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Abstract There is an increasing tendency for firms to use pricing
algorithms that speedily react to market conditions, such as the ones
used by major airlines and online retailers like Amazon. I consider a
dynamic model in which firms commit to pricing algorithms in the short
run. Over time, their algorithms can be revealed to their competitors
and firms can revise them, if they so wish. I show how pricing algorithms
not only facilitate collusion but inevitably lead to it. To be precise,
within certain parameter ranges, in any equilibrium of the dynamic
game with algorithmic pricing, the joint profits of the firms are close to
those of a monopolist.
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1. Introduction

In the Spring of 2011, two online retailers offered copies of Peter Lawrence’s

textbook The Making of a Fly on Amazon for $18,651,718.08 and $23,698,655.93

respectively. This was the result of both sellers using automated pricing algo-

rithms. Everyday, the algorithm used by seller 1 set the price of the book to be

0.9983 times the price charged by seller 2. Later in the day, seller 2’s algorithm

would adjust its price to be 1.27059 times that of seller 1. Prices increased expo-

nentially and remained over one million dollars for at least ten days (!), until one

of the sellers took notice and adjusted its price to $106.23.1

Automated pricing algorithms—presumably better than the ones outlined in

the previous story—are now ubiquitous in many different industries including

airlines (Borenstein, 2004), online retail (Ezrachi and Stucke, 2015) and high-

frequency trading (Boehmer et al., 2015). Also, while not necessarily automated,

algorithms also feature in hierarchical firms in which top managers design proto-

cols for lower level employees to implement. Optimal pricing algorithms can be

highly profitable, as they would be sophisticated enough to recognize and take

advantage of profitable collusion opportunities.

In this paper, I formalize these ideas via a model of dynamic competition

in continuous time, in which two firms use algorithms to set prices. These al-

gorithms react both to demand conditions and to rivals’ prices. At exogenous

stochastic times, the current algorithm of a firm becomes apparent to the other

firm—because it has either been inferred or “decoded”. When a firm has decoded

its rival’s algorithm, it can revise its own algorithm in response.2 It is important

in my model that this decoding takes (stochastically) longer than the arrival of

demand shocks. For instance, demand shocks could arrive weekly on average,

while it may take a firm, again on average, up to six months to decode its ri-

val’s algorithm and to implement a new algorithm itself. My main result is the

following3

Theorem: When demand shocks occur much more frequently than al-

gorithm revisions, the long-run profits from any equilibrium are close to

those of a monopolist.

My main result differs sharply from our traditional understanding of dynamic

competition. In most models of dynamic competition, there is a plethora of

1See Amazon’s $23,698,655.93 book about flies, http://www.michaeleisen.org/blog/?p=358.
2This revision structure is similar to that of revision games (Kamada and Kandori, 2009) or

Calvo’s pricing model (Calvo, 1983). An important difference is that, in these papers, agents’
choices consists of a single act. In contrast, agents in my model choose algorithms that can react
to market conditions in the short run even before new revision opportunities arise.

3A formal statement is contained in Section 4 as Theorem 4.1.
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equilibria—some collusive and some not—specially when firms are patient. In

the context of repeated games, such results are dubbed “folk theorems” (see

Mailath and Samuelson (2006)). This lack of predictability is often viewed as

a weakness of the theory.4 An early model in which cooperation the unique pre-

diction is due to Aumann and Sorin (1989). Players in their model have limited

memory—this is also a feature of all algorithms—and a small amount of incom-

plete information. Their uniqueness result, however, applies only to games of com-

mon interest. My model predicts cooperation in a more general class of games.

The main message of this paper is that, when firms compete via algorithms that

are fixed in the short run but can revised over time, collusion is not only possible

but rather, it is inevitable.

1.1. Key strategic intuitions

The key mechanism underlying my main result can be understood by means

of a simple example. Consider a situation in which both firms have adopted

the rather simple algorithm which always prices competitively, say, at the level

dictated by the one-shot Bertrand equilibrium. Let us see why this cannot be an

equilibrium of the dynamic game in which algorithms can be revised. At the first

opportunity, firm 1 could deviate to an algorithm that also prices competitively—

thus best responding in the short run—but is programmed to match any price

increases by its rival. Such a deviation can be thought of as a “proposal” to

collude, which will be understood by firm 2 once it decodes firm 1’s algorithm.

When this happens, firm 2 will understand that, by raising its own price, it can

transition to a more profitable high-price regime. Moreover, suppose that it will

then take some time for firm 1 to decode firm 2’s algorithm and revise its own

in turn. Firm 2 would then expect the high-price regime to last long enough for

the transition to be profitable. Hence, there cannot be equilibria in which firms

set low prices forever. While this argument shows that competitive pricing is not

an equilibrium, it does not say that equilibrium prices must be close to monopoly

prices. This requires a more detailed analysis which is carried out in Section 4.

The model has four key features leading to the result that collusion is in-

evitable. First, and foremost, is that commitment is feasible. Because it takes

time revise an algorithm, firms are committed in the short run to a pricing pol-

4For example, Green et al. (2014) state that “folk theorems deal with the implementation of
collusion, and have nothing to say about its initiation. The folk theorem itself does not address
whether firms would choose to play the strategies that generate the monopoly outcome nor
how firms might coordinate on those strategies.” Then, they proceed with the following quote
from Ivaldi et al. (2003) “While economic theory provides many insights on the nature of tacitly
collusive conducts, it says little on how a particular industry will or will not coordinate on a
collusive equilibrium, and on which one.”
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icy.5 If algorithms could be revised very frequently, firm 2 might not accept firm

1’s “proposal”—there is the danger that firm 1 would change its algorithm right

away. Interestingly, the second key feature is that commitment, while feasible, is

imperfect. The result would not hold if firms could never revise algorithms. With

full commitment, the standard folk theorem arguments would apply. In particu-

lar, it would be an equilibrium for both firms to choose a simple algorithm that

always implemented the Bertrand price. Hence, the result relies crucially on the

fact that firms can revise their algorithms and hence commitment is not perfect.

Third, it is important that pricing algorithms are responsive to market out-

comes. Without this feature, firm 1 would not be able to offer a price increase

while at the same time best-responding in the short run. Finally, it is also im-

portant that pricing algorithms are directly observable or decodable by rivals.

Otherwise, firm 2 would not understand firm 1’s “proposal” to switch regimes.

The proof of the main result mimics the argument of the previous example.

First, I show that collusive “proposals” must be accepted when revision oppor-

tunities are infrequent. More precisely, after observing that its rivals is using a

specific kind of algorithm, a firm must play a dynamic best response to this algo-

rithm for a long time (Lemma 4.2), which results in continuation values that are

close to the Pareto frontier (Lemma 4.3). Then, I show that firms can make such

“proposals” without affecting the path of play before their rival’s next revision.

Consequently, after both firms have had a chance to revise their algorithms at

least once, continuation values after each subsequent revision must be close to the

Pareto frontier with high probability (Lemma 4.4). An additional step is needed.

Since revisions are infrequent, it is important that continuation values are suffi-

ciently close to the Pareto frontier to guarantee that the firm’s joint profits will

remain high with high probability until a new revision arises.

1.2. Additional results

One should expect that it is in each firm’s best interest to have a transparent

algorithm that can be decoded by its rival as quickly as possible. On one hand,

this helps firms to coordinate on collusive outcomes. On the other, being relatively

slower in decoding would mean that the firm is relatively more committed, and

would enjoy greater bargaining power. I formalize these ideas in section 5. First,

I consider an alternative specification in which firms have the option to obfuscate

their algorithms so they can never be decoded. I show that, in equilibrium, they

will never choose to obfuscate their algorithms (Proposition 5.1). Then, I consider

the asymmetric case in which one firm revises its algorithm more frequently than

5Other than the time it takes a firm to decode its rival’s algorithm, similar forms of commit-
ment could arise because of the cost or time it takes to design and implement new algorithms,
or the limited attention of the people in charge of doing so.
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the other. In the limit, when one firm is extremely committed and the other one

can revise arbitrarily often, there is a unique equilibrium outcome in which the

committed firm acts as an Stackelberg leader that extracts all the market profits

(Proposition 5.2).

