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Abstract Global warming and the associated rise in extreme temperatures substantially increase the chance
of concurrent droughts and heat waves. The 2014 California drought is an archetype of an event characterized
by not only low precipitation but also extreme high temperatures. From the raging wildfires, to record low
storage levels and snowpack conditions, the impacts of this event can be felt throughout California. Wintertime
water shortages worry decision-makers the most because it is the season to build up water supplies for the rest
of the year. Here we show that the traditional univariate risk assessment methods based on precipitation
condition may substantially underestimate the risk of extreme events such as the 2014 California drought
because of ignoring the effects of temperature. We argue that a multivariate viewpoint is necessary for
assessing risk of extreme events, especially in a warming climate. This study discusses a methodology for
assessing the risk of concurrent extremes such as droughts and extreme temperatures.

1. Introduction

The warming global climate has increased concurrent climatic extremes such as droughts and heat waves
[Leonard et al., 2014; Hao et al., 2013]. The increase in global temperatures [Perkins et al., 2012; Easterling et al.,
2000; Sheffield and Wood, 2008] substantially increases the probability that multiple extremes such as
droughts and heat waves will occur simultaneously. While increased warming due to climate changemay not
cause droughts, it is expected to intensify drought severity [Trenberth et al., 2013]. Several recent events—
such as the 2014 California, 2010 Russian, 2003 European droughts and heat waves—are characterized by
concurrent extreme high temperatures and low precipitation. Despite the well-recognized interdependence
between temperature and precipitation [Adler et al., 2008], little attention has been paid to risk analysis of
concurrent extreme droughts and heat waves.

Traditionally, the concepts of return level and return period provide critical information for risk assessment and
decision-making [Rosbjerg and Madsen, 1998]. The return level with a T year return period represents
an event that has a 1/T chance of occurrence in any given year [Cooley et al., 2007]. Typically, extreme events
are evaluated based on one indicator variable in univariate framework (e.g., drought based on deficit in
precipitation, extreme temperature based on high quantiles of temperature data [Katz, 2010; Villarini et al.,
2009; Cheng et al., 2014a; Zhang et al., 2001; Kharin and Zwiers, 2005]). Despite their significant impacts, limited
studies have focused on statistics of concurrent climatic extremes [e.g., Hao et al., 2013; Easterling et al., 2000;
Zhang et al., 2000; Beniston, 2009; Cheng et al., 2014b; Estrella and Menzel, 2012]. In fact, traditional risk
assessment methods that rely on only one variable may not accurately represent concurrent extremes and
could lead to significant underestimation of the risk of extremes [Gräler et al., 2013]. In recent years, multivariate
copulas have beenwidely used for assessing the relationship between climate variables and extremes [Serinaldi
et al., 2009; Hao et al., 2014; Salvadori et al., 2007; AghaKouchak, 2014; Nazemi and Elshorbagy, 2012; Pan et al.,
2013]. Multivariate copulas can be used for deriving probability occurrence and return period of dependent
variables [Grimaldi and Serinaldi, 2006a, 2006b; Salvadori et al., 2013]. Here we assess the 2014 California
drought, which has created a significant water crisis in the state [AghaKouchak et al., 2014]. This event is
characterized by not only extreme low precipitation but also extreme high temperatures. The event has
triggered wildfires and led to record low storage levels and snowpack conditions. Wintertime water shortages
worry decision-makers the most because it is the season to build up water supplies for the rest of the year.
Using the 2014 California rainy season information, we investigate univariate andmultivariate viewpoints to risk
assessment, based on precipitation and joint precipitation-temperature extremes. We argue that a concurrent
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extreme viewpoint provides additional information that cannot be achieved through the commonly used
univariate return period analysis.

2. Data

Monthly precipitation and temperature values (1896–2014) are obtained from the United States Climate
Divisional Database, available through the National Oceanic and Atmospheric Administration (NOAA)
available from http://www.ncdc.noaa.gov/cag/time-series/us. Daily maximum temperature data, used for
assessing extreme temperature conditions, are based on ground-based observations from NOAA’s
Automated Surface Observation System, Personal Weather Stations, and the Meteorological Assimilation
Data Ingest System.

