefore,
u*(t) = —p¥(@) (5.3-33)

does minimize the Hamiltonian. The boundary conditions are (see
Table 5-1, entry 2)

p¥(tp) = 0. (5.3-34)

. Find necessary conditions for optimal control if

—1<ul) < +1 for all ¢t € [t,, t/]. (5.3-35)

The state and costate equations and the boundary condition for p*(¢,)
remains unchanged; however, now z must be selected to minimize

H K@), u(®), p*(0) = $x12(0) + 42 () + pFOxF(O)

(5.3-36)
— pE0x3() + pEOu®

subject to the constraining relation in Eq. (5.3-35).
To determine the control that minimizes 5#, we first separate all of
the terms containing u(t),

Fur(t) + pru(), (5.3-37)

from the Hamiltonian. For times when the optimal control is unsatu-
rated, we have

u*(t) = —p¥(@) (5.3-38)
as in part a; clearly, this will occur when |p¥(1)| < 1. If, however,
there are times when |p¥(#)| > 1, then from (5.3-37) the control that
minimizes & is

—1, for p¥(@) > 1

*(f) =
) {+1, for p¥(t) < —1.

(5.3-39)

Thus, u*(¢) is the saturation function of p$(#) pictured in Fig. 5-14.
In summary, then, we have for the unconstrained control—part a,

u*(t) = —p¥@), (5.3-33)

and, for the constrained control—part b,
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Figure 5-14 Constrained and unconstrained optimal controls for
Example 5.3-1

-1, for 1 < p¥()
u*(t) = ¢ —p¥(), for —1 <p¥( <1 (5.3-3%a)
+1, for p¥() < —1.

To determine u*(¢) explicitly, the state and costate equations must be
solved. Because of the differences in Eqgs. (5.3-33) and (5.3-39a), the
state-costate trajectories in the two cases will be the same only if the
initial state values are such that the bounded control does not saturate.
If this situation occurs, the control constraints do not affect the solution.
It must be emphasized that the optimal control history for part b cannot
be determined, in general, by calculating the optimal control history for
part a and allowing it to saturate whenever the stipulated boundaries are
violated.

Additional Necessary Conditions

Pontryagin and his co-workers have also derived other necessary condi-
tions for optimality that we will find useful. We now state, without proof,
two of these necessary conditions:

1. If the final time is fixed and the Hamiltonian does not depend explicitly
on time, then the Hamiltonian must be a constant when evaluated on
an extremal trajectory; that is,

H(x*(0), w¥(1), p*(t)) = ¢, for t € [t,, t,]. (5.3-40)

2. If the final time is free, and the Hamiltonian does not explicitly depend
on time, then the Hamiltonian must be identically zero when evaluated
on an extremal trajectory; that is,

H(XF@), u*@), p*@) =0 for t € [t,, ¢,]. (5.341)
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State Variable Inequality Constraints

Let us now consider problems in which there may be inequality con-
straints that involve the state variables as well as the controls. It will be
assumed that the state constraints are of the form

£(x(t), 1) > 0, (5.3-42)

where f is an [-vector function (! <{ m) of the states and possibly time, which
has continuous first and second partial derivatives with respect to x(¢). It
will also be assumed that the admissible control values lie in a closed and
bounded region. Our approach will be to transform the / inequality con-
straints of (5.3-42) into a single equality constraint, and then to augment the
performance measure with this equality constraint, as we have done pre-
viously with the state equations.
Let us define a new variable %, ,(¢) by

Xpua (1) 2 [£1((0), D LA + [0, D] 1(—12)
+ o 4 @, 0P 1A, (5.3-43)

where [(—f;) is a unit Heaviside step function defined by

0, for f(x(1), ) =0

1, for f(x(1), 1) <O, (5:3-44)

1(—f) = {

for i=1,2,...,1 Notice that %,,,(f) > 0 for all ¢, and that x,,,(/)=0
only for times when all of the constraints (5.3-42) are satisfied. Now let us
require that the variable x,, (), given by

Xt = [ Z (0t 4 5,0 (20), (5.3-45)

satisfy the two boundary conditions x,,,(t,) =0 and x,,,(¢;) =0. Since
X,:1(t) = 0 for all ¢, satisfaction of these boundary conditions implies that
X,;.(¢) must be zero throughout the interval [¢t,, 7,], but this occurs only if
the constraints are satisfied for all ¢ € [z, 1,].

Thus, to minimize the functional

Jw) = hxe ), 1) + | gx(o), w(e), 1) (5.3-46)
subject to the state equation constraints

x(1) = a(x(1), u(@), 1), (5.3-47)

.t The notation f(x(7), ) = 0 means that each component of the vector f is >0,
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admissibility constraints on the control variables, and state inequality con-
straints of the form

f(x(1), ) > 0, (5.3-48)
first form the Hamiltonian
(X0, u(t), B, 1) = g(X(O), u(t), D) + py(B)a,(X(0), u(®), 1)
+ -+ + p(Da(x(2), u(t), 1)

+ Por (O 1@, DPT(— 1) + - - 4 [Ax(@), D] 1(— 1)}
A g(x(1), u(®), 9 + pr(Hax(1), u(®), 1), (5.3-49)

where x,,,(?) is given by (5.3-45), and

a,, (X(1), ) & 1), OPI(=11) + -+ + [[x@), D2 1(— 1.
(5.3-50)

Using the notation of (5.3-49) means that p(¢) and x(¢) are n 4 1 vectors.
Notice that the Hamiltonian does not contain x,, ,(¢) explicitly. We can now
apply Eqgs. (5.3-21) to obtain necessary conditions for optimality:

XT(t) = a](X*(t)’ ll*(t), 1))

251 (8) = @, (X¥(0), 1);

PO = — %f{ (X*(0), u¥(D), PH(O), 1)

for all

telrg O

pra() = — a‘%”% x*(0), u*(t), p*(2), ) = 0;

and
(X*(2), w¥(t), p¥(0), 1) < H°(x™(D), u(t), p*(2), 1)

for all admissible u(z).

pX., is zero because x,, ,(¢) does not appear explicitly in 5#. The boundary
conditions x*(t,) are specified [x% ,(¢,) = 0 and x¥,,(¢;) = 0]; the remain-
ing boundary conditions at ¢ = ¢, can be determined by using the results
obtained in Section 5.1.

Example 5.3-2. Let us now return to the problem discussed earlier in
Example 5.3-1. The system
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x1(1) = x2(0)
xy(t) = —x2(1) + u(®) (5.3-52)

is to be controlled to minimize the performance measure
tr
Jw) = J’ 3[x3) + wr(n)] dt. (5.3-53)
fo

x(#o) is specified, the final state x(¢,) is free, and #, is given. The admissible
control values are constrained by

—-1<uin<1 for t € [to, t,]. (5.3-54)
In addition, it is required that
—2<<x,()<L2 for t € [to, t7]. (5.3-55)

We must first express (5.3-55) in the form of (5.3-48). To do this, observe
that (5.3-55) implies

[x2() + 2] >0, (5.3-56a)
and

[2—x@®]=o0. (5.3-56b)
Writing (5.3-55) as these two inequalities gives

H&W) = [x() +2] =0
L&@) = [2 = x,(0] > 0.1 (5.3-57)

The Hamiltonian is given by

H(x(1), u(t), p(1)) = 3x}(1) + u*(t) + pi(x2(r)
= p2()%:(1) + p2(u(®) + ps(){[x2(1) + 2P L (—x2() — 2)
+[2 = %O 100 — 2)} (5.3-58)

The necessary conditions for optimality, found from Egs. (5.3-51), are

x’lk(l) = x’?’.‘(:)’ xT(tO) = X1,

) = —x3() + w10,  x¥(to) = x3,
230 = [x3() + 22 1(~x3() — 2)
2 - FOPLGEO -2, *(t) =0 (5.3-59)

, a5
PO = — Go- = ~xt(@)

t We could also combine the inequalities (5.3-56) by writing [x2(r) + 2][2 — x2(r)] = 0.
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5O = — gx— — PO + 30 — 290 x5 + 2] 1 (—x3() — 2)
+ 20402 — O] G30) — 2t

¥ = —‘;Tf = 0 = p¥(t) = a constant (5.3-60)
3
-1, for 1 < p¥(1)
uk(t) = {—p§@), for —1 <p¥(r) <1 (5.3-61)
+1, for p¥(t) < —1.

The boundary conditions at the final time are x¥(t;) = 0 (specified), and
p¥(ty) = p¥(ty) = 0—from Table 5-1, or Eq. (5.1-18).

Comparing these necessary conditions with the results obtained in Exam-
ple 5.3-1b, we see that the expressions for the optimal controls in terms of
the extremal costates are the same; however, the equations for p%(¢) are
different because of the presence of the state inequality constraints; hence,
the optimal trajectories and control histories will generally not be the same.

In our discussion of state and control inequality constraints we have not
considered constraints that include both the states and controls, that is,
constraints of the form

f(x(z), u(r), > 0. (5.3-62)

For an explanation of how to handle constraints of this form, as well as an
alternative derivation of the minimum principle, the interested reader can
refer to Chapter 4 of [S-3].

In the remainder of this chapter we shall consider several examples of the
application of Pontryagin’s minimum principle. These examples will illustrate
both the utility and the limitations of the variational approach to optimal
control problems.

5.4 MIMNMIMUM-TIME PROBLEMS

In this section we shall consider problems in which the objective is to
transfer a system from an arbitrary initial state to a specified target set in
minimum time. The target set (which may be moving) will be denoted by

1 Performing the differentiation d#/dx, formally also results in the presence of two unit
impulse functions, which occur at x}(f) = 42; however, these terms are such that either
the impulse functions or their coefficients are zero for all ¢ € [to, tf], so the impulses
do not affect the solution.
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S(z), and the minimum time required to reach the target set by ¢*. Mathe-
matically, then, our problem is to transfer a system

X(9) = a(x(®), u(®), 1) (5.4-1)

from an arbitrary initial state x, to the target set S(¢) and minimize
tr
J(u) = j dt =t, — t,. (54-2)
fo
Typically, the control variables may be constrained by requirements such as

lul<1, i=12....,m €t t*]. (5.4-3)

Our approach will be to use the minimum principle to determine the optimal
control law.t

To introduce several important aspects of minimum-time problems, let us
consider the following simplified intercept problem.

Example 5.4-1. Figure 5-15 shows an aircraft that is initially at the point
x =0, y = 0 pursuing a ballistic missile that is initially at the point
x = a > 0, y = 0. The missile flies the trajectory

y

a >

= E———>
[

Figure 5-15 An intercept problem
xpu(@) =a 4+ 0.183
yu(t) =0 (5.4-9

for ¢ > 0; thus, in this example the target set S(z) is the position of the
missile given by (5.4-4).

Neglecting gravitational and aerodynamic forces, let us model the
aircraft as a point mass. Normalizing the mass to unity, we find that the
motion of the aircraft in the x direction is described by

x(t) = u(t), (5.4-5)

1 For additional reading on time-optimal systems see [P-1] and [A-2].
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or, in state form,

x,(8) = x,(1) (5.4-6)
X5(8) = u(?),

where x,(¢) & x(r) and x,(¢) A %(¢). The thrust u(¢) is constrained by the
relationship

lu()| < 1.0. (5.4-7)

By inspection of the geometry of the problem, it is clear that the
optimal strategy for the pursuing aircraft is to accelerate with the maxi-
mum thrust possible in the positive x direction; therefore, u*(¢) should
be +1.0 for ¢ € [0, t*]. To find ¢*, we must determine the value(s) of ¢
for which the x coordinate of the aircraft coincides with the target set
S(r); hence, assuming x(0) = 0, we solve the equation

$1*1? = a + 0.1[t*]? (5.4-8)

for r*. Common sense indicates that there may not be a positive real value
of t* > 0 for which\ Eq. (5.4-8) is satisfied—if the missile is far enough
away initially he can escape. It can be shown that interception is impos-
sible if a is greater than 1.85. If ¢ = 1.85, interception occurs at t* = 3.33;
for a < 1.85 the minimum interception times are less than 3.33.

Although greatly simplified, the preceding example illustrates two impor-
tant characteristics that are' typical of minimum-time problems:

1. For certain values of the initial condition a, a time-optimal control
does not exist.

2. The optimal control, if it exists, is maximum effort during the entire
time interval of operation.

In the subsequent development we shall generalize these concepts; let us
first consider the question of existence of an optimal control.

The Set of Reachable States

If a system can be transferred from some initial state to a target set by
applying admissible control histories, then an optimal control exists and may
be found by determining the admissible control that causes the system to
reach the target set most quickly. A description of the target set is assumed
to be known; thus, to investigate the existence of an optimal control it is
useful to introduce the concept of reachable states.
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DEFINITION 5-1

If a system with initial state x(¢,) = X, is subjected to a// admissible
control histories for a time interval [¢, ], the collection of state
values x(¢) is called the set of states that are reachable (from x,) at
time ¢, or simply the set of reachable states.

Although the set of reachable states depends on Xx,, #,, and on ¢, we
shall denote this set by R(#). The following example illustrates the concept
of reachable states.

Example 5.4-2. Find the set of reachable states for the system
x(t) = u(), (5.4-9)
where the admissible controls satisfy
—1<u@® <1, (5.4-10)
The solution of Eq. (5.4-9) is
x() = xo + f: (@) d. (5.4-11)
If only admissible control values are used, Eq. (5.4-11) implies that
xo — [t =t < x(t) < xo 4+ [t — 10} (5.4-12)

Figure 5-16 shows the reachable sets for ¢ =1¢,,¢,, and ¢;, where
t <ty <t

R(t3) -

fe————R(t))——

*—R(rl)—-|
N

X0

— R(f;)

\\\\\\\\\5 R(t;)

—~———— R(t3)
Figure 5-16 The reachable states for Example 5.4-2

The concept and properties of reachable sets are inextricably intertwined
with the question of existence of time-optimal controls; if there is no value



244 The Calculus of Variations and Pontryagin's Minimum Principle Sec. 54

of ¢t for which the target set S(¢) has at least one point in common with the
set R(¢), then a time-optimal control does not exist. Conversely, it is helpful
to visualize the minimum-time problem as a matter of finding the earliest
time ¢* when S(¢) and R(z) meet, as shown in Fig. 5-17 for a second-order
system. The target set is a moving point, and the boundary of the set of reach-
able states at time 7, is denoted by dR(¢,). The target set and the set of reach-
able states first intersect at point p, where t* = ¢,.

Unfortunately, although it is conceptually satisfying to think of minimum-
time problems in this fashion, it is generally not feasible to determine solutions
by finding the intersections of reachable sets with the target set except in
very simple problems (like Example 5.4-1). General theorems concerning the
existence of time-optimal controls are unavailable at this time; however,
later in this section we shall state an existence theorem that applies to an
important class of minimum-time problems.

xl(t)

3R(ty)

Figure 5-17 The minimum-time problem viewed as the intersection
of a target set, S(¢), and the set of reachable states, R(?)
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The Form of the Optimal Control for a Class of
Minimum-Time Problems

Now let us determine the form of the optimal control for a particular
class of systems by using the minimum principle. We shall assume that the
state equations of the system are of the form

x(8) = a(x(r), H) + B(x(¥), Hu(?), (5.4-13)

where B is an n X m array that may be explicitly dependent on the states
and time. 1t is specified that the admissible controls must satisfy the inequal-
ity constraints

M,_<u(ty< M, i=1,2,...,m, t € [t, t*]; (5.4-14)
M,, and M,_ are known upper and lower bounds for the ith control com-

ponent.
The Hamiltonian is

HX(D), u(), p(1), 1) = 1 4 p(D[a(x(2), 1) + BX(), Hu(r)].  (5.4-15)
From the minimum principle, it is necessary that

1+ p*"()[a(x*(2), 1) + BX*(1), Hu*(r)]
<1+ p*¥"()[alx* (1), 1) + B(x*(r), nyu(r)] (5.4-16)

for all admissible u(¢), and for all ¢ € [t,, t*]. Equation (5.4-16) implies that

P¥T()B(x*(2), u*(2) < p*T()B(X*(1), Hu(r); (5.4-17)

hence, u*(?) is the control that causes p*7(¢)B(x*(¢), f)u(?) to assume its
minimum value. If the array B is expressed as

BOC(), 1) = [ b0, Dlb,0(0), ]+ (b0, ] (54-18)

where by(x*(2), 1), i =1,...,m, is the ith column of the array, then the
coefficient of the ith control component u,(¢) in (5.4-17) is p*"(£)b,(x*(?), 1), and

PTOBOCD, Hu() = 3 PO, D). (5419)

Assuming that the control components are independent of one another,
we then must minimize

PO [b,H@), N]ule)
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with respect to u,(¢) for i = 1,2, ..., m. If the coefficient of u,(¢) is positive,
u*(¢t) must be the smallest admissible control value M,_. If the coefficient
of u,(f) is negative, u*(¢) must be the largest admissible control value M, ;
thus, the form of the optimal control is

My, for p*T(£)b(x*(1), £) <O
uk(t) =4{M,_, for p*T()b(x*(2), ) > 0 (5.4-20)
Undetermined, for p*7(£)b,(x*(¢), £) = 0.

i=12,...,m

If the extremal state and costate trajectories are such that the coefficient of
u/t) is as shown in Fig. 5-18(a), then the history of uj(¢) will be as shown in
Fig. 5-18(b).

p*T(Ob(x* (1), )]

N

(a)
|
I U !
| ! |
u; ) ; — :«-—Singular
) |
M;, |- —_ |
| | I
I jo—7-+{
M —— g —
| | | -t
(b)

Figure 5-18 The relationship between a time-optimal control and
its coefficient in the Hamiltonian

Notice that if p*7(¢r)b(x*(¢), 1) passes through zero, a switching of the
control uf(¢) is indicated. If p**(£)b(x*(¢), ¢) is zero for some finite time
interval, then the coefficient of u,(¢) in the Hamiltonian is zero, so the neces-
sary condition that u*(f) minimize 5# provides no information about how to
select u}(¢); this signals the so-called singular condition, to be discussed in
Section 5.6. Here we shall consider only problems in which the singular
condition does not arise; such problems will be called normal.

Equation (5.4-20) is the mathematical statement of the well-known
bang-bang principle, that is, if the state equations are of the form (5.4-13)
and the admissible controls must satisfy constraints of the form (5.4-14),
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then the optimal control to obtain minimum-time response is maximum effort
throughout the interval of operation. The bang-bang concept is intuitively
appealing as well. Certainly, the men who race automobiles come very close
to bang-bang operation— they use the accelerator and brakes often; thus,
their fuel consumption is large, tires and brakes do not last very long, and the
cars are subjected to severe mechanical stresses, but barring accidents and
mechanical failures, the drivers reach their destination quickly.

Before we move on to some problems that can be completely solved by
using analytical methods, let us consider a nonlinear problem of the fore-
going type.

Example 5.4-3.1 Figure 5-19 shows a lunar rocket in the terminal phase
of a minimum-time, soft landing on the surface of the moon. We shall
make the following assumptions:

spacecraft mass
spacecraft mass rate
gravitational constant in
the near field of the moon
= constant;relative exhaust
velocity of gases
= —km:thrust

-M<m

~ »w@s

T,

MOON
Figure 5-19 Lunar soft landing

a. Aerodynamic forces and gravitational forces of bodies other than the
moon are negligible.

b. Lateral motion is ignored; thus, the descent trajectory is vertical and
the thrust vector is tangent to the trajectory.

¢. The acceleration of gravity is a constant, because of the nearness of
the spacecraft to the moon.

d. The relative velocity of the exhaust gases with respect to the spacecraft
is constant.

1 See [M-2] and [M-3].
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e. The mass rate is constrained by
—M<m<0. (5.4-21)
The equation of motion is

m(Dx(t) = —gm(t) + T(t)

= —gm(t) — k(0. (54-22)

Defining the states of the system as x; A x, x, & X, x3 2 m and the
control as u 2 r1 leads to the state equations

x,(8) = x,(1)
() = —& — %(t)u(t) (5.4-23)
x3(t) = u(t).

The Hamiltonian is

A, u(t), D) = 1 + pr(@O)eat) — gpa(r) — LD 4 b ey,

x3(t)
(5.4-24)
and the optimal control must satisfy
A1), u*(@), pH()) < M), u(t), p*(t))
for all admissible u(r), and for all ¢ € [¢q, t,]; therefore,
kp3(t)
% _ 2
0, for p¥() (0 <0
%
W) = | —M, for p) — RIS o (5.4.25)
x$(r)
Undetermined, for p¥(t) — kp ,;Zk 0)_ 0.
x¥()

To obtain an explicit solution for u*(r) we would have to solve a
nonlinear two-point boundary-value problem (see Problem 5-31).

Minimum-Time Control of Time-Invariant Linear Systems

Armed with our knowledge about the form of time-optimal controls,
for the remainder of this section we shall consider the following important
class of problems: A linear, stationary system of order » having m controls
is described by the state equation

x(2) = Ax(r) + Bu(y), (5.4-26)
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where A and B are constant n X n and n X m matrices, respectively. The
components of the control vector are constrained by

lu{H1 < 1, i=12,...,m (5.4-27)

Assuming that the system is completely controllable and normal (no singular
intervals exist), find a control, if one exists, which transfers the system from
an arbitrary initial state x, at time ¢t = 0 to the final state x(#;) = 0 in mini-
mum time. We shall refer to this problem as the stationary, linear regulator,
minimum-time problem.

From Eq. (5.4-20) we know that the optimal control, if it exists, is bang-
bang. Let us now state without proof some important theorems due to
Pontryagin et al. [P-1] which apply to stationary, linear regulator, minimum-
time problems.

THEOREM 5.4-1 (EXISTENCE)

If all of the eigenvalues of A have nonpositive real parts, then an
optimal control exists that transfers any initial state x, to the origin.

THEOREM 5.4-2 (UNIQUENESS)
If an extremal control exists, then it is unique.t

Since an optimal control, if one exists, must be an extremal control,
this theorem indicates that a control which satisfies the minimum principle
and the required boundary conditions must be the optimal control. Thus, if
an optimal control exists, satisfaction of the minimum principle is both
necessary and sufficient for time-optimal control of stationary, linear regula-
tor systems.

THEOREM 5.4-3 (NUMBER OF SWITCHINGS)

If the eigenvalues of A are all real, and a (unique) time-optimal
control exists, then each control component can switch at most
(n — 1) times.

Thus, an nth-order system having all real, nonpositive eigenvalues has a
unique time-optimal control with components that each switch at most
(n — 1) times.

Example 5.4-4, Find the optimal control satisfying
luH <1 (5.4-28)
which transfers the system

T Recall that a control which satisfies the necessary conditions in Egs. (5.3-21) and the
required boundary conditions is called an extremal control.
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x1(t) = x,(t)

. (5.4-29
$20) = u(t) )
from any initial state x, to the origin in minimum time. Here
0
A= l:o l] and B = { } (5.4-30)
00 1

Since the eigenvalues of A are both zero, we know from Theorems 5.4-1
through 5.4-3 that an optimal control exists, is unique, and has at most
one switching.

The Hamiltonian is

A X@), u(t), p(t)) = 1 + p()x(0) + p2()u(r); (5.4-31)

thus, the minimum principle indicates that the optimal control u*(f)
must satisfy

PE@Ou*() < pE(u(®) (5.4-32)
for all admissible u(t) and for all ¢ € [to, t/]. It can be shown that a sin-

gular interval cannot exist (see Section 5.6); therefore, the optimal control
found from (5.4-32) is

*(f) — —1, for p¥(1)> 0 B _
O {+1, for p¥(H) < 0} £ —sgn (pf(1).  (5.4-33)

From the Hamiltonian the costate equations are

Pr(H =0

. (5.4-34)
PF@) = —p}@).
The costate solution is of the form
¥ =c
! ' (5.4-35)

P¥@W) = —cit + ¢,

where ¢, and ¢, are constants of integration. Equation (5.4-35) indicates
that p¥, and therefore u*, can change sign at most once (this result also
follows from Theorem 5.4-3).

Since there can be at most one switching, the optimal control for a
specified initial state must be one of the forms:

+1, forall ¢t € [t,, t*], or

—1, for all ¢ € [tg, t*], or

+1, fort € [t t,),t and —1, fort € [t,, t*], or
—1, fort e [ty 1), and +1, fort e [t4, t*].

uk(t) = (5.4-36)

+ The notation ¢ & [to, ¢,) means to < < t,.
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Thus, segments of optimal trajectories can be found by integrating the
state equations with ¥ = +1 to obtain

x,(t) = £t + ¢35 (5.4-37)
x (1) = +4t2 + ¢t + ¢4, (5.4-38)

where c¢; and ¢, are constants of integration, and the upper sign corresponds
to u = +1. Time can be eliminated from these equations by squaring the
first equation, multiplying the result by 4 and comparing with Eq. (5.4-38)
to obtain

x,(t) = $x3(2) + cs, for u = +1 (5.4-39)
and
x(t) = — 1x(t) + ¢, for u = —1; (5.4-40)

cs and ¢ are constants. Equations (5.4-39) and (5.4-40) each define a
family of parabolas that are shown in Fig. 5-20(a) and (b)—the arrows
indicate the direction of increasing time.

Now, let us consider each of the alternatives for the optimal control.
From Fig. 5-20 we see that the controls given by Eq. (5.4-36) correspond
to the following situations:

1. u*(t) = +1 for t € [t,, t*]. The initial state x, must lie on segment
A-0 in Fig. 5-20(a).

2. u*(t) = —1 for t € [t,, t*]. The initial state x, must lie on segment
B-0 in Fig. 5-20(b).

3. u*(t) = +1 for t € [to, t,), and u*(t) = —1 for ¢ € [¢t,, t*]. Since the
optimal control is —1 for ¢ € [¢t,, t*], at time ¢, the system state must
lie on segment B-0. This transfer has been accomplished by a control
of u* = -+1; thus, the optimal trajectory consists of an initial segment
like one of the trajectories in Fig. 5-20(a) followed by a switching of
the control to —1 upon reaching B-0, and then on to the origin along
B-0 with u* = —1. Notice that B-0, in addition to being the terminal
segment of the optimal trajectory, is the locus of state values where
the control switches from +1 to —1; therefore, B-0 is referred to
as a switching curve. Now, which initial states will have optimal
trajectories as described above? Again referring to Fig. 5-20, we see
that only the parabolic curves that have ¢s < 0 intersect B-0. In addi-
tion, only trajectories that begin below B-0 with u* = +1 will ever
intersect B-0. We conclude that for initial states lying below both
A-0 and B-0 the optimal control will be u* = +1 until B-0 is reached,
followed by u* = —1 thereafter.

4. u*(t) = —1 for t € [ty, t,), and u*(t) = +1 for t € [t;, t*]. The same
reasoning used in 3 leads to the conclusion that for states initially Iying
above 4-0 and B-0 the optimal control will be u* = —1 followed by
u* = 41; the switching occurs when the trajectory intersects A-0.
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x,(t)
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Figure 5-20 (a) Trajectories for u = +-1. (b) Trajectories foru = —1



Sec. 5.4 Variational Approach to Optimal Control Problems 253

Thus, we see that 4-0 and B-0, in addition to being terminal segments
of optimal trajectories, together compose the switching curve A4-0-B
shown in Fig. 5-21(a). By putting ¢s = ¢s = 0in Egs. (5.4-39) and (5.4-40),
we find the equation of this switching curve to be

x,1(0) = — $x2(0 | x:(0)). (5.4-41)

To summarize, for states above 4-0-B the optimal control is u* = —1
until the trajectory intersects 4-0, where the optimal control switches to

xy(1)
4

> x, (1)

(a)

xz(f)

xp(8)

(b)

Figure 5-21 (a) The switching curve. (b) Optimal trajectories for
several initial state values.
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u* = +1. The optimal control u* = +1 is applied to transfer states below
A-0-B to segment B-0, where the optimal control switches to u* = -1,
Once the system has reached the origin, it can be kept there by applying
u*(¢) = 0 for t > t*, Optimal trajectories for several initial state values
are shown in Fig. 5-21(b).

It must be emphasized that we have succeeded in obtaining the optimal
control law; that is, the optimal control at any time ¢ is known as a func-
tion of the state value x(¢). To express the optimal control law in a con-
venient form, let us define the switching function s(x(¢)), obtained from
Eq. (5.4-41) as

s(x(D) A x1 () + 33,00 | x,(0) |- (5.4-42)
Notice that

s(x(1)) > 0 implies x(¢) lies above the switching curve 4-0-B.

s(x(1)) < 0 implies x(¢) lies below the switching curve 4-0-B.

s(x(1)) = 0 implies x(¢) lies on the switching curve 4-0-B.
Thus, in terms of this switching function the optimal control law is

—1, for x(¢) such that s(x(7)) > 0
+1, for x(¢) such that s(x(t)) < 0

u*(t) = { —1, for x(¢) such that s(x(#)) = 0 and x,(t) > 0 (5.4-43)
+1, for x(¢) such that s(x(¢)) = 0 and x,(t) <0
0, forx(t) =0.

An implementation of this optimal control law is shown in Fig. 5-22;
the required hardware consists of a summing device, a sign changer,
a nonlinear function generator, and an ideal relay.

The procedure used in solving the preceding example can be general-
ized to include nth-order, stationary, linear regulator systems controlled
by one input. Let us assume that all of the eigenvalues of A are real and non-
positive; thus, for all initial states a unique time-optimal control exists and
has at most (n — 1) switchings. To obtain the optimal control law:

1. (a) We first determine the set of points from which the origin can be
reached with u = 4-1 (call this set O_), and the set of points from
which the origin can be reached with u = —1 (call this set O_).
Let O, denote the set of points from which the origin can be
reached with no control switchings; then

0,=0,U0._ (5.4-44)
where U denotes “the union of.”t

t O, is the union of O, and O..; this means that every element of O is an element of either
0,.0., or both O, and O-.
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Figure 5-22 Implementation of the time-optimal control law for
Example 5.4-4

Next, we determine the set of points O_, from which O, can be
reached by applying u = —1; the origin can be reached from
O_, by applying u = —1 until reaching O, followed by u = +1.
Similarly, we find the set of points O,_ from which O_ can be
reached by applying u = +1. To reach the origin from O,_, we
apply u = -1 until reaching O_, followed by u = — 1. The set of
points from which the origin can be reached with at most one
switching (two control values) is given by

0,=0,U0_U0,_UO0._,
=0,U0,_UO0_t (5.4-45)
We continue until the set of points O,_, from which the origin can
be reached with at most (n — 2) switchings is determined. All
points not in the set O,_, require (n — 1) switchings to reach the

origin. By eliminating time from the trajectory equations, express
O,_, in the form

s(x(¢)) = 0. (5.4-46)

- U O-, means the set of points which are in at least one of the sets Oy,

04, O_,.
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2. Next, we determine the optimal control to be applied at any point
in the state space. The switching function s(x(#)) defines a switching
hypersurface that divides the state space into two half-spaces.
From one half-space the control #* = -1 is applied to drive the
system to O,_,, where the control switches to —1, until the system
reaches O,_,, where the control again switches to +1, etc., until
the origin is reached. From the other half-space the control se-
quence is reversed; u* = —1 is applied to transfer the system to
0,_,, where the control switches to +1, and so on, until reaching
the origin.

3. Finally, we determine a combination of physical devices to imple-
ment the time-optimal control law.

Before concluding our consideration of time-optimal problems, let us
solve another second-order example that illustrates the procedure we have
just summarized.

Example 5.4-5. Find the control law for transferring the system

24(1) = x5()

5.4-
x3(8) = —ax, () + u(®) G447

from an arbitrary initial state x, to the origin in minimum time. The
admissible controls are constrained by

lu@| < 1, (5.4-48)

and a is a positive real number.

The eigenvalues of this system are 0 and —a; thus, since both eigenvalues
are real and nonpositive, the hypotheses of Theorems 5.4-1 through 5.4-3
are satisfied and we know that an optimal control exists that is unique
and has at most (n — 1) switchings.

We are again dealing with a second-order system; thus, we know that
the optimal control law is determined by a switching curve—in higher-
dimensional problems switchings occur on hypersurfaces in the state
space.

From the minimum principle and Theorem 5.4-3, we find that the
possible forms for the optimal control are the same as given for Example
5.4-4 in Eq. (5.4-36).

Next, let us proceed to find the sets O, and O_ (from which the origin
can be reached by applying only u = +1, or u = —1) by solving the
differential equations (5.4-47) with 4 = +1. The solutions are

x(f) = e1€7 £ L1 — €] (5.4-49)

@)= —Sent g Lewy o (5.4-50)
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These equations define two families of curves; to determine the curves
which pass through the origin, set x,(¢) = x,(t) = 0 and # = 0 (since the
system is time invariant, + = O is an arbitrary reference time), solve for
¢, and ¢,, and substitute in (5.4-49) and (5.4-50) to obtain

x(t) = £ L1 — €] (5.4-51)

x () = + %t + %e—ﬂ' F %- (5.4-52)

To determine O, use the upper sign (which corresponds to u = +1),
solve (5.4-51) for ¢, and substitute in (5.4-52) to obtain the relationship

xi(t) = — LI (—a[xz(t) - H) —Laotr Gasy

The set of points in the x,- x, plane for which this eyuation is satisfied is
O.. Similar reasoning yields as the expression for O_

0 = {1, 50 20 = gy (a0 + £ ]) = Lxa0} 1
(5.4-54)
Since Eq. (5.4-53) applies for x,(t) < 0 and (5.4-54) applies for x,(f) > 0,

the expression for O, (the set of all points that are in either O, or 0.) is
given by

01 = {0, 10: 00 = 2B L (o[ 1501 + L) - Lx0}-
(5.4-55)

The switching function is then

s = 10 = 22 Lin (10 + L)+ gu0. $5456)

The switching curves for a = 0.5, 1.0, and 2.0 are shown in Fig, 5-23,
and some typical trajectories for a = 0.5 are shown in Fig. 5-24. It is
left as an exercise for the reader to verify that for points above the switch-
ing curve the optimal control is #* = —1 until reaching the switching
curve, where u* switches to +1, and remains at +1 until the origin is
reached, at which time u* = 0 is applied to keep the system at the origin.
Similar reasoning gives the optimal control law for points below the
switching curve. In summary, the optimal control law is

T In denotes the natural logarithm, or log..
1 This notation means that O_ is the set of points that satisfy the equation

i) = 1o (a[xz(t) + %]) ~ L.
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—1, for x(#) such that s(x(¢)) > 0
+1, for x(z) such that s(x(¥)) <0
u*(t) = { —1, for x(¢) such that s(x(¢)) = 0 and x,(t) > 0 (5.4-57)
+1, for x(¢) such that s(x(#)) = 0 and x,() <O
0, forx()=0.

Xz (t)
a=0.5 a=10 a=2.0
B
Zo*
7
0
X, (2)
Zo¥®
*7
A
a=2.0 a=1.0 a=0.5
Figure 5-23 Time-optimal switching curves for Example 5.4-5 with
a=0.5,1.0,20
Xy (1)
b
B

7

({*
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> x (1)

- *
>

s ¥
*/

V4

A

Figure 5-24 Several optimal trajectories for Example 5.4-5 with
a=20.5
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Summary

In this section we have found that time-optimal controls for a rather
general class of systems are “bang-bang”; that is, the optimal control switches
between its maximum and minimum admissible values.

A procedure for finding time-optimal control laws for time-invariant,
linear regulator systems was discussed and demonstrated for two second-
order systems. Although this procedure is conceptually straightforward, it
does have serious limitations:

1. For higher-order systems (n > 3) it is generally difficult, if not impos-
sible, to obtain an analytical expression for the switching hypersur-
face.

2. Even in cases where an expression for the switching hypersurface
can be found, physical implementation of the optimal control law may
be quite complicated, indicating that a suboptimal, but easier-to-
implement, control law may be preferable.

3. The procedure is generally not applicable to nonlinear systems, because
of the difficulty of analytically integrating the differential equations.

55 MINIMUM CONTROL-EFFORT PROBLEMS

In the preceding section we considered problems in which the objective
was to transfer a system from an arbitrary initial state to a specific target
set as quickly as possible. Let us now consider problems in which control
effort required, rather than elapsed time, is the criterion of optimality. Such
problems arise frequently in aerospace applications, where often there are
limited control resources available for achieving desired objectives.

The class of problems we will discuss is the following: Find a control
uw*(r) satisfying constraints of the form

Ml‘— Sul(t)—<_Ml+’ = l: 2,~- -, m, (5~5'l)
which transfers a system described by
x(1) = a(x(1), u(1), 1) (5.5-2)

from an arbitrary initial state x,, to a specified target set S(¢) with a minimum
expenditure of control effort.

As measures of control effort we shall consider the two performance
indices

5,0 = 7| 3 )| a (553)
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and
tr m ]
J,(n) = J. [Z r,.u,?(t)J dt, (5.5-4)
o Li=1
where f§, and r,, i =1, ..., m, are nonnegative weighting factors. As dis-

cussed in Chapter 2, the fuel consumed by a mass-expulsion thrusting system
is often expressed by an integral of the form (5.5-3); thus, if a performance
measure to be minimized has the form given by J,, we shall refer to the prob-
lem as a minimum-fuel problem. The total electrical energy supplied to a
network of resistors by several voltage and current sources is given by an
integral of the form (5.5-4); hence, if a performance measure of this form
is to be minimized, we shall say that we wish to solve a minimum-energy
problem. The reader must be cautioned that in a particular problem (5.5-3)
may not represent fuel expenditure, or control energy required may not be
given by (5.5-4); therefore, the results obtained in this section will apply to
the performance measure J, or J,, not necessarily to the problems of mini-
mizing fuel or energy consumption.

Our discussion will be primarily devoted to solving several example
problems that are rather elementary, but nonetheless indicative of the charac-
teristics of fuel and energy-optimal systems.t

Minimum-Fuel Problems

In our discussion of minimum-time problems in Section 5.4 the concept
of reachable states was introduced. Recall that R(¢r) was used to denote the
set of states that can be reached at time # by starting from an initial state
X, at time ¢,. Minimum-fuel problems may also be visualized in terms of
reachable states; that is, the minimum-fuel solution is given by the intersec-
tion of the target set S(¢) with the set of reachable states R(¢), which requires
the smallest amount of consumed fuel. To represent this idea geometrically we
could use a state-time-consumed-fuel coordinate system and determine the
intersections (if any) of S(¢) and R(#). Unfortunately, although such a geomet-
ric representation is helpful as a conceptual device, it is of limited value in
actually obtaining solutjons. Instead of pursuing this avenue further, we
shall approach minimum control-effort problems by starting with the neces-
sary conditions provided by Pontryagin’s minimum principle.

The Form of the Optimal Control for a Class of Minimum-Fuel Problems. Let
us assume that the state equations of a system are of the form

X(t) = a(x(1), 1) + B(x(2), Hu(), (5.5-5)

T For additional reading on fuel- and energy-optimal systems see [A-2], [L-3], and [L-4].
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where B is an n X m array that may be explicitly dependent on the states
and time. The performance measure to be minimized is

J(u) = f [2; | u(2) |] dt, (5.5-6)
and the admissible controls are to satisfy the constraints
-1 <y <+ 1, i=1,2,...,m, t €lto, t ]t (5.5-7)

The Hamiltonian is

m

A X(), u(e), p(0), 1) = 3 [u(D)] + P (R)alx(), 1)
+ p(OB(x(2), Nu(?), (5.5-8)
and the minimum principle requires that
B 1] + PTG, ) -+ POBH), ur()

- (5.5-9)
< ; [u(D)] + p*T()a(x*(2), 1) + p*" ()B*(r), u(r),

or
3 1] + PTOBGH), D) < 35 [u0)] -+ PTOBED), HuC)
(5.5-10)

for all admissible u(z), and for all ¢ € [¢,, #/]. As in Section 5.4 let us express
B in the form

B, ) = [, D] b, 0] - b6, 0],

where b(x*(¢), r) is the ith column of the n X m-dimensional B array.

Assuming that the components of u are independent of one another, we have
from (5.5-10) that

[uF ()] + pF(O)b(x*(1), t)ui(t)

. (5.5-11)
<lu()| + pObX*(@), Du(n),  i=1,2,...,m
The definition of |u,(¢)] is
1 For simplicity we have assumed that M;. = —1, M, = +1,and ;= 1fori= 1,2,

.., m. The derivation is easily modified if these assumptions are not made.
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uft), foru()>0

—u(t), foru(t) <0; (5.5-12)

| u,(t) I S {
therefore,

[u ()| + p*T(Ob(x*(2), u?)
. [1 F p*T(Ob(x*(2), D]u(r), foru(t) >0 (5.5-13a)
- {[——l -+ PFT(Ob(X*(2), ]ut), for u ) <O. (5.5-13b)

1f p*"()b,(x*(2), £) > 1.0, the minimum value of expression (5.5-13a) is
0, because u,(¢) > 0; the minimum value of (5.5-13b) is attained for u(¢)
= —1 and is equal to [+1 — p*7(1)b(x*(), N] < 0.

If p*7()b,(x*(2), £) = 1.0, (5.5-13a) can be made equal to O by selecting
() = 0; on the other hand, (5.5-13b) will be O for all u,(r) < 0; therefore,
any nonpositive #,(f) will minimize (5.5-13).t

If 0 < p*(£)b,(x*(¢), 1) < 1.0, the minimum values of both (5.5-13a)
and (5.5-13b) are zero and are attained for u,(¢) = 0.

The same reasoning is used for p*7()b,(x*(?), ) < 0. In summary, the
form of the optimal control is

1.0, for p*T(£)b(x*(2), 1) < —1.0

0, for —1.0 < p*T(O)b(x*(1), 1) < 1.0

--1.0, for 1.0 < p*T(£)b(x*(2),r) (5.5-14)
an undetermined nonnegative value if p*T()b(x*(¢), 1) = —1.0

ut(o)

an undetermined nonpositive value if p*7()b(x*(¢), 1) = +1.0.

Figure 5-25 illustrates the dependence of the optimal control on its coef-
ficient in the Hamiltonian, Notice that whereas in minimum-time problems
the optimal control is “bang-bang” (see Fig. 5-18) the minimum-fuel control
may be described as “bang-off-bang” (if we assume no singular intervals).

In the remainder of this section we shall consider problems in which the
plant dynamics are linear.

Free Final Time. Let us now consider some examples of linear minimum-
fuel problems in which the final time ¢, is not specified.

Example 5.5-1. The system
x(1) = u(t) (5.5-15)

is to be transferred from an arbitrary initial state x, to the origin. The
performance measure to be minimized is

T If p*Th; = 41 for a nonzero time interval, a singular solution exists; otherwise, a
control switching is indicated.
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Figure 5-25 The relationship between a fuel-optimal control and

its coefficient in the Hamiltonian

tr
J@ = [t a,
where t; is free, and the admissible controls satisfy

fu(t)| < 1.0.

It is desired to determine the optimal control law.
From (5.5-15) and (5.5-16) the Hamiltonian is

SH0(), u(t), p(0) = {u(@®)] + p(Ou().

The costate equation
ds#
(1) = — o = 0
) %
has a solution of the form

p*(t) =€y,

where ¢, is a constant.

(5.5-16)

(5.5-17)

(5.5-18)

(5.5-19)

(5.5-20)
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From Eq. (5.5-14) with b; = B = |, we have

1.0, for p*(t) =c¢, < —1.0

0, for 1.0 <¢, <1.0
u*(@t) ={—10, for 1.0<c, (5.5-21)
an undetermined nonnegative value if ¢; = —1.0

an undetermined nonpositive value if ¢; = +1.0.

The solution of the state equation is

x() = xy + f‘o u(t) dt; (5.5-22)
thus, for x(t;) =0
0= x5 + jo’ ) dt, (5.5-23)
or
Xp = — f 0 u(e) dt. (5.5-24)

Clearly, from (5.5-24) the control u(t) =0, ¢ € [0, ¢;] can be optimal
only if x, = 0—a trivial case. Suppose that x, = 5.0; then each of the
controls

u(t) = —1, t € [0, 5]

u(t) = —0.5  t e [0,10]
u(t) = —0.2, € [0,25]

(5.5-25)
u(t) = —0.1, te0,50]

~1, tel0,2]
ut) = {—0.5 te (28]

satisfies (5.5-24) and each makes J = 5.0. Now suppose we calculate a
lower limit on the fuel required to force this system from x; to the origin.
From (5.5-24)

[x0] = ] fo’ w(e) dt ‘ < f Y u) de = J. (5.5-26)

But each of the controls of (5.5-25) satisfies J = | x,|; therefore, each of
these controls is optimal. In this example, the optimal controls are non-
unique. Notice, however, that the optimal controls of Eq. (5.5-25) each
require a different amount of time to transfer the system to the origin.

