On Pathos Total Semitotal and Entire Total Block Graph of a Tree

Muddebihal M. H.
(Department of Mathematics, Gulbarga University, Gulbarga, India)
Syed Babajan
(Department of Mathematics, Ghousia College of Engineering, Ramanagaram, India)
E-mail: babajan.ghousia@gmail.com

Abstract

In this communication, the concept of pathos total semitotal and entire total block graph of a tree is introduced. Its study is concentrated only on trees. We present a characterization of graphs whose pathos total semitotal block graphs are planar, maximal outerplanar, minimally nonouterplanar, nonminimally nonouterplanar, noneulerian and hamiltonian. Also, we present a characterization of those graphs whose pathos entire total block graphs are planar, maximal outerplanr, minimally nonouterplanar, nonminimally nonouterplanar, noneulerian, hamiltonian and graphs with crossing number one.

Key Words: Pathos, path number, Smarandachely block graph, semitotal block graph, total block graph, pathos total semitotal block graph, pathos entire total block graph, pathos length, pathos point, inner point number.

AMS(2010): 05C75

§1. Introduction

The concept of pathos of a graph G was introduced by Harary [2], as a collection of minimum number of line disjoint open paths whose union is G. The path number of a graph G is the number of paths in a pathos. A new concept of a graph valued functions called the semitotal and total block graph of a graph was introduced by Kulli [5]. For a graph $G(p, q)$ if $B=$ $u_{1}, u_{2}, u_{3}, \cdots, u_{r} ; r \geqslant 2$ is a block of G. Then we say that point u_{1} and block B are incident with each other, as are u_{2} and B and soon. If two distinct blocks B_{1} and B_{2} are incident with a common cut point, then they are called adjacent blocks. The points and blocks of a graph are called its members. A Smarandachely block graph $T_{S}^{V}(G)$ for a subset $V \subset V(G)$ is such a graph with vertices $V \cup \mathcal{B}$ in which two points are adjacent if and only if the corresponding members of G are adjacent in $\langle V\rangle_{G}$ or incident in G, where \mathcal{B} is the set of blocks of G. The semitotal block graph of a graph G denoted $T_{b}(G)$ is defined as the graph whose point set is the union of set of points, set of blocks of G in which two points are adjacent if and only if

[^0]members of G are incident. The total block graph of a graph G denoted by $T_{B}(G)$ is defined as the graph whose point set is the union of set of points, set of blocks of G in which two points are adjacent if and only if the corresponding members of G are adjacent or incident. Also, a new concept called pathos semitotal and total block graph of a tree has been introduced by Muddebihal [10]. The pathos semitotal graph of a tree T denoted by $P_{T_{b}}(T)$ is defined as the graph whose point set is the union of set of points, set of blocks and the set of path of pathos of T in which two points are adjacent if and only if the corresponding members of G are incident and the lines lie on the corresponding path P_{i} of pathos. The pathos total block graph of a tree T denoted by $P_{T_{B}}(T)$ is defined as the graph whose point set is the union of set of points, set of blocks and the set of path of pathos of T in which two points are adjacent if and only if the corresponding members of G are adjacent or incident and the lines lie on the corresponding path Pi of pathos. Stanton [11] and Harary [3] have calculated the path number for certain classes of graphs like trees and complete graphs.

All undefined terminology will conform with that in Harary [1]. All graphs considered here are finite, undirected and without loops or multiple lines. The pathos total semitotal block graph of a tree T denoted by is defined as the graph whose point set is the union of set of points and set of blocks of T and the path of pathos of T in which two points are adjacent if and only if the corresponding members of T are incident and the lines lie on the corresponding path P_{i} of pathos. The pathos entire total block graph of a tree denoted by is defined as the graph whose set of points is the union of set of points, set of blocks and the path of pathos of T in which two points are adjacent if and only if the corresponding members of T are adjacent or incident and the lines lie on the corresponding path P_{i} of pathos. Since the system of pathos for T is not unique, the corresponding pathos total semitotal block graph and pathos entire total block graphs are also not unique.

In Figure 1, a tree T and its semi total block graph $T_{b}(T)$ and their pathos total semitotal block graph are shown. In Figure 2, a tree T and its total block graph $T_{B}(T)$ and their pathos entire total block graphs are shown.

The line degree of a line $u v$ in T, pathos length in T, pathos point in T was defined by Muddebihal [9]. If G is planar, the inner point number $i(G)$ of G is the minimum number of points not belonging to the boundary of the exterior region in any embedding of G in the plane. A graph G is said to be minimally nonouterplanar if $i(G)=1$ as was given by Kulli [4].

We need the following results for our further results.

Theorem $A([10])$ For any non-trivial tree T, the pathos semitotal block graph $P_{T_{b}}(T)$ of a tree T, whose points have degree d_{i}, then the number of points are $(2 q+k+1)$ and the number of lines are $\left(2 q+2+\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}\right)$, where k is the path number.