In section 5.3, I consider yet another means by which pricing algorithms can

foster collusion, although its nature is completely different from that of the main

result. Proposition 5.3, states that, even if firms are very impatient—and thus

collusion would not be possible in a repeated game without pricing algorithms—

they can sustain monopolistic profits provided that revision opportunities are

frequent enough. This result arises because the ability to observe algorithms

improves the firm’s monitoring technology. If algorithms can be observed and

revised frequently enough, any potential deviation can be detected before any

costumer arrives to the market, and the revising firm can thus react to it before

it becomes profitable.6

While the model is intended to study a duopoly, the results have general

implications for the theory of repeated games. This is because none of the results

depend crucially on the specific details of the stage game. The only properties

of the stage game that play a crucial role in the derivation of the results are the

compactness and convexity of the set of feasible profits. These properties are

satisfied, for instance, in any repeated game with finite action spaces and public

randomization. Similar results should obtain in different settings, as long choices

are made via automated algorithms that can be decoded by rivals and cannot be

revised too frequently.

1.3. Antitrust implications

My findings suggest that pricing algorithms are an effective tool for tacit col-

lusion. Hence, as more firms employ pricing algorithms, there may be a need to

adjust how anti-trust regulations are enforced. According to Harrington (2015),

“In the U.S., unlawful collusion has come to mean that firms have

an agreement to coordinate their behavior. . . [E]videntiary standards

for determining liability are based on communications that could pro-

duce mutual understanding and market behavior that is the possible

consequence of mutual understanding.”

If collusion is reached through the use of pricing algorithms without explicit agree-

ment or direct communication, it might fall outside the scope of the current reg-

ulatory framework. Indeed, according to Ezrachi and Stucke (2015),

6Similar results arise in different models in which agents can observe information about the fu-
ture plans of others, including quick-response equilibrium Anderson (1984), program equilibrium
(Tennenholtz, 2004), self-referential games (Levine and Pesendorfer, 2007, Block and Levine,
2015) and revision games (Kamada and Kandori, 2009, 2011).
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“Absent the presence of an agreement to change market dynamics,

most competition agencies may lack enforcement tools, outside merger

control, that could effectively deal with the change of market dynamics

to facilitate tacit collusion through algorithms.”

See Ezrachi and Stucke (2015) and Mehra (2015) for a detailed discussion of the

legal aspects and challenges of antitrust enforcement regarding industries that use

pricing algorithms.

1.4. Related literature

Communication and collusion.– The role of dynamic incentives to facilitate co-

llusion has been thoroughly studied since the seminal work of Friedman (1971).

However, most of the literature has focused on the possibility, rather than the

inevitability of collusion. Green et al. (2014) argue that, in many cases cases,

there is reason to believe that communication might be necessary to initiate co-

llusion.7 Harrington (2015) finds conditions on firm’s beliefs that are sufficient

to guarantee collusive outcomes without further communication. Specifically, he

assumes that it is common knowledge among firms that “any price increase will

be at least matched by the other firms, and failure to do so results in the compet-

itive outcome”. My model suggests that such common understanding could arise

naturally when firms set prices through algorithms that can be decoded over time

and cannot be continuously revised.

Renegotiation.– The mechanics of my model has some resemblance with the liter-

ature on renegotiation. Early work on implicit renegotiation imposed axiomatic re-

strictions on the set of equilibria based on the idea that different equilibria cannot

be Pareto ranked, because players would always renegotiate and opt for the Pareto

dominant alternative (Pearce, 1987, Bernheim and Ray, 1989, Farrell and Maskin,

1989). More recent work has focused on explicit renegotiation protocols.

Miller and Watson (2013) consider a model of explicit bargaining with trans-

fers, and obtain a completely Pareto unranked set of equilibria assuming that

play under disagreement does not vary with the manner in which bargaining

broke down. Safronov and Strulovici (2014) study a different protocol that does

not satisfy such condition. Under this protocol, Pareto ranked equilibria can co-

exist because players can be punished by the simple fact of making an offer, and,

thus, profitable proposals might be deterred in equilibrium. Such punishments

7Communication among the firms might also play a role in the implementation phase after
collusion has already been initiated. This might be the case when firms cannot monitor each
other’s prices perfectly (Rahman, 2014, Awaya and Krishna, 2015), or when they have private
information about market conditions (Athey and Bagwell, 2001). However, none of these features
are present in my model.
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cannot occur in my model because, in the limit when revision opportunities are

infrequent, the set of equilibrium continuation values after each specific proposal

collapses to a singleton. Hence, the renegotiation protocol induced by the use of al-

gorithms does guarantee that the set of equilibrium continuation values converges

to a Pareto unranked set.

Asynchronous moves.– In my model, firms never revise their algorithms exactly

at the same time. There are other papers in which asynchronous timing helps to

reduce the set of equilibria. In particular, Lagunoff and Matsui (1997) obtain a

unique equilibrium for perfect coordination asynchronous repeated games.8 More

recently, Calcagno et al. (2014) consider a model with asynchronous revision op-

portunities, and establish uniqueness of equilibria for single-shot common interest

games, and 2 × 2 opposing interest games. Regarding the study of oligopolies,

Maskin and Tirole (1988a,b) study a class of asynchronous pricing games, and ob-

tain unique equilibria restricting attention Markov strategies. Eaton and Engers

(1990) study a different pricing game, but they focus on the possibility rather

than the necessity of collusion. A salient aspect of my model is that firms in do

not choose simple acts, but rather algorithms that can react to market outcomes.

This allows me to obtain sharp predictions for dynamic duopoly games without

restricting attention to Markov strategies.

Choices via algorithms.– Rubinstein (1986) and Abreu and Rubinstein (1988) an-

alyze repeated games in which players play via finite automata chosen at the be-

ginning of time, and strictly prefer automata with fewer states. While, in some

cases, these considerations narrow the set of equilibria, non-collusive equilibria

remain. An important difference is that firms in my model are indifferent re-

garding the complexity of the algorithms they use. Tennenholtz (2004) studies

a model in which players implement strategies via computer programs that can

read each other codes. The set of Nash-equilibrium payoffs of this model coincides

with the set of feasible and individually rational payoffs. Hence, in the context

of oligopolies, such a programs could enable collusion, but need not guarantee it.

Also, all the three mentioned papers focus on the case in which players choose

programs or automata at the beginning of the game and never have a chance to

revise them.

8A perfect coordination game is one in which players incentives are perfectly aligned, i.e.,
they share exactly the same preferences. Yoon (2001) shows that a folk theorem applies for any
game that is not a perfect coordination game, even if choices are asynchronous.
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2. Model

I consider a symmetric dynamic model of price competition with two firms

j ∈ {1, 2}. Time is continuous and is indexed by t ∈ [0, ∞). Consumers arrive

randomly following a Poisson process with parameter λ > 0. Let y = (yn)n∈N

denote the sequence of (random) consumer-arrival times. For simplicity, I assume

that a single consumer arrives at each yn.