In the preceding example there were many optimal controls (an infinite
number); let us now consider an example in which an optimal control does
not exist.
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Example 5.5-2. It is desired to transfer the system
x(t) = —ax(t) + u(®) (5.5-27)

from an arbitrary initial state x, to the origin with admissible controls
satisfying

lu(h) < 1, (5.5-28)

and a > 0.
The performance measure to be minimized is

J() = f 0 Lu(t) | d, (5.5-29)

where 1/ is free.
Using the state equation and the performance measure, we find that
the Hamiltonian is

H(x(1), u(t), p(t)) = |u(®)| — p(Hax(®) + p(t)u(t); (5.5-30)

thus, the costate equation is

. ds#
PO = — g = ap*(0), (5.5-31)
which implies that

X)) = ¢ €%, (5.5-32)

where ¢, is a constant of integration.
From Eq. (5.5-14) with b; = B = 1, the form of the optimal control is

+1.0, for p*(#)< —1.0
u*(t) = 0, for —1.0<p*() <1.0 (5.5-33)
—1.0, for 1.0 < p*(@).

Notice that when | p*(f)] passes through the value 1.0, a switching of the
control is indicated. Another possibility is that |p*(¢)| might remain
equal to 1.0 for a finite time interval; however, since

p*(t) = c,e

and a > 0, it is clear that this situation cannot occur. It should be em-
phasized that the foregoing development tacitly assumes that an optimal
control exists; we shall test the validity of this assumption shortly.

p*(t) will be one of the five forms shown in Fig. 5-26, depending on the
value of ¢;. The optimal controls, given by Eq. (5.5-33), which corre-
spond to Fig. 5-26 are
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Figure 5-26 Possible forms for the costate and the corresponding
fuel-optimal controls

u*(t) = —1,
0,
W = {~1
) = {+(1)’
u*(t) = +1,
u*(t) = 0,

t€[0,¢], forl<c¢
te[0,¢
[0, 2:) for0 <c, <1
t €[t ty],
telo,?
[0, 4,) for -1 <¢;, <O
t e, ],
te[0,¢t], forc; < —1
t 0,1, forc, =0.

(5.5-34)

We shall denote these five forms by «* = {—1}, {0, —13}, {0, 41}, {+13},

and {0}, respectively.

The solution of the state equation is
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X(t) = €-x, 4 € fo € u(T) d. (5.5-35)

Notice that if the control is identically zero, then at t = ¢,
x(ts) = €% X,. (5.5-36)

Since the system is stable, it naturally moves toward zero when no control
is applied. If we are willing to wait long enough, the system will come
arbitrarily close to (but never precisely reach) zero—and without the
expenditure of any control effort at all. However, the problem statement
stipulated that x(z;) = 0, not |x(¢;)| << #, where # is some arbitrarily small
positive number. If x, > 0, then clearly u* = {—1}, {0, —1} are the only
possible choices for the optimal control (why?). If u(f) = —1 for
t € [0, t7), it can be shown from (5.5-35) that x(¢;) = 0 implies

ty = 711— In (ax, + 1); (5.5-37)

thus, the fuel consumption using this control would be [In (ax, + 1)}/a.
Now, suppose u(t) = 0 is applied for 0 < ¢ < ¢, and u(t) = —1 for
t; <t <ts. From (5.5-35)

x(ty) = €y + €~ | Y en[—11dr; (5.5-38)
setting x(¢;) = 0 and performing the indicated integration, we obtain
0 = ey — {1 — €-elirr] (5.5-39)
Solving for ¢, — t; gives
b=t = — a1l — axe), (5.5-40)

but since ¢, is free, ax,€~* can be made arbitrarily small by letting
t f—> 0, SO

[ty —ti]]—> 0 as ty—> co. (5.5-41)

But t; — ¢, is the interval during which u = —1 is applied, and by
making ¢, very large the consumed fuel can be made arbitrarily small
(but not zero). Our conclusion is that if ¢, is free an optimal control does
not exist—given any candidate for an optimal control, it is always pos-
sible to find a control that transfers the system to the zero state with
less fuel.

It is left as an exercise for the reader to verify that the same conclusions
hold when x, < 0.
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In the preceding example we have simply verified mathematically what
common sense tells us; if elapsed time is not penalized, and the system moves
toward the desired final state without consuming any fuel, the optimal strat-
egy is to let the system drift as long as possible before any control is applied.
At this point the reader might wonder: what did the minimum principle do
for us? Could we not have deduced the same conclusions without using it
at all? The answer to these questions is that quite likely the same conclusions
could have been reached by intuitive reasoning alone, but the minimum
principle, by specifying the possible forms of the optimal control, greatly
reduced the number of control histories that had to be examined. In addition,
we must remember that our interest is in solving problems that generally
require more than physical reasoning and common sense.

Let us next discuss minimum-fuel problems with fixed final times.

Fixed Final Time. First, let us reconsider the preceding examples with the
final time specified; that is, ¢, = T. The value of T must be at least as large
as t*, the minimum time required to reach the specified target set from the
initial state x,.

In Example 5.5-1 we tound that the optimal control was nonunique—there
were an infinite number of controls that would transfer the system to x(z,)
= 0 with the minimum possible amount of fuel. The situation with ¢, = T
is much the same unless 7= t*. In this case, the minimum-fuel and mini-
mum-time controls are the same and unique. If, however, T > t*, there are
again an infinite number of controls that are optimal; it is left as an exercise
for the reader to verify that this is the case. Fixing the final time does not
alter the nonuniqueness of the optimal controls for the system of Example
5.5-1.

Let us now see if fixing the final time has any effect on the existence of
fuel-optimal controls for the system of Example 5.5-2.

Example 5.5-3. The possible forms for optimal controls and the solution
of the state equation are given in (5.5-34) and (5.5-35). If the fixed final
time T is equal to the minimum time ¢* required to reach the origin from

the initial state x,, then u*(¢) is either 41 or —1 throughout the entire
interval [0, T'], and

X(T) =0 = €-aTx, 4 €T f: €[+1]4d7, (5.5-42)
or
Xo = Ffer — 1] (5.5-42a)

This expression defines the largest and smallest values of x, from which
the origin can be reached in a (specified) time T. Initial states that satisfy
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Ter — 11 < x| (5.5-43)

cannot be transferred to the origin in time T therefore, we shall assume
in what follows that

[ %ol S“Ia‘ [T — 1]. (5.5-44)

If (5.5-44) is an equality, this means that T = ¢*; otherwise, T > ¢*,
and the form of the optimal control must be as shown in Fig. 5-26(b)
or (c). The optimal control must be nonzero during some part of the
time interval, because we have previously shown that the system will not
reach the origin in the absence of control.

If xo > 0, the optimal contrel must have the form w* = {0, —1}
shown in Fig. 5-26(b). Substituting u(r) =0, ¢ € [0, £,), u(t) = —1,
t € [t;, T], in (5.5-35) and performing the integration, we obtain

X(T) = 0 = €=oTxy — L e-erfear — gon], (5.5-45)

Solving this equation for ¢,, the time when the control switches from O
to —1, gives

fy = =10 (€ — axy). (5.5-46)

Similarly, if x, < 0, the optimal control has the form u* = {0, +1}
shown in Fig. 5-26(c), and

X(T) = 0 = €0Txy + Le-orfesr — o] (5.5-47)
Solving for the switching time ¢ yields
£y = L In (e + ax,). (5.5-48)

From (5.5-46) and (5.5-48) the optimal control is

0, for xo > 0 and ¢t < »(11— In (69T — axg)

—1, forx0>0and%ln(€"——axo)gth
u*(t) = \ (5.5-49)
0, for xo <Oand? < z In (€°T + axy)

+1, forx, <0 and-:;ln(enf Foaxg) <t1<T
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Notice that the optimal control expressed by (5.5-49) is in open-loop
form, because «*(t) has been expressed in terms of x, and ¢; that is,

w*(t) = e(xy, t). (5.5-50)

From an engineering point of view we would prefer to have the optimal
contro!l in feedback form; that is,

u*(t) = f(x(@), 1). (5.5-51)

To obtain the optimal control law, we observe that
T
x(T) = €-3T-Ax(f) 4 €-aT f € u(t) dt (5.5-52)
t

for all t. We know that during the last part of the time interval the control
is either 4-1 or —1, depending on whether x(¢) is less than zero or greater
than zero; thus, assuming x(t) > 0, we have

X(T) = 0 = €-alT-rix(f) — g-oT J‘ Temdr, t>1,. (5553)
t
Performing the indicated integration and solving for x(¢t) gives
x(1) = -;1;[6"”—" -1, =t (5.5-54)

During the initial part of the time interval, the optimal control is zero;
consequently,

x(t) = €79 x,, t <ty (5.5-55)
The switching of the control from 0 to —1 occurs when the solution
(5.5-55) for the coasting interval (u = 0) intersects the solution (5.5-54)

for the on-negative interval (u = —1). Figure 5-27 shows these solutions.
Defining

AT — ) & Lfes-i — 1), (5.5-56)

we observe that the control should switch from 0 to —1 when the state
x(r) is equal to z(T — ¢). 1t is left as an exercise for the reader to verify
that if — [€*T — 1}/a < x, < O the optimal control switches from 0 to
+1 when

x(t) = —z(T — ). (5.5-57)

To summarize, the optimal control law is
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x(t)
4 TleT 1)
\
\
\\ x foru=-—1
xo [

\\/
x foru=0

+1 -
-
\

W*(n=0 wey=—1

Figure 5-27 The two segments of a fuel-optimal trajectory
0<xo <[eoT — 1)/a

—1, for x(¢) = z(T — ¢)
ux@) =4 0, for|x(®)] <z(T—1) (5.5-58)
+1, forx(t) < —z(T— 1)

or, more compactly,

") {0, for |x()| < z(T — 1)
u =

—sgn (x()), for |x(t)| = z(T — o).t (5.5-58a)
An implementation of this optimal control law is shown in Fig. 5-28.
The logic element shown controls the switch. Notice that the controller
requires a clock to tell it the current value of the time—the control law
is time-varying, Naturally, this complicates the implementation; a time-
invariant control law would be preferable.

Selecting the Final Time. In the preceding example fixing the final time led
to a time-varying control law. We next ask : “How is the final time specified ?”
To answer this question, let us see how the minimum fuel required depends
on the value of the final time 7. Equations (5.5-46) and (5.5-48) indicate
that the control switches from O at

1 Here we define sgn (0) 2. 0.
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Figure 5-28 Implementation of a time-varying fuel-optimal control
law.

1 =— ln (T —a|x,)) (5.5-59)

and remains at 41 until the final time is reached; thus, the fuel consumed is

T—1t,=T—

1

Lin(er —alx,). (5.5-60)
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Using Eq. (5.5-60), the designer can obtain a plot of consumed fuel
versus final time for several values of x, selected from the range of expected
initial conditions; one such curve is shown in Fig. 5-29 for {x,|= 10.0
and a = 1.0. The selection of T is then made by subjectively evaluating the
information contained in these curves. Figure 5-29 indicates that in this
particular example the value chosen for T will reflect the relative importance
of consumed fuel and elapsed time.

The reader may have noticed that in Examples 5.5-1 through 5.5-3 a
“trade-off” existed between fuel expenditure and elapsed time. The reason
for this is that in each case the target set was the origin, and with no control
applied the state of these systems either moved closer to the origin (Examples
5.5-2 and 5.5-3) or remained constant (Example 5.5-1). If the plants were of
such a form that the states moved away from the target set with no control
applied, the solutions obtained could have been quite different—see Problem
5-28.

Fuel consumed
6.r

1 1 1 | + ' | 1

J
0. l. 2. 3. 4, S. 6. 7. 8. 9. 10.
Final time, T

Figure 5-29 Dependence of consumed fuel on specified final time
T, |xo| =10

A Weighted Combination of Elapsed Time and
Consumed Fuel as the Performance Measure

The preceding examples in this section illustrated a trade-off between
elapsed response time and consumed fuel; that is, the fuel expended to
accomplish a specified state transfer was inversely proportional to the time
required for the transfer. One technique for handling problems in which this
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trade-off is present is to include both elapsed time and consumed fuel in the
performance measure. For a system with one control, such a performance
measure would have the form

Ja) = | [A + (D] dt. (5.5-61)

The final time ¢, is free, and 4 > 0 is chosen to weight the relative importance
of elapsed time and fuel expended. For A — O the optimal system will re-
semble a free-final-time, fuel-optimal system, whereas for 4 — oo the optimal
solution will resemble a time-optimal solution. Let us now reconsider Exam-
ple 5.5-2 with (5.5-61) as the performance measure.

Example 5.5-4. The state equation and control constraint are given in
Egs. (5.5-27) and (5.5-28). The Hamiltonian is

H (), u(t), p(0)) = A + |u@®)| — p()ax(t) + p()u(t),  (5.5-62)

and the costate equation is (again)

PXO) = ap*(1); (5.5-63)

thus,

pH(t) = c,€, (5.5-64)

where ¢, is a constant of integration. The requirement that #*(¢) minimize
the Hamiltonian on an extremal trajectory is unaffected by the presence
of A in the performance measure; therefore,

1.0, for p*(t) < —1.0
0, for —1.0 <p*() <1.0
u(t) ={—1.0, forp*(t) > 1.0 (5.5-65)
undetermined, but nonnegative for p*(t) = —1.0f
undetermined, but nonpositive for p*(¢) = +1.0.}

If we recall that a > 0, Eq. (5.5-64) ensures that p*(¢) cannot equal +1.0
for a nonzero time interval; hence, there are no intervals of singular
control.

Equations (5.5-64) and (5.5-65) indicate that the optimal control must
again be one of the forms shown in Fig. 5-26. Let us now examine the
various alternatives.

Suppose that t, = 0 and u*(t) = 0, ¢ € [0, ¢/]; this implies that

H(x*(), 0, p*()) = A — p*(t)ax*()  forall ¢ € [0, ¢/]. (5.5-66)

t If p*(t) = £1.0 for a nonzero time interval, this signals the singular condition.
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In this problem the final time is free and ¢ does not appear explicitly in
the Hamiltonian; therefore, from Eq. (5.3-41),

Hx*(), u*@t), p*)) =0 for all ¢ € [0, #/]. (5.5-67)

If Eq. (5.5-67) is to be satisfied, then Eq. (5.5-66) implies that

x*(t) = E;é:(t_)’ (55'68)
or
x*(t) = ac €% for all ¢ € [0, #/]. (5.5-68a)

Since x*(t;) = 0, Eq. (5.5-68a) can be satisfied for A > 0 at ¢; only if
t; — oo, but this implies that the minimum cost approaches co. From
our earlier discussion of this example, however, we know that controls
can be found for which J < co; therefore, we conclude that u(f) = 0,
t € [0, t/], cannot be an optimal control.

If u* = {0, —1} is the form of the optimal control, p*(¢) must pass
through the value +1.0 at the time #;, when the control switches [see
Eq. (5.5-65)]. In addition, we know from Eq. (5.5-65) that u*(¢,) is some
nonpositive value, so |u*(t,)| = —u*(¢,). The Hamiltonian must be zero
for all #; thus, at time ¢,

K, w(ty), p*(1)) = & — w*(t)) — ax*(ty) + u*(t,) =0, (5.5-69)

which implies that

x*(t,) = %- (5.5-70)
This equation is an important result, for it indicates that if there is a
switching of control from 0 to —1 it occurs when x*(¢) passes through
the value A/a. From Eq. (5.5-35)—the solution of the state equations——
and Eq. (5.5-70) we obtain the family of optimal trajectories

x(t) = xo€ for x(t) > % (5.5-71a)
x(t) = —f;—e“"['-fﬂ - %[1 —€mat-ul] for0 < x(1) < % (5.5-71b)

A control of the form {0, —1} cannot transfer the system x(f) = —ax(f)
+ u(?) from a negative initial state value to the origin; hence, Eq. (5.5-71)
applies for x4 > 0.

Optimal trajectories for several different values of x, are shown in
Fig. 5-30. Notice that if 0 < xo < 4/a, the optimal strategy is to apply
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x(t)

Q>

Figure 5-30 Several optimal trajectories for a weighted-time-fuel
performance measure.

>

u*(f) = —1 until the system reaches x(t) = 0. This is an intuitively
reasonable result, because if 4 —» oo, all trajectories begin with x, < i/a
and will thus be minimum-time solutions. On the other hand, if A — 0
the line A/a moves very close to zero, and the optimal strategy approaches
that indicated by Example 5.5-2 with free final time; let the system coast
to as near the origin as possible before applying control.

The reader can show that for x, < —A/a, the optimal strategy is to
allow the system to coast [with u*(f) = O] until it reaches x(t) = —A/a,
where the optimal control switches to u*(t) = +1.

The optimal control law—which is time-invariant—is summarized by

0, for % < x(t)

—1.0, for0 <x(r)<

NP

uk(t) = (5.5-72)

+1.0, for — % <x(r)<O0

0, for x(t) < — %

0, for x(t) =0.
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Figure 5-31 illustrates this optimal control law and its implementation.
In solving this example the reader should note that we were able to
determine the optimal control law using only the form of the costate
solution—there was no need to solve for the constant of integration c,.
We also exploited the necessary condition that

‘#(X*(t): u*(t)s p*(t)) = O’ te [0’ tf]r (55'73)

for ¢, free and 5 not explicitly dependent on ¢, to determine the optimal
control law and to show that the singular condition could not arise.

Let us now consider a somewhat less elementary example, which further
illustrates the use of a weighted-time-fuel performance measure.

Example 5.5-5. Find the optimal control law for transferring the system

x(f) = x,(1)
%(0) = u()

from an arbitrary initial state x(0) = x, 7= 0 to the final state x(t;) = 0
with a minimum value of the performance measure

(5.5-74)

J(u) = J “IA + |u@) ] dt. (5.5-75)
The admissible controls are constrained by

[u@)| < 1.0; (5.5-76)

the final time # is free, and 4 > 0.
The reader can easily verify that the presence of 4 in the Hamiltonian

A1), u(®), p(0) = A + [u@®)| + p(Ox2(0) + po(u(®)  (5.5-7T)
does not alter the form of the optimal control given by Eq. (5.5-14);
therefore, we have
1.0, forp¥() < —1.0
0, for —1.0 < p%(r) < 1.0
u*(t) =4 —1.0, for 1.0 < p¥(r) (5.5-78)
undetermined, but >0 for p¥(t) = —1.0
undetermined, but <0 for p¥(r) = 4-1.0.

The costate equations

(5.5-79)
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have solutions of the form

pf@) =c
! ' (5.5-80)
p;‘k(f) = —clt + Cy.
Clearly, p¥ can change sign at most once, so the optimal control must
have one of the forms (excluding singular solutions)

w* = {o}’ {+1}’ {'—1}, {O) +1}’ {0: _1}’ {+]’ 0}’

5.5-81
{_1’0}:{+1’0’_1}’{'~1y09 +l}- ( )
First let us see whether or not there can be any singular solutions.
For p¥(?) to be equal to 4-1.0 during a finite time interval, it is necessary
that ¢; = 0 and ¢, = +1.0. Substituting p¥(t) = +1 in (5.5-77), and
using (5.5-78) and the definition of the absolute value function, we obtain

SEX*(L), u*(t), p*(@)) = A >0 (5.5-82)

if the singular condition is to occur, but we know (since 5 is explicitly
independent of time and ¢, is free) that the Hamiltonian must be zero
on an optimal trajectory. We conclude, then, that the singular condition
cannot arise in this problem.

Let us now investigate the control alternatives given by Eq. (5.5-81).
First, observe that none of the alternatives that ends with an interval of
u = 0 can be optimal because the system (5.5-74) does not move to the
origin with no control applied. Next, consider the optimal control
candidates

w* = {—1}, {0, —1}, {+1,0, —1}. (5.5-83)

To be optimal, the trajectories resulting from these three control forms
must terminate at the origin with an interval of #* = —1 control.
The system differential equations are the same in this problem as in the
minimum-time problem discussed in Example 5.4-4, so the terminal seg-
ments of these trajectories all lie on the curve B-0 in Fig. 5-20(b). Now,
for any interval during which u(z) = 0 the state equations are

x1(1) = x3(0)

) — 0, (5.5-84)

which implies that

x,(f) = ¢3 = a constant

5.5-85
x((t) = c;3t + ¢4 ( )

Thus, as time increases, x, (f) increases or decreases, depending on whether
x,(t) is greater or less than zero when the control switches to u = Q.
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Several trajectories for u = 0 are shown in Fig. 5-32; the direction of
increasing time is indicated by the arrows. Notice that if x,(¢) = 0 when
the control switches to zero, the value of x; does not change until the
control becomes nonzero.

x, (1) =)El(f)

—x, (1)

Figure 5-32 Trajectories for u = 0

Trajectory segments generated by u = +1 are the same as trajec-
tories shown in Fig. 5-20(a).

To draw the candidates for an optimal trajectory we simply piece
together segments of the trajectories shown in Figs. 5-20 and 5-32. The
trajectories C-D-E-0, C-F-G-0, and C-H-I-0 shown in Fig. 5-33 are
three candidates for an optimal trajectory which has the initial state x,.
Our task now is to determine the point on segment C-K, where the
optimal control switches from +1 to 0. Once this point is known,
we can easily determine the entire optimal trajectory.

Let ¢, be the time when the optimal control switches from +1 to 0,
and let ¢, be the time when the optimal control switches from 0 to —1.
Clearly, ¢, occurs somewhere on segment C-K and ¢, on segment K-0.
We know from Eq. (5.4-40) that on K-0

x¥() = —3x¥U), (5.5-86)
SO

x¥(ty) = —§x32(t2). (5.5-87)
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Figure 5-33 Three candidates for the optimal trajectory with
initial state xg

In addition, integrating Eq. (5.5-84) gives
x¥(t,) = x¥(t) + x$ @), — ], (5.5-88)

and from Egs. (5.5-80) and (5.5-78) we obtain

P(t) = —city + ¢, = —1.0 (5.5-89)
Pi(t) = —city + ¢y = +1.0. (5.5-90)
Because pf(f,) = —1 and p¥(¢;) = +1, the necessary condition that

s be identically zero requires that

A+ x¥() =0 (5.5-91)
and

A+ e x¥(t) =0. (5.5-92)

Let us now solve Egs. (5.5-87) through (5.5-92) for x¥(t,).
First we observe that Egs. (5.5-91) and (5.5-92) imply that
x¥(t;) = x¥(t,) and that
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-4

C; = % (55-93)
Subtracting (5.5-90) from (5.5-89) gives
2
[t — 1] = —a (5.5-94)
which, if we use (5.5-93), becomes
%
[ty — t,] = 2—"% (5.5-95)
Putting this in (5.5-88) yields
XH(ty) = x¥(t) + 33‘5@ (5.5-96)

Substituting the right side of Eq. (5.5-87) for x¥(¢,) and using the fact
that x¥(t,) = x¥(¢,), yields

—%x*zo,) — XXty + —’fli'—) (5.597)
Collecting terms, we obtain
e ; 4521, (5.5-98a)

This is the sought-after result. The values of x, and x, that satisfy Eq.
(5.5-98a) are the locus of points where the control switches from -1 to
0. It is left to the reader to show that for u* = {—1,0, +1} the locus
of points which defines the switching from u* = —1 to u* = 0 is given by

i) = + 4 ZJ; XE3(r)). (5.5-98b)

Notice particularly that Eq. (5.5-98) together with Eq. (5.5-87) and its
counterpart for u*(t) = +1 define the optimal control /aw. Furthermore,
this optimal control law is time-invariant. The switching curves for
A =0.1, 1.0, and 10.0 and several optimal trajectories for A = 1.0 are
shown in Fig. 5-34. Observe that if A — oo the switching curves merge
together—the interval of u* =0 approaches zero, and trajectories
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X, (t)

b 710)]

+> x (1)

A

Figure 5-34 (a) Switching curves for weighted-time-fuel optimal
performance. (b) Weighted-time-fuel optimal trajectories for three
initial conditions (4 = 1.0)
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approach the time-optimal trajectories of Example 5.4-4. On the other
hand, if A — 0, the interval of u* = 0 approaches infinity, and the
trajectories approach fuel-optimal trajectories.

The numerical value of A must be decided upon subjectively by the
designer. To help in making this decision, curves showing the dependence
of elapsed time and consumed fuel on A—such as Fig. 5-35—could be
plotted for several initial conditions.

] i I I
Fuel | Time

2.5 50. -

2.0 - 40.

Time to
reach x =0

L 1 1
0.001 0.01 0.1 1. 10. 100.

A

Figure 5-35 The dependence of elapsed time and consumed fuel on
the weighting parameter 4, x(0) = [“(1)(5)]
Minimum-Energy Problems

The characteristics of fuel-optimal problems and energy-optimal problems
are similar; therefore, the following discussion will be limited to one exam-
ple, which illustrates some of the differences between these two types of
systems.

Example 5.5-6. The plant of Examples 5.5-2 and 5.5-4
x(t) = —ax(t) + u() (5.5-99)

is to be transferred from an arbitrary initial state, x(0) = x,, to the
origin by a control that minimizes the performance measure

J(w) = Jof [A + wr@)] dr; (5.5-100)

the admissible controls are constrained by

[ < 1. (5.5-101)
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The plant parameter a and the weighting factor A are greater than zero,
and the final time ¢ is free. The objective is to find the optimal control
law.

The first step, as usual, is to form the Hamiltonian,

H (1), u(t), p(0)) = A + u*(t) — p(ax(t) + p(u(®).  (5.5-102)
The costate equation and its solution are
PX() = ap*(1) (5.5-103)
and
pH(t) = c €%, (5.5-104)

For [u(t)| < 1, the control that minimizes 5 is the solution of the
equation

"a_fi — k() + pH(t) = 0. (5.5-105)

Notice that 5 is quadratic in u(f) and

L
G = 2>0, (5.5-106)
SO
u*(t) = —3p*0) (5.5-107)

does globally minimize the Hamiltonian for |4*(f)| < 1, or, equivalently,
for

[p*0)| < 2. (5.5-108)
If | p*(£)| > 2, then the control that minimizes 5# is

+1.0, for p*(t) < —2.0

—1.0, for 2.0 < p*(¢). (5.5-109)

u*e) = {

Putting Egs. (5.5-107) and (5.5-109) together, we obtain

1.0, for p*(t) < —2.0
u*(t) = —4 p*@t), for —2.0 < p*(t) < 2.0 (5.5-110)
—1.0, for 2.0 < p*@).

This relationship between an extremal control and an extremal costate
is illustrated in Fig. 5-36. There is no possibility of singular solutions
in this example, since there are no values of p*(¢) for which the Hamil-
tonian is unaffected by u(z).
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u* ()

————— +1.

p

Figure 5-36 The relationship between an extremal control and
costate

We rule out the possibility that p*(f) = 0 for ¢ € [0, #,] {since this
implies u*(t) = 0 for ¢ € [0, ¢;] and the system would never reach the
origin}; the possible forms for p*(¢) are shown in Fig. 5-37. Corresponding
to the costate curves labeled 1, 2, 3, and 4 are the optimal control pos-
sibilities:

1. u* = [—4p*}, or (—}p*, —1.0}, (5.:5-111a)

depending on whether or not the system reaches the origin before p*
attains the value 2.0.

2. u* ={—1.0}. (5.5-111b)
3wt = {—%p*}) or {_._.%p*’ +1'0}9 (55-111(:)

depending on whether or not the system reaches the origin before p*
attains the value —2.0.

4. u* = {+1.0}. (5.5-111d)

The controls given by (5.5-111a) and (5.5-111b) are nonpositive for all
t € [0, t/] and correspond to positive state values. This can be seen from
the solution of the state equation
x(t;) = 0 = e-alr=tix(t) + €-aur J' Yeru(rydr,  (5.5-112)
1
which implies that

—eux(r) = ﬁ' €*u(t) d. (5.5-113)
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PY0)

Figure 5-37 Possible forms for an extremal costate trajectory

For u(z) nonpositive when T € [t, t,], the integral is negative; therefore,
x(¢) must be positive. Similarly, the nonnegative controls specified by
Egs. (5.5-111c) and (5.5-111d) correspond to negative values of x(t).

Since ¢ is free, and the Hamiltonian does not contain ¢ explicitly, it is
also necessary that

K, w @), p*t) =0, t € [to, 1] (5.5-114)

If the control saturates at the value —1 when ¢ = ¢, then from (5.5-110),
p*(t;) = 2.0; substituting u*(¢t,) = —1 and p*(¢;) = 2 in 5, we obtain

H0H(ty), u*(ty), p*(ty)) = A + 1 — 2ax*(t,) — 2 =0, (5.5-115)
which implies

A-1

x’k(tl) = 2a

(5.5-116)

If the control saturates at —1 when ¢ = ¢,, then from (5.5-111) u*(r) = —1
for t € [ty, t7], and x*(t) < x*(t,) for ¢t > t¢,; thus,

ur(t) = —1 for 0 < x*(t) < '3"——2%—1- (5.5-117a)

Using similar reasoning, we can show that if the control saturates
at the value 41 when ¢ = ¢}, then
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A—1

x*(ty) = ", (5.5-118)
and
*(r) A1,
w(t) = +1 for —5g <% (t) <0. (5.5-117b)

Notice that if 4 < 1, x*(¢,) < 0 in (5.5-116), and x*(¢}) > 0 in (5.5-118),
but (5.5-116) applies for positive state values and (5.5-118) applies for
negative state values; hence the optimal control does not saturate for

A<

Let us now examine the unsaturated region where u*(t) = —4p*(t).
Again using the necessary condition of Eq. (5.5-114), by substituting
u*(t) = —4p*(t), we obtain

K@), (), p* ) = A + 1p*2(t) — p*(t)ax*(t)
— $p*%(1) = 0. (5.5-119)

Solving for p*(¢) yields

pH(t) =2 [—ax*(t) + M ax*@ + 1), (5.5-120)

which implies

u*(t) = [ax*(t) £ o/Tax*(0)]? + 1] (5.5-121)

If x*(@t) > 0, u*(f) must be negative, so the minus sign applies; for
x*(t) < 0 the positive sign applies. The optimal control law, if we put
together Eqgs. (5.5-121) and (5.5-117), is

[ax(t) — /Tax(]? + ], for0 < )‘—é—;—l— < x(f)

10, for0 <xn <1
u*(t) =4 +1.0, for — ).“_.2?(_1_1 <x(t) <0 (5.5-122)F
[ax(t) + ~/[ax(t)]2 + 4], for x(t) < — %*1 <0

\0, for x(t) = 0.

Figure 5-38 illustrates this optimal control law and its implementation.
Comparing Figs. 5-31(a) and 5-38(a), the reader will note that the
weighted-time-fuel-optimal controls are either “on” (41) or “off” (0),
whereas the weighted-time-energy-optimal controls can assume all values
from —1 to +1.

T The optimal control law is valid for all state values, so we write x(z) instead of x*(¢).
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Example 5.5-6: 2 =2.0,a =1.0. (b) Implementation of the
weighted-time-energy optimal control law for Example 5.5-6
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To provide an additional basis for comparing this energy-optimal
system with the fuel-optimal system of Example 5.5-4, several optimal
trajectories for each system are shown in Fig. 5-39. For the weighted-
time-energy-optimal system A was 2; the value of A for the weighted-
time-fuel-optimal system was adjusted for each initial condition to make
the two systems require the same amount of time to reach the origin.
The fuel and energy requirements for the two systems are summarized
in Table 5-2.

Table 5-2 FUEL AND ENERGY REQUIREMENTS FOR THE SYSTEMS OF
EXAMPLES 5.5-4 AND 5.5-6

Initial Time required Fuel for time- Fuel for  Energy for time- Energy for

condition to reach fuel-optimal  time-energy- energy-opti- time-fuel-
x(0) x(ts) =0 system optimal system mal system optimal system
1.5 0.982 0.8252 0.8434 0.7473 0.8252
2.0 1.205 0.9138 0.9559 0.8043 0.9138
2.5 1.393 0.9688 1.0326 0.8356 0.9688
3.0 1.555 1.0038 1.0883 0.8548 1.0038
5.0 2.034 1.0612 1.2090 0.8858 1.0612
7.0 2.361 1.0788 1.2636 0.8950 1.0788
Summary

In this section we have considered the optimization of systems whose
control effort is to be conserved. Although our discussion was primarily
concerned with the solution of several example problems, it was shown that
the form of fuel-optimal controls for a class of nonlinear systems is “bang-
off-bang”; it was left as an exercise for the reader (Problem 5-30) to show
that the form of energy-optimal controls for the same class of nonlinear
systems is a continuous, saturating function.

In all of the examples considered a trade-off existed between conservation
of control effort and rapid action. It was found that such problems may be
characterized by nonunique or nonexistent optimal controls when the final
time is free, and that fixing the final time may still result in nonunique optimal
controls or in a time-varying optimal control law. To circumvent these dif-
ficulties, a performance measure consisting of a weighted combination of
elapsed-time and control-effort expended was introduced. In the problems
solved, this form of performance measure resulted in time-invariant optimal
control laws, and, in addition, reflected the trade-off between conservation of
control effort and rapid action. It should be emphasized that there are alter-
native formulations of minimum-control-effort problems (sece Problem 5-33)
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x(t) =—x(t) +u(t)

time-energy

— —— time-fuel

Figure 5-39 Weighted-time-fuel and weighted-time-energy optimal
trajectories

and that conserving control effort and obtaining rapid action may not always
be conflicting objectives (see Problems 5-28 and 5-31).

No attempt was made to generalize the results of the examples to a “design
procedure.” The reason for this omission is that unless the system is of low
order, time-invariant, and linear, we have little hope of analytically determin-
ing the optimal control law. The difficulties mentioned at the end of Section
5.4 for time-optimal systems also apply to the energy- and fuel-optimal sys-
tems considered here—only more so. The primary virtue of the discussion in
this section is that it provides insight into the form of the optimal control
and furnishes a starting point for numerical determination of the optimal
control law.

5.6 SINGULAR INTERVALS IN OPTIMAL CONTROL PROBLEMS

In discussing minimum-time and minimum-control-effort problems we
have used Pontryagin’s necessary condition,
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(L), u¥(2), pr(0), 1) < A (x*(), u(®), p*@¥), ) (5.6-1)

for all 1 € [¢,, t;] and for all admissible u(z), to determine u*(¢) in terms of
the extremal states and costates. If, however, there is a time interval [¢,, #,]
of finite duration during which the necessary condition (5.6-1) provides no
information about the relationship between u*(z), x*(¢), and p*(¢), then we
say that the problem is singular. The interval [¢,, ¢,] is called an interval of
singularity, or simply a singular interval.

We shall now investigate the conditions that allow singular intervals to
occur, and the effects of singular intervals on optimal controls and trajec-
tories. To begin our investigation, let us return to a minimum-time problem
discussed in Section 5.4.

Example 5.6-1. In Example 5.4-4 we considered the problem of trans-
ferring the system

x,(1) = x,(t)
X2(0) = u(t) (5.6-2)

from an arbitrary initial state to the origin in minimum time. The admis-
sible controls were required to satisfy the inequality

lu(t)| < 1.0. (5.6-3)
- In solving this problem we assumed that a singular interval did not

exist; let us now verify that this assumption was correct.
The Hamiltonian is

H (), (), p(1)) = 1 + pi(t) x2(8) + p2(Du(), (5.6-4)
and application of the minimum principle gives
L+ pT0x3@) + pEu*(0) < 1+ pFOxEEO) + pF(Ou@).  (5.6-5)
If there exists a time interval [¢,, ¢,] during which
PO =0, (5.6:6)

then (5.6-5) provides no information about the relationship between u*(z),
x*(#), and p*(¢). Therefore, if

pF®) =0 for t € [t,, t;], (5.6-7)

then [t,, ¢,] is a singular interval.t Let us investigate further to see if this
condition can occur. The costate equations

t Isolated times when p¥(¢) passes through zero indicate a switching of the control, not
a singular interval.
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5¥(1) = 0
7 (5.6-8)
pEO = —p¥®)
have solutions of the form
¥@)=c¢c
) 0] 1 (5.69)
pf(t) == “‘Clt + Cy.
But for p¥(t) =0 for ¢ € [t,, #,] it is necessary that
cy =0 (5.6-10a)
and
¢, = 0. (5.6-10b)

Substituting these values in the Hamiltonian gives
X)), u*(t), p*(1) = 1 for all ¢ € [0, ¢/], (5.6-11)

but since the final time is free and 5# is explicitly independent of time,
Eq. (5.6-11) violates the necessary condition that

H(X*(1), u*(1), p*() =0 for all t € [0, ¢,]. (5.6-12)

We conclude that p¥(f) cannot be zero during a finite time interval, and,
thus, that a singular interval cannot exist.

Let us now discuss in more generality the possibility of singular intervals
occurring in linear minimum-time problems.

Singular Intervals in Linear Time-Optimal Problems
Consider the minimum-time transfer of the linear, stationary system
x(t) = Ax(¢) + bu(t) (5.6-13)

from an arbitrary initial state x, at ¢ = 0 to some target set S(¢). For simplicity
we shall assume that the control is a scalar. The admissible controls satisfy
the inequality

lu(s)| < 1.0. (5.6-14)

Let us attempt to find conditions that are necessary for the existence of a
singular interval.
The Hamiltonian is

H(X(0), u(2), p(1)) = 1 + PT(HAX(1) + pT(Nbu(r), (5.6-15)
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and from the minimum principle we know that if an optimal control u*
exists it must satisfy

1 + p*(DAX*(r) + p*"(Dbu*(r) < 1 + p*(NAX*(2) + p*T(H)bu(r) (5.6-16)

for all ¢ € [0, ¢,] and for all admissible u(z). Since the final time is free and
## does not contain ¢ explicitly, we also know that

HX*), u*(@), p¥()) = 1 + p*T(t) Ax*(2) + p* () bu*(r) =0 (5.6-17)
forall ¢t € [0, t,]. From (5.6-16) we observe that [z,, ¢,] is a singular interval if
p")b=0 forallt € [1,,1,] (5.6-18)

Clearly, this condition occurs if p*(t) = 0 for ¢ € [¢,, t,]. But this cannot
happen, because substituting p*(z) = 0 in Eq. (5.6-17) leads to the contradic-
tion 1 = 0; therefore,

p*(t) A0  foranyt € [0,1,]. (5.6-19)
Equation (5.6-18) is also satisfied (for all ¢) if
b =0, (5.6-20)

but this indicates that the control does not affect the system at all; we might
say that the system is “completely uncontrollable.” This is our first hint that
perhaps controllability has something to do with the existence of singular
intervals.

Having ruled out p*(¢) = 0, or b = 0 as possibilities, let us consider the
remaining alternative, namely that the product p**(t) b = 0 for ¢ € [¢,, 1,].
If p*7(¢) b is to be zero for a finite time interval, this implies that derivatives
of all orders of p*”(¢) b are zero during this interval; that is,

P ()b =0
:ka,‘[p*T(t)b] =0, k=12... (5.6-21)

Since b is an n X 1 matrix of constants,

L prmb] = Lo o)

)
2 p*(D)b. (5.6:22)
From the Hamiltonian the costate equation is

pH(e) = —ATP*(1); (5.6-23)
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hence the costate solution is
PH() = €47,

where ¢ is the vector of initial costate values.
Let us write out a few of the derivatives in Eq. (5.6-21); we have

P(Ob = 0
P7()b = 0

P*7(®b =0

P =0  fort e [t,, 1)
Now, using Egs. (5.6-23) and (5.6-24), we have
p¥(6)b = —[ATe A"c]"b = 0.
By applying the matrix identity
M, M,]" = MiM7t
Eq. (5.6-26) becomes
[e=A™c]"Ab = 0.
Similarly, differentiating Eq. (5.6-23) gives

P*(1) = —ATH*(0),

50
B*7(1)b = [[—AT][—AT]e-A"c]™b = 0.
Using (5.6-27) twice on the term in brackets gives

[e-A™c]"A%b = 0.

295

(5.6-24)

(5.6-25)

(5.6-26)

(5.6-27)

(5.6-28)

(5.629)

(5.6-30)

(5.6-31)

The pattern is now clear; continuing to write out the terms of Eq. (5.6-21),
using Eqgs. (5.6-23), (5.6-24), and (5.6-27), we obtain for the kth derivative

P*(b = [—1]e A"c"A*» =0, k=0,1,2,....

Cancelling the minus signs, we find that the first #n equations aref

T See Appendix 1.
1 Recall that n is the order of the system.

(5.6-32)



296 The Calculus of Variations and Pontryagin's Minimum Principle Sec. 5.6

[e2%c]"™b =0
[e=A™*c]"Ab = 0
[e=A™c]"A?b =0

[e-A™c]TA™" b = 0, (5.6-33)

or, written together,
[e‘”'c]T[b {Ab!A%b! - .. 5A"“1b] — 0. (5.6-33a)

Taking the transpose of both sides and again using Eq. (5.6-27), we find that
this becomes

[biAbjA%b] .. {A=1b eAme 0. (5.6-34)
But

€ATe = pA(1), (5.6-24)

and we have already shown [see Eq. (5.6-19)] that p*(#) # 0 for any
t € [0, t/]; therefore, if Eq. (5.6-34) is to be satisfied, the matrix

EA [biAb!AZbE ':An-lb]

must be singular. From Section 1.2 we know that the matrix E is nonsingular
if and only if the system (5.6-13) is completely controllable.

To summarize, we have found that in linear, stationary, minimum-time
problems:

1. For a singular interval to exist, it is necessary that the system be
uncontrollable.

2. Conversely, if the system is completely controllable, a singular interval
cannot exist.

It can also be shown that if E is singular, a singular interval must exist.
In conclusion, the problem of transferring the system

x(f) = Ax(¢) + bu(?) (5.6-13)

from an arbitrary initial state x, to a specified target set in minimum time
has a singular interval if and only if the system (5.6-13) is not completely
controllable. This necessary and sufficient condition for the existence of an
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interval of singularity can also be extended to the situation where the system
has several inputs (see Problem 5-39).

Singular Intervals in Linear Fuel-Optimal Problems

Let us now investigate minimum-fuel systems to see whether or not sin-
gular intervals can exist. We begin by considering the fuel-optimal control
of the system in Example 5.6-1.

Example 5.6-2. Determine whether the problem of transferring the system

Xi(t) = x,(8)
X,(t) = u(?) (5.6-35)
from an arbitrary initial state x, to a specified target set S(¢) with mini-

mum fuel expenditure has any singular intervals. The final time is free.
The Hamiltonian is given by

A (1), u(®), p0)) = |u()] 4 pi(xs() + p(u(t)  (5.6-36)

and from the minimum principle,

[u* ()] + pEOxEE) + pE)u*(t) < u(t)|
+ pEOxF) + pFOu@®.  (5.6-37)

It is also necessary that on an extremal ¢ = 0, so

[*(O)] + pTOxFE) + p3(Ou*(@) = 0. (5.6-38)
If [¢;, t,] is a singular interval, Eq. (5.6-37) indicates that either

@) = +1.0 for all ¢t € [z, 1;] (5.6-39a)
or

(1) = —1.0 foralls e [¢, 1,]. (5.6-39b)
In either case, if (5.6-37) is satisfied, Eq. (5.6-38) reduces to

pE)x¥(t) =0  foralls € [ty, 1,] (5.6-40)
The costate solution, found earlier, is

PO = ¢,
PE() = —cit + ¢y (5.6-9)

In order that p¥(r) = +1 for a finite time interval, ¢; must equal zero,
and ¢, must equal 3+1.0. If ¢; = 0, p¥(r) = 0 for all ¢t and Eq. (5.6-40)
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will be satisfied. From this analysis, we have determined that a singular
interval can exist, even though this system is completely controllable,
Notice that if a singular interval occurs it will persist for all ¢ € [0, #];
thus, if the optimal control is singular at all, it is singular throughout
the interval of operation of the system.

It is left as an exercise for the reader (Problem 5-36) to show that
in this problem the existence of a singular interval signals the non-
uniqueness of optimal controls for certain initial states and the non-
existence of optimal controls for the rest of the initial states.

Let us now consider linear fuel-optimal systems in more generality. We
shall assume that the system has one control input and is described by state
equations of the form

x(f) = Ax(¥) + bu(?). (5.6-41)
The admissible controls must satisfy
lu()| < 1.0. (5.6-42)

The system is to be transferred from an arbitrary initial state x, to a specified
target set S(z) by a control that minimizes the performance measure

Jw) = [ u@)| dr (5.6-43)
0
with t, free. The Hamiltonian is
A (X(1), u(t), p()) = ()| + PT(DAX() + pT(Obu(r).  (5.6-44)
From the minimum principle

lu*(1) | + PA(OAX* () + p*(e) bu*(t) < | u(t)|
T PA(OAXK(D) + pH(E) bu(y). (5.6-45)

From Eq. (5.6-45), we see that for a singular interval to exist it is necessary
that either

pP¥(@) b= +1.0 forall ¢ € [t,, t,] (5.6-46a)
or
p() b= —1.0 foralls € [t,,1,). (5.6-46b)

If u*(f) minimizes the Hamiltonian, and either (5.6-46a) or (5.6-46b) is
satisfied, then since s must be identically zero,
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(1) Ax*(r) = 0. (5.6-47)

If p*7(¢) b is to be either +1 or —1 during the entire time interval [¢,, ¢,],
then this implies that

k
‘%;[p*T(t)b] —0, k=1,2,..., te€ftut]  (5648)

Again using the necessary condition that JZ(x*(t), u*(¢), p*(¥)) =0, and
following the same procedure as for minimum-time problems, we eventually
obtain

[e‘”’c]T[Ab LA . ::A"b} — 0 (5.649)
[compare this with Eq. (5.6-33a)]. This equation can also be written as
[b Abi ! A"“‘b]TATf‘“'c —o. (5.6-50)
But

€A =p*1) £~ 0 fort € [t, t,] (5.6-51)

because if p*(¢) = 0, this would imply that p*’(#) b = 0, which contradicts
Eq. (5.6-46). Thus, if Eq. (5.6-50) is to be satisfied the matrix

[bEAbi %An—ib]TAT

must be singular. For this matrix to be singular either A or [bi Abi - - - 1 A" b,
or both must be singular.t Notice that even if the system is completely con-
trollable, in which case [biAb|---{A""'b] is nonsingular, an interval of
singularity can still occur if the matrix A is singular. Thus a necessary con-
dition for a singular interval to exist is that either the system (5.6-41) is not
completely controllable, or A is singular.

