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ABSTRACT
Sorting is at the core of many database operations, such as
index creation, sort-merge joins, and user-requested output
sorting. As GPUs are emerging as a promising platform
to accelerate various operations, sorting on GPUs becomes
a viable endeavour. Over the past few years, several im-
provements have been proposed for sorting on GPUs, lead-
ing to the first radix sort implementations that achieve a
sorting rate of over one billion 32-bit keys per second. Yet,
state-of-the-art approaches are heavily memory bandwidth-
bound, as they require substantially more memory transfers
than their CPU-based counterparts. Our work proposes a
novel approach that almost halves the amount of memory
transfers and, therefore, considerably lifts the memory band-
width limitation. Being able to sort two gigabytes of eight-
byte records in as little as 50 milliseconds, our approach
achieves a 2.32-fold improvement over the state-of-the-art
GPU-based radix sort for uniform distributions, sustaining
a minimum speed-up of no less than a factor of 1.66 for
skewed distributions. To address inputs that either do not
reside on the GPU or exceed the available device memory, we
build on our efficient GPU sorting approach with a pipelined
heterogeneous sorting algorithm that mitigates the overhead
associated with PCIe data transfers. Comparing the end-to-
end sorting performance to the state-of-the-art CPU-based
radix sort running 16 threads, our heterogeneous approach
achieves a 2.06-fold and a 1.53-fold improvement for sorting
64 GB key-value pairs with a skewed and a uniform distri-
bution, respectively.

1. INTRODUCTION
Many of today’s database systems are facing unprece-

dented loads as they must cope with data that is generated
by hundreds of millions of people, devices, and sensors [7,
9]. Analysing, filtering, and querying the enormous amount
of data in a timely manner becomes increasingly difficult.
In an endeavour to keep systems responsive, a lot of effort
is put into adapting database systems to modern hardware
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trends [21, 6, 23, 1, 3, 33, 5, 22, 30, 36]. The availability
of low-cost memory, for instance, has given rise to the wide
adoption of in-memory databases [35, 26, 24, 8]. In many
cases, this has shifted the bottleneck from I/O to memory
bandwidth and compute performance. Moreover, the rise
of multi-core architectures, vector processing capabilities,
and growing cache sizes requires to rethink many parts of
database systems.

Sorting is no exception to this effort. As a fundamental
operation in database systems, sorting finds its application
in index creation, user-requested output sorting, and sort-
merge joins [13]. Moreover, sorting can speed up duplicate
removal, ranking, and grouping operations [13]. Therefore, a
lot of research has been devoted to identifying efficient sort-
ing algorithms that utilise modern hardware features and
scale well across multiple cores, processors, and even nodes
[21, 6, 35, 40, 24, 33, 22, 8]. After having recently achieved
sorting rates of over one billion keys per second [28], Graph-
ics Processing Units (GPUs), featuring thousands of cores
and a memory bandwidth of several hundred gigabytes per
second, emerged as a promising platform to accelerate sort-
ing. Besides approaches that are based on sorting networks
[25, 12], merge sort [37, 34, 35], and sample sort [27, 11], the
most promising results for larger problem sizes have been
shown for implementations using a radix sort [18, 16, 34,
35, 28].

A major challenge arising when trying to make use of the
massive parallelism of GPUs for sorting is the fact that a
key’s position within the output sequence depends on all
other keys. Previous work has addressed this issue by us-
ing a least-significant-digit-first radix sort (LSD radix sort)
that iterates over the keys’ bits from the least-significant
to the most-significant digit, considering an implementation
specific number of consecutive bits at a time. With each
sorting pass, a stable counting sort is used to partition the
keys into buckets according to the bits being considered with
the current pass [16, 34, 35, 28]. The stable counting sort
computes each key’s offset by counting the number of keys
with a smaller digit value and, as it needs to be stable, the
keys with the same digit value preceding the key in the in-
put sequence. To achieve concurrency, GPU-based imple-
mentations split the input into a sequence of small blocks
(a few thousand keys) that are processed in parallel. For
each block, a local histogram over the keys’ digit values is
computed, and the prefix-sum over these histograms is used
to determine a key’s position within the output sequence.
Since the whole input has to be read twice and written once
with each sorting pass, radix sort implementations aim to
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increase the number of bits being considered with each sort-
ing pass, in order to lower the number of passes and the
amount of memory transfers. However, as the size of the his-
togram grows exponentially with the number of bits being
considered with each sorting pass, the growing complexity
of the prefix-sum computation and the small on-chip mem-
ory impose a limit on the number of bits per digit. Due to
these limitations, state-of-the-art approaches are restricted
to consider only five bits at a time. Incurring a considerable
amount of memory transfers, such as reading or writing the
input 39 times in the case of 64-bit keys, the sorting rate is
ultimately bound by the available memory bandwidth.

In order to lift the memory bandwidth limitation, this
work presents a novel, hybrid radix sort that is able to effi-
ciently sort on eight bits with each pass. This reduces the
number of sorting passes and therefore the total amount of
memory transfers by a factor of at least 1.6. In contrast
to an LSD radix sort that is used by state-of-the-art imple-
mentations (e.g., CUB), the presented approach does not
rely on stable sorting passes [29]. Therefore, it is not re-
stricted to respecting the order of preceding sorting passes
for keys falling into the same bucket. Lifting this constraint
enables our approach to use native shared memory atomic
operations that became available with recent GPU microar-
chitectures to mitigate the downside of considering more bits
with each sorting pass [31, 32]. Our hybrid approach starts
from the most-significant bit and proceeds towards the least-
significant bit, partitioning the keys into smaller and smaller
buckets. It avoids running into situations where the parti-
tioning of the input into too many buckets would negatively
impact performance, by finishing with a local sort as soon as
a bucket is small enough to fit into on-chip memory. As the
local sort performs the sorting in on-chip memory, it needs
to access the device memory only twice, once for reading and
once for writing the keys, no matter how many sorting passes
it requires. This further saves essential memory bandwidth
and boosts performance for favourable distributions. While
a typical parallel most-significant-digit-first radix sort (MSD
radix sort) may incur load balancing issues for skewed dis-
tributions that result in buckets of greatly varying size, we
efficiently utilise the low-overhead scheduling mechanisms
of the GPU to avoid any load imbalance, by subdividing
every bucket into tiny, fixed-size blocks that can be evenly
distributed amongst the GPU’s Streaming Multiprocessors
(SMs).

To circumvent the overhead associated with a large num-
ber of kernel invocations, we use only a constant number
of invocations during each sorting pass. Rather than using
at least one invocation for each bucket, passing the mem-
ory offset of the bucket’s keys and its size as arguments, we
generate that information as a byproduct of a sorting pass
and place it in device memory, from where it can be read
in the subsequent pass to determine the work assignments.
Moreover, we show that the use of shared memory atomic
operations is highly efficient for almost any key distribution
and introduce measures to mitigate performance degrada-
tion for highly skewed distributions.

In order to address inputs that either do not reside on
the GPU or exceed the available device memory, we present
a pipelined heterogeneous sorting algorithm that mitigates
the overhead associated with PCIe data transfers. By split-
ting the input into multiple sub-problems, we are able to
interleave several processing stages, allowing us to exploit

the full-duplex capability of the PCIe bus while simultane-
ously sorting on the GPU. In order to max out the limited
device memory, we propose an in-place replacement strat-
egy that immediately reuses memory by returning a sorted
run while concurrently replacing the contents with the next
sub-problem. This allows us to support larger sub-problems,
which improves the overall performance for sorting large in-
puts of tens of gigabytes.

