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Chapter 5

Algorithms
and Their
Object-Oriented
Implementation

In this chapter, we discuss computational problems, solution methods, and their efficient
implementation. We describe different approaches to writing algorithms to solve a particular
problem and compare their storage and computation requirements. The abstract objects used
here help not only to implement algorithms but also to develop them in the first place and
modify them later on if necessary. We illustrate these points in the implementation of the
"polynomial" object, along with useful arithmetic operations and functions. This object is
particularly useful in high-order finite elements, discussed later in the book.

5.1 Ideas and Their Implementation
The programmer has an idea in mind of how to complete a particular task. This idea can
usually be expressed in words in a natural language such as English. This formulation
makes the idea clearer and more practical; indeed, when you explain your idea to a friend
or colleague, it becomes clearer and more concrete to you too.

Describing the idea in words, however, is usually insufficient from a practical point
of view. A more useful description must take the form of a list of operations that can be
carried out one by one to produce the required solution to the problem under consideration.
This is called an algorithm.

The individual operations in the algorithm are still written in a natural language,
which may be somewhat vague and ambiguous. In fact, the interpretation of the terms in
the natural language may well depend on the context in which they are used. Therefore,
the algorithm must contain only unambiguous (context-free) instructions that can be carried
out by a human being or a machine.

When the idea is about how to solve a computational problem, it can often be written
in context-free formal language, using mathematical symbols, structures, and objects. This
is really the best way to formulate the idea, because then the algorithm derived from it can
also be written in terms of unambiguous mathematical instructions.

The original idea is useless unless it can be communicated to people and machines.
While humans can usually understand it in (context-dependent) natural language, machines
must have an explicit algorithm, written in context-free formal language. Translating the idea
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136 Chapter 5. Algorithms and Their Object-Oriented Implementation

into a formal algorithm is also helpful for the developers themselves, because it gives them
the opportunity to debug it and check whether or not it indeed does what it is supposed to do.

The most important step in using the idea is, thus, to formulate it in mathematical
language. This is where C++ comes to our aid: it provides the framework for defining the
required mathematical objects. These objects may serve as words in the formal language
in which the algorithm is written. Writing the original idea and algorithm in a high-level
programming language like C++ is called “implementation.”

Actually, the object-oriented approach not only helps to implement the idea and al-
gorithm in their original spirit but also provides the terms and objects required to think
about them and develop them in the first place. By introducing useful terms and objects,
it provides the required vocabulary to develop, express, and reshape the original raw idea,
until it ripens to its final form.

5.2 Multilevel Programming
In a high-level programming language, objects such as characters and numbers are available.
One can define variables that may take different values and manipulate them with unary and
binary operations and functions. These elementary objects, however, are usually insufficient
for implementing practical algorithms. In fact, even for elementary algorithms, abstract
mathematical objects are needed. Although these objects can in theory be implemented
using characters only, as in the original Turing machine, this approach is, of course, highly
impractical. Traditional programming languages that use arrays are of course better, but
the implementation of complex data structures in them may still be too complicated and
hard to read, use, and modify if necessary. A programming language with a high level of
abstraction is clearly necessary to implement complex mathematical structures.

With an object-oriented language like C++, one can implement sophisticated algo-
rithms using objects that are unavailable in the standard language. This is called “high-level
programming.” In this approach, the programmer assumes that the required objects and
functions that manipulate them are available. The actual implementation of these objects
and functions can be delayed to a later stage, called “low-level programming.”

High-level programming requires a good understanding of the algorithm and concepts
and ideas behind it. The programmer who writes the high-level code should write footnotes
about what objects exactly are needed and what functions should be available to manipu-
late them. These requirements should then be passed to a colleague who is experienced in
low-level programming. The programmer of the high-level code can now continue imple-
menting the algorithm in its original spirit, without being distracted by the details of the
implementation of the objects used for this purpose.

Low-level programming may require knowledge and experience in computer hardware
and memory. The programmer who does it should implement the objects as efficiently as
possible according to the requirements passed on from the programmer of the high-level
code.

The two programmers can thus work rather independently. The programmer of the
high-level code can concentrate on realizing the true meaning of the original algorithm,
having every abstract object available, while the programmer of the low-level code can
concentrate on the optimal storage-allocation strategy to implement the objects.

Copyright (c)2006 The Society for Industrial and Applied Mathematics

From: Solving PDEs in C++:
Numerical Methods in a Unified Object-Oriented Approach 

by Yair Shapira



“final3
2005/1
page 13

�

�

�

�

�

�

�

�

5.3. Information and Storage 137

The above workplan is ideal. In practice, interaction between the two programmers is
required, especially in complex numerical applications, where the efficiency requirements
in the low-level programming may put constraints on the high-level programming. Still,
dividing the project into high-level and low-level tasks is helpful as a starting point to help
organize the work on the entire project.

This method of work is called two-level programming. It is suitable not only for a
team with members who have different levels of knowledge and expertise but also for a
single programmer who must do the entire project. This programmer can still benefit from
dividing the job into high-level and low-level tasks and working on each of them separately
with full attention.

If the low-level programming is done properly and the required objects are well imple-
mented and sufficiently general, then they can be used in many algorithms and applications.
Actually, the programmer of the low-level code can start implementing objects that are com-
monly used even before having specific requirements, thus creating a library of objects for
future use. The objects should be well documented to make them useful for potential users,
to implement more complex objects and create more advanced libraries. The process may
continue, with higher and higher levels of programming that use objects from lower levels
to define new ones. This is called multilevel programming; it actually contributes to the
development of the standard programming language by introducing more and more objects
ready for future use.

5.3 Information and Storage
Each step in the computational algorithm requires data to complete a particular instruction.
These data can be either calculated or fetched from the computer memory. Obviously, data
that have already been calculated should be stored for future use unless recalculation is
cheaper than fetching.

Surprisingly, it often is. Storing and fetching can be so expensive and slow that it is
no longer worth it. Furthermore, it involves the extra effort of allocating sufficient memory
for new variables and giving them meaningful names to remind the user what kind of data
they contain. All this can make the code less elegant and harder to read and debug.