Necessary Conditions for Singular Intervals

So far, we have concentrated on one aspect of singular solutions—neces-
sary conditions for their existence. We have considered only linear, fixed,
single-input systems, but the procedure followed applies as well to systems

1 Because determinant [M;M,] = determinant M, . determinant M, if M, and M, are
square matrices; hence, determinant [M;M;] = 0 implies determinant M; = 0, or deter-
minant M, = 0, or both.
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that have several inputs or are nonlinear. The idea is quite straightforward:
examine the Hamiltonian to determine whether there are situations in which
the minimum principle does not yield sufficient information to determine the
relationship between u*(¢), x*(¢), and p*(¢). If this situation occurs, use the
fact that the Hamiltonian must be zero? (and that 42, 4, .. . equal zero)
to determine other necessary conditions for the existence of singular intervals.

Effects of Singular Intervals on Problem Solution

Let us now consider an example that illustrates another facet of singular
problems—the effects of singular intervals on problem solution.

Example 5.6-3. Find the control law that causes the response of the system

X,(0) = x3(0) (5.6-52a)
%,(8) = u(t) (5.6-52b)

to minimize the performance measure
J=1 J U [0 + 2] . (5.6-53)

The final time 7, and the final states are free, and the controls are con-
strained by the inequality

lu()] < 1.0. (5.6-54)
The Hamiltonian is given by
A1), u(t), p(O)) = 3x3(0) + $x3() + p1(D)x2(0) + p2(Du(r).  (5.6-55)
From the minimum principle and (5.6-55)
PEOWN) < pF)u(r) (5.6-56)

for all admissible u(r) and for all ¢t € [0, ¢/]. For p¥(t) # 0, Eq. (5.6-56)
indicates that

—1.0, forp¥(t) >0

(5.6-57)
+1.0, for p¥(t) <O.

wm={

Switchings of the optimal control occur at isolated instants when p$(1) = 0.
On the other hand, if there is a time interval [¢,, t,] during which

pHO =0  forallt e [ty 1,), (5.6-58)

T We assume free final time and 5 explicitly independent of time.
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then [¢,, £,] is a singular interval; let us investigate this possibility.
Since the final time is free, and time does not appear explicitly in the
Hamiltonian, it is necessary that
3XF2(E) + $x32() + pFOx3() + pF(Ou*(@) =0 (5.6-59)
for t € [0, t/]. If p§(r) = O for t € [ty, t,], then
PEWO) =pF@) =pF0) = --- =0, ¢ € [t;, 1] (5.6-60)
In addition, from Eq. (5.6-59) we have
M L ixFH O+ ix320) + pFOxf@) =0 (5.6-61)
for ¢t € [t,, t,], and hence
M=M=M=---=0,te[t, t,], (5.6-62)

if a singular interval is to exist.
The costate equations are

Y@ = —x}@) (5.6-63)
P3O = —x3(0) — ptO). (5.6-64)

During a singular interval, using Eqgs. (5.6-60) and (5.6-64), we obtain
YO = —x3(@). (5.6-65)
Substituting this in (5.6-61) yields
x¥(1) — x¥2(1) =0 (5.6-66)
or
[x¥® + x3@O]x*@) — x2@)] =0, fort e [ty,1,] (5.6-66a)
Equation (5.6-66) is satisfied if
x¥(1) + x¥@) =0 (5.6-67a)
orif
x¥(1) — x¥(@) =0, fort € {t,, 1,1 (5.6-67b)

By differentiating Eq. (5.6-67a) and substituting in the state equation
(5.6-52a) we find that

X} = —x5(0) = x¥(), (5.6-68)
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which with (5.6-52b) implies
w(t) = —x¥(@), fort € [t,, 1,1 (5.6-69a)

Similarly, differentiating Eq. (5.6-67b) and substituting in the state equa-
tions, we obtain

w*(t) = +x¥(), for t € [y, ;1. (5.6-69b)

Equations (5.6-67) define a locus of points in the state plane where
singular controls may exist, and Eq. (5.6-69) gives an explicit expression
for the singular control law. The singular lines, truncated at |x,(¢)| = 1,
because |u(f)| < 1, are shown in Fig. 5-40. The arrows indicate the
direction of increasing time.

x5 (8)

ﬁ

11

14

Figure 5-40 The singular lines for Example 5.6-3

We have determined two lines in the state plane where the control,
states, and costates all satisfy the necessary conditions given by the
minimum principle and the requirement that # = 0 on an extremal
trajectory. Clearly, since the system moves away from the origin on the
line x; = x,, this segment cannot be part of an optimal trajectory. We
still must determine the optimal control law for states not on the singular
line, and also if the singular control law is optimal. Let us investigate
some of the possibilities.

Suppose that at t = 0 the system is at state x, shown in Fig. 5-41.
The optimal control must be 41, because the system is not on the singular
line. By examining the trajectories for this system with # = 41, shown
in Fig. 5-20, Section 5.4, it is clear that the optimal control should initially
be u* = —1. With this control the system trajectory is as shown in Fig.
5-41. We next ask the question: what happens when the trajectory inter-
sects the singular line? Is the optimal control the one that keeps the
system on the singular line, or should the control continue to be u = —1
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Figure 5-41 Optimal trajectory candidates for Example 5.6-3

until intersecting the curve from which the origin is reached by applying
u = -+1? To answer this question, consider what happens when a control
switching is indicated. If #* switches from +1 to —1 at some time ¢,,
then it follows that

p¥(t) =0

5.6-70
FE1) > 0, (©.6-70)

or, if u* switches from —1 to +1 at time ¢,, then this implies

pi() =0

. 5.6-71
pHE) <0, Ce7h
Now, since o = 0, p¥(¢,) = 0 implies that

— 1yk2 — 1y%k2
pie) = TG0, (5.672)

Substituting this expression into the costate equation (5.6-64) gives

s = $x¥@n) + xF @Ol X)) — x$0¢0)] (5.6-73)
x3(t)

By determining the sign of p¥(¢,) indicated by Eq. (5.6-73) for various

regions in the state plane, we then know the allowable switchings that

may occur. Table 5-3 shows how the sign of p¥(t,) is determined for the

regions of the state plane, and Fig. 5-42 illustrates these regions and the

allowable switchings.
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Table 5-3 DETERMINATION OF ALLOWABLE SWITCHINGS FOR REGIONS OF

THE STATE PLANE

Sec. 5.6

Signof  Sign of Sign of Sign of Sign of
Region  xi(t1)  xa(t:) xi(t) +x2(t1)  xa(t1) — xa(ty) pa(ty)
Ry + + + - -
R, + + + + +
R, + - + + -
Ry + — — + +
Rs -~ - - + +
Rs — — — — —
R4 - + - — +
Ry - + + - -

x,(t)

AX}(’)

Figure 5-42 Allowable switchings in various regions of the state

plane
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Referring to Fig. 5-42, we see that if the trajectory in Fig. 5-41 is
allowed to cross the singular line it is then in a region where switching
from u = —1 to u = +1 violates the necessary condition that +# = 0.
We conclude then that the optimal trajectory beginning at this value of
Xo must have its terminal segment on the singular line.

When an initial trajectory segment with #* = 41 does not intersect
the singular line with |x,(#)| < 1, then the optimal control will switch
to u* = F1 and the optimal trajectory will eventually reach either the
origin or the singular line. To determine where the switching occurs,
let ¢, be the time when the trajectory reaches the singular line or the
origin. Notice that the origin lies on the singular line, and from (5.6-60)

pa(ty) = 0. (5.6-74)

Solving for the value of p,(¢;) on the line x,(¢,) = —x,(¢,), which
satisfies Eq. (5.6-59), gives

Pi(ty) = —x3(85). (5.6-75)

Using the values of the costates given by (5.6-74) and (5.6-75) as
initial conditions, and integrating the state and costate equations back-
ward in time with # = +1, we can determine the locations in the state
plane where p,(t) again passes through zero. Doing this for several values
of x,(2,) (including zero) on the singular line, we obtain a locus of points
that defines the switching curve C-D-0-E-F shown in Fig. 5-43. The
optimal control law is given by

X, (1)
4

x (1)

Figure 5-43 The optimal switching curve for Example 5.6-3
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—1, for x(¢) to the right of C-0-F
+1, for x(r) to the left of C-0-F
u*(t) = { —1, for x(¢) on segment C-D (5.6-76)
+1, for x(t) on segment E-F
—x,(1), for x(t) on segment D-0-E.

Several optimal trajectories are pictured in Fig. 5-44; notice that the
switching curve is not a trajectory except on the singular line D-0-E.
As further illustration of this point, Fig. 5-45 shows the optimal switching
curve, the curve x; = 4x%, which is the switching curve for bang-bang
operation, the curve x; = 4x2 + 4, which is the u == -+1 trajectory that
intersects the singular line at the point (1, —1), and the line x; = —x,.
Observe that the optimal switching curve is above the line x; = —x,
for all positive values of x, ; therefore, the switchings that occur on segment
E-F do not violate the allowable switchings indicated in Fig. 5-42. Simi-
larly, it can be verified that segment C-D of the switching curve lies
entirely in region R, of the state plane, and so does not cause the allow-
able switching conditions to be violated.

x,(8)

4

>/

h - x (1)

Figure 5-44 Some optimal trajectories for Example 5.6-3

Summary

The existence of singular intervals, although complicating the solution
of optimal control problems, may turn out to be helpful in other respects.
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For example, a singular interval may indicate that an optimal control is non-
unique; in this case we can select the optimal control which is easiest to
implement, or which has other desirable features.

Our discussion has emphasized the following aspects of singular problems:

1. The determination of necessary conditions for the existence of singular
intervals.

2. The use of these necessary conditions to find the regions in the state
space where a singular control law exists.

3. The investigation of the singular control law to ascertain whether or
not it is optimal.

The reader interested in additional material on singular intervals should
refer to [A-2], [A-3], [J-1], [J-2], [R-2], [R-3], and [S-4].

5.7 SUMMARY AND CONCLUSIONS

In this chapter we have discussed the application of variational techniques
to optimal control problems. The calculus of variations was used to derive
a set of necessary conditions that must be satisfied by an optimal control and
its associated state-costate trajectory. These necessary conditions for opti-
mality lead to a (generally nonlinear) two-point boundary-value problem
that must be solved to determine an explicit expression for-the optimal con-
trol. In linear regulator problems, the resulfing two-point boundary-value
problem is linear and can be solved to obtain a linear, time-varying optimal
control law.

Motivated by an interest in problems with bounded control or state
variables, we then gave a heuristic derivation of Pontryagin’s minimum
principle and discussed a technique for dealing with state inequality con-
straints. The remainder of the chapter was concerned with applications of
Pontryagin’s minimum principle to problems with bounded admissible
controls. Several examples of minimum-time and minimum-control-effort
systems were discussed. These examples were elementary, but nonetheless
indicative of procedures that are useful in obtaining optimal control laws.
Finally, we investigated the occurrence of singular intervals during which
the minimum principle fails to yield a relationship for the extremal control
in terms of the extremal state-costate trajectory.

This chapter was not intended to be a handbook of solutions to optimal
control problems. Indeed, the difficulties encountered should make the reader
aware that no such handbook exists. We may regard the linear regulator
problem as being solved; however, in the sections on minimum-time and
minimum-control-effort problems we found that analytical solutions are
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generally impossible for higher-order systems (n > 3) even if the systems are
linear and time-invariant. For nonlinear systems it is even more difficult to
obtain closed-form expressions for the optimal control laws.

Realistically, then, we must view the minimum principle as a starting
point for obtaining numerical solutions to optimal control problems. From
the minimum principle we obtain knowledge of the form of the optimal
control (if it exists) and a statement of the two-point boundary-value prob-
lem, which, when solved, yields an explicit relationship for the optimal
control.
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PROBLEMS

5-1. The boat shown in Fig. 5-P1 moves at a constant velocity v with respect to
the water. The water moves in the positive y direction with known velocity
s(x) at the point x. The heading of the boat f is the control variable.
(a) Determine a set of state equations for the boat.
(b) Find necessary conditions for the boat to move from point 1 to point 2
in minimum time.

s(x)

wl'lll“'

le

-

Figure 5-P1
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5-2.

5-4.

5-5.

(c) Suppose that the speed of the water is constant for all x and that point 2
and point 1 are in the relative locations shown. State a necessary condi-
tion for the existence of a minimum-time solution.

(d) If s(x) is constant as in part (c), discuss the characteristics of the optimal
steering angle f*.

The system

X)) = x,()
%) = —x,()) + [1 — x3O]x2(0) + u(®)

is to be controlled to minimize the performance measure

1
7= [1 4260 + 50 + w] .

The initial and final state values are specified.

(a) Determine the costate equations for the system.

(b) Determine the control that minimizes the Hamiltonian for:
(i) u(r) not bounded.
(i) |u()| < 1.0.

. The system given in Problem 5-2 is to be transferred from the origin to the

plane
15x,(t) + 20x,(r) + 12¢ = 60

while the performance measure
tr
— 4 [V ury at

is minimized. The final time ¢, is free.
(a) Determine the costate equations for the system.
(b) Find the control that minimizes 5# for
(i) u(t) not bounded.
(i) —1.0<u(@) < 2.0.
(c¢) Determine the boundary conditions at ¢ = ;.

The system given in Problem 5-2 is to be transferred from the origin to the
surface

[x(t) — 412 + [x2() = 5P+t —212 =9

with minimum fuel expenditure. The final time is free, and |u(f)| < 1.0.
(a) Find the costate equations.

(b) Determine the control that minimizes the Hamiltonian.

(c) Determine the boundary conditions at ¢t = #,.

Assume that a nonlinear time-invariant system is to be transferred from
a specified initial state x, to a specified final state x,, and minimize the
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5-6.

5-8.

5-9.
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performance measure J == f” g(x(1), u(1)) dt. The admissible controls are not
to

bounded and ¢, is free. Show that the Hamiltonian is identically zero on an
optimal trajectory.

Note. The assumption of unbounded admissible controls is not required,
but the proof is more complicated for the bounded-control case.

A first-order system is described by the state equation
X(t) = x(t) + u(?).

(a) Find the unconstrained control, in closed-loop form, which minimizes
the functional

J= j : [1.5x2(r) + 0.5u2(7)] at.

T is fixed, and x(¢;) is free.
(b) Show that for T — oo the optimal control law is of the form

u*(t) = Fx*(t),

where F is a constant. Find F.

. A linear first-order system is described by the differential equation

x(t) = —ax(@t) + u(t).

It is desired to bring the system from some arbitrary fixed initial state x(0)
to the origin in T seconds and minimize the performance measure

J= j : w2 (f) dt.

(a) Find the expression for the optimal trajectory in terms of x(0), a, and T.
(b) Find the expression for the optimal control, in terms of x(0), a, and T.
(c) The optimal control can be expressed in terms of x(¢) in the form

u*(t) = F(t, T, a)x(t).

Find F(t, T, a).

(d) Using physical reasoning and assuming a > 0, comment on the values
of F and u* as ¢t — T. Also comment on F and u* for the case where
T — oo.

For linear regulator problems discussed in Section 5.2, show that the control
that is a solution of 3% /du = 0 satisfies a sufficient condition for minimization
of the Hamiltonian.

(a) Show that for linear regulator problems discussed in Section 5.2 with
x(1,) free, the matrix K() satisfies the Riccati equation
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5-10.

5-11.

5-12.

5-13.

K(t) = —K@®OAQ@) — ATOK() — Q) + KOB(OR~()BT()K(r)
with boundary conditions K(¢;) = H
Hint. Differentiate p*(r) = K()x*(t).
(b) Show that the matrix K(¢) is symmetric and hence only n(n + 1)/2 differ-
ential equations need to be integrated to obtain K(z).
(c) What modifications are required in part (a) if x(¢;) = 0?

Show that for linear regulator problems discussed in Section 5.2, if x(¢;) = 0,
the optimal control law is

u¥(t) = RIOBTO)[@12(t5, D17 @14t 7, X().
(a) Determine the optimal control law for the system
x(t) = —x() + u(®)

to be transferred to the origin from an arbitrary initial state. The per-
formance measure is

J= f L33 + w0)] dr.

The admissible controls are not bounded.
(b) Determine the optimal control law for the system and performance
measure in part (a) with x(1) free.

(a) Find the control that transfers the system given in Example 5.1-1 from
x(0) = 0 to the line x,(t) + 5x,(t) = 15 and minimizes

2
J=1[x:@) — 512 + 3 — 2] + 4 f () dr.
(b) Determine the cost of control
3 Jz w*2(0) dt

for part (a) above, and for parts (a) and (b) of Example 5.1-1. Compare
the control costs and discuss the comparison qualitatively.

A differential equation that describes the leaky reservoir shown in Fig. 5-P13
is

x(t) = —0.1x(t) 4 u(s),
where x(¢) is the height of the water, and u(z) is the net inflow rate of water

at time 7. Assume that 0 << u(r) < M.
(a) Find the optimal control law if it is desired to minimize

J= j“’” — x(0) dt.
0
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u(t)
[/ R IR B N A
-

x(t)

Figure 5-P13

(b) Repeat part (a) with the additional constraint that
100
jo u(t) dt = K (a known constant).
(c) Determine the optimal control law if J = —x(100), and
[T uwa =k

5-14. If the conditions for a time-invariant optimal control law are satisfied by a
linear regulator problem, the constant K matrix must be a solution of the
nonlinear algebraic equations

0 = —KA — A’K — Q + KBR-!BK.

Using this result, determine the optimal control laws for:
(a) The first-order system Xx(t) = ax(t) + u(t) with performance measure

J = f: [ax2(®) + rur(®)]dt, q,r>0.

Show the variation of the pole of the closed-loop system for 0 < g/r < co.
(b) The system

X,1(1) = x,(1)
X2(1) = —4x,(6) — 4x, (1) + u(t)

and the performance measure
J= j: [20x2() + Sx3() + u(0)] dt.

Find the location of the poles of the controlled (closed-loop) system and
compare with the pole locations for the open-loop system.

5-15. A set of state equations for the dc motor with constant armature current
shown in Fig. 5-Pi5 is
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1, = constant

Figure 5-P15

dz;T(tt) _ __%,-(,) + %"Uin(')
d(gt(t) - ~11(—i(t).

A«t) = Ki(t) is the instantaneous torque developed; K = kI, is the product
of the torque constant and the armature current, and 7 is the angular moment
of inertia. The performance measure to be minimized is

J = '[ : [12(r) + w2(r) + v&()] at,

and the admissible controls are not bounded. Assume that R, L, K, and
I are equal to 1.0. Determine the optimal control law.

5-16. Consider a linear, completely observable system
x(1) = A(Ox(®) + B() u(®)
¥(8) = CO)x().

The performance measure to be minimized is

T=31yeAlk + 4 [ 11O Ndo + N0l dr

Q(#) and H are real symmetric positive semi-definite matrices and R(¢) is

a real symmetric positive definite matrix. The admissible controls are not

bounded, and ¢, is specified.

(a) Show that this problem can be reduced to the form of linear regulator
problems discussed in Section 5.2.

(b) Determine the optimal control law.

5-17. (a) The system
() = —x() + u(t)

is to be controlled to minimize the performance measure

7= [T {alxo-— roF + w@}ds, g > 0.
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Show that if r(tf) = ae~* (& is any real constant), this tracking problem
can be put in the form of a linear regulator problem by defining a new
state variable

1) & x(t) — r@).

The admissible controls are not bounded, and ¢, is specified.
(b) To generalize the result obtained in part (a), assume that the system is
described by the nth-order differential equation

dn dn=1 n—2
L) = e o YO arr Sz YO — = @00 + u),

The performance measure to be minimized is

=1 J '0' () — r@O)F + w@}dt, q>0.

Show that if r(r) satisfies the differential equation

dn dn—l
{d—t7' + Gu-y Fr1 + e+ ﬂo}r(f) =0,

then by defining the state variables as
di-1 . .
x,-(t):W[y(t)—r(t)] i=12.-,n

the problem can be reduced to a linear regulator problem. Find the
optimal control law.

5-18. This problem is most easily done by using a digital computer.

(a) Determine the optimal control law for the attitude control of the space-
craft described in Example 2.2-1. Assume that g;, = 4.0, g, = 0.0,
R =1, x,(0) = 10.0, and x,(0) = 0.0.

(b) Assume that ¢, = 10.0 instead of co and determine the optimal control
law. Compare the optimal response obtained using this control law with
the response obtained using the control law found in part (a).

(c) Repeat part (b) with £, = 4.0.

5-19. Suppose that the missile in Example 5.4-1 is heading toward a target located
at the fixed point x = b. If the pilot of the pursuing aircraft senses that he
cannot protect point b, his orders are to look for other incoming missiles
to pursue. You are to determine an algorithm for the pilot to use in deciding
whether or not he can prevent the missile from reaching the point x = b.
(a) Find the expression in terms of a and b for the time required for the
missile to reach point b.

(b) For interception to occur before the missile reaches b, the value of b
must be greater than b,. Find the relationship between a and b,.

(c) Using a and b as axes, show the values for which:
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(i) The missile is intercepted before reaching 5.
(ii) Interception can be accomplished, but not before the missile reaches
b.

(iii) Interception is impossible.

Using Pontryagin’s minimum principle, verify the solution given for Example
1.1-4,

Using the results of Example 5.4-4, determine the optimal control law for
transferring the system

x1(1) = x,(1)

X(t) = u(t)
from an arbitrary initial state to the point [2, 2]7 in minimum time with
lu(®)] < 1.0.

(a) Find the optimal control law for transferring the system

x,(0) = —x,(6) — u(®)

F(t) = —2x5(t) — 2u(r)
from an arbitrary initial state to the origin in minimum time. The admis-
sible controls are constrained by |u(f)| < 1.0.

(b) Generalize the results of part (a) to determine the time-optimal-control
law for the system

xy(1) = ayx,(t) + agu()
X2(t) = ayx,(t) + au(®).
Assume that a, < a; <0.

Assume that the space vehicle shown in Fig. 5-P23 can be approximated by
a particle of mass M, and

y
gV
ot - —p—o——y
” '
M / T I
P oty Rt I
e : D |
/ ]
/7 ‘
/ |
q Lo x
)
Figure 5-P23

(i) Aerodynamic and gravitational forces are negligible.
(ii) The motion is planar.
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(iii) The mass of the vehicle is constant.

(iv) The thrust T is constant.

The thrust angle f(¢) is the control variable.

(a) Write state equations for the system.

(b) If the vehicle is to be transferred in minimum time from point g starting
with zero velocity to an altitude D with vertical component of velocity
equal to zero and horizontal velocity V, determine the costate equations
and the required boundary condition relationships.

(c) Proceed with the solution of the problem in part (b) as far as possible

using analytical methods.

Repeat parts (b) and (c) if the vehicle is to maximize its horizontal range

at the fixed final time ¢, = ¢,. The final altitude is again D.

()

~

. (a) Consider the first-order system

x(t) = 2x(t) + u(?)
ju()| < 1.

It is desired to transfer the system from an arbitrary initial state to the
origin in minimum time; however, there are some states that cannot be
transferred to the origin with any admissible control history, no matter
how long is allowed. For these initial states an optimal solution does not
exist.

Find the initial states for which there is no time-optimal control to the
origin.

(b) Consider the system

x,(t) = aixt) + bu(r)

with |u()] < 1.0, b, 40 fori=1,2,...,n.
Find the initial states for which there is no time-optimal control to reach
the origin.

Theorem 5.4-3 states that for a stationary, linear system

x(t) = Ax(r) + bu(r)
fu@)| <1

to be transferred from an arbitrary initial state to the origin in minimum
time, the optimal control, if it exists, is bang-bang and has at most (n — 1)
switchings if all of the eigenvalues of A are real. This problem points out
why the eigenvalues of A must be real for the number of switchings to be
at most (n — 1). Consider the system

X((8) = x,(1)
X2(t) = —2x,(t) — 2x,(t) + u(®)
lu(| < L.
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5-26.

5-27.

5-28.

5-29.

(a) Verify that the eigenvalues of A (the roots of the characteristic equation)
are complex.

(b) Show that if an optimal control exists, it is always maximum effort;
ie., |u@®)}=1.

(c) Show that the number of switchings may be more than (n — 1) and
indicate the conditions for which this will occur.

Attempt to determine the optimal control law for transferring the system

x1(0) = x,(0
X2(8) = x3(0)
X3(8) = u(t)

from an arbitrary initial state to the origin in minimum time with | u(¢)| < 1.0.

Suppose that in Example 5.1-2 the assumption was not made that the mass

of the vehicle and the thrust are constant. In this case, the thrust is

T() = —kM(), where k is a known constant, and M(r) is the rate of change

of mass, M(r) satisfies the constraint —# << M(#) < 0 (7 > 0).

(a) Determine the modified state equations.

(b) Find the costate equations for minimum-time control of the vehicle.

(c) Determine a set of necessary conditions for the controls T(¢) and f(r)
to be optimal.

(d) Using Table 5-1, determine the required boundary condition relation-
ships for missions a, b, ¢, d of Example 5.1-2.

Consider the system
X(t) = ax(t) + u(®), a>0,

which is to be transferred from an initial state x, to the origin. The admissible

controls are constrained by |u()| < 1.0. Assume that x, is such that the

origin can be reached by applying admissible controls.

(a) Determine the time-optimal control law.

(b) Determine the fuel-optimal control law.

(c) Compare the two optimal control laws and explain the difference between
this problem and the case where a < 0.

The system

X1(1) = x,(9)
X2(t) = x,(8) + x2()u(?)

is to be transferred from an initial state x, to a target set S(¢) while

J= f;’lu(z)ur

is minimized.
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5-30.

5-31.

5-32.

5-33.

The Calculus of Variations and Pontryagin's Minimum Principle Problems

The admissible controls are constrained by the relationship |u(f)| < 1.

Assuming that an optimal control exists,

(a) Find the costate equations.

(b) Find an expression for the optimal control in terms of the extremal state
and costate trajectories.

The system
x(1) = a(x(), H + Bx(@), Hu(t)

is to be controlled to minimize the performance measure
7= [712 + woR)] de.
to

A is >0, ¢, is free, and R is a diagonal matrix with positive elements;
i.e.,, r;; > 0 for i = j, r;; = 0 for i # j. Determine the form of the optimal
control in terms of the extremal costates.

(a) Determine the costate equations and boundary conditions for the soft-
lunar-landing vehicle described in Example 5.4-3.

(b) Determine necessary conditions for the landing to be accomplished with
minimum fuel expenditure.

(c) Using the differential equation

1) = —g — "7;"(%) = —g— ki mo)]

show that if x(¢;) =0, the consumed fuel is a monotone increasing
function of the final time ¢;. What are the implications of this result?

Theorem 5.4-3 states that for a system of the form
x(1) = Ax(t) + Bu(z)

to be transferred to the origin in minimum time there are at most (n — 1)
switchings of each control component if the eigenvalues of A are real. This
can be proved by showing that p*7(f)b; has at most (n — 1) zeros (b, is the
ith column of B). Use the results of Theorem 5.4-3 to determine the maximum
number of switchings to transfer a system of this form to the origin using
minimum fuel. Assume that the eigenvalues of A are real, and that an optimal
control exists.

In Section 5.5 the performance measure
tr m
5= ["Ta+ £ o] ar
to i=1

was used. There are other alternatives, however. For example, we could
minimize elapsed time
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5-34.

5-35.

1,
J2 - J. . dt
fo
subject to the constraint that the consumed fuel must satisfy

f : [sz | u:t) |J dt < F (a constant),

or we could minimize the consumed fuel

Ji = J.:: [me () ﬂ dt

with the constraint that (¢, — ¢,) << T (a constant).
(a) Determine the Hamiltonians for Jy, J,, and J;, assuming that the form
of the state equations is

x(2) = a(x(0), 1) + Bx(@), Hu(t),

and that |y ()| < 1,i=1,2,...,m.
(b) Compare the form of the costate equations for each of these performance
measures,

Consider the system

x(1) = x,()
x,(t) = —ax,(t) + u(t),

where a > 0 and |u(r)| < 1.0. The system is to be transferred to the origin
while minimizing the performance measure

7= "1+ @it

The final time is free and 4 > 0.

(a) Determine the costate equations and the control that minimizes 5.
(b) What are the possible optimal control sequences ?

(c) Show that a singular interval cannot exist.

(d) Determine the optimal control law.

A body M moving in a viscous fluid is shown in Fig. 5-P35. The controls
u, and u, are thrusts in the x and y directions. Assume that the magnitude

Velocity

Figure 5-P35
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5-36.

The Calculus of Variations and Pontryagin’s Minimum Principle Problems

of the drag force is &-[velocity of M]?; the direction is opposite to the
instantaneous velocity vector. If we assume planar motion and constant
mass, and define x; £ x, x; A X, x3 A y, x4 & y, the state equations are

X1(8) = x,(8)
3(1) = —ax(O[x3() + x3(O] V2 + u,(©)
X3(2) = x4(t)
x4(0) = —ox4(D[x2(D) + xUD]V/? + uy ().
The system is to be transferred from the initial state x(0) = 0 to x,(¢;) = e,
and x;(t;) = e; in minimum time. x,(t,) and x,(¢,) are unspecified.
(a) Determine the costate equations.
(b) What are the required boundary conditions at ¢ = ¢,?
Hint. In parts (c) and (d) you will find it helpful to:
(i) Show the admissible control region in a two-dimensional picture.
(ii) Try to interpret minimization of 5# with respect to u geometrically.

(c) Determine an expression for the optimal control in terms of x*(¢), p*(¢)
if the admissible controls are constrained by

ud) + ui@) < 1.
(d) Repeat part (c) for the control constraints
(O] + w0 < 1.

(e) Which set of admissible controls, ¢ or d, would you expect to yield a
smaller value of the performance measure and why?

Consider the system discussed in Examples 5.5-5 and 5.6-2 with the perfor-
mance measure

tr
J= J'o Lu(e)| dt
and ¢ free.
X, (1)
B 7

R
x1(0= = 3x,(0)x, ()] l

Time-optimal switching curve ’/// i 0
Bl !

R,

o

A

Figure 5-P36
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5-37.

5-38.

(a) Determine the costate equations.

(b) If the initial state is in the region R, (not including the curve 4-0) shown
in Fig. 5-P36, show that the fuel-optimal control is not unique.

(c) If the initial state is in the region R, (not including the curve 0-B), show
that a fuel-optimal control to the origin does not exist.

(d) Investigate the possibility of singular control intervals.

Consider a rocket in horizontal flight as shown in Fig. 5-P37. Assume that
gravitational acceleration is constant, that the weight of the rocket is exactly
balanced by the lift, and that the aerodynamic drag force is given by

2
D 2 ax¥(1) + x50 0,

x3()
where
X, A the horizontal velocity.
X, A& m, the mass of the rocket.
o and f are positive constants.
If we let u(t) = —m(z), the state equations are
. cu(t) D
x,(f) = —% — —+
O=%20" %0
X,(1) = —u(?).

c is the effective exhaust gas speed, a positive constant, and 0 < u(t) < Uyax.

1t is desired to maximize the range of the rocket. The initial and final values

of mass and velocity are specified, and the terminal time is free.

(a) Determine the costate equations and the boundary condition relation-
ships.

(b) Investigate the possibility of singular control intervals.

lift
D drag +———=—
. e 5 ~————— T thrust
mg

Figure 5-P37
The state equations for a linear system are
x,(8) = x,(8) + u(®)
x,(t) = —u(®),
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5-39.

5-40.

5-41.

5-42.

The Calculus of Variations and Pontryagin’s Minimum Principle Problems

where |u(f)| < 1. The system is to minimize the performance measure
1
7= ["axx) ar.

The final time ¢, is free and x(¢;) = 0.
(a) Determine the costate equations and the required boundary conditions.
(b) Investigate the possibility of singular control intervals.

Consider the minimum-time control of a system of the form
x() = Ax(r) + Bu(®);

A and B are constant matrices, and |, ()| < 1,i=1,2,...,m.
Show that for a singular interval to exist it is necessary that the matrix

2o, | an, | [arn)]

be singular for at least one value of j(j =1, 2,..., m). b; denotes the jth
column of B.

Investigate Example 5.4-3 to determine whether or not there can be any
singular intervals.

(a) Show that if the performance measure
J = j'ﬂ A+ lu@d, A>0

is used in Example 5.6-2, no singular intervals can exist.
(b) Attempt to generalize the results of part (a) to an arbitrary, stationary,
single-input, linear system.

The system

x1(t) = x,(1)
X (1) = u(®)

is to be transferred to the origin in minimum time with admissible controls
satisfying | u(r) | < 1. In addition, it is required that | x,(t)| < 2 for ¢t € [0, #*].
(a) Determine a set of necessary conditions for optimal control.

(b) Determine the optimal control law.
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Problems

5-43. The mass M described in Problem 5-35 is to be transferred from an arbitrary
initial state to the target set

2x3(6) + 2xi(Dxo(f) + 5x3) —9 =0

in minimum time.
(a) If the admissible controls are constrained by

l“l(t)l S
luo(t)| <
<

[t O] + (ux)] 5,

show the admissible control region on a sketch of the u,, u; plane
(b) Determine u*(¢) in terms of the extremal state and costate variables.

(c) Determine the boundary condition equations at 7 = t,.
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6

Numerical Determination

of Optimal Trajectories

In Chapter 5 variational techniques were used to derive necessary conditions
for optimal control. In problems with linear plant dynamics and quadratic
performance criteria (linear regulator and linear tracking systems), it was
found that it is possible to obtain the optimal control law by numerically
integrating a matrix differential equation of the Riccati type. Optimal con-
trol laws were also determined for several other simple examples by applying
Pontryagin’s minimum principle. In general, however, the variational ap-
proach leads to a nonlinear two-point boundary-value problem that cannot
be solved analytically to obtain the optimal control law, or even an optimal
open-loop control. Indeed, the difficulty of solving nonlinear two-point
boundary-value problems analytically accounts for the fact that although
many of the important variational concepts have been known for some time,
only since the advent of digital computers have variational techniques been
successfully applied to complex physical problems.

In this chapter we shall discuss four iterative numerical techniques for
determining optimal controls and trajectories. Three of these techniques,
steepest .descent, variation of extremals, and quasilinearization, are pro-
cedures for solving nonlinear two-point boundary-value problems. The
fourth technique, gradient projection, does not make use of the necessary
conditions for optimality provided by the variational approach. Instead,
the optimization problem is solved by minimizing a function of several
variables subject to various constraining relationships. Each of these tech-

329
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niques determines an open-loop optimal control, that is, the optimal control
history associated with a specified set of initial conditions.

6.1 TWO-POINT BOUNDARY-VALUE PROBLEMS

Assuming that the state and control variables are not constrained by any
boundaries, that the final time ¢, is fixed, and that x(z,) is free, we can sum-
marize the two-point boundary-value problem that results from the varia-
tional approach by the equations

X*(r) = "ifi — a(x*(2), w(1), 1) (6.1-1)
B0 = "jf ~[Reew.wo,0] e
— —g(x*(t), u*(2), 1) (6.1-2)
0= %2 _ [Bxx0, wio, 0] p0)
+ af(x’*(t), N OX)) (6.1-3)
X*(tg) = X, (6.1-4a)
PH() = i ).t (6.1-4b)

From these five sets of conditions it is desired to obtain an explicit relation-
ship for x*(f) and u*(¢), ¢t € [¢,, t,]. Notice that the expressions for x*(¢) and
u*(¢) will be implicitly dependent on the initial state x,.

Let us assume that Eq. (6.1-3) can be solved to obtain an expression for
u*(¢) in terms of x*(¢), p*(¢), and ¢; that is,

u¥(r) = f(x*(0), p*(), 1). (6.1-5)

If this expression is substituted into Eqs. (6.1-1) and (6.1-2), we have a set
of 2n first-order ordinary differential equations (called the reduced differential
equations) involving only x*(z), p*(¢), and t. The boundary conditions for
these differential equations (which are generally nonlinear) are given by Eq.
(6.1-4).

If the boundary conditions were all known at either ¢, or #,, we could

1 In the following discussion the * will be used only if all of Egs. (6.1-1) through (6.1-4)
are satisfied by a trajectory.
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numerically integrate the reduced differential equations to obtain x*(¢),
p*(t), t € [t,, t;]. The optimal control history could then be found by sub-
stituting x*(¢), p*(¢) into (6.1-5). Unfortunately, the boundary values are split,
so this method cannot be applied. We hasten to point out that if the reduced
differential equations are linear, the principle of superposition can be used
to circumvent the complications caused by the split boundary values.t Thus,
the difficulty of solving optimal control problems by using variational prin-
ciples is caused by the combination of split boundary values and nonlinear
differential equations.

Let us now discuss three iterative numerical techniques that have been
used to solve nonlinear two-point boundary-value problems. The reader
will notice that each of these techniques is based on the following general
procedure;

An initial guess is used to obtain the solution to a problem in which one or
more of the five necessary conditions (6.1-1) through (6.1-4) is not satisfied.
This solution is then used to adjust the initial guess in an attempt to make the
next solution come “closer” to satisfying all of the necessary conditions. If
these steps are repeated and the iterative procedure converges, the necessary
conditions (6.1-1) through (6.1-4) will eventually be satisfied.

6.2 THE METHOD OF STEEPEST DESCENT

Minimization of Functions by Steepest Descent

Let us begin our discussion of the method of steepest descent (or gradients)
by considering an analogous calculus problem. Let f be a function of two
independent variables y, and y,; the value of the function at the point y,,
», is denoted by f(y,,»,). It is desired to find the point y§¥, y¥, where f
assumes its minimum value, f(y¥, y¥).

If it is assumed that the variables y, and y, are not constrained by any
boundaries, a necessary condition for y¥, y¥ to be a point where f has a
(relative) minimum is that the differential of f vanish at y¥, y¥, that is,

art D = [FLotn| s + [FLot ],
2 [%Lam| ay=o. (62-1)

df/dy is called the gradient of f with respect to y. Since y, and y, are inde-
pendent, the components of Ay are independently arbitrary and (6.2-1)

t This matter is discussed in more detail in Section 6.4.
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implies

Of roy —

3O =0 (6.2-2)

In other words, for f(y*) to be a relative minimum it is necessary that the
gradient of f'be zero at the point y*. Equation (6.2-2) represents two algebraic
equations that are generally nonlinear. Suppose that these algebraic equations
cannot be solved analytically for y*; how else might y* be determined?

One possible approach is to visualize the minimization as a problem in
hill climbing. Let us think of the function f as defining hills and valleys in
the three-dimensional y,, y,, f(»,, y,) space. One way to find the bottom of
a valley is to pick a trial point y‘® and climb in a downward direction until
a point y* is reached where moving in any direction increases the function
value.t To make the climbing procedure efficient, we elect to climb in the
direction of steepest descent, thus ensuring that the shortest distance is
traveled in reaching the bottom of the hill. The direction of steepest descent
at y'® is determined by evaluating the slope, or gradient, of the hill at the
point y. As shown in Fig. 6-1, the gradient vector is normal to the
elevation contour. z(y'®) is the unit vector in the gradient direction at the
point y‘®; that is,

Y2 fmin<j:1<j,:; <f2<f1

— %(Y(O))/'—_— 12

vyl

J?[ ©
ay(y )

Figure 6-1 The gradient and several equal value contours of f

&y Lo

T If there are many hills and valleys, the point y* determined by this procedure will depend
on the starting point y(; thus y* may be only a relative, or local, minimum.
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Climbing in the direction of the vector —z(y‘®’), the change in y is given
by

Ayéy(l) . y(O) — —'tz(y“”), (62_4)

where 7 > 0 is the step size. With this selection for Ay, the differential, which
is a linear approximation to the change in f, becomes

afy®) = —| Ly ar), (6.2-5)

or, by using (6.2-3),

iy —{[ Lo + [Fa]]
[
y
= /[ 5L + [Loo] (62-52)
Notice that this implies that
df(y®) <0, (6.2-6)

with the equality holding if and only if df/dy is zero at y‘©.

We continue the iterative procedure by calculating z(y‘!’), the unit
vector in the gradient direction at y‘’, and use the generalization of
(6.2-4) to determine the next point, y‘.

Ay & yi+D — g — gyt (6.2-4a)

A suitable value for the step size 7 must also be selected. By inspection
of Fig. 6-1 it is apparent that if 7 is too large, then we overshoot the mark.
On the other hand, if 7 is too small, we are being overly timid; too much time
is being spent measuring slopes and not enough time is spent climbing. In
either case, the computation time may be excessive. Ideally, 7 should be
selected to minimize the total computation time; however, since this is a
difficult problem in itself, various ad hoc strategies for choosing 7 have been
devised. One such strategy is to perform a single variable search to determine
the value of 7 that causes the largest decrease in f when moving in the direc-
tion of the vector —z(y‘®). To use this technique, we would first determine
the direction of steepest descent and then climb down in this direction until
the function values no longer decreased. A new gradient direction would
then be determined and the climbing process repeated. This procedure would
be continued until a point were reached at which the gradient was zero. A few

steps in the climbing process when 7.is determined in this manner are shown
in Fig. 6-2.



Path generated by algorithm

4 f; min

True steepest
descent path

N

Figure 6-2 Steepest descent to find a minimum of a function

Minimization of Functionals by Steepest Descent

Let us now discuss an extension of the steepest descent concept which
has been applied to optimal control problems by H. J. Kelley [K-8 and K-9]
and A.E. Bryson, Jr. and W. F, Denham [B-5]. Suppose that a nominal
control history u®(t), ¢ € [t,, t], is known and used to solve the differential
equations

xO(2) = a(x(2), u(), 1) (6.2-7)
B0 = — P x0(0), w00, 0(2), 1) (62:9)

so that the nominal state-costate trajectory x®, p satisfies the boundary
conditions

xO(¢t,) = X, (6.2-9a)
POty = g—f((x“’(tf))- (6.2-9b)

If this nominal control history also satisfies
%(x("(t), u®@), p(0), ) =0, 1€ty 1], (6.2-10)

then u®(t), x¥(¢), and p®(r) are extremal. Suppose that Eq. (6.2-10) is not
satisfied; the variation of the augmented functional J, on the nominal state-
costate-control history is

o), = [g_z(xm(tf» — p(t f)]T ox(t,)
+ {[i’“’(t) + 92 (xo), won), po), ‘)]T o0
+ [‘%"—fi(xw(,), u®(e), pO(0), ’)]T e

+ [axO(2), u®(1), £) — X 5p(f)} dt, (6.2-11)

334
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where dx(f) £ x“*U(¢) — x9(2), du(r) & u'+ () — u9(¢), and
op(1) £ p“* () — p“(0).
If (6.2-7) through (6.2-9) are satisfied, then
oJ, = f [0% x9(), u(2), pO(1), t)] ou(z) dr.t (6.2-12)

Recall that §J, is the linear part of the increment AJ, & J(ut+Y) — J(u'®),
and that if the norm of du, [u®? — u® |, is small, the sign of AJ, will be
determined by the sign of dJ,. Since our goal is to minimize J,, we wish to
make AJ, negative. If we select the change in u as

Su(f) = u+(f) — ué(r) — —r"ig’;fi’(t), t€lto 11t (6213)
with 7 > 0, then

T

because the integrand is nonnegative for all ¢ € [t,, t,]. The equality holds
if and only if

} [ (:)] dt <0, (6.2-14)

98 ”( H=0 forall e[ty 1,]. (6.2-15)

Selecting du in this manner, with || du|| sufficiently small, ensures that each
value of the performance measure will be at least as small as the preceding
value. Eventually, when J, reaches a (relative) minimum the vector ds#/du
will be zero throughout the time interval [#,, ¢/].

We have assumed that Egs. (6.2-7) through (6.2-9) are satisfied. To see
how this is accomplished, let us outline the algorithm as it would be executed
if a digital computer were used.