2.1. Price competition

When a consumer arrives in the market, firms simultaneously offer prices p1

and p2, respectively. The consumer observes both prices and decides whether to

buy a single unit from one of the firms or to not buy at all. The consumer’s

decision depends on his type (ξ1, ξ2), where ξj is the value of consuming the good

produced by firm j. The consumer’s type (ξ1, ξ2) is jointly normally distributed

with mean zero, unit variance and correlation ρ ∈ [0, 1). The utility from not

buying is normalized to 0, and the net utility from buying from firm j is given

by ξj − pj . The “demand” for firm j is thus the probability that the consumer

buys its product. Marginal costs are constant and normalized to 0, so that firm

j’s expected profit is given by

πj(p) = pj × Pr
(

ξj − pj > max{0, ξ−j − p−j}
)

. (1)

Let p̄ be the the price that firm j would charge optimally if it was the only

firm in the market, i.e., it is the price that maximizes pj × Pr(ξj − pj > 0). Let

π(p) = (π1(p), π2(p)) and define Π ⊆ R
2
+ by Π = {π(p) | p ∈ [0, p̄]2}. In words,

Π would be the set of feasible profit profiles if firms could choose any prices on

[0, p̄]. My assumptions guarantee that Π is a convex and compact subset of R2
+,

and that its upper envelope is strictly concave. Consequently, for every point

π0 on the Pareto frontier of Π, there exists a price vector p0 ∈ [0, p̄]2 such that

π0 = π(p0). Let pM be the price that a monopolist who owns both firms would

charge to maximize joint profits, and let πM = π(pM , pM ). The minimax profit

for each firm is π = maxpj∈P πj(pj , 0). The maximum profit for any firm is

π̂ = max{πj | π ∈ Π}.

Prices are restricted to belong to the finite set

P =

{

0,
p̄

Kp
,

2p̄

Kp
, . . . ,

(Kp − 1)p̄

Kp
, p̄

}

,

where Kp ∈ N is an exogenous parameter. The set of feasible profits is thus a

proper subset of Π, but its limit when Kp goes to infinity is dense in Π. The main

results consider the limit as the number of points in the grid Kp goes to infinity.
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Restricting attention to finite action spaces guarantees existence of equilibria but

plays no role otherwise.

2.2. Algorithmic pricing

I assume perfect monitoring—each firm observes all past past consumer ar-

rivals, prices and sales. Firms use pricing algorithms that automatically set prices

as a function of the history of market outcomes. Pricing algorithms are modelled

as finite automata characterized by tuples a = (Ω, ω0, θ, α) ∈ A. Ω is a finite set

of states, with ‖Ω‖ ≤ Ka for some exogenous fixed bound Ka ∈ N. ω0 ∈ Ω is

the initial state. ω : Ω × P × C → Ω is a transition function that depends on the

current state, the price chosen by the competition, and the consumer’s decision.

Finally, α(ω) ∈ P is the price set by the algorithm every time a customer arrives

and the current state is ω.

pM

∗

always monopolistic

pj

0

p−j

∗

¬p−j

grim trigger

0

pM

pM

∗

∗

∗

two monopolistic

Figure 1 – Examples of pricing algorithms.

Figure 1 illustrates some examples of pricing algorithms. Each circle represents

a state ω, and the price inside the circle corresponds to α(ω). The initial state is

denoted by a bold contour. The transitions are depicted by arrows. The algorithm

“always monopolistic” always sets the price to pM . The algorithm “grim trigger”

sets the price pj for as long as −j offers p−j, and switches to setting the price

to 0 forever after the first time −j sets any price other than p−j. The algorithm

“two monopolistic” sets the monopolistic price pM for the first two consumers,

and then offers the product for free to every subsequent consumer, regardless of

market outcomes.

The transition functions for the algorithms depicted on Figure 1 only depend

on the price set by the competition and the current state. In principle, the

transitions could also depend on sales, but this would not affect the subsequent

analysis.

2.3. Dynamic game

The dynamic game begins with firms choosing pricing algorithms simultane-

ously and independently at time 0. Although firms can perfectly observe each
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other’s prices and sales, they cannot observe each other’s algorithms. However,

over time, they either infer or are able successfully decode these. The time taken

to decode is also random and independent across firms. So, for instance, after the

initial choice of algorithms, firm 1 may be the first to decode firm 2’s algorithm at

time x11. At the time firm 1 decodes its rival’s current algorithm, it can choose

to revise its own algorithm if it so wishes.

Following Kamada and Kandori (2009), I call such an event a revision oppor-

tunity at time x11. Formally, revision opportunities for firm j arise stochastically

according to a Poisson process with parameter µj > 0. With the exception of Sec-

tion 5.2, I only consider the symmetric case with µ1 = µ2 =: µ. Not only is the

arrival of revision opportunities independent across firms, it is also independent of

the arrival of consumers. Let xj = (xjn)n∈N denote the sequence of signal-arrival

times for firm j.

A feasible history of length N consists of a finite sequence of events—either

consumer arrivals or revision opportunities—described by vectors of the form

h = (zn, in, an)N
n=1 ∈ HN . zn ∈ [0, ∞) corresponds to the time of the n-th

event, e.g., z1 = min{y1, x11, x21}. in ∈ {0, 1, 2} indicates the nature of each

event, it takes the value 0 if the n-th event is a customer arrival, and the value

j = 1, 2, if it is a revision opportunity for firm j and is set to 0 otherwise.9 Finally,

an ∈ A2 indicates the profile of algorithms being employed at the time of the n-th

occurrence. Note that ht is sufficient to derive the history of prices, profits and

signals. Given a history h ∈ HN , let z = (zn)N
n=1, i = (in)N

n=1, a = (an)N
n=1.

Each firm j must choose a pricing algorithm at time 0, and at each time it

has a revision opportunity. Let HjN denote the set of histories h ∈ HN such

that iN = j, and let Hj0 = {∅} denote the initial history at time 0. The set of

decision nodes for firm j is Hj = ∪∞

N=0
HjN . For tractability, I restrict attention

to strategies that do not depend on the current time, nor on the specific arrival-

times of signals and consumers. A (time-homogeneous behavior) strategy for firm

j is a function sj : Hj → ∆(A) such that sj(h) = sj(h
′) whenever i = i′ and

a = a′, regardless of z and z′. Let Sj denote the set of strategies for firm j, and S

the set of strategy profiles s = (sj, s−j). Continuation strategies are denoted by

sj|h ∈ Sj|h. The restriction to time-homogeneous strategies is discussed below.

9I am implicitly restricting attention to histories in which different events don’t occur at the
same time. The set of such histories occurs with probability 1.
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2.4. Expected discounted profits

Firms discount future profits with a common discount rate r > 0, and seek to

maximize their expected discounted profits defined by

v(s) =
(

v1(s), v2(s)
)

:=
r

λ
× Es

[

∞
∑

n=1

exp(−ryn)πj(pn)

]

,

where pn is the price vector offered to the n-th consumer to arrive. The term r/λ

is a normalizing factor that guarantees that expected discounted profits are ex-

pressed in the same units as the stage-game profits, so that v(s) ∈ Π. I employ two

convenient expressions for v, that are possible because of the time-homogeneity

assumption and the properties of independent Poisson processes. The derivation

of such expressions is in Appendix A.1.

First, average expected discounted profits can be expressed as

v(s) =
λ

λ + 2µ + r
π1 +

λ

λ + 2µ + r
w0 +

µ

λ + 2µ + r
w1 +

µ

λ + 2µ + r
w2

= (1 − δ)π + δ

[

λ

λ + 2µ
w0 +

µ

λ + 2µ
w1 +

µ

λ + 2µ
w2

]

. (2)

where π1 is the vector of expected profits from the first consumer to arrive given

the initial pricing algorithms, wi is the vector of continuation values after the first

event for i ∈ {0, 1, 2}, and δ is the effective discount factor between consumer

arrivals defined as

δ := E [ exp(−ry1) ] =
λ

λ + r
. (3)

Now, suppose that the current profile of firms’ pricing algorithm is a, and let sj

be any strategy for firm j that chooses aj in any history before firm −j’s first

revision. In that case, the average expected discounted profits of the firms can be

decomposed as

v(a, s) =
r

µ + r
π(a; β) +

µ

µ + r
w̃, (4)

where π(a; β) corresponds the expected discounted profits that would result if no

new revision opportunities ever arrived, and w̃ is the vector of expected discounted

continuation values after −j’s first revision. Formally, π(a; β) and w̃ are defined

as

π(a; β) := (1 − β)
∞
∑

n=0

βnπ
(

pn+1(a)
)

and w̃ := (1 − β)
∞
∑

n=0

βnwn, (5)
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where pn(a) is the vector of prices offered to the n-th consumer to arrive according

to a, wn is the vector of continuation values at the moment of −j’s next revision

if it comes exactly after the n-th consumer, and

β :=
λ

λ + µ + r
. (6)

Not that, in both (2) and (4), v is expressed as a convex combination of

different terms, and the corresponding weights are a function the rations µ/r and

r/λ. The results in the rest of the paper refer to limiting cases when these rations

are close to 0 or diverge to ∞, and they obtain because, in such cases, some of

the terms in these expressions dominate the others. For example, in Section 4, I

consider the limit when µ/r → 0 and r/λ → 0. In that case, v is approximately

equal to w0 in (2), and approximately equal to π(a; β) in (4). This implies that, in

the limit, firms only care about playing a best response to the current algorithm

of their opponents.