One of the great advantages of C is the opportunity to use functions that return the
required result, be it a number or a pointer to a sequence of numbers. This way, one can use a
function to recalculate data rather than fetch it from memory, provided that this recalculation
is not too expensive.

This feature is made yet more elegant in C++, where functions may take and return
actual objects rather than mere pointers. The high-level programming that uses such func-
tions is thus much more transparent and clear, because it avoids dealing with pointers or
addresses in the computer memory. Surely, a function that takes and returns objects is far
more useful and transparent than a function that takes and returns arrays of numbers.

C++ functions, however, may be slightly slower than the corresponding C functions,
because the returned objects may be constructed by an extra call to the constructor of the
class. For example, a C++ function may define and use a local object that contains the
required result, but then, in order to be returned as output, this object must be copied (by the
copy constructor of the class) to a temporary external object to store the result after the local
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138 Chapter 5. Algorithms and Their Object-Oriented Implementation

object has vanished. Still, this slight overhead is well worth it for the sake of transparent and
useful code. Furthermore, some C++ compilers support versions that reduce this overhead
to a minimum.

In what follows, we’ll illustrate the effectiveness of C++ in implementing the poly-
nomial object and related algorithms.

5.4 Example: The Polynomial Object
Here, we show how convenient it is to implement polynomials as objects in C++. The
object-oriented approach gives one the opportunity to define functions that take and return
objects rather than pointers or arrays, thus avoiding the need to deal with details of storage.
Furthermore, this approach enables the definition of useful arithmetic operations between
polynomials, such as addition, multiplication, etc.

We mainly consider two common problems: the multiplication of two polynomials
and the calculation of the value of a polynomial at a given point.

Consider the polynomial

p(x) ≡
n∑

i=0

aix
i,

where x is the independent variable, n is the degree of the polynomial (maximal power of
x), and a0, a1, . . . , an are the coefficients.

The first question is how to store the polynomial. To answer this question, observe
that the polynomial p(x) is characterized by its coefficients a0, a1, . . . , an. Thus, to store a
polynomial, it is sufficient to store its coefficients.

In C, one would naturally store the coefficients in an array; but then again, passing
them to a function involves getting into details of storage and distracts the programmer from
the mathematical algorithms.

It is far more efficient to do this in C++, using, e.g., the "list" object in Chapter 3,
Section 4. Indeed, the "polynomial" class can be derived from a list of numbers, so the
"polynomial" object is actually a list of coefficients. This object can then be passed easily
to functions by reference as usual, regardless of its internal implementation. Furthermore,
"polynomial" objects can also be returned as output from functions and used further as input
in subsequent calls to other functions.

Because the type of x and the ai’s is not yet specified, we use another powerful tool
available in C++: templates. This way, the parameter ’T’ in the "polynomial" template
class stands for the type of independent variable and coefficients and can be used in the
definition of the function. Because the particular type is immaterial in the algorithm used in
the function, the template also means that the type can be disregarded and the mathematical
concepts in the algorithm can be focused on. The concrete type substituted for ’T’ will
be specified later, when the compiler encounters calls to functions that use "polynomial"
objects. These functions can then be called for polynomials of the specified type: integer,
real, complex, etc.

Here is the code that derives the "polynomial" class from the base "list" class (Figure
5.1):
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5.4. Example: The Polynomial Object 139

�
base class

"list"

derived class

"polynomial"

Figure 5.1. Schematic representation of inheritance from the base class "list" to
the derived class "polynomial".

template<class T> class polynomial:public list<T>{
public:

polynomial(int n=0){
number = n;
item = n ? new T*[n] : 0;
for(int i=0; i<n; i++)

item[i] = 0;
} // constructor

polynomial(int n, const T&a){
number = n;
item = n ? new T*[n] : 0;
for(int i=0; i<n; i++)

item[i] = new T(a);
} // constructor with ’T’ argument

These constructors first implicitly invoke the default constructor of the base "list" class,
which constructs a trivial list with no items in it. Thanks to the fact that the "item" field in
the base "list" class is declared "protected" rather than private, the above constructors can
access and reconstruct it to contain meaningful coefficients.

The copy constructor and assignment operator don’t have to be defined, because the
corresponding operators in the base "list" class do the right thing, that is, copy or assign the
items in the argument one by one to the current object.

The following destructor also needs to do nothing, because the destructor of the base
"list" class (invoked implicitly at the end of it) destroys first the individual items in the
underlying list and then the list itself, as required:

˜polynomial(){
} // destructor

The following member function returns the degree of the polynomial:

int degree() const{
return number-1;

} // degree of polynomial
};

This concludes the block of the "polynomial" class.
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140 Chapter 5. Algorithms and Their Object-Oriented Implementation

Next, we also implement operators that add two polynomials. In particular, the "+="
operator takes two "polynomial" arguments and adds the second one to the first one:

template<class T>
const polynomial<T>&
operator+=(polynomial<T>& p, const polynomial<T>&q){

if(p.size() >= q.size())
for(int i=0; i<q.size(); i++)

p(i) += q[i];
else{

polynomial<T> keepQ = q;
p = keepQ += p;

}
return p;

} // add polynomial

This operator works as follows. If the degree of ’p’ is larger than or equal to the degree of
’q’, then the coefficients in ’q’ are added one by one to the corresponding coefficients in
’p’. In the addition of individual components, the "operator()" inherited from the base "list"
class is used to change the item "p(i)" on the left, whereas the "operator[]" is used to read
the item "q[i]" on the right.

If, on the other hand, the degree of ’p’ is smaller than that of ’q’, then the above
algorithm is no longer applicable. Instead, an inner call to the "+=" operator is made, with
the roles of ’p’ and ’q’ interchanged.

Because the "+=" operator is implemented here as a nonmember function, its first
(nonconstant) argument cannot be a temporary variable returned as output from another
function. Indeed, the compiler won’t accept such a call, because it makes no sense to
change a temporary object that is going to disappear soon anyway. This is why the extra
"polynomial" object "keepQ" is defined and passed as the first argument to the inner call to
the "+=" operator.

