
SIAM REVIEW c© 2002 Society for Industrial and Applied Mathematics
Vol. 44, No. 4, pp. 661–677

Nine Ways to Implement the
Binomial Method for
Option Valuation in MATLAB∗

Desmond J. Higham†

Abstract. In the context of a real-life application that is of interest to many students, we illustrate
how the choices made in translating an algorithm into a high-level computer code can
affect the execution time. More precisely, we give nine MATLAB programs that imple-
ment the binomial method for valuing a European put option. The first program is a
straightforward translation of the pseudocode in Figure 10.4 of The Mathematics of Fi-
nancial Derivatives, by P. Wilmott, S. Howison, and J. Dewynne, Cambridge University
Press, 1995. Four variants of this program are then presented that improve the efficiency
by avoiding redundant computation, vectorizing, and accessing subarrays via MATLAB’s
colon notation. We then consider reformulating the problem via a binomial coefficient
expansion. Here, a straightforward implementation is seen to be improved by vectorizing,
avoiding overflow and underflow, and exploiting sparsity. Overall, the fastest of the bino-
mial method programs has an execution time that is within a factor 2 of direct evaluation
of the Black–Scholes formula. One of the vectorized versions is then used as the basis for
a program that values an American put option. The programs show how execution times
in MATLAB can be dramatically reduced by using high-level operations on arrays rather
than computing with individual components, a principle that applies in many scientific
computing environments. The relevant files are downloadable from the World Wide Web.

Key words. algorithm, American option, Black–Scholes, European option, optimization, overflow,
underflow, vectorization

AMS subject classifications. 65-01, 65Y20

PII. S0036144501393266

1. Introduction. This paper is about the efficient implementation of algorithms.
We use a case study based around the binomial method for valuing financial options.
This gives a compact framework in which to illustrate that (a) computations can often
be organized in a number of ways and (b) the overall execution time of a program
may depend crucially on the choices made.

Our example programs use the MATLAB language. In describing these programs
we assume that the reader has some familiarity with scientific computing, and we focus
on explaining features specific to MATLAB. For the sake of brevity our description of
MATLAB commands is highly selective, and we refer the reader to [4, 7] or MATLAB’s
on-line help facilities for further details. The programs can be downloaded from

http://www.maths.strath.ac.uk/∼aas96106/algfiles.html

∗Received by the editors August 1, 2001; accepted for publication (in revised form) May 28, 2002;
published electronically October 30, 2002.

http://www.siam.org/journals/sirev/44-4/39326.html
†Department of Mathematics, University of Strathclyde, Glasgow, G1 1XH, UK (djh@maths.

strath.ac.uk).

661

662 DESMOND J. HIGHAM

Timings quoted were obtained by averaging over 1000 runs with MATLAB Version
6 (R12) on an IBM H70 server. Comparable results were obtained on two other
machines.

Two of the techniques that we illustrate, removing redundant computation and
reformulating the mathematical problem, are generally applicable. Others are closely
tied to the nature of MATLAB. Indeed, some of the MATLAB-specific tinkering that
goes on in sections 3 and 4 might appear a little mysterious to those students who are
not familiar with MATLAB’s “interpretive” nature. For this reason, we pause here
to outline some of the principles that we use.

The bulk of scientific computing is done by programs written in a high-level
language and compiled into machine code. Compilers generally proceed through four
stages:

1. Parsing and semantic analysis.
2. Intermediate code generation.
3. Optimization of the intermediate code.
4. Generation of machine code from the optimized intermediate code.

Although optimization is mentioned only once in this list, it actually occurs twice.
The kind of optimization in item 3 consists of improvements that can be made without
reference to a particular computer. For example, at this stage code like

for i=1 to n
a(i) = sqrt(2)*a(i)

end for

becomes

temp = sqrt(2)
for i=1 to n

a(i) = temp*a(i)
end for

But optimization also occurs at item 4. It is here that registers are allocated to
minimize data movement, instructions are sequenced to fill the cpu pipeline, and
other machine-dependent decisions are taken.

With an interpreted language, code never reaches machine level but is read (inter-
preted) and executed by another program. There are two extremes. In the simplest
case, a code might be read a line at a time, parsed, and executed, without reaching
the first stage of compilation. At the other extreme are interpreted languages that
go through all the stages of compilation but the last. The most prominent example
is Java, which “compiles” its programs into byte stream code for the Java virtual
machine and uses an interpreter to execute the code on the machine in question. In
Java, you don’t have to worry about moving things out of loops, but you don’t get
the benefits of code optimized for a particular machine.

MATLAB lies somewhere between these two extremes. It generates an interme-
diate code, which is then interpreted, but it does no optimizing. Constant expressions
are left inside loops, for example. However, the functions MATLAB calls to perform
its higher level operations are fully compiled code designed to run efficiently on the
machine in question. Thus, hand-optimizing MATLAB code reduces to

(i) performing compiler-type optimizations, such as taking repeated computations
outside a loop, and

(ii) maximizing the use of MATLAB’s built-in functions, especially those that
embrace a lot of calculation by operating directly on vectors and matrices (a process
in which for loops are typically subjected to close scrutiny).

