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Abstract 

Understanding the role of risk regions identified by genome-wide association studies (GWAS) 

have made considerable progress lately referred to the post-GWAS era. Annotation of the 

genes to the GWAS and fine-mapped functional variants, and understanding their biological 

pathway/gene networks enrichments is expected to give rich dividend by elucidating the 

mechanisms underlying prostate cancer. To this aim, we compiled and analysed currently 

available post-GWAS data on genes identified through GWAS and validated through 

experimental studies in prostate cancer to investigate molecular biological pathways enriched 

for assigned functional genes. The results highlight some well-known cancer signalling 

pathways, antigen presentation process and enrichment in cell growth and development 

gene networks suggesting prostate cancer may result from the accumulation of the effects of 

functional variants through multiple gene sets and pathways. The upstream analysis identifies 

critical transcription factors, which supplements the results regarding the regulatory role of 

the post-GWAS genes. We also identified the common genes between post-GWAS and three 

well-annotated prostate cancer Oncomine data in patient samples in order to uncover 

possible main genes in prostate cancer development/progression. Post-GWAS generated 

knowledge of gene networks and pathways, if analysed further and targeted appropriately, 

will have an important impact on clinical management of the disease.  
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Introduction: 

Prostate cancer (PrCa) is the second leading cause of cancer death in the Western world [1].  

Genetic and non-genetic (environmental) factors are known to promote PrCa with the 

prominent effect of genetics as demonstrated by 58% heritability that has been discovered 

by the large scale studies such as twin and familial segregation studies evaluating the role of 

genetic influence on PrCa development [2]. In particular, during the last decade, genome-wide 

association studies (GWAS) have successfully identified >160 loci associated with the risk of 

PrCa [3]. 

In general, GWAS identified loci represent a lead SNP (or so-called tag SNP, since they “tag” 

the disease locus), which is the primarily designed probe for that SNP in an array. A tag SNP 

represents multiple SNPs within a linkage disequilibrium (LD) block (around 10-100 kb) [4], 

consequently, identification of the exact functional variant is additionally complicated. Of 

note, the distant functional impact of some variants that are located away from their target 

genes on a different chromosome (trans-variants) could be misleading by local impacts of cis-

variants on the same chromosome. For example, a genome-wide analysis of the risk SNPs 

demonstrated regulatory variant on chromosome 19 that impose a functional impact on 

potential target genes on chromosomes 10 (MSMB) and X (NUDT11) [5]. Additionally, the 

subtle direct/indirect effect of functional variants needs to be kept into consideration so that 

the most appropriate choice of an experiment is made. In particular, the majority of SNPs are 

located within non-coding regions mostly involved in regulating the gene expression by either 

regulating the chromatin remodelling, consequently changing chromatin interactions, and/or 

altering the biding of certain transcription factors (TFs). This is the main reason that many 

post-GWAS studies include the expression quantitative trait loci (eQTLs) as functional variants 

that represent the regulatory role of germline loci associated with gene expression levels. 

Validating the mechanism of action of these loci is challenging and difficult to guarantee using 

the present techniques. Other approaches such as allele-specific recruitment of TFs has been 

investigated by genotype-specific protein interactions such as Chromatin-

immunoprecipitation sequencing (ChIP-seq) and DNase I hypersensitive sites sequencing 
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(DNase-seq) assays [6,7]. The electrophoretic mobility shift assay (EMSA) is another 

experimental approach to investigate the differential binding of TFs to a certain genomic 

region. The growing accessibility of Chromosome Conformation Capture (3C) method and its 

derivative including circular chromosome conformation capture (4C), chromosome 

conformation capture carbon copy (5C), Hi-C, Capture-C, high-throughput chromosome 

conformation capture (HiC-seq) and Capture-Hi-C and tethered conformation capture, Repli-

seq or ChIA-PET techniques [8] have greatly help to identify long-distance DNA interactions of 

regulatory elements harbouring functional variants [9]. Genome editing methods such as 

Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 have been 

developed to examine the causality of potential variants in response elements within 

intergenic regions. While all the above-mentioned techniques can help post-GWAS analysis 

refining the role of PrCa-GWAS loci in prostate tumorigenesis, still, majority of signals are 

unknown and many other genes, in particular, non-coding RNAs (ncRNAs), in the vicinity of 

risk loci or distant yet to be discovered [10]. This brings up the urgent need for other 

approaches to implementing the GWAS and post-GWAS analysis in the improvement of 

clinical management of PrCa. 