The Steepest Descent Algorithm

The procedure we use to solve optimal control problems by the method
of steepest descent is

1. Select a discrete approximation§ to the nominal control history u®(¢),
t € [t,, t;], and store this in the memory of the digital computer. This
can be done, for example, by subdividing the interval [z,, ¢,] into N
subintervals (generally of equal duration) and considering the control

1 Henceforth we shall denote 95 (x®(¢), u)(z), pi)(t), £)/du by 3¢ ®(t)/du.

1 We shall assume that ¢ is a constant, although this is not a requirement.

§ A discrete approximation is required because the calculations are to be performed by
a digital computer.
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u® as being piecewise-constant during each of these subintervals;
that is,

uO() = wOL), € [tetens), k=0,1,...,N—1. (62-16)

Let the iteration index i be zero.

2. Using the nominal control history u®”, integrate the state equations
from ¢, to ¢, with initial conditions x(#,) = X, and store the resulting
state trajectory x as a piecewise-constant vector function.

3. Calculate p¥(¢,) by substituting x“(¢,) from step 2 into Eq. (6.2-9b).
Using this value of p“(z;) as the “initial condition” and the
piecewise-constant values of x® stored in step 2, integrate the costate
equations from ¢, to t,, evaluate 92V (r)/du, ¢ € [t,, t,], and store this
function in piecewise-constant fashion. The costate trajectory does
not need to be stored.

4. 1If

’ 9 (6.2-17)

where y is a preselected positive constant and
! (
2 a j*/ [0% D )] Iid'}i(){t):l ar, (6.2-18)

terminate the iterative procedure, and output the extremal state and
control. If the stopping criterion (6.2-17) is not satisfied, generate a
new piecewise-constant control function given by

dpP®
“ du

uetD(,) = ud(t,) — raﬁm(h‘)a k=0,...,N—1, (62-19
where

ud(t) =ut,)  fort €[ty tyy), k=0,...,N—1. (62-20)

Replace u®(z,) by u*(¢,), k =0,..., N — 1, and return to step 2.

The value used for the termination constant p will depend on the prob-
lem being solved and the accuracy desired of the solution. It may be desirable
to perform several trial runs on a problem before y is selected.

As mentioned previously, the step size T is generally determined by some
ad hoc strategy. One possible strategy is to select a value of T which attempts
to effect a certain value of AJ, (perhaps some specified percentage of the
preceding value of J,). From Eqs. (6.2-14) and (6.2-18) observe that
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2

IAON o, (6.2:21)

oJ, = —1 H S

To effect an approximate change of g percent in J,, select 7 as

q
100 |-
9#© r'

T= (6.2-22)

#

This method of selecting T generally requires the capability of intervening
in the execution of the program to alter the value of g, because as J, ap-
proaches a minimum, | ds#*“/du] — 0; hence, if ¢ is not decreased, the
step size becomes large, and severe oscillations may result.

An alternative strategy for selecting 7 is to use a single variable search.
We choose an arbitrary starting value of 7, compute d2#’/du, and find u+
using (6.2-19). Then a search among values of 7 > 0 is carried out until the
smallest value of J, is obtained. In other words, we move in the steepest
descent direction until there is no further decrease in J,.

An llustrative Example

To illustrate the mechanics of the steepest descent procedure we have
discussed, let us partially solve a simple example. Since all calculations will
be done analytically, the piecewise-constant approximations mentioned
previously will not be required.

Example 6.2-1. A first-order system is described by the state equation
x() = —x(t) + u(®) (6.2-23)

with initial condition x(0) = 4.0. It is desired to find u(?), ¢ € [0, 1], that
minimizes the performance measure

J = x(1) + J' ; $2(1) dt. (6.2:24)

Notice that this problem is of the linear regulator type discussed
in Section 5.2, and, therefore, can be solved without using iterative
numerical techniques. The costate equation is

B(t) =p(® (6.2-25)

with the boundary condition p(1) = 2x(1). In addition, the optimal control
and its costate must satisfy the relation
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%{i = u(t) + p(r) = 0. (6.2:26)

As an initial guess for the optimal control, let us select u‘®(¢) = 1.0
throughout the interval [0, 1]. Integrating the state equation, using this
control and the initial condition x(0) = 4.0, we obtain

xO@) =3 + 1; (6.2-27)

hence, p@(1) = 2x%0(1) = 2[3e-! + 1]. Using this value for p¢®’(1) and
integrating the costate equation backward in time, we obtain

pONf) = 2e-1[3e-1 + 1), (6.2-28)
which makes

027 (0
du

) =1+ 26" 1[3¢! + 1]e’. (6.2-29)

If #‘©(f) had been the optimal control, then d5# ©’(¢)/du would have been
identically zero. Assuming that our stopping criterion is not satisfied,
we find that the next trial control is

D) = wO(r) — z"‘fu“”(z), (6.2-30)
which if 7 = 0.1 gives
WD) = 1.0 — 0.1[1 + 2e-1[3e-1 + 1]€7]. (6.2-31)

To continue the iterative algorithm, we would repeat the preceding steps,
using this revised control history. Eventually the iterative procedure
should converge to the optimal control history, u#*(f).

The preceding example indicates the steps involved in carrying out one
iteration of the steepest descent algorithm. Let us now use this algorithm to
determine the optimal trajectory and control for a continuous stirred-tank
chemical reactor. This chemical engineering problem will also provide a
basis for comparing the steepest descent method with other numerical tech-
niques to be discussed in the following sections of this chapter.

A Continuous Stirred-Tank Chemical Reactor

Example 6.2-2. The state equations for a continuous stirred-tank chemical
reactor are given below [L-5]. The flow of a coolant through a coil inserted
in the reactor is to control the first-order, irreversible exothermic reaction
taking place in the reactor. The states of the plant are x;(t) = T(t) (the
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deviation from the steady-state temperature) and x,(t) = C(¢) (the devia-
tion from the steady-state concentration). u(f), the normalized control
variable, represents the effect of coolant flow on the chemical reaction.
The state equations are

£100) = —2[x,(6) + 0.25] + [x,(1) + 0.5] exp [%‘fj)i]
— [x2() + 0.25]u(r)

#2(0) = 0.5 — x,(6) — [x,(t) + 0.5] exp [x—?%’)‘—lfr’—)z] (6.2-32)

with initial conditions x(0) = [0.05 0]". The performance measure to be
minimized is

J= J.:.” [x%(t) + x2(¢) + Ruz(t)] dt, (6.2-33)

indicating that the desired objective is to maintain the temperature and
concentration close to their steady-state values without expending large
amounts of control effort. R is a weighting factor that we shall select
(arbitrarily) as 0.1. The costate equations are determined from the
Hamiltonian,

(), u(®), p(1)) = x3(t) + x5() + Ru*(r)

n pl(,)[_z[xl(;) +0.25] + [x,(t) + 0.5] exp [ﬁ%’)“i—’)ﬂ

~ [0 + 0250 | +Pz(t)|:0.5 )

— [x2(t) + 0.5] exp [%H (6.2-34)

as

pit) = — g—ffi = —20,() + 25.0)

— 200 + 051 G 7 o0 [0y s

2O + 220020 + 03] -y e [0, ]

£ =~ 52 = 200 — e [0 ]
+ Pz(f)[l + exp [)}‘ft’)‘—lﬁ)zﬂ (6.2-35)

The algebraic relation that must be satisfied is

%‘% = 2Ru(t) — py(H)[x,(¢) + 0.25] = 0. (6.2-36)
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Since the final states are free and not explicitly present in the performance
measure, the boundary conditions at ¢ = ¢, are p(t;) == 0.

A program was written in FORTRAN 1V for the IBM 360/67
digital computer. Numerical integration was carried out using a fourth-
order Runge-Kutta-Gill method with double-precision arithmetic and an
integration interval of 0.1 unit.

The norm used was

|

and the iterative procedure was terminated when either || 05#/0u || < 10-2
or |JW — J4+1| < 1076, To ensure that a monotonically decreasing se-
quence of performance indices was generated, each trial control was
required to provide a smaller performance measure than the preceding
control. This was accomplished by halving 7 and re-generating any trial
control that increased the performance measure.

With u®(r) = 1.0, t € [0,0.78], and an initial T equal to 1.0, the
value of the performance measure as a function of the number of itera-
tions is as shown in Fig. 6-3. Notice that the first four iterations reduce
the performance measure significantly; however, the final 13 iterations
yield only very slight improvement. This type of progress is typical of
the steepest descent method. The optimal control and the optimal state

A

o I [%(’)T dt, (6.2:37)

J
0.10}+
J = 0.0829
008t
\
=\
\
\
0.06 - X\
X 0.0456
\x:/J— .
0.04 X J=0.0311
04 ‘X~x~x\x / J = 0,0283 J = 0.0268
B 'X‘X-X-)t—x—x-x—x—x—x—x—x—x—x—x—x—i{
0.021
0.0 | 1 | Il L 1 1 { | 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Iteration number

Figure 6-3 Performance measure reduction by the steepest descent
method—stirred-tank reactor problem
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trajectory obtained by the iterative solution are shown in Figs. 6-4
and 6-5.

u(t)

1.6
1.4
1.2
1.0
0.8 -
0.6 |- u
0.4
0.2}

T

u©®

1 N NS S N | P11 | N | S 1 T 1,
0. 008 0.16 0.24 032 040 048 056 064 0.72 0.80

Time

Figure 6-4 The optimal control for the stirred-tank reactor (steepest
descent solution)
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—-0.02

-0.04 |-
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Figure 6-5 The optimal trajectory for the stirred-tank reactor
(steepest descent solution)

To illustrate the effects of various initial step sizes and different initial
guesses for the control history, three additional solutions were obtained. The
results of these computer runs are summarized in Table 6-1.
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Table 6-1 SUMMARY OF STEEPEST DESCENT SOLUTION OF THE
STIRRED-TANK CHEMICAL REACTOR PROBLEM

Initial Initial Number of  Minimum Final Stopping
control T iterations value of T criterion
uto(r), t € [0., 0.78] required J,J* satisfied
1.0 1.00 27 0.02681 0.25 NORM

1.0 0.25 48 0.02682 0.25 NORM

0.0 1.00 7 0.02678 0.25 NORM

0.0 0.25 11 0.02680 0.25 NORM

Features of the Steepest Descent Algorithm

To conclude our discussion of the steepest descent method, let us sum-
marize the important features of the algorithm.

Initial Guess. A nominal control history, u®(s), ¢ € [t,, ,], must be selected
to begin the numerical procedure. In selectingthe nominal control we utilize
whatever physical insight we have about the problem.

Storage Requirements. The current trial control u®, the corresponding
state trajectory x, and the gradient history d;#®[du, are stored. If storage
must be conserved, the state values needed to determine d2#®/du can be
obtained by reintegrating the state equations with the costate equations. If
this is done x® does not need to be stored; however, the computation time
will increase. Generating the required state values in this manner may
make the results of the backward integration more accurate, because the
piecewise-constant approximation for x need not be used.

Convergence. The method of steepest descent is generally characterized by
ease of starting—the initial guess for the control is not usually crucial. On
the other hand, as a minimum is approached, the gradient becomes small
and the method has a tendency to converge slowly.

Computations Required. In each iteration numerical integration of 2n first-
order ordinary differential equations is required. In addition, the time history
of d;#®[du at the times t,, k =0,1,..., N — 1, must be evaluated. To
speed up the iterative procedure, a single variable search may be used to
determine the step size for the change in the trial control.

Stopping Criterion. The iterative procedure is terminated when a criterion
such as ||ds#®[du|| < p, or |[J@ — J** V| < p, is satisfied; p, and p, are
preselected positive numbers.
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Modifications Required for Fixed End Point Problems. One way to modify
the procedure we have discussed for problems in which some or all of the
final states are fixed is to use the penalty function approach. For example,
if the desired final state is denoted by x,(¢;), we can add a term to the per-
formance measure of the form

+ [xd(tf) - x(ff)]TH[xd(tf) — Xz f)]!

where H is a diagonal matrix with large positive elements, and treat x(z;) as
if it were free. Doing this, we find that the boundary conditions become
p(t;) = H[x(s;) — x,(t,)]. By using this technique, fixed and free end point
problems can be solved with the same computer program. Adding the penalty
term to the performance index penalizes deviations of the final states from
their desired values. For an alternative approach to fixed end point problems,
see the discussion in reference [B-5].

6.3 VARIATION OF EXTREMALS

The iterative numerical technique that we shall discuss in this section is
called variation of extremals, because every trajectory generated by the al-
gorithm satisfies Eqs. (6.1-1) through (6.1-3) and hence is an extremal. To
illustrate the basic concept of the algorithm, let us consider a simple example.

A First-Order Optimal Control Problem

Suppose that a first-order system
X(t) = a(x(t), u(), ) (6.3-1)
is to be controlled to minimize a performance measure of the form
7= [" e, w0y, (6.3-2)

where x(¢;) = x, is given, ¢, and ¢, are specified, and the admissible state
and control values are not constrained by any boundaries. If the equation
[corresponding to (6.1-3)]

oA _
2 —0 (6.3-3)
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is solved for the control in terms of the state and costate and substituted in
the state and costate equations, the reduced differential equations

%(2) = a(x(2), p(1), 1)
p(t) = d(x(t)’ P(t), t)

are obtained. In general, d is a nonlinear function of x(), p(¢), and 7. Since
h = 0 in the performance measure, Eq. (6.1-4b) gives p(t;) = 0. To determine
an optimal trajectory, we must find a solution of Eq. (6.3-4) that satisfies the
boundary conditions x(¢,) = x,, p(t;) = 0.

If p(t,) were known, Eq. (6.3-4) could be solved by using numerical inte-
gration. Since this is not the case, suppose we guess a value pt®(z,) for the
initial costate, and use this initial value to integrate numerically (6.3-4) from
t, to t,; we denote the costate solution obtained by this integration as p‘®,
If we should guess an initial costate value that causes p®(¢,) to be zero, the
two-point boundary-value problem is solved. In general, however, it will
turn out that the final costate will not equal zero. Notice that the value ob-
tained for the terminal costate, p‘®(¢,), will depend on the number chosen
for p®(t,); in other words, p(t,) is a function of p(t,). Unfortunately, an
analytical expression for this function is not known, nor is it readily deter-
mined; however, values of the function [such as p‘®(z,)] can be found by
using selected values of p(¢,) to integrate numerically the reduced state-costate
equations. The method of variation of extremals is an algorithm that uses the
observed values of p(¢;) to adjust systematically the guessed values of p(z,).
One technique for making systematic adjustments of the initial costate values
is based on Newton’s method for finding roots of nonlinear equations [F-1}.

A geometric interpretation of Newton’s method is provided by Fig. 6-6,
where a possible curve of p(¢,) as a function of p(¢,) is shown. (Unfortunately,
we do not really know what this curve looks like—if we did, our problem would
be solved.) Newton’s method consists of finding the tangent to the p(z,)
versus p(¢,) curve at an arbitrary starting point ¢ and extrapolating this

(6.3-4)

o(tp)

O} S

-

> p(ty)

Figure 6-6 A typical relationship between p(f) and p(to)
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tangent to determine the point where it intersects the desired value of p(¢,)
(zero in this problem). This completes one iteration of the algorithm; the
next iteration consists of extrapolating the tangent at point s to determine
Dp'®’(1,). The iterative procedure continues until the value of p*’(¢,) obtained
is sufficiently close to zero to satisfy a specified termination criterion. Notice
that for small changes in p(¢,) the approximation of the nonlinear curve by
its tangent is quite good; hence if the initial costate values generated by the
iterative procedure approach p*(¢,), convergence of the algorithm should
be quite rapid.

The slope of the curve at point g, which is needed to determine the equa-
tion of the tangent, can be found approximately by perturbing the value of
pO(¢,) and evaluating (by integration of the reduced state and costate equa-
tions) the perturbed value of the final costate p'®(t,) + op'®(¢,); that is,

_ dp(ty)
slope at g) = Z21¢
( P q) dp(tu) 0 (r0)

= 0p%ty) . )
= Wﬁ (6.3-5)

The tangent curve is described by the equation

plty) = m-p(t,) + b, (6.3-6)

where m is the slope of the tangent given by (6.3-5) and b is the p(t,) axis
intercept. Since p(t,) = p‘(t,) for p(t,) = p‘P(t,), the intercept is

b =p(t;) — mp(t,); 6.3-7)
hence,
p(ty) = mp(te) + [pOt,) — mp@(1,)]. (6.3-8)

To find the point on the tangent curve p®)(¢,) where p(¢,) = 0, we substitute
p(t;) = 0 and p(z,) = p*V(¢,) into (6.3-8) with the result

0 = mpO(ty) + [pO(t;) — mp(1,)]- (6.3-9)
Solving for pt*)(z,), the next trial value of p(z,), we obtain

p(t) = pOte) — Im]"'p(ty)

2 pe) — | 428

Another way of deriving Eq. (6.3-10) is to solve the relationship
m = [p‘®(t,) — O)f[p*°’(t,) — p*'’(2,)] (obtained by inspection of Fig. 6-6)
for p'(¢,).

r 2. (6.3-10)

2 1) (1)
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In general, using this algorithm gives

PO 0(10) = pO(to) — | 443

as the expression for the (i + 1)st trial value of p(z,).
To illustrate how the iterative procedure is carried out, let us solve a
simple numerical example.

]" pO(t) (6.3-10a)

P (to).

Example 6.3-1. Assume that the reduced state-costate equations are given
by

*() = —2x(6) — p() + 6

6.3-11)
5@ = 4x(@t) + 3p(r)
and that the boundary conditions are x(0) = 3, p(1) = 0.
The iterative procedure begins by guessing a value for p(0); suppose
we guess p‘@(0) = 0. Since Egs. (6.3-11) are linear, time-invariant differ-
ential equations, the solution

XO(f) = —4e~t — 2€% + 9

6.3-12)
PO = der 4 86 — 12
can be obtained easily by using analytical methods.
Next, we perturb p¢©(0) by a small amount, say dp‘©’(0) = +0.001.
If we use p(0) = 0.001, the solution obtained for p(r) is

POE) + OpO(f) = 46t + 862 — 12 — 9%)_15—; + 0.(;04

€%, (6.3-13)

We need to store only the trajectory values at ¢ = 1 to use Newton’s
method. From (6.3-5) we obtain

dp(ts) = _°~g°15—1 * 0.2’0462 ——Llery e (6314
ap(to) lper=o 0.001 -3 37 ’

and substituting this value in (6.3-10) gives as the new value of p(t,)

P(te) = 0 — [—j€=1 + 4€71 1 [de~! + 82 — 12]
= —4.993, (6.3-15)

Then, using this value for p(t,) yields

xV(t) = —0.3366% — 5.6646~ -+ 9

(6.3-16)
p‘“(t) = 1.342€2 + 5.664€~t — 12,
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1t is easily verified that x‘V(r), p‘V’(r) satisfy the specified boundary
conditions x(0) = 3, p(1) = 0; hence, the iterative procedure has con-
verged in only one iteration. Although the reader may suspect that this
has occurred because of an especially fortuitous initial guess, the procedure
would have converged in one iteration regardless of the initial guess,
because the reduced differential equations are linear. It is left as an
exercise for the reader (Problem 6-2) to verify that if a two-point boundary-
value problem is linear, the method of variation of extremals converges
in one iteration regardless of the initial guess selected for the missing
boundary conditions.

Before considering the generalization of the technique we have dis-
cussed to higher-order systems, we note that if the desired value of the final
costate p(¢,) is some nonzero constant p,, then Eq. (6.3-10a) must be modified
to read

P00 = pOts) — | 921

o ,] E [p°Gt) —p ] (63-17)

Extensions Required for Systems of 2n Differential
Equations

We have shown how the method of variation of extremals can be used to
solve a two-point boundary-value problem involving two first-order differen-
tial equations. If we have 2n first-order differential equations (n state equa-
tions and n costate equations), the matrix generalization of Eq. (6.3-10a) is

P (t0) = p(to) — [PL(0“(20), 1] 7' P C2)), (6.3-18)

where P_(p“(z,), 1) is the n X n matrix of partial derivatives of the com-
ponents of p(f) with respect to each of the components of p(¢,), evaluated
at p@(z,); that is,

9, () () ... ()]
op,(t,) 9p,(t,) dp.(t,)
Po(), A 3 3 (63-19)
ap(t) Op () ... 9pD)
L 0p,(2,) 3p (o) 0p,(to) Jow

The P, matrix indicates the influence of changes in the initial costate on the
costate trajectory at time ¢; hence, we shall call P, the costate influence func-

tion matrix. Notice that (6.3-18) requires that P, be known only at the terminal
time ¢,
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Equation (6.3-18) is appropriate only if the desired value of the final
costate is zero, which occurs if the term A(x(z,)) is missing from the perfor-
mance measure. If, howeves, & is not absent from the performance measure,
it can be shown (see Problem 6-1) that the appropriate equation for the
iterative procedure is

pei(t) = p0ts) + {[[ e ) [ Butoteo. 1)

. (6.3-20)
—P,0 1]} b — o]
where P, (p®(t,), ¢,) is the n X n state influence function matrix
Cx () Ix, () . 9x,(D)]
dpy(te)  Ops(to) dp.(t0)
P, 0L 1 3 (6.3-21)
Ox () Ox )  9x,(0
L 0p,(to) Op,(to) 0p.(to)_low ¢y

evaluated at ¢ = t,. The notation [ ], means that the enclosed terms are
evaluated on the ith trajectory, and

(e,

is the matrix whose jkth element is

[Gaon)| 250 o,

jk

Notice that if & = 0, (6.3-20) reduces to Eq. (6.3-18).

In order to use Eq. (6.3-20) in an iterative manner, we must first deter-
mine the influence function matrices. Let us now discuss how these matrices
can be computed.

Determination of the Influence Function Matrices

Conceptually we may think of finding the P, and P, matrices at 7 = ¢,
by the following finite difference procedure:

1. Using p(t,) = p®(¢,) and x(z,) = X,, integrate the reduced state and
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costate equations from ¢, to #,, and store the resulting values of p®(¢,)
and x(¢,).

2. Perturb the first component of the vector p®(¢,) by an amount dp,(z,);
again integrate the reduced state and costate equations from ¢, to ¢,.
The first column of P_(p®(¢,), ¢,) is found from the relationship

Ip(t,) - op(ty) | )
apl(tfo) boww 0P (o) (6.3-22)

where dp(¢,) is found by subtracting the value of p(t,) generated in
step 1 from the value of p(¢,) generated by using the perturbed value
of p(t,).

Similarly, the first column of P (p“(¢,), ¢,) is found from

Ix(t,) . OX(t) ]
m b ) 5p1(t,o) (6.3-23)

3. The remaining columns of the influence function matrices at ¢ = ¢,
are generated by perturbing each of the components of p(¢,), with all
other components at their initial settings, and evaluating the ratios of
the changes in p(¢,) and x(¢#,) to the change in the appropriate com-
ponent of p(z,).

If the influence function matrices are computed by using this procedure,
the integrations of steps 1, 2, and 3 would probably be performed simul-
taneously.

One rather apparent difficulty with this finite difference procedure is the
selection of the perturbations. Relatively large perturbations may cause the
difference approximations of the partial derivatives to be inaccurate, whereas,
on the other hand, very small perturbations may significantly increase the
effects of inaccuracies caused by numerical integration, and truncation and
round-off errors. These difficulties can be avoided, however, by using a
different method to evaluate the influence function matrices; let us now
discuss this alternative procedure.

Assume that d.#/du has been solved for u(f) and used to obtain the
reduced state and costate differential equations

1) = %L (0, 100, 0
3 (6.3-24)
90 = — 22 x(0), BO), ).

Taking the partial derivatives of these equations with respect to the initial
value of the costate vector gives
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T X0] = 01,(, T | S0, 20, )

S O] = 5[ — S, 20, 0.

If it is assumed that d[dx/dt]/dp(¢,) and d[dp/dt]/dp(t,) are continuous
with respect to p(t,) and ¢, the order of differentiation can be interchanged
on the left side of (6.3-25); doing this and using the chain rule on the right-
hand side, we obtain

x(1) 9x(t)
dr L?p(to)] [6p6x( @), B0, t)] op(t,)
+ G a0, 00. 0 2L

o] _ )
217[65’(:0)] — [~ G 0,500, ) In(te)

(1)
— [ oo p0, 1| FHEL

The indicated partial derivatives are n X »n matrices having jkth elements

H| , H x(®)] A 9x,(0)
[01)51& "o apjaxk and [61’(’0)} w o 0p(ty)

Notice that if the definitions of the influence function matrices given by
(6.3-19) and (6.3-21) are used, Eq. (6.3-26) becomes

(6.3-25)

(6.3-26)

» etc.

%[P,(p(n(to), ] = [ 3pox (t)] P.(p(t,), )
+ [GE 0| 60w, o
22,0000, 0] = [ 5X (r)] P,00(0) 1)

(6.3-262)

S - A0Yp X LN

where [ ], indicates that the enclosed matrices are evaluated on the tra-
jectory x®  p® obtained by integrating the reduced state-costate equations
with initial conditions x(#,) = Xx,, p(t,) = p’(#,). Notice that (6.3-26a)
represents a set of 2n? first-order differential equations involving the
influence function matrices. The matrices P (p*(z,), ¢,) and P,(p"(¢,), t,)
can be obtained by integrating these differential equations simultaneously
with the reduced state-costate differential equations. The appropriate initial
conditions for the influence function equations are
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P.OO(), 1) = ade)

Pp(p(i)(to), to) — g%g—z;

=0 (the n X n zero matrix) (6.3-27a)

p @ (o)

=1 (the n X n identity matrix). (6.3-27b)

p® (to)

Equation (6.3-27a) follows because a change in any of the components of
P(¢,) does not affect the value of x(¢,); the state values are specified at time
to. A change in the jth component of p(¢,) changes only p,(#,); hence the
result shown in (6.3-27b) is obtained.

The Variation of Extremals Algorithm

Before solving a numerical example, let us first outline the steps required
to carry out the variation of extremals method:

1. Form the reduced differential equations by solving ¢ /du = 0 for
u(?) in terms of x(¢), p(¢), and substituting in the state and costate
equations [which then contain only x(¢), p(¢), and ¢].

2. Guess p©(¢,), an initial value for the costate, and set the iteration
index i to zero.

3. Using p(z,) = p®(¢,) and x(z,) = x, as initial conditions, integrate
the reduced state-costate equations and the influence function equa-
tions (6.3-26a), with initial conditions (6.3-27), from ¢, to ¢,. Store
only the values p@(¢,), x(t,), and the n X n matrices P, (p(t,), ¢,)
and P,(®(t,), 1)

4. Check to see if the termination criterion ||p®(t,) —dh(x(t,))/0x ||
< y is satisfied. If it is, use the final iterate of p*)(¢,) to reintegrate the
state and costate equations and print out (or graph) the optimal
trajectory and the optimal control. If the stopping criterion is not
satisfied, use the iteration equation (6.3-20) to determine the value™
for p“*+¥(z,), increase i by one, and return to step 3.

Notice that steps 1 and 2 are performed off-line by the user or program-
mer; the computer program consists of steps 3 and 4. Let us now illustrate
the use of variation of extremals to re-solve the continuous stirred-tank
chemical reactor problem discussed in Section 6.2.

Example 6.3-2. The appropriate equations are the same as in Example
6.2-2. To determine the reduced differential equations, we solve (6.2-36)
for u(r) to obtain

u(t) = 5O 0) + 0.25]. (6.3-28)
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Substituting (6.3-28) with R = 0.1 in the state and costate equations gives

xy(f) = —[x:(r) + 0.25][2 + 5p:(D[x1(t) + 0.25]]

+ [a() + 0.5] exp [%’)"J(r’)—i] (6.3-29)

23(6) = 0.5 — x3(t) — [xa(1) + 0.5 exp [é%’)“fr—’)z]

Lo _ [P2() — piO][x5(r) + 0.5]
Bilt) = =2x(0) = pu(0] + SO T
25x,(t)

X exp [W] + 5pXO[x:(1) + 0.25] (6.3-30)

Pat) = —250) + pal®) + [220) = PO exp [ 20550 |

as the reduced state-costate equations.
The influence function matrix differential equations are

500x, + 051, [xi +0251p;

—2 4
. pIg R
B0 = s+ 2 P.()
—500x, + 0.5] i —w
[x, + 2] ’
—lx, + 0252
+ 2R } | 0]
0 0l
100[23 — x,](x; +0.5] p} SO[py — pil
2+ [ps — pul G R o 2, 0P =y
Pp(t) = Px(’)
50[p; — pil, 2
[ ¥ 28 r
5 _ 50[x, 4 0.5] @ & [x, + 0 25]p1 50[x, + 0.5],
+ { [x, + 2P [x1 + 2] “} »(),
— 0 1 + o ‘
(6.3-31)
where ¢ 2 exp I:xzs_:‘z]

The boundary conditions for integrating these eight differential equations
are P,(0) = 0, P,(0) = I. The state and costate values appearing on the
right side of (6.3-31) are obtained from the integration of the reduced
state-costate equations with initial conditions x(0) = [0.05 0.00]%,
p(0) = p®¥(0). After integrating (6.3-29) through (6.3-31) from ¢ = 0.0 to
t = 0.78, the matrix P,(0.78) is used to determine p‘+1(0) from (6.3-20)
with A = 0; that is,

t For simplicity the argument ¢ has been omitted from the expressions involving x(t)
and p(¢), and the argument p(’(¢,) has been omitted from the influence functions.
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p4+12(0) = p@(0) — [P, (0.78)]; 'p“(0.78). (6.3-32)

The initial guess used to start the iterative procedure was

pO(0) = [(1)(5)} , (6.3-33)
and
1p1(0.78)| + [ p,(0.78)| < 10-3 (6.3-34)

was the norm used as a stopping criterion.
The method converged after 5 iterations (with a norm of 1.71 x 10-%)
to the costate values

S0) = {1.0782}

0.1918
which yield as the minimum value of the performance measure
J* = 0.02660.

Figures 6-7 and 6-8 show the optimal control and trajectory. Comparing
Figs. 6-7 and 6-8 with Figs. 6-4 and 6-5, we see that although the mini-
mum value of J agrees to three decimal places with the steepest descent
results, the trajectories and controls are discernibly different~—indicating
that the performance measure is rather insensitive to control variations
in the vicinity of the optimum. Table 6-2 shows the costs and norm
changes that occur during the iterative procedure.

u(t)
S

1.8

B IS OO WU DU N NS N IS N N S S| T N T
0. 008 016 024 032 040 048 0.56 064 072 0.80
Time

Figure 6-7 The optimal control for the stirred-tank reactor (varia-
tion of extremals solution)
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Figure 6-8 The optimal trajectory for the stirred-tank reactor
(variation of extremals solution)
Table 6-2 VARIATION OF EXTREMALS SOLUTION OF THE STIRRED-TANK
CHEMICAL REACTOR PROBLEM
Iteration Norm Jt p(0) p(0.78)
[1.00007] [2.33707]
. 0 0.
0 297 x 10 09973 05000, 06353
[1.23727 [0.4846]
—1
1 490 x 10 0.04786 02720 |0.0048.
[1.08977 [0.1250
-1
2 1.50 x 10 0.02943 |0.2236 |0.0252]
11,0752 0.02007
. ~2 0.
3 2.83 x 10 02668 01975 [0.0083~
[1.07807 0.00077
~3
4 1.09 x 10 0.02660 |0.1920 [0.0 003
[1.07827 0.0000012
—6
5 1.71 x 10 0.02660 01918 [0'0000005}

T Notice that this is the value of J associated with an extremal trajectory that satisfies the
required boundary conditions only when the iterative procedure has converged.
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An initial guess of

- (3]

was also tried. The iterative procedure required 16 iterations to converge,
and large excursions of the initial costate values (see Fig. 6-9) and the
norm were observed. The norm for the initial guess was 11.77; after four
iterations this value had grown to 933.69. These fluctuations and the
number of iterations required for convergence point out the importance
of making a good initial guess.

44}
4.0

T

T

3.6 X p(0) x
321 p,(0) +
2.8
24
2.0
1.6 X
12f x
0.8 A
0.4L +
0.0 &
~04l 1
0

T

T

T
x

T
+

Iteration number

Figure 6-9 Variation of initial costate values for a starting guess
p0(0) = gg]

Features of the Variation of Extremals Algorithm

As we did previously with the method of steepest descent, let us conclude
our discussion of variation of extremals by reviewing the important char-
acteristics of the algorithm.

Initial Guess. To begin the procedure, a guess for the initial costate p(¢,)
must be made. [Actually, it may be better to guess x(¢,) instead, since we
probably have more knowledge about the final values of the states from the
physical nature of the problem. If we do elect to guess x(z,) instead of p(z,),
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then we must integrate backward in time and modify the iteration equations
appropriately to generate the next guess for x(z,).]

Storage Requirements. No trajectories need to be stored; only the values of
the influence function matrices at ¢ = ¢t,, the value of p‘’(z,), the given
initial state value, and the appropriate desired boundary conditions are
retained in computer memory.

Convergence. Once p¥(¢,) is sufficiently close to p*(¢,), the method of varia-
tion of extremals will generally converge quite rapidly; however, if the initial
guess for p(¢,) is very poor, the method may not converge at all. Making a
good initial guess is a difficult matter, because we have no physical insight to
guide us in selecting p®(¢,). The sensitivity of the solution of the differential
equations is the culprit that makes the initial guess for p(¢,) so crucial; Fig.
6-10 illustrates how a small difference in the values of the initial costate may
cause tremendous differences in the final values of the costate. Sometimes

p(t)

Figure 6-10 Sensitivity of the costate solution to changes in p(¢o)

this difficulty can be circumvented by using
P 0(t) = 0(t0) + 7{[ [ G xe, ) [ PutoCea)s 1) — P00 1]}
. [p(t,) — g—f((X(tf))]; (6.3-35)

where 0 < 7 <1 is a step size adjustment factor, instead of (6.3-20). To
prevent the procedure from trying to correct the error in p(¢,) in one step,
we can make 7 small during the early iterations, and then gradually increase
it to 1.0 as the procedure begins to converge.

Computations Required. 2n(n + 1) first-order differential equations must be
numerically integrated and an n X » matrix inverted in each iteration.
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Stopping Criterion. The iterative procedure is terminated when

|

where 7 is a preselected positive termination constant,

pO(ty) — Prexoe,)

]9,

Modifications Required for Fixed End Point Problems. If some or all of the
final states are fixed, we must modify Eq. (6.3-20) to adjust p(z,) iteratively
on the basis of deviations of the final states from their desired values (see
Problem 6-3).

6.4 QUASILINEARIZATION

In Chapter 4, we indicated that the combination of split boundary con-
ditions and nonlinear differential equations is what makes nonlinear two-
point boundary-value problems difficult to solve. Numerical integration can
be used to solve nonlinear differential equations if a complete set of boundary
conditions is specified at either the initial time or the final time—the method
of variation of extremals consists of solving a sequence of such problems.
In the method of quasilinearization, which we will introduce in this section,
a sequence of linear two-point boundary-value problems is solved. Let us
begin our discussion by illustrating a noniterative procedure for solving
linear differential equations with split boundary conditions.

Solution of Linear Two-Point Boundary-Value Problems

Consider the two first-order, linear differential equations with time-
varying coefficients

x(t) = a,,(Ox(r) + a,,(Op(t) + e,(t)

(6.4-1)
() = a,, ()x(2) + a5, ()p(0) + e,(2)

with specified boundary conditions x(t,) = x, and p(t;) = p,..a,,,a,,,a,,,
a,,, e, and e, are known functions of time, and ¢,, t,, x,, and p, are known
constants. It is desired to find a solution, x*(t), p*(¥), ¢ € [t,, t;], which
satisfies the given boundary conditions. Notice that these differential equations
are linear, but the boundary values are split.

First, suppose that we were to generate by numerical integration a solu-
tion, x"(1), p#(1), t € [1,,t,], of the homogeneous differential equations

x(t) = a,,(Dx(D) + a,,()p(1)

. (6.4-2)
P(t) = a,, ()x(2) + a,,(D)p(r)
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with arbitrary assumed values for the initial conditions; as a convenient
choice, let x#(¢,) = 0 and p#(z,) = 1.

Next, we could determine a particular solution, x?(¢), p*(¢), to the non-
homogeneous equations (6.4-1) by numerical integration, using x?(¢,) = x,
- and p?(¢,) == 0 as initial conditions. Since the differential equations are linear,
the principle of superposition applies, and

x(t) = ¢, x¥(t) + x*(t)

6.4-3
p(t) = ¢, p"(8) + p*(1) (643)

is a solution of (6.4-1) for any value of the constant ¢,. We wish to find the
solution that satisfies the specified boundary conditions. This can be accom-
plished by observing that

P(tf) =Dr= clP”(tf) +Pp(tf)- (6-4'4)

Solving this for ¢,;, which is the only unknown quantity, gives

e, = b bt é’:)(‘f)- (6.4-5)

The required solution of (6.4-1) is then given by Eq. (6.4-3) with this value of
¢,. Notice that the boundary condition x(z,) = x, is satisfied for any choice
of ¢, because of the judicious choices x#(¢;) = 0 and x7(¢y) = x,.

The principle of superposition enabled us to obtain the solution of the
linear two-point boundary-value problem in terms of the solution of a
linear algebraic equation. The following example illustrates the required
calculations.

Example 6.4-1. Find the solution of the differential equations

X(@) = —2x(1) — p(t) + 6

6.4-
pO) = 4x(@) + 3p(1) €49

which satisfies the boundary conditions x(0) = 3, p(1) = 0.
Proceeding as outlined previously, let x#(0) = 0, p¥(0) = 1 be the
initial conditions for the homogeneous equations

x(@0) = —2x(t) — p(t)

] 6.4-7)
B = 4x(®) + 3p(0).
Integrating Eq. (6.4-7) with these initial conditions gives
xH(}) = 16—1 _ l€2t
=1 ¢ (6.4-8)

() = —3€* + je™.
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To find a particular solution, we integrate (6.4-6) with the boundary
conditions x?(0) = 3 = x(0), p#(0) = 0, which yields the result

xP(t) = —4e~t — 26 + 9

(6.4-9)
pr(t) = 467t + 8€¥ — 12,
The complete solution is then
x(t) = c,[4€* — 3€%] — 46~ — 262 + 9 (6.4-10)

PO = c;[—1€7" + $€%] + 4e~* + 8e¥— 12,

where the value of c¢; that makes p(1) =0 is to be determined.
Notice that x(0) = 3 regardless of the value of ¢,. To find ¢; we need
only solve the linear algebraic equation

0 =c[—4€! + 4€2] + 46! + 8€2 — 12, 6.4-11)
which gives ¢; = —4.993. The solution is then

x(t) = —0.336€2* — 5.664¢ + 9

(6.4-12)
p(t) = 1.342¢2 + 5.6646~t — 12.

1t is easily verified by substitution that this is a solution of the original
differential equations and comparing (6.4-12) with (6.3-16) we observe
that this is the same solution as was obtained by using variation of ex-
tremals in Example 6.3-1.

In this particular problem the differential equations were simple
enough so that numerical integration was not required; unfortunately,
this is not generally the case. It should also be pointed out that the values
assumed for x#(0), p#(0), x?(0), and p»(0) require that only one algebraic
equation be solved; however, other initial values can also be used to
obtain the same result for the complete solution.

The preceding discussion can be extended to include systems of linear
differential equations of arbitrary order, but before doing this let us discuss
how the linear differential equations arise.

Linearization of the Reduced State-Costate Equations

In general, the state and costate differential equations are nonlinear.
Let us consider a simple situation in which there is one state equation and one
costate equation. Assume that ds#/du = 0 has been solved for u(r) and
substituted in the state-costate equations to obtain the reduced differential
equations

x(#) = a(x(1), p(1), 1)

(6.4-13)
p(l‘) = d(x(t),p(t)9 t)
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where a and d are nonlinear functions of x(¢), p(¢), and ¢. Let x(¢), p*(2),
t € [ty, t;], be a known trajectory and x(¢), p'"(2), t € [t,, t/], be any other
trajectory. By performing a Taylor series expansion of the differential
equations (6.4-13) about x(#), p®®(¢) and retaining only terms of up to first
order, we obtain

D(F) = XO(f) 4 (x‘°)(t) PO, t) [xO() — xO()]

(6.4-14)

[ CRONEOD] IR0
) =) + [ 92

(), PO, | [0 — xO()]

+ [0, o]0 — poc)
or, substituting a(x®(¢), pt(¢), £) for X (¢) and d(xO(¢), p (), t) for p(s),
20(1) = a(x 1), p(1), 1)

+ [@(x%,pm(t), ] [x0() — x0)]

+ [0, 20, 9] [p0) - 2]
) = A0, PO, 1)
+ [, 200, 0| 1200 — x0)]
+ _ad(x(o)(t) p(")(t) t) [p“)(t) ——p(°’(t)].

(6.4-14a)

To demonstrate that these equations are linear, we can rewrite them, using
the fact that x® and p‘® are known functions of time, as

0(t) = a,(Dx V() + a,,(p' (1) + e,(2)

. (6.4-15)
PO1) = a,, (Dx(t) 4 a,,(Dp (1) + e,(2),

where

0 2 LEOO.000, au) 2 FE00,200,),

LE0@0.%0.0,  a0) 2 F0, 500, 0,

O

e,(t) £ a(x(t), p(1), 1) — [g—i(x“”(’)’ D), z)] xO(t)
_ l:gg("m(’)’l’m)(‘)’ t)]p(o)(l)
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and
(1) £ d(<(0), PO, ) — [ F2OWD, 120, D] 520
— [Feow, pow. |00

are all known functions of time.

By expanding the differential equations (6.4-13) about a trajectory x(®,
P, we have obtained a set of ordinary, linear, time-varying, nonhomogeneous
differential equations; these linear differential equations can be solved by
using the procedure we have discussed previously in this section.

One Iteration of the Numerical Procedure

The method of quasilinearization consists of solving a sequence of lin-
earized two-point boundary-value problems. We now know how to:

1. Linearize nonlinear differential equations.
2. Solve linear two-point boundary-value problems.

The following example illustrates how these two steps go together to
constitute one iteration of the quasilinearization algorithm.

Example 6.4-2. A nonlinear first-order system is described by the differen-
tial equation

x(1) = x2(t) + u(). (6.4-16)
The initial condition is x(0) = 3.0, and the performance measure to be
minimized is
1
7= [, 220 + wo) a. (6.4-17)
From the Hamiltonian

H(x(1), ut), p(t)) = 2x2(t) + u(®) + p()x:(t) + p(Ou(®),  (6.4-18)
the costate equation is

)= — %% = —4x(t) — 2p)x(t). (6.4-19)

The algebraic relationship that must be satisfied is

‘9;: — 0 = 2u(f) + p(). (6.4-20)



362

[terative Numerical Techniques Sec. 6.4

Observe that ## is quadratic in u(r), and

I
P 2>0, (6.4-21)
so that
u(t) = —1p(t) (6.4-22)

is guaranteed to minimize the Hamiltonian. The nonlinear two-point
boundary-value problem that is to be solved is then specified by the
reduced state-costate equations

x() = x¥(t) — $p(1)

(6.4-23)
p(t) = —4x(t) — 2p()x(),

the boundary condition x(0) = 3.0, and, from equation (5.1-18), p(1) = 0.
Linearization of the reduced differential equations (6.4-23) about a
nominal trajectory x(®, p(® gives

2O@t) = [x Q@] — $pO) + 2xO(O[x V(1) — x©O(1)]
— [p) — PO

PO = —4x0(F) — 2pO(NxO(r) (6.4-24)
—[4 + 2p@@O][x V() — xO@1)]
— 2O pV(t) — p )],

which, when rearranged, becomes

)‘C(l)(t) —_ [Zx(D)(')]x(l)(’) — %p(l)(t) — [x(O)(t)]Z
PO = —[4 + 20OV — 2xDO]p(1)  (6.4-24a)
+ 2x©@@)p @),

where each of the bracketed quantities is a known function of time.
Notice that these differential equations are of the form given by (6.4-1),
and hence can be solved for x‘V(¢), p"’(¢), t € [0, 1], by guessing
x©(), p2(¢), t € [0, 1], and using the procedure described previously.
The new trajectory x‘’, p") can then be used in place of x(©’, p® to repeat
the process.

Let us now discuss the generalization of these steps to systems of 2n

differential equations. As expected, the generalization leads to similar equa-
tions, but with matrices replacing scalar quantities.

Assume that d#/du = 0 has been solved for u(z) and substituted in

the state and costate equations to obtain the reduced differential equations

x(t) = a(x(1), p(2), 1) (6.4-25)
b0 = — %0, 500, 0. (6.4-26)
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The specified boundary conditions are x(¢,) = X, and p(t,) = p,, where
P, is an n X 1 matrix of constants; t, is assumed to be specified, and x(z,)
is free.

