Using Mathematica for matrices

Matrices

Matrices are entered in "row form", such that

```
ln[195]:= aa = { { 2, 1 } , { -1, 2 } }
```

Out[195]= $\{\{2, 1\}, \{-1, 2\}\}$

gives the following matrix (the // and "MatrixForm" displays the result so it looks like a matrix)

```
In[196]:= aa // MatrixForm
```

Out[196]//MatrixForm= (2 1

(-12)

Picking out components now requires two indices, which are in standard "row, column" order:

aa[[1, 2]] 1

```
In[197]:= bb = { { 3, 2 } , { -1, -1 } }; bb // MatrixForm
```

Out[197]//MatrixForm=

 $\begin{pmatrix} 3 & 2 \\ -1 & -1 \end{pmatrix}$

There are some canned matrices, in particular the identity (the argument of IdentityMatrix giving the linear dimension):

id = IdentityMatrix[3]; id // MatrixForm

Another predefined set of matrices are the Pauli matrices:

```
{PauliMatrix[1] // MatrixForm,
PauliMatrix[2] // MatrixForm, PauliMatrix[3] // MatrixForm}
\left\{ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\}
```

There's a special command to create a diagonal matrix:

DiagonalMatrix[{1, 2, 3}] // MatrixForm

 $\left(\begin{array}{rrrrr}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)$

Matrix multiplication is written with a Dot (and is not commutative, as we know)

```
In[199]:= aa.bb // MatrixForm
bb.aa // MatrixForm
Out[199]//MatrixForm=
<math>\begin{pmatrix} 5 & 3 \\ -5 & -4 \end{pmatrix}
Out[200]//MatrixForm=
\begin{pmatrix} 4 & 7 \\ -1 & -3 \end{pmatrix}
```

Whereas a product simply multiplies the corresponding elements, one by one:

In[201]:= aabb // MatrixForm

Out[201]//MatrixForm= $\begin{pmatrix} 6 & 2 \\ 1 & -2 \end{pmatrix}$

Addition and subtraction and multiplication by scalars work:

```
aa + bb // MatrixForm
aa - bb // MatrixForm
3 aa // MatrixForm
\begin{pmatrix} 5 & 3 \\ -2 & 1 \end{pmatrix}
\begin{pmatrix} -1 & -1 \\ 0 & 3 \end{pmatrix}
\begin{pmatrix} 6 & 3 \\ -3 & 6 \end{pmatrix}
```

Multiplication works with any shape matrices, as long as they are conformable. Here's a vector, which, although it's entered as a row-like vector:

v5 = {3, 1} {3, 1}

is treated like a column vector under matrix multiply:

aa.v5

 $\{\,7\,,\ -1\,\}$

It is displayed like a column.

aa.v5 // MatrixForm

```
\begin{pmatrix} 7\\ -1 \end{pmatrix}
```

However, one can also multiply from the left, in which case the vector is treated as a row

v5.aa

{5**,** 5}

Transpose transposes:

Transpose[aa] // MatrixForm

 $\left(\begin{array}{cc} 2 & -1 \\ 1 & 2 \end{array}\right)$

Conjugate conjugates, element by element:

cc = {{2 + I, 3 I}, {-3 I, 4}}; cc // MatrixForm

 $\left(\begin{array}{ccc}
2 + i & 3 i \\
-3 i & 4
\end{array}\right)$

Conjugate[cc] // MatrixForm

(2-1.-31.) 31.4)

To hermitian conjugate use the ConjugateTranspose[] function

ConjugateTranspose[cc] // MatrixForm

 $\left(\begin{array}{ccc} 2- \bar{i} & 3 \bar{i} \\ -3 \bar{i} & 4 \end{array}\right)$

or you can make a "dagger" which does the same thing by typing "escape ct escape"

cc^{\dagger} // MatrixForm

 $\left(\begin{array}{ccc} 2-\dot{\mathtt{i}} & 3\,\dot{\mathtt{i}} \\ -3\,\dot{\mathtt{i}} & 4 \end{array}\right)$

Functions of Matrices

Recall the matrix aa:

```
aa // MatrixForm

\begin{pmatrix}
2 & 1 \\
-1 & 2
\end{pmatrix}
```

Trace

Tr[aa]

4

Determinant

Det[aa]

5

Inverse

```
aainv = Inverse[aa]; aainv // MatrixForm
```

 $\left(\begin{array}{ccc} \frac{2}{5} & -\frac{1}{5} \\ \frac{1}{5} & \frac{2}{5} \end{array}\right)$

Check that inverse "works"

```
aainv.aa // MatrixForm
aa.aainv // MatrixForm
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
```

There's no problem with moving to larger matrices, which would be painful by hand:

dd = {{1, 2, 3, 4, 5}, {2, 3, 7, 8, 9}, {-3, 0, 6, 4, 2}, {6, 2, 4, 5, 1}, {-1, -2, 5, 2, 3}; dd // MatrixForm $\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 7 & 8 & 9 \\
-3 & 0 & 6 & 4 & 2 \\
6 & 2 & 4 & 5 & 1 \\
-1 & -2 & 5 & 2 & 3
\end{pmatrix}$

Inverse[dd] // MatrixForm

$\frac{44}{35}$	$-\frac{4}{5}$	$-\frac{3}{35}$	<u>8</u> 35	$\frac{2}{7}$
$\frac{351}{35}$	$-\frac{31}{5}$	23 35	32 35	$\frac{8}{7}$
$\frac{621}{70}$	$-\frac{28}{5}$	$\frac{19}{35}$	$\frac{31}{35}$	$\frac{19}{14}$
$-\frac{179}{14}$	8	$-\frac{4}{7}$	$-\frac{8}{7}$	$-\frac{27}{14}$
59 70	$-\frac{2}{5}$	$-\frac{4}{35}$	$-\frac{1}{35}$	$\frac{3}{14}$

Rank---it does the row reduction for you:

MatrixRank[dd]

5

The rank is the same for the transpose, as it should be:

```
MatrixRank[Transpose[dd]]
```

5

Mathematica does row reduction for you. Technically this gives the "reduced row echelon form", with as many off-diagonal zeroes as possible.

RowReduce[dd] // MatrixForm

 $\left(\begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right)$

A simple example discussed in lecture notes:

```
MatrixRank[ee]
```

1

```
RowReduce[ee] // MatrixForm
```

 $\left(\begin{array}{cc} \mathbf{1} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{array}\right)$

More complicated functions of matrices

Mathematica has a built in function for exponentiating a matrix

Note that this is different from exponentiating in the usual way, which simply exponentiates each element.

```
E^aa // MatrixForm
```

 $\left(\begin{array}{cc} @ & @ \\ 1 & @^2 \end{array}\right)$

There's also a function for taking powers of matrices (which works for all complex powers too)

```
MatrixPower[aa, 10] // MatrixForm
```

 $\left(\begin{array}{rrr}1&1023\\0&1024\end{array}\right)$

MatrixPower[aa, -2] // MatrixForm

```
\left(\begin{array}{cc} \mathbf{1} & -\frac{\mathbf{3}}{\mathbf{4}} \\ \mathbf{0} & \frac{\mathbf{1}}{\mathbf{4}} \end{array}\right)
```

MatrixPower[aa, I]

 $\left\{ \left\{ 1\,\text{, }-1+2^{\text{i}} \right\} \text{, } \left\{ 0\,\text{, }2^{\text{i}} \right\} \right\}$