3. Methodology

Based on the Weibull’s approach, the univariate return period of an m-ranked extreme event in an N year

annual series, sorted from the most extreme to the least extreme, is estimated as T ¼ Nþ1
m [Chow, 1964]. The

concurrent extreme return period analysis is based on the concept of copulas designed to model the
dependence between multiple variables [Nelsen, 2007]. Assuming two variables X (precipitation) and Y
(temperature) with cumulative distribution functions FX(x) = Pr(X ≤ x) and FY(y) = Pr(Y ≤ y), the copula (C) can
be used to obtain their joint distribution function:

F x; yð Þ ¼ C FX xð Þ; FY yð Þð Þ (1)

where F(x, y) is the joint distribution function of X and Y [Salvadori and De Michele, 2004]:

F x; yð Þ ¼ Pr X ≤ x; Y ≤ yð Þ (2)

From the joint distribution function, the so-called joint survival distribution F x; yð Þ ¼ Pr X > x; Y > yð Þ can be
obtained using the concept of survival copula [Salvadori et al., 2013, 2011]:

F x; yð Þ ¼ Ĉ FX xð Þ; FY yð Þ� �
(3)

where FX and FY (i.e., FX ¼ 1� FX ; FY ¼ 1� FY ) are the marginal survival functions of X and Y, and Ĉ is the
survival copula.

For any given X,Y ∈ Rd, there exists a unique survival critical layer (or isoline), on which the set of realizations of

X and Y share the same probability t ∈ (0, 1) [Salvadori et al., 2011]: F
t ¼ x; y ∈ Rd : F x; yð Þ ¼ t

� �
, where F

t

is the survival critical layer associated with the probability t. Similar to the univariate return period analysis,
the survival return period of X and Y is defined as follows:

κXY ¼ μ
1� K tð Þ (4)

where κXY is called the survival Kendall’s return period; μ> 0 is the average interarrival time of X and Y (μ=1
indicates the average interarrival time between subsequent values in the time series is 1 year); and K is the
Kendall’s survival function associated with F defined as

K tð Þ ¼ Pr F X; Yð Þ ≥ t� �

¼ Pr Ĉ FX xð Þ; FY yð Þ� �
≥ t

� � (5)

For any return period T, the corresponding survival critical layer  F
t can be estimated by inverting the

Kendall’s survival function K tð Þ at the probability level p ¼ 1� μ
T :

q ¼ q pð Þ ¼ K
�1

pð Þ (6)

where q is the survival Kendall’s quantile of order p.

Having the survival Kendall’s quantile q, the corresponding survival critical layer  F
t presents the set of

realizations (i.e., X and Y) sharing a joint return period T [Salvadori et al., 2013]. There are different copula
families that can be used for joint return period analysis. Here we have used different copulas and tested their
goodness of fit using the maximum likelihood method and statistical p values [Genest et al., 1995; Kojadinovic
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and Jun, 2010]. We have selected the so-called t copula [Nelsen, 2007] that led to an acceptable p value (0.277)
indicating a representative fit at 95% confidence (i.e., 0.05 significance level)—Figure S1 in the supporting
information shows the fitted copula against the empirical observations.

4. Results and Discussion

Considering precipitation deficit, the 2014 California drought is not the most extreme event in the historical
record, with 243.6mm average precipitation (Figure 1a, red bar). In fact, based on the November–April
precipitation data since 1896, California has experienced worse extreme droughts, including in 1977, a year
with only 163.1mm average precipitation (approximately 50% less than the 2014 drought). Instead,
substantially warmer temperatures and several heat waves during the 2014 California drought make this
event unique and extreme. Over the past 119 years, November to April 2014 has been the warmest period on
record with an average temperature of 10.7°C (in comparison 1977 was only the 33rd warmest year, with an
average temperature of 8.9°C; Figure 1b). In addition to extreme monthly temperature, several daily
maximum temperature records were set across California. Figure 2 displays the average percent increase in
maximum daily temperature relative to the long-term mean daily maximum temperature during 13 to 20
January 2014 when an extreme heat wave affected almost the entire state. The event resulted in summer
time temperature in climatologically coldest month in the year. The extreme daily maximum temperatures
exceeded the long-term mean daily maximum by 90% in some locations, which led to very dry soil and
significant stress on the ecosystem.