We evaluate the hybrid radix sort for various key and value
sizes over twelve different, increasingly skewed distributions
and compare it to the state-of-the-art GPU-based radix sort
(CUB)[29]. Our experimental results demonstrate that the
hybrid radix sort efficiently capitalises on the 1.6-fold re-
duction in the amount of memory transfers, seeing no less
than a 1.58-fold improvement over CUB. Being able to sort
two gigabytes of 64-bit keys with an associated 64-bit value
in as little as 56 milliseconds, our approach peaks out at
a four-fold speed-up. Building on the results of our hybrid
radix sort, we evaluate the end-to-end performance for our
heterogeneous sort and compare it to the state-of-the-art
CPU-based radix sort running 16 threads [8]. Being able
to sort 16 GB comprised of key-value pairs with a skewed
distribution in as little as 3.37 seconds, the heterogeneous
sort outperforms PARADIS by a factor of 2.64 [8]. Sorting
an input of 64 GB with a skewed distribution, we still see
a 2.06-fold improvement over PARADIS, despite the fact
that our CPU-side processing on a weaker processor with
only six-cores contributes more than 9.3 seconds to the 16
second total.

Overall, the contributions of this work are five-fold:

1. We present a novel, hybrid radix sort for GPUs
that proceeds from the most-significant to the least-
significant bit to circumvent the downside of consider-
ing more bits with each sorting pass. Not relying on
stable sorting passes allows our approach to efficiently
sort on eight bits at a time, and therefore reduce the
number of passes and the amount of memory transfers
by no less than a factor of 1.6.

2. We successfully address the challenges arising from im-
plementing an MSD-based radix sort on GPUs, such
as load balancing and congestion issues for skewed dis-
tributions and performance degradation due to bucket
handling.

3. Using a local sort for sorting small buckets, we are
not only able to avoid running into situations with an
overwhelmingly large number of buckets, but also to
considerably boost the performance for favourable key
distributions, culminating in a four-fold speed-up.

4. As an MSD-based radix sort may result in millions
of buckets that need to be kept track of, we establish
an analytical model that is used to calculate the up-
per bounds on the number of buckets and analyse the
memory requirements. The model shows the feasibility
of our hybrid radix sort, indicating that the additional
memory overhead, such as for keeping track of buckets,
does not exceed a mere 5% of an LSD radix sort.

5. We address inputs that either do not reside on the
GPU or exceed the available device memory using a
pipelined heterogeneous sorting algorithm that miti-
gates the overhead associated with PCIe data trans-
fers. In order to efficiently exploit the limited device
memory, we propose an in-place replacement strategy
that improves the overall performance for large inputs.
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Table 1: Notation
symbol description
k number of bits per key
d number of bits per digit

KPT number of keys per thread
KPB number of keys per block

∂̂ threshold for local sorting
∂ threshold for merging buckets

This paper is organised as follows. In Section 2, we intro-
duce the basics of radix sorting and present the fundamen-
tal concepts of general-purpose computing on GPUs. Sec-
tion 3 analyses the state-of-the-art approaches for sorting
on GPUs. Section 4 presents the hybrid radix sort, how it
is realised and how performance drops are mitigated. Sec-
tion 5 addresses our heterogeneous sorting algorithm that
aims to mitigate the overhead introduced with PCIe data
transfers. Section 6 evaluates the performance of the pre-
sented approach and compares it to the state-of-the-art.

2. BACKGROUND
This section gives a quick introduction to radix sorting

followed by an overview of recent GPU microarchitectures.
This work focuses on NVIDIA GPUs and the CUDA com-
puting platform. CUDA has been widely adopted for general
purpose computing on GPUs and allows to tailor implemen-
tations to specific hardware characteristics. The notation
used throughout this work is presented in Table 1.

2.1 Radix Sorting
Radix sorting relies on the reinterpretation of a k-bit key

as a sequence of d-bit digits, which are considered one at
a time. The basic idea is, that splitting the k bits of the
keys into smaller d-bit digits results in a small enough radix
r = 2d, such that the keys can efficiently be partitioned
into r distinct buckets. As sorting on each digit can be
done with an effort that is linear in the number of keys n,
the whole sorting can be achieved with a total complex-
ity of O(dk/de × n). Iterating over the keys’ digits can be
performed in two fundamentally different ways. Either by
proceeding from the most-significant to the least-significant
digit (MSD radix sort), or vice versa (LSD radix sort).

The MSD radix sort starts with the most-significant digit
and partitions the keys into a sequence of r distinct buckets,
according to their digit value. This can be done using a
counting sort, which starts computing the histogram over
the keys’ most-significant digit. As the histogram reflects the
number of keys that shall be put into each of the r buckets,
computing the exclusive prefix-sum over these counts yields
the memory offsets for each of the buckets. Finally, the keys
are scattered into the buckets according to their digit value.
Recursively repeating these steps on subsequent digits for
the resulting buckets ultimately yields the sorted sequence.

In contrast, the LSD radix sort starts with the least-
significant digit and performs a stable sort in subsequent
passes. That is, if there is a tie on the digit’s value of any two
keys, the original order of the preceding pass is preserved.
Hence, during a sorting pass, a key’s position is given by the
number of keys with a lower digit value plus the number of
keys that have the same digit value and precede the key in
the input sequence.

2.2 GPU Architecture
GPU architectures have been steadily scaling up their core

counts over time, proliferating in thousands of simple cores
today. Moreover, discrete GPUs feature their own device
memory that provides transfer rates of up to 750 GB/s [32].
The basic building block of a GPU is a SM. Each SM con-
sists of a set of cores (e.g., 64, 128, or 192), a register file,
shared memory, and an L1 cache. The register file is used
to hold the registers of all threads that reside on an SM. An
important limitation of registers is that they cannot be ad-
dressed dynamically. Hence, declaring an array and access-
ing it based on an index that cannot be resolved at compile
time, would render the use of registers impossible. In con-
trast, shared memory is dynamically addressable and shared
by a whole group of threads, referred to as thread block. A
thread block is the atomic unit that is scheduled on an SM. It
is defined by the amount of shared memory that is required,
a function (the kernel), and the number of threads that exe-
cute the given function. It is possible, and even desired, that
several thread blocks reside on an SM at any given time, in-
creasing the occupancy. For every thread block that resides
on an SM, the required number of registers and the amount
of shared memory is allocated to the thread block. Thus,
the maximum number of blocks that can possibly reside on
a single SM is implied by the resources a thread block re-
quires and the resources that are available on an SM. For
example, an SM with 96 KB of shared memory and 65 536
registers, could accommodate up to eight thread blocks of
256 threads, if each block requires eight KB of shared mem-
ory and 16 registers per thread (a total of 4 096 registers per
block). Each thread block is subdivided into a set of warps,
currently comprising 32 threads. All threads of a warp are
executed in a lockstep manner. With several thread blocks
and therefore several warps residing on an SM, the scheduler
can choose from the set of resident warps that are ready for
being executed rather than waiting for a single warp to get
ready (e.g., for hiding latency from memory accesses).

3. RELATED WORK
Over the years many different approaches have been pur-

sued for sorting on GPUs. Kipfer et al. have proposed
a solution that is based on the odd-even sorting network
and an approach using a bitonic merge sort algorithm [25].
GPUTeraSort, introduced by Govidaraju et al., aims to ad-
dress larger keys as well as larger problem sizes that previ-
ously have been limited to the GPU’s device memory [12].
Moreover, they used an index sort that uses the CPU to re-
arrange the key-value pairs based on the key-index pairs that
are sorted and returned by the GPU. To reduce the overall
complexity of a sorting network-based approach, which ex-
hibits a complexity of O

(
n log2 n

)
, Harris et al. propose a

solution that divides the input sequence into smaller subse-
quences, sorts them locally using a binary radix sort, i.e., a
radix of two, and merges the chunks using a parallel bitonic
sort [17]. Similarly, Ye et al. proposed Warpsort, which sorts
the chunks using a bitonic sorting network [41]. In addition,
their approach avoids costly synchronisation by exploiting
the synchronous execution of a warp’s threads. Other merge-
based approaches have been presented by Satish et al. [34,
35], Davidson et al. [10], Green et al. [15], and Tansic et al.
[38].