FINANCIAL OPTION VALUATION 663

The case study proceeds as follows. In the next section we describe the binomial
method for option pricing. Sections 3 and 4 form the heart of the paper. Section 3
begins with a MATLAB implementation of the pseudocode from [9, Figure 10.4],
which is then improved in four separate steps. A reformulation of the problem is used
in section 4 to develop alternative implementations. This approach is ultimately seen
to be superior, once overflow errors have been suppressed. For comparison, section 5
gives a code that evaluates directly the Black–Scholes formula (which the binomial
method approximates). American options are briefly considered in section 6. Section 7
gives some conclusions.

2. The Binomial Method. We give only a very brief discussion of the binomial
method and refer the reader to the texts [5, 6, 8, 9] or the original source [1] for further
background details. We use the notation of [9, Chapter 10] with the exception that
indices start from 1 rather than 0.

A European put option gives its holder the right, but not the obligation, to sell
a prescribed asset for a prescribed price at some prescribed time in the future. Un-
der certain assumptions the Black–Scholes partial differential equation (PDE) can be
used to determine the value of the option, that is, a fair amount for the holder to
pay for the privilege of holding it. The binomial method is a simple numerical tech-
nique for approximating the option value that may be regarded as a finite-difference
approximation to the Black–Scholes PDE. Although a full justification for the bino-
mial method requires material from financial modeling, mathematical analysis, and
stochastic processes, the method itself is simple to describe.

We suppose that the option is taken out at time t = 0 and that the holder may
exercise the option, that is, sell the asset, at a time T called the expiry time. The
binomial method models the asset price only at discrete time points t = iδt, for
0 ≤ i ≤M , where T =Mδt. A key assumption is that between successive time levels
the asset price either moves up by a factor u > 1 or moves down by a factor d < 1.
An upward movement occurs with probability p and a downward movement occurs
with probability 1 − p. The initial asset price, S, is known. Hence, at time t = δt
the possible asset prices are uS and dS. Similarly, at time t = 2δt the possible asset
prices are u2S, udS, and d2S. (The price udS may arise from an upward movement
followed by a downward movement or from a downward movement followed by an
upward movement.) In general, at time t = ti := (i − 1)δt there are i possible asset
prices, which we label

Sin = di−nun−1S, 1 ≤ n ≤ i.(2.1)

Hence, at the expiry time t = tM+1 = T there are M + 1 possible asset prices. The
values Sin for 1 ≤ n ≤ i and 1 ≤ i ≤ M + 1 form a recombining binary tree, as
illustrated in Figure 2.1.

Let E be the exercise price of the option. This means that the holder of the
put may exercise the option by selling the asset at price E at time T . Clearly, the
holder will exercise whenever there is a profit to be made, that is, whenever the actual
price of the asset turns out to be less than E. Hence, if the asset has price SM+1

n at
time t = tM+1 = T , then the value of the option at that time is max(E − SM+1

n , 0).
Generally, we let V in denote the value of the option at time t = ti corresponding to
asset price Sin. We thus know that

VM+1
n = max(E − SM+1

n , 0).(2.2)

Our task is to find V 1
1 , the option value at time zero. A financial modeling argument

says that we can obtain the value V in by taking a weighted average of the values V
i+1
n

664 DESMOND J. HIGHAM

S1
1

S2
2

S2
1

S3
3

S3
2

S3
1

SM+1
M+1

SM+1
M

SM+1
1

SM+1
2

✚
✚

✚
✚

✚
✚

✚

✚

✚

✚
✚

✚
✚

Fig. 2.1 Recombining binary tree of asset prices.

and V i+1
n+1 from the later time level. The formula is

V in = e−rδt
(
pV i+1

n+1 + (1− p)V i+1
n

)
, 1 ≤ n ≤ i, 1 ≤ i ≤M,(2.3)

where the constant r represents a risk-free interest rate (arising, for example, from
a deposit in a sound bank) and we recall that p is the probability of an upward
movement in asset price.

Once the parameters u, d, p, and M have been chosen, the formulas (2.1)–(2.3)
completely specify the binomial method. The recurrence (2.1) shows how to insert
the asset prices in the binomial tree. Having obtained the asset prices at time t =
tM+1 = T , (2.2) gives the corresponding option values at that time. The relation
(2.3) may then be used to step backwards through the tree until V 1

1 , the option value
at time t = t1 = 0, is computed.

To make the binomial method compatible with the assumptions that underlie the
Black–Scholes PDE, the first and second moments of the random walk represented by
the tree in Figure 2.1 must be constrained. This leads to two equations in the three
parameters u, d, and p. We will use the values

u = A+
√
A2 − 1, d =

1
u
, p =

erδt − d
u− d ,(2.4)

FINANCIAL OPTION VALUATION 665

where

A = 1
2

(
e−rδt + e(r+σ2)δt

)

and the constant σ represents the volatility of the asset. See [9, Chapter 10] or [6]
for details of the derivation of these values. We note that some authors prefer other
parameter values, where d �= 1/u. Hence, we chose not to exploit the identity d = 1/u
in our codes.