Pathway-based analysis of GWAS assigned genes (PWAS) has been an emerging tool used to 

define a group of genes that are involved in the same biological and/or molecular process in 

prostate tumorigenesis [11,12]. Notably, mapping GWAS assigned genes into gene networks 

[13] and molecular pathways [14] has the potential to reveal GWAS identified and/or novel 

genes within these pathways for the successful drug targeting [3]. Post-GWAS inference on 

the basis of related genes to GWAS signals has shown that this approach can be accounted 

for indicating biologically interpretable links to human diseases/traits including PrCa [14]. This 

has undeniable benefits to reveal putative targets to utilise post-GWAS hits aiming to drug 

repurposing for the identified dysregulated pathways that those genes act through [2,15]. For 

example, functional variants acting through the GWAS identified oncogene MYC [16] or 

androgen receptor (AR) [17] may drive PrCa, or through modulating known PrCa biomarkers 

such as MSMB or KLK3 [3], and/or other gene networks/pathways involved in cancer cell 

proliferation, invasion or metastasis. Therefore, pathways and regulatory networks 

produced by post-GWAS can pinpoint molecular pathways/gene networks that have 

functional roles in the development and progression of PrCa. In concordance with this 
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hypothesis, focusing on gene networks identified from the post-GWAS in PrCa can 

significantly increase the chances for clinical success and productivity for this highly polygenic 

cancer [18]. In other words, in contrast to GWAS alone, integrating post-GWAS data could add 

value for effective treatments for both known and newly identified pathways. For this 

purpose, we undertook a pathway post-GWAS analysis (PPWAS) including all the genes 

assigned to functional variants discovered so far (Figure 1, Supplementary Data S1) [10,19]. We 

used the Ingenuity Pathway Analysis (IPA) algorithm [20] and several publicly available 

databases of gene annotations such as Gene Ontology (GO) [21], REACTOME [12], Gene Set 

Enrichment Analysis (GSEA) [13] that also includes the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) dataset [15]. The findings pinpoint several well-known pathways involved in 

PrCa as well as enrichment in cancer-related gene networks and upstream regulators. We 

further used Oncomine dataset to investigate the expression status of post-GWAS assigned 

genes in prostate primary and metastatic clinical samples [22]. The findings may provide us 

with clues to understand the possible mechanism differentiating molecular processes of 

prostate tumour development that implicate several key genes that are also affected by 

functional variants.  

 

Figure 1. The study design. This flow chart depicts the flow of the analyses performed in this 

study. All the published available post-GWAS data was integrated in order to compile the 

assigned genes, 342 genes in total resulted from post-GWAS studies until 2019. Assigned 
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(target) genes represent functional variants within the target genes that are expression 

quantitative trait loci (eQTLs) or functional variants contributing to the molecular mechanisms 

by which contributing to the PrCa tumorigenesis evaluated by experiments or in-silico studies. 

Further investigations were performed to pathway analysis of contributed genes using four 

different algorithms. In addition, the investigation of the expression status of assigned genes 

in other studies reported in Oncomine dataset demonstrated a list of 8 overlapped 

dysregulated genes in those studies and post-GWAS genes.  

Taken together, the results presented here suggest that PPWAS may help to prioritise the 

critical networks of genes involved in relevant pathways for further translational studies. 

Material and methods: 

Prostate cancer risk associated, functional SNPs and genes: 

Apart from the lead GWAS-loci, we included individual SNPs in a set of variants within an LD 

block that have been identified by extended analysis (i.e. imputation and fine-mapping 

methods [23]) and further functional annotations. Additionally, we considered post-GWAS 

data carried out by dense genotyping and re-sequencing to identify independent PCA 

associated variants [24,25].  The eQTLs resulted from fine-mapping or transcriptome-wide 

association studies (TWAS) consist of the majority of the functional variants in PrCa post-

GWAS studied here. TWAS approach investigates the association of transcriptome-wide gene 

expression with PrCa-risk to discover independent genes from a previously reported risk 

variant adding to the list of susceptibility genes. The current approach to further interpret the 

possible function of SNPs is to assign them to the nearby genes. Even though, nowadays we 

know that this approach is overlooking the active nature of the genome and has limitations 

(not in the scale of this study to discuss) but it has been the main criteria to assign the 

identified SNPs to the genes. The functional coding variants (synonymous or non-synonymous 

change) affect the structure, biochemical properties (e.g. charge) or the stability of the 

produced protein of a given assigned gene, thus subsequently change its molecular function 

[26]. All of the genes with coding variants identified through the GWAS/post-GWAS approach 

have been included in our pathway analysis. The prominent consequence of non-coding 

functional variants included in this study [27,28] is mainly due to: i) change in TF binding site 
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pattern [28,29], ii) change in DNA methylation marks [30] and iii) Chromatin architecture 

alteration [31], or a combination of these mechanisms.  

Pathway Analysis 

The PPWAS approach was applied to a list of 342 assigned genes to GWAS identified PrCa loci 

following a workflow presented in Figure 1. We used several publicly available and 

commercial tools to explore the relevant pathway/gene network enrichments of these 342 

genes (Supplementary data S1) for at P-value <0.05 throughout all analyses described below. 

Ingenuity pathway analysis (IPA): The IPA tool is based on the statistical significance of the 

relationship pattern of the molecules matched with the prior published biological knowledge 

[32]. IPA allows relating the most recent literature findings to a certain hypothesis that is the 

relation of the input genes in certain gene networks/pathways. It integrates detailed 

information about those genes and isoforms and creates interactive and customized 

pathways, accordingly. In addition, we investigated likely upstream regulators that are 

connected, directly or indirectly, to those genes. IPA scores those regulators based on their 

statistical significance by measuring the overlap of observed and predicted regulated gene 

sets as previously described [20] (Supplementary data S2). The pathway analysis was 

performed using IPA mapped 314 post-GWAS genes to the known IPA pathways 

(Supplementary data S2). 28 genes were not included in this analysis with the majority of long 

ncRNAs as unmapped genes. The upstream analysis feature was utilised provides insights into 

how TFs and chemicals affect biological processes related to the genes examined.  