The first step is to linearize the differential equations (6.4-25) and (6.4-26).
This is accomplished by expanding these differential equations in a Taylor
series about a known trajectory x“(s), p’(¢), ¢ € [#,, t,], and retaining only
terms of up to first order. The linearized reduced differential equations are

]'((Hl)(t) — a(x(i)(t) p(l)(t), t)
+ [0, 2@, ][xe ) ~ x00)]

+ [Sem, 100, 00 ~ 0] (64-27)

PO = ‘95"” x(8), pO(2), 1)
79 L

©, ][50 — x0()]

—~ _" '” 00,000, ) [0 —p0) | (6428)

where the jkth elements of the indicated matrices are

Bk Bk B

and

[62,%”} _ 0%
oxopl,, ~ dx,0p,

Notice that the differential equations (6.4-27) and (6.4-28) can be written

XID(0) = A OXCO0) + AP0 o) (6427a)
B0 = A (XD + AP0 + e(0),  (64282)

or, in partitioned matrix form,

%0+ 0(p) A, 1(’) i AL || x40 e,(9)

PrO@) A21(t) A || P10 e,(t)

A AQ R +{-——-1 (6.4-29)
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where the matrices A, ,(f) & dajox, A,,(r) A da/dp, A, (1) & —d%#[dx?,
Ay(t) & —32#[0xdp, e,(t) & —A, (Ox(1) — A,,(Op() +a, and e,(9)
A —A, (Ox(r) — A,,(1)p(t) — 05 /dx are evaluated at x©(¢), p®(r) and
hence are known functions of time.

An initial guess, x(¢), p(2), t € [t,, /], is used to evaluate these func-
tions of time at the beginning of the first iteration. The next step is to generate
n solutions to the 2n homogeneous differential equations

XD = Ay (X)) + Ay (0P (D)

, (6.4-30)
BUD(0) = Ap (K () + Apg(O(0)

by numerical integration. These solutions will be denoted by x#!, p¥!; x#?2,
p¥%; ... ; xHn, pHn—_the iteration superscript (i + 1) being understood. As
boundary conditions for generating these solutions we shall use

xHl(t,) = 0, pilty)=[l 0 0 -.- OF
XH () =0, p*(t,)=[0 1 O -.- OF

' ' (6.4-31)
x#n(t,) = 0, p(t,)=[0 0 ... 0 1T

Next, we generate one particular solution, denoted by x*, p®, by numerically
integrating Eq. (6.4-29) from ¢, to ¢, using the boundary conditions x~(z,)
= X, p?(t,) = 0. Using the principle of superposition, we find that the com-
plete solution of (6.4-29) is of the form

XO(0) = €, X0) + X0 + - X)) + x| (64-32)
PUD() = ¢ p(1) + epTHE) + - + B + pA(), | (6.4-33)

where the values of ¢,,c,,...,c, which make p“"(s,) = p, are to be
determined. To find the appropriate values of the c’s, we let t = ¢, and
write Eq. (6.4-33) as

B, = )P el F ), (6434
where only ¢ A ¢, ¢, ... ¢J is unknown. Solving for ¢ yields
¢ = [p"'(tp)! Pt ()] [, — () (6.4-35)

Substituting ¢ of Eq. (6.4-35) into (6.4-32) and (6.4-33) gives the (i ++ 1)st
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trajectory—this completes one iteration of the quasilinearization algorithm.
The (i + 1)st trajectory can then be used to begin another iteration, if re-
quired.

Notice that if we let # = ¢, in Eqgs. (6.4-32) and (6.4-33) and substitute
the boundary conditions given by (6.4-31), then

x®0(t) = x2(2,) = X,
pUI(t,) = ¢

Thus, the solution x¢*9, pti+1) gatisfies the initial condition x“*V(#,) = x,
regardless of the value of ¢. In addition, the initial costate for the (i 4+ 1)st
trajectory is the value of ¢ obtained from Eq. (6.4-35); we shall subsequently
make use of this information to reduce storage requirements.

In deriving Eq. (6.4-35) from (6.4-32) and (6.4-33) it was assumed that the
final costate p(¢,) is a specified constant. If, however,

(6.4-36)

p(t,) = Srexce ), (64-37)

then Eq. (6.4-35) must be modified to read (see Problem 6-10)

e = [pi(t) — Mx"1() p72() — Mx™(e) | e

— M )] SR )~ MxO(e ) + Mxo(e )~ () |

(6.4-38)
where
*h,
Ma a"’('i(x(l)(tf))‘
Notice that if  is a linear function of x(¢,), for example,
h(x(t,)) = v'x(¢)), (6.4-39)

where v7 is a 1 X n matrix of constants, then d24/dx? = 0 and dh/dx = v.
In this case, Eq. (6.4-38) reduces to (6.4-35) with p, = v.

The Quasilinearization Algorithm

Let us now summarize the iterative procedure for solving nonlinear two-
point boundary-value problems by using the method of quasilinearization:

1. Form the reduced differential equations by solving d5#/du = 0 for
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u(?) in terms of x(¢), p(¢), ¢, and substituting in the state and costate
equations (which then contain only x(¢), p(¢), and ¢).

. Using (6.4-27) and (6.4-28), determine the linearized reduced differ-

ential equations in terms of x?(z), p®(2), ¢.

. Guess an initial trajectory x(r), p(¢), t € [t,, ¢}, and let the itera-

tion index i be zero.

. Evaluate the matrices A,,, A,,, A,,, A,,, ¢;, and e, of Eq. (6.4-29)

on the trajectory x®, p®.

. Numerically integrate the linear homogeneous differential equations

(6.4-30) from ¢, to ¢,, using the n sets of initial conditions given in
(6.4-31), to obtain #» homogeneous solutions. Compute a particular
solution to (6.4-29) by numerical integration from ¢, to ¢,; using the
initial conditions x?(¢,) = x, and p*(¢,) = 0. Generally, the » homo-
geneous solutions and the one particular solution are calculated
by performing a single integration of n(2n) + 2n = 2n(n + 1) differen-
tial equations. Store the values of the appropriate variables at ¢ = ¢,.

. Use the values found in step 5 to determine ¢ from Eq. (6.4-38).
. Use ¢ found in step 6 and Eqs. (6.4-32) and (6.4-33) to determine the

(i + Dst trajectory.

. Compare the ith and (i + 1)st trajectories by calculating the norm

x+1) x®

n
e L= | - A Y {max | x§R() — xP(r)]
p(.+1) p(‘) =1z

+ max [P0 — pPO}.  (6.4-40)t
If

----- — = ll<» (6.4-41)

where p is a preselected termination constant, the iterative procedure
has converged; go to step 9. If the termination criterion is not satisfied,
return to step 4, using the trajectory x“+1, p®*1 in place of x¥, p®.

. Integrate the original nonlinear reduced state and costate equations

with initial conditions x(¢,) = x,, p(¢,) = ¢. Compare the results of
this integration with the final trajectory xU+", p¢*V| using a
suitable norm, and also with the specified boundary values at ¢ = ¢,
to verify that the sequence of solutions to the linearized differential
equations has converged to the solution of the nonlinear differential

t There are, of course, other acceptable choices for the norm.
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equations (6.4-25) and (6.4-26). Evaluate the optimal control history
from the state and costate values on the (i 4 1)st trajectory, and print
out (or graph) the optimal trajectory and the optimal control.

Steps 1 through 3 are performed off-line by the user or programmer; steps
4 through 9 are executed on a digital computer.

The Continuous Stirred-Tank Chemical Reactor Problem

For comparison with the methods of steepest descent and variation of
extremals, let us again solve the stirred-tank reactor problem discussed in
Sections 6.2 and 6.3, this time using the quasilinearization algorithm.

Example 6.4-3. The problem statement is given in Example 6.2-2. The
reduced differential equations are given by Egs. (6.3-29) and (6.3-30).
Linearizing these nonlinear differential equations, using (6.4-29), we

obtain
XG+D(r) x4+ 0(p) ] a(x®(r), p(), 1)
-------- =A@ T | T T
pO(r) put(r) - a—x-(x(”(f), ph(), 1)
x(n(y)'1
_ ap| = . (6.4-42)
pO()

—2—10p s +0s; & | —S50F
I
—oiy 1—a, | 0 o
A@) = , | ' |
-2+a2065 +5p1 : 0306 :2+10p1M5—OC4 : 04
i
0030ls : -2 1 —0y ;1+a1 X (6), p (r)
where

o sool 25

A 100[x2 + 0.5][23 - x1]061

%2 [x, +2]¢

5001,
A %
o3 _—[

x; + 2]*
04 & [x, + 0.5]0s.
Os é X, + 0.25

O 2 p; — Py
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Although these differential equations look formidable, their derivation
is not difficult, only tedious. It should be emphasized that the A(z) matrix
and the 27 x 1 matrix containing a and 02#/dx are evaluated on the
ith trajectory; hence, in the (i 4 1)st iteration these are known functions
of time.

To begin the iterative procedure, the nominal state-costate history

x1(t)

O _ o forreo,078]
p.(t)

pa(t)

was selected. The norm used to measure the deviation of successive
trajectories generated by the iterative process is given by Eq. (6.4-40)
with p =1 x 10-3. For this initial guess, the procedure converged in
four iterations to a minimum cost of

J* = 0.02660

with a norm of 0.00044. As a check, the initial costates generated in the
final iteration were used to integrate the original nonlinear differential
equations (6.3-29) and (6.3-30), and the norm of the deviation of this
trajectory from the trajectory generated in the last iteration was calculated
to be 0.00073. The optimal trajectory and control history obtained by
using quasilinearization are identical (to three decimal places) with the
results obtained using the variation of extremals algorithm.
An initial state-costate history of

x,(l) —0.5
xZ(’) —0.5
= for ¢ € [0, 0.78]
() —0.5
pa(0) —0.5

was also tried. With this initial guess, quasilinearization converged in nine
iterations to a minimum cost of

J* = 0.02660

with a final norm of the deviation between successive trajectories of
0.000002. Again, the optimal control history and its trajectory are essen-
tially identical to those found by using variation of extremals. The results

obtained by using each of these initial trajectories are summarized in
Table 6-3.
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Table 6-3 QUASILINEARIZATION SOLUTION OF THE STIRRED-TANK.
CHEMICAL REACTOR PROBLEM
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Features of the Quasilinearization Method

To conclude our discussion of quasilinearization, let us summarize the
important features of the algorithm.

Initial Guess. An initial state-costate trajectory x(¢), p(t), t € [t,,¢,],
must be selected to begin the iterative procedure. This initial trajectory, which
is used for linearizing the nonlinear reduced differential equations, does not
necessarily have to satisfy the specified boundary conditions; all subsequent
iterates will do so, however. The primary requirement of the initial guess is
that it not be so poor that it causes the algorithm to diverge. As usual, the
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initial guess is made primarily on the basis of whatever physical information
is available about the particular problem being solved.

Storage Requirements. From Eq. (6.4-32) with ¢ =, it is apparent that
Pé+I(¢,) = c if the values of p#!(z,), . . ., p"(¢,), and p?(z,) are selected as
suggested; therefore, once ¢ is known, the (i + 1)st trajectory can be generated
by reintegrating Eq. (6.4-29) with the initial conditions x“*(z,) = x, and
p“+(¢,) = ¢. By doing this, there is no necessity for storing (presumably
in piecewise-constant fashion) the n homogeneous solutions and the
particular solution; hence we store only the linearizing state-costate trajec-
tory, the specified value of x(¢,), the value of ¢, x?(¢,), p*(¢;), and x"/(¢)),
P, J=1,2,...,n

Convergence. McGill and Kenneth [M-4] have proved that the sequence
of solutions of the linearized equations (6.4-29) converges (with a rate that
is at least quadratic) to the solution of the nonlinear differential equations
(6.4-25) and (6.4-26) if

1. The functions a and ds#/dx of Eqs. (6.4-25) and (6.4-26) are con-
tinuous.

2. The partial derivatives da/dx, da/dp, 925¢/0x?, and 9%5#°/0xdp of
Egs. (6.4-27) and (6.4-28) exist and are continuous.

3. The partial derivative functions in 2 satisfy a Lipschitz condition
with respect to [x(2) } p(9)]".

4. The norm of the deviation of the initial guess from the solutions of
(6.4-25) and (6.4-26) is sufficiently small.

Computations Required. The integration of 2n(n + 1) first-order linear dif-
ferential equations and the inversion of an n X n matrix are required in each
iteration. If the ( + 1)st trajectory is generated by integration as discussed
previously, an additional 2n linear differential equations must be integrated.

Stopping Criterion. The method of quasilinearization involves successive
approximations to the solution of a system of nonlinear differential equations
by a sequence of solutions of a system of linear differential equations. To
ascertain whether or not the procedure has converged, a measure of the
deviation of adjacent members of the sequence is used. For example, McGill
and Kenneth [M-5] use the norm

M = % {max| x§*2(0) — xP(0)] + max|pf(0) — PO (6443)

where x§* ! is the jth component of the state vector generated in the (i + 1)st
iteration. When two successive trajectories yield a value of M that is smaller
than some preselected number 7, the iterative procedure is terminated—the
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sequence of solutions of the approximating linear differential equations has
converged. It remains to verify that the final iterate in this sequence of solu-
tions has converged to the solution of the original nonlinear differential
equations. We can accomplish this by integrating the nonlinear differential
equations (6.4-25) and (6.4-26), using the value for p(¢,) determined in the
final iteration and the specified value of x(¢,) as initial conditions. The
boundary values obtained at ¢ = ¢, from this numerical integration are then
compared with the specified values at ¢ = ¢, to verify that the solution to
the nonlinear two-point boundary-value problem has been obtained.

Modifications for Fixed End Point Problems. We have discussed problems in
which the final states are free; however, the quasilinearization algorithm is
easily modified to deal with problems in which some or all of the states are
specified at t = ¢,. For example, suppose x(¢,) is specified. To determine ¢,
we solve Eq. (6.4-32) with ¢ = ¢, rather than solve Eq. (6.4-33). If some of
the components of x(¢,) are fixed and others free, we select the appropriate
equations among (6.4-32) and (6.4-33), let ¢ = ¢, and solve for ¢.

6.5 SUMMARY OF ITERATIVE TECHNIQUES FOR
SOLVING TWO-POINT BOUNDARY-VALUE
PROBLEMS

So far, in this chapter we have considered three iterative numerical
methods for the solution of nonlinear two-point boundary-value prablems.
The assumption was made that the states and controls are not constrained
by any boundaries; if this is not the case, the computational techniques we
have discussed must be modified.f

In each of the methods we have considered, the philosophy is to solve a
sequence of problems in which one or more of the five necessary conditions
[Egs. (6.1-1) through (6.1-4)] is initially violated, but eventually satisfied if
the iterative procedure converges. In the steepest descent method the algo-
rithm terminates when d#/du = 0 for all ¢ € [¢,, t,], the other four con-
ditions having been satisfied throughout the iterative procedure. Convergence
of the method of variation of extremals is indicated when the boundary
condition p(t,) = dh(x(¢,))/dx is satisfied. In quasilinearization, trajectories
are generated that satisfy the boundary conditions; when a trajectory is
obtained that also is a solution of the reduced state-costate equations, the
procedure has converged.

As bases for comparing the numerical techniques, we have used the
initial guess requirement, storage requirements, convergence properties,

1 See [S-3].
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computational requirements, stopping criteria, and modifications for fixed
end point problems. Table 6-4 summarizes these and other characteristics
of the three iterative methods.

It should be emphasized that the numerical techniques we have discussed

Table 6-4 A COMPARISON OF THE FEATURES OF THREE ITERATIVE METHODS FOR

SOLVING NONLINEAR TWO-POINT BOUNDARY-VALUE PROBLEMS

Feature

Steepest descent

Variation of extremals

Quasilinearization

Initial guess

u(t)y te [109 ’f]

p(ta) [or x(t1)]

x(1), p(2), t € [to, 5]

Iterate to
satisfy

L4

Fu =0

pep) = Pxer)

State and costate
equations

Importance of
initial guess

Not usually crucial to
convergence

Divergence may result
from poor guess

Divergence may result
from poor guess

Storage
requirements

ul)(t), x(¢), and

XL 1 € o, 17)

2(n X n] matrices,
boundary
conditions

x4(t), pt(r),
telttrl,nXn
matrix, boundary
conditions, ¢

Convergence

Approaches a mini-
‘mum rapidly, then
slows down drasti-
cally

Once convergence
begins (if it does),
it is rapid

Converges quadrat-
jcally in the vicinity
of the optimum

Computations
required

Integration of 2n dif-
ferential equations,
calculation of
3¢ [du, step size.

Integration of
2n(n + 1) first-
order differential
equations, inversion
of an n X n matrix.

Integration of
2n(n + 1) first-
order differential
equations, inversion
of an n X n matrix.

Maodifications
for fixed end
point
problems

Penalty function or
see [B-5]

Adjust p(fo) based on
calculated values of
x(ty)-

Solve for ¢ from equa-
tion for x(rs)

may not always converge, and even if convergence occurs it may be only to a
local minimum. By trying several different initial guesses, we can be reason-
ably sure of locating any other local minima that may exist, or, if the numerical
procedure converges to the same control and trajectory for a variety of initial
guesses, we have some assurance that a global minimum has been deter-
mined.

The difficulty of solving nonlinear two-point boundary-value problems
has made iterative numerical techniques the subject of continuing research.
When one is confronted with a problem of this type, it is useful to be familiar
with many different techniques, perhaps trying several methods on a given
problem, or a hybrid scheme may be useful. For example, the steepest de-
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scent method may be used as a starting procedure and quasilinearization to
close in on the solution.

6.6 GRADIENT PROJECTION

In this section we shall discuss an alternative approach to optimization
introduced by J. B. Rosen [R-4, 5, 6] which does not involve the solution of
nonlinear two-point boundary-value problems. Rosen’s method, called
gradient projection, is an iterative numerical procedure for finding an extre-
mum of a function of several variables that are required to satisfy various
constraining relations. If the function to be extremized (called the objective
Sfunction) and the constraints are linear functions of the variables, the optimiza-
tion problem is referred to as a linear programming problem; when nonlinear
terms are present in the constraining relations or in the objective function, the
problem is referred to as a nonlinear programming problem.

We shall first discuss gradient projection as it applies to nonlinear pro-
gramming problems that have linear constraints, but nonlinear objective
functions. Then we shall show how the gradient projection algorithm can be
used to solve optimal control problems.

Minimization of Functions by the Gradient
Projection Method

Example 6.6-1. To begin, let us consider a simple example. Let f be a
function of two variables y, and y, and f(y,, y,) denote the value of
f at the point (y,, ¥,). The problem is to find the point (y¥, y¥) where f
has its minimum value. The variables y, and y, are required to satisfy
the linear inequality constraints

¥ >0 (6.6-12)
¥2>0 (6.6-1b)
2y; — 5y, +10>0 (6.6-1c)
—4y, — Ty, +225>0 (6.6-1d)
—9y; — 2y, +265>0 (6.6-1¢)

The set of points that satisfy all of these constraints is denoted by R and
called the admissible region.T For this example, R is the interior and the
boundary of the region whose boundary is determined by the lines labelled

1 In the nomenclature of nonlinear programming the term feasible is used rather than
admissible.
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H,, H,, H;, Hy, and Hjin Fig. 6-11. H, is the line determined by the equa-
tion y; = 0, H, by the equation y, = 0, H; by the equation 2y, — 5y, +
10 = 0, and so forth. Also shown in Fig. 6-11 are several equal-value
contours of the function f. —df®/dy denotes —df(y®)/dy [the negative
gradient of f at the point y®] and P[—dF ®/dy], which is a projection of
the vector —df ®/dy, is called the gradient projection.

O <N fori>j,and f@) > &
oD Jatl

f(l)

£
@
y®
ar®
1
22
.
@
0y
* of'®
- N\ ™
= "\ 4
STNV Y W R
s

Figure 6-11 Gradient projection minimization of a function of two variables

Assume that the initial point y (@ is in the admissible region as shown.
The first step is to determine the gradient at the point y(®. Since a
minimum is sought, y is to be changed in the negative gradient direction
as far as possible without violating any constraints, or until the function
values begin to increase, whichever occurs first. In this example, y is
changed in the direction of the vector —d f(®’/dy until the line H, which
is on the boundary of the admissible region, is encountered at the point
y. The negative gradient at y‘»’ is —d f1’/dy, as shown; however, if y
were to be changed in the direction of —df(/dy, the constraint H,
would be violated, so we change y along the line H; in the direction of the
projection onto H;, P[—d f(/dy], of the vector —d f/dy. y is changed
in this direction until the point y‘2’ at the intersection of H; and H, is
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reached.t The next move is along the projection onto H, of —d f®/dy to
the point y‘¥’; notice that the function values encountered continue to
decrease. From the point y‘3’, we change y in the direction of the projected
gradient P[—d f (3’/dy] until the point y’*4’ is reached. Upon evaluating the
gradient at y’4), it is found that the projection P[—df’“’/dy] indicates
a move back toward y®. By repeated interpolation along the line Hj,
the point y4’ = y*, where f assumes its minimum value, is determined.
Observe that —df4)/dy is normal to Hs and directed toward the inad-
missible region, indicating that no further improvement can be obtained
by moving along H,, or by moving into the interior of the admissible
region.

The preceding example illustrates the basic idea of the gradient projec-
tion algorithm: We change y in the direction of steepest descent until a mini-
mum of the objective function is found. If moving in the direction of steepest
descent would cause any of the constraints to be violated, y is changed along
the projection of the negative gradient onto the boundary of the admissible
region.

Let us now generalize this procedure to apply to a nonlinear function f
of K variables, y,,¥,, . .., ¥x. Although the discussion applies to problems
where the dimension K is arbitrary, we shall illustrate the concepts geome-
trically with two- and three-dimensional examples.

Fundamental Concepts and Definitions. The value of the objective function

at the point y is denoted by f(y), where y is a K vector. It is assumed that f
is convex} and has continuous second partial derivatives in the admissible

fo)

[1 - 816D +8r(M)

£ -61y@ +6yM)

y© {1- 9]y(0) + gy(l) y®
Figure 6-12 A convex function

1 By intersection of H; and H4 we mean the points that are on both H; and H,; in this
example the intersection is the single point y(2),
1 f(y) is a convex function in the region R if

[I = 81f(y¢®) + 6f(y V) = f([1 — Gly® + Gy<V)) (6.6-2)

for 0 << 6 <<1 and for all y(® and y‘V) in R, Equation (6.6-2) implies that linear inter-
polation between any two points y(® and y(!) yields a value at least as large as the
actual value of the function at the point of interpolation. Figure 6-12 shows a convex
function of one variable.
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region R. The variables y,, ..., yx are constrained by L linear inequalities
of the form

inn}’;_’”x}_(), i=1,2,...,L, (66-3)
j=1
where the 7, have been normalized so that
K
() =1, i=12,...,L,
j=1

and the v, are specified constants. Any linear inequality can be put into the
form of (6.6-3), and normalization is performed by simply dividing both
sides of the inequality by a positive constant. These inequalities define a convex
region R in a K-dimensional Euclidean space (E*).t It is assumed that R is
bounded ; hence there must be at least (K + 1) linear inequalities (L > K + 1).
Under these assumptions, the problem is to find the minimum of a function
f that is convex and has continuous second partial derivatives in a closed
and bounded convex region R. If we define n, & [n,,,n,;,...,n)7, i=1,
2,...,L, the inequalities (6.6-3) can be written

ny —v, & A(y)>0, i=12...,L (6.6-3a)

The points that satisfy 4,(y) = O lie in a hyperplane (which we will denote
by H,) in the K-dimensional space. The boundary of R consists of all points
that lie in at least one of the hyperplanes; that is, A(y) = O is satisfied for
at least one i, and the interior of R consists of all points that satisfy A(y) > 0
foralli=1,2,...,L. The unit vector n, is orthogonal to H,,} and if drawn
so that it originates at a point in H,, then n, points toward the interior of R.
For example, a three-dimensional space bounded by five planes is shown in
Fig. 6-13. Notice that the intersection of two linearly independent planes is a
straight line, and that the intersection of three linearly independent planes
is a point.§ In a K-dimensional space, the intersection of two linearly inde-
pendent hyperplanes defines a (K — 2)-dimensional subspace (or manifold)
of EX; the intersection of (K — 1) linearly independent hyperplanes deter-
mines a line, and the intersection of K linearly independent hyperplanes deter-
mines a point.

1 A region C is convex if the straight line joining any two points in C lies entirely within C.
That is, if y(1), y(2) € C then y3 = fy(V) + (1 — 0)y®») € C for all 0 << 0 < 1. Since
R is defined by the linear inequalities (6.6-3), R is convex.

1 Two vectors n and w are said to be orthogonal if the inner product n”w = 0. (In two-
or three-dimensional spaces the term perpendicular is often used.) A vector n is orthogonal
to a hyperplane H; if nTw = 0 for all w in H,.

§ g hyperplanes H,, H,, . . . , H, are linearly independent if the corresponding unit normals
ng, Ny, ..., N, are linearly independent; that is, if the linear combination ayn; + azn,
4+ - Foamgiszeroonly if oy =0,i=1,2,...,q.
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H4 (back)

H, (top left) H, (top right)

H, (front)

Hy (bottom)
Figure 6-13 A closed convex region bounded by five planes
If we define
N, & n, ... nj
a K x L matrix, and
v,A v, w, ... o],
an L vector, then a set of linear constraints can be written collectively as
NIy — v, = My) > 0,t (6.6-3b)

where My) 2 [1,(¥), 4,(¥), - . ., A(Y)]". For example, the normalized ver-
sion of the inequalities (6.6-1) is

y, =0 (6.6-4a)
y,>0 (6.6-4b)
(sl = [+ =0 (6.6-4c)

and these can be written in the matrix form given by (6.6-3b) as

+ This notation means that each component of the vector Ny — v, is greater than, or
equal to, zero.
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- 0 1 ro-
0 0
{0 -2 _ 4 _ 97 10 0
~/29 65 85| | V25 -
01 > 1 __2 _22.5_0
V29 /65 85 L2 /65
265 0
V85| L

" (6.6-5)

Suppose that y is a point that lies in the intersection of g linearly inde-
pendent hyperplanes. These hyperplanes, which for convenience we shall
assume are H,, H,, ..., H,, are defined by the ¢ linearly independent unit
normals n,,m,, . ..,n, and the components v,, v, . . ., v, of the vector v,
in (6.6-3b). (Notice that ¢ < K because there can be at most X linearly inde-
pendent vectors in the space EX.) The g equations

[n,n,....n ]y —[v,0,,...,9)] ANy —v,=0 (6.6-6)

determine the points that lie in the intersection of H,, H,, ..., H,; let us
denote this intersection by Q’. Next, we consider the points w that satisfy

Niw = 0; (6.6-7)

N, is the same matrix as defined in Eq. (6.6-6), so these points lie in the inter-
section of g linearly independent hyperplanes, each of which contains the
origin. The intersection defined by (6.6-7), which is a (K — g)-dimensional
subspace of EX, will be denoted by Q. Notice that the intersections Q and
¢’ differ only by the vector v,. The linearly independent unit normals n,,
n,, ..., n, which make up N, span a g-dimensional subspace of E¥, which
we shall denote by .t It can be shown that the subspaces Q and 0 are
orthogonal; that is, if w is any vector in Q and s is any vector in 0, then w
and s are orthogonal; s™w = 0. In addition, the union of Q and Q is the
entire K-dimensional space EX.

Using N, given in (6.6-6), let us define the K X K symmetric matrices

P, 2 NJININ_]"!N7 (6.6-8)
P, &1 — NININ,|"IN?
=1-P, (6.6-9)
t A set of vectors B, . . . , By span a g-dimensional subspace if every vector in the subspace
can be expressed as a linear combination of By, .. ., Bs; hence, every vector in @ can

be written as a linear combination of ny, ..., n,.
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where I is the K x K identity matrix. Since the unit vectors n;, m,, ..., n,
are linearly independent, the matrix [NIN,] is nonsingular, and the inverse
[NIN_]™! exists. It can be shown [R-4] that fu is a projection matrix that
takes any vector in EX into 0, and P, is a projection matrix that takes any
vector in EX into Q.

Let us now illustrate the utility of the projection matrix P,. Assume that
¥y lies on the part of the boundary of R determined by the intersection Q' of
the ¢ linearly independent hyperplanes H,, H,, ..., H,; that is, y satisfies
(6.6-6), and let —df/dy be the negative gradient of the function f at the point
y. We assert that the vector s defined by

sey+p[- %] (6:6-10)
satisfies
NIs —v,=0; (6.6-11)

hence s also lies on the part of the boundary of R determined by the intersec-
tion Q' of H,, H,, ..., H,. To show this, we substitute the expression for s
in (6.6-10) and the definition of P, given by (6.6-9) into (6.6-11) with the
result

Nrfy + - NN L - v =0 6612)

or
NTy — v, + [NF — N7] [_ g'fi] — 0. (6.6-13)

The coefficient of —df/dy is the g X K zero matrix, and the first two terms
on the left add to zero because y satisfies (6.6-6). Equation (6.6-11) is impor-
tant because it indicates the procedure for changing y along the boundary of
R in the direction of the projected gradient.

Calculation Requirements

Let us now discuss the calculations that are required by the gradient
projection algorithm.

The Gradient. 1t is assumed that the expression for the function to be mini-
mized is known. The components of the gradient vector are found by taking
the partial derivatives of f with respect to y,, ¥,, ..., yx. For example, if
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f(y) = yt — 80p, + 1600 + y} — 100y,, (6.6-14)
then
d—‘];;,i) A g{;(yu)) = [2y{" — 80, 2y — 100" (6.6-15)

is the gradient at the point y®. —df®/dy is obtained by changing the sign
of each component of df%/dy.

The Projection Matrix. From Eq. (6.6-9) it is seen that to determine the
projection matrix P, at some point y®, it is first necessary to find the matrix
N,. This is done by forming the L vector A(y?) = N7y® — v, of (6.6-3b)
and checking the sign of each component of A. Since y? is assumed to be an
admissible point, each component of A must be nonnegative. If ; (the jth
component of &) is zero, the unit vector n, is to be included in N,; if 4, > 0,
n; is not included in N_. Once N, is known, the matrices NTN, and [NIN ]!
can be found and the projection matrix formed by using Eq. €6.6-9); that is,

P, = I — NINTN,]"'NT. (6.69)

Subsequently, we shall see that only one vector n, is added to, or dropped
from, N, at each stage of the iterative process; in addition to simplifying the
determination of N,, this allows the matrix [NIN_]~! to be found by using
recurrence relationst that do not require matrix inversion.

In Example 6.6-1, the projection matrix at the point y©® is the identity
matrix, since y©® lies in the interior of the admissible region. At y¥’, on
the other hand, if we form the vector A, we find that 4, >0,
A, >0, 2, >0, 1, >0, and 4, = 0, indicating that

2 5
Ny =mn, = [«/2“‘9’ - J29]

Following the procedure outlined above, we obtain

2
2 5 ~/29
NTN = [— ——‘:l = -
FEN 20 V2 5 1, (6.6-16)
T A29
NNt =1, 6.6-17)
2 14 10
p_[10]_ «F29[1][2 ~5}_ 29 29
o1 | s N2 N0 10, 25|
~/29 29 29
(6.6-18)

t See [R-4), pp. 18911
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The Maximum Allowable Step Size. In changing y in the direction of the
projected gradient, it is necessary to know the maximum step size that can
be used without causing any of the constraints to be violated. Assume that
the projected gradient has been found by performing the matrix multiplication
P [—df®[dy]. Letz® represent the unit vector in the direction of the projected
gradient; that is,

(6.6-19)

and define
y A y9 4 120, (6.6-20)

where 7 is a scalar that represents the step size. We wish to find the maximum
value of 7 for which all of the constraints are satisfied. y® lies in the inter-
section @', and (6.6-20) defines a line that also lies in Q’ for all values of 7. Let

YD A yO 47 g0 (6.6-21)
be the point where this line intersects the hyperplane H); then
nTy|+D — p, = 0, (6.6-22)
Substituting y,¢*" from (6.6-21) gives
nfy® 4+ tnfz® — v, =0, (6.6-23)

which when solved for 7, yields

v, — njy®
T, = JTTZ‘(J)'L (6.6-24)

T, is calculated for all hyperplanes not already in Q'; the minimum positive
value of these 7,’s, denoted by 7,,, determines the maximum step that can be
taken along the line (6.6-20) without violating any constraints. Thus,

YO =y g g0 (6.6-25)

is the point most distant from y along the gradient projection for which no
constraints are violated.
To illustrate this procedure, consider the point y© shown in Fig. 6-11.

The unit projected gradient vector z'V is in the same direction as the vector
P[—dfV]dy], and is given by

zV = [0.930 0.372F.
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Suppose that y** =[1.0 2.4]". Using (6.6-24) to solve for 7,, j = 1,2, 4, 5,
we obtain

7, = —1075, 1,=—6452, t,=0.269, and 7, = 1393,

By inspection, 7, is equal to 7, = 0.269. In Fig. 6-11 notice that H, is the
hyperplane closest to the point y*> when moving in the positive z‘" direction.
The negative values for 7, and 7, indicate that to reach H, and H,, y would
have to be changed in the negative z¢" direction—this conclusion is also
obtained by inspection of Fig. 6-11.

The point y'® is found by substituting zV, yV, and the calculated value
of 7, into Eq. (6.6-25).

Interpolation. If the maximum step is taken to the point y'“*V, the next
stage of the iterative procedure may indicate a step back toward the point
y“; this would occur, for example, at y'* in Fig. 6-11. To determine whether
or not the maximum step size should be used, we form the inner product

70T [_ g_f;,(y'(li' x))] , (6.6-26)

where z® is the unit projected gradient at the point y®. If this inner product
is greater than or equal to zero, as would be the case, for example, in Fig.
6-14(a) and (b), then the maximum step is taken; that is,

yOrn — y'an, (6.6-27)

After the maximum step has been taken, the point y'“*? lies in the inter-
section of Q' and the hyperplane H,, (which corresponds to 7,); hence H,
is added to @', and the new projection matrix P,,, is calculated. On the
other hand, if the inner product is negative, as, for example, in Fig. 6-14(c),
the maximum step is not taken. Instead, interpolation is used to find the
point

yOrD =y 4 g 70 0<8<), (6.6-28)

where
207 [_ %(yum)} -0, (6.6-29)

that is, the point where the gradient is orthogonal to Q'. A straightforward
method for finding the appropriate value of § is to use repeated linear inter-
polation as illustrated in Fig. 6-15. 8 = 0 corresponds to the point y®, and

= 1 corresponds to the point y'¢*?, §,, the abscissa where the straight
line from A to B has an ordinate of zero, is determined from the relationship
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Figure 6-15 Repeated linear interpolation

e[ 9]
S r s (6.6-30)
dy dy
Next, we evaluate the gradient at the point
yIern =y 4 g 7,29 (6.6-31)
and form the inner product
Z0T [__ (E?;;‘l‘)] . (6.6-32)

If this inner product is positive, as in Fig. 6-15, we use points C and B to
interpolate again (if the inner product had been negative, point C would
have a negative ordinate and points 4 and C would be used for the next
interpolation). This procedure is repeated until a point y**? is found where
the magnitude of the inner product is less than a preassigned small positive
number €, ; that is,

207 [_ %y_"] } <e, (6.6-33)
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Necessary and Sufficient Conditions for a Constrained
Global Minimum

Let us now state the theorem that provides the basis for the gradient
projection algorithm.

THEOREM 6.6-1

Assume that fis a convex function with continuous second partial
derivatives in a closed and bounded convex region R of EX. Let
y* be a boundary point of R which lies on exactly g, 1 <{g <K,
hyperplanes that are assumed to be linearly independent. Q' denotes
the intersection of these hyperplanes. The point y* is a constrained
global minimum of f if, and only if,

Pq[_gi;(y*)} —0 (6.6-34)
and
NN N | - F )] <o, (6.635)

A proof of this theorem is given in [R-4] and will not be repeated here. A few
comments are in order, however:

1. The proof that (6.6-34) and (6.6-35) are necessary for y* to be a con-
strained global minimum is a constructive procedure for obtaining a
point with a smaller value of the objective function if both conditions
are not satisfied at y*. Thus, the gradient projection algorithm follows
directly from the proof.

2. If y* is an interior point of R (y* lies inside rather than on the boundary
of R), then the projection matrix P, is simply the K X K identity
matrix, and Eq. (6.6-34) reduces to the familiar necessary and suffi-
cient condition that

gf_;(y*) —o. (6.6-36)

The sufficiency follows from the assumption that fis a convex func-
tion.

3. It should be emphasized that this theorem gives necessary and suffi-
cient conditions for f(y*) to be a constrained global (or absolute)
minimum. That is, if y* satisfies (6.6-34) and (6.6-35), then f(y*) < f(y)
for all admissible y.
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Geometric Interpretation of the Necessary and
Sufficient Conditions

Let us now discuss the geometric interpretation of the conditions given
by Theorem 6.6-1. The requirement that P [—df(y*)/dy] = 0 implies that
either:

1. —df(y*)/dy = 0, which means that y* is an interior point of R or that
the unconstrained minimum coincides with the boundary as shown,
for example, in Fig. 6-16; or

2. —df(y*)/dy = 0, in which case the gradient is orthogonal to the
intersection of the ¢ hyperplanes, as shown at the point y* in Fig.

6-11.
fO>r
r i>
f(S)
'b ’

AR

i i

Figure 6-16 Coincidence of an unconstrained minimum with the
boundary of R

Y1

If the second alternative applies, we must next ascertain whether the gradient
is directed toward the interior of R, or outward; this is the role of Eq. (6.6-35).
Suppose that (6.6-34) is satisfied; then —df(y*)/dy is in the space § and

can be written as a linear combination of n,, ..., n,, that is,
g
~§fi(y*) = ﬁ:, rm, = Ng. (6.6-37)

Premultiplying both sides by [NIN,]"!N7, we obtain
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NN [ L] - ]
[Nqu] Nq[ ;&,‘(y ) r; (66 38)

hence, (6.6-35) implies that
r<o0. (6.6-39)

Assume that the projected gradient is zero at some point §. To determine
if ¥ is the minimum, we use Eq. (6.6-38) to calculate the vector r. If each
component of r is nonpositive, then ¥ = y* is the constrained global mini-
mum. If, however, one or more components of r is positive, this indicates
that the objective function can be decreased by dropping the hyperplane
corresponding to the largest positive component of r and proceeding with
the iterative algorithm.

Figure 6-17 provides a geometric interpretation of the use of the con-
dition (6.6-39). The subspace Q' consists of the line CD, which is the intersec-
tion of the planes H, and H,, and the matrix P, projects the gradient onto
CD. In each of the cases shown, the gradient vector at § is orthogonal to
CD; hence, the projected gradient is zero. If —df/dy lies in the sector defined
by a, in Fig. 6-17(a), then in the expression

"“gly(y) = rn; + 1y, = N, (6.6-40)

both r, and r, will be negative as shown, indicating that § = y* is the con-
strained global minimum, If the gradient is oriented as in Fig. 6-17(b), the
perspective view indicates that the objective function can be decreased by
moving toward EF in the plane H,. For this case, r, will be negative and r,
positive—which means that H; should be dropped from Q’. If —df/dy is
as shown in Fig. 6-17(c), then r, > r;~ 0. Although both H, and H, could
be dropped from Q’, it is more convenient to drop at most one hyperplane
in each iteration; therefore, H,, which corresponds to the largest positive
component of r, would be dropped. The situation illustrated by Fig. 6-17(d)is
similar to (c), except that r, > r, > 0, indicating that H, should be dropped.
Finally, if —df/dy is in the sector defined by «, in Fig. 6-17(e), r; < 0 and
r, > 0; hence, the plane H, would be removed from Q'.

Because of numerical inaccuracies, if || P [—df/dy]|| < €,, where €, is a
small positive constant, we shall agree that P [—df/dy] ~ 0, which indicates
that the gradient vector is orthogonal to Q' and that the vector r should be
computed to determine whether the global minimum has been found, or,
if not, which hyperplane should be dropped. If the gradient projection is
not orthogonal to @', that is, || P [—df/dy]|| > €,, it still may be desirable
to drop a hyperplane from Q’'. To see how this situation may occur, refer
to Fig. 6-18. At the point §, the matrix P, projects —df/dy onto Q' (the line
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E

Figure 6-18 Dropping a hyperplane when ||P[—d f/dy]|| > €

CD) as shown; this projection is small, but nonzero. If H, were dropped from
Q’, however, the new projection matrix, P,_,, would project —df/dy onto
the plane H,. The relative lengths of the two projections indicate that more
is to be gained by moving toward EF on H, than by moving along CD;
therefore, H, should be dropped from Q’. To detect whether a hyperplane
should be dropped although || P ,[—df/dy]|| > €,, Rosen suggests a test (which
does not require the actual determination of each possible P,_, formed by
dropping exactly one hyperplane from Q') consisting of the following steps:

1. Let a,2 the sum of the absolute values of the elements of the ith row
of the matrix [NTN ]!, calculate &, i = 1,2,...,q, and determine

B = max {o}. (6.6-41)

2. Compute the vector r given by Eq. (6.6-38), and determine r,, the
maximum positive component of r.

3. If r, > B, drop the hyperplane H, from Q. If r, < B, no hyperplane
is dropped from Q’.

For a discussion of the theoretical basis for this procedure, the reader should
refer to [R-4].

A Summary of the Gradient Projection Iterative Procedure

Let us now formalize the iterative procedure that was used in Example
6.6-1. It will be assumed that the initial point y® is admissible and lies in the
intersection Q' of ¢ linearly independent hyperplanes. To determine the
constrained global minimum:
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1. Calculate the projection matrix P, the gradient vector at the point

y9, —df(y®)/dy & —df ©[dy, the vector r given by Eq. (6.6-38), and
the gradient projection P [—df ®/dy]. If ||P [—df/dy]|| < €,, and
r < 0, then y® is the constrained global minimum and the procedure
is terminated; otherwise, go to step 2.

. Determine whether or not a hyperplane should be dropped from

Q. If ||P,[—df ®/dy]|| < €,, drop the hyperplane H,, which corre-
sponds to r, > 0, form the projection matrix P,_,, and go to step 3.t
The other alternative is that the norm of the gradient projection is
greater than €,. In this case, calculate § given by (6.6-41). If r, > B,
drop the hyperplane H, from Q'; if r, < B, Q' remains unchanged.

. Compute the normalized gradient projection z® given by Eq. (6.6-19),

and the maximum allowable step size 7,, where 7, is the minimum
positive value of the 7,’s found by evaluating

. nTy®
7, = ”J_ETZ‘;{-L (6.6-24)

for j corresponding to all hyperplanes not in the intersection Q’. The
tentative next point y'¢*" is found from

YD = yO 4 g g0, (6.6-25)

. Calculate the gradient at the point y'¢+V, if

ZOT [H%(y'um):l >0, (6.6-42)

set y¢+» = y'¢+; gsince y¥*? lies in the intersection of Q' and
H,, (the hyperplane which corresponds to the step size 7,, determined
in step 3), add H,, to Q’, and return to step 1.

On the other hand, if

Z0T [_ g%(y'(m))] <0, (6.6-43)

find y“+? by repeated linear interpolation as illustrated in Fig. 6-15;
the appropriate equations are (6.6-30) and (6.6-31). The intersection
Q' remains unchanged, and the computational algorithm begins
another iteration by returning to step 1.

A flow chart of this procedure is shown in Fig. 6-19.

t Notice that at least one component of r must be positive; otherwise, the iterative pro-
cedure would have terminated in step 1.
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Read in y(O), the Determine the hyperplanes 4, ..., Hq
constraints and which form the intersection Q’;
tolerances Form the matrices N, [NqTNq 1.

Calculate the projection matrix Pq, the gradient vector
—3f®/ay, the gradient projection P, [~f @/ay], the
norm || P, [—3f®/3y] I, the vector r of Eq. (6.6~38),
andr, ¢ the maximum component of r.

Terminate the pro-
cedure, print out

y®=y* fiy")

Calculate § given

—af®
by Eq, (6.6-41) 1P, 1—3r®/ay] I<e?

>
r,>B? 8
Yes
No| < Dro'p H.q from Q'; Form the neY
projection matrix P, _,letP, =P, _
Form the normalized gradient projection
2@ =P, [-af ayl/ I P, [-ar Ofay] I;
Determine the maximum step size 7,,, ;
Calculate y' ¢+ D = y® + 77z
Compute —3f(y’¢ *D)/ay ¢ —af'¢*V/ay and
evaluate the inner product z®7 [—3f" ¢+ D/ay]
Tnterpolate to 1ind 0
(0< 8< 1) in the equation -
Y(“l):y(')'f' or,, ) Set y(x+l)=y:(i+l);
for which Add H,, to Q'
[z®T[-af4* Dyl 1<e,
Is the inner product
negative? (Does the maximum step)

pass the point where the
gradient is zero?)

Figure 6-19 Flow chart of the gradient projection algorithm
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To illustrate the procedure just summarized, let us return to Example
6.6-1. For simplicity, we shall assume that all calculations are exact so that
consideration of tolerances is not required.