3. MATLAB Programs that Traverse the Tree. The first program, euro1.m,
is shown in Listing 3.1. This is essentially a translation of the pseudocode from [9,
Figure 10.4]. We have specified S = 5 for the asset starting price, E = 10 for the
exercise price, T = 1 for the expiry time, r = 0.06 for the risk-free interest rate, and
sigma = 0.3 for the volatility. We take M = 256 discrete time-steps and use (2.4)
to evaluate d, u, and p. Following [9] we save storage space by using a single one-
dimensional array to store the asset prices, moving from left to right through the tree,
and then overwrite with the option values, moving from right to left through the tree.
The line W = zeros(M+1,1) initializes W to an M+1-by-1 array of zeros. We then set
W(1) = S and use a nested pair of for loops to traverse the tree, forming the values
in (2.1). Note that the syntax for n = i:-1:1 sets up a for loop in which n takes
values from i down to 1 in steps of 1. On exiting the loops, W(n) stores the asset
price SM+1

n for 1 ≤ n ≤M + 1. The next for loop overwrites each SM+1
n value with

the corresponding option value VM+1
n given by (2.2). Finally, a nested pair of for

loops is used to proceed from right to left through the tree, using the formula (2.3).
The result, W(1) = 4.4304, agrees with the computation in [9, Figure 10.5].

Execution time was around 1.9 seconds, as shown in Figure 3.1.
In euro1.m, the asset prices at time T are computed by passing through all

time levels using a nested pair of for loops. This requires O(M2) operations. A
more efficient, O(M), approach is to compute {SM+1

n }M+1
n=1 directly from (2.1). In

MATLAB this can be done with

for n = 1:M+1
W(n) = S*(dˆ(M+1-n))*(uˆ(n-1));

end

The program euro2.m in Listing 3.2 incorporates this change. We see from Figure 3.1
that execution time has been improved by a factor of around 0.7.

Our next enhancement involves eliminating the first two for loops in euro2.m
in favor of elementwise operations on vectors. Since this facility is not common to
all scientific computing languages, we will explain how it works in some detail. The
syntax [m1:m2] in MATLAB creates a row of elements from m1 to m2, so

>> [1:5]
ans =

1 2 3 4 5

(Here the text after the prompt >> is the input command, and ans is MATLAB’s
answer. Blank lines have been omitted to save space.) More generally, [m1:step:m2]
creates an array with elements from m1 to m2 with a spacing of step, so

>> [1:2:5]
ans =

1 3 5

666 DESMOND J. HIGHAM

% EURO1 Binomial method for a European put.
%
% Unvectorized version.

%%%%%%%%%% Problem and method parameters %%%%%%%%%%%%%
S = 5; E = 10; T = 1; r = 0.06; sigma = 0.3; M = 256;
dt = T/M; A = 0.5*(exp(-r*dt)+exp((r+sigmaˆ2)*dt));
u = A + sqrt(Aˆ2-1); d = 1/u; p = (exp(r*dt)-d)/(u-d);
%%

W = zeros(M+1,1);
W(1) = S;
% Asset prices at time T
for i = 1:M

for n = i:-1:1
W(n+1) = u*W(n);

end
W(1) = d*W(1);

end

% Option values at time T
for n = 1:M+1

W(n) = max(E-W(n),0);
end

% Re-trace to get option value at time zero
for i = M:-1:1

for n = 1:i
W(n) = exp(-r*dt)*(p*W(n+1) + (1-p)*W(n));

end
end

disp(’Option value is’), disp(W(1))

Listing 3.1 M-file euro1.m.

euro1.m euro2.m euro3.m euro4.m euro5.m
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

T
im

e
in

 s
ec

on
ds

Fig. 3.1 Execution times.

FINANCIAL OPTION VALUATION 667

% EURO2 Binomial method for a European put.
%
% Initial tree computation improved.

%%%%%%%%%% Problem and method parameters %%%%%%%%%%%%%
S = 5; E = 10; T = 1; r = 0.06; sigma = 0.3; M = 256;
dt = T/M; A = 0.5*(exp(-r*dt)+exp((r+sigmaˆ2)*dt));
u = A + sqrt(Aˆ2-1); d = 1/u; p = (exp(r*dt)-d)/(u-d);
%%

W = zeros(M+1,1);
% Asset prices at time T
for n = 1:M+1

W(n) = S*(dˆ(M+1-n))*(uˆ(n-1));
end

% Option values at time T
for n = 1:M+1

W(n) = max(E-W(n),0);
end

% Re-trace to get option value at time zero
for i = M:-1:1

for n = 1:i
W(n) = exp(-r*dt)*(p*W(n+1) + (1-p)*W(n));

end
end

disp(’Option value is’), disp(W(1))

Listing 3.2 M-file euro2.m.

>> [7:-2:3]
ans =

7 5 3

The symbol ’ performs the transpose operation, so

>> [7:-2:3]’
ans =

7
5
3

If a period precedes the *, /, or ˆ operators, then the operation is performed in an
elementwise sense. For example,

>> [1 2 3].*[6 8 9]
ans =

6 16 27

>> 2.ˆ[1 2 3]
ans =

2 4 8

Using this powerful syntax, the first for loop in euro2.m can be replaced by

W = S*d.ˆ([M:-1:0]’).*u.ˆ([0:M]’);

668 DESMOND J. HIGHAM

% EURO3 Binomial method for a European put.
%
% Partially vectorized version.