Theorem $B([10])$ For any non-trivial tree whose points have degree d_{i}, the number of points and lines in total block graph $T_{B}(T)$ of a tree T are $(2 q+1)$ and $\left(2 q+\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}\right)$.

Theorem $C([10])$ For any non-trivial tree T, the pathos total block graph $P_{T_{B}}(T)$ of a tree
T, whose points have degree d_{i}, then the number of points in $P_{T_{B}}(T)$ are $(2 q+k+1)$ and the number of lines are $\left(q+2+\sum_{i=1}^{p} d_{i}^{2}\right)$, where k is the path number.

Figure 1
Theorem $D([7])$ The total block graph $T_{B}(G)$ of a graph G is planar if and only if G is outerplanar and every cut point of G lies on at most three blocks.

Theorem $E([6])$ The total block graph $T_{B}(G)$ of a connected graph G is minimally nonouter-
planar if and only if,
(1) G if a cycle, or
(2) G is a path of length $n \geqslant 2$, together with a point which is adjacent to any two adjacent points of P.

Theorem $F([8])$ The total block graph $T_{B}(G)$ of a graph G has crossing number one if and only if,
(1) G is outerplanar and every cut point in G lies on at most 4 blocks and G has a unique cut point which lies on 4 blocks, or
(2) G is minimally nonouterplanar, every cut point of G lies on at most 3 blocks and exactly one block of G is theta-minimally nonouterplanar.

Corollary $A([1])$ Every non-trivial tree T contains at least two end points.

§2. Pathos Total Semitotal Block Graph of a Tree

We start with a few preliminary results.
Remark 2.1 The number of blocks in pathos total semitotal block graph $P_{t s b}(T)$ of a tree T is equal to the number of pathos in T.

Remark 2.2 If the pathos length of the path P_{i} of pathos in T is n, then the degree of the corresponding pathos point in $P_{\text {etb }}(T)$ is $2 n+1$.

In the following theorem we obtain the number of points and lines in pathos total semitotal block graph $P_{t s b}(T)$ of a tree T.

Theorem 2.1 For any non-trivial tree T, the pathos total semi total block graph $P_{t s b}(T)$ of a tree T, whose points have degree d_{i}, then the number of points in $P_{\text {tsb }}(T)$ are $(2 q+k+1)$ and the number of lines are

$$
\left(3 q+2+\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}\right)
$$

where k is the path number.
Proof By Theorem A, the number of points in $P_{T_{b}}(T)$ are $(2 q+k+1)$, and by definition of $P_{t s b}(T)$, the number of points in $P_{t s b}(T)$ are $(2 q+k+1)$, where k is the path number. Also by Theorem A, the number of lines in $P_{T_{b}}(T)$ are $\left(2 q+2+\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}\right)$. The number of lines in $P_{t s b}(T)$ is equal to the sum of lines in $P_{T_{b}}(T)$ and the number of lines which lie on the lines (or blocks) of pathos, which are equal to q, since the number of lines are equal to the number of blocks in a tree T. Thus the number of lines in $P_{t s b}(T)$ is equal to

$$
\left[q+\left(2 q+2+\frac{1}{2} \sum_{i=1}^{p}{d_{i}}^{2}\right)\right]=3 q+2+\frac{1}{2} \sum_{i=1}^{p} d_{i}{ }^{2} .
$$

§3. Planar Pathos Total Semitotal Block Graphs

A criterion for pathos total semitotal block graph $P_{t s b}(T)$ of a tree T to be planar is presented in our next theorem.

Theorem 3.1 For any non-trivial tree T, the pathos total semi total block graph $P_{t s b}(T)$ of a tree T is planar.

Proof Let T be a non-trivial tree, then in $T_{b}(T)$ each block is a triangle. We have the following cases.

Case 1 Suppose G is a path, $G=P n: u_{1}, u_{2}, u_{3}, \cdots, u_{n}, n>1$. Further, $V\left[T_{b}(T)\right]=$ $\left\{u_{1}, u_{2}, u_{3}, \cdots, u_{n}, b_{1}, b_{2}, b_{3}, \cdots, b_{n-1}\right\}$, where $b_{1}, b_{2}, b_{3}, \cdots, b_{n-1}$ are the corresponding block points. In pathos total semi total block graph $P_{t s b}(T)$ of a tree T, the pathos point w is adjacent to, $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}, b_{1}, b_{2}, b_{3}, \cdots, b_{n-1}\right\}$. For the pathos total semitotal block graph $P_{t s b}(T)$ of a tree $T,\left\{u_{1} b_{1} u_{2} w, u_{2} b_{2} u_{3} w, u_{3} b_{3} u_{4} w, \cdots, u_{n-1} b_{n-1} u_{n} w\right\} \in V\left[P_{t s b}(T)\right]$, in which each set $\left\{u_{n-1} b_{n-1} u_{n} w\right\}$ forms an induced subgraph as K_{4}. Hence one can easily verify that each induced subgraphs of corresponding set $\left\{u_{n-1} b_{n-1} u_{n} w\right\}$ is planar. Hence $P_{t s b}(T)$ is planar.

