
Basic MATLAB

Getting MATLAB (for MIT students)

http://web.mit.edu/matlab/www/home.html

Creating matrices and vectors

>> rowvector = [10 20]
rowvector =
 10 20

>> columnvector = [10; 20]
columnvector =
 10
 20

>> matrix = [10 20; 30 40]
matrix =
 10 20
 30 40

>> zeromatrix = zeros(3)
zeromatrix =
 0 0 0
 0 0 0
 0 0 0

>> zerorowvector = zeros(1,3)
zerorowvector =
 0 0 0

Some operation of matrices/vectors. The “dot” modifier

>> rowvector + [1 2]
ans =
 11 22

>> rowvector * 2
ans =
 20 40

>> matrix ^ 2
ans =
 700 1000
 1500 2200

>> matrix .^ 2 For operations that are naturally defined on matrices the dot (.)
ans = m akes the operation to apply to every matrix element, overriding
 100 400 the default behavior.
 900 1600

>> rowvector .^ 2 Note that rowvector ^ 2 doesn’t make sense!
ans =
 100 400

>> 1 ./ matrix The inverse of every element of a matrix.
ans =
 0.1000 0.0500
 0.0333 0.0250

>> matrix ^ -1 The inverse of the matrix.
ans =
 -0.2000 0.1000
 0.1500 -0.0500

>> inv(matrix) Other way of obtaining the same result.
ans =
 -0.2000 0.1000
 0.1500 -0.0500

>> rowvector' Transposing a row vector.
ans =
 10
 20
 30

>> matrix' Transposing a matrix.
ans =
 10 30
 20 40

>> sum(rowvector) Summing the components of a vector.
ans =
 60

What would sum(matrix) give us?.... Check the help!
>> help sum

 SUM Sum of elements.
 For vectors, SUM(X) is the sum of the elements of X. For
 matrices, SUM(X) is a row vector with the sum o ver each
 column. For N-D arrays, SUM(X) operates along t he first
 non-singleton dimension.

 SUM(X,DIM) sums along the dimension DIM.

 Example: If X = [0 1 2
 3 4 5]

 then sum(X,1) is [3 5 7] and sum(X,2) is [3
 12];

 See also PROD, CUMSUM, DIFF.

 Overloaded methods
 help sym/sum.m

>> sum(matrix)
ans =
 40 60

Remember to check the help system often! It is really easy! If you know the command that you want to obtain some info
about it is as easy as typing help command where command is the command that you are interested in.

Exercise: Write a line that would compute the norm of a row vector.

Checking dimensions

>> size(matrix)
ans =
 2 2

>> size(rowvector)
ans =
 1 3

>> length(vector)
ans =
 3

Accessing different parts of a matrix. The “colon” modifier

>> matrix(1, 1)
ans =
 1

>> matrix(2, :)
ans =
 30 40

>> matrix(:, 1)
ans =
 10
 30

>> matrix(:, :)
ans =
 10 20
 30 40

Eigenvalues and eigenvectors

>>eig(matrix)
ans =
 -3.7228
 53.7228

>>[d, v] = eig(matrix)
d =
 -0.8246 -0.4160
 0.5658 -0.9094

v =
 -3.7228 0
 0 53.7228

Functions

If we create a file named f.m in the current working directory with this code1…
 % f.m
 function y = f(x, a)
 y = a * x ^ 2;

Then, from the command window we can just evaluate the function f…
>> f(3, 4)
ans = 36

Just remember to name your .m file with the name of the function you are creating.
Note that the way we have written our function, it can also be applied to matrices (but not to vectors… why?).

>> f(matrix, 4)
ans =
 2800 4000
 6000 8800

Symbolic math

>> a = g ^ 2 Every symbol that we use has to be declared previously!
??? Undefined function or variable 'g'.

>> clear Erase all the things that we’ve loaded into memory.
>> syms g h Declare g and h as symbols
>> a = g * h
a =
 g * h a is now a symbolic expression!