Referring to Fig. 6-11, we observe that the initial point y(® is the interior
of the admissible region R; therefore, the projection matrix is the 2 x 2
identity matrix. Testing the norm of the gradient projection (which at y©
is simply the norm of the gradient), we find that this norm is nonzero. Since
Q' is empty, calculation of the vector r is by-passed. The unit gradient pro-
jection z©® = [—df @/dy]/|| —df ©@[dy]|| is calculated and used to find the
maximum allowable step size by evaluating 7;, j=1,2,3,4,5 from Eq.
(6.6-24). Using 7,, which is the maximum allowable step size, yields y'") on
the line H, as the tentative next point. At y’" it is found that the inner pro-
duct z®T[—gdf'"/dy] > 0; hence, no interpolation is required, y**) = y'"), and
H, is added to Q’; this completes the first iteration of the algorithm.

Returning to step 1 of the algorithm, we calculate the new projection
matrix, the vector r, and the gradient projection. The norm of the gradient
projection is nonzero, and the test described previously indicates that no
planes should be dropped. Computing the normalized gradient projection z"
and the maximum allowable step size 7,, we find the tentative next point to
be y'@. At y'® it is found that z"7[—df"®/dy] > 0; thus, no interpolation
is required, y® is set equal to y'*®, and H, is added to Q’—which now
consists of the point y® (which is the intersection of H; and H,). This com-
pletes the second iteration.

Calculating the new projection matrix, we find that the projection of
—df @ /dy onto the intersection of H,; and H, is zero (the projection of any
vector onto a point is zero); hence, Eq. (6.6-34) is satisfied. Using Eq. (6.6-
38) to solve for r in

AL
——gy— =rn; + rn,

= N (6.6-44)

gives r, > 0 and r, < 0. H, is dropped from Q’, and the new projection
matrix, which projects the gradient onto H,, is computed. The normalized
gradient projection z® and the maximum step size 7, are determined and
used to find the next tentative point y’'®, located at the intersection of H,
and Hs. The inner product z®¥7[—df"®[dy] is positive, so we set y» =
y'®, and add H; to Q', thus completing the third iteration.

Returning to step 1 and calculating the new projection matrix, we find
that the projection of —df/dy onto the intersection of H, and H; is zero.
Solving
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(3
"%y_ = r\ng - 7,0,

= Ny (6.6-45)

for r gives r, > 0, r, << 0, so H, is dropped from Q' and the projection
matrix is recalculated. Projecting —df®/dy onto H; and moving the
maximum allowable distance to the point y’®), we find that interpolation
is required because z®7T[—df"®/dy] < 0. Performing linear interpolation
repeatedly eventually obtains the point y®, where z™®7[—df ¥/dy] = 0.
This completes the fourth iteration, the intersection Q' remaining unchanged.

At y@, P [—df®/dy] = 0; hence, Eq. (6.6-34) is satisfied. By inspection
of Fig. 6-11 we observe that in the expression

— rym, (6.6-46)

r, is negative; thus, both (6.6-34) and (6.6-35) are satisfied, and y* = y@¥ is
the sought-after minimum.

Additional Features of the Gradient Projection Algorithm

Before establishing the connection between gradient projection and the
solution of optimal control problems, let us first mention some additional
features of Rosen’s algorithm:t

1. Since at most one hyperplane is added or dropped at each stage in the
iterative procedure, the matrix [NJN_]™!, and hence P, can be calcu-
lated from recurrence relations that do not require matrix inversion.

2. It may occur that a point calculated by the iterative procedure lies
in the intersection of i hyperplanes, only g < i of which are linearly
independent; the gradient projection method contains provisions for
dealing with such situations.

3. The algorithm provides a starting procedure for generating an admis-
sible point (if one exists) from an arbitrary initial guess y®.

4. If f is a convex function in the admissible region of EX and has con-
tinuous second partial derivatives with respect to each of the
components of y in the admissible region R, then the gradient
projection algorithm converges to a global minimum of f. If’f is not
convex in R, the algorithm will generally converge to a local minimum.
To find the global minimum, one usually resorts to trying several

1 For a complete discussion, refer to [R-4].
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different starting points in order to determine as many local minima
as possible; the point y* which corresponds to the local minimum
having the smallest value of f'is then selected as the best possible point.

Determination of Optimal Trajectories by Using Gradient
Projection

Let us now discuss a technique, also due to Rosen,T for solving optimal
control problems by using the gradient projection algorithm. The problem
is to find an admissible control history u* that causes the system

x(6) = a(x(r), u(®) (6.6-47)

with known initial state x(¢,) = X, to follow an admissible trajectory x* that
minimizes the performance measure

J = h(x(t,)) + f 2 (x(2), u(p)) dt. (6.6-48)

For simplicity of notation, we shall assume that time does not appear explic-
itly in either the state equations or the performance measure; the solution
of time-varying problems requires only straightforward modifications of the
procedure to be described. It is also assumed that the final time ¢, is specified,
and since the equations are time-invariant, we can let ¢, = 0. Although the
technique to be presented applies to problems involving general linear con-
straints among the state and control variables, we shall restrict our discus-
sion to problems with constraints of the form

M_<u()<M,, t€[0,t] i=12...,m (6.6-49)
S <x()<S., tel0,1], i=12..,n (6.649b)
x(t) =T, t specified, i=1,2,...,n (6.6-49%)

M,_ and M, denote the lower and upper bounds on the ith control com-
ponent, S;_ and S;, are the lower and upper bounds on the ith state com-
ponent, and T, is the required value of the state component x, at the time ¢,.

Since gradient projection is an algorithm for minimizing a function of
several variables, we must first approximate the optimal control problem
to be solved by a discrete problem. To accomplish this, let us approximate
the state differential equations by difference equations, and the integral

t See [R-5] and [R-6].
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term in the performance measure by a summation. We shall use the simplest
approximating difference equation, that is,

x(t + A = x(t) + a(x(?), u(?))-At. (6.6-50)

Assuming that the state is observed and the control changed only at the
instants t =0, At,2 At, ..., N At, we let t = kAT, and

x([k + 1] At) = x(k At) + a(x(k At), u(k Ap))-At, (6.6-51)
or, defining x(k) 4. x(k Af) and u(k) A u(k Af),

x(k + 1) = x(k) + a(x(k), u(k))-A¢
A ay(x(k), u(k)). (6.6-52)

The performance measure can be written

7= HxN A0 + [ g, ueyde 4 -+ [

1y S, D) dt,

(6.6-53)
which is approximated by
T = KX(N Af) + At ':zi g(x(k A1), u(k Ar)), (6.6-54)
or
T, = hX(N)) + At ’:i;: g(x(k), u(k)). (6.6-54a)

This approximation to the performance measure (6.6-48) is a function of
the variables x(0), x(1), . .., x(¥), and u(0), u(l), ..., uw(N — 1). Recalling
that the state vector is of dimension n, and the control vector of dimension
m, we see that there are n[N -+ 1] (state values) and mN (control values), or a
total of [N < 1] + mN variables, contained in J,. Notice that these variables
are not independent, because the approximating state difference equations
(6.6-52) must be satisfied. Since x(0) is specified, our problem is to find the
N:.n + N-m variables that minimize J,, and satisfy the approximating state
difference equations (6.6-52) and the constraints (6.6-49).

In our discussion of gradient projection it was assumed that the con-
straining relations were linear; however, the state difference equations of
(6.6-52) may be nonlinear. To circumvent this difficulty we shall use a tech-
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nique employed in the method of quasilinearization: linearize the state equa-
tions about a nominal state-control history, and solve a sequence of linearized
problems. In the limit, the sequence of solutions to the linearized problems
will converge (if certain technical requirementst are satisfied) to the solution
of the discrete nonlinear problem. Assume that the ith state-control history
x®(0), x0(1), ..., X9(N); u®(0), u?(1), ..., u”(N — 1))is known; the initial
state-control history is guessed. By expanding the (i 4 1)st trajectory in a
Taylor series about the ith trajectory and retaining only terms of up to first
order, we have

X0 1) = %0k + 1) + [ 520000, wr) | [xe-(k) — x0(0)]
+ [%’L—”(x(‘)(k), u‘”(k))] [u® (k) — u®(K)]. (6.6-55)
Substituting a,(x?®(k), u?(k)) for x®(k + 1) and rearranging, we obtain

x(l+l)(k + 1) — [%,aiq(x(i)(k)’ u(i)(k)):lx(l+l)(k)

+ [ G eogo), uﬂ)(k»]u(}““(k) + 85X (), uO(K))
—_— [%‘:{_D(x(l)(k), “(1)(k)):| x(l')(k)

- [%“Ea(xw(k), u“’(k))]u“’(k). (6.6-56)
Since x® and u® are known, (6.6-56) can be written
X0k 4 1) = Ak)xC D (k) + Bk (k) + e(k), (6.6-56a)

where A, B, and c are known time-varying matrices of appropriate dimen-
sions that depend on the ith state-control history.

We could, at this point, proceed to minimize the function J, of Eq. (6.6-
54a) subject to the linearized state equation constraints (6.6-56a), and any
additional constraints (6.6-49), which for the discrete problem would be of
the form

t Rosen [R-5] has proved that the procedure converges, provided that: (1) The admissible
state and control values lie in compact, convex sets [the constraints (6.6-49) guarantee
this]. (2) The functions g and A in the performance measure are convex. (3) Each com-
ponent of a in the state equations is either convex or concave for the admissible state-
control values. We note that the method may still converge even if these conditions are
not all satisfied; however, convergence is not assured.
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M, <u(k)<M,, k=01,..,N—1 i=12...,m

(6.6-57a)

S, < x(k) < S,y k=0,1,...,N, i=1,2,...,n
(6.6-57b)

x(j) =Ty, J specified, i=12,...,n
(6.6-57¢)

however, there is an additional benefit to be derived from the linearization
we have just performed. Since x(0) = x, is specified, x¥(0) = x, for all i.
Let us write out a few terms of the solution of Eq. (6.6-56a):

x4+ (1) = A(0)X, 4+ B(O)u*V(0) + ¢(0)
2 %,(1) + Diut+(0), (6.6-58)

where

X5(1) & A(0)x, + ¢(0), and D; 4 B(0);
x4 (2) = A()[xx(1) + Dju (0)] + B(1u®* (1) + (1)
= A(1x,(1) + (1) + A(D)B(O)u*(0) + B(1u* (1)
2 x,(2) + DZu1(0) + D2+ (1), (6.6-59)

and, in general,

X0+ Ok + 1) = A(K)Ru(k) + (k) + AK) ... AC)B(Ou1(0)
+ A(K) ... A@)B(Du* (1) + - - -
+ A(k)B(k — Du“(k — 1)
+ By (k)
A xu(k + 1)+ D+ u*(0) 4- DE+ta+ (1) 4 - -
+ D’,:f}ll““)(k — 1) + Dllgﬂu(iﬂ)(k)

= x4k + 1) + %, DF* ¢+ DD, (6.6-60)

Xy(k + 1) is the part of the solution for x¢*V(k 4 1) that does not depend
on the control values u®v(0),...,u¢+*(N — 1), and Df*! is an n X m
matrix that determines the contribution of the control at the /th instant to
the state value at the (k + 1)st instant.t x4(k 4 1) and the D matrices are
found from the relationships

T Note that the superscript k¥ + 1 on the matrix D does not indicate the (¥ + 1)st power
of D.
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Xy(k + 1) = A(k)xy4(k) + c(k),  x4(0) = x,, (6.6-61)
and
A(Ak — 1) ... AU+ 1DB({), fork>1
D+t = JB()), fork=1 (6.6-62)
0, for k < 1.

If the entire discrete state history is written in terms of the discrete con-
trol history in partitioned matrix form, we have