The above "+=" operator is now further used in the ’+’ operator, which returns the
sum of two polynomials:

template<class T>
const polynomial<T>
operator+(const polynomial<T>& p,

const polynomial<T>&q){
polynomial<T> keep = p;
return keep += q;

} // add two polynomials

Next, we implement the multiplication of a polynomial by a scalar. The "*=" operator takes
two arguments, a polynomial and a scalar, and multiplies the first by the second:
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5.5. Multiplication of Polynomials 141

template<class T>
const polynomial<T>&
operator*=(polynomial<T>& p, const T&a){

for(int i=0; i<p.size(); i++)
p(i) *= a;

return p;
} // multiplication by scalar

The above "*=" operator is now used in the ’*’ operator that returns the product of a scalar
and a polynomial:

template<class T>
const polynomial<T>
operator*(const T&a, const polynomial<T>&p){

polynomial<T> keep = p;
return keep *= a;

} // scalar times polynomial

Once the "polynomial" object, along with its arithmetic operations and other useful func-
tions, is properly implemented as above, it can be placed in a library of objects for further
use in high-level programming, such as the implementation of high-order finite elements
(Chapter 15). Because the details of implementation are well hidden in the private part
of the "polynomial" class, the implementation can later be changed if necessary, without
affecting the high-level codes and with no need to debug them again. For example, if one
deals mostly with sparse polynomials with only a few nonzero coefficients ai , then it makes
sense to store only these nonzero coefficients in a connected list (as in Chapter 16, Section
3) rather than a list. The low-level programming required for this change has absolutely
no effect on codes that use "polynomial" objects, provided that the interface remains the
same; that is, the reimplemented functions must still take and return the same arguments as
before.

Here, we are not particularly interested in sparse polynomials, so we stick to our
original implementation of a polynomial as a list of coefficients. The reason for this will
become clear in Section 5.13.

5.5 Multiplication of Polynomials
Let us now consider the problem of multiplying two polynomials. Letq(x)be the polynomial

q(x) ≡
k∑

i=0

bix
i .

The product polynomial pq is given by
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142 Chapter 5. Algorithms and Their Object-Oriented Implementation

(pq)(x) ≡ p(x)q(x)

=
n∑

i=0

k∑
j=0

aibjx
i+j

=
n+k∑
m=0


 ∑

i+j=m

aibj


 xm

=
n+k∑
m=0


 min(m,k)∑

j=max(0,m−n)

am−j bj


 xm.

Thus, the required polynomial pq is of degree n + k, and its coefficients are given in the
above formula in terms of the coefficients of p and q.

Once the polynomials are implemented as objects, the above formula can be used to
define the "operator*()" that takes two polynomials p and q and produces their product pq:

template<class T>
polynomial<T>
operator*(const polynomial<T>&p,const polynomial<T>&q){

polynomial<T> result(p.degree()+q.degree()+1,0);
for(int i=0; i<result.size(); i++)

for(int j=max(0,i-q.degree());
j<=min(i,p.degree()); j++){

if(j == max(0,i-q.degree()))
result(i) = p[j] * q[i-j];

else
result(i) += p[j] * q[i-j];

}
return result;

} // multiply two polynomials

The above ’*’ operator is also used to define the "*=" operator:

template<class T>
polynomial<T>&
operator*=(polynomial<T>&p, const polynomial<T>&q){

return p = p * q;
} // multiply by polynomial

The following program defines a polynomial with three coefficients of value 1, namely,
p(x) = 1 + x + x2. Then, it calls the ’*’ operator to produce the polynomial p2 and uses
the "print()" function in the base "list" class to print it onto the screen:

int main(){
polynomial<double> p(3,1);
print(p * p);
return 0;

}
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5.7. Algorithms and Their Implementation 143

5.6 Calculation of a Polynomial
Another common task that involves the polynomial p is to calculate its value p(x) at a given
point x. Here, we also benefit from the present implementation of the polynomial object,
which gives us the opportunity to pass it to the function as a whole, without bothering with
storage details.

Here is the function that takes the polynomial p and the point x and returns p(x):

template<class T>
const T
calculatePolynomial(const polynomial<T>&p, const T&x){

T powerOfX = 1;
T sum=0;
for(int i=0; i<p.size(); i++){

sum += p[i] * powerOfX;
powerOfX *= x;

}
return sum;

} // calculate a polynomial

Note that we have used here the local variable "powerOfX" to store the powers xi used in the
polynomial. This extra variable slightly reduces the elegance of the code. In what follows,
we’ll see an improved algorithm that is not only more efficient but also more elegantly
implemented.

5.7 Algorithms and Their Implementation
So far, we have discussed mostly implementation issues. We mentioned that object-oriented
languages such as C++ give us the opportunity to divide the entire project into two parts:
a low-level part, where elementary objects are implemented, and a high-level part, where
these objects are actually used to implement the algorithm in its original spirit. This two-
level approach also has the advantage that the well-implemented objects can be used not
only in the present algorithm but also in other algorithms and applications. Actually, the
low-level part of the project could extend to create an entire library of objects, ready for
future use. Furthermore, the hierarchy of the libraries could be built one on top of the other,
each of which uses objects from lower libraries to form more sophisticated objects. This is
called multilevel programming.

The low-level part of the code, where frequently used objects are implemented, should
be particularly efficient in terms of memory allocation and data access. The high-level part,
on the other hand, where the mathematical algorithm is implemented, should be as efficient
as possible in terms of operation count. Even more importantly, it should be modular,
transparent, and reader friendly, to aid not only potential readers but also the programmer
in the process of writing, debugging, and modifying if necessary.

Although efficiency is an important property, transparency and clarity may be even
more important to guarantee the correctness and usefulness of the code. The objects, in
particular, should be complete and ready to use in every future application. In particular,
storage details should be hidden from the users, who should remain completely unaware of
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144 Chapter 5. Algorithms and Their Object-Oriented Implementation

the internal structure of the objects and know them only by their mathematical properties,
available through interface functions.