Restricting attention to time-homogeneous strategies allows me to use the

simple expressions from (2) and (4). The analogous expressions with general

strategy spaces would be significantly less tractable, but one should expect that

similar arguments should work. For example, in the limit when µ/r → 0 and

r/λ → 0, firms would still only care about playing a best response to the current

algorithm of their opponents. However, the derivations would become significantly

more cumbersome.

2.5. Solution concept

Recall that there is perfect monitoring of market outcomes, and perfect ob-

servability of algorithms at every revision opportunity. Thus, the dynamic game

is a game of complete perfect information, except for the first period when initial

algorithms are chosen simultaneously. Consequently, if suffices to consider sub-

game perfect equilibria in time-homogeneous strategies. Let S∗ denote the set of

equilibria and V ∗ = {v(s) | s ∈ S∗} the set of feasible equilibrium profits.

The example from Section 3 ahead shows that unconditional repetition of a

static Nash equilibrium of the stage game might not constitute an equilibrium of

the dynamic game. Hence, establishing existence of equilibria is not completely

straightforward. However, the restrictions on the restrict the complexity of pricing

algorithms and the set of feasible prices guarantee that the dynamic game is a

stochastic game with a finite state space, and hence an equilibrium exists. A

direct proof is provided in Appendix A.2.

Proposition 2.1 The dynamic game always admits a symmetric equilibrium.
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3. A two-price example

The following example illustrates the mechanism through with renegotiation

helps to eliminate inefficient equilibria. Suppose that the set of prices is restricted

to be P = {pB , pM } and expected profits π are as in Figure (2). These profits could

arise, for instance, if pB is the (Bertrand) equilibrium price of the unconstrained

game with P = [0, p̄]. Note that the stage game corresponds to a prisoner’s

dilemma with pB being strictly dominant.

pM pB

pM 3, 3 0, 4

pB 4, 0 1, 1

Figure 2 – Profit matrix for two-price example.

Now suppose that Ka ≥ 2, δ > 1/3 and µ is small enough so that β > 1/3 and

µ <
1

4
βn(1 − β)(3β − 1)r and µ <

(

3(1 − βn) − 1
)

r,

for some number n > log(2/3)/ log β.10 I will show that, in this case, there does

not exist an equilibrium in which the price along the equilibrium path is always

pB. Consequently, under these parameter conditions, the firms’ joint profits in

equilibrium need be strictly greater than the competitive profits. Suppose towards

a contradiction that there exists one such equilibrium, say, sB. Since Ka ≥ 2, firms

1 could choose at time 0 the two-state algorithm “tit for tat” depicted in Figure

3. Note that any potential differences in profits between this choice and sB need

to occur after firm 2’s first revision opportunity.

pB

∗

always Bertrand

pM

pB

pM

pB

pB

pM

tit for tat

Figure 3 – Pricing algorithms for the two-price example.

Now, let us think of what happens when firm 2 has a revision opportunity and

10To see that there exist such µ and n, fix any δ < 1/3 and set n = 1 + log(2/3)/ log δ. Note
that limµ→0 β = δ. Hence, the bound for n is satisfied for µ small enough, and guarantees that
the right-hand sides of the bounds for µ have strictly positive limits.

13



observes that firm 1 is using “tit for tat”. If firm 2 chooses “always monopolist”,

we know from (4) that its continuation value would be bounded below by

v′

2 =
r

µ + r

(

(1 − β)0 + β3
)

+
µ

µ + r
0 =

3βr

µ + r
.

Suppose in contrast that firm 2 chooses a continuation automaton an
2 that doesn’t

choose pM for at least the first n consumers. Using (4) and the fact that β > 1/3,

firm 2’s continuation value would be bounded above by

v̂n
2 =

r

µ + r
π2(tit for tat, an

2 ) +
µ

µ + r
w̃

≤
r

µ + r

[

3(1 − βn−1) + βn(1 − β)4 + βn+23
]

+
µ

µ + r
4.

The condition µ < (1 − β)(3β − 1)r/4 implies, after some simple algebra, that

v′

2 > v̂n
2 . Hence, in any equilibrium, after observing “tit for tat”, firm 2 must

choose an algorithm that sets the monopolistic price for at least n periods.

Therefore, using (4) once again, it follows that, in any equilibrium, firm 1’s

continuation value after such history satisfies

v1 ≥
r

µ + r

[

(1 − β)4 + β(1 − βn−1)3
]

> 1,

where the last inequality follows from µ > [3(1 − βn) − 1]r. This implies that, by

choosing “tit for tat” at time t = 1, firm 1 can guarantee a payoff strictly greater

than 1. Since v1(sB) = 1, it follows that sB cannot be an equilibrium.

The firm’s ability to commit and to decode their rival’s algorithms is not

sufficient to preclude low-profit equilibria. Suppose that Ka = 1, so that the only

available algorithms are “always monopolistic” and “always Bertrand”. In this

case, the strategy profile according to which both firms choose “always Bertrand”

after any history constitutes an equilibrium of the dynamic game. This is because,

if future play does not depend on the firms’ current choices, they have no reason

to deviate from their dominant price. Hence, it is crucial that firms can choose

sophisticated algorithms that react to market conditions. Now suppose that µ = 0,

so that firms choose algorithms at the beginning of the game and cannot revise

them ever after. If firm 1 expects firm 2 to choose “always Bertrand”, then

choosing “always Bertrand” is a best response. Hence, it is also crucial that firms

can revise their algorithms over time (and thus commitment is imperfect).

14



4. Inevitability of collusion

The previous example illustrates how pricing algorithms can provide a renego-

tiation channel that precludes low-profit equilibria. Now, I will show that in some

limiting parameter regions when consumers arrive frequently and revision oppor-

tunities are infrequent, the power of renegotiation is such that all equilibria of the

game lead to joint continuation profits that are arbitrarily close to monopolistic

profits. Formally, the main result reads as follows.

Theorem 4.1 [Inevitability of collusion] Fix any r. For any ν > 0 the probability

that, in any equilibrium, the joint expected discounted continuation profits are

farther away than ν from the joint monopolistic profits converges to zero in the

limit when revision opportunities are arbitrarily infrequent and costumers arrive

arbitrarily frequently, i.e.,

lim
λ→∞

lim
µ→0

sup
s∗∈S∗

Pr s∗

(

π̄M − v̄(s∗|h, h) > ν
∣

∣

∣ h ∈ H2
)

= 0,

where H2 is the set of histories in which each firm has had at least one revision

opportunity.

Establishing Theorem 4.1 requires a number of steps. First, I show that, in the

limit when revisions are infrequent and consumers arrive frequently, some collusive

proposals need to be accepted. Formally, lemmas 4.2 and 4.3 establish a lower

bound for the continuation values after some histories in which a firm observes

that its rival is using a specific kind of algorithms specified below. Then, I show

that, after having a revision opportunity, a firm can include such proposals into

its algorithm to guarantee high continuation values. As a consequence, the firms

continuation values after subsequent revisions need to be close to Pareto frontier

(Lemma 4.4). Finally, I show that such continuation values are sufficiently close to

the Pareto frontier to guarantee that joint profits will remain high with probability

approaching one. The lemmas are formally stated and explained with more detail

below. The formal proof of the lemmas and the main result are in Appendix B.