>> a^2 And we can manipulate it symbolically. We can take its square…
ans =
 g ^ 2 * h ^ 2

>> diff(a ^ 2, g) ...differentiate its square with respect to g... and so on
ans =
 2 * g * h ^ 2

>> g = 1; h = 2; If we now want to evaluate for particular values of g and h we can just
 assign some values to them...
>> a
a =
 g * h

>> eval(a) … and then use the command eval .
ans =
 2

1 Obs: Lines that start with % are just comments

0 1 2 3 4 5 6 7 8 9 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Plotting

>> t = 0 : 0.1 : 10; We create a vector t that consists of all the values between 0 and 10 with a 0.1
 spacing.
>> y = sin(t); We compute the sin of all the points in t .
>> plot(t, y); And now we just plot one vector vs the other!

After executing the last command we will get a new window with this plot:

Here is a more complicated plot, note that if you want to plot two curves in
one figure you have to provide x and y vectors for the two functions that you
want to plot.

>> plot(t, y, t, sqrt(1 – y .^ 2));

ODE Solver

EDU» help ode23

ODE23 Solve non-stiff differential equations, low order method.

[T,Y] = ODE23('F',TSPAN,Y0) with TSPAN = [T0 TFINAL] integrates the system of
differential equations y' = F(t,y) from time T0 to TFINAL with initial conditions
Y0. 'F' is a string containing the name of an ODE file. Function F(T,Y) must
return a column vector. Each row in solution array Y corresponds to a time
returned in column vector T.

Let’s first create a function that computes the right handside of the ODE
 y' = F(t, y).

% f.m
function dy = f(t, y)
dy = t .^ 2;

>> ode23('f', [0 1], 3)

And we automatically get a plot of the solution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

3.05

3.1

3.15

3.2

3.25

3.3

3.35

3.4

If we want to keep the output of the simulation for later
processing (plotting for instance)…

>> [t, y] = ode23('f', [0 1], 3);
>> plot(t, -y);

It is quite easy to solve multi-dimensional systems as well. Just keep in mind
that ode23 requires F to be a column vector

% f.m
function dy = f(t, y)
dy = [t .^ 2; -y(2)];

>> ode23('f', [0 1], [3 3])

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

Matlab code 1

% filename: mm.m

k1 = 1e3; % units 1/(Ms)
k_1 = 1; % units 1/s
k2 = 0.05; % units 1/s
E0 = 0.5e-3; % units M
options = [];

[t y] = ode23('mmfunc', [0 100], [1e-3 0 0], option s, k1, k_1, k2, E0);

S = y(:, 1);
ES = y(:, 2);
E = E0 - ES;
P = y(:, 3);
plot(t, S, 'r', t, E, 'b', t, ES, 'g', t, P, 'c');

% filename: mmfunc.m

function dydt = f(t, y, flag, k1, k_1, k2, E0)
dydt = [- k1 * E0 * y(1) + (k1 * y(1) + k_1) * y(2); ...
 k1 * E0 * y(1) - (k1 * y(1) + k_1 + k2) * y(2); ...
 k2 * y(2)];

Matlab code 2

% filename: hasty.m

alpha = 50;
gamma = 20;
sigma1 = 1;
sigma2 = 5;
options = [];

[t1 y1] = ode23('hastyfunc', [0 1], [0], options, a lpha, gamma, sigma1, sigma2);
[t2 y2] = ode23('hastyfunc', [0 1], [1], options, a lpha, gamma, sigma1, sigma2);
plot(t1, y1(:, 1), 'b', t2, y2(:, 1), 'r');

% filename: hastyfunc.m

function dydt = f(t, y, flag, alpha, gamma, sigma1, sigma2)
dydt = [alpha * y(1) ^ 2 / (1 + (1 + sigma1) * y(1) ^ 2 + ...
 sigma2 * y(1) ^ 4) - ga mma * y(1) + 1];