%%%%%%%%%% Problem and method parameters %%%%%%%%%%%%%
S = 5; E = 10; T = 1; r = 0.06; sigma = 0.3; M = 256;
dt = T/M; A = 0.5*(exp(-r*dt)+exp((r+sigmaˆ2)*dt));
u = A + sqrt(Aˆ2-1); d = 1/u; p = (exp(r*dt)-d)/(u-d);
%%

% Option values at time T
W = max(E-S*d.ˆ([M:-1:0]’).*u.ˆ([0:M]’),0);

% Re-trace to get option value at time zero
for i = M:-1:1

for n = 1:i
W(n) = exp(-r*dt)*(p*W(n+1) + (1-p)*W(n));

end
end

disp(’Option value is’), disp(W(1))

Listing 3.3 M-file euro3.m.

To streamline the option valuation at time T , we note that MATLAB allows
scalars and arrays to be combined linearly, so

>> 2 - [1 2 3]
ans =

1 0 -1

and the max function is happy to accept arrays as arguments, so

>> x = [-2 5 3]’
x =

-2
5
3

>> max(x,0)
ans =

0
5
3

It follows that

W = max(E-S*d.ˆ([M:-1:0]’).*u.ˆ([0:M]’),0);

does the job of computing {VM+1
n }M+1

n=1 . This is used in euro3.m; see Listing 3.3.
Although trading those for loops for one vectorized computation has shortened the
code, Figure 3.1 shows that the execution time is virtually unchanged. The O(M2)
work in the final nested loop is dominant.

We can speed up that remaining nested loop by removing unnecessary computa-
tions. The e−rδt scaling on each step can be deferred until the end, where it accumu-
lates to a single e−rT factor. This is done in euro4.m, given in Listing 3.4, where we

FINANCIAL OPTION VALUATION 669

% EURO4 Binomial method for a European put.
%
% Partially vectorized version.
% Redundant scaling removed.

%%%%%%%%%% Problem and method parameters %%%%%%%%%%%%%
S = 5; E = 10; T = 1; r = 0.06; sigma = 0.3; M = 256;
dt = T/M; A = 0.5*(exp(-r*dt)+exp((r+sigmaˆ2)*dt));
u = A + sqrt(Aˆ2-1); d = 1/u; p = (exp(r*dt)-d)/(u-d);
%%

% Option values at time T
W = max(E-S*d.ˆ([M:-1:0]’).*u.ˆ([0:M]’),0);

% Re-trace to get option value at time zero
q = 1-p;
for i = M:-1:1

for n = 1:i
W(n) = p*W(n+1) + q*W(n);

end
end
W(1) = exp(-r*T)*W(1);

disp(’Option value is’), disp(W(1))

Listing 3.4 M-file euro4.m.

% EURO5 Binomial method for a European put.
%
% Vectorized version, uses shifts via colon notation.

%%%%%%%%%% Problem and method parameters %%%%%%%%%%%%%
S = 5; E = 10; T = 1; r = 0.06; sigma = 0.3; M = 256;
dt = T/M; A = 0.5*(exp(-r*dt)+exp((r+sigmaˆ2)*dt));
u = A + sqrt(Aˆ2-1); d = 1/u; p = (exp(r*dt)-d)/(u-d);
%%

% Option values at time T
W = max(E-S*d.ˆ([M:-1:0]’).*u.ˆ([0:M]’),0);

% Re-trace to get option value at time zero
q = 1-p;
for i = M:-1:1

W = p*W(2:i+1) + q*W(1:i);
end
W = exp(-r*T)*W;

disp(’Option value is’), disp(W)

Listing 3.5 M-file euro5.m.

also precompute 1-p as q. Figure 3.1 indicates that the run time has been reduced
by a factor of around two-thirds.

In euro5.m, shown in Listing 3.5, we introduce a more significant change. Here,
we remove a for loop from the final option valuation phase by working directly with
arrays rather than scalars. In the formula (2.3), the operation of computing {V in}in=1

670 DESMOND J. HIGHAM

from {V i+1
n }i+1

n=1 can be written as

V i1
V i2
...
...
V ii

= e−rδt

p

V i+1
2
V i+1

3
...
...

V i+1
i+1

+ (1− p)

V i+1
1
V i+1

2
...
...

V i+1
i

, i =M,M − 1, . . . , 1.(3.1)

This relation can be implemented using MATLAB’s colon notation to access subvec-
tors. If x is a 10-by-1 array, then x(4:6) is a 3-by-1 array consisting of x(4), x(5),
and x(6), and x(5:10) is a 6-by-1 array consisting of x(5), x(6), . . . , x(10). Using
this syntax, and postponing the e−rδt scaling until the end of the loop, the formula
(3.1) may be expressed as

for i = M:-1:1
W = p*W(2:i+1) + (1-p)*W(1:i);

end
W = exp(-r*T)*W;

Note that each time around the loop the length of W decreases by 1; on exit W is 1-
by-1. As indicated in Figure 3.1, vectorizing the O(M2) bottleneck has dramatically
improved the execution time: the speedup factor over euro4.m is around 25.