Moreover, we would even recommend compromising efficiency for the sake of trans-
parency and clarity if necessary. For example, a function that returns an object uses an extra
call to the copy constructor of the class to construct the temporary output object. Although
this extra call reduces efficiency, it may be well worth it to make the code clearer. Indeed,
the returned object may be further used as input in other calls to other functions in the same
code line. Returning an object is far more appropriate than returning an array of numbers
with no apparent interpretation as a complete object.

Most often, there is mutual interaction between the high-level and low-level program-
mers. The high-level programmer may pass requirements to the low-level programmer,
but also receive feedback about how realistic the requirements are, and what the limits and
drawbacks are in the required objects. This feedback may lead the high-level programmer
to modify the original implementation and adapt it to hardware issues and limits.

Actually, even the developer of a mathematical algorithm is not entirely independent.
An algorithm may look efficient in terms of theoretical operation count but require objects
that are too hard to implement. Thus, although the algorithm is usually developed in a purely
mathematical environment, more practical implementation issues shouldn’t be ignored. (See
also Chapter 18, Section 14.)

The first concern of the algorithm developer is, of course, to reduce the theoretical
operation count. Fortunately, it turns out that algorithms that are efficient in this theoretical
sense are often also straightforward and efficient in terms of practical implementation.

One of the common principles of efficient algorithm is to avoid recalculating data
that can be easily fetched from the memory. In the next section, we’ll see an algorithm
that uses this principle in the present problem of calculating the value of a polynomial at
a given point. We’ll also see that this algorithm indeed has a straightforward and efficient
implementation.

5.8 Horner’s Algorithm
The first rule in efficient calculation is as follows:

Don’t open parentheses unless absolutely necessary!

Indeed, the distributive law says:

A(B + C) = AB + AC,

where A, B, and C are members of some mathematical field. Now, the right-hand side,
where no parentheses are used, requires two multiplications and one addition to calculate,
whereas the left-hand side, where parentheses are used, requires only one addition and one
multiplication. This is also the idea behind Horner’s algorithm for calculating the value of
a polynomial. In fact, this algorithm introduces in the polynomial as many parentheses as
possible.

The polynomial in Section 5.6 is actually calculated directly from the formula

p(x) =
n∑

i=0

aix
i .
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5.9. Calculation of a Power 145

Because the right-hand side contains no parentheses, it requires 2n multiplications (n mul-
tiplications to calculate the powers xi , and another n multiplications to multiply them by
the coefficients ai) and n additions. Can this number be reduced?

Yes, it can. The Horner algorithm uses the following formula:

p(x) = (· · · (((anx + an−1)x + an−2)x + an−3) · · ·)x + a0.

The process starts from the innermost parentheses, where the term with coefficient an is
calculated, and progresses gradually to the outer ones, to which the free coefficient a0 is
added at the end. Because of the large number of parentheses, the algorithm requires only
a total of n multiplications and n additions and is also implemented nicely as follows:

template<class T>
const T
HornerPolynomial(const polynomial<T>&p, const T&x){

T result = p[p.degree()];
for(int i=p.degree(); i>0; i--){

result *= x;
result += p[i-1];

}
return result;

} // Horner algorithm to calculate a polynomial

The algorithm is not only more efficient but also more efficiently implemented. Indeed, the
code is slightly shorter than the code in Section 5.6 and avoids the extra variable "powerOfX"
used there.

In the next section, we use the above algorithms to efficiently calculate the value of
the single power xn at a given point x. It turns out that, for this purpose, although Horner’s
algorithm is slightly less efficient, it is far more elegant and easy to understand and debug.
This tradeoff between efficiency and transparency arises often not only in simple examples
such as this one but also in complex applications, where elegance and transparency are
crucial for the sake of well-debugged and useful code.

5.9 Calculation of a Power
Usually, a polynomial is calculated for a real or complex argument x. Here, however, we
show that the concept of a polynomial with an integer argument is also helpful. Actually,
this polynomial is never calculated explicitly, because its value is already available. Still,
the actual representation of an integer number as a polynomial (as in Chapter 1, Section 18)
helps to solve the present problem.

Consider the following problem: for a given x and a large integer n, calculate xn

efficiently. Of course, this can be done using n multiplications in the recursive formula

xn = x · xn−1

(see Chapter 1, Section 17), but can it be done more efficiently?

Copyright (c)2006 The Society for Industrial and Applied Mathematics

From: Solving PDEs in C++:
Numerical Methods in a Unified Object-Oriented Approach 

by Yair Shapira



“final3
2005/1
page 14

�

�

�

�

�

�

�

�

146 Chapter 5. Algorithms and Their Object-Oriented Implementation

The answer is yes, it can be calculated in 2 log2 n multiplications only. For this
purpose, we use the binary representation of the integer n as a polynomial in the number 2:

n =
k∑

i=0

ai2
i ,

where the coefficients ai are either 0 or 1. With this representation, we have

xn = 
k
i=0 xai2i

,

which is the product of all the ai2i-powers of x. Now, the 2i-power of x can be calculated
by i applications of the substitution

x ← x2.

The total cost of the calculation is, thus, at most 2 log2 n multiplications.
The algorithm is implemented nicely as follows:

template<class T>
const T
power(const T&x, int n){

T result = 1;
T powerOfX = x;
while(n){

if(n % 2) result *= powerOfX;
powerOfX *= powerOfX;
n /= 2;

}
return result;

} // compute a power

In the body of the "while" loop above, the last digit in the binary representation of n is found
by the modulus operation n % 2. Once this digit has been used, it is dropped by dividing n

by 2 without residual. With this approach, the code is particularly elegant.
There is, however, an even better approach to calculating the power xn. This approach

is based on Horner’s polynomial. Recall that Horner’s representation of a polynomial p(x)

is actually based on the recursion

p(x) =
n∑

i=0

aix
i = a0 + xp1(x),

where

p1(x) ≡
n−1∑
i=0

ai+1x
i

is a polynomial of degree n−1. In fact, the polynomial p1(x) can be reformulated recursively
in the same way, leading eventually to the representation in Section 5.8.

