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Optimal Estimation in a Linear Regression
Model using Incomplete Prior Information

Helge Toutenburg, Shalabh, and Christian Heumann

Abstract For the estimation of regression coefficients in a linear model when in-
complete prior information is available, the optimal estimators in the classes of
linear heterogeneous and linear homogeneous estimators are considered. As they
involve some unknowns, they are operationalized by substituting unbiased estima-
tors for the unknown quantities. The properties of resulting feasible estimators are
analyzed and the effect of operationalization is studied. A comparison of the hetero-
geneous and homogeneous estimation techniques is also presented.

1 Introduction

Postulating the prior information in the form of a set of stochastic linear restric-
tions binding the coefficients in a linear regression model, Theil and Goldberger
[3] have developed an interesting framework of the mixed regression estimation
for the model parameters; see e.g., Srivastava [2] for an annotated bibliography of
earlier developments and Rao et al. [1] for some recent advances. Such a frame-
work assumes that the variance covariance matrix in the given prior information
is known. This specification may not be accomplished in many practical situations
where the variance covariance may not be available for one reason or the other.
Even if available, its accuracy may be doubtful and consequently its credibility may
be sufficiently low. One may then prefer to discard it and treat it as unknown. Ap-
preciating such circumstances, Toutenburg et al. [4] have introduced the method of
weakly unbiased estimation for the regression coefficients and have derived the opti-
mal estimators in the classes of linear homogeneous as well as linear heterogeneous
estimators through the minimization of risk function under a general quadratic loss
structure. Unfortunately, the thus obtained optimal estimators are not functions of
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186 H. Toutenburg et al.

observations alone. They involve the coefficient vector itself, which is being es-
timated, besides the scaling factor of the disturbance variance covariance matrix.
Consequently, as acknowledged by Toutenburg et al. [4], such estimators have no
practical utility.

In this paper, we apply a simple operationalization technique for obtaining the
feasible versions of the optimal estimators. The technique essentially involves re-
placement of unknown quantities by their unbiased and/or consistent estimators.
Such a substitution generally destroys the optimality and superiority properties.
A study of the damage done to the optimal properties is the subject matter of our
investigations. It is found that the process of operationalization may often alter the
conclusions that are drawn from the performance of optimal estimators that are not
friendly with users due to involvement of unknown parameters.

The plan of presentation is as follows. In Sect. 2, we describe the model and
present the estimators for the vector of regression coefficients. Their properties are
discussed in Sect. 3. Some numerical results about the behaviour of estimators in
finite samples are reported in Sect. 4. Some summarizing remarks are then presented
in Sect. 5. In the last, the Appendix gives the derivation of main results.

2 Estimators for Regression Coefficients

Consider the following linear regression model:

y = Xβ + ε , (1)

where y is a n×1 vector of n observations on the study variable, X is a n× p matrix
of n observations on the p explanatory variables, β is a p× 1 vector of regression
coefficients and ε is a n×1 vector of disturbances.

In addition to the observations, let us be given some incomplete prior informa-
tion in the form of a set of stochastic linear restrictions binding the regression coef-
ficients:

r = Rβ +φ , (2)

where r is a m×1 vector, R is a full row rank matrix of order m× p and φ is a m×1
vector of disturbances.

It is assumed that ε and φ are stochastically independent. Further, ε has mean
vector 0 and variance covariance matrix σ2W in which the scalar σ is unknown
but the matrix W is known. Similarly, φ has mean vector 0 and variance covariance
matrix σ2V .

When V is available, the mixed regression estimator of β proposed by Theil and
Goldberger [3] is given by

bMR = (S +R′V−1R)−1(X ′W−1y+R′V−1r)
= b+S−1R′(RS−1R′+V )−1(r−Rb) , (3)



Optimal Estimation in a Linear Regression Model 187

where S denotes the matrix X ′W−1X and b = S−1X ′W−1y is the generalized least
squares estimator of β .