Apart from merge-based approaches, promising results
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were shown for implementations building on a distribution-
based sort, such as a radix sort. As part of their introduction
of a multi-pass scatter operation that aims to coalesce mem-
ory writes, He et al. present an MSD radix sort that uses a
fixed number of partitioning passes [18]. The MSD radix sort
partitions the input, considering five bits at a time. After
performing a fixed number of partitioning passes, a bitonic
sort is used to sort each of the partitions. The approach
works for a uniform distribution, which is assumed when the
fixed number of required partitioning passes is calculated.
For skewed distributions, however, their sort would not gain
a big advantage from the partitioning passes. For instance,
assuming an input that, according to the algorithm’s logic,
would be considered for two partitioning passes. If the keys’
bits are all zero on their most-significant ten bits, the al-
gorithm would spend time on the two partitioning passes,
while it still ends up with one single partition. Sintorn et
al. present a hybrid approach that starts with a partitioning
pass, using either a quicksort or a bucket sort, before sorting
each of the resulting partitions with a merge sort [37]. The
bucket sort uses an initial set of heuristic splitters, counts the
keys belonging to each of the partitions defined by the split-
ters, and, if required, refines the splitters. Once the splitters
have been examined, the keys are scattered into 1 024 par-
titions, which, in turn, are sorted using the proposed merge
sort.

Satish et al., as well as Ha et al., propose an LSD radix
sort, which coalesces writes to device memory by performing
the key scattering in the local shared memory, prior to writ-
ing the local partitions to device memory [34, 16]. While
Ha et al. sort on only two bits at a time, Satish et al. man-
age to use digits of four bits by repeatedly using a binary
split within shared memory on each single bit, before writ-
ing the partitions to device memory. Satish et al. provide
a thorough evaluation of comparison and non-comparison
sorts on different architectures [35]. They examined that
their radix sort, which is based on the approach presented
by Satish et al. [34], is compute-bound, and make a case for
their merge sort. To avoid the computational effort asso-
ciated with the binary split, and save the amount of data
being transferred, Merrill et al. present a tuned radix sort
that achieves a sorting rate of over one billion 32-bit keys per
second, yet, reaches its optimum for sorting four-bit digits
[28]. The approach of Merrill et al. has been integrated into
the CUB header library, which is developed and maintained
by NVIDIA Research [29]. As part of CUB, the radix sort
is able to efficiently sort on five bits at a time.

4. ON-GPU HYBRID RADIX SORTING
This section describes our approach to radix sorting on

GPUs. We give an overview of our sorting algorithm, in-
troduce its two fundamental components, the counting sort
and the local sort, and explain how we designed the hybrid
radix sort for GPUs. We first limit the presentation of the
approach to the sorting of unsigned integer keys before ex-
plaining how it can be extended to sort keys and key-value
pairs of any primitive data type (e.g., int, float, double).

4.1 The Hybrid Radix Sort
The proposed algorithm is based on an MSD radix sort,

which recursively partitions the keys into smaller and smaller
buckets until the buckets are eventually small enough to be
sorted in on-chip shared memory. We distinguish between

Figure 1: The hybrid radix sort

a counting sort, which performs the aforementioned parti-
tioning of a bucket into sub-buckets, and a local sort, that
brings all keys of a small bucket into sorted order. The al-
gorithm starts with a counting sort on the most-significant
digit (the d most-significant bits) and produces a sequence of
r = 2d sub-buckets, each containing a partition of the keys
that share the same value on their most-significant digit.
With every subsequent sorting pass, each sub-bucket that
resulted from the partitioning of the buckets in the preced-
ing pass is either further partitioned using another counting
sort, or sorted using a local sort. While proceeding to the
next sorting pass, the digit according to which the count-
ing sort partitions the buckets into sub-buckets is advanced
by one towards the least-significant digit. The algorithm
is finished once all keys are sorted up to and including the
least-significant digit, or, if all buckets have been sorted with
a local sort. The general workflow is illustrated in Figure 1.
It depicts a local sort as a waved arrow pointing from a sin-
gle bucket to a location in memory for the sorted output,
and a counting sort as a set of arrows that point from a
single bucket to a sequence of sub-buckets.

While the local sort works in-place, the counting sort re-
quires auxiliary memory to which the partitioned keys are
written. In order to reuse memory, we are using double-
buffering for the whole sorting algorithm. With every sort-
ing pass, memory for the input and the output is exchanged,
such that the memory for the output of the preceding pass
becomes the input of the current pass, and the previous
pass’s input memory is reused for the output. As the mem-
ory for the input and the output is alternating with each
pass, we return the final sorted sequence within the memory
of the original input if the number of digits, dk/de, is even,
and within the auxiliary memory otherwise. Since the algo-
rithm might finish early, i.e., if all buckets have been sorted
using a local sort prior to reaching the least-significant digit,
we make sure that a local sort always places the sorted key
sequence in the memory being used to return the final sorted
output.

As the local sort is sorting a bucket’s keys within on-chip
shared memory, it is limited to sort a maximum of ∂̂ keys,
which is implied by the key size and the available hard-
ware resources. To take advantage of the fact that preceding
counting sort passes have already sorted the bucket’s keys
up to a certain digit, we can tune an LSD radix sort to only
sort on the remaining digits.

Buckets that exceed the local sort threshold, ∂̂, are parti-
tioned into sub-buckets using a counting sort. The counting
sort reads the keys starting at the bucket’s offset from the
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Table 2: Hybrid radix sorting example: sorting 16 keys of k=4 bits with d=2 bits and a radix of r=4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

keys (radix 4) 31 12 01 23 12 22 12 00 11 10 10 31 03 13 12 03
histogram 4 8 2 2
prefix-sum 0 4 12 14

sort (radix 4)
bucket 0 bucket 1 bucket 2 bucket 3

01 00 03 03 12 12 12 11 10 10 13 12 23 22 31 31

histogram 1 1 0 2 2 1 4 1 local local
prefix-sum 0 1 2 2 0 2 3 7 local local

sort (radix 4)
b0 b1 b3 b0 b1 b2 b3 local local
00 01 03 03 10 10 11 12 12 12 12 13 22 23 31 31

input memory, partitions them into sub-buckets according
to the specified digit and writes the sequence of sub-buckets
cohesively into the output memory, such that the sub-bucket
holding the keys with the smallest digit value starts at the
same offset as the input bucket. An implementation of a
counting sort for a single bucket follows these steps:

(1) Compute the histogram over the digit values of all keys
in the bucket to determine the size of each sub-bucket.

(2) Compute the exclusive prefix-sum over the histogram
to get the offset for each of the r sub-buckets.

(3) Scatter the keys into the sub-buckets according to the
keys’ digit values.

The presented approach is exemplified in Table 2, which
shows the algorithm for 16 keys of a length of four bits. The
radix sort is performed using two-bit digits with a radix of
r = 4, requiring exactly two passes to fully sort the keys.
The keys are represented in a base four notation. In the
example, we set the threshold for local sorting to ∂̂ = 3,
turning to a local sort for buckets of three keys or less.

4.2 Fine-Grained Parallelism on GPUs
While the presented algorithm allows to process individual

buckets in parallel, the level of parallelism may not suffice
to have enough threads in flight to hide the latency from
memory accesses. Therefore, we introduce a higher degree
of concurrency for the counting sort by splitting the n keys
of each bucket into a sequence of dn/KPBe key blocks, each
comprised of up to KPB keys. Each key block is processed
once during the computation of the histogram and once dur-
ing the scattering step.

In order to decrease the overhead associated with kernel
invocations, we use only a constant number of invocations
per sorting pass, independent of the number of buckets being
sorted. A kernel invocation instructs the GPU to execute
a given kernel (function) by a specified number of thread
blocks, each comprised of a given number of threads. Rather
than adjusting the arguments (e.g., pointer to a bucket’s
keys, number of keys) for each bucket individually, using
multiple invocations, we put that information into device
memory as a byproduct of the prefix-sum computation and
launch just enough thread blocks to have one for each key
block of each bucket. During the computation of the his-
togram and the key scattering step, each thread block looks
up the bucket and the block of keys it is assigned to by
reading that information from device memory.

We proceed similarly for the local sort, where we assign
exactly one thread block to each bucket. However, there is
a downside to using only a single kernel invocation for all
buckets that are sorted using a local sort. That is, there

are just as many threads being assigned for processing a
large bucket that has close to ∂̂ keys, as there are for sorting
a relatively small bucket of only a few keys. Thus, with
many threads being over-provisioned for small buckets, this
introduces additional overhead. We address this issue in two
ways.