Of course, the above recursive formulation is never used explicitly due to the large
cost of constructing p1(x) as a "polynomial" object. This is why the code in Section 5.8
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5.10. Calculation of Derivatives 147

actually "opens up" the recursion and starts from the end of it (the innermost parentheses),
going back to the beginning in an ordinary loop.

In the present problem, however, where the polynomial p(2) = n is just the binary
representation of the integer n, p1(2) = n/2 is immediately available by dividing n by 2
without residual. In fact, we have

n = (n % 2) + 2(n/2),

where n/2 means integer division without residual and n%2 contains the residual (see
Chapter 1, Section 18). This implies that

xn = xn % 2(x2)n/2.

This leads to the following recursive implementation of the "power()" function:

template<class T>
const T
power(const T&x, int n){

return n ? (n%2 ? x * power(x * x,n/2)
: power(x * x,n/2)) : 1;

} // compute a power recursively

This way, the "power()" function contains only one command. This style is particularly
efficient, because it avoids explicit definition of local variables. Because the "power()"
function is called recursively log2 n times, the total cost in terms of operation count is still
at most 2 log2 n multiplications, as before. However, one should also take into account the
extra cost involved in the recursive calls. In fact, in each recursive call, the computer needs
to allocate memory for the local variables ’x’and ’n’. Although ’x’ is passed by reference, its
address must still be stored locally in each recursive call. Nevertheless, this extra cost may
be well worth it for the sake of short and elegant code. Indeed, the recursive reformulation
of n is much shorter and simpler than the original explicit formulation, hence also easier to
debug. Although debugging is unnecessary for the present well-tested codes, it may pose
a crucial problem in complex applications. This is why writing short and elegant code is a
most attractive skill.

5.10 Calculation of Derivatives
In the above discussion, it is assumed that one needs to calculate only the nth power of x,
xn. But what if all powers x2, x3, . . . , xn are required? In this case, of course, it makes no
sense to use the above algorithms. The original approach is much more sensible:

xk = x · xk−1, k = 2, 3, . . . , n.

Indeed, this method computes all the required powers in n multiplications only.
The question raised now is where to store all these calculated powers. In C, one is

forced to use an array. But then again, an array is not a meaningful object, and passing it to
a function or returning it from a function makes little sense. The "list" object in Chapter 3,
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Section 4, is far more suitable for this purpose. Although the advantage of the "list" object
over the standard array may look tiny, it becomes essential in complex applications, where
many functions are applied to objects returned from other functions. Thus, using suitable
objects rather than standard arrays is most useful.

Consider, for example, the following problem: let f ≡ f (x) be a function of the
independent variable x. At a given point x, calculate the derivatives of f up to order n,
denoted by

f (0)(x) = f (x),

f (1)(x) = f ′(x),

f (2)(x) = f ′′(x),

f (k)(x) = f (k−1)′(x),

and so on. A suitable candidate for storing these derivatives for future use is the "list" object.
For example, when

f (x) = 1

x
,

we have

f (k)(x) = − k

x
f (k−1)(x).

The code that calculates and stores these derivatives is as follows:

template<class T>
const list<T>
deriveRinverse(const T&r, int n){

list<T> Rinverse(n+1,0);
Rinverse(0) = 1/r;
for(int i=0; i<n; i++)

Rinverse(i+1) = -double(i+1)/r * Rinverse[i];
return Rinverse;

} // derivatives of 1/r

This function returns the list of derivatives of 1/x up to and including order n. In the next
section, we’ll see how lists can also be used in the Taylor expansion of a function.

5.11 The Taylor Expansion
In this section, we discuss efficient ways to calculate the Taylor expansion of a function
f (x). Let x be fixed, and let h be a small parameter. Assume that f has sufficiently many
derivatives in the closed interval [x, x + h]. The Taylor expansion of order n at x + h gives
the value of the function at x + h in terms of the values of the function and its derivatives
at x, plus an error term that involves the (n + 1)th derivative at an intermediate point
x ≤ ξ ≤ x + h:

f (x + h) =
n∑

i=0

f (i)(x)hi

i! + f (n+1)(ξ)hn+1

(n+ 1)! .
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5.11. The Taylor Expansion 149

When f is sufficiently smooth, one can assume that the (n+1)th derivative of f is bounded
in [x, x + h], so for sufficiently large n the error term is negligible. In this case, a good
approximation to f (x + h) is given by

f (x + h)
.=

n∑
i=0

f (i)(x)hi

i! .

The computational problem is to calculate this sum efficiently. This problem contains two
parts: first, to find an efficient algorithm, and then to implement it efficiently and elegantly
on a computer.

The elementary task in the implementation is to pass the required information about
f and its derivatives at x to the computer. The function "Taylor()" in the code below must
have as input the numbers f (x), f ′(x), f ′′(x), . . . , f (n)(x) before it can start calculating
the Taylor approximation to f (x + h). As discussed above, these numbers are placed and
passed to the function in a single "list" object. This way, the programmer who writes the
function can disregard storage issues and concentrate on the mathematical algorithm.

Since the above Taylor approximation is actually a polynomial of degree n in h, one
may use a version of the algorithm in Section 5.6. In this version, the terms in the polynomial
are calculated recursively by

hi

i! =
h

i
· hi−1

(i − 1)! .

These terms are then multiplied by f (i)(x) (available in the input "list" object) and added on
to the sum. We refer to this version as the standard algorithm; it is implemented as follows:

template<class T>
const T
Taylor(const list<T>&f, const T&h){

T powerOfHoverIfactorial = 1;
T sum=0;
for(int i=0; i<f.size()-1; i++){

sum += f[i] * powerOfHoverIfactorial;
powerOfHoverIfactorial *= h/(i+1);

}
return sum;

} // Taylor approximation to f(x+h)

Note that the last item in the input list, which contains the (n+1)th derivative, is not actually
used here; it is reserved for the purpose of estimating the error (see Chapter 6, Section 10).