In practice, V may not be known all the time and then the mixed regression
estimator cannot be used. Often, V may be given but its accuracy and credibility
may be questionable. Consequently, one may be willing to assume V as unknown
rather than known. In such circumstances, the mixed regression estimator (3) cannot
be used.

For handling the case of unknown V , Toutenburg et al. [4] have pioneered the
concept of weakly unbiasedness and utilized it for the estimation of β . Accordingly,
an estimator β̂ is said to be weakly–(R,r)–unbiased with respect to the stochastic
linear restrictions (2) when the conditional expectation of Rβ̂ given r is equal to r
itself, i.e.,

E(Rβ̂ | r) = r (4)

whence it follows that the unconditional expectation of Rβ̂ is Rβ .
It may be observed that the unbiasedness of β̂ for β implies weakly–(R,r)–

unbiasedness of β̂ but its converse may not be necessarily always true.
Taking the performance criterion as

RA(β̂ ,β ) = E(β̂ −β )′A(β̂ −β ) , (5)

that is, the risk associated with an estimator β̂ of β under a general quadratic loss
function with a positive definite loss matrix A, Toutenburg et al. [4] have discussed
the minimum risk estimator of β ; see also Rao et al. [1] for an expository account.

The optimal estimator in the class of linear and weakly unbiased heterogeneous
estimators for β is given by

β̂1 = β +A−1R′(RA−1R′)−1(r−Rβ ) (6)

while the optimal estimator in the class of linear and weakly unbiased homogeneous
estimators is

β̂2 =
β ′X ′W−1y
σ2 +β ′Sβ

[
β +A−1R′(RA−1R′)−1

(
σ2β ′Sβ
β ′Sβ

r−Rβ
)]

. (7)

Clearly, β̂1 and β̂2 are not estimators in true sense owing to involvement of β
itself besides σ2 which is also unknown. As a consequence, they have no practical
utility.

A simple solution to operationalize β̂1 and β̂2 is to replace the unknown quanti-
ties by their estimators. Such a process of operationalization generally destroys the
optimality of estimators.

If we replace β by its generalized least squares estimator b and σ2 by its unbiased
estimator

s2 =
(

1
n− p

)
(y−Xb)′W−1(y−Xb), (8)
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we obtain the following feasible versions of β̂1 and β̂2:

β̃1 = b+A−1R′(RA−1R′)−1(r−Rb) (9)

β̃2 =
b′Sb

s2 +b′Sb

[
b+A−1R′(RA−1R′)−1

(
s2 +b′Sb

b′Sb
r−Rb

)]
. (10)

It may be remarked that Toutenburg, Toutenburg et al. ([4], Sect. 4) have derived a
feasible and unbiased version of the estimator β̂1 such that it is optimal in the class of
linear homogeneous estimators. This estimator is same as β̃1. It is thus interesting to
note that when the optimal estimator in the class of linear heterogeneous estimators
is operationalized, it turns out to have optimal performance in the class of linear
homogeneous estimators.

3 Comparison of Estimators

It may be observed that a comparison of the estimator β̃1 with β̂1 and β̃2 with β̂2
will furnish us an idea about the changes in the properties due to the process of
operationalization. Similarly, if we compare β̂1 and β̂2 with β̃1 and β̃2, it will reveal
the changes in the properties of the optimal estimator and its feasible version in the
classes of linear heterogeneous and linear homogeneous estimators.

3.1 Linearity

First of all, we may observe that both the estimators β̂1 and β̃1 are linear and thus
the process of operationalization does not alter the linearity of estimator. This is not
true when we consider the optimal estimator β̂2 in the class of linear homogeneous
estimators and its feasible version β̃2. Further, from (9) and (10), we notice that

β̃2 =
1

s2 +b′Sb
[b′Sbβ̃1 + s2A−1R′(RA−1R′)−1r] (11)

so that β̃2 is a weighted average of β̃1 and A−1R′(RA−1R′)−1r while such a result
does not hold in case of β̂2.