Case 2 Suppose G is not a path. Then $V\left[T_{b}(G)\right]=\left\{u_{1}, u_{2}, u_{3}, \cdots, u_{n}, b_{1}, b_{2}, b_{3}, \cdots, b_{n-1}\right\}$ and $w_{1}, w_{2}, w_{3}, \cdots, w_{k}$ be the pathos points.Since $u_{n-1} u_{n}$ is a line and $u_{n-1} u_{n}=b_{n-1} \in V\left[T_{b}(G)\right]$. Then in $P_{t s b}(G)$ the set $\left\{u_{n-1}, b_{n-1}, u_{n}, w\right\} \forall n>1$, forms K_{4} as an induced subgraphs. Hence $P_{t s b}(T)$ is planar.

The next theorem gives a minimally nonouterplanar $P_{t s b}(T)$.
Theorem 3.2 For any non-trivial tree T, the pathos total semitotal block graph $P_{t s b}(T)$ of a tree T is minimally nonouterplanar if and only if $T=K_{2}$.

Proof Suppose $T=K_{3}$, and $P_{t s b}(T)$ is minimally nonouterplanar, then $T_{b}(T)=K_{4}$ and one can easily verify that $i\left(P_{t s b}(T)\right)>1$, a contradiction.

Suppose $T \neq K 2$. Now assume $T=K_{1,2}$ and $P_{t s b}(T)$ is minimally nonouterplanar. Then $T_{b}(T)=k_{3} \cdot k_{3}$. Since $K_{1,2}$ has exactly one pathos and let v be a pathos point which is adjacent to all the points of $k_{3} \cdot k_{3}$ in $P_{t s b}(T)$. Then one can easily see that, $i\left(P_{t s b}(T)\right)>1$ a contradiction.

For converse, suppose $T=K_{2}$, then $T_{b}(T)=K_{3}$ and $P_{t s b}(T)=K_{4}$. Hence $P_{t s b}(T)$ is minimally nonouterplanar.

From Theorem 3.2, we developed the inner point number of a tree as shown in the following corollary.

Corollary 3.1 For any non-trivial tree T with q lines, $i\left(P_{t s b}(T)\right)=q$.
Proof The result is obvious for a tree with $q=1$ and 2 . Next we show that the result is true for $q \geq 3$. Now we consider the following cases.

Case 1 Suppose T is a path, $P: v_{1}, v_{2}, \ldots, v_{n}$ such that $v_{1} v_{2}=e_{1}, v_{2} v_{3}=e_{2} \cdots, v_{n-1} v_{n}=$
e_{n-1} be the lines of P. Since each $e_{i}, 1 \leq i \leq n-1$, be a block of P, then in $T_{b}(P)$, each e_{i} is a point such that $V\left[T_{b}(P)\right]=V(P) \cup E(P)$. In $T_{b}(P)$ each $v_{1} e_{1} v_{2}, v_{3} e_{2} v_{3}, \cdots, v_{n-1} e_{n-1} v_{n}$ forms a block in which each block is k_{3}. Since each line is a block in P, then the number of k_{3} 's in $T b(P)$ is equal to the numbers of lines in P. In $P_{t s b}(P)$, it has exactly one pathos. Then $V\left[P_{t s b}(P)\right]=V\left[T_{b}(P)\right] \cup\{P\}$ and P together with each block of $T_{b}(P)$ forms a block as $P_{t s b}(P)$. Now the points p, v_{1}, e_{1}, v_{2} forms k_{4} as a subgraph of a block $P_{t s b}(P)$. Similarly each $\left\{v_{2}, e_{2}, v_{3}, p\right\},\left\{v_{3}, e_{3}, v_{4}, p\right\}, \cdots,\left\{v_{n-1}, e_{n-1}, v_{n}, p\right\}$ forms k_{4} as a subgraph of a block $P_{t s b}(P)$. One can easily find that each point $e_{i}, 1 \leq i \leq n-1$ lie in the interior region of k_{4}, which implies that $i\left(P_{t s b}(P)\right)=q$.

Case 2 Suppose T is not a path, then T has at least one point of degree greater than two. Now assume T has exactly one point $v, \operatorname{deg} v \geq 3$. Then $T=K_{1, n}$. If $P_{t s b}(T)$ has inner point number two which is equal to $n=q$. Similarly if n is odd then $P_{t s b}(T)$ has $n-1$ blocks with inner point number two and exactly one block which is isomorphic to k_{4}. Hence $i\left[P_{t s b}\left(K_{1, n}\right)\right]=q$. Further this argument can be extended to a tree with at least two or more points of degree greater two. In each case we have $i\left[P_{t s b}(T)\right]=q$.

In the next theorem, we characterize the noneulerian $P_{t s b}(T)$.
Theorem 3.3 For any non-trivial tree T, the pathos total semitotal block graph $P_{t s b}(T)$ of a tree T is noneulerian.