4.1. Main steps of the proof

The constructions below are based on grim trigger algorithms corresponding

to strictly individually rational profit profiles along the Pareto frontier. Formally,

given a price vector p0 ∈ P , the corresponding grim trigger algorithm for firm j

is the algorithm that plays p0
j as long as it sees p0

−j and plays 0 forever after any

other history, as depicted in Figure 1. Say that p0 is strictly individually rational
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if ∆(p0, β) > 0, where

∆(p0, x) := min
j=1,2

{

πj(p
0) −

[

(1 − x)π̂j(p0) + xπ
]

}

.

This is equivalent to say that the corresponding grim-trigger algorithm profile

would be a strict equilibrium of a repeated game with discount factor β. A

sufficient condition for p0 to be strictly individually rational is that πj(p
0) > π

for j = 1, 2, and β is sufficiently close to 1.

When firm j observes that its rival is using the grim trigger algorithm corre-

sponding to p0, it has two alternatives. It can choose an algorithm that plays p0
j

for a “long period of time”, thus guaranteeing the profit of πj(p0) until −j’s next

revision. Otherwise, it can choose a different algorithm that might yield a high

profit the first time it deviates from p0
j , but, after that, it would trigger −j’s grim

trigger and result in profits of at most π until −j’s next revision. If p0 is strictly

individually rational and µ is close to 0, it is very unlikely that −j’s next revision

happens soon and, therefore, the first option is preferable.

Exactly how long is this “long period of time”? The following lemma states

that firm j will choose an algorithm that offers p0
j to a number of consumers which

goes to ∞ at the rate of 1/µ when µ goes to 0. In order to establish this bound,

first I establish a weaker bound, based on equation (4), which also diverges but

at a slower rate. Then, I use this bound to show that the gap between different

possible continuation values after −j’s revisions is small. This implies that firm j

is even more concerned about playing a best response to −j’s current algorithm.

Hence, firm j will play p0
j for even longer, which, in turn, implies that the gap in

continuation values is even smaller, and so on. The bound from Lemma 4.2 is the

limit that obtains from iterating this process indefinitely.

Lemma 4.2 [An offer that cannot be refused] Fix any r and λ, and a strictly in-

dividually rational price vector p0 such that π(p0) belongs to the Pareto frontier

of the set of feasible profits, and let and a0 be the corresponding grim-trigger al-

gorithm profile. In any equilibrium, after firm j has a revision opportunity and

observes a0
−j, it choose an automaton that offers p0

j as long as it continues to

observe p0
−j for at least n periods, where n is the largest integer satisfying

n ≤ N(π0; λ, µ, r) :=
r∆(p0, β)

2µπ̂
−

µ

2(µ + r)
. (7)

The previous Lemma guarantees that, after observing a grim trigger algorithm

corresponding to a Pareto efficient, strictly individually rational price vector p0,

firm j will mimic a dynamic best response for a long period of time. This results

in a lower bound for firm −j’s continuation profit after such history, that approx-
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imates π−j(p
0). Remarkably, the approximation is extremely good. The lower

bound from the following lemma converges to π−j(p
0) at the rate of exp(−1/µ)

when µ goes to 0.

Lemma 4.3 [Approximation rate] Let p0, π0 and a0 be as in Lemma 4.2. For any

r > 0, there exists some µ(r) > 0, which does not depend on p0, such that, if

µ ≤ µ(r) and ∆(p0, β) > 0, then, in any equilibrium, firm j’s continuation value

after a history in which firm −j observes a0
j can be no worse than π0

j − ǫ(λ, µ, r),

where

ǫ(λ, µ, r) :=
1

δ
π̂ exp

(

−C1(r)
∆(p0, β)

µ

)

, (8)

where C1(r) > 0 is a positive number that does not depend on p0 or µ.

Now consider a history starting from a revision by firm j. Consider a contin-

uation strategy profile in which the continuation values after −j’s next revision

are Pareto dominated, with high probability, by some individually rational and

Pareto efficient profits π0 = π(p0). Firm j could deviate by appending its automa-

ton with a grim trigger algorithm for p0, to be activated the first time −j uses

the price p0
−j. Informally, this can be though of as using an algorithm that makes

a collusive offer. The previous two lemmas can be used to guarantee that −j

would accept this offer for sufficiently small µ, and hence the deviation would be

profitable. Formalizing this argument results in the following lemma. The lemma

asserts that, at the time of each subsequent revision after both firms have had at

least one revision opportunity, continuation values need to be close to the Pareto

frontier with high probability.

Lemma 4.4 [Efficient renegotiation] Fix any r > 0 and µ ≤ µ(r) where µ(r) is the

bounds from Lemma 4.3. Consider any equilibrium and a history at which firm

j has a revision opportunity, and let w̄′ denote firms joint expected discounted

continuation profits at the time of of firm −j’s next revision. For any m > 0 the

probability that the difference between these joint continuation profits and joint

monopolistic profits is greater than mǫ(λ, µ, r) is bounded above by

Pr
(

π̄M − w̄′ > mǫ(λ, µ, r)
)

≤
1

m + 1
. (9)

An additional step is needed to establish Theorem 4.1. The previous lemma

guarantees that continuation profits will be high at the moment of subsequent

revisions. However, there is a possibility that firms use algorithms that use high

prices right after each revision, but lower and lower prices as times goes on. Hence,
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continuation profits could gradually decrease between revisions. Fortunately, the

rate from Lemma 4.3 is extremely fast. This guarantees that, for any constant ν,

the probability that joint continuation profits reach a point farther than ν from

the joint monopolistic profits converges to 0 in the limit when µ goes to 0.

5. Additional results

5.1. Asymmetry and leadership

Proposition 5.1 For every equilibrium of the dynamic game, there is an equilib-

rium of the alternative game which yield the same path of play and in which firms

always choose to make their algorithms transparent.

5.2. Asymmetry and leadership

In this section, I consider the asymmetric case when firm 1 is very committed

(µ1 → 0), while firm 2 revises frequently (µ2 → ∞). In this case, firm 1 acts

like a Stackelberg leader that makes an ultimatum offer at the beginning of the

game, and thus extracts all the market profits. Formally, I will show that, in

the mentioned limit, firm 1’s worst equilibrium value approximates its dynamic

Stackelberg payoff defined ahead.

For any automaton a let (pn(a)) be the sequence of induced prices, and let

π(a; δ) be the expected discounted profits if no revisions arise, defined as in (5).

Say that a−j is a best response to aj in the game with no revisions, if πj(a; δ) >

πj(a
′

j , a−j ; δ) for all a′

j ∈ A. Define the dynamic Stackelberg profit for form i as

follows

πS
i (λ, r) = sup

{

πj(a; δ)
∣

∣ a ∈ A and a−j is a best response to aj

}

.

In words, πS
i (λ, r) is the best payoff that firm j could receive if it committed to

use an algorithm forever at date t = 0, and firm −j chose its algorithm after

observing this commitment. The proof of the proposition is in Appendix C.1.

Proposition 5.2 In the limit when firm 1 is completely committed and firm 2

can revise arbitrarily often, firm 1’s expected discounted profits in any equilibrium

are weakly greater than its dynamic Stackelberg payoff, i.e., for any λ and r,

lim
µ1→0

lim
µ2→∞

inf
s∗∈S∗

v1(s∗) ≥ πS
1 (λ, r).

As usual, πS
i (λ, r) is weakly greater than the Bertrand profit from the stage
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game. Moreover, as long as KA ≥ 2, it converges to

π∗ := sup{πj | π ∈ Π and π−j ≥ π}

when δ goes to 1. Hence, Proposition 5.2 implies as a corollary that there is a

unique equilibrium value in the limit when firms are very patient and asymmetri-

cally committed. Formally,

lim
λ→∞

lim
µ1→0

lim
µ2→∞

V ∗(λ, r, µ1, µ2) =

{(

π∗

π

)}

.