4. MATLAB Programs that Use a Binomial Expansion. Returning to the re-
currence (2.3) we see that for M = 1

V 1
1 = e−rδt

(
pV 2

2 + (1− p)V 2
1
)
,

and for M = 2

V 1
1 = e−rδt

(
pV 2

2 + (1− p)V 2
1
)

= e−rδt
(
pe−rδt(pV 3

3 + (1− p)V 3
2) + (1− p)e−rδt(pV 3

2 + (1− p)V 3
1)
)

= e−2rδt (p2V 3
3 + 2p(1− p)V 3

2 + (1− p)2V 3
1
)
.

Similarly, for M = 3 we find that

V 1
1 = e−3rδt (p3V 4

4 + 3p
2(1− p)V 4

3 + 3p(1− p)2V 4
2 + (1− p)3V 4

1
)
.

The coefficients {1, 1}, {1, 2, 1}, {1, 3, 3, 1} are familiar from Pascal’s triangle, and
having spotted this connection it is straightforward to deal with the general case.

Lemma 4.1. In the recurrence (2.3)

V 1
1 = e−rT

M+1∑
k=1

CMk−1p
k−1(1− p)M+1−kVM+1

k ,(4.1)

where CNk denotes the binomial coefficient, CNk := (N !)/(k!(N − k)!).
Proof. This result was presented in the original binomial method article [1]; see

also [6]. It can be shown by the same inductive argument that is traditionally used
to establish the binomial theorem: (a+ b)N =

∑N
r=0 C

N
r a

rbN−r.
We see from (4.1) that computing V 1

1 from {VM+1
n }M+1

n=1 can be reduced to the
formation of a single sum. This can be done with O(M) floating point operations, in

FINANCIAL OPTION VALUATION 671

% EURO6 Binomial method for a European put.
%
% Uses explicit solution based on binomial expansion.
% Unvectorized, subject to overflow.

%%%%%%%%%% Problem and method parameters %%%%%%%%%%%%%
S = 5; E = 10; T = 1; r = 0.06; sigma = 0.3; M = 256;
dt = T/M; A = 0.5*(exp(-r*dt)+exp((r+sigmaˆ2)*dt));
u = A + sqrt(Aˆ2-1); d = 1/u; p = (exp(r*dt)-d)/(u-d);
%%

% Option values at time T
W = max(E-S*d.ˆ([M:-1:0]’).*u.ˆ([0:M]’),0);

% Binomial coefficients
v = zeros(M+1,1);
for k = 1:M+1

v(k) = nchoosek(M,k-1);
end

value = exp(-r*T)*sum(v.*(p.ˆ([0:M]’)).*((1-p).ˆ([M:-1:0]’)).*W)’;
disp(’Option value is’), disp(value)

Listing 4.1 M-file euro6.m.

contrast to the O(M2) algorithms of section 3. We now investigate whether (4.1) can
be exploited in practice.

The binomial coefficient CNk can be evaluated in MATLAB using nchoosek(N,k).
The program euro6.m in Listing 4.1 uses this function inside a for loop to set up
a vector v with ith component CMi−1 and then forms the appropriate sum. However,
there are two senses in which euro6.m is unsatisfactory. First, the nchoosek(N,k)
function is called inside a for loop, so that the vector v is constructed element by
element rather than in one fell swoop. Second, although the V 1

1 in (4.1) that we com-
pute is of size 4.4304, the individual binomial coefficients CNk take on some extremely
large values: the biggest element of v is

>> max(v)
ans = 5.7687e+75

It follows that rounding errors may arise as a result of significant digits being lost;
see [4, Chapter 4] for details of MATLAB’s floating point arithmetic. Indeed, running
euro6.m prompts the function nchoosek(N,k) to warn repeatedly that “Result may
not be exact.” In this example, the results from euro5.m and euro6.m agree to
within 10−15, but if M were increased, rounding errors would contaminate the answer
and eventually the binomial coefficients would become too big to store. Execution
time for euro6.m is roughly 0.9 seconds—around 20 times that for euro5.m (although
MATLAB may be using a large chunk of that 0.9 seconds to write warning messages
to the screen).

We can vectorize the computation of v in euro6.m via the cumulative product
function, cumprod. If x is an n-by-1 array then cumprod(x) is an n-by-1 array whose
ith entry is the product of the first i elements of x. It follows that the vector of
binomial coefficients, v, may be constructed as

>> cp = cumprod([1;[1:M]’]);
>> v = cp(M+1)./(cp.*cp(M+1:-1:1));

672 DESMOND J. HIGHAM

However, this approach generates intermediate numbers as large asM !. For the value
M = 256 used in our examples, v becomes a vector of NaNs, where NaN is short for
Not a Number. This happens because the factorial of M is too big for MATLAB to
store. An alternative is to note that the binomial coefficients satisfy the recurrence

CMk−1 =
(
M − k + 2
k − 1

)
CMk−2, k ≥ 3,(4.2)

and hence v may be generated from

>> v = cumprod([1;[M:-1:1]’./[1:M]’]);

Vectorizing euro6.m in this way produces a fast code—more than twice as quick as
euro5.m. However, this does not overcome the problem of large CNk that was inherent
in euro6.m, and tests show that value degenerates to NaN at M = 1030.