The PANTHER (Protein ANalysis THrough Evolutionary Relationships) [33] was used to 

investigate the function of genes (corresponding proteins) in homo sapiens, their ontology, 

involved pathways. The statistical enrichment test is based on differential gene expression 

levels or P-values from large-scale genomics experiments [33]. 53 genes were not mapped in 

this analysis, which is mainly long non-coding RNAs (Supplementary data S1). PANTHER-based 

pathway analysis was performed considering 55 gene identifiers (gene ids, gene symbols) that 

compare the functions of gene products from organisms across all kingdoms of life [34]. In 

PANTHER, pathway roles are assigned to the related individual gene ontologies (GO) using a 

variety of GO codes (Supplementary data S3) [21,35]. In addition, the PANTHER gene family 

analysis was conducted for 63 gene identifiers that were mapped for this analysis.   
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Gene Set Enrichment Analysis (GSEA) was used to determine whether a priori defined set of 

genes and our gene list of interest shows statistically significant, concordant alterations in 

gene expression associated with a disease that manifests at the level of biological pathways 

or co-regulated gene sets [36]. The functional enrichment analysis method by GSEA to identify 

classes of genes or proteins that are over-represented in a large set of genes or proteins, to 

derive reproducible associations with a biological state of interest (e.g. disease phenotypes) 

leading to identify pathways enriched in ranked gene lists. 

 This tool converted 342 submitted identifiers into 306 Entrez genes (Supplementary data S1) 

that are recognized for further annotation analysis of their significance in a pathway/network 

based on the Molecular Signatures Database (MSigDB) [37]. The genes underwent through the 

following analyses available in GSEA: “hallmark gene sets”, “canonical pathways”, “motif gene 

sets”, which includes microRNA (miRNA) targets and transcription factor targets. Moreover, 

a “computational gene set” analysis that considers cancer gene neighbourhoods and cancer 

modules were performed. We investigated “oncogenic signatures” resulted from the gene list 

as well as immunologic signatures. Furthermore, GSEA evaluates the overlap of the provided 

gene set based on KEGG and GO analyses with the estimation of the statistical significance of 

FDR< 0.05 (Supplementary data S4).  

REACTOME is also a knowledge-based source of biomolecular pathways that contains data 

from other resources e.g. NCBI, Ensembl, UniProt, KEGG, ChEBI, PubMed and GO [12]. This 

analysis was performed using REACTOME version 67 including 282 identifiers that have been 

found or mapped to an equivalent element in REACTOME (Note: there are more than one 

identifiers for some of the genes, see Supplementary data S1). 118 identifiers were not found 

mapped to any entity in REACTOME. A binomial test was used to calculate the probability 

shown for each result, and the P-values are corrected for the multiple testing (Benjamini–

Hochberg procedure) that arises from evaluating the submitted list of identifiers against every 

pathway. The P-values determine whether certain REACTOME pathways are over-

represented (enriched) in the submitted data (Supplementary data S5). 

Expression analysis of Post-GWAS identified genes in clinical samples 

We utilised previously published Oncomine cancer microarray database (http://www. 

oncomine.org) to identify the expression of the shortlisted genes in patient samples. 
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Oncomine datasets are derived from differential expression analyses that compared defined 

samples in groups of cancerous, normal and metastatic tissues or cell lines [22]. We utilised 

three studies with the highest number of samples for primary prostate carcinoma, normal 

and metastatic tumour site. The up- or down-expressed genes in each study were filtered for 

significantly differentially expressed in primary tumour versus normal/metastatic samples (P-

value <0.05) by more than 1.5 fold change. The comparison of post-GWAS genes dysregulated 

genes was performed, separately, for primary tumour versus normal and metastatic samples 

investigating for overlapped genes based on Entrez gene identifiers. Oncomine originated 

studies utilised in the study are: 1) Taylor dataset (Oncomine ID: n9205) including 150 

prostate carcinoma tissue specimens (131 specimens from primary and 19 metastatic 

tumours) and 29 paired normal adjacent prostate tissue specimens [38], 2) Yu (Oncomine ID: 

n5345) that used 23 normal prostate and 64 prostate carcinoma samples [22] and 3) Grasso 

dataset (Oncomine ID: n6252) that describes 59 localized prostate carcinoma and 28 benign 

prostate tissue specimens [39].  

Results: 

Analysis of compiled 342 genes assigned to PrCa-functional germline variants in this study 

highlights the value of integrating post-GWAS and provides testable hypotheses for future 

functional validation of PrCa aetiology.  The genes that have been identified through 

experimental validation in addition to the variants that have a functional impact on the 

regulation of gene expression provides a powerful means to characterise the molecular 

mechanisms responsible for PrCa pathogenesis. Out of 342 genes, 191 genes have been 

identified as GWAS-eQTL pairs. We considered the contributions of these genes to investigate 

the gene expression-related functional form of variants (i.e. eQTLs) in possible pathway 

enrichments (Supplementary data S1). Out of 191 genes, 70 genes identified by TWAS which 

were included to this study in order to identify the possible same biological pathways 

enriched for the risk associated and dysregulated genes that may work in concert and lead to 

the development of PrCa.  