5.3. Collusion among impatient firms

The rest of the paper focuses on the ability to renegotiate when firms are

sufficiently inflexible (µ → 0). In contrast, this section consider the limiting

case when revision opportunities are arbitrarily frequent (µ → ∞). In this case,

the use of observable pricing algorithms can foster collusion through a different

mechanism, by improving the firms’ ability to monitor each other. The improved

monitoring facilitates the enforcement of collusive agreements, even if firms are

extremely impatient.

Proposition 5.3 Firms can guarantee proffit arbitrarily close to the symmetric

efficient monopolistic outcome when revision opportunities are sufficiently frequent

relative to consumer-arrivals, i.e., for any r and λ,

lim
µ→∞

sup
{

v
∣

∣ (v, v) ∈ V ∗(λ, µ, r)
}

= πM .

The salient feature of Proposition 5.3 is that collusion is possible for any

discount factor δ. In contrast, in the repeated game (with µ = 0), sustaining

monopolistic profits in equilibrium is only possible if δ is high enough so that

∆(pM , δ) ≥ 0. Otherwise, an agreement to sustain πM would break down because

firms would prefer to deviate in order to make a positive profit in the short run.

These deviations are no longer possible when revision opportunities are frequent

enough, because, in this case, there is a high probability that any potential devi-

ation will be detected even before the next costumer arrives. Hence, the revising

firm could react to the deviation before the deviating firm has an opportunity to

make any profits. The proof of Proposition 5.3 is in appendix C.2.
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6. Conclusion

My findings provide theoretical support for the idea that optimal use of pricing

algorithms is an effective tool for tacit collusion. When firms set prices through

algorithms that can respond to market conditions, are fixed in the short run, can

be decoded by rivals, and can be revised over time, every equilibrium of the game

leads in the long run to monopolistic profits. It is this the combination of all these

features that makes collusion inevitable, neither ingredient on its own will yield

the result. While the analysis is carried out in the context of a pricing duopoly,

it is clear that the lessons are more general and should apply to the context of

general repeated games.
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A. Omitted details from Section 2

A.1. Derivation of expected discounted profit representations

The fact that revision opportunities and costumer arrivals are independent Poisson

processes guarantees that they satisfy two desirable properties. First, z is itself a Poisson

process with parameter (λ + 2µ). Second, i is a sequence of i.i.d. variables independent
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of z and distributed according to

Pr(in = 0) =
λ

λ + 2µ
and Pr(in = j) =

µ

λ + 2µ
for j = 1, 2.

Moreover, time-homogeneity implies that prices and continuation values are also indepen-

dent of zt. Hence, we can derive (2) as follows

v = E

[

exp(−rz1)
(

1(i1 = 0)
( r

λ
π(p1) + w0

)

+ 1(i1 = 1)w1 + 1(i1 = 2)w2
) ]

= E[ exp(−rz1) ]
(

Pr(i1 = 0)
( r

λ
π1 + w0

)

+ Pr(i1 = 1)w1 + Pr(i1 = 2)w2
)

=
λ + 2µ

λ + 2µ + r

(

λ

λ + 2µ

( r

λ
π1 + w0

)

+
µ

λ + 2µ
w1 +

µ

λ + 2µ
w2

)

=
r

λ + 2µ
π1 +

λ

λ + 2µ
w0 +

µ

λ + 2µ
w1 +

µ

λ + 2µ
w2.

In order to derive (4), let w0
n denote the vector of continuation values after n con-

sumers have arrived if −j has had no revision opportunities, in particular v = w0
0 . Since

firm j will not revise its automaton until −j does, it follows that wj = v. Hence, using

(2), we can write

v =
r

λ + µ + r
π
(

p1(a)
)

+
λ

λ + µ + r
w0

1 +
µ

λ + µ + r
w−j

0 .

By a similar argument, for any n ≥ 0 we can write

w0
n =

r

λ + µ + r
π
(

pn+1(a)
)

+
λ

λ + µ + r
w0

n+1 +
µ

λ + µ + r
w−j

n . (10)

Equation (4) follows from iteratively applying (10), which yields

v =
r

λ + µ + r

∞
∑

k=0

(

λ

λ + µ + r

)k

π
(

pk+1(a)
)

+
µ

λ + µ + r

∞
∑

k=0

(

λ

λ + µ + r

)k

w−j
k

=
r

µ + r
(1 − β)

∞
∑

k=0

βkπ
(

pk+1(a)
)

+
µ

µ + r
(1 − β)

∞
∑

k=0

βkw−j
k

=
r

µ + r
π(a; β) +

µ

µ + r
w̃.

A.2. Existence of equilibria

Proof of Proposition 2.1. A strategy is stationary if sj(hN ) = sj(h′
N ) whenever a−jN =

a′
−jN , that is, it the choice of firm j when it has a revision opportunity only depend on the

algorithm currently being employed by its competitor. I will prove that an equilibrium

exists within the class of stationary strategies. A stationary strategy sj can be described

by a an initial distribution σj0 ∈ ∆(Aj) together with a transition function σj : A−j →

∆(Aj). Let V (a|s) denote the expected continuation value when the current state is a

and future choices are made according to s. These values are given by the unique solution
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to

V (a|s) =
δµ0

µ̄

(

π(a) + V (a+|s)
)

+
δµ1

µ̄

∑

a′

1

σ2(a′
1)V (a′

1, a2|s) +
δµ2

µ̄

∑

a′

2

σ1(a′
2)V (a2, a′

2|s).

And the expected discounted profits at time 0 are given by

V (s) =
∑

a

σ0(a)V (a).

To prove existence we define an auxiliary normal form game with players I = J ×

({∅} ∪ A), strategy spaces Zi = A, and utility function g described ahead. Given a

strategy profile for the auxiliary game z, let sz be the stationay strategy with σj0 = z(j0)

and σj(a−j) = z(j,a−j), and let gi with i = (j, a−j) be given by

gi(z) = Vj(sz(a−j), a−j |sz)

Because the auxiliary game is finite, it has a Nash equilibrium z∗ (possibly in mixed

strategies, redefine things properly).

Now let s∗ = sz∗

. I claim that s∗ is an equilibrium. Suppose not, then by the

single deviation principle there is a single profitable deviation. The thing to prove is that

this implies that there is a uniform deviation. By construction, a player cannot make a

uniform deviation so we would be done. �

B. Proof of the main result

The current version of the proof is missing some steps that will be added on subsequent

drafts. First, the proofs are currently written for the limiting case when utility shocks

become perfectly correlated (ρ → 1) and thus goods are perfect substitutes. Second, sine

the convergence rate from Lemma 4.3 is not uniform, an additional step is needed to

bound the difference between the best continuation value that is possible in equilibrium

and the best continuation value that can be guaranteed in equilibrium.

Proof of Lemma 4.2. The following discussion applies at any history in which firm has a

revision opportunity and observes the offer π0. Let Nj denote the minimum amount of

periods for which the offer has to be accepted, let wj be the worse possible equilibrium

continuation value starting from −j’s revision when j is using a0
j , and let ŵj be the best

possible expected discounted continuation value for j after −j’s next revision. First, I

will establish a lower bound for Nj that depends on the difference (ŵj − wj). Then, I will

establish an upper bound for this difference that depends on Nj and N−j . Condition (7)

results from combining these bounds.