Firstly, we start merging tiny neighbouring sub-buckets
whose total number of keys falls below a certain threshold
∂. That is, after a counting sort has partitioned a bucket
into r sub-buckets, we merge any sequence of sub-buckets as
long as their total number of keys is less than ∂, with ∂ ≤ ∂̂.
This further reduces the upper bound on the total number
of buckets and avoids having too many tiny buckets, for
which the scheduling of an own thread block would introduce
considerable overhead, compared to the time that is spent
on the sorting.

Secondly, instead of using a single kernel invocation that
sorts all buckets whose size falls into the interval [1, ∂̂], we
distinguish between different bucket sizes in that interval,
e.g., bucket sizes of [1, 128], (128, 256], (256, 512], ..., (..., ∂̂]
keys, respectively. For each of these subintervals, a kernel
is invoked with each thread block provisioning just enough
threads to process the respective number of keys. We refer
to each of these as a local sort configuration, which repre-
sents the combination of a kernel, a number of threads per
thread block, and the supported bucket size. In addition to
adjusting the number of threads per thread block, this al-
lows to specify a certain kernel that is optimised for sorting
the given number of keys. Hence, for small buckets, a config-
uration with a sorting network or another comparison-based
sorting algorithm could be devoted, turning to an LSD radix
sort for configurations supporting buckets of a larger size.

4.3 Histogram
One of the key advantages of the proposed approach is,

that, in contrast to an LSD radix sort, the hybrid radix sort
does not rely on stable sorting passes. Therefore, it is not
restricted to respecting the order of preceding sorting passes
for keys falling into the same sub-bucket. Lifting this con-
straint enables our approach to use native shared memory
atomic operations for the histogram computation and the
key scattering step to mitigate the downside of considering
more bits with each sorting pass.

Our histogram computation aggregates one histogram per
block in shared memory. Every thread reads KPT keys from
device memory, iterates over them, and uses an atomicAdd
operation to increment the counter in shared memory for the
respective digit value. Once all threads of a block are done,
the histogram that has been accumulated in shared memory
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is added to the global histogram by adding the respective
counters in device memory.

Since all threads of a thread block share the same coun-
ters for the local histogram, highly skewed distributions with
only few digit values potentially degrade the performance,
as this causes all threads to simultaneously access the same
counters in shared memory. In order to be able to max out
the available memory bandwidth, each SM must achieve a
processing rate of 8×BW

k×|SMs| keys per second, where BW de-

notes the peak memory bandwidth in bytes per second and
|SMs| the number of available SMs. Based on the number
of SMs and the theoretical peak memory bandwidth of re-
cent GPUs, this gives a required throughput of 3−4.5 billion
32-bit keys per SM per second [31, 32]. For a constant distri-
bution, however, our experiments show an average through-
put of only 1.7 billion 32-bit keys per SM per second on
an NVIDIA Titan X (Pascal), due to competing updates to
only one single shared memory location. This performance
drop is shown for the atomics only approach in Figure 2,
which depicts the memory bandwidth utilisation relative to
the peak throughput of 369.17 GB/s (determined using a
micro-benchmark for a read-only workload). In contrast,
for a uniform distribution over q distinct digit values, with
q ≥ 3, the approach that uses atomics only, sees as much
as 3.3 billion updates per SM per second, almost achieving
peak memory bandwidth.

In order to avoid such a performance drop for highly skewed
distributions, we use the available compute resources for
a new approach (thread reduction & atomics) that reduces
each thread’s updates to shared memory. For the simple ap-
proach (atomics only), the computation for each key is lim-
ited to bit-shifting the desired digit to the least-significant
digit, masking it, and atomically incrementing the counter
for the resulting value in shared memory. Instead, with our
improved approach, each thread stores its masked digit val-
ues in registers, uses a sorting network to bring them into
sorted order and combines the counter updates for subse-
quent registers sharing the same value into a single atomi-
cAdd operation. To limit the complexity of the sorting net-
work, we sort runs of up to nine values at a time using
a sorting network that involves 25 comparisons. Once the
runs of digit values are in a sorted order, the algorithm it-
erates over them, combining any sequence of identical digit
values into a single atomicAdd operation. As shown in Fig-
ure 2 (thread reduction & atomics), the reduced number of
atomic updates now effectively mitigates the performance
drop for a very skewed distribution.

Since, the block’s histogram needs to be recomputed dur-
ing the key scattering step, the algorithm stores each block’s
histogram in device memory to save compute resources later
on. This slightly increases the utilised memory bandwidth
of this step by a factor of 1 + r∗4

KPB × k/8
, given that the his-

togram uses counters of four bytes. Assuming a reasonable
number of KPB , such as 6 912, this adds less than 4% to
the data being transferred in the case of 32-bit keys, while
saving essential compute resources during the key scattering
step.

4.4 Key Scattering
For the scattering of a bucket’s keys into its r sub-buckets,

we use the same subdivision of buckets into key blocks as
for the histogram computation. This allows to reuse the
histograms that have already been computed and stored in
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Figure 2: Achieved memory bandwidth utilisation
for the histogram computation of a uniform distri-
bution amongst a varying number of values using a
non-optimised (atomics only) and an optimised ap-
proach (thread reduction & atomics)

device memory for each block. Each of these histograms
indicates the number of keys that are going to be scattered
from the key block into each of the sub-buckets. It can there-
fore be used to determine the size of the chunk of memory
within each sub-bucket that needs to be reserved for the
block’s keys. A chunk of memory for storing n keys within
a sub-bucket is reserved by performing a single atomicAdd
operation that reads the sub-bucket’s offset and adds n to
it. Adding the number of keys, n, to the sub-bucket’s offset
guarantees that subsequent memory reservations are made
beyond this chunk’s memory reservation. The original value
that has been read before n was added, can therefore be
used as the starting offset in memory for the chunk.

Once up to r chunks of memory have been reserved for
the block, its keys can be scattered into the reserved mem-
ory locations. However, simply scattering the keys to the
chunks suffers from irregular memory accesses, as all threads
of a thread block write the keys into different chunks resid-
ing at distant locations within device memory. To address
this issue and coalesce writes to device memory, the keys
of each block are first partitioned into the r sub-buckets
within shared memory, before writing the whole sub-bucket
of a block to the reserved chunk in device memory. Fig-
ure 3 illustrates this for a single key block. The top row
depicts an excerpt of the device memory holding the input,
the middle row represents the local shared memory, and the
bottom row shows the device memory for the sub-buckets.
The block’s keys are read from device memory, partitioned
locally into the sub-buckets in shared memory from where
the local sub-buckets are finally copied to the chunks that
have been reserved within the respective sub-buckets in de-
vice memory.

Compared to immediately scattering individual keys to
irregular locations in device memory, this considerably im-
proves the memory performance. Yet, depending on the
granularity of memory transactions, the choice of r and the
number of keys per block, KPB , may have considerable im-
plications on the memory efficiency. For memory transac-
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Figure 3: Using shared memory for write combining

tions that read or write T bytes at a time, the lower bound
of required memory transactions for a block of k-bit keys is
given by dKPB×k

T×8
e. That is, for each memory transaction,

T bytes are written, with the exception of the last transac-
tion, which possibly only writes the remainder that does not
make up T bytes. However, the worst case may require one
additional transaction for the remainder of each sub-bucket,
totaling r additional memory transactions (neglecting inef-
ficiencies due to misaligned writes). Since the local shared
memory is limited to a few tens of kilobytes and has to fit
all keys of a block, we are limited to a few thousand keys
per block. One possible choice for a key block size would be
32 768 bytes, requiring a minimum of 1 024 transactions for
T = 32 bytes. Calculating the worst case memory efficiency
as the ratio of the lower to the upper bound on the number
of memory transactions yields 80% for using eight-bit digits
with a radix of 256. Further increasing the digit size to nine,
ten, or eleven bits, would further decrease the efficiency to
66.66%, 50%, or 33.33%, respectively. We therefore choose
d = 8 bits as an optimum trade-off between reducing the
number of required sorting passes and the worst case mem-
ory efficiency.