3.2 Unbiasedness

From (9) and (10), we observe that

Rβ̃1 = Rβ̃2 = r (12)
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whence it is obvious that both the estimators β̃1 and β̃2 are weakly–(R,r)–unbiased
like β̂1 and β̂2. Thus the operationalization does not disturb the property of weakly
unbiasedness.

Next, let us consider the traditional unbiasedness property. It is easy to see that
the optimal estimator β̂1 and its feasible version β̃1 in the class of linear hetero-
geneous estimators are unbiased while the optimal estimators β̂2 and its feasible
version β̃2 in the class of homogeneous estimators are generally not unbiased. This
may serve as an interesting example to demonstrate that weakly unbiasedness does
not necessarily imply unbiasedness. Thus, with respect to the criterion of unbiased-
ness, no change arises due to operationalization.

3.3 Bias Vector

Let us examine the bias vectors of the estimators β̂2 and β̃2.
It is easy to see that the bias vector of β̂2 is given by

B(β̂2) = E(β̂2−β )

= − σ2

σ2 +β ′Sβ
A−1Mβ , (13)

where

M = A−R′(RA−1R′)−1R. (14)

The exact expression for the bias vector of β̃2 is impossible to derive without as-
suming any specific distribution for the elements of disturbance vector ε . It may be
further observed that even under the specification of distribution like normality, the
exact expression will be sufficiently intricate and any clear inference will be hard
to deduce. We therefore consider its approximate expression using the large sample
asymptotic theory. For this purpose, it is assumed that explanatory variables in the
model are at least asymptotically cooperative, i.e., the limiting form of the matrix
n−1X ′W−1X as n tends to infinity is a finite and nonsingular matrix. We also assume
that ε follows a multivariate normal distribution.

Theorem I: If we write Q = n−1S, the bias vector of β̃2 to order O(n−1) is given by

B(β̃2) = E(β̃2−β )

= − σ2

nβ ′Qβ
A−1Mβ +

σ2

n2β ′Qβ

[
p+(p−1)

σ2

β ′Qβ

]
A−1Mβ (15)

which is derived in the Appendix.
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A similar expression for the optimal estimator to order O(n−2) can be straight-
forwardly obtained from (13) as follows:

B(β̂2) = − σ2

nβ ′Qβ

(
1+

σ2

nβ ′Qβ

)−1

A−1Mβ

= − σ2

nβ ′Qβ
A−1Mβ +

σ4

n2(β ′Qβ )2 A−1Mβ . (16)

If we compare the optimal estimators β̂2 and its feasible version β̃2 with respect
to the criterion of bias to order O(n−1) only, it follows from (15) and (16) that both
the estimators are equally good. This implies that operationalization does not alter
the asymptotic bias to order O(n−1).

When we retain the term of order O(n−2) also in the bias vector, the two esti-
mators are found to have different bias vectors and the effect of operationalization
precipitates.

Let us now compare the estimators β̂2 and β̃2 according to the length of their
bias vectors. If we consider terms upto order O(n−3) only, we observe from (15)
and (16) that

[B(β̂2)]′[B(β̂2)]− [B(β̃2)]′[B(β̃2)] =
2σ2

n3β ′Qβ

[
p+(p−2)

σ2

β ′Qβ

]
β ′MA−2Mβ .

It is thus surprising that the feasible estimator β̃2 is preferable to the optimal
estimator with respect to the criterion of the bias vector length to the given order
of approximation in the case of two or more explanatory variables in the model.
If p = 1, this result continues to hold true provided that β ′Qβ is greater than σ2.
Thus it is interesting to note that operationalization of optimal estimator improves
the performance with respect to the bias vector length criterion.

3.4 Conditional Risk Function

From Toutenburg et al. ([4], p. 530), the conditional risk function of β̂1, given r is

RA(β̂1,β | r) = E[(β̂1−β )′A(β̂1−β ) | r]
= (r−Rβ )′(RA−1R′)−1(r−Rβ ). (17)

Similarly, the conditional risk function of β̂2 given r can be easily obtained:

RA(β̂2,β | r) = E[(β̂2−β )′A(β̂2−β ) | r]
= (r−Rβ )′(RA−1R′)−1(r−Rβ )

+
σ2

σ2 +nβ ′Qβ

[
β ′Mβ +

(
1+

σ2

nβ ′Qβ

)
r′(RA−1R′)−1r

]
.