Proof We have the following cases.
Case 1 Suppose $\Delta(T) \leq 2$ and if $p=2$ points, then $P_{t s b}(T)=K_{4}$, which is noneulerian. If T is a path with $p>2$ points. Then in $T_{b}(T)$ each block is a triangle such that they are in sequence with the vertices of $T b(T)$ as $\left\{v_{1}, b_{1}, v_{2}, v_{1}\right\}$ an induced subgraph as a triangle in $T_{b}(T)$. Further $\left\{v_{2}, b_{2}, v_{3}, v_{2}\right\},\left\{v_{3}, b_{3}, v_{4}, v_{3}\right\}, \cdots,\left\{v_{n-1}, b_{n}, v_{n}, v_{n-1}\right\}$, in which each set form a triangle as an induced subgraph of $T_{b}(T)$. Clearly one can easily verify that $T_{b}(T)$ is eulerian. Now this path has exactly one pathos point say k_{1}, which is adjacent to $v_{1}, v_{2}, v_{3}, \cdots, v_{n}, b_{1}, b_{2}, b_{3}, \cdots, b_{n-1}$ in $P_{t s b}(T)$ in which all the points $v_{1}, v_{2}, v_{3}, \ldots, v_{n}, b_{1}, b_{2}, b_{3}, \cdots, b_{n-1} \in P_{t s b}(T)$ are of odd degree. Hence $P_{t s b}(T)$ is noneulerian.

Case 2 Suppose $\Delta(T) \geq 3$. Assume T has a unique point of degree ≥ 3 and also assume that $T=K_{1, n}$. Then in $T_{b}(T)$ each block is a triangle, such that there are n number of blocks which are K_{3} with a common cut point k. Since the degree of a vertex $k=2 n$. One can easily verify that $T_{b}\left(K_{1,3}\right)$ is eulerian. To form $P_{t s b}(T), T=K_{1, n}$, the points of degree 2 and the point k are joined by the corresponding pathos point which gives points of odd degree in $P_{t s b}(T)$. Hence $P_{t s b}(T)$ is noneulerian.

In the next theorem we characterize the hamiltonian $P_{t s b}(T)$.

Theorem 3.4 For any non-trivial tree T, the pathos semitotal block graph $P_{t s b}(T)$ of a tree T is hamiltonian if and only if T is a path.

Proof For the necessity, suppose T is a path and has exactly one path of pathos.
Let $V\left[T_{b}(T)\right]=\left\{u_{1}, u_{2}, u_{3}, \cdots, u_{n}\right\}\left\{b_{1}, b_{2}, b_{3}, \cdots, b_{n-1}\right\}$, where $b_{1}, b_{2}, b_{3}, \ldots, b_{n-1}$ are
block points of T. Since each block is a triangle and each block consists of points as $B_{1}=$ $\left\{u_{1}, b_{1}, u_{2}\right\}, B_{2}=\left\{u_{2}, b_{2}, u_{3}\right\}, \cdots, B_{m}=\left\{u_{m}, b_{m}, u_{m+1}\right\}$. In $P_{t s b}(T)$ the pathos point w is adjacent to $\left\{u_{1}, u_{2}, u_{3}, \cdots, u_{n}, b_{1}, b_{2}, b_{3}, \cdots, b_{n-1}\right\}$. Hence $V\left[P_{t s b}(T)\right]=\left\{u_{1}, u_{2}, u_{3}, \cdots, u_{n}\right\} \cup$ $\left\{b_{1}, b_{2}, b_{3}, \cdots, b_{n-1}\right\} \cup w$ form a spanning cycle as $\mathrm{w}, u_{1}, b_{1}, u_{2}, b_{2}, u_{2}, \cdots, u_{n-1}, b_{n-1}, u_{n}, w$ of $P_{t s b}(T)$. Clearly $P_{t s b}(T)$ is hamiltonian. Thus the necessity is proved.

For the sufficiency, suppose $P_{t s b}(T)$ is hamiltonian. Now we consider the following cases.
Case 1 Assume T is a path. Then T has at least one point with $\operatorname{deg} v \geq 3, \forall v \in V(T)$, suppose T has exactly one point u such that degree $u>2$ and assume $G=T=K_{1, n}$. Now we consider the following subcases of case 1 .

Subcase 1.1 For $K_{1, n}, n>2$ and if n is even, then in $T_{b}(T)$ each block is k_{3}. The number of path of pathos are $\frac{n}{2}$. Since n is even we get $\frac{n}{2}$ blocks in $P_{t s b}(T)$, each block contains two times of $\left\langle K_{4}\right\rangle$ with some edges common. Since $P_{t s b}(T)$ has a cut points, one can easily verify that there does not exist any hamiltonian cycle, a contradiction.
Subcase 1.2 For $K_{1, n}, n>2$ and n is odd, then the number of path of pathos are $\frac{n+1}{2}$, since n is odd we get $\frac{n-1}{2}+1$ blocks in which $\frac{n-1}{2}$ blocks contains two times of $\left\langle K_{4}\right\rangle$ which is nonline disjoint subgraph of $P_{t s b}(T)$ and remaining blocks is $\left\langle K_{4}\right\rangle$. Since $P_{t s b}(T)$ contain a cut point, clearly $P_{t s b}(T)$ does not contain a hamiltonian cycle, a contradiction. Hence the sufficient condition.