For the first step, I will first finding a lower bound for j’s profits if it chooses a0
j and

compare it with an upper bound if it decides to deviate from a0
j after a certain number

of consumer have arrived. For the former bound note that, if −j unconditionally sticks
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to a0
j forever, it guarantees an expected discounted profit vj satisfies

vj ≥ v
(∞)
j :=

r

µ + r
π0

j +
µ

µ + r
wj . (11)

Now, let v̂
(n)
j denote the best possible continuation value for j starting from a history in

which j is using a0
j , and j plans to stick to p0

j for the following n periods as long as −j

doesn’t revise and deviate afterwards. Using (4), we can write

v̂
(n)
j ≤

r

µ + r

[

π0
j − βn∆j(p0, β)

]

+
µ

µ + r
ŵj . (12)

In equilibrium, j must choose an automaton that plays p0
j for at least n periods whenever

v
(∞)
j ≥ v̂

(n)
j . Using (11) and (12), this condition can be expressed as

r

µ + r
π0

j +
µ

µ + r
w0

j ≥
r

µ + r

[

π0
j − βn∆j(p0, β)

]

+
µ

µ + r
ŵj .

which yields after some algebra

n ≥
1

log β

[

log
(µ

r

)

+ log (ŵj − wj) − log ∆j(p0, β)
]

. (13)

Hence, we obtain the following bound for Nj

βNj ≤
µ

r∆j(β)
(ŵj − wj) (14)

In order to bound ŵj , note that continuation values satisfy

ŵj ≤ π0
j + κ(π0

−j − w−j) + g(π0
−j − w−j). (15)

where κ = (π̂∗
j − π0

j )/(π0
−j − π∗), and g satisfies, g(0) = g(π0

−j − πj) = 0, ‖g‖∞ = ḡ < ∞

and g′′ < 0 for ρ < 1. In the limit case ρ → 1, we have g ≡ 0.

Suppose that −j has a revision opportunity and j’s current algorithm mimics a0
j for

m periods with 0 ≤ m ≤ N−j . By choosing a0
−j , firm −j guarantees a continuation profit

of

w
(m)
−j ≥

r

µ + r
(1 − βm)π0

−j +
µ

µ + r

(

1 − βNj
)

π0
−j

= π0
−j −

(

r

µ + r
βm +

µ

µ + r
βNj

)

π0
−j (16)

As before, the first term of the right-hand side corresponds to the profits that −j would

secure if j never had a new revision opportunity. The second term corresponds to the

profits after j has a revision. The inequality follows because, after a revision, j will mimic

a0
j for at least Nj customers.

For now let me focus on the limiting case in which g ≡ 0. From (15) and (16), it
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follows that, for k ≤ Nj we have that

ŵ
(Nj−k)
j ≤ π0

j + κ

(

r

µ + r
β−k +

µ

µ + r

)

βNj π0
−j .

Also we know from construction that

π̂∗
j = κ(π0

−j − π∗) + π0
j .

Hence, it follows that

ŵj = (1 − β)

Nj
∑

k=0

βkŵ
(n−k)
j + (1 − β)

∞
∑

k=Nj

βkπ̂∗
j

≤ π0
j + κ(1 − β)

Nj
∑

k=0

βk

(

r

µ + r
β−k +

µ

µ + r

)

βNj π0
−j + κ(1 − β)

∞
∑

k=Nj

βkπ0
−j

= π0
j + κβNj π0

−j

[

r

µ + r
(1 − β)Nj +

µ

µ + r

(

1 − βNj
)

+ 1

]

< π0
j + 2κNjβNj π0

−j (17)

Using a similar logic as before, the bound for wj follows directly from (4)

wj ≥
r

r + µ
π0

j +
µ

r + µ

(

1 − βN−j
)

π0
j ≥

(

1 −
µ

r + µ
βN−j

)

π0
j . (18)

Combining (17) and (18) yields

ŵj − wj ≤

(

2κNj +
µ

r + µ

)

βN−j π0
j

Substituting βN−j with the bound from (14), it follows that

ŵj − wj ≤

(

2κNj +
µ

r + µ

)

µ

r∆j(β)
(ŵj − wj) π0

j

Which implies the desired bound.

Nj ≥
r∆j(β)

2κµπ0
j

−
µ

2κ(r + µ)

�

Proof of Lemma 4.3. We know from Lemma 4.2 that, after any such history, −j will

mimic a0
−j for at least N(π0, λ, µ, r) periods. Moreover, if either 2κ > 1 or µ < µ(r) =

r2κ/(1 − 2κ), then

N(π0, λ, µ, r) ≥
r∆j(β)

2κµπ0
j

− 1
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Using (4), j’s continuation value wj satisfies

wj ≥
(

1 − βN(π0;λ,µ,r)
)

π0
j

Hence, the difference between π0
j and j’s continuation value after a history in which firm

−j observes a0
j is bounded by

π0
j − wj ≤ βN(π0;λ,µ,r)π0

j < δN(π0;λ,µ,r)π0
j =

1

δ
exp

(

(N(π0, λ, µ, r) + 1) log δ
)

π0
j

=
1

δ
exp

(

log δ
r∆j(β)

2κµπ0
j

)

π0
j <

1

δ
exp

(

log δ
r∆j(β)

2κµπ̂

)

π̂

=
π̂

δ
exp

(

−C1(λ, r)
∆j(β)

µ

)

,

where C1(λ, r) = r log δ/2kπ̂. �

Proof of Lemma 4.4. To simplify the exposition, I will use the notation ǫµ = ǫ(λ, µ, r) in

this proof. Suppose j observes a0
−j at time t = 0 For now, condition everything on j never

having another revision, a similar argument applies to the case where j gets new revision

opportunities. Let ñ be the number of consumers before −j’s next revision, distributed

as

Pr(ñ = n) =

(

λ

µ + λ

)n(
µ

µ + λ

)

Also, let wn be continuation profits if −j gets a revision after n consumers, and let N (ǫ) be

the values of n for which the joint continuation profits are ǫ-close to the joint monopolistic

profits, formally,

N (ǫ) = {n|w̄n ≥ (1 − ǫ)π̄∗}

Note that the we can write

Pr
(

w̄ñ ≥ (1 − ǫ)π̄∗
)

= Pr(ñ ∈ N (ǫ))

=
µ

µ + λ

∑

n∈N (ǫ)

(

λ

µ + λ

)n

= (1 − γ)
∑

n∈N (ǫ)

γn. (19)

where γ = λ/(λ + µ). I will show that, in any equilibrium and for any m ∈ N we have

that Pr
(

w̄ñ ≥ (1 − mǫµ)π̄∗
)

≥ m/(m + 1).

To see this consider any equilibrium, and let a0
j be an algorithm that firm j chooses

with positive probability at the current revision. Instead, firm j could choose the alter-

native algorithm a′
j described as follows.

• First, let (p0
n) be the sequence of prices induced by a0. The algorithm a′

j mimics

a0
j along this sequence.

• For every n let an
j be the continuation algorithm for a′

j after n consumers have

arrived, Best responses are unique except in uninteresting cases so let π′
n be the
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profit obtained from â0
jn and −j’s best response.

• Let M(ǫ) = {n|π̄′
n ∈ δΠ}.

• For n 6∈ M(ǫ), there exists p′
n such that π(p′

n) ≫ π̄′
n + uǫ

• Firm j appends a′
j offering a grim trigger for p′

n after n for n 6∈ M(ǫ)

Next step is to show that best responses to a′
j are weakly better than best responses to

a0
j and are strictly better for n 6∈ M(ǫµ).

From Lemma (4.3), for n ∈ N (mǫµ) we have a loss of at most ǫµ, and for n 6∈ N (mǫµ)

there is a gain of at least mǫµ. Hence, using equation (4), we have that

v′
j − v0

j >
∑

N̄ (mǫµ)

βmmǫµ −
∑

N (ǫµ)

βmǫµ

=





1

1 − β
−

∑

N (mǫµ)

βm



mǫµ −
∑

N (mǫ′(µ))

βmǫ′(µ)

=
mǫµ

1 − β
− ǫµ(m + 1)

∑

N (mǫµ)

βm

The deviation would be whenever v′
j − v0

j >, hence, in equilibrium we must have

(1 − β)
∑

N (mǫµ)

βm ≥
mǫµ

mǫµ + ǫµ
=

m

1 + m
(20)

Since 0 < γ < β < 1, combining (19) and (20) yields the desired result. �

Proof of Theorem 4.1. The proof requires some preliminaries. First, I will use the nota-

tion ν = ηπ̄M and γ := λ/(λ + 2µ + r). Fix any positive number ϑ > 0 and any m > 0,

and let

∆ :=
1

C1(r)

(

log γ log ϑ

log(λ + 2µ) − log λ
− log (δη/mπ̂)

)

µ,

and

ǫ := ǫ(∆; λ, µ, r) =
1

δ
π̂ exp

(

−C1(r)
∆

µ

)

.