The partitioning of a block’s keys within shared mem-
ory makes use of the shared memory atomics to coordinate
writes to the local sub-buckets. Similar to the mechanism
being used for reserving chunks within the sub-buckets in de-
vice memory, we maintain one write counter in shared mem-
ory for each sub-bucket. Prior to writing a key into a local
sub-bucket, a thread reads the value from the sub-bucket’s
write counter and adds the number of keys it intends to
write. The original value that is read from the write counter
serves as the thread’s write offset within the sub-bucket in
shared memory. Similar to our histogram approach, this
makes extensive use of shared memory atomics. Hence, the
key scattering suffers a similar performance drop for skewed
distributions as the basic histogram implementation. How-
ever, compared to the histogram computation, the key scat-
tering is not limited to just reading the keys from device
memory, but also requires writing the keys back, resulting
in twice the amount of data being transferred. In order to
fully utilise the available memory bandwidth, it is therefore
sufficient to achieve only half the processing throughput.

In order to mitigate the performance drop for very skewed
distributions, we use an implementation that tries to com-
bine writes of multiple keys to the same local sub-bucket.
Instead of writing the keys one by one to the respective lo-
cal sub-buckets, each thread looks at several keys at a time,

writing any sequence of up to three keys sharing the same
digit value at once. We refer to this approach as a look-ahead
of two, since each thread considers the two following keys,
in addition to the one it is currently looking at. We chose
a look-ahead of two as it provides a reasonable trade-off
for maximising the probability of combining writes for the
highly skewed distributions, which we are trying to address,
without wasting too many compute resources.

In order to avoid the overhead for distributions lacking
the skewness to benefit from using a look-ahead due to an
insufficiently high probability of finding keys destined for the
same sub-bucket, we only consider the look-ahead for highly
skewed distributions. Having the block’s histogram at hand
(from the preceding histogram computation), the algorithm
can determine the skewness of the key distribution and only
turn to the approach using a look-ahead for highly skewed
distributions.

4.5 Analytical Model
One of the core challenges of the MSD-based hybrid radix

sort is that the algorithm may end up with millions and mil-
lions of buckets that need to be maintained in memory. This
section aims to seize the algorithm’s complexity by deducing
upper bounds on the maximum number of buckets, blocks,
and memory requirements.

The following list presents the most important rules for
the sorting algorithm:
(R1) Any bucket of size n, with n ≤ ∂̂, is sorted within

on-chip shared memory using a local sort.
(R2) Any bucket of size n, with n > ∂̂, is partitioned into r

sub-buckets using a counting sort.
(R3) Any sequence of sub-buckets is merged as long as the

total number of keys falls short of the merge threshold
∂, with ∂ ≤ ∂̂.

(R4) Any bucket of size n, with n > ∂̂, consists of exactly
dn/KPBe blocks and each block holds a sequence of
keys from exactly one bucket.

Based on the presented list of rules, the following bounds
can be deduced for sorting an input comprised of n keys:
(I1) Following from R1, at any given time, there are at most

bn/∂̂c buckets that cannot be sorted with a local sort.
(I2) Following from I1 and R2, at any given time, there are

at most a total of r × bn/∂̂c buckets. This can be de-

duced, as there are at most bn/∂̂c buckets that are par-
titioned using a counting sort and each of those buckets
is partitioned into at most r sub-buckets.

(I3) Considering R3, the upper bound given by I2 can be

refined to min(b2×n/∂c+bn/∂̂c, r×bn/∂̂c). Following
from R3, we conclude that any two subsequent sub-
buckets must have at least ∂ keys, as they would have
been merged otherwise. Yet, as we can only merge sub-
buckets originating from the same bucket, there may be
one sub-bucket per bucket that cannot be merged.

(I4) Following from R4 and I1, at any given time, there are

at most bn/KPBc + bn/∂̂c blocks. This follows from
the fact that there are at most bn/KPBc blocks with
KPB keys. Adding to that up to one block for the
remaining keys of each bucket gives an upper bound on
the number of blocks.

Having determined the upper bound on the number of
buckets and blocks, the memory requirements can easily be
inferred. We are using unsigned integers of four bytes for
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the counters of the histograms, as well as for the offsets of
sub-buckets and key blocks. This can be easily adjusted
to support more than 232 − 1 keys by using a larger data
type. For the assignments of thread blocks to key blocks,
we are using the following data structure: {k_offs:uint,

k_count:uint, b_id:uint, b_offs:uint}, holding infor-
mation on the starting offset of the keys, the number of
consecutive keys, the bucket’s unique identifier, and its off-
set. Memory required for these assignments needs to be
allocated twice, once to keep track of the assignments of the
current pass, and once for the assignments of the subsequent
pass. Similarly, we store the following information for the
assignment of a bucket whose size falls short of the local sort
threshold: {b_id:uint, b_offs:uint, is_merged:bool}.
In addition to storing one histogram for each bucket exceed-
ing the local sort threshold, we allocate memory for each
of its blocks’ local histograms. This allows the algorithm
to write the local histograms during the histogram compu-
tation and reuse the blocks’ histograms in the subsequent
scattering step.

Apart from the negligible amount of constant memory in
the order of a few bytes for the synchronisation between
thread blocks, the amount of memory (in bytes) that is re-
quired for sorting n keys comprised of k bits is given by:
(M1) Input and auxiliary memory: 2× n× k/8
(M2) Bucket histograms: 4× r × bn/∂̂c
(M3) Block histograms: 4× r × (bn/KPBc+ bn/∂̂c)
(M4) Block assignments: 2× 16× (bn/KPBc+ bn/∂̂c)
(M5) Local sort sub-bucket assignments:

12×min(b2× n/∂c+ bn/∂̂c, r × bn/∂̂c)
For 32-bit keys, for instance, the total amount of mem-

ory required by M2 through M5 is bound by a mere 5% of
M1, given a reasonable configuration, such as KPB = 6 912,
∂̂ = 9 216, ∂ = 3 000, and r = 256.

4.6 Sorting Pairs & Other Data Types
In order to support key-value pairs that are stored in a

decomposed layout, the hybrid radix sort is extended to re-
arrange the values along with the keys they are associated
with. Therefore, it is sufficient to adapt the key scatter-
ing step and the local sort, which are the only components
involved in the permutation of keys. We extend the imple-
mentation of the key scattering step to keep track of the
memory locations to which the individual keys have been
written. Hence, while partitioning a block’s keys within
shared memory, each thread stores the offsets at which its
keys have been placed. Once all keys have been rearranged
and the block’s local sub-buckets have been copied to device
memory, the shared memory can be reused for the values.
Each thread reads the values its keys are associated with
from device memory and writes them to shared memory ac-
cording to the offsets that have been stored in the thread’s
registers during the local partitioning of the keys. Finally,
the local sub-buckets holding the values are copied to the
respective locations in device memory. The local sort is ex-
tended by taking advantage of CUB’s BlockRadixSort that
comes with support for sorting key-value pairs [29]. For key-
value pairs that are stored coherently in memory, keys and
values need to be decomposed into a key and a value part, re-
composing them once the sorting is done. Our experiments
have shown that the de- and recomposition can be achieved
at peak memory bandwidth, adding only negligible overhead
to the sorting procedure.

Figure 4: Pipelined sorting exploiting the available
resources to mitigate the data transfer overhead

Figure 5: Efficient device memory utilisation for in-
terleaving sorting with data transfers

While the presentation of the proposed hybrid radix sort
has been limited to sorting unsigned integer keys, it can be
easily extended to cover further primitive data types, such
as int, float, and double. Support is added by using a
bijective mapping from the input’s data type to an order-
preserving bit-string. This is as simple as flipping the sign-
bit for signed integers and a little bit more involved for floats,
where all bits have to be flipped if the sign bit was set, and
only the sign bit is flipped otherwise [19]. We transform the
input during the scattering step of the first counting sort
and recover the original representation either during a local
sort or the last counting sort pass.