§4. Pathos Entire Total Block Graph of a Tree

A tree T , its total block graph $T_{B}(T)$, and their pathos entire total block graphs $P_{\text {etb }}(T)$ are shown in Figure 2. We start with a few preliminary results.

Remark 4.1 If the pathos length of path P_{i} of pathos in T is n, then the degree of the corresponding pathos point in $P_{\text {etb }}(T)$ is $2 n+1$.

Remark 4.2 For any nontrivial tree T, the pathos entire total block graph $P_{\text {etb }}(T)$ is a block.
Theorem 4.1 For any non-trivial tree T, the pathos total block graph $P_{\text {etb }}(T)$ of a tree T, whose points have degree d_{i}, then the number of points in $P_{\text {etb }}(T)$ are $(2 q+k+1)$ and the number of lines are $\left(2 q+2+\sum_{i=1}^{p} d_{1}^{2}\right)$, where k is the path number.

Proof By Theorem C, the number of points in $P_{T_{B}}(T)$ are $(2 q+k+1)$, by definition of $P_{e t b}(T)$, the number of points in $P_{\text {etb }}(T)$ are $(2 q+k+1)$, where k is the path number in T. Also by Theorem B, the number of lines in $T_{B}(T)$ are $\left(2 q+\frac{1}{2} \sum_{i=1}^{p} d_{i}{ }^{2}\right)$. By Theorem C, The number of lines in $P_{T_{B}}(T)$ are $\left(q+2+\sum_{i=1}^{p} d_{i}^{2}\right)$. By definition of pathos entire total block graph $P_{\text {etb }}(T)$ of a tree equal to the sum of lines in $P_{T_{B}}(T)$ and the number of lines which lie on block points b_{i} of $T_{B}(T)$ from the pathos points P_{i}, which are equal to q. Thus the number
of lines in $P_{\text {etb }}(T)=\left(q+2+\sum_{i=1}^{p} d_{i}^{2}\right)=\left(2 q+2+\sum_{i=1}^{p} d_{1}^{2}\right)$.

T

$T_{b}(T)$

Figure 2

§5. Planar Pathos Entire Total Block Graphs

A criterion for pathos entire total block graph to be planar is presented in our next theorem.

Theorem 5.1 For any non-trivial tree T, the pathos entire total block graph $P_{\text {etb }}(T)$ of a tree T is planar if and only if $\Delta(T) \leq 3$.

Proof Suppose $P_{\text {etb }}(T)$ is planar. Then by Theorem D, each cut point of T lie on at most 3 blocks. Since each block is a line in a tree, now we can consider the degree of cut points instead of number of blocks incident with the cut points. Now suppose if $\Delta(T) \leq 3$, then by Theorem $\mathrm{D}, T_{B}(T)$ is planar. Let $\left\{b_{1}, b_{2}, b_{3}, \cdots, b_{p-1}\right\}$ be the blocks of T with p points such that $b_{1}=e_{1}, b_{2}=e_{2}, \cdots, b_{p-1}=e_{p-1}$ and P_{i} be the number of pathos of T. Now $V\left[P_{e t b}(T)\right]=V(G) \cup b_{1}, b_{2}, b_{3}, \cdots, b_{p-1} \cup\left\{P_{i}\right\}$. By Theorem D, and by the definition of pathos,
the embedding of $P_{\text {etb }}(T)$ in any plane gives a planar $P_{\text {etb }}(T)$.
Conversely, Suppose $\Delta(T) \geq 4$ and assume that $P_{\text {etb }}(T)$ is planar. Then there exists at least one point of degree 4 , assume that there exists a vertex v such that $\operatorname{deg} v=4$. Then in $T_{B}(T)$, this point together with the block points form k_{5} as an induced subgraph. Further the corresponding pathos point which is adjacent to the $V(T)$ in $T_{B}(T)$ which gives $P_{\text {etb }}(T)$ in which again k_{5} as an induced subgraph, a contradiction to the planarity of $P_{\text {etb }}(T)$. This completes the proof.

The following theorem results the minimally nonouterplanar $P_{\text {etb }}(T)$.

Theorem 5.2 For any non-trivial tree T, the pathos entire total block graph $P_{\text {etb }}(T)$ of a tree T is minimally nonouterplanar if and only if $T=k_{2}$.

Proof Suppose $T=k_{3}$ and $P_{e t b}(T)$ is minimally nonouterplanar. Then $T_{B}(T)=k_{4}$ and one can easily verify that, $i\left(P_{e t b}(T)\right)>1$, a contradiction. Further we assume that $T=K_{1,2}$ and $P_{\text {etb }}(T)$ is minimally outerplanar, then $T_{B}(T)$ is $W_{p}-x$, where x is outer line of W_{p}. Since $K_{1,2}$ has exactly one pathos, this point together with $W_{p}-x$ gives W_{p+1}. Also in $P_{\text {etb }}(T)$ and by definition of $P_{\text {etb }}(T)$ there are two more lines joining the pathos points there by giving W_{p+3}. Clearly, $P_{\text {etb }}(T)$ is nonminimally nonouterplanar, a contradiction.