Returning to (4.1), we see that the “raw” binomial coefficients become scaled by
powers of p and 1−p. This suggests that working directly with the scaled values may
alleviate the effect of the large CNk values. If we let ak := CMk−1p

k−1(1− p)M+1−k, so
that the sum in (4.1) becomes

∑M+1
k=1 akV

M+1
k , then it is straightforward to extend

the binomial coefficient recurrence (4.2) to

ak =
(

p

1− p

)(
M − k + 2
k − 1

)
ak−1, k ≥ 2,

with a1 = (1− p)M . It follows that the vector of ak values may be computed as

>> a = cumprod([(1-p)ˆM,(p/(1-p))*[M:-1:1]./[1:M]]);

The program euro7.m in Listing 4.2 uses this approach. The largest element of a is

>> max(a)
ans = 0.0498

However, the price we pay for this can be seen from the smallest element of a

>> min(a)
ans = 3.8805e-78

Although euro7.m avoids big intermediate quantities, it does so by computing very
small ones. The first element of a is (1 − p)M , and if this drops below MATLAB’s
realmin*eps threshold of ≈ 4.9 × 10−324, then it underflows to zero; see [4, p. 36].
Underflow, unlike its evil twin overflow, is often harmless, but in our computation
(1 − p)M is a multiplicative factor in each element of a and hence replacing this
small but nonzero quantity by zero is disastrous. A simple expansion shows that
p = 1

2 + O(1/
√
M) as M → ∞, and hence (1 − p)M looks like 2−M for large M . It

follows that euro7.m will return the spurious answer value = 0 for M bigger than
around − log(4.9× 10−324)/ log(2) ≈ 1074. (In practice it happens at M = 1073.)

To get around the overflow/underflow traps in euro6.m and euro7.m, we may
compute with logarithms. We know that

log
(
CMk−1p

k−1(1− p)M+1−k) = logM !− log(k − 1)!− log(M + 1− k)!
+ log pk−1 + log(1− p)M+1−k

=
M∑
i=1

log(i)−
k−1∑
i=1

log(i)−
M−k+1∑
i=1

log(i)

+ (k − 1) log p+ (M + 1− k) log(1− p).

FINANCIAL OPTION VALUATION 673

% EURO7 Binomial method for a European put.
%
% Uses explicit solution based on binomial expansion.
% Vectorized, subject to underflow.

%%%%%%%%%% Problem and method parameters %%%%%%%%%%%%%
S = 5; E = 10; T = 1; r = 0.06; sigma = 0.3; M = 256;
dt = T/M; A = 0.5*(exp(-r*dt)+exp((r+sigmaˆ2)*dt));
u = A + sqrt(Aˆ2-1); d = 1/u; p = (exp(r*dt)-d)/(u-d);
%%

% Option values at time T
W = max(E-S*d.ˆ([M:-1:0]’).*u.ˆ([0:M]’),0);

% Recursion for coefficients
a = cumprod([(1-p)ˆM,(p/(1-p))*[M:-1:1]./[1:M]]);
value = exp(-r*T)*sum(a’.*W);

disp(’Option value is’), disp(value)

Listing 4.2 M-file euro7.m.

% EURO8 Binomial method for a European put.
%
% Uses explicit solution based on binomial expansion.
% Vectorized and based on logs to avoid overflow.

%%%%%%%%%% Problem and method parameters %%%%%%%%%%%%%
S = 5; E = 10; T = 1; r = 0.06; sigma = 0.3; M = 256;
dt = T/M; A = 0.5*(exp(-r*dt)+exp((r+sigmaˆ2)*dt));
u = A + sqrt(Aˆ2-1); d = 1/u; p = (exp(r*dt)-d)/(u-d);
%%

% Option values at time T
W = max(E-S*d.ˆ([M:-1:0]’).*u.ˆ([0:M]’),0);

% log/cumsum version
csl = cumsum(log([1;[1:M]’]));
tmp = csl(M+1) - csl - csl(M+1:-1:1) + log(p)*([0:M]’) + log(1-p)*([M:-1:0]’);
value = exp(-r*T)*sum(exp(tmp).*W);

disp(’Option value is’), disp(value)

Listing 4.3 M-file euro8.m.

The array tmp in euro8.m, shown in Listing 4.3, stores this quantity for 1 ≤ k ≤M+1.
Note that cumsum is the summation analogue of the cumprod function that was used
in euro7.m. It is perhaps worth looking back at our original code, euro1.m. Once the
parameters have been set up, euro1.m computes the option value by using 16 lines
of executable code with 5 for loops, whereas euro8.m does the same job in 4 lines of
code without recourse to a for loop. Figure 4.1 shows the execution time for euro8.m.
In the same plot we have repeated the timing for euro5.m, the fastest code from the
previous section. We see that euro8.m outperforms euro5.m by a factor of around 12.