r—x(mn(o) ] _Dg §D2 . .D,‘L; Fu(Hl)(o) ] mxH(O) _
~~~~~~~~~~~ [ i e I B T
x¢+1(1) D} i]){ D._, || uv(1) x,(1)
X+1(2) _ D! D? Di_, || u¥h(2) x4(2)

RS el | R T (6.6-63)

xeovy || DYDY D || e = 1) || xu()

or

T =D L g, (6.6-63a)

Notice that because of (6.6-62) the 2 matrix will contain an upper triangular
matrix of zeros, and that the matrices DY, j =0, ..., N — 1, in the top row
are all defined to be zero.

Equation (6.6-63) is quite important because it allows us to reduce sub-
stantially the number of variables used in the gradient projection algorithm.
This is accomplished by replacing x“*"(k) in the expression (6.6-54a) for
Jp by D P(0) + Dfu (1) + - 4+ Df_u (N — 1) + x4(k), for
k=0,1,...,N. In addition, if there are inequality constraints involving
the states, for example,

<x(tk)y<| * |, k=0,1,...,N, (6.6-57b)
S'l" Sn+
these relationships can be expressed as linear constraints involving only the
control values:
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S,
SZ—
| < DEaD(0) + DEuE (1) + - - + DE_ ¢ OV — 1) + x,4(k)
S,
Sis
Sar
<| "} k=0,1,...,N. (6.6-64)
Sn+

To recapitulate, the problem to be solved is now of the form: Find the control
values that satisfy the constraints

M, M.,
M,_ M,
- l<uegy<| - L, k=0,1,...,N—1, (66-652)
M,_ M,
S,
S,.
© | <D D(0) + D O(1) + -+ - 4 D_ju@t BN — 1) 4 x4(k)
S
S
Sas
<!\ "} k=0,1,...,N, (6.6-65b)
i)
T,
T,

= Dju*1(0) + Diu (1) + -+ + Dj_u* N — 1)

T,
+ x4(j),  jspecified (6.6-65¢c)

and minimize the function of Nm variables
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N-1

Jp = WBHVY + At Y g(UD). (6.6-66)
k=0

This expression for the performance measure simply indicates that only the
control values n“*1(0), ..., u"*"(N — 1) appear explicitly, since Eq. (6.6-
63) has been used to eliminate the presence of the state values.

A Summary of the Procedure for Solving Optimal Control Problems by Using
Gradient Projection. The procedure we use to solve for an optimal control
and its trajectory is:

1. Approximate the state differential equations by difference equations
and the integral term of the performance measure by a summation;
linearize the state difference equations.

2. Determine the expressions, in literal form, for any state constraints and
the performance measure Jj, in terms of X,(k) (k =0, . . ., N),u%* Y(k)
(k=0,...,N—1), and the D matrices of Eq. (6.6-63).

3. Guess a nominal state trajectory and control history, x®, u®, Set
the iteration index i to zero. )

4. Using the state-control history x, u®, calculate the A, B, and ¢
matrices, and use these matrices to determine &', and 9.

5. Substitute the numerical values of &', and @ into the expressions
obtained in step 2 to determine the coefficients in the constraining
equations and the performance measure.

6. Minimize the function J,, using the gradient projection algorithm,

. Determine x“*!) by evaluating Eq. (6.6-63a) with u“*? found in step 6.

8. Ifthe norm of the difference between successive control iterates is small,
that is,

2

2D —a9| <y, (6.6-67)

terminate the procedure and output x¢+1, u@* 1" and the minimum
value of J,,; otherwise increase i by one and return to step 4.

The reader will notice that in the above procedure the role of the gradient
projection algorithm, described earlier and shown in Fig. 6-19, is as a subrou-
tine that is called in step 6. Also note that steps 1 through 3 in the procedure
are done off-line by the user; a digital computer program is used to perform
steps 4 through 8.

To illustrate the details of the procedure, let us return to the continuous
stirred-tank chemical reactor problem that was solved previously by using
variational techniques.
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Example 6.6-2. The state differential equations are

516) = =20 + 025] + [ra(e) + 0.5 exp [ 20 ]

x,(0) + 2
— [x:(6) + 0.25]u(2) (6.6-68)
540 = 05— 5,00 — [0 + 05 ewp [ 2240,
and
J= J’:'" [x3()) + x3(0) + 0.1u3(1)] at (6.6-69)

is the performance measure to be minimized. The initial state value is
x(0) = [0.05 O]
The approximating difference equations are

x(k + 1) = x,0) + A =205, (6) + 0.25]

+ [xak) + 0.5] exp [;%%(j’:)i] — [ + 0.25]u(k):|

(6.6-70)
xalk + 1) = 100 + A 05 — %)
25x,(k)
— [xatk) + 0.5] exp [m’%’?ﬂ] (6.671)
and
Tp = A¢"E [0 + %306 + 0.1u(W)]

- At':g: [X7()x(k) + 0.12(%)] (6.6.-72)

is the approximate performance measure. Linearizing the difference
equations gives

X0k 4 1) = {1 + At [—2 + &[[x;%}’;]?i - u(k)]}ix‘{“)(k)

+ {Ata, }x§r (k)
+ {—Atx,(k) + 0.25]}ub+ V(k)

_ B 50[x,(k) 4+ 0.5]x(k)et
+ {At[ 0.5 4+ 0.5a, [0 1 21

+ xl(k)u(k)} }‘ (6.6-73)
& ay ()x{ D) + a(k)x§ k) + by(Kut+D(k) + ¢y(k).  (6.6-T3a)
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—50 At[x,(k) + 0.5]06:) _,.
e [ 50

+ {1 + Al—1 — a0, Bix§+ (k)

50x1(k)[x2(k) + 05]“1
+ {A’ ["'5 = 050 + =5 ) + 27 ]}

(6.6-74)
2 ay (F)x{* (k) + az,(k)x§+ (k) + cy(k), (6.6-74a)

where &, & exp {25x,(k)/[x,(k) + 2]} and { };indicates that the quantity
inside the braces is evaluated on the ith state-control history.

In the original problem the control values were assumed to be un-
bounded, but it is necessary that the gradient projection search be per-
formed in a closed and bounded convex region; therefore, we introduce
the artificial constraints

—2.0 <uk) <20, k=0,1,...,N—1. (6.6-75)

Since the control values are not really bounded, we may have to adjust
these artificially imposed bounds so that the optimal control lies in the
interior of the admissible region. The constraints specified by Eq. (6.6-75)
must be expressed in the form mu(k) — v»; > 0. To accomplish this we
write u(k) < 2.0 as

—u(k) + 2.0 >0, k=0,1,...,N—1, (6.6-762)
and —2.0 < u(k) as
u(k) + 2.0 >0, k=0,1,...,N— 1. (6.6-76b)

Thus, implementation of the N constraints of Eq. (6.6-75) requires 2N
constraint equations in the computational procedure.

Next, let us express the performance measure J, entirely in terms of
the control values. To achieve this, we substitute Eq. (6.6-60) into Eq.
(6.6-72) with the result

Jp = At ):g; I:[xy(k) 4 NJZ;; d',"u(lﬂ)(j)}r[xg(k)
+ 5 araeen j)] + O.l[u(“'“(k)]z:l. (6.6-77)
=

xx(R) and df are evaluated from the ith state-control history. The D
matrices of Eq. (6.6-60) are column vectors with two rows in this problem;
hence, we write d% rather than D%. Notice that d) =0, j=0,1,...,
N—1.

To obtain the /th component of the gradient of J, with respect to %
evaluated on the (¢ 4 1)st trajectory, we have
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o _ ([ 00 T70x(1) | [ 9Tp T7x(2)
[Wf)] = {[0x('1’)] @) T I:dx(;)} quh T
aJ Tdx(N — 1)
+ [6x(NI—’— 1)} oy T °'2”(’)}f+1’
I=0,1,...,N— 1.1t (6.6-78)

Using the expression for J, from (6.6-72) gives

s _4p, {xra)""(l) w72 |

Jull) ul) u(l)
Ix(N — 1)
ey — I o.m(l)}i+1
- 2At[ ) [ T(k)‘;xg;ﬂ roup] - 667

From the relationship for x(k) used in (6.6-77),

ox(k)
ou(l)

= df; (6.6-80)

hence,

0Jp

=2 Az[':z;;: {[x,,(k) + Aj’g: i) | d}‘} + 0.1u(l)1+1,

1=0,1,...,N—1. (6.6-81)
The initial guess selected for the state-control history was
xOk) =0, k=1,...,N—1
u®k) =0 k=0,1,...,N—1.

A FORTRAN 1V program was used to solve this problem on an IBM
360/67 digital computer. The time increment A¢ used in the approximating
difference equations was 0.01 unit. Calculations were performed using
single-precision arithmetic, and the termination criterion was

lub+) — @ || = max |ui+O%k) — u® (k)] < 1.0 x 10-3
k=0, N1
(N = 178). (6.6-82)

When this stopping criterion was used, the algorithm required 15 itera-
tions to converge to the control and trajectory shown in Figs. 6-20 and
6-21; the minimum found for the performance measure was J* = 0.02725.
After the third iteration, performance measure changes were in the fifth

t dx(k)/du(l) is a column vector with components dx;(k)/du(l), and dxa(k)/du(l).
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Figure 6-20 The optimal control for the stirred-tank reactor (gradi-
ent projection solution)
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Figure 6-21 The optimal trajectory for the stirred-tank reactor
(gradient projection solution)

significant figure, and the difference between J* and J 3 (the performance
measure after three iterations) was 0.00004.

Comparing the minimum cost, trajectory, and control found by
gradient projection with the results obtained previously by using vari-
ational techniques, we observe slight numerical differences. These small
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deviations are attributed primarily to the difference equations used to
approximate the state equations. For a discussion of alternative difference
equation approximations, see [R-6].

In the preceding example the performance measure contained a term that
penalized the expenditure of control effort. It may be that control effort is
to be conserved; however, since u represents the effect of the flow of a cool-
ant, it is more likely that in this physical system the control is constrained by
bounds and that the term containing # in the performance measure is a
penalty function. If variational techniques are used, the penalty function
approach may simplify numerical procedures, because the control is treated
as if it were not bounded and the methods discussed in Sections 6.2 through
6.5 can be applied.t The cost of this simplification, however, is that the
mathematical model is less accurate than if the control constraints were
included.

The gradient projection method, on the other hand, allows routine incor-
poration of state and control inequality constraints in the problem solution.
In fact, the gradient projection algorithm requires that the admissible controls
lie in a bounded region; it was this requirement that caused us to introduce
the artificial bounds —2.0 << u(¢) << 2.0 in Example 6.6-2. To illustrate
further the inclusion of state and control constraints, let us now consider a
modified version of the continuous stirred-tank chemical reactor problem.

Example 6.6-3. The state equations are given by Egs. (6.6-68), but the
performance measure does not contain a penalty function involving the
control; hence,

J= j:'" [x3(r) + x4(0)] dt. (6.6-83)

The admissible controls are required to satisfy the constraints
—-1.0<ut) <1.0, t € [0,0.78]. (6.6-84)

In addition, suppose that at ¢+ = 0.78, the state must be at the origin;
that is,

x(0.78) = x(N) = 0. (6.6-85)

This reformulation of the original stirred-tank reactor problem
requires that only minor modifications be made to the computer program.
Specifically, the control constraints become

T The techniques discussed in Sections 6.2 through 6.5 can be modified to handle problems
that include inequality and equality constraints—see [S-3]. The constraints do com-
plicate the algorithms, however.



406

[terative Numerical Techniques Sec. 6.6

—u(k) +1.0>0, k=0,1,...,N—1 (6.6-86a)
u(k) + 1.0 >0, k=01,...,N—1, (6.6-86b)

and the expressions for Jp and its gradient are

1o 05 [t ', et 5 ]

(6.6-87)

aJ, N=1 N-1 I _ .

Gas =283, {[x,,(k)+ 5, due o)) d{‘}, I=0,1,...,N—1.
(6.6-88)

The equality constraint on the terminal state values can be included by
using the four inequality constraints

xi((N)>0 (6.6-89a)
—x;(N)>0 (6.6-89b)
x,(N)>0 (6.6-90a)
—Xx,(N) > 0. (6.6-90b)

Taken together, the inequalities of (6.6-89) can be satisfied only by
x,(¥N) = 0. Similarly, the inequalities of (6.6-90) are satisfied only by
x,(N) = 0. In the computer program, these inequalities must be expressed
in terms of the solution of the linearized state equations. The appropriate
expressions are

xu(N) + 33 dfu*(j) 20, (6.6-91)

which represents (6.6-89a) and (6.6-90a), and
N-1
—[xaW) + 5, dusgi)] >0, (6.6-92)
j=o

which represents (6.6-89b) and (6.6-90b).

With these additional constraints included in the program, the
algorithm converged in four iterations to a minimum cost of J* = 0.00220
with

”u(H-l) — u(i) ” é max |u(i+l)(k) — u([}(k)‘g 1‘0 x 104,
k=0,l,l.‘..,N—l

(6.6-93)

The initial guess and the optimal control and trajectory are shown in
Figs. 6-22 and 6-23. The final state values were

X(0.78) — [—6.167 X 10"5]

—0.631 x 10-8
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Figure 6-22 The optimal control for Example 6.6-3
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Figure 6-23 The optimal trajectory for Example 6.6-3

Summary

To summarize gradient projection solution of optimal control problems,
let us enumerate the salient features of the computational procedure.
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The Initial Guess. A state trajectory x9(k) (k =0, 1, ..., N) and a control
history u®(k) (k =0,1,..., N — 1) are required in order to begin the
iterative procedure. In selecting these initial state and control histories, we
use any available knowledge about the expected form of the optimal trajec-
tory and control.

Storage Requirements. The current trial control #¥, and @ and &, of
Eq. (6.6-63a) must be stored. In addition, the gradient projection algorithm,
which serves as a subroutine, also requires storage; the projection matrix
P, and the matrix N, of Eq. (6.6-3b) account for most of this storage re-
quirement.

Convergence. In several test examples it was observed that convergence of
the algorithm occurred for a variety of initial guesses. The procedure generally
converged in only a few iterations (often less than 10).

Computations Required. In each iteration a nonlinear programming problem
is solved by using the gradient projection algorithm. To begin a new iteration,
the trajectory x“+! and the matrices @ and &, must be recomputed.

Stopping Criterion. The iterative procedure is terminated when a measure
of the deviation of successive iterates becomes small. The stopping criterion
used in the examples was

[[ui+ D — @] < p, (6.6-94)

where p is a preselected positive number, and

hueen —wopa 3L max gt o0 — wpl) (6.695)
j=1

k=0,1,...,N—1

Modifications for Fixed End Point Problems. As we have discussed and
illustrated, fixed end point problems are a routine matter when gradient
projection is the algorithm. In addition, state and control inequality and
equality constraints at times throughout the interval [¢,, ] are easily handled.
This capability of solving problems with constraints is one of the strong
selling points for the gradient projection algorithm.
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PROBLEMS

6-1. The iteration equation for variation of extremals, Eq. (6.3-18), has been
derived for the case where the final time ¢/ is fixed and the performance
measure contains no terms that are explicitly dependent upon the final states
(h = 0). The purpose of this problem is to extend Eq. (6.3-18) to the situation
where

J = h(x(t,) + j g(x(1), u(e), 1) dr;

the final time is assumed to be fixed.

(a) Assume that h(x(f,)) = d7x(t;), where d 20 is an n X 1 matrix of
constants. Derive the modified version of Eq. (6.3-18).

(b) Derive the equation analogous to (6.3-18) if A(x(t/)) A xT(r,)Hx(t,).
H is a real symmetric positive semi-definite matrix.

(c) Repeat (b) for the case where h(x(¢,)) is some general nonlinear twice-
differentiable, scalar function. Compare with Eq. (6.3-20). Hint. Ap-
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6-2.

6-4.

6-5.

6-7.
6-8.

6-9.

lterative Numerical Techniques Problems

proximate dh(x“+1(t,))/dx by the first two terms of a Taylor series
about x®W(¢/).

(d) Show that the equation derived in part (c) yields the results obtained
in parts (a) and (b) and Eq. (6.3-18) as special cases.

Show that variation of extremals converges in one iteration if the control
problem is of the linear regulator type (see Section 5.2). Assume H = 0.

. Consider a two-point boundary-value problem in which the initial and final

state values are specified. Find the iteration equation [corresponding to
Eq. (6.3-20)] that would be used to solve this problem by the method of
variation of extremals.

Repeat Problem 6-3 for the case where only some of the final states are
specified.

In using variation of extremals it may be easier to make a reasonable guess
for the missing values at the final time than it is to guess the missing initial
costate values.

(a) If the missing final values are guessed, the iteration equation (6.3-20)
must be modified. Find the modified version of (6.3-20) for the case
where x(¢;) is free and p(t;) = 0.

(b) What would your initial guess be for the free final states if

J= f’o’ [x7()x(r) + wr(u(e)] de?

Why?

. Consider the 2 linear, time-varying differential equations

(1) = D()z(r) + £(); m

D(z) is a 2n X 2n matrix, and f(s) is a 2n X 1 vector of known functions of
time. Show that if z#!(¢), zH2(¢), . . ., z79(t) are g solutions of the homo-
geneous equations

(1) = D()z(),
and z#(f) is a solution of (1), then
y() & e\ zF(p) + -+ czHit) + z7(r)

is a solution of (1) for arbitrary values of the constants ¢,, ..., ¢,
Solve Problem 6-3 for the method of quasilinearization.

Repeat Problem 6-7 for the case where only some of the final states are
specified.

Show that quasilinearization converges in one iteration if used to solve a
linear regulator problem.
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6-10.

6-11.

6-12.

The purpose of this problem is to extend the iteration equation of quasilineari-
zation, Eq. (6.4-35), to the case where the final costate p(¢;) is not a known
constant. The final time ¢, is assumed to be specified.

(a) Derive the appropriate iteration equation if h(x(t/)) = xT(¢,)Hx(t /).
H is a real symmetric positive semi-definite matrix.

(b) Derive the iteration equation that applies when A is some general non-
linear twice-differentiable function of x(t;). Hint. Approximate
Oh(x 4+ (¢))/dx by the first two terms of a Taylor series about x?(t,).

(c) The equation derived in part (b) should be the same as Eq. (6.4-38).
Show that the equation derived in part (a) and Eq. (6.4-35) are special
cases of Eq. (6.4-38).

Consider the similarities between the differential equations that arise in the
linear tracking problem (see Section 5.2) and in the method of quasilineari-
zation. Solution of the linear tracking problem requires no matrix inversion.
Use the similarities observed to modify the method of quasilinearization so
that no matrix inversion is required.

From Section 5.2 we know that the closed-loop solution to a linear regulator
problem can be obtained by integrating the matrix Riccati equation. If x(¢,)
is free, the boundary conditions for the matrix K are K(¢;) = H; however,
if x(¢,) is fixed, this is not the case. Use the principles contained in the méthod
of quasilinearization to devise a method for obtaining a set of boundary
conditions for the K matrix for the case where x(¢,) is fixed.

The following problems are numerical solutions (requiring a digital computer)
of optimization problems. In order that the student may gain familiarity with the
numerical methods discussed in this chapter, Problems 6-19 through 6-33 are of
the linear regulator type. The answers to these problems can, and should be,
verified by integrating the Riccati equation as indicated in Section 5.2. It should be
emphasized that the methods of Section 5.2 lead to the optimal control law,
whereas the techniques discussed in this chapter yield an open-loop optimal control.

6-13.

6-14.

6-15.

6-16.

Using the gradient projection algorithm, determine the value of y that
satisfies the constraints y;, >0, y, >0, 2y, + 5y, > 6, y; + y, > 2, and
minimizes f(y) = y; + 2y,.

Use the gradient projection method to find the point y* where

SO =y + 2y, + 3y;

has its maximum value. The variables y,, y,, and y; are required to satisfy
the constraints y, >0, y,>0, y;>0, —y, —y,—y3+1>0,
Y1ty —y3 =20,y — 2y, >0

Using gradient projection, determine the value of y that satisfies the con-

straints y; >0, y, >0, y; — y, > —5, —02y; —y, = -8, —y, > 20,
and maximizes f(y) = y, — 10[y, — 1]2.

Use the gradient projection algorithm to find the maximum of the function
fW) =y +ys + 125y, + 2ys + 2y, + 1.25y3 — yy, where the variables
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6-17.

6-18.

6-19.

6-20.
6-21.
6-22.
6-23.

6-24.
6-25.
6-26.
6-27.
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must satisfy the constraints yy, ¥3,...,¥s >0, yo <1, 0.5y >y, + »,,
0.25y9 > ys + vy 0.5y, + 0375y > y; +ys,  0.3333y, + 0.625y5 >
Y7 + Ys.

Use the gradient projection method to find the maximum of f(y) =
2y, — y} + y,, subject to the constraints y, >0, y, >0, 2y} + 3y3 < 6.
Hint. Linearize the constraints, and solve a sequence of problems with
linear constraints.

Determine, by using the gradient projection algorithm, the minimum value
of f(y) = [y, — 51> + [y, — 8]?, where the constraints y} + y} < 6, y; >0,
2 => 0 must be satisfied.

Find the optimal trajectory and control for the linear regulator problem
x() = x(@) + u(r), x(0) = 4.0
1
=34 [ 0 + wo) dt
by using the steepest descent method.
Repeat Problem 6-19, using variation of extremals.
Repeat Problem 6-19, using quasilinearization.

Repeat Problem 6-19, using the gradient projection method.

Use the steepest descent method to find an optimal trajectory and control
for the system

x(t) = —x(®) + u(®), x(0) = 4.0

and the performance measure
1
J = x2(1) + f ) dr.

Repeat Problem 6-23, using variation of extremals.
Repeat Problem 6-23, using quasilinearization.
Repeat Problem 6-23, using the gradient projection method.

Use the method of steepest descent to minimize the performance measure
J = xi(HXT) + [ [XrOQx() + Rux()] de
subject to the differential equation constraints

x1(t) = x,(0), _[10
X() = —x,(8) + u(t), 0= [“‘5}

The final time T'is 1.0, and R = 1. Consider the following cases for Q and H:
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@@=y o] M=o o

® Q= [(1) 18] H= [12 22]
6
©e=[y o H=[y )

6-28. Repeat Problem 6-27, using variation of extremals.
6-29. Repeat part (c) of Problem 6-27, using variation of extremals, but let

H= [0 0] and x(1) =0.
00
Compare with Problem 6-27(c).
6-30. Repeat Problem 6-27, using quasilinearization.
6-31. Repeat Problem 6-29, using quasilinearization.
6-32. Repeat Problem 6-27, using gradient projection.
6-33. Repeat Problem 6-29, using gradient projection.
Now that your numerical skills have been polished on linear regulator problems,
you are ready to tackle the following nonlinear problems.

6-34. Solve the continuous stirred-tank chemical reactor problem introduced in
Example 6.2-2 by the method of steepest descent. Investigate the effects of
various initial guesses.

6-35. Repeat Problem 6-34, using variation of extremals.
6-36. Repeat Problem 6-34, using quasilinearization.
6-37. Repeat Problem 6-34, using the gradient projection technique.
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Summation

Before reviewing our progress, let us investigate the relationship between
dynamic programming and the minimum principle.

7.1 THE RELATIONSHIP BETWEEN DYNAMIC
PROGRAMMING AND THE MINIMUM
PRINCIPLE

We have considered the problem of finding a control u* € U that causes
a system

x(t) = a(x(s), u(?), (7.1-)

to respond in such a manner that a performance measure of the form

t
J = bty 1) + [ g(x(o), (o), 1) it (1.1-2)
is minimized.
In our discussion of dynamic programming we showed that the Hamilton-
Jacobi-Bellman functional equation

0= JHFx(0), 1) + n:j)n {g(x(D), w(), D) + [J*(x(), DF a(x(®), u(?), 1)}
' (1.1-3)
417
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must be satisfied by an optimal control and its trajectory. J*(x(z), ¢ is the
minimum value of the performance measure for a process beginning at time
¢t with an initial state x(¢), and J* and J¥ are partial derivatives of J*(x(z), 1)
with respect to ¢ and x. If (x*(¢), £) is a particular point in the state-time space,
the H-J-B functional equation tells us that the optimal control value u*(),
which corresponds to this point, satisfies the relationship

gX*(1), u*(), ) + [JHX*(2), ] a(x*(2), u*(2), 1)
= Iﬁl})n {g&x*(0), u(®), O) + [JE*@), ] a(x*(1), u(), 0},  (7.1-4)

for all 7 € [t,, ¢,]. Thus, we can write Eq. (7.1-3) for the point (x*(z), ¢) as

0 = JF(x*(1), 1) + g(x*(1), w¥(2), 1) + [JX(xX*(D), O a(x*(r), u*(2), 1).
(7.1-32)

Equation (7.1-3a) is a first-order partial differential equation. If ¢, is fixed
and x(z,) free, the boundary condition is

T2, 1) = hX(E), L. (7.1-5)

If Pontryagin’s minimum principle is applied to the same optimal control
problem, we find that

220 = B (0, (0, 20, ) (7.1-6)
P = — o—‘;”g(x*(t), u¥(), p*(2), 1) (7.1-7)
FH(XH(1), u*(t), p*(1), 1) < A (x*(2), u(t), p*(1), 1) (7.1-8)

for all admissible u(z), and for all ¢ € [¢,, ¢;], are necessary conditions for
u* to be an optimal control and x* an optimal trajectory. The boundary
conditions for the 2n first-order state-costate differential equations (7.1-6)
and (7.1-7) are

X*(t,) = X, (71.1-9)
and
Py) = %ﬁ(x*(w, ty)- (7.1-10)

Using the definition of the Hamiltonian
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H(X(2), u(t), p(t), 1) & g(x(1), u(®), 1) + p"(O[a(x(2), u(p), 1)),
we can write Egs. (7.1-6) and (7.1-7) as
X*(r) = a(x*(2), u*(¢), o) (7.1-6a)
SHOF) — oa .« * T % 08 (o *
PN = — b;(x (), u*(®), t)] P — [ai(" (6), w¥(®), t)]. (1.1-7a)
In addition, Eq. (7.1-8) implies that
H K@), WD), PH(0), ) = min £, w(e), (1), 0, (7.1-11)

or

g(x*(2), u(2), 1) + PM(D[a(x*(2), u*(®), N}
= min {g(x*(?), u(), 1) + PTO[AC*@), u@), D)} (71-11a)

Comparing Eq. (7.1-11a) with Eq. (7.1-4), we observe an interesting similar-
ity: These two equations have exactly the same form; in fact, if

JEx*(D), 1) = p*(), (7.1-12)

the two equations are identical.

As you suspect, this similarity is more than coincidental; in fact, let us
now show that the equations that constitute Pontryagin’s minimum principle
can be derived from the Hamilton-Jacobi-Bellman fynctional equation.

First, notice that Eq. (7.1-3a) can be written as

0 = min {JF(x*(2), 1) + gOH(D), u(), 1) + [EHH), D] a0H(o), (o), )},
* (7.1-3b)
since J¥ does not depend on u(¢). In words, given the state value x*(f), the

control u*(¢) minimizes the right side of Eq. (7.1-3b), and the minimum value
is zero. Now consider state values in a neighborhood of x*(f); that is, let

x(2) = x*(t) + ox(o), (7.1-13)
where ||0x|| < €. We assert that

JEXX(D), 1) + g(x* (1), w*(2), 1) + [JEXX), O a(x*(0), u*(9), 1)
S JFX(), 1) + g(x(0), u*(2), 1) + [JEx(2), D) a(x(2), w*(2), D). (7.1-14)
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Why is this the case ? From Eq. (7.1-3b) we know that the left side of (7.1-14)
is equal to zero. The minimum value of the right side (also zero) is attained
only if w*(¢) is an extremal control for the state x(¢) as well as for x*(z). To
cut through the maze of notation somewhat, let us write (7.1-14) as

o(x*(2), w* (1), 1) < v(x(1), w¥(1), 1). (7.1-15)
This equation tells us that for fixed u*(s) and ¢ the scalar function v has a
local minimum at the point x(¢) = x*(¢); therefore,

‘%’((X*(t), u¥(), 1) =0, (7.1-16)

if it is assumed that x(¢) is not constrained by any boundaries. Writing out
the terms in v(x*(¢), u*(¢), t) yields

v=J}+g+Jra, +Jka, + - + JEa,; (7.1-17)

for simplicity, the arguments x*(¢), u*(¢), and ¢ have been omitted. Taking
the gradient of » with respect to x and using (7.1-16) gives the equations
(again we omit arguments)

(;9: J:l;‘ + 8 + anna + ‘Ixxalm + szxxaz + szalxn

+ -+ ‘I:nznan + J:nanxx =0
a_—' - J;';cx + gx: I_ Jxlxzal + analx: + Jxmaz + a2x:
+ SRR J;knxzan + ‘Ir,.anxz =0 (7'1'18)
B0 Bt G Ty 4 T+ T + T,
+ Tt + ":‘nx:.an + quan:cn = 0.t
To simplify the notation in these equations, let
W), 1) A TEG), ), i=1,2,..,n (7.1-19)
Using these definitions, and the property

t J . denotes 92J*/dtdx;; gx, denotes dg/dx;; J j’:‘ denotes dJ*/dx;; a;, denotes da,/dx;;
J ¥, denotes 927 */dx;dx;.
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9 677 _ 8 [I* -
5}7[37}"3?[07} P=12

3%[%]:%[%]’ i=12....n

which holds, assuming that the mixed partial derivatives are continuous,t
we find that Egs. (7.1-18) are

(7.1-20)

7 - "‘,— + g+ Ja i + Ja o+ yaa,
+ - %ha,, +v,a,,=0
gx% 00 gL+ 0'//242, tya,, + 2 o Wag, + y,a,.,
+o ‘;“;’a + Yot = O (7.121)

dv _ dy, o, oy,
(9_x,, = 0t + 8x, + 03‘1 a, + Wlalxn+ Eaz + W2a2xn

A -
+ - + Kan + Vilny, = 0.

Moving terms that do not involve partial derivatives of the ¥’s to the right
side gives, for the ith equation,

Sy, Oy, . O, O/
R a—“z + oy,
= YAy — Wl — 0 T v.a nxe " 8xor = 13 23 e (7'1_22)

We know that the state equations
dx' (’) = a(x*(1), w¥(), 1) i=12,...,n (7.1-23)

must be satisfied; hence, (7.1-22) can be written

dy, | Oy, dxt Oy, dxf | Oydxy
ot Tax, @ Toax, d T 9x, dt
= WA, — Wy —  — Wl — 8x I =1,2,...,n (7.1-24)

T See [0-2], p. 367.
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Since W, 2 w(x¥(@®), x¥({), . ., xX(), 1), the left side is the total derivative
of y, with respect to time; therefore,

% = —fa,\W, +a,y,+---+ eVl — 8,

dt
% = '—'[alxay’l + A 2 + e + anx:u,n] — 8xs
. (7.1-25)
ddy:" = _[alxnv/l + [y 2} + .- + anxn'/ln] ™ &xw
or, in matrix form,
dy 6a]T dg . R
'J?"‘“[Bi v (7.1-25a)

To obtain the boundary conditions for y, we use Egs. (7.1-5) and (7.1-19)
with the result

oh
WX (1)), 1) = Z2(x*(19), 1)- (7.1-26)
To summarize, we have shown that

B, ) = — | 260, w0, 0] worr@, 0 — F e, w0, 0,
(7.1-25b)

where the optimal control uw*(¢) satisfies

gx*(0), w¥(0), 1) + [W*(D), D)7 a(x*(1), u*(p), H)
= r&i)n {g(*(0), u(®), 1) + [w*@), N]"alx*(D), u(e), H}.  (7.1-4a)

In addition, the state equations
X*(2) = a(x*(0), u*(r), 1) (7.1-27)
and the boundary conditions
wexr(e), 1)) = SReeney), 1) (7.1-26)

must be satisfied. Comparing Egs. (7.1-27), (7.1-25b), (7.1-4a), and (7.1-26)
with Egs. (7.1-6a), (7.1-7a), (7.1-11a), and (7.1-10), respectively, we observe
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the anticipated correspondence: y(x*(¢), ) and p*(¢) satisfy the same dif-
ferential equation and have the same boundary conditions; therefore, we
conclude that

Y(x*(0), 1) = p*(2). (7.1-28)

Although we have written many equations, the key point in our argument
is contained in Eqs. (7.1-15) and (7.1-16). Thereafter, the steps we took were
primarily manipulative.

We have succeeded in deriving the minimum principle from the Hamilton-
Jacobi-Bellman functional equation; however, it is important to keep in
mind the restrictions imposed by the derivation. In writing Eq. (7.1-16) we
assumed that the states are not constrained by any boundaries. In addition,
Eq. (7.1-18) is valid only if the indicated second partials exist {note that this
was assumed to be the case in our derivation of the H-J-B equation [see Eq.
3.11-D]pt

The derivation we have performed also provides a useful interpretation
of the costate variables. Let d7*(x*(7), #, 0x(¢)) denote the first-order approxi-
mation to the change in the minimum value of the performance measure that
results when the state value at time ¢ deviates from x*(#) by an amount dx(r);
then, from (7.1-12),

OT¥(x*(2), t, Ox(1)) = [JX(x*(2), D] o%(2)
= p*7(2) Ox(1). (7.1-29)

In other words, the extremal costate is the sensitivity of the minimum value
of the performance measure to changes in the state value.

7.2 SUMMARY

Having discussed the relationship between dynamic programming and
Pontryagin’s minimum principle, let us now review the important features
of these two techniques.

The Minimum Principle

Applying the minimum principle, or the calculus of variations, to deter-
mine optimal controls generally leads to a nonlinear two-point boundary-

1 We shall not pursue the required mathematical properties of J* and its derivatives any
further. For examples of difficulties that may occur if certain properties fail to be satisfied,
and for a discussion of how to handle such difficulties, see [S-5] and [D-2].
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value problem that requires the use of iterative numerical techniques for
solution. As noted previously, these iterative algorithms determine optimal
controls in open-loop form.

If the state equations of a process are linear (or have been linearized),
and the performance measure is a quadratic form, the optimal control law
can be determined by numerically integrating a matrix differential equation
of the Riccati type.

An important feature of the variational approach is that the form of
optimal controls can be determined; hence, it is necessary only to consider
the subset of controls having the appropriate form; this is a significant con-
ceptual and computational advantage.

Dynamic Programming

Dynamic programming is essentially a clever way of examining all of
the candidates for an optimal control law. To do this by direct enumeration
of all the possibilities is a horrendous task, but by using the principle of opti-
mality a multiple-stage decision process can be reduced to a sequence of single-
stage decision processes, and a feasible computational algorithm is obtained.
The algorithm consists of solving the functional recurrence equation

Ti-x (XN — K)) = min {go(x(N — K), u(N — K))
+ Th-ix-0,M(8WN — K), uN — K)))} (3.7-18)

by a direct search among the admissible control values. The presence of
state and control constraints generally complicates the application of varia-
tional techniques; however, in dynamic programming, state and control
constraints reduce the range of values to be searched and thereby simplify
the solution. Another desirable feature of the dynamic programming approach
is that the computational procedure determines the optimal control law.
Moreover, since the algorithm makes a direct comparison of the performance
measure values associated with all optimal control law candidates, it is
ensured that the global, or absolute, optimal control law is obtained. The
primary limitation of the dynamic programming approach is the need for
large storage capacity in the digital computer when solving problems involv-
ing high-order systems—this is the “curse of dimensionality.”

The Complementary Use of Several Optimization
Techniques

Although a particular problem may perhaps be solved by applying only
one of the techniques we have discussed, it is often beneficial to use the com-
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plementary features of several different approaches. For example, suppose
that the minimum principle indicates that the only values assumed by an
optimal control are -1, 0, or —1. This knowledge can be used in designating
the control values to be tried in obtaining a dynamic programming solution;
instead of trying a finite set of controls that satisfy —1 << u < 4-1, we need
use only u = 41,0, and —1 as trial control values.

As another example, suppose that it is desired to find an optimal con-
trol law for a system whose initial state value is known to be in a specified
region of the state space. One approach is to determine an optimal trajectory
by employing iterative numerical techniques, and then to make use of this
trajectory to define a region of the state space in which an optimal control
law can be obtained by dynamic programming. By doing this, only a subset
of state space values is searched in the dynamic programming solution, and
thus the requirements for computer memory and computation time are
eased.

As a third example, suppose that the variational approach indicates that
a singular interval may occur. Nonlinear or dynamic programming may be
helpful in determining whether or not singular controls are optimal.

7.3 CONTROLLER DESIGN

In most applications engineers are required to design a controller, that
is, a device for generating control signals from observations of system outputs.
This being the case, three alternatives are

1. An on-line digital computer that calculates -optimal control signals
as the process evolves, and additional hardware to synthesize the
control signals.

2. A special-purpose digital controiler to synthesize an optimal control
law that has been precomputed off-line with a general-purpose digital
computer.

3. A suboptimal, but easily implemented, controller whose configura-
tion and parameters have been precalculated with an off-line computer.

Let us consider the implications of each of these alternatives.

For many applications it may be difficult to justify economically the
presence of an on-line digital computer. In addition, such a controller must
necessarily be suboptimal because of the finite time required for computation.
In fact, if the system states change too quickly for the computer to keep
up, serious difficulties may result. Slowly changing chemical processes exem-
plify the types of problems that are well suited to on-line control computa-
tion.
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The second alternative has several advantages. All computing is done
off-line; hence, the general-purpose computer required is available for solving
many problems rather than being devoted exclusively to one system (or a
few systems on a time-shared basis). The special-purpose digital controller
will be much smaller, less expensive, and not as complex as a general-purpose
digital computer. In addition, since the optimal control law is precomputed,
the question of calculations having to keep up with the changing state of
the controlled process does not arise. On the debit side, the control computer
may require a large amount of storage; however, this need not always be
rapid-access storage—a small magnetic tape arrangement may be quite
acceptable. Notice that in this control scheme the optimal control /aw must
be calculated, Presumably, this is accomplished by using dynamic program-
ming; an alternative approach that relies on linearization of the state-costate
differential equations about a nominal optimal trajectory is discussed in
reference [B-6].

The concept of suboptimal, but easily implemented, controllers is very
attractive from a practical point of view. Naturally, the system’s perfor-
mance with a suboptimal controller should be compared with optimal per-
formance; such a comparison could be the basis for deciding on the
acceptability of a proposed suboptimal design. Rejection of a controller
design indicates that either the controller configuration needs to be altered,
or-that the controller parameters must be adjusted. Efforts to achieve accep-
table suboptimal designs have met with limited success so far. The principal
difficulty is that a controller may be nearly optimal for some initial condi-
tions, but very poor for others.t A suggested method of alleviating this
difficulty is to minimize the deviation from optimal response that results
when the system assumes its worst possible initial state. This leads to a
minimax solution of the problem. An alternative approach is to assume a
probability distribution for the initial state values and minimize the expected
value of the performance measure.*

Each of these alternatives generally requires that all system states be
available for generating the control signal; however, it may be necessary to
generate control signals using estimates of the state values obtained from
noisy observations of system outputs.§ One method of obtaining state esti-
mates (which are optimal in a statistical sense) is to use a Kalman filter.ll

t See [F-2], [R-7], and [S-6].

1 See [A-4], [K-10}, {O-3] and [S-7).

* See [K-11] and [K-12].

§ For a discussion of the use of optimal estimates and optimal controllers to yield optimal
stochastic systems, see [L-6], pp. 131ff.

|| See [K-13] and [K-14].
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7.4 CONCLUSION

Optimal control theory has been used to obtain solutions to a variety
of aerospace engineering problems and holds great promise for other problem
areas as well; however, much remains to be accomplished. Hopefully, the
reader has been stimulated to learn more about optimal control theory and
its applications, and now has a firm foundation on which to build his knowl-
edge.
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APPENDIX 1

Useful Matrix Properties and

Definitions

1. The transpose of the product of two matrices equals the product of the
transposed matrices in reverse order; that is,

[CDJ = DrCT. (A.1-1)

2. The transpose of a scalar equals itself. For example, if z”My is a scalar,
then

"My = [Z"My[". (A.1-2)
Using Property 1 twice, we have
[Z"My[ = [My['z = y¥"M"z. (A.1-3)
3. Definition. Let P and S be real symmetric matrices. If
- yPy >0  forally=0, (A.1-4)
P is called a positive-definite matrix; if
y'Sy >0 for all y, (A.1-5)

S is called a positive semi-definite matrix.

4. The sum of a positive definite matrix and a positive semi-definite matrix
429
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5.
6.

Conclusion Appendix 1

is positive definite. Consider
y'[P + Sly = y"[Py + Sy] = y"Py + y"Sy. (A.1-6)
From Definition 3, y"Py > 0, and y”Sy > O for all y 7= 0; therefore,
y'P+Sly>0 foraly=#0, (A.1-7)

so the matrix [P + S] is positive definite.

If a matrix is positive definite, its inverse exists.

Let s(y) be a scalar function of y =1[y, ... V.-
Definition. The gradient of s with respect to y is defined as

ﬁgﬁf
ds
Q{()A a‘y—z(Y)
ayY= .

5’}@)

The following properties follow from the definition in 6.

7.

Let y be an m X 1 column matrix, z an m X 1 column matrix, and M
an m X m matrix. To determine d[y"Mz]/dy the m X 1 column matrix
Mz is treated as a matrix of constants. Letting ¢ 4 Mz, we have

a d
3#fﬂ=§#hﬁ+Yﬂr+“‘+wa (A.1-8)
which from the definition in 6 becomes

%[y’c] = ¢ A Mz (A.1-9)

. The gradient of the quadratic form y"™My is found by using Property

7 and the well-known rule for differentiation of a product; that is
9 ryrvy] = I fyrew] + & e A.1-10
ayy ™M) = 5oly"et] + 5ole®7y), (A.1-10)

where ¢ A My, and ¢T 4 yTM are treated as constant matrices.
Since ¢y s a scalar, and the transpose of a scalar equals itself, we have
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(9 — 0 Tn(1) a Tn(2) -
g;,[yTMY] = W[Y e + W[y c®]. (A.1-11)
From Property 7, then,
%[yTMy] = ¢l 4 ¢@
= My + M. (A.1-12)
If M is a symmetric matrix, then from (A.1-12) it follows that

%[yTMy] = 2My. (A1-13)

9. Definition. If a is an n X 1 matrix function of y (an m X 1 matrix), and
z (an n X 1 matrix), then

0a da da ]
a}‘i‘(y9 Z) E)‘)'::(y, Z) e 'a}_;(y’ Z)
mnn mo o §2e0
‘,i[a(y, )] & "
y L) . .
da, da, .. Oa,
_’Jy—l (y, Z) 9y_2(y’ Z) aym (Y> Z)_—

10. Definition. If s is a scalar function of an m X 1 matrix y, then

92 0%s 02s ]
BW(Y) 3.9, yz(y) I ym(y)
d%s d%s d%s
0% (13 D P ;" G ®
a? == . . .
0% d%s d%s
5.5, F0,P "

Notice that if the order of differentiation is interchangeable, d%s/dy2
is symmetric.

11. From Definition 10, if R is a real symmetric m X m matrix and u is an
m X 1 matrix, then

S Ii"Ru] = 2R (A.1-14)



APPENDIX 2

Difference Equation Representation of

Linear Sampled-Data Systems

Consider a linear time-invariant system
x(t) = Ax(z) + Bu(s). (A.2-1)

If the control is generated by a sample-and-zero-order-hold element, as
shown in Fig. A-1, then u is a piecewise-constant signal. Assuming that the
sampling rate is uniform and has a period 7, we have

Samngle u(t) Linear,
) e qer )| time-invariant [ >x(r)

hold process
Figure A-1
u(t) = wkT), kT <t<(k+ DT. (A.2-2)

The solution of the state equations given in (A.2-1) is
t

X(1) = @t — t)X(ts) + | (¢ — ©)Bu(x) d. (A.2-3)

If the states are observed only at the sampling instants, then, letting z; 2 k7T,
and ¢t 2. (k + 1)T, we have

x({k -+ 11T) = o(TX(KT) + [ 9k -+ )T — 1)Bu(z) dz.  (A.2-4)
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Since the control is constant during the interval kT <<t < (k - 1)T,

x([k + 1JT) = @(T)X(kT) + [ [ :‘T“’T ok + 1T — 7)B dr]u(kr). (A.2-5)
It can be verified that the integral has the same value for all k; thus,

x((k + 1T) = o(T)x(KT) + U: o(T — 7)B dr}u(kT). (A.2-6)

Omitting the argument T, and defining the integral as the n X m matrix
A, we obtain

x(k + 1) = ox(k) + Au(k), (A.2-7)

a set of n first-order, linear, difference equations. The matrices ¢ and A contain
only constants (which depend on the value of T). If the process equations
are time-varying, that is,

x(8) = A@)x(r) + B(u(d), (A.2-8)
the linear difference equations
x(k + 1) = @k)x(k) + A(k)u(k) (A.2-9)

can be derived by following a similar procedure. Notice that @ and A will be
functions of k, however.



APPENDIX 3

Special Types of Euler Equations

CASE 1: g depending only on x(¢).
The Euler equation

% (v, 24, 1) — & [gg(x*(t), #o.0]=0 (A3

reduces to
4 [%(fc*(x))] ~0, (A3-2)
or
[g%'(x*(t))] #*(1) = 0; (A.3-3)

thus, either £*(¢) = 0 or 92g/dx? = 0. If #*(t) = 0, x*(t) = c,t + c,, where
¢, and ¢, are constants of integration. If d>g/dx? = 0 has a real root, that is,
x*(t) = c,, then we have x*(f) = c,t + ¢,. Consequently, if g depends only
on x(¢), the solution to the Euler equation is a family of straight lines.

CASE 2: g depending only on ¢ and x(¢).
Integrating both sides of the Euler equation
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4% %0, 1) =0 (A3-4)
gives
L0 = e, (A35)

a first-order differential equation that does not involve x*(¢). x*(¢) can then
be obtained by solving (A.3-5) for x*(¢) and integrating.

CASE 3: g depending on x(z) and x(z).
The Euler equation is

% (er(e), 14(0) — 4 [g%(x*(t), )'c*(t))], (A.36)
or, if the chain rule is used,
L0, 0) — | Tl 0, 20 |[#40) — [FE G20, 340 |52 = 0.

(A3-T)

Multiplying this equation by %*(¢) makes the left side the exact derivative
L0, 3°0) — #0) @, 20 |,
which implies that
2@, #40) ~ #O| E O 2] =i A3Y)

Since 7 does not appear explicitly, x*(t) can be obtained by solving for x*(¢)
and using separation of variables.

CASE 4: g depending only on x(¢) and ¢.
In this case, the Euler equation becomes

% xx@n =0, (A.3-9)

a nonlinear algebraic equation. Thus, there will be no constants of integra-~
tion and there will be an extremal only if the curve that satisfies (A.3-9)
passes through the specified boundary points.
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CASE 5: g depending linearly on x(z).
We have the form

g0x(0), 2(1), 1) = M(x(1), 1) + [N(x(®), D)x(2). (A.3-10)
The Euler equation reduces to

BM (ex(a), ) — SN, ) = 0, (A3-11)

which is, as in Case 4, an algebraic equation. Thus, an extremal will exist
only if the curve(s) that satisfies (satisfy) (A.3-11) happens to pass through the
specified boundary points.



1-1.

1-5.
1-7.
1-9.

1-12.

APPENDIX 4

Answers to Selected Problems

CHAPTER 1

(@) dq(r)/dt = —.16q(t); dp(t)/dt = .16¢(t) — .16p(t)
(©) ©11(t) = €165 9 ,(t) = 0.5 @y (1) = 161671615 @,,(r) = €16+
(d) g(r) = 60€-16¢; p(r) = 9.6t€~16, t > 0.

- (@) dy(n)/dt = y(1); dy@)ldt = —Ky()|[M — By)IM + f()|M

© @11(0) = /26 cos (t — [4); @1,(t) = €7*sint; @p,(f) = —2€siny;
922(8) = A/ 2€cos (¢t + T[4)

(@) y(t) = 24/ 2 € cos (t — [4) + €% + o/ 2 € cos (t — 3n/4)
y(@) = —.4€*sint — 2€7% 4 267 cos &.

dO()jdt = 0(r); dO@)dt = —KO@/I — BO@)/I + AD/L

digHjdt = —R;i,(1)/L; + K.e@®)[Ly; daxt)/dt = K,is(t)[I — Ba(@)/L.

dv (H)/dt = i, (D)/C; dip,()]dt = —Lyw()/k* — RyL,iL ()[k* + MRy, (1)/k?

+ Lae()[k?; dip (D)]dt = Mv()[k? + MR,i, ()/k* — [Ry[L, + M*R,]|

L,k () — Me(t)[k?; k* A L\L, — M2,

@) x,(0) = x,(1); %,(6) = —x2(8) + S5u(®); y() = x,(t)

© x.(1) = x(); X,(1) = x3(t); %3(t) = —3x,() — 6x(t) — Sx3(¢) + 10u(r);
¥() = x(t)

© x,(1) = x,(0); %,(t) = —x2(8) + Su(); y(©) = 2x,(t) + x,(1)

(®) x1(f) = x3(0); %5(8) = x3(0); %3() = —3x,(1) — 6x,(t) — Sx3(2) + 10u(t);
YO = 3x,(t) + 2x,(8) + x3(t)

@A) X, =u(); %) = —x(0) +u@); x3(0) = —2x3(0) + u(®); y() =
6x,(t) — 6x,(t) + x3(r).

NOTE: There are other correct answers for different selections of the state variables.
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1-14. Key: C A. controllable, NC A not controllable, O 2. observable, NO A not
observable
(@) C, 0; (b) C,NO; (¢) NC, 0; (d) C,0; (e) NC, O; (f) C,NO; (g) C, O.
1-15. Cif b, #0, i=1,2,3,4; 0if ¢, 20,1 =1,2,3,4.

CHAPTER 2

21 @ = [ ) — MI a

(b) 0< () < Hy maxs 0< hz(l) < Hp maxs 05 211(0) £ Vi maxy 0 ”2(’)
S Vz max 0 S wl(t) S Wl maxs 0 S Wz(f) S Wz maxs 0 S m(t) S anx-
2-3. (a) See 1-7 with K, = 1; add —A.(#)/I to right side of da(z)/dt equation.
(b) “f(’)] .<.~ If maxs |CO(Y)[ < Qm-xx le(f)[ S Emax 3 IAL(I)I S lmnx-

© @ J= f: [[kex(t) — 5]> + pe()] dt, k is a constant
Gi) J = J:’ [[kw(t) — 51> + pe®)if()] dt, p is a weighting factor.
2-4. (a) |u(t)] < Unaxo 14.9° < 0(30) < 15.1°
) J = j:°|u(z)1dx.

2-6. (a) 0 S xl(t)’ Mm(n S xs(t) S Mmlx, 0 S ul(') S Tmax’ —n S uz(’) S 4
(b) x5(t7) = 3.0, J = —x,(ty)

© 1,25 =500, x2.5) = 3.0, = | :" u(t) dt, or J = —xs(t).

CHAPTER 3

31 (a) xy(k + 1) = x,(K) + Olx;(k); x,0k + 1) = —.0Lx, (k) + [1 + .01[1 —
X3 Pa k) + Olu(k); J = [x,(N) — 5] + .01 :2; [x3(k) + 20[x4(k) —

5]2 + u(k)], N = 10/.01= 1000
(b) No computational adjustments required.

3-3. (a) x(k) u*(x(k), k) x(k) u*(x(k), k)
3. None 3. —0.5
2. —1. ; _ 2. 0.
k=1 —0.5 k=0 1. —0.5
0. 0. 0. 0.

®) x(0)=—-2—u*0) =0—x(1) = —-1. - u*(1) = .5—> xQ2) =0

These answers assume no control interpolation, i.e., the quantized values are the
only admissible ones.

3-5. (a) x(k) u*(x(k), k) x(k) u*(x(k), k)
6. None 6. —0.5
4. -1. 4. 0., —0.5
2. 0. k=0 0.
0. 0. 0. 0.
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3-11.

3-12.

4-10.

(b) x(0) =6. — u*(0) = —5 — x(1) =4. — w¥(1) = —1. — x(2) = 2.;
J*(6.) = 1.25

—1 for J¥>1
w*x@t), ) =3 —J¥ for |J¥I1<1
+1  for J¥ < -1
One way is to define a new state, x,.,(t) = u2(t) and add the constraint
0< X1 () < M.

@ ff*) = min {ef? + cff)
hi.‘
(b) 01 5 4 2
05 3 3
C) = 0 2 6= C? symmetric
0 4

0
() No optimal path among five nodes can contain more than three inter-
mediate nodes.
@ o <P <cff <cff foralli, j
(e) Must compute lower diagonal part of C%**+! as well as upper diagonal
part.

CHAPTER 4

. (@) df = [12:2 — 5[t2]At

(b) df = [10g, + 6qz]A‘11 + [64, + 4‘12]Aq2
© df =29, + 59295 + 29:)Aq, + 29, + 59195 + 2q1)Aq, + 5419, +

- @ 87 = [ [3x2) — 2200 $x() — 5] de

() 87 = [ [[2x:(0) + x@16x:(0) + [31(6) + 26,016 x,0)
+ [22,(N]0x, (1) + [2%,(D]0%,()] dt
© 6J = f‘ €08 x(t) dr.

. (@) x*(t) =[e~ — €)/[e~? — €1]

(b) x*@) = c €t + ¢, ¢y =[—3 —€2]/[€2 — €~2], ¢, = [€2 - 3]/[€? —
€-2]
© x*(t) = xX(f) = sinh(f)/sink(m/[2).

. x*(t) = €162 + €672 ¢35 ¢ =[5 — 2€2Y[€72 — €], ¢; =2 — ¢y,

3 = —1.
@) x*() =[e'e™" + e'e)fle™! + €]
®) x*(@) =12/2 — 342 + 1/2
© x¥@®) = —x¥@) = —sin ().
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4-12.

4-13.
4-14.
4-15.
4-16.

4-18.

4-20.

4-21.
422. y
4-24.

4-25.

5-4.

5-7.

Conclusion Appendix 4

@ x*@¢) =3 +1¢
(b) x*(t) =€~ + 3te".
x*(t) = t/4 + 2.

x*2(t) = —t2 4 10¢.

x*¥(@t) = —t + 5.

x*(t) = £A/8t — 12,

XHE) = { 1.039¢ + 2.077, t € [—2.0, —0.0696]
—1.874¢ + 1.874, t € [—0.0696, 1.].

x*(t):{*t for Ogtgl’ *(t)—{ for 0<r<3
t—2 for 1<t<4 t+6 for 3< <4,

yalk = :}:23 y% = —112'

* =[2, 2, 1]7 global min.; y* =[—1, —1, 717 is a local max. or local min.
(a) PHO) = —2wi @) + wi(t) — pF@) — 2wFOwFO)pF()];
PEO = —[wk@) + 2wE® + pF@) + pFO[1 — wFO]l;
0= 2w*(t) + p¥@)
(b) pf@®) =0; p F() = —p¥(®); 2w¥() + p¥(1) =0
(© p¥@) = 0; px(t) = —p¥(®) + 2p% (t)iW*(t)I, 0 = 2w¥(®) + p3@).
x¥({t) = +2sin (nmt), n =1,2,3,.

CHAPTER 5

- @) PO = —[2x}(®) — pF(®) — 2pFOxFOXFD)];

PEO = —Ix@) + p¥O + pEON — xF2@)]]
® O w*) = —p}(®)
-1 for  p¥@) > 1
(i) w*(®) = —pF@®) for {pF®|<L1
+1 for p¥@r) < —1
@) PE0) = pHO) + 2XFOXEOPEO; pEG) = —pH() + [x42() — 1]p30)
()
—1 for 1 < p¥@

0 for —1<p¥@) <1
+1 for p¥() < —1
undetermined for p¥(r) = +1
© [x¥@) — 41 + [x§¢) — 5P +[t; —2]2 =9
T P = d2xF@s) — 4], 2@ — SIF

H(x*(ty), u*(ts), P*(ty)) = 2d[t; — 2].

urt) =

. (a) u*(t) — 3[6~2[T—t] — 62[T—r]]x*(t)/[36~2[7'—r] + 62[7'"]]

(b) u*@®) = —=3x*().

(a) x*(t) X(O)[f alT'—t] __ alT- ﬂ]/[e'—-aT —_ e'aT]

(b) u*(t) = 2ax(0)e 2T~ [[¢-aT — gaT]

(C) F(t, T, a) = 2a€—a[T—l]/[€—a[T—l] — c-a[T—r]]

(d) Ast — T:F — oo, u*(T) — 2ax(0)/[€~°T — €]
AsT— c0:F — 0, u*(t) — 0 for all 1 € [t,, ¢ ).
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5-11,

5-12.

5-13.

5-14.

5-15.
5-21.

5-22.

5-24.

5-27.

5-35.

(@) w*@) = [30, (1) + %, (]x()/[061(1) — w2 (D]; 04, (1) A €-20-1,
“2(’) L €21~
(b) u*(t) = 3[a,(8) — o (OIx(E)/[oe, () + 30,()]; %1(t), &,(f) as in part (a).

@) u*(t) = 2.6 + .04e’; (b) 7.42.

@) u*(@t) = M, t € [0, 100], for all x(¢)
(Mt €0, KIM]

©® w*) = { 0,1 e (KIM, 100]} for all x(r)

[ 0,1e0,100 — K/M)
© wr) = {M, t € [100 — KM, 100]} for all x().
(a) Pole at s = —a/a? + [q/r]

(b) poles of closed-loop system at —2, —3.

u*(t) = —i(r) — o).

Switching curve described by x,(¢) = x3(¢)/2 for x,(t) < 2, x,(t) = —x3()/2

+ 4 for x,(t) > 2; to the right of the switching curve u* = —1, to the left

u¥ = +1.

Switching curve x,(f) = F1 4 [x,(f) £ 1]e/or; for part (a) x,(¢) = F1 +

[x:() + 1]2

(a) The initial states satisfying —0.5 < x, < 0.5 can be transferred to the
origin.

(b) An optimal control does not exist if |x;,| >|b|/a;, for any i =1,2,

.., n. This implies that an optimal control exists for all initial states if
a; < 0 for all ;.

(a) The state equations (5.1-80) have the same form but with M = xs(),
u(t) = u,(¢) and T = —ku,(r); in addition, there is the fifth state equa-
tion xs5(t) = u,(¢).

(b) p¥(r) through p¥(r) are as before; p¥(r) = —kuF(O[p¥(®) sin u¥(t) + p¥@)
cos u¥(r)]/x¥2(t)

© s 2 —k[p$() sin u¥() + p() cos wk(t)]/x¥(t) + p*(t)

—n for §>0
uf(t) = 0 for s<O 5

undetermined for s = 0
Minimization of 5# with respect to u; yields same results as in Example
5.1-2.

(d) Boundary conditions same as in Example 5.1-2, except p¥(r) =0
because xs(t;) = M(ty) is unspecified.

@) pr@) = 0; pF@) = —p(®) + a{pF(O[2x52() + x52(1)]

+ pEOxFOxEO I [xE2) + xF2(0)]/2, etc.

(0) x¥(ty) = es; pF@ty) = 0; x¥(ty) = es; pity) = 0; H(x*(ty), u*(ty),
P*(ts), 1) =0

© wt() = —p3/[pF*®) + P02 w3 @) = —pFO/[PF*®) + pF*]>

(@ u*(®) =[-1 0 for [p¥)PF®)| <1, p51)>0

1 oF for [p¥(®)p3(N| <1,p3() <O
[0 -1 for |pF()pF®| > 1, p3)> 0
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[0 17 for |pf®OIPF|> 1, pF(®) <O
(e) Part (c) controls.

CHAPTER 6

6-13. y¥ =413, yf =2/3, /(%) = 8/3.

6-14. y¥ = 1/3, y¥ = 1/6, y¥ = 1/2, f(y*) = 2.167.

6-15. y¥ = 20, y¥ = 1.0, f(3*) = 20.

6-16. y¥ =0, y¥ = 1/2, y¥ =0, y§ = 1/4, y¥ = 1/4, y¥ =0, y§ = 1/6, y¥ =0,
¥E =1, f(y*) = T/48.

6-17. y¥ = 0.7907, y¥ = 1.2585, f(y*) = 2.2147.

6-18. y¥ = 1.2982, y§ = 2.0772, f(y*) = 48.7831.

6-19-6-22. Using 100 intervals for variational solution: x*(1.0) = 4.9389,
u*(0.0) = —6.7580 = —p*(0.0), J* = 13.5160.

6-23-6-26. Using 100 intervals for variational solution: x*(1.0) = 0.7892,
u*(0.0) = —0.5806 = —p*(0.0), J* = 1.1613.
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of functions, 161-166
Constrained minimum (see Minimum of a
function, Minimum of a functional)
Constraint, concept of, 6-9, 12-13
Constraints:
control variable, 227-236
differential equation, 169-173, 177, 185
examples, 9, 12-13, 227-228
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minimum-time problems, 242, 249
Exsitence of singular intervals:
linear fuel-optimal systems, 299
linear time-optimal systems, 296
Extremal, definition, 120
Extremum of a function, definition, 119
Extremum of a functional, definition, 120
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Flow chart:
of dynamic programming, 74
of gradient projection, 391
Fomin, S. V., 178
Fortmann, T., 427
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Fox, L., 95, 408
Franklin, G. F., 427
Frederick, D. K., 427
Friedland, B., 23
Fuel-optimal problems (see Minimum
control-effort problems, Minimum-
fuel problems)
Function, 108
augmented, 163, 168, 171, 174
definition, 108
derivative of, 115
differentiable, 115
differential of, 115
domain of, 108
extremum of, 119
increment of, 114, 115
linear, 109-110
maxima and minima of, 118-120,
161-166, 373-39%4
(see also Minimum of a function)
norm of, 113-114
range of, 108
value of, 6
Functional, 109
augmented, 167, 170, 185
definition, 109
differentiable, 117-118
domain of, 109
extremum of, 120 (see also Minimum of a
functional)
general variation of, 134, 137
increment of, 114-115, 117
linear, 111-112
maxima and minima of, 120, 166177
(see also Minimum of a functional)
range of, 109
variation of, 117-118, 134, 137
Functional equation of dynamic program-
ming (see Recurrence equation of
dynamic programming)
Fundamental lemma of calculus of
variations, 126-127, 179
Fundamental matrix (see State transition
matrix)
Fundamental theorem of calculus of
variations, 120-122

G

Gamkrelidze, R. V., 95, 310

Gelfand, 1. M,, 178

General variation, 134, 137

Gibson, J. E., 95, 309

Global minimum, 11 (see also Minimum of a
function, Minimum of a functional)
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Gradient, 331, 430
of a quadratic form, 430-431
Gradient projection algorithm, 373-408
application to determination of optimal
trajectories, 394-408
approximation of performance mea-
sure by a summation, 395
approximation of state differential
equations by difference equations,
395
computational requirements, 408
continuous stirred-tank chemical
reactor example, 401-407
convergence, 408
initial guess, 408
linearization of differential equation
constraints, 396-398, 400, 401-402
modifications for fixed end point
problems, 408
storage requirements, 408
summary of procedure, 400
termination of algorithm, 408
calculation requirements, 379-384
gradient, 379-380
interpolation, 382384
maximum allowable step size, 381-382
projection matrix, 380
convergence, 396
flow chart of algorithm, 391