The above standard algorithm requires a total of 3n multiplications and n additions.
A more efficient algorithm is a version of the Horner algorithm in Section 5.8. This version
is based on the observation that the Taylor approximation can be written in the form(

· · ·
((

f (n)(x)
h

n
+ f (n−1)(x)

)
h

n− 1
+ f (n−2)(x)

)
h

n− 2
· · ·
)

h

1
+ f (0)(x).

The following code implements this formula:
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template<class T>
const T
HornerTaylor(const list<T>&f, const T&h){

T result = f[f.size()-2];
for(int i=f.size()-2; i>0; i--){

result *= h/i;
result += f[i-1];

}
return result;

} // Horner algorithm for Taylor approximation

This code requires only 2n multiplications and n additions. Furthermore, its implementation
is slightly shorter and more elegant.

The question is, though, is it worth it? The standard algorithm has one major advan-
tage: it adds the terms in the natural order, from 0 to n. This is not only more in the spirit
of the original formula but also more economic in terms of storage in some cases.

Consider, for example, a “short-memory” process, in which f (i)(x) depends only on
the previous number f (i−1)(x), but not on the yet previous numbers f (x), f ′(x), f ′′(x), . . . ,

f (i−2)(x) (Figure 5.2). In this case, it makes more sense to calculate f (i)(x) inside the loop
and drop it once it has contributed to the sum and has been used to calculate the next
number f (i+1)(x). Actually, the new number f (i+1)(x) can be stored in the same variable
used previously to store the old number f (i)(x). This strategy, however, is possible only
in the standard algorithm, where terms are added in the natural order, but not in Horner’s
algorithm, where they are added in the reverse order (Figure 5.3). Thus, the standard
algorithm becomes in this case much more attractive, because it can avoid storing and
passing input to the "Taylor()" function.

� � �f (x) f ′(x) f ′′(x) f ′′′(x)

Figure 5.2. Short-memory process: for fixed x, each derivative can be calculated
from data about the previous one only.

In our applications, however, we are mainly interested in “long-memory” processes,
in which f (i)(x) depends not only on the previous number f (i−1)(x) but also on all the yet
previous numbers f (x), f ′(x), f ′′(x), . . . , f (i−2)(x) (Figure 5.4). In this case, the list of
derivatives must be stored in its entirety as in the above codes, so the Horner algorithm is
preferable thanks to its lower cost in terms of operation count.

We’ll see examples of the short-memory process in Chapter 6, Section 9, and the
long-memory process in Chapter 6, Section 14. In the next section, we illustrate how useful
it is to pass entire lists to a function, particularly when all the items in them are combined
to produce the required result.
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� �

�
�

�
�

�
�

�
��

standard algorithm Horner algorithm

short-memory process long-memory process

Figure 5.3. Horner’s algorithm is preferable in a long-memory process, where the
derivatives must be calculated and stored in advance anyway, but not in a short-memory
process, where they are better used and dropped, as can be done only in the standard
algorithm.

�
��

�
��

�
��

�

�
�

f (x)

f ′(x)

f ′′(x)

f ′′′(x)

Figure 5.4. Long-memory process: for fixed x, the calculation of each derivative
requires data about all the previous ones.

5.12 Derivatives of a Product
In this section, we show why it is particularly important to have the opportunity to store
the list of derivatives as an object. For this purpose, we present a function that takes list
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152 Chapter 5. Algorithms and Their Object-Oriented Implementation

arguments and combines all the items in them in the calculation. This function will be
particularly useful in the long-memory process in Chapter 6, Section 14.

Assume that the derivatives of the functions f (x) and g(x) at a given point x up to and
including order n are available. Compute the nth derivative of the product fg at x, denoted
by

(fg)(n)(x).

Note that this quantity has the same algebraic structure as Newton’s binomial:

(f + g)n =
n∑

i=0

(
n

i

)
f ign−i .

The only difference is that here the sum is replaced by a product, and the power is replaced
by a derivative. Therefore, we have the formula

(fg)(n) =
n∑

i=0

(
n

i

)
f (i)g(n−i)

at the given point x.
This formula is implemented in the code below. The function "deriveProduct()" takes

as input two "list" objects that contain the derivatives of f and g up to and including order
n at the fixed point x and returns the nth derivative of fg at x. It is assumed that a global
array of integers that contains Pascal’s triangle is available. This array, named "triangle", is
formed in advance, as in Chapter 1, Section 19, and placed in a global domain accessible
to the "deriveProduct()" function. This seems to be a better strategy than recalculating the
required binomial coefficients each time the function is called:

template<class T>
const T
deriveProduct(const list<T>&f,const list<T>g,int n){

T sum = 0;
for(int i=0; i<=n; i++)

sum += triangle[n-i][i] * f[i] * g[n-i];
return sum;

} // nth derivative of a product

5.13 Polynomial of Two Variables
The polynomial

∑
aix

i in Section 5.4 is implemented as the list of coefficients a0, a1,
a2, . . . , an. This implementation is appropriate because the polynomial is defined uniquely
by its coefficients.

Still, one may ask, why use a list rather than a vector? After all, the coefficients are all
of the same type, so they can be safely stored in a vector of dimension n+ 1. Furthermore,
a vector is more efficient than a list thanks to direct indexing, that is, using an array to
store the coefficients themselves rather than their addresses. This saves not only storage but
also valuable time, by using efficient loops over the coefficients stored continuously in the
computer memory. Why then use a list?
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5.13. Polynomial of Two Variables 153

The answer is that, in some cases, the coefficients in the polynomial occupy different
amounts of memory, and hence cannot be stored in an array. Consider, for example, the
polynomial of two independent variables x and y:

p(x, y) ≡
∑

i+j≤n

ai,j x
iyj ,

where i and j are nonnegative indices, ai,j are the given coefficients, and n is the degree of
the polynomial. This polynomial may also be written in the form

p(x, y) =
n∑

k=0

∑
i+j=k

ai,j x
iyj

=
n∑

k=0


 k∑

j=0

ak−j,j

(y

x

)j


 xk.