(18)
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Using the result

σ2

σ2 +nβ ′Qβ
=

σ2

nβ ′Qβ

(
1+

σ2

nβ ′Qβ

)−1

=
σ2

nβ ′Qβ
− σ4

n2(β ′Qβ )2 +O(n−3), (19)

we can express

RA(β̂2,β | r) = (r−Rβ )′(RA−1R′)−1(r−Rβ )

+
σ2

nβ ′Qβ
[β ′Mβ + r′(RA−1R′)−1r]− σ4β ′Mβ

n2(β ′Qβ )2 +O(n−3).

(20)

For the feasible estimator β̃1 , it can be easily seen that the conditional risk func-
tion of β̃1 given r is given by

RA(β̃1,β | r) = E[(β̃1−β )′A(β̃1−β ) | r]

= (r−Rβ )′(RA−1R′)−1(r−Rβ )+
σ2

n
trMQ−1. (21)

As the exact expression for the conditional risk of the estimator β̃2 is too complex
to permit the deduction of any clear inference regarding the performance relative to
other estimators, we consider its asymptotic approximation under the normality of
disturbances. This is derived in Appendix.

Theorem II: The conditional risk function of the estimator β̃2 given r to order
O(n−2) is given by

RA(β̃2,β | r) = E[(β̃2−β )′A(β̃2−β ) | r]

= (r−Rβ )′(RA−1R′)−1(r−Rβ )+
σ2

n
trMQ−1

− σ4

n2β ′Qβ

[
2trMQ−1−5

(
β ′Mβ
β ′Qβ

)]
. (22)

It is obvious from (17) and (21) that the operationalization process leads to an
increase in the conditional risk. Similarly, comparing β̂2 and β̃2 with respect to the
criterion of the conditional risk given r to order O(n−1), we observe from (20) and
(22) that the operationalization process results in an increase in the conditional risk
when

trMQ−1 >
β ′Mβ
β ′Qβ

+
r′(RA−1R′)r

β ′Qβ
. (23)
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The opposite is true, i.e., operationalization reduces the conditional risk when the
inequality (23) holds true with a reversed sign.

If we compare the exact expressions (17) and (18) for the conditional risk func-
tion given r, it is seen that the estimator β̂1 is uniformly superior to β̂2. This result
remains true, as is evident from (21) and (22), for their feasible versions also when
the criterion is the conditional risk given r to order O(n−2) and

trMQ−1 < 2.5
(
β ′Mβ
β ′Qβ

)
(24)

while the opposite is true, i.e., β̃2 has smaller risk than β̃1 when

trMQ−1 > 2.5
(
β ′Mβ
β ′Qβ

)
. (25)

The conditions (24) and (25) have little usefulness in actual practice because
they cannot be verified due to involvement of β . However, we can deduce sufficient
conditions that are simple and easy to check.

Let λmin and λmax be the minimum and maximum eigen values of the matrix M
in the metric of Q, and T be the total of all the eigenvalues. Now, it is seen that the
condition (24) is satisfied so long as

T < 2.5λmin (26)

which is a sufficient condition for the superiority of β̃1 over β̃2 .
Similarly, for the superiority of β̃2 over β̃1 , the following sufficient condition can

be deduced from (25):

T > 2.5λmax . (27)

We thus observe that the optimal estimator β̂1 is uniformly superior to β̂2 with
respect to both the criteria of conditional and unconditional risks. The property of
uniform superiority is lost when they are operationalized for obtaining feasible esti-
mators. So much so that the superiority result may take an opposite turn at times.