The implicated canonical pathways and gene networks among the post-GWAS assigned genes 

were analysed including and excluding major histocompatibility complex (HLA) genes, 

respectively. The later analysis was performed to avoid the possible effect of the relatively 
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high number of HLA genes (consisting 5% of the total number of genes) on the results of this 

study. In total, more than 200 canonical pathways were significantly (P-value <0.05) enriched 

in assigned genes using four different tools in both analyses (including and excluding HLA 

genes). PANTHER pathways were similar in both analyses representing pathways such as p53 

and Angiogenesis as the top-ranked pathways with the highest number of genes involved 

(Supplementary Data S3). One possible reason could be that the number of genes identified 

by PANTHER might have not been enough to generate significant P-values. 

Pathway enriched including HLA genes. The most significant pathways identified by four 

tools were pathways related to immune signalling such as interferon-gamma mediated 

signalling (INFG) and antigen processing and presentation pathways (Figure 2A, Table 1). 

Additionally, this analysis revealed significant enrichments in components of the presentation 

of endogenous peptide antigen via Estrogen Receptor (ER) pathway and Allograft rejection 

(Figure 2A). ERs mediate physiological effects of estrogens play important roles via MHC 

molecules in growth, development, reproduction, and maintenance of a diverse range of 

mammalian tissues [22]. Including HLA genes, a significant enrichment for cancer-related gene 

networks was demonstrated (Supplementary data S2-6). In particular, cell growth and 

development processes such as cell cycle checkpoints and cell adhesion are identified as 

important gene sets (Table 1). The most significant gene sets are involved in extracellular 

matrix organization such as MHC protein complex (P-value: 9.72E-20, Figure 2A). In addition, 

several observed categories involved in apoptosis, cell development, and cell-death were 

identified at high significance (Figure 2A). GSEA analysis revealed Androgen response as the 

most significant pathway involved (Supplementary data S4).  

Table 1. The significant canonical pathways, gene sets and molecular functions that the 

genes are involved. In these analyses, we used the gene list described in Supplementary data 

S1. 
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©The gene networks with the highest number of genes involved in. 

Tool Hallmark gene sets © The  most significant 

gene network(s)  

Canonical Pathway 

 

(main) gene 

families  

 

Function (Biological Process) Cancer Module/  Oncogenic 

Signature 

Top 

upstream 

regulators 

 

IPA 

 

  

Lipid metabolism, molecular 

transport, small molecule 

biochemistry 

Tumorigenesis of 

tissue 

Antigen presentation 

pathway 

Immune signalling 

pathways 

Transcription 

factors (TFs) 

Cancer, endocrine system 

disorders, organismal Injury 

and abnormalities 

Cell death and survival 

Cellular Development 

STAT5A 

NLRC5 

TDP2 

GSEA Early response to estrogen, 

Response to interferon 

gamma 

interferon-gamma 

response 

Antigen presentation 

Pathway 

immune signalling 

pathways 

TFs Immune response 

 

Cancer module 293 (see 

Supplementary data S4). All 

molecules involved in this 

module are HLAs except for 

B2M. 

- 

PANTHER 

(GO) 

metallopeptidase activity -Pachytene checkpoint 

protein 2 homolog 

-Prostate-specific 

antigen 

p53 pathway 

Angiogenesis 

MHC class I 

protein complex 

cell cycle checkpoint;meiotic 

telophase I;negative 

regulation of meiotic nuclear 

division;reciprocal meiotic 

recombination;signal 

transduction 

- MAPK8-10 

Protein 

kinase A 

JNK1/2 

Junc 

PKCs 

KEGG Pathways in cancer Allograft rejection Allograft rejection TFs - - - 

REACTOME Genes involved in Adaptive 

Immune System 

Endosomal/Vacuolar 

pathway 

Endosomal/Vacuolar 

pathway 

TFs - - - 
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 0 

Figure 2. Overlapped significant canonical pathways and gene sets resulted from different tools used in this study. The diagrams illustrate 1 

overlapped pathways/gene networks enriched in biological processes represented using four tools that have been shown as a prefix for each (A) 2 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 September 2019                   doi:10.20944/preprints201909.0045.v1

https://doi.org/10.20944/preprints201909.0045.v1


12 
 

including HLA genes and (B) excluding HLA genes. The –log10 (P-value) has been used to create the graphs. The number of significant pathways 3 

was higher including HLA genes, therefore we set the significance -log10 (P-value) cut-off at >5 for (A) and >3 for (B). A complete list of these 4 

pathways and gene networks has been represented in Supplementary data S2-5. Orange bars are the common biological processes/canonical 5 

pathways in both analysis, including and excluding HLA genes, and red bars represent significant biological processes/canonical pathways 6 

demonstrated by more than two tools. The –log10 (P-value) presented in this graph is the highest (therefore, the lowest P-value and the most 7 

significant) for the pathways or gene networks that are significant for more than one tool. The –log P-values are as followings: in (A) GO=18.08, 8 

REACTOME=15.95, GSEA=5.05 for INFG pathway. GO=12.96, KEGG=12.04, IPA=11.8, REACTOME=15.95 for Antigen processing and presentation 9 

pathways. KEGG=13.23 and IPA=7.7 for Allograft Rejection Signalling. KEGG=12.74 and IPA=7.9 for Graft versus Host Disease Signalling. 10 