5. HETEROGENEOUS SORTING
Having presented an efficient approach for sorting inputs

within GPU’s device memory, this section builds on that
component with a heterogeneous sorting algorithm that ad-
dresses inputs that either do not reside on the GPU or simply
do not fit into the available device memory. In either case,
data has to be transferred over the comparably slow Pe-
ripheral Component Interconnect Express (PCIe) bus from
the CPU to the GPU and vice versa, adding a considerable
amount of overhead to the end-to-end sorting performance.
Hence, in addition to the time taken for sorting a given input
on the GPU (TS), the time taken for transferring the whole
input to the GPU (THtD) as well as the time taken for re-
turning the sorted sequence from the GPU (TDtH) have to
be considered.

In order to support arbitrarily large inputs and mitigate
the overhead that is introduced with the data transfers, we
split the input into s chunks and treat them as a set of sub-
problems that can be processed concurrently. As illustrated
in Figure 4, this allows to overlap the processing stages of
multiple sub-problems. For instance, while transferring the
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data of the third chunk, the GPU can concurrently sort the
second chunk and return the sorted run of the first chunk.
Since the PCIe bus allows for full-duplex communication,
we are able to accelerate data transfers without sacrificing
throughput in either direction. With the sorted chunks be-
ing returned by the GPU, the CPU is left with the task of
merging the s chunks into one final sorted sequence. De-
noting the time taken for merging with TM , the end-to-end
sorting duration is given by:

TEtE =
THtD

s
+ max(THtD, TS , TDtH) +

TDtH

s
+ TM

Hence, for large enough s, the time taken for transfer-
ring the input to the GPU, sorting the chunks there and
writing the sorted runs back to system memory is now al-
most down to the time taken for transferring the input over
the PCIe bus one single time, or sorting the input on the
GPU, whichever takes longer. This carves out a consider-
able amount of time that the CPU can spend on merging the
s chunks. In order to improve the merging performance and
avoid being bound by the available memory bandwidth, we
use the parallel multiway merge that merges multiple chunks
in a single pass from the parallel extension of stdlibc++.
Moreover, to lower the number of merging passes for larger
inputs, we max out the limited device memory with our
in-place replacement strategy. That is, rather than allocat-
ing memory that can host four chunks: one for sorting, one
for the auxiliary memory, one for the chunk being returned
from the GPU, and one for copying the next chunk to the
GPU, we only require enough memory for three chunks. As
depicted in Figure 5 for the first few time-steps, we immedi-
ately reuse the memory that is used to hold a sorted chunk
by replacing it with the input of the next chunk. At time
step t2 in Figure 5, for instance, we return the sorted run
for chunk 0, while replacing it with the contents of chunk 2.
This allows supporting larger chunks that may take up al-
most one third of the available device memory. Assuming a
system with sufficient compute power to efficiently merge up
to 16 chunks at a time and a GPU with 12 GB of memory,
we could sort an input of up to 64 GB using only a single
merging pass.

6. EXPERIMENTAL EVALUATION
The experiments were conducted on a system running

Ubuntu 16.04 with kernel version 4.4. The system is equipped
with 128 GB DRAM (quad-channel, DDR4-2400) and a
Xeon E5-1650 v4 processor with six physical cores, clocked
at 3.60 GHz. The source code was compiled with the O3 flag
using release 8.0.44 of the CUDA toolkit. We used driver
version 367.48 for an NVIDIA Titan X (Pascal) with 12 GB
device memory, 3 584 cores, and a base clock of 1 417 MHz.
The performance numbers were averaged over 25 runs. We
used the CUB header library in version 1.5.1 to compare the
presented approach to the state-of-the-art GPU-based radix
sort [29]. CUB is developed as an open-source project by
NVIDIA Research. The radix sort provided by CUB builds
on the approach presented by Merrill et al. [28]. Moreover,
we include comparisons to the radix sort implementation of
Thrust [20], the merge sort presented by Baxter [4], and the
radix sort from Satish et al. [34]. Similarly, we compare the
end-to-end sorting performance of our heterogeneous sort-
ing algorithm on the aforementioned system with a six-core
CPU to the results that were reported on a stronger system

Table 3: Our default configurations

key/value size KPB threads KPT ∂̂
32-bit keys 6 912 384 18 9 216
64-bit keys 3 456 384 9 4 224

32-bit/32-bit pairs 3 456 384 18 5 760
64-bit/64-bit pairs 2 304 256 9 3 840

with 32 cores for PARADIS (CPU-based radix sort) [8].
For the counting sort, we used d = 8 bits per digit. In

order to improve the occupancy, we determined the number
of threads as well as the number of keys per thread (KPT )
based on the amount of shared memory and the number
of registers being required by the kernels, which, in turn,
depends on the key and value size. Similarly, these factors
impose an upper bound on the local sort threshold ∂̂, where
the kernel’s on-chip memory requirements for processing ∂̂
elements must not exceed the available resources of a single
SM. The values that were determined for these parameters
are depicted in Table 3.

Other than comparison-based sorting algorithms, the hy-
brid radix sort is not prone to the order of the input but
rather sensitive to the key distribution. Hence, in order to
generate distributions with varying skewness, we implement
the benchmark proposed by Thearling et al. [39], which uses
the Shannon entropy as a measure of data distribution. Data
is generated by repeatedly applying the bitwise AND oper-
ation to uniform random distributions, which increasingly
skews the distribution towards keys with fewer bits set. For
32-bit keys, for instance, an entropy of 32 bits corresponds
to a uniform distribution with each single bit of a key having
a 50% probability of being set. Repeatedly AND ing random
keys with such a uniform distribution once, twice, or three
times, generates distributions with entropies of 25.96, 17.39,
and 10.79 bits, respectively. In order to compare the end-
to-end performance to the numbers that have been reported
for PARADIS, we also ran experiments with a Zipfian dis-
tribution [14, 8].

6.1 On-GPU Sorting
We have evaluated the sorting performance for key dis-

tributions with varying degrees of skewness, starting from
a uniform distribution (32-bit and 64-bit entropy) up to all
keys having the same value (zero-bit entropy). Comparing
the sorting rates for 32-bit keys (see Figure 6a), the hybrid
radix sort shows an improvement of no less than a 1.69-
fold speed-up over CUB. Compared to Thrust’s radix sort
(Thrust), Baxter’s merge sort (MGPU), and the radix sort
proposed by Satish et al. (Satish et al.), the results show
a minimum speed-up of 1.89, 3.96, and 3.66, respectively.
Being able to save one sorting pass by finishing early with
a local sort, the hybrid radix sort achieves its peak perfor-
mance for a uniform distribution with more than a two-fold
speed-up over CUB, sorting 500 million keys in only 62.6
milliseconds. As shown in Figure 6c, the effect of the local
sort becomes even more apparent for 64-bit keys. Sorting a
uniformly distributed input of two gigabytes in as little as
66.7 milliseconds, for instance, almost matches the hybrid
radix sort’s processing duration for 32-bit keys. In contrast,
CUB requires roughly twice as many sorting passes for 64-bit
keys as for 32-bit keys and therefore sees a 49% performance
drop. Starting out with a 3.75-fold speed-up over CUB for
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Figure 6: Performance for sorting a 2 GB input with varying data skewness on the GPU

uniformly distributed 64-bit keys, the performance surplus
due to the local sort declines for increasingly skewed distri-
butions, flattening out for a distribution with an entropy of
zero bits. For such a distribution, all keys have to be run
through all counting sort passes. Hence, the performance
gain over CUB boils down to the reduced number of count-
ing sort passes and the lower amount of memory transfers.
Given keys and key-value pairs that comprise 64-bit keys,
an achieved speed-up of the hybrid radix sort with a fac-
tor of 1.58 over CUB for such a distribution is in line with
the improvements we expect from our 1.625-fold reduction
in the amount of memory transfers (13 versus eight sort-
ing passes). Similarly, the 1.7-fold speed-up seen for 32-bit
keys closely matches the 1.75-fold improvement over CUB
we anticipated as a result of reducing from seven to only
four sorting passes. This illustrates that the proposed hy-
brid radix sort is able to efficiently mitigate the downsides
of considering more bits with each sorting pass, achieving
more than 97% of the expected theoretical speed-up.