For the converse, if $T=k_{2}, T_{B}(T)=k_{3}$ and $P_{e t b}(T)=K_{4}$ which is a minimally nonouterplanar. This completes the proof of the theorem.

Now we have a pathos entire total block graph of a path $p \geq 2$ point as shown in the below remark.

Remark 5.1 For any non-trivial path with $p \geq 2$ points, $i\left[P_{e t b}(T)\right]=2 p-3$. The next theorem gives a nonminimally nonouterplanar $P_{\text {etb }}(T)$.

Theorem 5.3 For any non-trivial tree T, the pathos entire total block graph $P_{\text {etb }}(T)$ of a tree T is nonminimally nonouterplanar except for $T=k_{2}$.

Proof Assume T is not a path. We consider the following cases.
Case 1 Suppose T is a tree with $\Delta(T) \geq 3$. Then there exists at least one point of degree at least 3. Assume v be a point of degree 3. Clearly, $T=K_{1,3}$. Then by the Theorem F , $i\left[T_{B}(T)\right]>1$. Since $T_{B}(T)$ is a subgraph of $P_{e t b}(T)$. Clearly, $i\left(P_{\text {etb }}(T)\right) \geqslant 2$. Hence $P_{\text {etb }}(T)$ is nonminimally nonouterplanar.

Case 2 Suppose T is a path with p points and for $p>2$ points. Then by Remark 5.1, $i\left[P_{\text {etb }}(T)\right]>1$. Hence $P_{\text {etb }}(T)$ is nonminimally nonouterplanar.

In the following theorem we characterize the noneulerian $P_{\text {etb }}(T)$.

Theorem 5.4 For any non-trivial tree T, the pathos entire total block graph $P_{\text {etb }}(T)$ of a tree T is noneulerian.

Proof We consider the following cases.

Case 1 Suppose T is a path P_{n} with n points. Now for $n=2$ and 3 points as follows. For $p=2$ points, then $P_{\text {etb }}(T)=K_{4}$, which is noneulerian. For $p=3$ points, then $P_{e t b}(T)$ is a wheel W_{6} together with two lines joining the non adjacent points in which one point is common for these two lines as shown in the Figure 3, which is noneulerian.

Figure 3
For $p \geq 4$ points, we have a path $P: v_{1}, v_{2}, v_{3}, \ldots, v_{p}$. Now in path each line is a block. Then $v_{1} v_{2}=e_{1}=b_{1}, v_{2} v_{3}=e_{2}=b_{2}, \ldots, v_{p-1} v_{p}=e_{p-1}=b_{p-1}, \forall e_{p-1} \in E(G)$, and $\forall b_{p-1} \in V\left[T_{B}(P)\right]$. In $T_{B}(P)$, the degree of each point is even except b_{1} and b_{p-1}. Since the path P has exactly one pathos which is a point of $P_{\text {etb }}(P)$ and is adjacent to the points $v_{1}, v_{2}, v_{3}, \ldots, v_{p}$, of $T_{B}(P)$ which are of even degree, gives as an odd degree points in $P_{\text {etb }}(P)$ including odd degree points b_{1} and b_{p-1}. Clearly $P_{e t b}(P)$ is noneulerian.

Case 2 Suppose T is not a path. We consider the following subcases.
Subcase 2.1 Assume T has a unique point degree ≥ 3 and $T=K_{1, n}$, with n is odd. Then in $T_{B}(T)$ each block is a triangle such that there are n number of triangles with a common cut points k which has a degree $2 n$. Since the degree of each point in $T_{B}\left(K_{1, n}\right)$ is odd other than the cut point k which are of degrees either 2 or $n+1$. Then $P_{\text {etb }}(T)$ eulerian. To form $P_{\text {etb }}(T)$ where $T=K_{1, n}$, the points of degree 2 and 4 the point k are joined by the corresponding pathos point which gives $(2 n+2)$ points of odd degree in $P_{\text {etb }}\left(K_{1, n}\right) . P_{\text {etb }}(T)$ has n points of odd degree. Hence $P_{\text {etb }}(T)$ noneulerian.

Assume that $T=K_{1, n}$, where n is even, Then in $T_{B}(T)$ each block is a triangle, which are $2 n$ in number with a common cut point k. Since the degree of each point other than k is either 2 or $(n+1)$ and the degree of the point k is $2 n$. One can easily verify that $T_{B}\left(K_{1, n}\right)$ is noneulerian. To form $P_{\text {etb }}(T)$ where $T=K_{1, n}$, the points of degree 2 and 5 the point k are joined by the corresponding pathos point which gives $(n+2)$ points of odd degree in $P_{\text {etb }}(T)$.