KEGG=11.65 and IPA=7.82 for Autoimmune Thyroid Disease Signalling. In (B) KEGG=4.64 and IPA=5 for Prostate Cancer Signalling. KEGG=3.98 11 

and IPA=4.68 for Chronic Myeloid Leukemia Signalling. GSEA=3.00 and KEGG=3.32 for P53 Signalling Pathway. Note: PANTHER pathways are not 12 

presented in these graphs due to the lack of P-values in output data. However, pathways such as p53 and Angiogenesis were the top rank 13 

pathways with the highest number of genes involved Supplementary Data S3).  14 

Pathway enrichment of non-HLA genes. Excluding HLA genes represents enrichments in additional cancer-related pathways such as p53 15 

pathway, fibroblast growth factor receptor 2 (FGFR2) signalling related pathway and the well-established PrCa signalling pathway, AR (Figure 16 

2B). Several molecular mechanisms enriched in cell growth such as cytokine activity and mitosis processes were observed (Table 2).  These highly 17 

significant pathways involved in androgen production, regulation, and receptor signalling, known to be involved in PrCa [40,41]. In addition, IPA 18 

analysis demonstrated PrCa signalling pathway as the most significant canonical pathway (7.73e-11) with involving molecules such as PIK3C2B, 19 

KLK3, RALB, NKX3-1, FGFR2, CREB3L4, CDKN1B, MAP2K1 and ATM  (Supplementary data S2).  20 
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Table 2. The significant canonical pathways, gene sets and molecular functions that the genes are involved. In these analyses, we used the 21 

gene list described in Supplementary data S1 excluding HLA genes (HLA genes are listed in Supplementary Data S1). 22 

Tool The biological process with 

the highest number of 

genes involved in 

Gene sets (the most 

significant) 

Canonical Pathway 

 

Gene families Function (Biological 

Process)/ cellular 

component 

Oncogenic Signature Cancer Module Hallmark gene sets* 

 

 

 

IPA 

 

  

Cell Morphology, Cell-To-

Cell Signalling and 

Interaction,  Cardiovascular 

System Development and 

Function 

Cell Morphology, Cell-To-Cell 

signalling and Interaction,  

Cardiovascular System 

Development and Function 

Prostate cancer 

signalling 

transcription 

factors 

Tumorigenesis of tissue - - Cell Morphology, 

Cell-To-Cell signalling 

and Interaction,  

Cardiovascular 

System Development 

and Function, 

GSEA positive regulation of 

immune response 

- AR pathway transcription 

factors 

mitosis Genes up-regulated 

during late stages of 

differentiation of 

embryoid bodies from 

V6.5 embryonic stem 

cells. 

Genes in the cancer 

module 3 : 

http://robotics.stan

ford.edu/~erans/ca

ncer/modules/mod

ule_3 

Androgen response 

PANTHER 

(GO) 

Regulation of transcription 

from RNA polymerase II 

promoter 

Regulation of transcription 

from RNA polymerase II 

promoter 

p53 pathway TGF-beta family cytokine activity 

cytokine receptor binding 

signalling receptor activity 

response to hypoxia  

- - - 

KEGG Pathways in cancer Pathways in cancer Pathways in cancer TF - - - - 

REACTOME Cell Cycle Extracellular matrix 

organization 

Signalling by FGFR2 IIIa 

TM 

TF - - - - 

*The majority of gene networks are involved in these diseases.23 
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Gene network and upstream regulatory analysis. Gene network analysis in IPA identified 

gene networks involved in different molecular and cellular functions including growth, 

metabolism and cancer-related processes (Supplementary data S2.2). Lipid metabolism, 

molecular transport and small molecule biochemistry was the top-networks considering all 

the genes while cardiovascular system development and function, cell morphology, and cell-

to -cell signalling and interaction were the top-gene networks for non-HLA gene list. The 

interactions of the molecules involved in these top-gene networks have been illustrated in 

Figure 3A and Figure 3A. In addition, upstream regulation analysis in IPA revealed STAT5A as 

the most significant TF (in both analyses including/excluding HLA genes P-value= 7.7E-08 and 

4.1E-08, respectively) (Figure 3C). The AR was also identified as an upstream regulator that 

can modulate the expression of TFs, biomarkers and vital tumour promoters in PrCa 

development such as KLK2, KLK3, MYC, MSMB and TMPRSS2 [42]. This is in line with the fact 

that AR can activate other signalling cascades like the MAPK, Akt, JAK-STAT3 pathways [43,44] 

and stimulate growth processes in cells. GSEA regulatory analysis described as “motif gene 

sets” that is a comparative analysis of the human genome [13], also demonstrated TFs as the 

main gene family (Supplementary data S4). PANTHER algorithm analysis revealed MAPK8-10 

as significant upstream regulators (Supplementary data S3). MAP kinases act as an integration 

point for multiple biochemical signals and are involved in a wide variety of cellular processes 

such as proliferation, differentiation, transcription regulation and development. For example, 

the main apoptotic cell-death mediated by JNK, and ERK  pathways are regulated by a variety 

of MAPKs cascades in PrCa cells [37].   
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Figure 3. Ingenuity Pathway Analysis (IPA) analysis. A map of top gene network in IPA 

analysis with the highest number of involved genes (A) including HLA genes and (B) non-HLA 

genes: in this analysis, we excluded 14 HLA genes while performing IPA analysis to identify 