After some algebra, we have that

ǫ =
η

m
exp

(

−
log γ log η

log(λ + 2µ) − log λ

)

.

Now, suppose that we start from a history h in which v̄0 ≥ (1 − mǫ)π̄M , and let

w̄′ denote the joint continuation profits after n0 new costumers have arrived for some

arbitrary n0 ∈ N. I want to show that

lim
µ→0

inf
s∗∈S∗

Pr s∗

(

w̄′ < (1 − η)π̄M
)

= 0
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From Lemma 4.4 and the missing uniformity step, we know that the joint continuation

values after each subsequent revision being greater than mǫ is weakly greater than m/(1+

m). Moreover, if µ is large enough, mǫ < ηπ̄M .

Suppose that that the joint continuation values since the last revision at n0 are greater

than (1 − mǫ)π̄M . Let v̄n be the continuation value after n consumers have arrived since

the last revision. From (2), we can write

v̄n =
r

λ + 2µ + r
π̄1 +

λ

λ + 2µ + r
v̄1 +

2µ

λ + 2µ + r
w̄.

and thus

v̄1 =
1

λ

[

(λ + 2µ + r)v̄n − 2µw̄ − rπ̄1

]

≥
1

λ

[

(λ + 2µ + r)(1 − mǫ(µ))π̄M − (2µ + r)π̄M
]

=

(

1 −
mǫ(µ)

γ

)

π̄M .

In this case, a sufficient condition w̄′ ≥ (1 − η)π̄M is that

mǫµ

γn
≤ η ⇔ n ≤ −

log η − log(mǫ)

log γ

Let ñ be the number of consumers between revisions. The probability that ñ < n, is one

minus the probability that the first n events are consumer arrivals, hence

Pr

(

ñ <
log η − log(mǫµ)

− log γ

)

= 1 −

(

λ

λ + 2µ

)−(log η−log(mǫµ))/ log γ

Suppose we want this probability to be less than ϑ, this is equivalent to

ǫµ ≤
η

m
exp

(

−
log γ log ϑ

log(λ + 2µ) − log λ

)

,

which is satisfied by our previous condition. Hence, I have established that

lim
µ→0

inf
s∗∈S∗

Pr s∗

(

w̄′ < (1 − η)π̄M
)

≤ ϑ +
1

m + 1
.

Since ϑ and m where arbitrary, we can conclude that

lim
µ→0

inf
s∗∈S∗

Pr s∗

(

w̄′ < (1 − η)π̄M
)

= 0.

�
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C. Proof of additional results

C.1. Asymmetry and Leadership

In order to prove Proposition 5.2, it is convenient to introduce some notation. First,

for a sequence of prices (pn) and number x define ∆2((pn), x) as

∆2(x) := inf
n≥0

{

(1 − δ)

∞
∑

k=0

δkπ2 (pk) −
[

(1 − δ)π̂2 (pn) + δπ
]

}

.

Also, given a profile of algorithms a inducing a sequence of prices (pn), let π(a, n) denote

the expected discounted profit generated by the first n consumers to arrive, that is,

π(a, n) = (1 − δ)
n
∑

k=0

δkπ (pk) .

Clearly, limn→∞ ‖π(a) − π(a, n)‖ = 0. Moreover, the convergence is uniform over a since

πj(a) − πj(a, n) =

∞
∑

k=n+1

πj (pk) ≤ δn+1π̂. (21)

Proof of Proposition 5.2. Let aS be an algorithm profile that achieves the Stackelberg

outcome. Without loss of generality, assume that aS induces a sequence (pS
n) along the

equilibrium path and deviates after any observable deviation to “always zero”. Since

aS implements the Stackelberg outcome as an equilibrium, it must be the case that

∆2((pS
n), δ) ≥ 0.

Now, for some n0 ∈ N and let a′ mimic aS for the first n periods, and then chooses the

price profile that yields (0, π̂). Clearly, regardless of the value of n0 we have ∆2(a′, δ) > 0.

Moreover, since a′ mimics aS for the first n0 consumers to arrive, we know from (21) that

π1(a′) ≥ π1(aS) − δn0 π̂.

Repeating the steps from Lemma 4.2, we know that, after observing a′
1, form 2 will

mimic a′
−j for at least n periods, where n is the largest integer satisfying

n < N2(µ1) :=
1

log(β1)
log

(

π̂µ1

r∆2(a′, β1)

)

.

It is easy to see that, holding other parameters constant, limµ1→0 N2(µ1) = ∞. Hence,

as for µ1 small enough so that N2(µ1) we have that, by choosing a′
j at every revision

opportunity, it guarantees a the followign loer bound for his equilibrium profits

v1(λ, r, µ1, µ2) ≥
µ2

µ2 + r

(

1 − δN2(µ1)
)

π1(a′)

≥
µ2

µ2 + r

(

1 −

(

µ1π̂

r∆2(β1)

)log δ/ log β1

)

(

πS
1 − δn0 π̂

)

.

The result obtains taking the limits as n0 goes to ∞. �
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C.2. Collusion between impatient firms

Proof of Proposition 5.3. Fix r and λ and any monotone sequence (µm) with lim µm = ∞.

Let vn = sup{v1 | v1 = v2 ∧ v ∈ V (r, λµn)} be the worst symmetric equilibrium profit

given µn. We want to show that v := lim vn = πM . Feasibility implies that v ≤ πM .

Hence, we only have to show v ≥ πM .

Suppose towards a contradiction that v < πM . By construction, there exists a se-

quence of strategy profiles s∗
n ∈ S∗(r, λµn) such that v(s∗

n) = v + ǫn for some sequence

(ǫn) such that lim ǫn = 0. Let w∗
n be the corresponding equilibrium continuation values

after any history other than the initial history. From (4), for any algorithm aj ∈ A

we have that the profit for j from choosing aj at period 0 if all other choices are made

according to s∗ can be written as

vjn(aj , s∗
n) =

r

2µn + r
π̃(aj , s∗

−jn) +
µn

2µn + r

[

w̃∗
n1j(aj) + w̃∗

n2j(aj)
]

≤ v + ǫn,

where the inequality obtains because s∗
n is an equilibrium.

Now let s′
n be the sequence of strategies described as follows. At date t = 0 and

along the equilibrium path, both firms always choose the “always monopolistic” algorithm

denoted by aM
j (which has a single state ad is thus always feasible). After any history in

which a firm has a revision and firm j is revealed to be using an algorithm aj 6= aM
j , firms

use the continuation strategies from s∗
j that result in the continuation values w̃∗

n1j(aj)

and w̃∗
n2j(aj). Note that s′ will be an equilibrium as long as

πM ≥
r

2µn + r
πj(aj , aM

−j) +
µn

2µn + r

[

w̃∗
n1j(aj) + w̃∗

n2j(aj)
]

.

Note however that the right hand side of the inequality satisfies

RHS =
r

2µn + r
πj(aj , aM

−j) +

[

vjn(aj , s∗
n) −

r

2µn + r
π̃(aj , s∗

−jn)

]

≥ v + ǫn +
r

2µn + r

[

πj(aj , aM
−j) − π̃(aj , s∗

−jn)
]

≥ v + ǫn +
r

2µn + r
2π̂ −−−−→

n→∞
v

The assumption v < πM thus implies that there exists some N such that s′
n is an equi-

librium for n ≥ N . However, this means that vn ≥ πM for n ≥ N , and, consequently,

πM ≥ πM . �

Ü///
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