Hence $P_{e t b}(T)$ noneulerian.
Subcase 2.2 Assume T has at east two points of degree ≥ 3. Then $V\left[T_{B}(T)\right]=V(G) \cup$ $b_{1}, b_{2}, b_{3}, \ldots, b_{p}, \forall b_{p} \in E(G)$. In $T_{B}(T)$, each endpoint has degree 2 and these points are adjacent to the corresponding pathos points in $P_{\text {etb }}(T)$ gives degree 3, From case 1, Tree T has at least 4 points and by Corollary $[\mathrm{A}], P_{\text {etb }}(T)$ has at least two points of degree 3 . Hence $P_{\text {etb }}(T)$ is noneulerian.

In the next theorem we characterize the hamiltonian $P_{\text {etb }}(T)$.

Theorem 5.5 For any non-trivial tree T, the pathos entire total block graph $P_{\text {etb }}(T)$ of a tree T is hamiltonian.

Proof we consider the following cases.
Case 1 Suppose T is a path with $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\} \in V(T)$ and $b_{1}, b_{2}, b_{3}, \ldots, b_{m}$ be the number of blocks of T such that $m=n-1$. Then it has exactly one path of pathos. Now point set of $T_{B}(T), V\left[T_{B}(T)\right]=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\} \cup\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$. Since given graph is a path then in $T_{B}(T), b_{1}=e_{1}, b_{2}=e_{2}, \ldots, b_{m}=e_{m}$, such that $b_{1}, b_{2}, b_{3}, \ldots, b_{m} \subset V\left[T_{B}(T)\right]$. Then by the definition of total block graph, $\left\{u_{1}, u_{2}, \ldots, u_{m-1}, u_{m}\right\} \cup\left\{b_{1}, b_{2}, \ldots, b_{m-1}, b_{m}\right\} \cup$ $\left\{b_{1} u_{1}, b_{2} u_{2}, \ldots b_{m} u_{n-1}, b_{m} u_{n}\right\}$ form line set of $T_{B}(T)$ (see Figure 4).

Figure 4
Now this path has exactly one pathos say w. In forming pathos entire total block graph of a path, the pathos w becomes a point, then $V\left[P_{e t b}(T)\right]=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\} \cup\left\{b_{1}, b_{2}, \ldots, b_{m}\right\} \cup\{w\}$ and w is adjacent to all the points $\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ shown in the Figure 5.

In $P_{\text {etb }}(T)$, the hamiltonian cycle $w, u_{1}, b_{1}, u_{2}, b_{2}, u_{2}, u_{3}, b_{3}, \cdots, u_{n-1}, b_{m}, u_{n}, w$ exist. Clearly the pathos entire total block graph of a path is hamiltonian graph.

Case 2 Suppose T is not a path. Then T has at least one point with degree at least 3 . Assume that T has exactly one point u such that degree >2. Now we consider the following subcases of Case 2 .

Subcase 2.1 Assume $T=K_{1, n}, n>2$ and is odd. Then the number of paths of pathos are $\frac{n+1}{2}$. Let $V\left[T_{B}(T)\right]=\left\{u_{1}, u_{2}, \ldots, u_{n}, b_{1}, b_{2}, \ldots, b_{m-1}\right\}$. By the definition of pathos total block graph. By the definition $P_{e t b}(T) V\left[P_{e t b}(T)\right]=\left\{u_{1}, u_{2}, \ldots, u_{n}, b_{1}, b_{2}, \ldots, b_{n-1}\right\} \cup\left\{p_{1}, p_{2}\right.$, $\left.\cdots, p_{n+1 / 2}\right\}$. Then there exists a cycle containing the points of By the definition of $P_{e t b}(T)$ as
$p_{1}, u_{1}, b_{1}, b_{2}, u_{3}, p_{2}, u_{2}, b_{3}, u_{4}, \cdots, p_{1}$ and is a hamiltonian cycle. Hence $P_{\text {etb }}(T)$ is a hamiltonian.

Figure 5
Subcase 2.2 Assume $T=K_{1, n}, n>2$ and is even. Then the number of path of pathos are $\frac{n}{2}$, then $V\left[T_{B}(T)\right]=\left\{u_{1}, u_{2}, \cdots, u_{n}, b_{1}, b_{2}, \cdots, b_{n-1}\right\}$. By the definition of pathos entire total block graph $P_{\text {etb }}(T)$ of a tree $T . V\left[P_{\text {etb }}(T)\right]=\left\{u_{1}, u_{2}, \cdots, u_{n}, b_{1}, b_{2}, \cdots, b_{n-1}\right\} \cup$ $\left\{p_{1}, p_{2}, \cdots, p_{n / 2}\right\}$. Then there exist a cycle containing the points of $P_{e t b}(T)$ as $p_{1}, u_{1}, b_{1}, b_{2}$, $u_{3}, p_{2}, u_{4}, b_{3}, b_{4}, \cdots, p_{1}$ and is a hamiltonian cycle. Hence $P_{\text {etb }}(T)$ is a hamiltonian.