HLA independent key networks/pathways related to the assigned genes (see Supplementary 

data S1). (C) Upstream analysis of the gene lists in (A) and (B) by IPA demonstrated STAT5A as 

the most significant transcription factor regulating 18 genes, directly. The sub-cellular 

localisation of the molecules has been illustrated pinpointing a broad network 

communications of involved molecules in a cell. Arrows have depicted protein-protein 

interactions of the assigned genes. Arrows between nodes represent direct (solid arrows) and 

indirect (dashed arrows) interactions between molecules. The arrowheads depict an ‘act on’ 

relationship towards positive regulation. The blind-ended arrows represent the inhibitory 

interaction. Bidirectional arrowheads indicate reversible reactions. These networks are 

compact representations of literature-based knowledge about interactions. Each node 

represents a protein complex, and each interaction represents a significant number of genetic 

interactions. Node sizes are proportional to the number of proteins in the complex.  
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Expression signature of the GWAS identified genes in patient samples.  To evaluate the 

likelihood that functional variants represent clinically related gene(s), we investigated any 

overlap between post-GWAS assigned genes and dysregulated genes in primary prostate 

tumour versus normal or metastasis patient samples utilising Oncomine web-based dataset 

[22]. In total, there was a higher number of up- or down-expressed overlapped genes in 

metastatic patient samples compared to primary tumour samples (Figure 4). The Grasso study 

presented the highest overlapped genes in both comparisons (183 genes and 59 genes in 

metastasis and primary tumour, respectively). There were no overlapped genes when we 

compared the post-GWAS genes and dysregulated genes in primary tumour resulted from all 

three above-mentioned studies (Figure 4A) while the same investigation for metastatic 

samples identified 8 genes (Figure 4B). The identified genes are well-known genes [in 

particular, Kallikreins (KLK2, 3)] or targets for therapeutic approaches in PrCa such as 

prostate-specific antigen (PSA, encoded by KLK3) inhibitors [45]. Given the urgent need of 

identifying mechanisms that promote angiogenesis and cell proliferation during PrCa 

progression from the primary tumour to the bone which is the principal site of PrCa 

metastasis, focused studies on these genes are required to validate with experiments. For 

example, there have been studies investigating the potential role of fibroblast growth factor 

(FGF) in PrCa metastasis [46]. FGFR2 is required for prostate organogenesis and the acquisition 

of androgen dependency for tissue homeostasis [32]. Interestingly, FGFR2 signalling pathway 

was identified as a significant pathway in our study. Further investigations on findings in this 

study might help to link the genetic basis of PrCa into the molecular and cellular mechanisms 

involved and consequently gain insights to urgently needed alternative treatments for this 

complex disease. 
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Figure 4. Overlapped genes between three Oncomine datasets and assigned genes to post-

GWAS functional variants in PrCa.  (A) Venn diagram of the overlapped genes between post-

GWAS assigned genes and primary tumour vs. normal samples (B) primary tumour vs. 

metastatic samples in Taylor, Grasso and Yu prostate datasets. The numbers in parentheses 

represent the numbers of significantly (P-value <0.05 by more than 1.5 fold change) 

differentially expressed genes by microarray. There are no overlapped genes in the first 

comparison while listed 8 genes in (B) are up- or down-expressed in all three studies in 

metastatic samples and also overlapped with the post-GWAS assigned genes that have been 

studied here.  

Discussion:  

In this study, we investigated networks and pathways highlighted by post-GWAS based target 

genes to demonstrate the biological and clinical relevance of functional variants in PrCa. With 

increasing success in cancer genomic data interpretation [10] and exponential improvements 

in post-GWAS studies [47], applying PPWAS may help to reveal the full spectrum of germline 

variants’ role in prostate tumorigenesis. Our analyses confirmed the involvement of several 

known pathways in PrCa as well as pinpointed other less well-known pathways, which could 

be important for PrCa and represent novel therapeutic targets. The INFG and antigen 

processing and presentation pathways were significant biological processes/canonical 
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pathways demonstrated by four and three of the four tools, respectively (Figure 2). TFs are 

the main gene family contributing to the involving pathways (Supplementary Data S4.7 and 

S4.16). In total, there was a higher number of gene networks highlighting cancer-related 

pathways analysing non-HLA genes in comparison to the gene list including HLA genes (Figure 

2A, B). Embryo development, PrCa signalling, pathways in cancer, androgen response and 

early estrogen response pathways were demonstrated as shared pathways when we included 

or excluded HLA genes. 

With the urgent need for personalised care for PrCa patients, additional screening and 

treatment approaches can strikingly modify the diagnosis protocol for a better estimation of 

disease progression [48]. Of note, known pathways in addition to as-yet-unknown pathways 

may be leveraged to clarify the implication of various gene sets in PrCa and provide an idea 

for clinical development of pathway inhibitors [49]. For example, modifying HLA antigens 

which demonstrate frequent alteration in PrCa patients [50] have been suggested to improve 

the efficacy of immune responses against PrCa [51]. Notably, in this study, the antigen 

presentation and other immune response pathways were shown to be significantly enriched 

in PrCa. Similarly, IFNG was a significant pathway that belongs to the type II interferon family 

and is secreted by activated immune cells [4].  