Comparing the hybrid radix sort’s performance for sort-

ing key-value pairs to the performance shown for sorting
keys only, we see a 20% increase in the amount of data be-
ing sorted per second, which matches the reduced amount of
memory transfers. Since half the input consists of keys, the
hybrid radix sort is reading only half the input during the
histogram computation, while still reading and writing the
whole input once during the scattering phase. For a total of
reading and writing the input only 2.5 times instead of three
times, we end up with a 1.2-fold lower amount of memory
transfers, which directly translates to a 20% performance in-
crease. This culminates in a sorting rate of up to 40.2 GB/s
for 32-bit keys with an associated 32-bit value and up to 35.7
GB/s for 64-bit keys with 64-bit values (see Figure 6b and
Figure 6d). Compared to CUB, this corresponds to a 2.32-
fold and a four-fold improvement for 32-bit/32-bit key-value
pairs and 64-bit/64-bit key-value pairs, respectively.

We also analysed the sorting performance for inputs rang-
ing from 250 000 to 500 million elements with key distribu-
tions of varying skewness, i.e., considering an entropy of
64.00, 51.92, 34.79, 21.59, 12.84, 7.43, 4.22, 2.36, 1.31, 0.72,

426



HRS - 51.92 bit HRS - 34.79 bit HRS - 0.00 bit

CUB - 51.92 bit CUB - 34.79 bit CUB - 0.00 bit

MGPU - 51.92 bit MGPU - 34.79 bit MGPU - 0.00 bit

10 100 1 000
0

10

20

30

input size (MB)

(a) 64-bit keys

so
rt

in
g

ra
te

(G
B

/
s)

10 100 1 000
0

10

20

30

input size (MB)

(b) 64-bit keys with 64-bit values

so
rt

in
g

ra
te

(G
B

/
s)

Figure 7: Comparison of the hybrid radix sort (HRS), the CUB radix sort (CUB), and merge sort (MGPU)
for different distributions with an entropy of 51.92, 34.79, and 0.00 bits

0.39, and 0.00 bits. Being able to save several sorting passes
for a uniform key distribution, the hybrid radix sort outper-
forms CUB for all of the evaluated input sizes. Yet, incur-
ring a slightly lower constant overhead, CUB has an edge
for very small and highly skewed inputs that are sorted in
the order of hundreds of microseconds (see Figure 7a and
Figure 7b). Considering the hybrid radix sort’s worst-case
key distribution, however, the hybrid radix sort still outper-
forms CUB for inputs larger than 1.9 million keys and 1.6
million key-value pairs, independently of the key distribu-
tion. Given that the input size is a function parameter, we
could easily default to CUB’s sorting algorithm using a sim-
ple case distinction for small inputs that fall short of these
thresholds. Compared to Thrust and the GPU-based merge
sort (MGPU), our hybrid radix sort is superior for any of
the evaluated problem sizes. For reasons of clarity, however,
we decided to only present the performance results gathered
from the merge sort implementation.

6.2 Heterogeneous Sorting
This section analyses the end-to-end sorting performance

of the pipelined heterogeneous sorting algorithm and com-
pares it to the numbers reported for the CPU-based radix
sort PARADIS [8].

Figure 8 compares the heterogeneous sort to a näıve ap-
proach that simply transfers the input to the GPU (PCIe
HtD), sorts the input there (on-GPU sorting), and returns
the sorted result over the PCIe bus (PCIe DtH ). The näıve
approach was evaluated for two variants. Firstly, using the
state-of-the-art radix sort for the on-GPU sorting (CUB),
and secondly, using the hybrid radix sort (HRS). We anal-
ysed the performance of the heterogeneous sort for several
choices of s (the number of chunks). The figure shows the
processing duration of the heterogeneous sort broken down
into the chunked sort and the CPU merging. The chunked
sort represents the time taken for splitting the input into s
chunks, transferring the chunks to the GPU, sorting them on
the GPU, and returning the sorted runs over the PCIe bus.
The time taken for merging s sorted chunks on a six-core

CPU is depicted by CPU merging. Figure 8 shows that,
as the number of chunks increases, the time taken by the
chunked sort is approaching the time taken for transferring
the input one single time over the PCIe bus (cf. Section 5).
For s = 16 chunks, for instance, the time of the chunked
sort is down to 629 milliseconds, which corresponds to a
mere 16% more time than it takes to transfer the whole in-
put to the GPU one single time (540 milliseconds). Notice-
ably, the chunked sort even outperforms the on-GPU sorting
time of CUB (636 milliseconds), even though the chunked
sort includes the PCIe data transfers to the GPU and back.
While we see the performance of the chunked sort improving
for a larger number of chunks, our parallel multiway merge
lacks the compute power to efficiently merge more than four
chunks at a time. For our six-core CPU, we therefore see
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Figure 8: Comparing the end-to-end time for sorting
375 million 64-bit keys with 64-bit values (6 GB)
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Figure 9: Comparing the end-to-end sorting performance of the heterogeneous sorting algorithm to the
state-of-the-art CPU-based radix sort (PARADIS) for inputs comprising 64-bit keys with 64-bit values

a minimum for the overall end-to-end sorting time for four
chunks. While these performance numbers are representa-
tive for our system, using our merge-based approach, a more
powerful host system will see a lower minimum for a higher
number of s, given that it efficiently merges eight, 16, or even
more chunks at a time. Similarly, a more efficient multiway
merge implementation or an approach building on partition-
ing rather than merging may also move the optimum towards
a higher number of chunks.

Figure 9a and Figure 9b compare the performance of the
heterogeneous sort to the numbers reported for PARADIS
running 16 threads on a system with 32 CPU cores [8]. For
a skewed distribution, our heterogeneous sorting algorithm
achieves a four-fold speed-up, sorting four gigabytes in 895
milliseconds. Even though we see our CPU-based parallel
multiway merge slightly degrading the overall performance
for larger inputs, the heterogeneous sort still shows more
than a two-fold speed-up over PARADIS for an input of
64 GB. While the GPU completes sorting and returning all
sorted runs after only 6.7 seconds, it takes the parallel mul-
tiway merge on a six-core CPU another 9.3 seconds to merge
the sorted runs. Compared to PARADIS, which suffers from
skewed distributions, the performance of our approach is al-
most distribution agnostic, varying by no more than 5% be-
tween the uniform and the Zipfian distribution. PARADIS,
running 32 threads, takes 19.8 and 25.4 seconds for an input
of 64 GB with a uniform and a skewed key distribution, re-
spectively. Even though the heterogeneous sort is only run-
ning on a six-core CPU, these results are still up by a factor
of 1.18 and 1.59 from the time taken by the heterogeneous
sort for a uniform and a skewed distribution, respectively.

7. CONCLUSIONS
This work presented a novel approach to radix sorting on

GPUs. Instead of building on the common LSD radix sort
approach for GPUs that relies on stable sorting passes, we
took a different route with our efficient implementation of
an MSD radix sort. Proceeding from the most-significant to
the least-significant digit allows our algorithm to drop the
requirement of stable sorting passes. By lifting this con-
straint, we were able to substantially reduce the number of

required sorting passes and the amount of memory transfers.
For the memory bandwidth-bound radix sort, we achieve a
baseline of a 1.6-fold reduction in the amount of memory
transfers, which directly translates to an achieved minimum
speed-up of a factor of 1.58. This shows that our approach
is successfully addressing the challenges arising from imple-
menting an MSD radix sort on GPUs, such as load balanc-
ing issues for skewed distributions and performance degra-
dation due to bucket handling, while still being able to max
out the high memory bandwidth of GPUs. Moreover, sort-
ing small buckets in on-chip memory rather than running
them through subsequent partitioning passes enables addi-
tional performance improvements, culminating in a four-fold
speed-up over the state-of-the-art approach.