necessary and sufficient conditions for a
constrained global minimum, 385
geometric interpretation, 386-389
summary of iterative procedure, 389-390

H

Hamilton-Jacobi-Bellman equation, 86-90
application to solution of continuous
linear regulator problem, 90-93
applications of, 94
boundary condition for, 88, 93
derivation, 86-88
derivation of Pontryagin’s minimum
principle from, 417-423
minimization of Hamiltonian for linear
-regulator problems, 91
a necessary condition for optimality, 93
solution of, 94
for a first-order linear regulator
problem, 88-90
a sufficient condition for optimality, 94
Hamiltonian:
behavior on extremal trajectory, 236
definition, 88, 188
in Hamilton-Jacobi-Bellman equation, 88
for linear regulator problems, 91, 209

Hamiltonian (cont.):
for linear tracking problems, 219
minimization of, 88, 232-234
for linear regulator problems, 91
for minimum-fuel problems, 261-262
for minimum-time problems, 245-247
for minimum-time problems, 245
in variational approach to optimal
control, 188
Hildebrand, F. B., 178
Ho, Y.C, 23
Homogeneity, property of, 109, 110, 111,
112

Homogeneous differential equations, 357,
358, 364

Hyperplane, 376

Hypersurface, 191, 194

I

Identity matrix, 32
Impulse function, 14
Increment:
of a function, 114, 115
of a functional, 114-115, 117
Independence, linear, 376
Index of performance (see Performance
measure)
Inflection point, 119
Influence function, 347-351, 352
Initial guess:
gradient projection, 408
quasilinearization, 369-370
steepest descent, 342
variation of extremals, 355-356
Inner product, 376, 382, 384
Interior point, 385
Interpolation:
in dynamic programming, 64-67
in gradient projection, 382-384, 390
Intersection:
of hyperplanes, 376, 378
of sets, 75, 375
Isoperimetric constraints, 173-177
Iterative techniques for solving two-point
boundary-value problems, 329-373
(see also Quasilinearization, Steepest
descent, Variation of extremals)
comparison of features of algorithms,
table, 372
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Kalman filter, 426

Kelley, H. J., 334, 409
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Lagrange multipliers:
in constrained minimization of
functionals, 167-177
in constrained minimization of functions,
163-166
in optimal control problems, 185
Lapidus, L., 409
Laplace transform, 19, 211
Larson, R. E., 78, 95
Lee, R. C. K., 427
Leitmann, G., 309, 409
L’Hospital, 107
Linear constraints, 373
Linear differential equations, 17
Linear function, 109-110
Linear functional, 111-112
Linear independence, 376
Linear inequalities, 376
Linear optimal control law, 15, 82, 90,
93, 211
Linear programming, 373
Linear regulator problems:
continuously operating systems, 90-93,
209-218
calculation of optimal control law,
90-93, 211-212, 217
solution by Hamilton-Jacobi-Bellman
equation, 90-93
solution by variational approach,
209-218
discrete systems, 78-86
calculation of optimal control law, 83
minimum cost function, 81
optimal control law, 81
Linear sampled-data systems, 432-433
Linear system, definition, 17
Linear tracking problems, 219-227
calculation of optimal control law, 221-222
optimal control law, 220-221
Linear two-point boundary-value problems,
solution of, 357-359, 363-365
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Linearization of difference equations,
396-398, 400, 401-402

Linearization of differential equations,
359-361, 362, 363

Local minima, 11 (see also Minimum of a
function, Minimum of a
functional)

Lunar landing problem, 247-248

Luus, R., 409
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McGill, R., 370, 409

Mason’s gain formula, 19, 20

Mathematical model (see Model,
mathematical)

Matrix:

diagonal, 34, 343

identity, 32

positive definite, 33, 429

positive semidefinite, 31, 429
projection, 378-379, 380
properties and definitions, 429-431
state transition, 19, 20, 27

transfer function, 19

weighting, 31-32, 33-34

Maxima and minima of functionals, 120,
166-177 (see also Minimum of a
functional)

Maxima and minima of functions, 118-120,
161-166, 373-394 (see also
Minimum of a function)

Maximum (see Minimum of a function,
Minimum of a functional)

Maximum principle of Pontryagin (see
Pontryagin’s minimum principle)
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Merriam, C. W., 111, 42, 47

Miele, A., 309

Minimax controller design, 426

Minimization of functionals:

by gradient projection, 394-408

by steepest descent, 334-343
Minimization of functions:

by gradient projection, 373-394

by steepest descent, 331-334

Minimization of Hamiltonian, 88, 232-

234
linear regulator problems, 91
minimum-fuel problems, 261-262
minimum-time problems, 245-247

Minimum (see Minimum of a function,
Minimum of a functional)
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Minimum control-effort problems, 32-33,
259-291 (see also Minimum-fuel
problems, Time-fuel optimal
control)

Minimum cost, 54, 55, 56, 57

Minimum-energy problems, 284-291

Minimum-fuel problems, 259-284, 290

existence of optimal controls, 264, 267,
268, 290
final time fixed, 268-273
final time free, 262-268
first-order plant with negative pole:
fixed final time, 268-272
free final time, 265-267
form of optimal control, 260262
single integrator plant:
fixed final time, 268
free final time, 262-264
singular intervals, 262, 297-299
uniqueness of optimal controls, 264,
268, 290

Minimum of a function, 118-120, 161-166,

373-394
absolute, 119
determination of in dynamic
programming, 75
constrained, 161-166, 373-394
augmented function, 163
elimination of variables, 162-163,
164-165

Lagrange multipliers, 163-164, 165~166

necessary and sufficient conditions
for, 385
definition, 119
local, 233
necessary conditions for, 230, 331-332,
385
quadratic, 91
relative, 119
Minimum of a functional, 118-178
absolute, 120
constrained, 166-177
differential equation constraints,
169-173, 177
isoperimetric constraints, 173177
point constraints, 166-169, 177
definition, 120
relative, 120
Minimum principle (see Pontryagin’s
minimum principle)
Minimum-time-fuel problems, 273-284
double integrator plant, 277-284
first-order plant with negative pole,
274-277
Minimum-time problems, 30, 240-259
double integrator plant, 249-254,
292-293

Minimum-time problems (cont.):
existence of optimal controls, 242, 249
form of optimal control, 245-247
number of control switchings, 249
optimal control law:

difficulty of determination, 259
procedure for finding, 254-256
reachable states, set of, 242-244
second-order plant with real poles,
256-258
singular intervals with linear plants,
246, 293-297
necessary and sufficient conditions
for, 296
stationary linear regulator systems,
248-249
target set, 240-241, 242, 244
time-invariant linear systems, 248-259
unigueness of optimal controls, 249

Mishchenko, E. F., 95, 310

Model, mathematical, 4-5

Modifications for fixed end point problems:
gradient projection, 408
quasilinearization, 371
steepest descent, 343
variation of extremals, 357

N

Narendra, K. S., 23
Natural boundary condition, 132
Necessary conditions for extrema (see
Euler equations)
Necessary conditions for minima of
functions, 230, 331-332, 385
Necessary conditions for optimality:
boundary conditions:
derivation, 189-198
problems with fixed final time,
189-192, 200
problems with free final time, 192-201
table, 200-201
Hamilton-Jacobi-Bellman equation
(see Hamilton-Jacobi-Bellman
equation, Principle of optimality)
problems with constrained controls,
227-236 (see also Pontryagin's
minimum principle)
problems with constrained state
variables, 237-240
problems with unconstrained state and
control variables, 184-188
Nembhauser, G. L., 95
Newton, Sir Isaac, 107
Newton’s method, 344-346



Nonlinear programming, 373
Nonlinear system, definition, 17
Nonlinear two-point boundary-value
problem, 53, 127, 128, 308, 329-331
basis for iterative solution, 331
iterative solution, 329-373
steepest descent, 331-343
quasilinearization, 357-371
variation of extremals, 343-357
Norm:
of a function, 113-114, 340, 353, 366,
368, 369, 370, 403, 406, 408
of a vector, 30, 112-113
Normal, 196, 332, 378 (see also
Orthogonal vectors)
Normal control problem, 246
Numerical determination of optimal
trajectories, 329-413

o

Objective function, 373 (see also
Performance measure)
Observability, 21-22
Ogata, K., 23
Olmstead, J. M. H., 178, 427
On-line computation, 425
Open-loop optimal control, 15, 330
Optimal control, 11
existence of, 11
minimum-fuel problems, 264, 267,
268, 290
minimum-time problems, 242, 249
form, 14-16
minimum-fuel problems, 260-262
minimum-time problems, 245-247
objective of, 3
open-loop, 15
Optimal control law:
for continuous linear regulator systems,
93, 211
definition, 14-15, 53
for discrete linear regulator systems, 81
for linear tracking systems, 220-221
for minimum-fuel control of first-order
plant, 271
for minimum-time control:
double integrator plant, 254
second-order plant with real poles,
257-258
for minimum-time-energy control of
first-order plant, 288
for minimum-time-fuel control:
double integrator plant, 282
first-order plant, 276
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Optimal control law (cont.):
for system with a singular interval,

305-306

Optimal control problem, the, 10-12,
29-30, 184-185

Optimal control strategy (see Optimal
control law)

Optimal decision, 55

Optimal feedback control (see Optimal
control law)

Optimal path, 54, 55, 58 (see also
Optimal trajectory)

Optimal policy (see Optimal control law)

Optimal trajectory, 11, 55

Optimality, principle of, 54-55

Optimality, sufficient condition for, 94

Orthogonal subspaces, 378

Orthogonal vectors, 376

Output equations, 17

Ogzer, E., 428

P

Penalty function, 343, 405
Performance measure, 10, 11
approximation by summation, 60, 395
elapsed time and consumed fuel,
weighted combination, 274
example of selection, 42-46
guidelines in selection, 34-35
for minimum-control-effort problems,
32-33
for minimum-energy problems, 33
for minimum-fuel problems, 32-33
for minimum-time problems, 30
quadratic, 84, 90
for regulator problems, 34
for terminal control problems, 30-32
for tracking problems, 33-34
Perkins, W. R., 96
Perpendicular vectors (see Orthogonal
vectors)
Piecewise-constant functions, 59, 336, 432
Piecewise-smooth curve, 155
Piecewise-smooth extremals, 154-161
Point constraints, 166-169, 177
Pontryagin, L. S., 53, 95, 236, 310
Pontryagin’s minimum principle, 53, 227,
228-236, 308, 329
derivation from Hamilton-Jacobi-~
Bellman equation, 417-423
relationship to dynamic programming,
417-423
Positive definite matrix, 33, 429
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Positive semidefinite matrix, 31, 429
Principle of optimality, 54-55, 57
Problem formulation, 3-16
Projection matrix, 378-379, 380
Projection of a vector, 374

Q

Quadratic form, 30, 31, 430 (see also
Quadratic function)
Quadratic function, 80
Quadratic performance measure, 84, 90
Quantization, 60, 71-73
Quasilinearization, 357-371
computational requirements, 370
continuous stirred-tank chemical
reactor example, 367-369
convergence, 370
initial guess, 369370
linearization of reduced differential
equations, 359-361, 362, 363
modifications for fixed end point
problems, 371
outline of algorithm, 365-367
particular solution, 358, 359, 364
solution of linear two-point boundary-
value problems, 357-359, 364-365
storage requirements, 370
termination of algorithm, 366, 370-371

R

Range:
of a function, 108
of a functional, 109
Reachable states, set of, 242-244, 260
Recurrence equation of dynamic
programming, 64, 70, 71
Reduced differential equations, 330
for continuous stirred-tank chemical
reactor, 352
Regulator problems (see Linear
regulator problems):
solution by application of Hamilton-
Jacobi-Bellman equation, 90-93
solution by variational approach,
209-218
Rekasius, Z. V., 428
Relative minima, 11 (see also Minimum
of a function, Minimum of a
functional)
Riccati equation, 93, 212, 217, 222, 223,
329
Rohrer, R. A, 310
Rosen, J. B., 373, 389, 393, 394, 396, 409

Routing problems, solution by dynamic
programming, 56-58, 100-101

Roy, R. J., 23

Rozonoer, L. 1., 310

Runge-Kutta-Gill integration, 340

S

Sagan, H., 428
Sage, A. P., 310, 409
Salmon, D. M., 428
Sampled-data systems, 432-433
Scalar product (see Inner product)
Schultz, D. G., 23, 47
Schwarz, R. J., 23
Sensitivity:
of costate trajectory, 356
of performance measure, 423
Singular intervals, 291-308
double integrator plant with performance
measure quadratic in the states,
300-306
effect on problem solution, 300-308
in linear minimum-fuel problems, 279,
297-299
double integrator plant, 279, 297-298
in linear minimum-time problems,
293-297
double integrator plant, 292-293
in minimum-fuel problems, 262
in minimum-time problems, 246
in time-energy optimal problems, 285
in time-fuel optimal problems, 274
Smith, F. W., 428
Smooth curve, 154
Sobral, M., 310
Spacecraft attitude control, 35-42
Span, 378
Speyer, J. L., 427
Stability, 90, 213, 215, 216, 223, 267
State equations, 4~5
solution for linear systems, 19
State of a system, 16 (see also State
variable)
State trajectory, 6
State transition matrix, 19
determination for time-invariant
systems, 20
determination for time-varying systems,
20
equivalent forms, 19
properties of, 20, 27
State variable, 4
inequality constraints, 7, 12-13, 237-240
representation of systems, 16-22
State vector, 4



Stationary point, definition, 119
Steady-state solution of Riccati equation,
217
Steepest descent, 331-343
minimization of functions, 331-334
step size, 333
minimization of functionals, 334-343
computational requirements, 342
continuous stirred-tank chemical
reactor example, 338-342
convergence, 342
first-order example, 337-338
initial guess, 342
modifications for fixed end point
problems, 343
outline of algorithm, 335-336
step size, 336-337
storage requirements, 342
termination of algorithm, 336, 340,
342
Step size determination:
gradient projection, 381-382
steepest descent, 333, 336-337
variation of extremals, 356
Stirred-tank chemical reactor, solution of:
by gradient projection, 401-407
by quasilinearization, 367-369
by steepest descent, 338-342
by variation of extremals, 351-355
Storage requirements:
dynamic programming, 78
gradient projection, 408
quasilinearization, 370
steepest descent, 342
variation of extremals, 356
Strum, R. D., 23
Suboptimal control, 425-426
Sufficient conditions:
for constrained minimum of a function,
385
for existence of time-optimal controls,
249
for optimality, 94
Superposition, 358, 364
Switching curve, 251, 253, 254, 256,
257-258, 282, 305, 306
Switching function, 254, 256, 257
(see also Switching curve)

T

Target set, 9, 240-241, 242, 244, 259,
260, 268
Taylor series:
in derivation of Hamilton-Jacobi-
Bellman equation, 87
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Taylor series (cont.):
in obtaining variation of a functional,
118, 124, 135
Terminal control problems, 30-32
Termination criterion:
gradient projection, 408
quasilinearization, 366, 370-371
steepest descent, 336, 340, 342
variation of extremals, 351, 353, 357
Time-energy optimal control:
first-order system with negative pole,
284~290
comparison with time-fuel optimal
control, 290
Time-fuel optimal control, 273-284
double integrator plant, 277-284
first-order plant with negative pole,
274-277
selection of weighting factor in
performance measure, 284
singular intervals, 274
Time-invariant systems, 17, 19-20
Time-optimal problems (see Minimum-
time problems, Time-fuel optimal
control)
Time-varying system, 17-20
Timothy, L. K., 23
Tracking problems, 33-34, 219-227
(see also Linear tracking problems)
Transfer function matrix, 19
Transition matrix (see State transition
matrix)
Transversality condition, 141 (see also
Boundary conditions)
Two-point boundary-value problems
(see Nonlinear two-point
boundary-value problem)

u

Union, 254, 255

Uniqueness of optimal controls, 11
minimum-fuel problems, 264, 268, 290
minimum-time problems, 249

Unit normal, 378

Unit vector, 381
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Variation of extremals, 343-357
computational requirements, 356
continuous stirred-tank chemical

reactor example, 351-355
convergence, 356
first-order control example, 346-347
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Variation of extremals (cont.):
influence function matrices, 347-351, 352
initial guess, 355-356
iteration equation, 348
modifications for fixed end point
problems, 357
outline of algorithm, 351
step size, 356
storage requirements, 356
termination of algorithm, 351, 353, 357
Variation of a function, 114
Variation of a functional, 117-118, 134,
137
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Weierstrass-Erdmann corner conditions,
157, 158

Weighting factor, 32, 39, 45-46, 59

Weighting matrix, 31-32, 33-34
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EXPLORING THE MOON THROUGH BINOCULARS AND SMALL TELE-
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and updated with special section of new photos. Over 100 photos and diagrams.
240pp. 8% x 11. 24491-1

THE EXTRATERRESTRIAL LIFE DEBATE, 1750-1900, Michael J. Crowe. First
detailed, scholarly study in English of the many ideas that developed from 1750 to
1900 regarding the existence of intelligent extraterrestrial life. Examines ideas of
Kant, Herschel, Voltaire, Percival Lowell, many other scientists and thinkers. 16 illus-
trations. 704pp. 5% x 8'%. 40675-X

THEORIES OF THE WORLD FROM ANTIQUITY TO THE COPERNICAN
REVOLUTION, Michael J. Crowe. Newly revised edition of an accessible, enlight-
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tion of the solar system. 242pp. 5% x 8%. 41444-2

A HISTORY OF ASTRONOMY, A. Pannekoek. Well-balanced, carefully reasoned

study covers such topics as Ptolemaic theory, wark of Copernicus, Kepler, Newton,

Eddington’s work on stars, much more. Illustrated. References. 521pp. 5% x 8%.
65994-1

A COMPLETE MANUAL OF AMATEUR ASTRONOMY: Tools and Techniques
for Astronomical Observations, P. Clay Sherrod with Thomas L. Koed. Concise,
highly readable book discusses: selecting, setting up and maintaining a telescope;
amateur studies of the sun; lunar topography and occultations; observations of Mars,
Jupiter, Saturn, the minor planets and the stars; an introduction to photoelectric pho-
tometry; more. 1981 ed. 124 figures. 26 halftones. 37 tables. 335pp. 6% x 9%,
42820-6

AMATEUR ASTRONOMER’S HANDBOOXK, J. B. Sidgwick. Timeless, compre-
hensive coverage of telescopes, mirrors, lenses, mountings, telescope drives, microm-
eters, spectroscopes, more. 189 illustrations. 576pp. 5% x 8%. (Available in U.S. only.)

24034-7

STARS AND RELATIVITY, Ya. B. Zel’dovich and I. D. Novikov. Vol. 1 of
Relativistic Astrophysics by famed Russian scientists, General relativity, properties of
matter under astrophysical conditions, stars, and stellar systems. Deep physical
insights, clear presentation. 1971 edition. References. 544pp. 5% x 8%. 69424-0
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THE SCEPTICAL CHYMIST: The Classic 1661 Text, Robert Boyle. Boyle defines

the term “element,” asserting that all natural phenomena can be explained by the

motion and organization of primary particles. 1911 ed. viii+232pp. 5% x 8%.
428257

RADIOACTIVE SUBSTANCES, Marie Curie. Here is the celebrated scientist’s
doctoral thesis, the prelude to her receipt of the 1903 Nobel Prize. Curie discusses
establishing atomic character of radioactivity found in compounds of uranium and
thorium; extraction from pitchblende of polonium and radium; isolation of pure radi-
um chloride; determination of atomic weight of radium; plus electric, photographic,
luminous, heat, color effects of radioactivity. ii+94pp. 5% x 8%. 42550-9

CHEMICAL MAGIC, Leonard A. Ford. Second Edition, Revised by E. Winston
Grundmeier. Over 100 unusual stunts demonstrating cold fire, dust explosions,
much more. Text explains scientific principles and stresses safety precautions.
128pp. 5% x 8%. 67628-5

THE DEVELOPMENT OF MODERN CHEMISTRY, Aaron J. Ihde. Authorita-
tive history of chemistry from ancient Greek theory to 20th-century innovation.
Covers major chemists and their discoveries. 209 illustrations. 14 tables.
Bibliographies. Indices. Appendices. 851pp. 5% x 8%. 64235-6

CATALYSIS IN CHEMISTRY AND ENZYMOLOGY, William P. Jencks.

Exceptionally clear coverage of mechanisms for catalysis, forces in aqueous solution,

carbonyl- and acyl-group reactions, practical kinetics, more. 864pp. 5% x 8'%.
65460-5

ELEMENTS OF CHEMISTRY, Antoine Lavoisier. Monumental classic by founder
of modern chemistry in remarkable reprint of rare 1790 Kerr translation. A must for
every student of chemistry or the history of science. 539pp. 5% x 8%. 64624-6

THE HISTORICAL BACKGROUND OF CHEMISTRY, Henry M. Leicester.
Evolution of ideas, not individual biography. Concentrates on formulation of a coher-
ent set of chemical laws. 260pp. 5% x 8'%. 61053-5

A SHORT HISTORY OF CHEMISTRY, J. R. Partington. Classic exposition
explores origins of chemistry, alchemy, early medical chemistry, nature of atmos-
phere, theory of valency, laws and structure of atomic theory, much more. 428pp.
5% x 8%. (Available in U.S. only.) 65977-1

GENERAL CHEMISTRY, Linus Pauling. Revised 3rd edition of classic first-year
text by Nobel laureate. Atomic and molecular structure, quantum mechanics, statis-
tical mechanics, thermodynamics correlated with descriptive chemistry. Problems.
992pp. 5% x 8. 65622-5

FROM ALCHEMY TO CHEMISTRY, John Read. Broad, humanistic treatment
focuses on great figures of chemistry and ideas that revolutionized the science. 50
illustrations. 240pp. 5% x 8'%. 28690-8



CATALOG OF DOVER BOOKS

Engineering

DE RE METALLICA, Georgius Agricola. The famous Hoover translation of great-
est treatise on technological chemistry, engineering, geology, mining of early mod-
ern times (1556). All 289 original woodcuts. 638pp. 6% x 11. 60006-8

FUNDAMENTALS OF ASTRODYNAMICS, Roger Bate et al. Modern approach
developed by U.S. Air Force Academy. Designed as a first course. Problems, exer-
cises. Numerous illustrations. 455pp. 5% x 8%. 60061-0

DYNAMICS OF FLUIDS IN POROUS MEDIA, Jacob Bear. For advanced stu-

dents of ground water hydrology, soil mechanics and physics, drainage and irrigation

engineering, and more. 335 illustrations. Exercises, with answers. 784pp. 6% x 9%.
65675-6

THEORY OF VISCOELASTICITY (Second Edition), Richard M. Christensen.
Complete, consistent description of the linear theory of the viscoelastic behavior of
materials. Problem-solving techniques discussed. 1982 edition. 29 figures.
xiv+364pp. 6% x 9%. 42880-X

MECHANICS, J. P. Den Hartog. A classic introductory text or refresher. Hundreds
of applications and design problems illuminate fundamentals of trusses, loaded
beams and cables, etc. 334 answered problems. 462pp. 5% x 8. 60754-2

MECHANICAL VIBRATIONS, J. P. Den Hartog. Classic textbook offers lucid
explanations and illustrative models, applying theories of vibrations to a variety of
practical industrial engineering problems. Numerous figures. 233 problems, solu-
tions. Appendix. Index. Preface. 436pp. 5% x 8%. 64785-4

STRENGTH OF MATERIALS, J. P. Den Hartog. Full, clear treatment of basic
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methods, applications. 350 answered problems. 323pp. 5% x 8. 60755-0

A HISTORY OF MECHANICS, René Dugas. Monumental study of mechanical
principles from antiquity to quantum mechanics. Contributions of ancient Greeks,
Galileo, Leonardo, Kepler, Lagrange, many others. 671pp. 5% x 8%. 65632-2

STABILITY THEORY AND ITS APPLICATIONS TO STRUCTURAL
MECHANICS, Clive L. Dym. Self-contained text focuses on Koiter postbuckling
analyses, with mathematical notions of stability of motion. Basing minimum energy
principles for static stability upon dynamic concepts of stability of motion, it devel-
ops asymptotic buckling and postbuckling analyses from potential energy considera-
tions, with applications to columns, plates, and arches. 1974 ed. 208pp. 5% x 8'%.
42541-X

METAL FATIGUE, N. E. Frost, K. J. Marsh, and L. P. Pook. Definitive, clearly writ-
ten, and well-illustrated volume addresses all aspects of the subject, from the histori-
cal development of understanding metal fatigue to vital concepts of the cyclic stress
that causes a crack to grow. Includes 7 appendixes. 544pp. 5% x 8%. 40927-9
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ROCKETS, Robert Goddard. Two of the most significant publications in the history
of rocketry and jet propulsion: “A Method of Reaching Extreme Altitudes” (1919)
and “Liquid Propellant Rocket Development” (1936). 128pp. 5% x 8%. 425371

STATISTICAL MECHANICS: Principles and Applications, Terrell L. Hill
Standard text covers fundamentals of statistical mechanics, applications to fluctuation
theory, imperfect gases, distribution functions, more. 448pp. 5% x 8'%. 65390-0

ENGINEERING AND TECHNOLOGY 1650-1750: Illustrations and Texts from
Original Sources, Martin Jensen. Highly readable text with more than 200 contem-
porary drawings and detailed engravings of engineering projects dealing with survey-
ing, leveling, materials, hand tools, lifting equipment, transport and erection, piling,
bailing, water supply, hydraulic engineering, and more. Among the specific projects
outlined—transporting a 50-ton stone to the Louvre, erecting an obelisk, building tim-
ber locks, and dredging canals. 207pp. 8% x 11%. 42232-1

THE VARIATIONAL PRINCIPLES OF MECHANICS, Cornelius Lanczos.
Graduate level coverage of calculus of variations, equations of motion, relativistic
mechanics, more. First inexpensive paperbound edition of classic treatise. Index.
Bibliography. 418pp. 5% x 8%. 650677

PROTECTION OF ELECTRONIC CIRCUITS FROM OVERVOLTAGES,
Ronald B. Standler. Five-part treatment presents practical rules and strategies for cir-
cuits designed to protect electronic systems from damage by transient overvoltages.
1989 ed. xxiv+434pp. 6% x 9%, 42552-5

ROTARY WING AERODYNAMICS, W. Z. Stepniewski. Clear, concise text cov-

ers aerodynamic phenomena of the rotor and offers guidelines for helicopter perfor-

mance evaluation. Originally prepared for NASA. 537 figures. 640pp. 6% x 9%.
64647-5

INTRODUCTION TO SPACE DYNAMICS, William Tyrrell Thomson. Com-
prehensive, classic introduction to space-flight engineering for advanced undergrad-
uate and graduate students. Includes vector algebra, kinematics, transformation of
coordinates. Bibliography. Index. 352pp. 5% x 8%. 65113-4

HISTORY OF STRENGTH OF MATERIALS, Stephen P. Timoshenko. Excellent
historical survey of the strength of materials with many references to the theories of
elasticity and structure. 245 figures. 452pp. 5% x 8%. 611876

ANALYTICAL FRACTURE MECHANICS, David J. Unger. Self-contained text
supplements standard fracture mechanics texts by focusing on analytical methods for
determining crack-tip stress and strain fields. 336pp. 6% x 9%. 417379

STATISTICAL MECHANICS OF ELASTICITY, J. H. Weiner. Advanced, self-con-
tained treatment illustrates general principles and elastic behavior of solids. Part 1,
based on classical mechanics, studies thermoelastic behavior of crystalline and poly-
meric solids. Part 2, based on quantum mechanics, focuses on interatomic force laws,
behavior of solids, and thermally activated processes. For students of physics and
chemistry and for polymer physicists. 1983 ed. 96 figures. 496pp. 5% x 84 42260-7
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Mathematics

FUNCTIONAL ANALYSIS (Second Corrected Edition), George Bachman and
Lawrence Narici. Excellent treatment of subject geared toward students with back-
ground in linear algebra, advanced calculus, physics, and engineering. Text covers
introduction to inner-product spaces, normed, metric spaces, and topological spaces;
complete orthonormal sets, the Hahn-Banach Theorem and its consequences, and
many other related subjects. 1966 ed. 544pp. 6% x 9'%. 40251-7

ASYMPTOTIC EXPANSIONS OF INTEGRALS, Norman Bleistein & Richard A.
Handelsman. Best introduction to important field with applications in a variety of sci-
entific disciplines. New preface. Problems. Diagrams. Tables. Bibliography. Index.
448pp. 5% x 8%, 65082-0

VECTOR AND TENSOR ANALYSIS WITH APPLICATIONS, A. I. Borisenko
and I. E. Tarapov. Concise introduction. Worked-out problems, solutions, exercises.
257pp. 5% x 8%. 63833-2

THE ABSOLUTE DIFFERENTIAL CALCULUS (CALCULUS OF TENSORS),
Tullio Levi-Civita. Great 20th-century mathematician’s classic work on material nec-
essary for mathematical grasp of theory of relativity. 452pp. 5% x 8%4. 63401-9

AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS, Earl
A. Coddington. A thorough and systematic first course in elementary differential
equations for undergraduates in mathematics and science, with many exercises and
problems (with answers). Index. 304pp. 5% x 8%. 65942-9

FOURIER SERIES AND ORTHOGONAL FUNCTIONS, Harry F. Davis. An
incisive text combining theory and practical example to introduce Fourier series,
orthogonal functions and applications of the Fourier method to boundary-value
problems. 570 exercises. Answers and notes. 416pp. 5% x 8%. 65973-9

COMPUTABILITY AND UNSOLVABILITY, Martin Davis. Classic graduate-
level introduction to theory of computability, usually referred to as theory of recur-
rent functions. New preface and appendix. 288pp. 5% x 8%. 61471-9

ASYMPTOTIC METHODS IN ANALYSIS, N. G. de Bruijn. An inexpensive, com-
prehensive guide to asymptotic methods—the pioneering work that teaches by
explaining worked examples in detail. Index. 224pp. 5% x 8% 64221-6

APPLIED COMPLEX VARIABLES, John W. Dettman. Step-by-step coverage of
fundamentals of analytic function theory—plus lucid exposition of five important
applications: Potential Theory; Ordinary Differential Equations; Fourier Transforms;,
Laplace Transforms; Asymptotic Expansions. 66 figures. Exercises at chapter ends.
512pp. 5% x 8. 64670-X

INTRODUCTION TO LINEAR ALGEBRA AND DIFFERENTIAL EQUA-
TIONS, John W. Dettman. Excellent text covers complex numbers, determinants,
orthonormal bases, Laplace transforms, much more. Exercises with solutions.
Undergraduate level. 416pp. 5% x 8. 65191-6
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CALCULUS OF VARIATIONS WITH APPLICATIONS, George M. Ewing.
Applications-oriented introduction to variational theory develops insight and pro-
motes understanding of specialized books, research papers. Suitable for advanced
undergraduate/graduate students as primary, supplementary text. 352pp. 5% x 8%.
648567

COMPLEX VARIABLES, Francis J. Flanigan. Unusual approach, delaying complex
algebra till harmonic functions have been analyzed from real variable viewpoint.
Includes problems with answers. 364pp. 5% x 8. 613887

AN INTRODUCTION TO THE CALCULUS OF VARIATIONS, Charles Fox.

Graduate-level text covers variations of an integral, isoperimetrical problems, least

action, special relativity, approximations, more. References. 279pp. 5% x 8%.
65499-0

COUNTEREXAMPLES IN ANALYSIS, Bernard R. Gelbaum and John M. H.
Olmsted. These counterexamples deal mostly with the part of analysis known as
“real variables.” The first half covers the real number system, and the second half
encompasses higher dimensions. 1962 edition. xxiv+198pp. 5% x 8%. 42875-3

CATASTROPHE THEORY FOR SCIENTISTS AND ENGINEERS, Robert
Gilmore. Advanced-level treatment describes mathematics of theory grounded in the
work of Poincaré, R. Thom, other mathematicians. Also important applications to
problems in mathematics, physics, chemistry, and engineering. 1981 edition.
References. 28 tables. 397 black-and-white illustrations. xvii+666pp. 6% x 9%.
67539-4

INTRODUCTION TO DIFFERENCE EQUATIONS, Samuel Goldberg. Excep-
tionally clear exposition of important discipline with applications to sociology, psy-
chology, economics. Many illustrative examples; over 250 problems. 260pp. 5% x 8'%.

65084-7

NUMERICAL METHODS FOR SCIENTISTS AND ENGINEERS, Richard
Hamming. Classic text stresses frequency approach in coverage of algorithms, poly-
nomial approximation, Fourier approximation, exponential approximation, other
topics. Revised and enlarged 2nd edition. 721pp. 5% x 8%. 65241-6

INTRODUCTION TO NUMERICAL ANALYSIS (2nd Edition), F. B. Hilde-
brand. Classic, fundamental treatment covers computation, approximation, inter-
polation, numerical differentiation and integration, other topics. 150 new problems.
669pp. 5% x 8%, 65363-3

THREE PEARLS OF NUMBER THEORY, A. Y. Khinchin. Three compelling
puzzles require proof of a basic law governing the world of numbers. Challenges con-
cern van der Waerden’s theorem, the Landau-Schnirelmann hypothesis and Mann’s
theorem, and a solution to Waring’s problem. Solutions included. 64pp. 5% x 8%.
40026-3

THE PHILOSOPHY OF MATHEMATICS: An Introductory Essay, Stephan
Korner. Surveys the views of Plato, Aristotle, Leibniz & Kant concerning proposi-
tions and theories of applied and pure mathematics. Introduction. Two appendices.
Index. 198pp. 5% x 8%. 25048-2



CATALOG OF DOVER BOOKS

INTRODUCTORY REAL ANALYSIS, A.N. Kolmogorov, S. V. Fomin. Translated
by Richard A. Silverman. Self-contained, evenly paced introduction to real and func-
tional analysis. Some 350 problems. 403pp. 5% x 8%4. 61226-0

APPLIED ANALYSIS, Cornelius Lanczos. Classic work on analysis and design of
finite processes for approximating solution of analytical problems. Algebraic equations,
matrices, harmonic analysis, quadrature methods, more. 559pp. 5% x 8. 65656-X

AN INTRODUCTION TO ALGEBRAIC STRUCTURES, Joseph Landin. Superb
self-contained text covers “abstract algebra”: sets and numbers, theory of groups, the-
ory of rings, much more. Numerous well-chosen examples, exercises. 247pp. 5% x 8%,

65940-2

QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, V. V. Nemytskii
and V.V. Stepanov. Classic graduate-level text by two prominent Soviet mathemati-
cians covers classical differential equations as well as topological dynamics and
ergodic theory. Bibliographies. 523pp. 5% x 8'%. 65954-2

THEORY OF MATRICES, Sam Perlis. Outstanding text covering rank, nonsingu-
larity and inverses in connection with the development of canonical matrices under
the relation of equivalence, and without the intervention of determinants, Includes
exercises. 237pp. 5% x 8%. 66810-X

INTRODUCTION TO ANALYSIS, Maxwell Rosenlicht. Unusually clear, accessi-
ble coverage of set theory, real number system, metric spaces, continuous functions,
Riemann integration, multiple integrals, more. Wide range of problems. Under-
graduate level. Bibliography. 254pp. 5% x 8'%. 65038-3

MODERN NONLINEAR EQUATIONS, Thomas L. Saaty. Emphasizes practical
solution of problems; covers seven types of equations. “. . . a welcome contribution
to the existing literature. . . . "—Math Reviews. 490pp. 5% x 8'%. 64232-1

MATRICES AND LINEAR ALGEBRA, Hans Schneider and George Phillip
Barker. Basic textbook covers theory of matrices and its applications to systems of lin-
ear equations and related topics such as determinants, eigenvalues, and differential
equations. Numerous exercises. 432pp. 5% x 8%. 66014-1

MATHEMATICS APPLIED TO CONTINUUM MECHANICS, Lee A. Segel.
Analyzes models of fluid flow and solid deformation. For upper-level math, science,
and engineering students. 608pp. 5% x 8'%. 65369-2

ELEMENTS OF REAL ANALYSIS, David A. Sprecher. Classic text covers funda-
mental concepts, real number system, point sets, functions of a real variable, Fourier
series, much more. Over 500 exercises. 352pp. 5% x 8%. 65385-4

SET THEORY AND LOGIC, Robert R. Stoll. Lucid introduction to unified theory
of mathematical concepts. Set theory and logic seen as tools for conceptual under-
standing of real number system. 496pp. 5% x 8. 63829-4
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TENSOR CALCULUS, ]J.L. Synge and A. Schild. Widely used introductory text
covers spaces and tensors, basic operations in Riemannian space, non-Riemannian
spaces, etc. 324pp. 5% x 8. 63612-7

ORDINARY DIFFERENTIAL EQUATIONS, Morris Tenenbaum and Harry
Pollard. Exhaustive survey of ordinary differential equations for undergraduates in
mathematics, engineering, science. Thorough analysis of theorems. Diagrams.
Bibliography. Index. 818pp. 5% x 8%. 64940-7

INTEGRAL EQUATIONS, F. G. Tricomi. Authoritative, well-written treatment of
extremely useful mathematical tool with wide applications. Volterra Equations,
Fredholm Equations, much more. Advanced undergraduate to graduate level.
Exercises. Bibliography. 238pp. 5% x 8. 64828-1

FOURIER SERIES, Georgi P. Tolstov. Translated by Richard A. Silverman. A valu-
able addition to the literature on the subject, moving clearly from subject to subject
and theorem to theorem. 107 problems, answers. 336pp. 5% x 8'%. 63317-9

INTRODUCTION TO MATHEMATICAL THINKING, Friedrich Waismann.
Examinations of arithmetic, geometry, and theory of integers; rational and natural num-
bers; complete induction; limit and point of accumulation; remarkable curves; complex
and hypercomplex numbers, more. 1959 ed. 27 figures. xii+260pp. 5% x 8%. 42804-4

POPULAR LECTURES ON MATHEMATICAL LOGIC, Hao Wang. Noted logi-
cian’s lucid treatment of historical developments, set theory, model theory, recursion
theory and constructivism, proof theory, more. 3 appendixes. Bibliography. 1981 ed.
ix+283pp. 5% x 8%. 67632-3

CALCULUS OF VARIATIONS, Robert Weinstock. Basic introduction covering
isoperimetric problems, theory of elasticity, quantum mechanics, electrostatics, etc.
Exercises throughout. 326pp. 5% x 8%. 63069-2

THE CONTINUUM: A Critical Examination of the Foundation of Analysis,
Hermann Weyl. Classic of 20th-century foundational research deals with the con-
ceptual problem posed by the continuum. 156pp. 5% x 8. 67982-9

CHALLENGING MATHEMATICAL PROBLEMS WITH ELEMENTARY
SOLUTIONS, A. M. Yaglom and I. M. Yaglom. Over 170 challenging problems on
probability theory, combinatorial analysis, points and lines, topology, convex poly-
gons, many other topics. Solutions. Total of 445pp. 5% x 8'%. Two-vol. set.

Vol. I: 65536-9 Vol. II: 655377

INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS WITH
APPLICATIONS, E. C. Zachmanoglou and Dale W. Thoe. Essentials of partial dif-
ferential equations applied to common problems in engineering and the physical sci-
ences. Problems and answers. 416pp. 5% x 8%. 65251-3

THE THEORY OF GROUPS, Hans J. Zassenhaus. Well-written graduate-level text
acquaints reader with group-theoretic methods and demonstrates their usefulness in
mathematics. Axioms, the calculus of complexes, homomorphic mapping, p-group
theory, more. 276pp. 5% x 8%. 40922-8
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Math-Decision Theory, Statistics, Probability

ELEMENTARY DECISION THEORY, Herman Chernoff and Lincoln E.
Moses. Clear introduction to statistics and statistical theory covers data process-
ing, probability and random variables, testing hypotheses, much more. Exercises.
364pp. 5% x 8%. 65218-1

STATISTICS MANUAL, Edwin L. Crow et al. Comprehensive, practical collection
of classical and modern methods prepared by U.S. Naval Ordnance Test Station.
Stress on use. Basics of statistics assumed. 288pp. 5% x 8'%. 60599-X

SOME THEORY OF SAMPLING, William Edwards Deming. Analysis of the
problems, theory, and design of sampling techniques for social scientists, industrial
managers, and others who find statistics important at work. 61 tables. 90 figures. xvii
+602pp. 5% x 8. 64684-X

LINEAR PROGRAMMING AND ECONOMIC ANALYSIS, Robert Dorfman,
Paul A. Samuelson and Robert M. Solow. First comprehensive treatment of linear
programming in standard economic analysis. Game theory, modern welfare eco-
nomics, Leontief input-output, more. 525pp. 5% x 8'%. 65491-5

PROBABILITY: An Introduction, Samuel Goldberg. Excellent basic text covers set
theory, probability theory for finite sample spaces, binomial theorem, much more.
360 problems. Bibliographies. 322pp. 5% x 8%. 65252-1

GAMES AND DECISIONS: Introduction and Critical Survey, R. Duncan Luce
and Howard Raiffa. Superb nontechnical introduction to game theory, primarily
applied to social sciences. Utility theory, zero-sum games, n-person games, decision-
making, much more. Bibliography. 509pp. 5% x 8. 65943-7

INTRODUCTION TO THE THEORY OF GAMES, J. C. C. McKinsey. This com-
prehensive overview of the mathematical theory of games illustrates applications to
situations involving conflicts of interest, including economic, social, political, and
military contexts. Appropriate for advanced undergraduate and graduate courses;
advanced calculus a prerequisite. 1952 ed. x-+372pp. 5% x 8%. 428117

FIFTY CHALLENGING PROBLEMS IN PROBABILITY WITH SOLUTIONS,
Frederick Mosteller. Remarkable puzzlers, graded in difficulty, illustrate elementary
and advanced aspects of probability. Detailed solutions. 88pp. 5% x 8%. 65355-2

PROBABILITY THEORY: A Concise Course, Y. A. Rozanov. Highly readable,
self-contained introduction covers combination of events, dependent events,
Bernoulli trials, etc. 148pp. 5% x 8%. 63544-9

STATISTICAL METHOD FROM THE VIEWPOINT OF QUALITY CON-
TROL, Walter A. Shewhart. Important text explains regulation of variables, uses of
statistical control to achieve quality control in industry, agriculture, other areas.
192pp. 5% x 8%. 65232-7
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Math—-Geometry and Topology

ELEMENTARY CONCEPTS OF TOPOLOGY, Paul Alexandroff. Elegant, intu-
itive approach to topology from set-theoretic topology to Betti groups; how concepts
of topology are useful in math and physics. 25 figures. 57pp. 5% x 8%. 60747-X

COMBINATORIAL TOPOLOGY, P. S. Alexandrov. Clearly written, well-orga-
nized, three-part text begins by dealing with certain classic problems without using
the formal techniques of homology theory and advances to the central concept, the
Betti groups. Numerous detailed examples. 654pp. 5% x 8%. 40179-0

EXPERIMENTS IN TOPOLOGY, Stephen Barr. Classic, lively explanation of one
of the byways of mathematics. Klein bottles, Moebius strips, projective planes, map
coloring, problem of the Koenigsberg bridges, much more, described with clarity
and wit. 43 figures. 210pp. 5% x 8%. 25933-1

CONFORMAL MAPPING ON RIEMANN SURFACES, Harvey Cohn. Lucid,
insightful book presents ideal coverage of subject. 334 exercises make book perfect
for self-study. 55 figures. 352pp. 5% x 8%, 64025-6

THE GEOMETRY OF RENE DESCARTES, René Descartes. The great work
founded analytical geometry. Original French text, Descartes’s own diagrams,
together with definitive Smith-Latham translation. 244pp. 5% x 8%. 60068-8

PRACTICAL CONIC SECTIONS: The Geometric Properties of Ellipses,
Parabolas and Hyperbolas, J. W. Downs. This text shows how to create ellipses,
parabolas, and hyperbolas. It also presents historical background on their ancient
origins and describes the reflective properties and roles of curves in design applica-
tions. 1993 ed. 98 figures. xii+100pp. 6% x 9%. 42876-1

THE THIRTEEN BOOKS OF EUCLID’S ELEMENTS, translated with introduc-
tion and commentary by Thomas L. Heath. Definitive edition. Textual and linguistic
notes, mathematical analysis. 2,500 years of critical commentary. Unabridged. 1,414pp.
5% x 8% . Three-vol. set. Vol. I: 60088-2 Vol. II: 60089-0 Vol. III: 60090-4

GEOMETRY OF COMPLEX NUMBERS, Hans Schwerdtfeger. Illuminating,
widely praised book on analytic geometry of circles, the Moebius transformation,
and two-dimensional non-Euclidean geometries. 200pp. 5% x 8'. 63830-8

DIFFERENTIAL GEOMETRY, Heinrich W. Guggenheimer. Local differential
geometry as an application of advanced calculus and linear algebra. Curvature, trans-
formation groups, surfaces, more. Exercises. 62 figures. 378pp. 5% x 8%, 63433-7

CURVATURE AND HOMOLOGY: Enlarged Edition, Samuel I. Goldberg.
Revised edition examines topology of differentiable manifolds; curvature, homology
of Riemannian manifolds; compact Lie groups; complex manifolds; curvature,
homology of Kaehler manifolds. New Preface. Four new appendixes. 416pp. 5% x 8.

40207-X
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History of Math

THE WORKS OF ARCHIMEDES, Archimedes (T. L. Heath, ed.). Topics include
the famous problems of the ratio of the areas of a cylinder and an inscribed sphere;
the measurement of a circle; the properties of conoids, spheroids, and spirals; and the
quadrature of the parabola. Informative introduction. clxxxvi+326pp; supplement,
52pp. 5% x 8%. 42084-1

A SHORT ACCOUNT OF THE HISTORY OF MATHEMATICS, W. W. Rouse
Ball. One of clearest, most authoritative surveys from the Egyptians and Phoenicians
through 19th-century figures such as Grassman, Galois, Riemann. Fourth edition.
522pp. 5% x 8%, 20630-0

THE HISTORY OF THE CALCULUS AND ITS CONCEPTUAL DEVELOP-
MENT, Carl B. Boyer. Origins in antiquity, medieval contributions, work of Newton,
Leibniz, rigorous formulation. Treatment is verbal. 346pp. 5% x 8. 60509-4

THE HISTORICAL ROOTS OF ELEMENTARY MATHEMATICS, Lucas N. H.
Bunt, Phillip S. Jones, and Jack D. Bedient. Fundamental underpinnings of modern
arithmetic, algebra, geometry, and number systems derived from ancient civiliza-
tions. 320pp. 5% x 8%. 25563-8

A HISTORY OF MATHEMATICAL NOTATIONS, Florian Cajori. This classic
study notes the first appearance of a mathematical symbol and its origin, the com-
petition it encountered, its spread among writers in different countries, its rise to pop-
ularity, its eventual decline or ultimate survival. Original 1929 two-volume edition
presented here in one volume. xxviii+820pp. 5% x 8%. 67766-4

GAMES, GODS & GAMBLING: A History of Probability and Statistical Ideas, F. N.
David. Episodes from the lives of Galileo, Fermat, Pascal, and others illustrate this
fascinating account of the roots of mathematics. Features thought-provoking refer-
ences to classics, archaeology, biography, poetry. 1962 edition. 304pp. 5% x 8%.
(Available in U.S. only.) 40023-9

OF MEN AND NUMBERS: The Story of the Great Mathematicians, Jane Muir.
Fascinating accounts of the lives and accomplishments of history’s greatest mathe-
matical minds—Pythagoras, Descartes, Euler, Pascal, Cantor, many more. Anecdotal,
illuminating. 30 diagrams. Bibliography. 256pp. 5% x 8. 28973-7

HISTORY OF MATHEMATICS, David E. Smith. Nontechnical survey from
ancient Greece and Orient to late 19th century; evolution of arithmetic, geometry,
trigonometry, calculating devices, algebra, the calculus. 362 illustrations. 1,355pp.
5% x 8%. Two-vol, set. Vol. I: 204294 Vol. II: 20430-8

A CONCISE HISTORY OF MATHEMATICS, Dirk J. Struik. The best brief his-
tory of mathematics. Stresses origins and covers every major figure from ancient
Near East to 19th century. 41 illustrations. 195pp. 5% x 8%. 60255-9
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Physics

OPTICAL RESONANCE AND TWO-LEVEL ATOMS, L. Allen and J. H. Eberly.
Clear, comprehensive introduction to basic principles behind all quantum optical
resonance phenomena. 53 illustrations. Preface. Index. 256pp. 5% x 8%.  65533-4

QUANTUM THEORY, David Bohm. This advanced undergraduate-level text pre-
sents the quantum theory in terms of qualitative and imaginative concepts, followed
by specific applications worked out in mathematical detail. Preface. Index. 655pp.
5% x 8'%. 65969-0

ATOMIC PHYSICS: 8th edition, Max Born. Nobel laureate’s lucid treatment of
kinetic theory of gases, elementary particles, nuclear atom, wave-corpuscles, atomic
structure and spectral lines, much more. Over 40 appendices, bibliography. 495pp.
5% x 8%. 65984-4

A SOPHISTICATE'S PRIMER OF RELATIVITY, P. W. Bridgman. Geared
toward readers already acquainted with special relativity, this book transcends the
view of theory as a working tool to answer natural questions: What is a frame of ref-
erence? What is a “law of nature”? What is the role of the “observer”? Extensive

treatment, written in terms accessible to those without a scientific background. 1983
ed. xlviii+172pp. 5% x 8%. 42549-5

AN INTRODUCTION TO HAMILTONIAN OPTICS, H. A. Buchdahl. Detailed
account of the Hamiltonian treatment of aberration theory in geometrical optics.
Many classes of optical systems defined in terms of the symmetries they possess.
Problems with detailed solutions. 1970 edition. xv+360pp. 5% x 8'%. 675971

PRIMER OF QUANTUM MECHANICS, Marvin Chester. Introductory text
examines the classical quantum bead on a track: its state and representations; opera-
tor eigenvalues; harmonic oscillator and bound bead in a symmetric force field; and
bead in a spherical shell. Other topics include spin, matrices, and the structure of
quantum mechanics; the simplest atom; indistinguishable particles; and stationary-
state perturbation theory. 1992 ed. xiv+314pp. 6% x 9%. 42878-8

LECTURES ON QUANTUM MECHANICS, Paul A. M. Dirac. Four concise, bril-
liant lectures on mathematical methods in quantum mechanics from Nobel
Prize-winning quantum pioneer build on idea of visualizing quantum theory through
the use of classical mechanics. 96pp. 5% x 8%. 41713-1

THIRTY YEARS THAT SHOOK PHYSICS: The Story of Quantum Theory,
George Gamow. Lucid, accessible introduction to influential theory of energy and
matter. Careful explanations of Dirac’s anti-particles, Bohr’s model of the atom,
much more. 12 plates. Numerous drawings. 240pp. 5% x 8%. 24895-X

ELECTRONIC STRUCTURE AND THE PROPERTIES OF SOLIDS: The Physics
of the Chemical Bond, Walter A. Harrison. Innovative text offers basic understanding
of the electronic structure of covalent and ionic solids, simple metals, transition metals
and their compounds. Problems. 1980 edition. 582pp. 6% x 9%. 66021-4
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HYDRODYNAMIC AND HYDROMAGNETIC STABILITY, S. Chandrasekhar.
Lucid examination of the Rayleigh-Benard problem; clear coverage of the theory of
instabilities causing convection. 704pp. 5% x 8'%. 64071-X

INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT,
Albert Einstein. Five papers (1905-8) investigating dynamics of Brownian motion
and evolving elementary theory. Notes by R. Fiirth. 122pp. 5% x 8%. 60304-0

THE PHYSICS OF WAVES, William C. Elmore and Mark A. Heald. Unique
overview of classical wave theory. Acoustics, optics, electromagnetic radiation, more.
Ideal as classroom text or for self-study. Problems. 477pp. 5% x 8%. 64926-1

PHYSICAL PRINCIPLES OF THE QUANTUM THEORY, Werner Heisenberg.
Nobel Laureate discusses quantum theory, uncertainty, wave mechanics, work of
Dirac, Schroedinger, Compton, Wilson, Einstein, etc. 184pp. 5% x 8. 60113-7

ATOMIC SPECTRA AND ATOMIC STRUCTURE, Gerhard Herzberg. One of
best introductions; especially for specialist in other fields. Treatment is physical
rather than mathematical. 80 illustrations. 257pp. 5% x 8%. 60115-3

AN INTRODUCTION TO STATISTICAL THERMODYNAMICS, Terrell L. Hill.
Excellent basic text offers wide-ranging coverage of quantum statistical mechanics,
systems of interacting molecules, quantum statistics, more. 523pp. 5% x 8%. 65242-4

THEORETICAL PHYSICS, Georg Joos, with Ira M. Freeman. Classic overview
covers essential math, mechanics, electromagnetic theory, thermodynamics, quan-
tum mechanics, nuclear physics, other topics. xxiii+885pp. 5% x 8%. 65227-0

PROBLEMS AND SOLUTIONS IN QUANTUM CHEMISTRY AND
PHYSICS, Charles S. Johnson, Jr. and Lee G. Pedersen. Unusually varied problems,
detailed solutions in coverage of quantum mechanics, wave mechanics, angular

momentum, molecular spectroscopy, more. 280 problems, 139 supplementary exer-
cises. 430pp. 6% x 9%. 65236-X

THEORETICAL SOLID STATE PHYSICS, Vol. I: Perfect Lattices in
Equilibrium; Vol. II: Non-Equilibrium and Disorder, William Jones and Norman H.
March. Monumental reference work covers fundamental theory of equilibrium
properties of perfect crystalline solids, non-equilibrium properties, defects and dis-
ordered systems. Total of 1,301pp. 5% x 8'%. Vol. I: 65015-4 Vol II: 65016-2

WHAT IS RELATIVITY? L. D. Landau and G. B. Rumer. Written by a Nobel Prize
physicist and his distinguished colleague, this compelling book explains the special
theory of relativity to readers with no scientific background, using such familiar
objects as trains, rulers, and clocks. 1960 ed. vi+72pp. 23 b/w illustrations. 5% x 8'%.

42806-0 $6.95

A TREATISE ON ELECTRICITY AND MAGNETISM, James Clerk Maxwell.
Important foundation work of modern physics. Brings to final form Maxwell’s theo-
ry of electromagnetism and rigorously derives his general equations of field theory.
1,084pp. 5% x 8%. Two-vol. set. Vol. I: 60636-8 Vol. II: 60637-6
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QUANTUM MECHANICS: Principles and Formalism, Roy McWeeny. Graduate
student-oriented volume develops subject as fundamental discipline, opening with
review of origins of Schrédinger’s equations and vector spaces. Focusing on main
principles of quantum mechanics and their immediate consequences, it concludes

with final generalizations covering alternative “languages” or representations. 1972
ed. 15 figures. xi+155pp. 5% x 8'%. 42829-X

INTRODUCTION TO QUANTUM MECHANICS WITH APPLICATIONS TO
CHEMISTRY, Linus Pauling & E. Bright Wilson, Jr. Classic undergraduate text by
Nobel Prize winner applies quantum mechanics to chemical and physical problems.
Numerous tables and figures enhance the text. Chapter bibliographies. Appendices.
Index. 468pp. 5% x 8%. 64871-0

METHODS OF THERMODYNAMICS, Howard Reiss. Outstanding text focuses
on physical technique of thermodynamics, typical problem areas of understanding,
and significance and use of thermodynamic potential. 1965 edition. 238pp. 5% x 8%.

69445-3

TENSOR ANALYSIS FOR PHYSICISTS, J. A. Schouten. Concise exposition of
the mathematical basis of tensor analysis, integrated with well-chosen physical exam-
ples of the theory. Exercises. Index. Bibliography. 289pp. 5% x 8%. 65582-2

THE ELECTROMAGNETIC FIELD, Albert Shadowitz. Comprehensive under-
graduate text covers basics of electric and magnetic fields, builds up to electromag-
netic theory. Also related topics, including relativity. Over 900 problems. 768pp.
5% x 8%. 65660-8

GREAT EXPERIMENTS IN PHYSICS: Firsthand Accounts from Galileo to
Einstein, Morris H. Shamos (ed.). 25 crucial discoveries: Newton’s laws of motion,
Chadwick’s study of the neutron, Hertz on electromagnetic waves, more. Original
accounts clearly annotated. 370pp. 5% x 8'%. 25346-5

RELATIVITY, THERMODYNAMICS AND COSMOLOGY, Richard C.
Tolman. Landmark study extends thermodynamics to special, general relativity; also
applications of relativistic mechanics, thermodynamics to cosmological models.
501pp. 5% x 8%. 65383-8

STATISTICAL PHYSICS, Gregory H. Wannier. Classic text combines thermody-
namics, statistical mechanics, and kinetic theory in one unified presentation of ther-
mal physics. Problems with solutions. Bibliography. 532pp. 5% x 8. 65401-X
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www.doverpublications.com, or by writing to Dept. GI, Dover Publications,
Inc., 31 East 2nd Street, Mineola, NY 11501. For current price information or for free
catalogs (please indicate field of interest), write to Dover Publications or log on to
www.doverpublications.com and see every Dover book in print. Dover pub-
lishes more than 500 books each year on science, elementary and advanced mathe-
matics, biology, music, art, literary history, social sciences, and other areas.



DOVER BOOKS ON ENGINEERING

THEORY OF WING SECTIONS: INCLUDING A SUMMARY OF AIRFOIL DaTtA, Ira H.
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AERODYNAMICS OF WINGS AND Bobies, Holt Ashley and Marten Landahl.
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DyNAwMics OF FLUIDS IN POROUS MEDIA, Jacob Bear. (65675-6)

AEROELASTICITY, Raymond L. Bisplinghoff, Holt Ashley and Robert L.
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THE PHENOMENA OF FLUID MoTIONS, Robert S. Brodkey. (68605-1)
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A HisTory OF MECHANICS, René Dugas. (65632-2)
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RELIABILITY-BASED DESIGN IN CIVIL ENGINEERING, Milton E. Harr. (69429-1)
MECHANICAL VIBRATIONS, J. P. Den Hartog. (64785-4)

THE FINITE ELEMENT METHOD: LINEAR STATIC AND DYNAMIC FINITE ELEMENT
ANALysIS, Thomas J. R. Hughes. (41181-8)

STRESS WAVES IN SoLips, H. Kolsky. (61098-5)

MATHEMATICAL HANDBOOK FOR SCIENTISTS AND ENGINEERS: DEFINITIONS, THEOREMS,
AND FORMULAS FOR REFERENCE AND REVIEW, Granino A. Korn and Theresa
M. Korn, (41147-8)

COMPLEX VARIABLES AND THE LAPLACE TRANSFORM FOR ENGINEERS, Wilbur R.
LePage. (63926-6)

TELECOMMUNICATION SYSTEMS ENGINEERING, William C. Lindsey and Marvin K.
Simon. (66838-X)

AErODYNAMICS OF V/STOL FLIGHT, Barnes W. McCormick, Jr. (40460-9)
THEORETICAL AERODYNAMICS, L. M. Milne-Thomson. (61980-X)
INON-LINEAR ELASTIC DEFORMATIONS, R. W. Ogden. (69648-0)

UNIFIED ANALYSIS AND SOLUTIONS OF HEAT AND Mass DiFrusion, M. D. Mikhailov
and M. Necati Ozisik. (67876-8)
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OpTiMAL CONTROL AND ESTIMATION, Robert F. Stengel. (68200-5)
ROTARY-WING AERODYNAMICS, W. Z. Stepniewski. (64647-5)
INTRODUCTION TO SPACE DYNAMICS, William Tyrrell Thomson. (65113-4)
HISTORY OF STRENGTH OF MATERIALS, Stephen P. Timoshenko. (61187-6)
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