We integrated 70 newly reported genes from a recent prostate tissue transcriptome-wide 

association study with GWAS-PrCa (known as TWAS) [19]. GO pathway analysis of this study 

by Mancuso N. et al. on TWAS-PrCa that includes overlaps with previously reported genes 

represented positive regulation of chromatin binding (GO:0035563), nuclear membrane 

organization (GO:0071763) and chaperone-mediated protein folding requiring a cofactor 

(GO:0051085) as top biological processes [19]. These biological processes were identified in 

our GO analysis, however, other processes such as cell cycle checkpoint (GO:0000075), 

meiotic telophase I (GO:0007134), negative regulation of meiotic nuclear division 

(GO:0045835), reciprocal meiotic recombination (GO:0007131) and signal transduction 

(GO:0007165) were the top-ranked biological processes (Supplementary data S3, S4). This 

suggests that focusing on functional variants identified by post-GWAS could reveal additional 

biological information in PrCa. In another study, Schumacher F. et al. introduced a pathway-

based approach only for 64 newly found GWAS risk loci including some functional variants 
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[52]. Their analysis detected the programmed cell death protein 1 (PD-1) signalling pathway 

as the most significant pathway in addition to the antigen processing, presentation and IFNG 

mediated signalling pathways [11]. Similarly, in our analysis IFNG pathway was shown as a 

significant pathway resulted from GSEA, REACTOME, KEGG and GO analyses and PD-1 

signalling pathway is demonstrated as the fourth significant pathway in REACTOME analysis. 

The IFNG mediated signalling pathway rely on other signalling proteins like Janus-activated 

kinase 1 (JAK1), JAK2 and signal transducer and activator of transcription 1 (STAT-1) thus 

inducing signal transductions. In this way, assigned genes to post-GWAS loci might actively 

contribute to molecular and cellular biological processes leading to the overall outcome of 

prostate cell growth. In fact, their cumulative impacts on several main pathways may be 

involved in prostate tumorigenesis/progression [53]. Further exploration of discovered 

pathways can help greatly accelerate our ability to connect the genetic basis of PrCa to the 

clinic. For example, the AR signalling pathway was significant in GSEA analyses and the AR was 

demonstrated as one of the upstream regulators by IPA data. This is supporting evidence for 

the role of functional variants in modulating the genes regulated by AR or implicated in AR 

pathway which can be incorporated into currently used biomarkers related to the AR axis as 

the basis of stratifying the metastatic PrCa patients [16]. Moreover, differentially expressed 

genes in the primary tumour and metastatic samples in Oncomine dataset, which overlaps 

with the post-GWAS in our study highlights the potential drug targets for metastatic PrCa. 

Some of these genes have been found associated with progressive PrCa but also associated 

with nonaggressive PrCa [3]. For example, the KLK3 gene region was found to be significantly 

associated with higher Gleason scare [54] that is one of the indicators of the risk of progression 

or metastatic disease. Risk loci in close proximity to the MMP7 gene contribute to PrCa 

invasiveness [42].  

Identification of critical TFs in PrCa implies the central importance of upstream investigation 

of functional risk loci resulted from post-GWAS. STAT5A, the most significant TF revealed by 

IPA, regulates 18 of the genes identified by post-GWAS including some critical genes in PrCa 

such as ATM, CDKN1B and ARNT.  STAT5A/B is critical for prostate cell survival and prostate 

tumour growth [11]. Therapeutic potential of STAT in cancer including PrCa is under 

investigations in several clinical trials targeting by STAT inhibitors [55]. 
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Other TFs such as TDP2, SMAD7, SMARCD1, NLRC5 and HDAC1 that regulate well-known vital 

genes in PrCa including KLK3, TMPRSS2, MYC, MMP7 are demonstrated in this study. Given 

the fact that TF binding formation is the key to reprogramming of genes [55], thus, disrupting 

TFs might be the potential relevance of a regulatory role of PrCa post-GWAS loci which 

suggests they are interesting targets to conduct follow-up studies [54]. The role of some of 

these molecules has been well-studied in PrCa [42], for example, NLRC5 is known to play a role 

in cytokine response via immune pathways and is suggested as a novel biomarker for cancer 

patient prognosis and survival [56]. High activity of HDACs has been reported to cause 

epigenetic alterations associated with malignant PrCa cell behaviour [46]. Consequently, a 

high rate of HDAC1 expression has been significantly associated with tumour 

dedifferentiation [47]. HDAC1 exerts an androgen-dependent regulatory effect on prostate 

cell proliferation and development that might be an interesting therapeutic target in PrCa to 

study and develop its inhibitors [57]. Interestingly, HDAC inhibitors have entered phase-2 

clinical trials as new antineoplastic PrCa drug [3].  

Altogether, we believe that utilising post-GWAS data is efficiently warranted and should be 

considered as the first approach highlighting several reasons: first and more importantly, 

post-GWAS enable us to focus on functionally involved genes in PrCa risk, therefore, will 

greatly speed up our ability to translate the functional part of the genome into the clinic. 