In addition, we presented a heterogeneous sorting algo-
rithm that uses the CPU on powerful host systems to miti-
gate the overhead introduced with PCIe data transfers and
sort arbitrarily large inputs. Using pipelining, we were able
to exploit the full-duplex communication of the PCIe bus,
while interleaving the process of sorting and data transfers.
Transferring an input to the GPU, sorting it into runs of
up to four gigabytes each, and returning the sorted runs
is now almost as fast (i.e., 9.55 GB/s) as transferring the
input in one direction, one single time over the PCIe bus
(i.e., 12 GB/s). Comparing the end-to-end sorting perfor-
mance of our heterogeneous sort (including the time taken
for merging the runs on a six core CPU) to the numbers
reported for PARADIS using 16 threads on a 32 core sys-
tem, we see a 2.2-fold and a four-fold speed-up for an input
of four gigabytes with a uniform and a Zipfian distribution,
respectively. Even though being bound by the merging per-
formance of the CPU for larger inputs, like 64 GB, we still
see an improvement of a factor of 1.52 and 2.07 for a uniform
and a Zipfian distribution, respectively.
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APPENDIX
A. ADDENDUM ON THE LATEST WORK

As a fundamental operation that finds its application in
many fields, GPU-based sorting algorithms receive a lot of
attention. Given the strong interest in efficient sorting al-
gorithms, available implementations are continuously im-
proved and new approaches are regularly published. With
this addendum we aim to meet the rapid advancements that
are made in this field, covering up to date work, which fol-
lowed our initial submission and the completion of the peer
review process, with preliminary and non-exhaustive results
that we were able to obtain just in time with the authors’
support. In particular, that is the work of Ashkiani et al.,
who present an improved version of their multisplit primi-
tive (GPU Multisplit) that can be used for the partitioning
passes of a radix sort as well as an update of the CUB library,
which in version 1.6.4 enables specific GPU architectures to
support up to seven bits per sorting pass [2, 29]. While CUB
is maxing out shared memory at the cost of lower occupancy,

GPU Multisplit makes use of the warp-synchronous execu-
tion and warp-wide intrinsics for the efficient data exchange
between threads of the same warp to mitigate excessive on-
chip memory requirements.

Figure 10 shows a performance comparison of the hybrid
radix sort and the two latest approaches, putting their ad-
vancements into context by adding the prior state-of-the-art
baseline (CUB, version 1.5.1) to the evaluation. For sorting
32-bit keys, the hybrid radix sort still achieves as much as a
56% improvement over CUB’s latest version. For any non-
constant distribution, it retains a minimum improvement
of 32% over CUB (version 1.6.4), with an edge of 21% for a
constant distribution (0 bits entropy). For 32-bit keys, GPU
Multisplit is superior to CUB (version 1.5.1), yet, inferior to
CUB (version 1.6.4). The hybrid radix sort outperforms
GPU Multisplit by no less than a factor of 1.53 for 32-bit
keys (see Figure 10a). As shown in Figure 10b, GPU Mul-
tisplit and CUB in its latest version are roughly on a par
for sorting key-value pairs (32-bit keys with 32-bit values).
While GPU Multisplit has an edge over CUB of up to 12%

3
2
.0

0

2
5
.9

6

1
7
.3

9

1
0
.7

9

6
.4

2

3
.7

2

2
.1

1

1
.1

8

0
.6

5

0
.3

6

0
.1

9

0
.0

0

0

20

40

key entropy (bits)

(a) 32-bit keys

so
rt

in
g

ra
te

(G
B

/
s)

hybrid radix sort CUB, v. 1.5.1

Multisplit CUB, v. 1.6.4

3
2
.0

0

2
5
.9

6

1
7
.3

9

1
0
.7

9

6
.4

2

3
.7

2

2
.1

1

1
.1

8

0
.6

5

0
.3

6

0
.1

9

0
.0

0

0

20

40

key entropy (bits)

(b) 32-bit keys with 32-bit values

so
rt

in
g

ra
te

(G
B

/
s)

hybrid radix sort CUB, v. 1.5.1

Multisplit CUB, v. 1.6.4

6
4
.0

0

5
1
.9

2

3
4
.7

9

2
1
.5

9

1
2
.8

4

7
.4

3

4
.2

2

2
.3

6

1
.3

1

0
.7

2

0
.3

9

0
.0

0

0

10

20

30

key entropy (bits)

(c) 64-bit keys

so
rt

in
g

ra
te

(G
B

/
s)

hybrid radix sort

CUB, v. 1.6.4

CUB, v. 1.5.1

6
4
.0

0

5
1
.9

2

3
4
.7

9

2
1
.5

9

1
2
.8

4

7
.4

3

4
.2

2

2
.3

6

1
.3

1

0
.7

2

0
.3

9

0
.0

0

0

10

20

30

key entropy (bits)

(d) 64-bit keys with 64-bit values

so
rt

in
g

ra
te

(G
B

/
s)

hybrid radix sort

CUB, v. 1.6.4

CUB, v. 1.5.1

Figure 10: Performance for sorting a 2 GB input with varying data skewness on the GPU
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for more uniform distributions, CUB (version 1.6.4) has an
edge of up to 8% for highly skewed distributions. Com-
pared to GPU Multisplit, the hybrid radix sort achieves as
much as a 1.62-fold improvement, with a minimum speed-
up of 1.29. Compared to CUB’s latest version, the hybrid
radix sort shows an improvement of up to 82% and no less
than 28% for any non-constant distribution. Similarly, the
hybrid radix sort provides a minimum speed-up over CUB
(version 1.6.4) of 1.29 for 64-bit keys over any non-constant
distribution, showing as much as a 2.99-fold improvement
for a uniform distribution (see Figure 10c). For key-value
pairs (64-bit keys with 64-bit values), the hybrid radix sort
outperforms CUB (version 1.6.4) by a factor of 3.21 for a
uniform distribution, while still showing no less than a 21%
improvement for any of the remaining distributions (see Fig-
ure 10d).

B. IMPACT OF OPTIMIZATIONS
While building on an MSD-based hybrid radix sort enables

the performance improvements with considerable speed-ups
in the first place, it also makes the algorithm highly sen-
sitive to the input distribution. To ensure that the algo-

rithm provides relatively constant performance results, even
for challenging input distributions that are highly skewed or
that would otherwise require handling millions and millions
of buckets, this work has developed several optimisations.
In order to show the impact of individual optimisations,
we rerun our experiments with single optimisations being
switched off. For our evaluation, we distinguish between
independent optimisations that are analysed by disabling
them individually and a group of synergistic optimisations.
The performance impact of disabling a combination of inde-
pendent optimisations can easily be approximated by multi-
plying the relative performance impact of the individual op-
timisations. Disabling a combination of optimisations within
the group of synergistic optimisations (i.e., single local sort
config and no bucket merging), in contrast, may have a more
drastic effect than their multiplicative performance impact,
since the lack of one optimisation may boost the impact of
the absence of the other optimisation. Therefore, in addition
to switching off individual optimisations within the group,
we also evaluated the performance impact for disabling the
combination of synergistic optimisations.

For the group of synergistic optimisations, our analysis
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Figure 11: Performance impact on the sorting rate of 32-bit keys, when switching off individual optimisations
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Figure 12: Performance impact on the sorting rate of 64-bit keys, when switching off individual optimisations
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Figure 13: Performance impact on the sorting rate of 32-bit keys with 32-bit values, when switching off
individual optimisations
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Figure 14: Performance impact on the sorting rate of 64-bit keys with 64-bit values, when switching off
individual optimisations

considers using only a single local sort configuration (single

local sort config) that sorts any bucket of up to ∂̂ keys, not
merging tiny buckets (no bucket merging), as well as the
combination of both (no merge + single config). Amongst
the independent optimisations, we considered not using the
look-ahead during the scattering step (no look-ahead) and
not using the thread reductions during the histogram com-
putation (no thread red. histo).

Figure 11 shows the performance impact of switching off
individual optimisations when sorting 32-bit keys.

The performance impact is depicted as a performance delta,
with the percentage denoting the performance increase or
drop, after switching off an optimisation, compared to the
performance achieved with all optimisations in place. Simi-
larly, Figure 12, Figure 13, and Figure 14, depict the same
information for sorting 64-bit keys, 32-bit keys with 32-
bit values, and 64-bit keys with 64-bit values, respectively,
showing the performance impact of individual optimisations.
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