If we consider only precipitation information, the return period (recurrence interval) of the 2014 California
drought (November–April) is approximately 24 years (see section 3). If we consider only temperature, the
recurrence interval of the extreme heat during the California drought is estimated at approximately
120 years. Of course, extreme precipitation and temperature do not necessarily happen at the same time

Figure 1. Ranked historical average November–April (a) precipitation and (b) temperature data for California.
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(e.g., 1977 with record precipitation
extreme and near average temperature).
However, an extreme condition
combined with another nonextreme
condition could lead to a compound
extreme event with significant impacts
[Leonard et al., 2014; Hao et al., 2013].

An important question is as follows: what
is the risk of a compound extreme such
as the 2014 California drought? We
argue that in a changing climate,
assessing the risk of climatic extremes
(i.e., probability of occurrence of
extremes) should be evaluated using a
multivariate framework that can account
for compound and concurrent extremes.
Using the survival copula, presented in
section 3, the combination of extreme
precipitation and temperature
conditions observed in 2014 in California
appears to be a 200 year extreme event
(Figure 3). The blue dots in Figure 3
indicate historical observations of

precipitation and temperature anomalies, and the contour lines represent compound return periods from
T=10 to T=200 years. An event in the upper right corner (lower left) in Figure 3 corresponds to a warm-dry
(cold-wet) condition.

Commonly used univariate risk estimation approaches significantly underestimate or overestimate the return
period (risk of occurrence) of the 2014 California drought. Figure 4 indicates that the most extreme event
(with respect to precipitation in California) had a recurrence interval of 120 years (the 1977 drought).
However, with respect to both temperature and precipitation, the 1977 condition was only a 50 year event
(see section 3). On the contrary, the 2014 drought, even with more precipitation, is categorized as a more
extreme event (200 year return period) due to extreme temperature and precipitation conditions. Figure 4

displays the compound extreme return
levels of three extreme droughts in
California (i.e., 1924, 1977, and 2014)
and their corresponding univariate
precipitation-based return periods
(x axis in Figure 4).

Our analysis demonstrates the
importance of considering concurrent
extremes, especially in light of the
recent decades’ rising temperatures
[Perkins et al., 2012]. We argue that
defining extreme climatic events with
respect to their impacts and providing
reliable risk measures are important
directions for future research [Hegerl
et al., 2011].

5. Conclusions

Traditionally, the notion of “return
period” is used to estimate the risk

Figure 3. Concurrent temperature and precipitation extremes return period
based on November–April data from 1896 to 2014. The blue dots represent
historical observations, and the isolines show the return periods.

Figure 2. Average percent increase in maximum daily temperature
relative to the long-term mean daily maximum temperature during
13–20 January 2014.
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(occurrence probability) of an extreme
event. We argue that the global warming
and the associated increase in extreme
temperatures substantially increase the
chance of concurrent droughts and heat
waves. Using data from the 2014 California
drought, we show that a univariate return
period analysis based on precipitation,
commonly used in hydrology, substantially
underestimates the occurrence probability
of the 2014 California drought because of
ignoring the effects of temperature. This is
even more important for regions like
California where a drying trend has been
observed [Damberg and AghaKouchak,
2014], and a warmer and drier climate is
expected in future [Seager et al., 2007;
Cayan et al., 2008, 2010] with potential
impacts on the ecosystem, water
availability, energy production, and
agriculture industry [Connell-Buck et al.,
2011; Zhu et al., 2005; Tanaka et al., 2006;

Lund et al., 2003;Madani and Lund, 2010; Tarroja et al., 2014a, 2014b]. Historically, California has faced summer
fraught with difficult decisions as demands from farms that help feed the nation clash with the water needs
of city residents.

We argue that a concurrent extreme viewpoint is necessary for assessing risk of extremes, especially in a
warming climate. In fact, critical water resource decisions are often made based on severity of extreme
droughts, estimated by their return periods. A compound extreme return period analysis approach allows
obtaining more realistic estimates of risk of climate extremes and their recurrence interval. More reliable
estimates of the severity of climatic conditions in the rainy season, provides the basis for better short-term
(seasonal) decision-making.

The framework discussed in this paper is general and can be applied to various land surface and climate
variables as well as climatic oscillation indices. Furthermore, the framework can be used for frequency
analysis and risk assessment of any combinations of concurrent extremes. Interested readers can request the
source code of the methodology from the authors.
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