Further, we notice that the reduction in the conditional risk of β̂1 over β̂2 is gen-
erally different in comparison to the corresponding reduction in the conditional risk
when their feasible versions are considered. The change in the conditional risk per-
formance of the optimal estimators starts appearing in the term of order O(n−1).
When their feasible versions are compared, the leading term of the change in risk is
of order O(n−2). This can be attributed to the process of operationalization.

3.5 Unconditional Risk Function

Now let us compare the estimators under the criterion of the unconditional risk
function.
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It can be easily seen from (17), (18), (20), (21) and (22) that the unconditional
risk functions of the four estimators are given by

RA(β̂1,β ) = E(β̂1−β )′A(β̂1−β )
= σ2trV (RA−1R′)−1 (28)

RA(β̂2,β ) = E(β̂2−β )′A(β̂2−β )
= σ2trV (RA−1R′)−1

+
σ2

nβ ′Qβ

[
β ′Aβ +σ2trV (RA−1R′)−1− σ2

σ2 +nβ ′Qβ
β ′Mβ

]

= σ2trV (RA−1R′)−1 +
σ2

nβ ′Qβ
[
β ′Aβ +σ2trV (RA−1R′)−1]

− σ4β ′Mβ
n2(β ′Qβ )2 +O(n−3) (29)

RA(β̃1,β ) = E(β̃1−β )′A(β̃1−β )

= σ2trV (RA−1R′)−1 +
σ2

n
trMQ−1 (30)

RA(β̃2,β ) = E(β̃2−β )′A(β̃2−β )

= σ2trV (RA−1R′)−1 +
σ2

n
trMQ−1

− σ4

n2β ′Qβ

[
2trMQ−1−5

(
β ′Mβ
β ′Qβ

)]
+O(n−3). (31)

Looking at the above expressions, it is interesting to note that the relative perfor-
mance of one estimator over the other is same as observed under the criterion of the
conditional risk given r.

4 Simulation Study

We conducted a simulation experiment to study the performance of the estimators
β̃1 and β̃2 with respect to the ordinary least squares estimator b. The sample size was
fixed at n = 30. The design matrix X contained an intercept term and six covariates
which were generated from multivariate normal distribution with variance 1 and
equal correlation of 0.4. The mean vector of the covariates was (−2,−2,−2,2,2,2).
The true response vector (without the error term ε) was then calculated as ỹ = Xβ
with the 7×1 true parameter vector β = (10,10,10,10,−1,−1,−1). The restriction
matrix R was generated as a 3× 7 matrix containing uniform random numbers.
The true restriction vector (without the error term φ ) was calculated as r̃ = Rβ .
Then in a loop with 5,000 replications, in every replication, new error terms ε and
φ were added in ỹ and r̃ to get y and r respectively. The errors were generated
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independently from normal random variables with variances σ2 = 40 for εi, i =
1, . . . ,n and σ2/c for φ j, j = 1,2,3. The factor c controls the accuracy of the prior
information compared to the noise in the data. If c is high, the prior information
is more accurate than the case when c is low. Note that c < 1 means that the prior
information is more noisy than the data which indicates that it is probably useless
in practice. In fact we only expect the proposed estimators to be better than b if c
is considerably larger than 1. For comparison of the estimators, we calculated the
measure

MRMSE =
1

5000

5000

∑
k=1

√
1
7
(β̂ −β )′(β̂ −β ) ,

(mean of root mean squared errors) where β̂ stands for one of the estimators
b, β̃1 or β̃2. Figure 1 shows the distribution of the root mean squared errors√

1
7 (β̂ −β )′(β̂ −β ) for each estimator based on 5,000 replications with c = 100.