It is possible to trim the execution time of euro8.m by noticing that, as mentioned
in [1], certain terms in the sum (4.1) are predictably zero. To see this, observe from
(2.1) that the values {SM+1

n }M+1
n=1 are ordered: SM+1

1 < SM+1
2 < SM+1

3 < · · · <
SM+1
M+1 . In general, the exercise price E will lie somewhere between SM+1

1 and SM+1
M+1

674 DESMOND J. HIGHAM

euro5.m euro8.m euro9.m bs.m
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

T
im

e
in

 s
ec

on
ds

Fig. 4.1 Execution times.

and hence, from (2.2), there will be some index z such that VM+1
1 > VM+1

2 > · · · >
VM+1
z > VM+1

z+1 = VM+1
z+2 = · · · = VM+1

M+1 = 0. It follows that the terms from k = z+1
to k = M + 1 in the summation (4.1) need not be computed. A little calculation
shows that the cut-off index z is the largest nonnegative integer such that

z <
log
(

Eu
SdM+1

)
log
(
u
d

) and z ≤M + 1.

The program euro9.m in Listing 4.4 begins by computing z. Here, floor rounds
down to the nearest integer, and for convenience we force z to be at least as big as 1.
Having found z, we then adapt the computations in euro8.m so that only vectors of
length z are used. We see from Figure 4.1 that euro9.m is faster than euro8.m—the
improvement is around 20%. In general, the speedup will depend on the percentage
of zeros in {VM+1

n }M+1
n=1 , which in turn depends strongly on the values of S and E. In

our example z = 147, so around 40% of the array W in euro8.m is made up of zeros.

5. AMATLABProgram thatUses Black–Scholes. The simple European option
that we are studying can be valued via the Black–Scholes PDE, for which an analytical
solution is available [5, 6, 8, 9]. The value of the put option is given by

Ee−rTN(−d2)− SN(−d1),(5.1)

where

d1 =
log(S/E) + (r + 1

2σ
2)T

σ
√
T

, d2 = d1 − σ
√
T ,

and N(x) is the cumulative N(0, 1) distribution function, so

N(x) :=
1√
2π

∫ x

−∞
e−s

2/2 ds.

FINANCIAL OPTION VALUATION 675

% EURO9 Binomial method for a European put.
%
% Uses explicit solution based on binomial expansion.
% Vectorized, based on logs to avoid overflow,
% and avoids computing with zeros.

%%%%%%%%%% Problem and method parameters %%%%%%%%%%%%%
S = 5; E = 10; T = 1; r = 0.06; sigma = 0.3; M = 256;
dt = T/M; A = 0.5*(exp(-r*dt)+exp((r+sigmaˆ2)*dt));
u = A + sqrt(Aˆ2-1); d = 1/u; p = (exp(r*dt)-d)/(u-d);
%%

% cut-off index
z = max(1,min(M+1,floor(log((E*u)/(S*dˆ(M+1)))/(log(u/d)))));

% Option values at time T
W = E - S*d.ˆ([M:-1:M-z+1]’).*u.ˆ([0:z-1]’);

% log/cumsum version using cut-off index z
tmp1 = cumsum(log([1;[M:-1:M-z+2]’])) - cumsum(log([1;[1:z-1]’]));
tmp2 = tmp1 + log(p)*([0:z-1]’) + log(1-p)*([M:-1:M-z+1]’);

value = exp(-r*T)*sum(exp(tmp2).*W);

disp(’Option value is’), disp(value)

Listing 4.4 M-file euro9.m.

% BS Black-Scholes European put price.
%

%%%%%%%%% Problem parameters %%%%%%%%%%%%%%%
S = 5; E = 10; T = 1; r = 0.06; sigma = 0.3;
%%

d1 = (log(S/E) + (r + 0.5*sigmaˆ2)*T)/(sigma*sqrt(T));
d2 = d1 - sigma*sqrt(T);
N1 = 0.5*(1+erf(-d1/sqrt(2)));
N2 = 0.5*(1+erf(-d2/sqrt(2)));

value = E*exp(-r*T)*N2 - S*N1;

disp(’Option value is’), disp(value)

Listing 5.1 M-file bs.m.

MATLAB has a built-in function erf that evaluates the error function

erf(z) =
2√
π

∫ z

0
e−s

2
ds.

This can be used to evaluate the quantities N(−d1) and N(−d2) in (5.1) via the
relation N(x) = 1

2 (1 + erf(x/
√

2)). The program bs.m in Listing 5.1 computes the
value of the option considered in the previous two sections using the formula (5.1).
The answer, 4.4305, was computed in around 0.0013 seconds. Note that euro9.m
gets within a factor 1.6 of this time.