Suppose T is neither a path nor a star, then T contains at least two points of degree >2. Let $u_{1}, u_{2}, u_{3}, \cdots, u_{n}$ be the points of degree ≥ 2 and $v_{1}, v_{2}, v_{3}, \cdots, v_{m}$ be the end points of T. Since end block is a line in T, and denoted as $b_{1}, b_{2}, \cdots, b_{k}$, then $V\left[T_{B}(T)\right]=$ $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \cup\left\{v_{1}, v_{2}, \ldots v_{m}\right\} \cup\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$, and tree T has p_{i} pathos points, $i>1$ and each pathos point is adjacent to the point of T where the corresponding pathos lie on the points of T. Let $\left\{p_{1}, p_{2}, \cdots, p_{i}\right\}$ be the pathos points of T. Then there exists a cycle C containing all the points of $P_{e t b}(T)$, as $p_{1}, v_{1}, b_{1}, v_{2}, p_{2}, u_{1}, b_{3}, u_{2}, p_{3}, v_{3}, b_{4}, v_{m-1}, b_{n-1}, b_{n}, v_{m}, \ldots, p_{1}$. Hence $P_{e t b}(T)$ is a hamiltonian cycle. Clearly, $P_{e t b}(T)$ is a hamiltonian graph.

In the next theorem we characterize $P_{e t b}(T)$ in terms of crossing number one.

Theorem 5.6 For any non-trivial tree T, the pathos entire total block graph $P_{\text {etb }}(T)$ of a tree T has crossing number one if and only if $\Delta(T) \leq 4$, and there exist a unique point in T of degree 4.

Proof Suppose $P_{\text {etb }}(T)$ has crossing number one. Then it is nonplanar. Then by Theorem 5.1, we have $\Delta(T) \leq 4$. We now consider the following cases.

Case 1 Assume $\Delta(T)=5$. Then by Theorem $[\mathrm{F}], T_{B}(T)$ is nonplanar with crossing number more than one. Since $T_{B}(T)$ is a subgraph of $P_{T_{B}}(T)$. Clearly $\operatorname{cr}\left(P_{T_{B}}(T)\right)>1$, a contradiction.

Case 2 Assume $\Delta(T)=4$. Suppose T has two points of degree 4. Then by Theorem $\mathrm{F}, T_{B}(T)$ has crossing number at least two. But $T_{B}(T)$ is a subgraph of $P_{\text {etb }}(T)$. Hence $\operatorname{cr}\left(P_{\text {etb }}(T)\right)>1$,
a contradiction.
Conversely, suppose T satisfies the given condition and assume T has a unique point v of degree 4. The lines which are blocks in T such that they are the points in $T_{B}(T)$. In $T_{B}(T)$, these block points and a point v together forms an induced subgraph as k_{5}. In forming $P_{\text {etb }}(T)$, the pathos points are adjacent to at least two points of this induced subgraph. Hence in all these cases the $\operatorname{cr}\left(P_{\text {etb }}(T)\right)=1$. This completes the proof.

References

[1] Harary F., Graph Theory, Addison-Wesley Reading. Mass. (1969).
[2] Harary F., Covering and packing in graphs-I, Annals of Newyork Academy of Sciences, (1970), pp 198-205.
[3] Harary F. and Schweak A.J., Evolution of the path number of graph, Covering and packing in graph-II, Graph Theory and Computing, Ed.R.C. Read, Academic Press, Newyork (1972), pp 39-45.
[4] Kulli V.R., On minimally nonouterplanar graphs, Proceeding of the Indian National Science Academy, Vol-41, Part-A, No.3, (1975), pp 275-280.
[5] Kulli V.R., The semi total-block graph and Total-block graph of a graph, Indian J. Pure छ3 App. Maths, Vol-7, No.6, (1976), pp 625-630.
[6] Kulli V.R. and Patil H.P., Minimally nonouterplanar graphs and some graph valued functions, Journal of Karnataka University Science, (1976), pp 123-129.
[7] Kulli V.R. and Akka D.R., Transversability and planarity of total block graphs, Jour. Math. Phy. Sci., Vol-11, (1977), pp 365-375.
[8] Kulli V.Rand Muddebihal M.H., Total block graphs and semitotal block graphs with crossing numbers, Far East J. Appl. Math., 4(1), (2000), pp 99-106.
[9] Muddebihal M.H., Gudagudi B.R. and Chandrasekhar R., On pathos line graph of a tree, National Academy Science Letters, Vol-24, No. 5 to 12, (2001), pp 116-123.
[10] Muddebihal M.H. and Syed Babajan, On pathos semitotal and total block graph of a tree (to appear).
[11] Stanton R.G., Cowan D.D. and James L.O., Some results on the path numbers, Preoceedings of Lousiana Conference on Combinatorics, Graph Theory and Computing, (1970), pp 112-135.

[^0]: ${ }^{1}$ Received March 26, 2012. Accepted June 12, 2012.