This means that the prior information was not perfect but very reliable (σ2/c =
40/100 = 0.4). A considerable gain can be observed by using one of the new pro-
posed estimators while there is no noticeable difference between β̃1 and β̃2. The
MRMSEs in that run were 2.64 for b and 1.85 for β̃1 and β̃2. The picture changes
when we decrease c. For example when c = 4 (which means that the standard er-
ror of φ j is half of the standard error of the noise in the data), then the MRMSE
were 3.09 for b and 2.65 for β̃1 and β̃2. Figure 2 shows the corresponding boxplots.
But a general conclusion is not possible since the results clearly also depend on the
matrices X , R and vector β itself.
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Fig. 2 Boxplot of root mean squared errors of the three estimators with c = 4

5 Some Summarizing Remarks

We have considered the minimum risk approach for the estimation of coefficients in
a linear regression model when incomplete prior information specifying a set of lin-
ear stochastic restrictions with unknown variance covariance matrix is available. In
the linear and weakly unbiased heterogeneous and homogeneous classes of estima-
tors, the optimal estimators obtained by Toutenburg et al. [4] as well as their feasible
versions are presented. Properties of these four estimators are then discussed.

Analyzing the effect of operationalizing the optimal estimators, we have ob-
served that the property of linearity is retained only in case of heterogeneous es-
timation. So far as the property of weakly unbiasedness is concerned, the process of
operationalization has no influence. But when the traditional unbiasedness is consid-
ered, it is seen that the optimal heterogeneous estimator remains unbiased while the
optimal homogeneous estimator is generally biased. This remains true when their
feasible versions are considered. In other words, the process of operationalizations
does not bring any change in the performance of estimators.

Looking at the direction and magnitude of bias, we have found that the optimal
estimator and its feasible version in the case of homogeneous estimation have iden-
tical bias vectors to order O(n−1) implying that the operationalization process has
no effect on the bias vector in large samples. But when the sample size is not large
enough and the term of order O(n−2) is no more negligible, the effect of opera-
tionalization appears. If we compare the optimal estimator and its feasible version
with respect to the criterion of the length of the bias vector to order O(n−3), it is
seen that the operationalization improves the performance provided that there are
two or more explanatory variables in the model. This result remains true in the case
of one explanatory variable also under a certain condition.

Examining the risk functions, it is observed that the relative performance of one
estimator over the other remains unaltered whether the criterion is conditional risk
given r or the unconditional risk.
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When we compare the risk functions of the optimal heterogeneous estimator and
its feasible version, it is found that the process of operationalization invariably in-
creases the risk. Such is not the case when we compare the optimal homogeneous
estimator and its feasible version. Here the operationalization may lead to a reduc-
tion in risk at times; see the condition (23).

Next, it is observed that the optimal heterogeneous estimator has always smaller
risk in comparison to the optimal homogeneous estimator. When they are opera-
tionalized in a bid to obtain feasible estimators, the property of uniform superiority
is lost. We have therefore obtained sufficient conditions for the superiority of one
feasible estimator over the other. An important aspect of these conditions is that they
are simple and easy to check in practice.

Further, we have observed the magnitude of change in the risk of one optimal
estimator over the other optimal estimator is generally different when their feasible
versions are considered. In case of optimal estimators, the change occurs at the level
of order O(n−1) but when the feasible estimators are compared, this level is of order
O(n−2). This brings out the impact of operationalization process.

Finally, it may be remarked that if we consider the asymptotic distribution of the
estimation error, i.e., the difference between the estimator and the coefficient vector,
both the optimal estimators as well as their feasible versions have same asymptotic
distribution. Thus the process of operationalization does not show any impact on
the asymptotic properties of estimators. It may alter the performance of estimators
when the number of observations is not sufficiently large. The difference in the
performance of estimators is clear in finite samples through simulation experiment.

Appendix

If we define

z =
1

n1/2 X ′W−1ε ,

u =
1

σ2n1/2 ε
′W−1ε−n1/2 ,

v =
1
σ2 ε

′W−1XS−1X ′W−1ε ,

we can write

b′Sb = β ′Sβ +2β ′X ′W−1ε + ε ′W−1XS−1X ′W−1ε
= nβ ′Qβ +2n1/2β ′z+σ2v (32)

s2 =
1

(n− p)
(y−Xb)′W−1(y−Xb)

= σ2
[
1+

u
n1/2 −

v
n

]
+Op(n−3/2). (33)
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Using these, we can express

s2

s2 +b′Sb
=

σ2

nβ ′Qβ

[
1+

u
n1/2 −

v
n

+Op(n−3/2)
]

