Using Mathematica for matrices

Matrices

Matrices are entered in "row form", such that
$\ln [195]:=\mathbf{a a}=\{\{\mathbf{2}, \mathbf{1}\},\{-\mathbf{1}, \mathbf{2}\}\}$
O Ot[195] $=\{\{2,1\},\{-1,2\}\}$
gives the following matrix (the // and "MatrixForm" displays the result so it looks like a matrix)
$\ln [196]$]= aa // MatrixForm
Out[196]//MatrixForm=
$\left(\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right)$
Picking out components now requires two indices, which are in standard "row, column" order:
aa[[1, 2]]
1
$\ln [197]:=\mathbf{b b}=\{\{\mathbf{3}, \mathbf{2}\},\{\mathbf{- 1}, \mathbf{- 1}\}\} ; \mathbf{b b} / /$ MatrixForm
Out[197]//MatrixForm=
$\left(\begin{array}{cc}3 & 2 \\ -1 & -1\end{array}\right)$
There are some canned matrices, in particular the identity
(the argument of IdentityMatrix giving the linear dimension):
id = IdentityMatrix[3]; id // MatrixForm
$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
Another predefined set of matrices are the Pauli matrices:

```
{PauliMatrix[1] / / MatrixForm,
    PauliMatrix[2] // MatrixForm, PauliMatrix[3] // MatrixForm}
```

$\left\{\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}0 & -\dot{\mathbb{1}} \\ \dot{\mathbb{1}} & 0\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\right\}$
There's a special command to create a diagonal matrix:
DiagonalMatrix [\{1, 2, 3\}] // MatrixForm
$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$
Matrix multiplication is written with a Dot (and is not commutative, as we know)

In[199]:= aa.bb / / MatrixForm

bb.aa // MatrixForm
Out[199]/MatrixForm=
$\left(\begin{array}{cc}5 & 3 \\ -5 & -4\end{array}\right)$
Out[200]//MatrixForm=
$\left(\begin{array}{cc}4 & 7 \\ -1 & -3\end{array}\right)$
Whereas a product simply multiplies the corresponding elements, one by one:
$\ln [201]:=\mathbf{a a}$ bb / / MatrixForm
Out[201]/MatrixForm=
$\left(\begin{array}{cc}6 & 2 \\ 1 & -2\end{array}\right)$
Addition and subtraction and multiplication by scalars work:
$a \mathrm{a}+\mathrm{bb} / /$ MatrixForm
aa-bb / / MatrixForm
3 aa // MatrixForm
$\left(\begin{array}{cc}5 & 3 \\ -2 & 1\end{array}\right)$
$\left(\begin{array}{cc}-1 & -1 \\ 0 & 3\end{array}\right)$
$\left(\begin{array}{cc}6 & 3 \\ -3 & 6\end{array}\right)$
Multiplication works with any shape matrices, as long as they are conformable. Here's a vector, which, although it's entered as a row-like vector:
$\mathrm{v} 5=\{3,1\}$
$\{3,1\}$
is treated like a column vector under matrix multiply:
aa.v5
$\{7,-1\}$
It is displayed like a column.
aa.v5 / / MatrixForm
$\binom{7}{-1}$
However, one can also multiply from the left, in which case the vector is treated as a row
v5.aa
$\{5,5\}$
Transpose transposes:

Transpose[aa] // MatrixForm
$\left(\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right)$
Conjugate conjugates, element by element:
$\mathbf{C C}=\{\{2+\mathrm{I}, 3 \mathrm{I}\},\{-3 \mathrm{I}, 4\}\}$; CC // MatrixForm
$\left(\begin{array}{cc}2+\dot{1} & 3 \dot{i} \\ -3 \dot{\mathbb{i}} & 4\end{array}\right)$
Conjugate[cc] / / MatrixForm
$\left(\begin{array}{cc}2-\dot{i} & -3 \dot{i} \\ 3 \dot{i} & 4\end{array}\right)$
To hermitian conjugate use the ConjugateTranspose[] function
ConjugateTranspose[cc] // MatrixForm
$\left(\begin{array}{cc}2-i & 3 i \\ -3 \text { i } & 4\end{array}\right)$
or you can make a "dagger" which does the same thing by typing "escape ct escape"
Cc ${ }^{\dagger}$ // MatrixForm
$\left(\begin{array}{cc}2-\dot{1} & 3 \dot{1} \\ -3 \dot{1} & 4\end{array}\right)$