6. Valuing an American Option. The binomial method approach can be used
to value many more exotic classes of option than the basic European, including cases

676 DESMOND J. HIGHAM

% AMERICAN Binomial method for an American put.
%
% Vectorized version, based on euro5.m

%%%%%%%%%% Problem and method parameters %%%%%%%%%%%%
S = 9; E = 10; T = 1; r = 0.06; sigma = 0.3; M = 256;
dt = T/M; A = 0.5*(exp(-r*dt)+exp((r+sigmaˆ2)*dt));
u = A + sqrt(Aˆ2-1); d = 1/u; p = (exp(r*dt)-d)/(u-d);
%%

% Re-usable computations
dpowers = d.ˆ([M:-1:0]’);
upowers = u.ˆ([0:M]’);
scale1 = p*exp(-r*dt);
scale2 = (1-p)*exp(-r*dt);

% Option values at time T
W = max(E-S*dpowers.*upowers,0);

% Re-trace to get option value at time zero
for i = M:-1:1

Si = S*dpowers(M-i+2:M+1).*upowers(1:i);
W = max(max(E-Si,0),scale1*W(2:i+1) + scale2*W(1:i));

end

disp(’Option value is’), disp(W)

Listing 6.1 M-file american.m.

where an analytical solution is not available; see, for example, [6, 9]. In particular,
the method is easily modified to value American options. An American put option
differs from the European version in that the holder may elect to exercise at any time
up to and including the expiry time. For the binomial method, this has the effect of
changing (2.3) to

V in = max
(
max

(
E − Sin, 0

)
, e−rδt

(
pV i+1

n+1 + (1− p)V i+1
n

))
, 1 ≤ n ≤ i, 1 ≤ i ≤M.

(6.1)
In this case, the binomial expansion in Lemma 4.1 can no longer be used as a starting
point, and hence the codes in section 4 are not relevant. Some of the tricks that were
introduced in section 3 may still be used, though, and we will base a code around
euro5.m.

The program american.m in Listing 6.1 implements an American put with S = 9
and all other parameters as used in the previous sections. We use the colon notation
to access subvectors, as in euro5.m. As we trace backwards through the tree, an array
of Sin values is formed at each time level. Hence, the storage requirements remain
linear in M , rather than quadratic as in the pseudocode algorithm of [9, Figure 10.7].
The answer, W = 1.4349, agrees with that in [9, Figure 10.8]. Execution time was
around 0.1 seconds.

7. Conclusion. We have presented a case study based on the binomial method
to show how reorganizing a high-level computer code can affect its efficiency. We
implemented the binomial method in the MATLAB language, which is particularly
suited to the type of linear algebra–based computations that were required. (We
mention that only pure MATLAB code was considered. Two other approaches to
speeding up MATLAB programs are to compile them with the MATLAB compiler
or to rewrite them in FORTRAN or C and link them to MATLAB as MEX files. A

FINANCIAL OPTION VALUATION 677

third option that should become available in MATLAB Version 6.5 (R13) for certain
chips is to use the new Just-in-Time (JIT) compiler.)

Although it is not always easy to predict the effect of reorganizing a computation
in MATLAB, a useful general rule for improving execution speed that is consistent
with the examples above is:

Eliminate redundant computations, eschew for loops, avoid individ-
ual array elements and instead work directly on entire arrays or sub-
arrays. This can be done by (a) supplying array-valued arguments
to MATLAB functions, (b) applying elementwise operations such as
.* and .ˆ to arrays, and (c) exploiting the colon notation to access
subarrays.

Other examples where MATLAB code has been optimized under this philosophy can
be found in [4, Chapter 20]. More generally, the principle of thinking about how data
is stored and accessed in a computational algorithm is of value in almost any scientific
computing environment. Modern, high-performance computers work best with vector
and matrix-based operations; good references for this general area are [2, 3].

Acknowledgments. I thank Paul Fackler, Nick Higham, Cleve Moler, Ser-Huang
Poon, and Hans van der Weide for suggesting improvements to earlier versions of this
document. SIAM Review editor Pete Stewart provided valuable feedback and, in
particular, information for the summary of compiled versus interpreted code that
appears in section 1. Substantial revisions to the manuscript were made while I
enjoyed the hospitality of The Fields Institute for Research in Mathematical Sciences,
Toronto, a visit which was supported by a research fellowship from the Leverhulme
Trust.

REFERENCES

[1] J. C. Cox, S. A. Ross, and M. Rubinstein, Option pricing: A simplified approach, J. Financial
Economics, 7 (1979), pp. 229–263.

[2] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst, Numerical Linear
Algebra for High-Perfomance Computers, SIAM, Philadelphia, 1998.

[3] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, London, 1996.

[4] D. J. Higham and N. J. Higham, MATLAB Guide, SIAM, Philadelphia, 2000.
[5] J. C. Hull, Options, Futures, & Other Derivatives, 4th ed., Prentice–Hall, Englewood Cliffs,

NJ, 2000.
[6] Y. K. Kwok, Mathematical Models of Financial Derivatives, Springer-Verlag, Berlin, 1998.
[7] Using MATLAB, The MathWorks, Inc., Natick, MA. Online version.
[8] S. M. Ross, An Introduction to Mathematical Finance, Cambridge University Press, Cambridge,

UK, 1999.
[9] P. Wilmott, S. Howison, and J. Dewynne, The Mathematics of Financial Derivatives, Cam-

bridge University Press, Cambridge, UK, 1995.