∗
[

1+
2β ′z

n1/2β ′Qβ
+

σ2(1+ v)
nβ ′Qβ

+Op(n−3/2)
]−1

=
σ2

nβ ′Qβ

[
1+

u
n1/2 −

v
n

+Op(n−3/2)
]

∗
[

1− 2β ′z
n1/2β ′Qβ

−σ2
(

1+ v− 4β ′zz′β
σ2β ′Qβ

)
+Op(n−3/2)

]

=
σ2

nβ ′Qβ
+

σ2

n3/2β ′Qβ

(
u− 2β ′z

β ′Qβ

)

− σ2

n2β ′Qβ

(
v+

2uβ ′z+σ2 +σ2v
β ′Qβ

− 4β ′zz′β
(β ′Qβ )2

)
+Op(n−5/2).

(34)

Utilizing these results, we can express

(β̃2−β ) = (β̃1−β )− s2

s2 +b′Sb
A−1Mb

= ξ0 +
1

n1/2 ξ1/2 +
1
n
ξ1 +

1
n3/2 ξ3/2 +

1
n2 ξ2 +Op(n−5/2) , (35)

where

ξ0 = A−1R′(R′A−1R′)−1(r−Rβ )
ξ1/2 = A−1MQ−1z

ξ1 = − σ2

β ′Qβ
A−1Mβ

ξ3/2 = − σ2

β ′Qβ

[(
u− 2β ′z

β ′Qβ

)
A−1Mβ +A−1MQ−1z

]

ξ2 =
σ2

β ′Qβ

[(
v+

2uβ ′z+σ2 +σ2v
β ′Qβ

− 4β ′zz′β
(β ′Qβ )2

)
A−1Mβ

−
(

u− 2β ′z
β ′Qβ

)
A−1MQ−1z

]
.

By virtue of normality of ε , it is easy to see that

E(ξ0 | r) = ξ0 , E(ξ0) = 0 ,

E(ξ1/2 | r) = E(ξ1/2) = 0 ,

E(ξ1 | r) = E(ξ1) = ξ1 ,
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E(ξ3/2 | r) = E(ξ3/2) = 0 ,

E(ξ2 | r) = E(ξ2) =
σ2

β ′Qβ

[
p+(p−1)

σ2

β ′Qβ

]
A−1Mβ .

Using these results, we obtain from (35) the expression (15) of Theorem I.
Next, we observe from (35) that the conditional risk function of β̃2 to order

O(n−2) is given by

RA(β̃2,β | r) = E[(β̃2−β )′A(β̃2−β ) | r]

= ξ ′0Aξ0 +
2

n1/2 E(ξ ′0Aξ1/2)

+
1
n

E(ξ ′1/2Aξ1/2 +2ξ ′0Aξ1)+
2

n3/2 E[ξ ′0Aξ3/2 +ξ ′1/2Aξ1]

+
1
n2 E(ξ ′1Aξ1 +2ξ ′0Aξ2 +2ξ ′1/2Aξ3/2)+Op(n−5/2). (36)

Now it can be easily seen that

E(ξ ′0Aξ1/2 | r) = 0 ,

E(ξ ′1/2Aξ1/2 | r) = σ2trMQ−1 ,

E(ξ ′0Aξ1 | r) = 0 ,

E(ξ ′0Aξ3/2 | r) = 0 ,

E(ξ ′1/2Aξ1 | r) = 0 ,

E(ξ ′1Aξ1 | r) =
σ4

(β ′Qβ )2 β
′Mβ ,

E(ξ ′0Aξ2 | r) = 0 ,

E(ξ ′1/2Aξ3/2 | r) =
σ4

β ′Qβ

[
−trMQ−1 +2

(
β ′Mβ
β ′Qβ

)]
,

where repeated use has been made of the results RA−1M = 0 and MA−1M = M.
Substituting these results in (36), we obtain the result stated in Theorem II.
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