In this form, p(x, y) can be viewed as a polynomial of degree n in x, with coefficients that
are no longer scalars but rather polynomials in y/x. In fact, the kth coefficient is by itself
the polynomial of degree k in y/x, given by

ak(y/x) ≡
k∑

j=0

ak−j,j

(y

x

)j

.

Thus, the original polynomial p(x, y) can be implemented as the list a0(y/x), a1(y/x),
a2(y/x), . . . , an(y/x). Each item in this list is a polynomial in its own right, thus also
implemented as a "polynomial" object. More specifically, the original polynomial p(x, y)

is implemented as a polynomial of polynomials, or a "polynomial<polynomial<T> >" object,
whose kth item is the polynomial ak(y/x). The polynomial ak(y/x) is defined and stored
in terms of its own coefficients ak,0, ak−1,1, ak−2,2, . . . , a0,k .

Clearly, this implementation is possible thanks to the fact that the "polynomial" class is
derived from the "list" class, which may contain items of different sizes (such as polynomials
of different degrees). With this implementation, it is particularly easy to multiply two
polynomials of two variables. (This operation is particularly useful in high-order finite
elements in Chapter 15.) Here is how this is done.

Let q(x, y) be another polynomial of two variables:

q(x, y) ≡
m∑

k=0

bk(y/x)xk,

where bk(y/x) is by itself a polynomial of degree k in y/x. Then, the product of p and q is

(pq)(x, y) ≡ p(x, y)q(x, y)

=
m+n∑
k=0


 min(k,m)∑

j=max(0,k−n)

ak−j (y/x)bj (y/x)


 xk.
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Note that the product of polynomials ak−j (y/x)bj (y/x) in the above parentheses is by itself
a polynomial of degree k in y/x, so the sum in these parentheses is also a polynomial of
degree k in y/x. This sum of products can be calculated using arithmetic operations between
polynomials of a single variable (Sections 5.4 and 5.5). Thus, the required product of p and q

can be carried out in the same way as in Section 5.5; the only difference is that the coefficients
ak−j and bj are polynomials rather than scalars, and hence the arithmetic operations between
them are interpreted as arithmetic operations between polynomials rather than scalars. This
interpretation is used automatically once the compiler encounters polynomials rather than
scalars.

The multiplication operator in Section 5.5 can thus be used for polynomials of two
variables as well. Indeed, it works just as before, with the template ’T’ in it (denoting the
type of coefficient) specified to be "polynomial". For example, the following code computes
and prints to the screen the coefficients of the polynomial (1+ x + y)2:

int main(){
polynomial<polynomial<double> >

p2(2,polynomial<double>(1,1));
p2(1) = polynomial<double>(2,1);
print(p2 * p2);
return 0;

}

5.14 Integration of a Polynomial
Here we show how convenient it is to use the "polynomial" object to calculate integrals in
certain domains. (This task is required, e.g., in high-order finite elements in Chapter 15.)

We start with a polynomial of one independent variable:

p(x) =
n∑

i=0

aix
i .

The integral of this polynomial in the unit interval [0, 1] is
∫ 1

0
p(x)dx =

n∑
i=0

ai

∫ 1

0
xidx =

n∑
i=0

ai

i + 1
.

This formula is implemented in the following code:

template<class T>
const T
integral(const polynomial<T>&p){

T sum = 0;
for(int i=0; i<p.size(); i++)

sum += (1./(i+1)) * p[i];
return sum;

} // integral in the unit interval
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0 1

Figure 5.5. The triangle in which the polynomial p(x, y) is integrated.

Next, we consider the problem of integrating a polynomial of two independent variables x

and y in the right-angle triangle in Figure 5.5. Consider the polynomial p(x, y) given by

p(x, y) =
n∑

k=0

∑
i+j=k

ai,j x
iyj

=
n∑

k=0

k∑
j=0

ak−j,j y
j xk−j .

The integral of this polynomial in the triangle in Figure 5.5 takes the form

∫
p(x, y)dxdy =

n∑
k=0

k∑
j=0

ak−j,j

∫ 1

0

(∫ 1−x

0
yjdy

)
xk−j dx

=
n∑

k=0

k∑
j=0

ak−j,j

∫ 1

0

(1− x)j+1

j + 1
xk−j dx.

Thus, we have every tool required for calculating this integral. Indeed, since 1 − x is a
polynomial in x, and we already know how to multiply polynomials, we can compute the
polynomials

(1− x)j+1 = (1− x)j (1− x) (j = 2, 3, 4, . . . , n).

Furthermore, we know how to multiply these polynomials by the polynomials xk−j and
scalars ak−j,j /(j + 1). Finally, we also know how to sum these polynomials and integrate
in the unit interval. This completes the algorithm for integrating p(x, y) in the triangle in
Figure 5.5.

Here is the code that implements this algorithm:
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template<class T>
const T
integral(const polynomial<polynomial<T> >&p){

polynomial<T> sum(p.size()+1,0);
polynomial<T> one(1,1);
polynomial<T> x(2,0);
x(1) = 1;
polynomial<T> oneMinusX(2,1);
oneMinusX(1) = -1;
list<polynomial<T> > xPowers(p.size(),one);
list<polynomial<T> > oneMinusXpowers(p.size()+1,one);
for(int i=1; i<p.size(); i++)

xPowers(i) = x * xPowers[i-1];
for(int i=1; i<=p.size(); i++)

oneMinusXpowers(i) = oneMinusX * oneMinusXpowers[i-1];
for(int k=p.degree(); k>=0; k--)

for(int j=0; j<=k; j++)
sum += (p[k][j]/(j+1))

* oneMinusXpowers[j+1] * xPowers[k-j];
return integral(sum);

} // integral in the triangle

Although this function bears the same name as the previous function that integrates in the
unit interval, no ambiguity occurs. Indeed, when the function is actually called, the compiler
looks at its concrete argument. If it is a polynomial of one variable, then the previous version
is invoked. If, on the other hand, it is a polynomial of two variables, then this version is
invoked.

5.15 Exercises
1. Use the code in Section 5.5 to compute the coefficients of the polynomial

(1+ 2x + 2x2 + x3)2.