Functions of Matrices

Recall the matrix aa:
aa // MatrixForm
$\left(\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right)$
Trace
Tr [aa]
4

Determinant
Det[aa]
5
Inverse
aainv = Inverse[aa]; aainv // MatrixForm
$\left(\begin{array}{cc}\frac{2}{5} & -\frac{1}{5} \\ \frac{1}{5} & \frac{2}{5}\end{array}\right)$
Check that inverse "works"
aainv.aa // MatrixForm
aa.aainv // MatrixForm
$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
There's no problem with moving to larger matrices, which would be painful by hand:

```
dd = {{1, 2, 3, 4, 5}, {2, 3, 7, 8, 9}, {-3, 0, 6, 4, 2},
    {6, 2, 4, 5, 1}, {-1, -2, 5, 2, 3}}; dd // MatrixForm
\(\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 7 & 8 & 9 \\ -3 & 0 & 6 & 4 & 2 \\ 6 & 2 & 4 & 5 & 1 \\ -1 & -2 & 5 & 2 & 3\end{array}\right)\)
```

Inverse[dd] / / MatrixForm
$\left(\begin{array}{ccccc}\frac{44}{35} & -\frac{4}{5} & -\frac{3}{35} & \frac{8}{35} & \frac{2}{7} \\ \frac{351}{35} & -\frac{31}{5} & \frac{23}{35} & \frac{32}{35} & \frac{8}{7} \\ \frac{621}{70} & -\frac{28}{5} & \frac{19}{35} & \frac{31}{35} & \frac{19}{14} \\ -\frac{179}{14} & 8 & -\frac{4}{7} & -\frac{8}{7} & -\frac{27}{14} \\ \frac{59}{70} & -\frac{2}{5} & -\frac{4}{35} & -\frac{1}{35} & \frac{3}{14}\end{array}\right)$

Rank---it does the row reduction for you:

MatrixRank[dd]

5

The rank is the same for the transpose, as it should be:

```
MatrixRank[Transpose[dd]]
```

5
Mathematica does row reduction for you. Technically this gives the "reduced row echelon form", with as many off-diagonal zeroes as possible.
RowReduce[dd] // MatrixForm
$\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$

A simple example discussed in lecture notes:

```
ee = {{2, 2}, {1, 1}}; ee // MatrixForm
( 2 2 2
```


MatrixRank[ee]

1

RowReduce[ee] / / MatrixForm
$\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$
More complicated functions of matrices
Mathematica has a built in function for exponentiating a matrix

```
aa = {{1, 1}, {0, 2}}; MatrixExp[aa] // MatrixForm
```

$\left(\begin{array}{cc}\mathbb{e} & -\mathbb{e}+\mathbb{e}^{2} \\ 0 & \mathbb{e}^{2}\end{array}\right)$

Note that this is different from exponentiating in the usual way, which simply exponentiates each element.

E^aa // MatrixForm

$$
\left(\begin{array}{cc}
\mathbb{e} & \mathbb{e} \\
1 & \mathbb{e}^{2}
\end{array}\right)
$$

There's also a function for taking powers of matrices (which works for all complex powers too)

```
MatrixPower[aa, 10] // MatrixForm
```

 (\(\begin{array}{ll}1 & 1023\end{array}\)
 $\left(\begin{array}{ll}0 & 1024\end{array}\right)$
MatrixPower[aa, -2] // MatrixForm
$\left(\begin{array}{cc}1 & -\frac{3}{4} \\ 0 & \frac{1}{4}\end{array}\right)$
MatrixPower[aa, I]
$\left\{\left\{1,-1+2^{\text {í }}\right\},\left\{0,2^{\text {i }}\right\}\right\}$