Secondly, reproducibility of GWAS is a valuable advantage emphasising on the high ability to 

reveal new discoveries from initial GWAS data than any other approach. Thirdly, subsequent 

dysregulation of the overlapped PrCa-driving molecules such as MMP7, MSMB and KLK3 

[10,19] based on the Oncomine dataset pinpoints likely promising identified gene networks 

and pathways to be further investigated in the clinic. However, interpretation of pathway-

based analyses largely depends on the existing numerous algorithms that use various criteria 

to assign a gene to a network/pathway [58]. The observed differences in pathways analyses 

resulted from different tools may depend on the specific methodologies, and as such 

generalising the results must be done with caution. In particular, the main challenge in this 

type of analysis is that the observed outcomes depend on the number of input data (number 

of genes) mapped by different tools. This situation is common in the field of machine learning, 

yet finding a way to integrate all the genes in the analyses, in order to reduce bias in the final 
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model is necessary. For example, in our analysis, the number of recognised gene identifiers 

by various tools was different and it consequently resulted in a different interpretation. Of 

particular, this caveat vastly deters our understanding of the critical role of ncRNAs identified 

by post-GWAS in PrCa given the fact that they participate in a broad range of different 

mechanisms driving tumorigenesis [24,34,59,60]. The current methods mostly have been 

developed for integrating protein-coding genes overlooking ncRNAs’ contribution to 

molecular pathways; thus, there is an urgent need to include these molecules in pathway 

analysis methods. Nevertheless, the least could be the utilisation of the results for deeper 

investigations to examine whether the post-GWAS identified pathways are promoting 

tumorigenesis.  

Conclusion:  

This study investigates the pathways by which many post-GWAS assigned genes may 

influence PrCa development. The results highlight the importance of complex interplay and 

crosstalk between different pathways, which will advance the current understanding of PrCa 

pathogenesis. Consequently, novel drug treatments could be developed for subsets of these 

identified pathways that are yet to be tested in improving risk stratification. 

Abbreviations: 

MSMB: Microseminoprotein Beta 

NUDT11: Nudix Hydrolase 11 

MYC: MYC Proto-Oncogene 

AR: Androgen receptor 

HLAs: histocompatibility complex genes 

INFG: Interferon gamma 

MHC: Major Histocompatibility Complex 

FGFR2: Fibroblast Growth Factor Receptor 2 

PIK3C2B: Phosphatidylinositol-4-Phosphate 3-Kinase Catalytic Subunit Type 2 Beta 

KLK3/2: Kallikrein Related Peptidase 3/2  

RALB: RAS Like Proto-Oncogene B 

NKX3-1: NK3 Homeobox 1 
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CREB3L4: CAMP Responsive Element Binding Protein 3 Like 4 

CDKN1B: Cyclin Dependent Kinase Inhibitor 1B 

MAP2K1: Mitogen-Activated Protein Kinase Kinase 1 

ATM: ATM Serine/Threonine Kinase 

STAT5A/B: Signal Transducer And Activator Of Transcription 5A/B 

TMPRSS2: Transmembrane Serine Protease 2 

MAPK: Mitogen-activated protein kinase  

Akt: AKT Serine/Threonine Kinase 1 

JAK1/2: Janus Kinase 1/2 

JNK: c-Jun N-terminal kinases 

MMP7: Matrix Metallopeptidase 7 

NLRC5: NLR Family CARD Domain Containing 5 

HDAC1/2: Histone Deacetylase 1/2 

Supplementary data: 

Supplementary data S1: Prostate cancer functional variants within coding/non-coding 

regions reported by post-GWAS. 

Supplementary data S2: Pathway analysis using the Ingenuity Pathway Analysis (IPA) 

algorithm. We excluded the unmapped genes (listed here) in IPA for further analysis. 

Canonical pathways are compact representations of literature-based knowledge about 

regulatory interactions. List of implicated networks of affected/dysregulated genes by 

functional variants is presented. The 10 top canonical pathways in IPA analysis including HLA 

genes have been listed. We excluded HLA genes to identify HLA independent key pathways 

related to the assigned genes (see Supplementary data S1).  The upstream regulators of the 

genes involved have been listed.  

Supplementary data S3: Gene set analysis using PANTHER. In this analysis, the genes that 

did not map to Entrez IDs were eliminated. This data includes visualisation for the proportion 

of gene sets and involving molecules in presented pathways by PANTHER. 
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Supplementary data S4: Pathway analysis using (GSEA). The genes in overlaps have been 

shown in separate tables. By default, the result displays the 10 gene sets in the collection that 

best overlap with the gene set analysed here. P-value is calculated from the hypergeometric 

distribution for (k-1, K, N - K, n). k is the number of genes in the intersection of the query set 

with a set from The Molecular Signatures Database (MSigDB, a collection of annotated gene 

sets for use with GSEA software). K is the number of genes in the set from MSigDB. N is the 

total number of gene universe (all known human gene symbols). n is the number of genes in 

the query set (the gene set analysed here).  

Supplementary data S5: Pathway analysis using REACTOME including and excluding HLA 

genes. 
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