2. Use the above code in a loop to compute the coefficients of the polynomial

(a + bx)n,

where a and b are some real numbers and n is a large integer number. Verify that the
result agrees with Newton’s binomial:

(a + bx)n =
n∑

i=0

(
n

i

)
an−ibixi .

3. Compare the efficiency and accuracy of the functions in Sections 5.6 and 5.8 in
calculating the value of the polynomial

N∑
n=0

xn = xN+1 − 1

x − 1

at the points x = 2, x = 3, and x = 4.
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4. It would be more in the spirit of object-oriented programming to rename the functions
in Sections 5.6 and 5.8 as "operator()". This function should then be a member of the
"polynomial" class and take only one argument ’x’ to return the value of the current
"polynomial" object at ’x’. This way, the function can be simply called as "p(x)"
to return the value of the polynomial ’p’ at ’x’. This way, the function doesn’t act
on ’p’ but rather reflects its property to return different values for different values of
’x’. Why is this impossible here? Is it because the base "list" class already uses an
"operator()" that shouldn’t be overridden? Can you get around this problem?

5. Use the code segments in Section 5.9 to calculate

210, 220, 317, 716, . . . .

Compare the results with those of the recursive "power()" function in Chapter 1,
Section 17, in terms of efficiency and correctness.

6. Which code segment in Section 5.9 do you find particularly easy to read, understand,
and modify? What writing style and programming strategy is most suitable for you?

7. Use the code in Section 5.10 to compute the lists of derivatives of the function f (x) =
1/x at the points x = 2, x = 3, and x = 4.

8. Use the above lists and the code in Section 5.11 to approximate 1/(2.1), 1/(2.9), and
1/(3.9), using the Taylor expansion around x = 2, x = 3, and x = 4 (respectively).
Verify that the error is indeed within the expected error estimate.

9. Which algorithm in Section 5.11 is more efficient in the calculation in the previous
exercise?

10. Apply the code in Section 5.12 to construct the list of derivatives of the function
1/x2 = (1/x)(1/x) at x = 1, x = −1, and x = 0.5.

11. Use the lists from the previous exercise in the code in Section 5.11 to obtain the
Taylor approximation to 1/(0.9)2, 1/(−1.1)2, and 1/(0.45)2. Are the errors within
the expected error estimates?

12. Apply the code in Section 5.12 with the above lists to construct the list of derivatives
of the function 1/x4 = (1/x2)(1/x2) at x = 1, x = −1, and x = 0.5.

13. Use the lists from the previous exercise in the code in Section 5.11 to obtain the
Taylor approximation to 1/(0.9)4, 1/(−1.1)4, and 1/(0.45)4. Are the errors within
the expected error estimates?

14. Construct the lists of derivatives of the functions sin(x), cos(x), and sin(2x) at the
points x = 0, x = π/4, and x = π/3.

15. Use the lists of derivatives of sin(x) and cos(x) calculated above in the code in Section
5.12 to construct the list of derivatives of the function

sin(2x) = 2 sin(x) cos(x).

Compare the results with those from the previous exercise.
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16. Use the lists from the previous exercise in the Taylor expansion around the above
points, and verify that the errors are indeed within the expected error estimates.

17. Which code in Section 5.11 do you find particularly easy to read, understand, and
modify? What writing style and programming strategy is most suitable for you?

18. Use the code in Section 5.13 to compute the coefficients of the polynomial of two
variables

(1+ 2x + 2y + x2 + xy + y2)2.

19. Use the above code in a loop to compute the coefficients of the polynomial of two
variables

(ax + by)n,

where a and b are some real numbers and n is a large integer number. Verify that the
result agrees with Newton’s binomial:

(ax + by)n =
n∑

i=0

(
n

i

)
aibn−ixiyn−i .

20. Use the code in Section 5.14 to calculate the integral of the above polynomials in
the triangle in Figure 5.5. Verify that the result is indeed correct by calculating it
manually.

21. Write a function that calculates the value of a polynomial of two variables p(x, y) as
follows. First, the polynomial is written in the form

p(x, y) =
n∑

k=0

ak(y/x)xk,

as in Section 5.13. In this form, p(x, y) can be passed to the function as a "polyno-
mial<polynomial<T> >" object, in which the coefficients are themselves polynomials.
In fact, the kth coefficient in p(x, y) is ak(y/x), which contains the coefficients ak,0,
ak−1,1, ak−2,2, . . . , a0,k . Now, the "HornerPolynomial" function in Section 5.8 is
called to compute the individual ak(y/x). These values are stored in a local "polyno-
mial<T>" object, to which the "HornerPolynomial()" function is applied to produce
the required value p(x, y).

22. Rewrite your code from the previous exercise in a short-memory approach, in which
the ak(y/x)’s are calculated one by one and deleted right after the term ak(y/x)xk is
calculated and added to the current sum that will eventually produce p(x, y). In this
approach, the ak(y/x)’s don’t have to be stored in a local "polynomial<T>" object.
However, the final call to the Horner algorithm must be replaced by the standard
algorithm in Section 5.6. How does your present code compete with the code in the
previous exercise?
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5.15. Exercises 159

23. Let f (x, y) be a given function of two variables, and let x and y be fixed. Consider
the polynomial p(hx, hy) of the two variables hx and hy , whose coefficients are given
by

ai,j

1

i! · j ! ·
∂i+j f

∂ix∂jy
(x, y).

Actually, p(hx, hy) is the Taylor approximation of f (x + hx, y + hy):

f (x + hx, y + hy)
.= p(hx, hy).

Use the algorithms in the two previous exercises to calculate the Taylor approximation
of the function f (x, y) = sin(x) cos(y) at x = ±π/4, y = ±π/3, hx = ±0.1, and
hy = ±0.1. Verify that the approximation indeed improves as n (the degree of p)
increases.

24. Compare your code from the previous exercise to your answer to a similar exercise
at the end of Chapter 3. Do you obtain the same numerical results? Which code is
more efficient? Which code is more transparent?

25. Use the guidelines in Section 5.13 to implement polynomials of three variables x, y,
and z.
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