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Preface

The main aim of this book is to present a unified, systematic description of 
basic and advanced problems, methods and algorithms of the modern con-
trol theory considered as a foundation for the design of computer control 
and management systems. The scope of the book differs considerably from 
the topics of classical traditional control theory mainly oriented to the 
needs of automatic control of technical devices and technological proc-
esses. Taking into account a variety of new applications, the book presents 
a compact and uniform description containing traditional analysis and op-
timization problems for control systems as well as control problems with 
non-probabilistic models of uncertainty, problems of learning, intelligent, 
knowledge-based and operation systems – important for applications in the 
control of manufacturing processes, in the project management and in the 
control of computer systems. Into the uniform framework of the book, 
original ideas and results based on the author’s works concerning uncertain 
and intelligent knowledge-based control systems, applications of uncertain 
variables and the control of complexes of operations have been included. 
The material presented in the book is self-contained. Using the text does 
not require any earlier knowledge on the control science. The presentation 
requires only a basic knowledge of linear algebra, differential equations 
and probability theory. I hope that the book can be useful for students, re-
searches and all readers working in the field of control and information 
science and engineering. 
 I wish to express my gratitude to Dr. D. Orski and Dr. L. Siwek, my co-
workers at the Institute of Information Science and Engineering of Wro-
claw University of Technology, who assisted in the preparation of the 
manuscript. 

Z. Bubnicki 



1 General Characteristic of Control Systems 

1.1 Subject and Scope of Control Theory  

The modern control theory is a discipline dealing with formal foundations 

of the analysis and design of computer control and management sys-

tems. Its basic scope contains problems and methods of control algorithms 

design, where the control algorithms are understood as formal prescrip-

tions (formulas, procedures, programs) for the determination of control de-

cisions, which may be executed by technical devices able to the informa-

tion processing and decision making. The problems and methods of the 

control theory are common for different executors of the control algo-

rithms. Nowadays, they are most often computer devices and systems. The 

computer control and management systems or wider − decision support 
systems belong now to the most important, numerous and intensively de-

veloping computer information systems. The control theory deals with the 

foundations, methods and decision making algorithms needed for develop-

ing computer programs in such systems.  

 The problems and methods of the control theory are common not only 

for different executors of the control algorithms but also − which is per-

haps more important – for various applications. In the first period, the con-

trol theory has been developing mainly for the automatic control of techni-

cal processes and devices. This area of applications is of course still 

important and developing, and the development of the information tech-

nology has created new possibilities and – on the other hand – new prob-

lems. The full automatization of the control contains also the automatiza-

tion of manipulation operations, the control of executing mechanisms, 

intelligent tools and robots which may be objects of the external control 

and should contain inner controlling devices and systems.  

Taking into account the needs connected with the control of various 

technical processes, with the management of projects and complex plants 

as well as with the control and management of computer systems has led to 

forming foundations of modern control science dealing in a uniform and 
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systematic way with problems concerning the different applications men-

tioned here. The scope of this area significantly exceeds the framework of 

so called traditional (or classical) control theory. The needs and applica-

tions mentioned above determine also new directions and perspectives of 

the future development of the modern control theory. 

 Summarizing the above remarks one can say that the control theory (or 

wider − control science) is a basic discipline for the automatic control and 

robotics and one of basic disciplines for the information technology and 

management. It provides the methods necessary to a rational design and ef-

fective use of computer tools in the decision support systems and in par-

ticular, in the largest class of such systems, namely in control and man-

agement systems. 

 Additional remarks concerning the subject and the scope of the control 

theory will be presented in Sect. 1.2 after the description of basic terms, 

and in Sect. 1.5 characterizing interconnections between the control theory 

and other related areas. 

1.2 Basic Terms 

To characterize more precisely the term control let us consider the follow-

ing examples: 

1. Control (steering) of a vehicle movement so as to keep a required trajec-

tory and velocity of the motion. 

2. Control of an electrical furnace (the temperature control), consisting in 

changing the voltage put at the heater so as to stabilize the temperature at 

the required level in spite of the external temperature variations. 

3. Stabilization of the temperature in a human body as a result of the action 

of inner steering organs. 

4. Control of the medicine dosage in a given therapy in order to reach and 

keep required biomedical indexes. 

5. Control of a production process (e.g. a process of material processing in 

a chemical reactor), consisting in proper changes of a raw material 

parameters with the purpose of achieving required product parameters. 

6. Control of a complex manufacturing process (e.g. an assembly process) 

in such a way that the suitable operations are executed in a proper time. 

7. Control (steering, management) of a complex production plant or an en-

terprise, consisting in making and executing proper decisions concerning 

the production size, sales, resource distributions, investments etc., with the 

purpose of achieving desirable economic effects. 



1.2 Basic Terms      3 

8. Admission and congestion control in computer networks in order to 

keep good performance indexes concerning the service quality. 

 Generalizing these examples we can say that the control is defined as a 

goal-oriented action. With this action there is associated a certain object 
which is acted upon and a certain subject executing the action. In the fur-

ther considerations the object will be called a control plant (CP) and the 

subject − a controller (C) or more precisely speaking, an executor of the 

control algorithm. Sometimes for the controller we use the term a control-
ling system to indicate its complexity. The interconnection of these two ba-

sic parts (the control plant and the controller) defines a control system. The 

way of interconnecting the basic parts and eventually some additional 

blocks determines the structure of the control system. Figure 1.1 illustrates 

the simplest structure of the control system in which the controller C con-

trols the plant CP. 

C CP

control

 

Fig. 1.1. Basic scheme of control system 

Remark 1.1. Regardless different names (control, steering, management), 

the main idea of the control consists in decision making based on certain 

information, and the decisions are concerned with a certain plant. Usually, 

speaking about the control, we do not have in mind single one-stage deci-

sions but a certain multistage decision process distributed in time. How-

ever, it is not an essential feature of the control and it is often difficult to 

state in the case when separate independent decisions are made in succes-

sive cycles with different data.   □ 

Remark 1.2. The control plant and the controller are imprecise terms in 

this sense that the control plant does not have to mean a determined object 

or device. For example, the control of a material flow in an enterprise does 

not mean the control of the enterprise as a determined plant. On the other 

hand, the controller should be understood as an executor of the control al-

gorithm, regardless its practical nature which does not have to have a tech-

nical character; in particular, it may be a human operator.   □ 

 Now we shall characterize more precisely the basic parts of the control 

system. 
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1.2.1 Control Plant 

An object of the control (a process, a system, or a device) is called a con-
trol plant and treated uniformly regardless its nature and the degree of 

complexity. In the further considerations in this chapter we shall use the 

temperature control in an electrical furnace as a simple example to explain 

the basic ideas, having in mind that the control plants may be much more 

complicated and may be of various practical nature, not only technical. For 

example they may be different kinds of economical processes in the case 

of the management. In order to present a formal description we introduce 

variables characterizing the plant: controlled variables, controlling vari-

ables and disturbances. 

 By controlled variables we define the variables used for the determina-

tion of the control goal. In the case of the furnace it is a temperature in the 

furnace for which a required value is given; in the case of a production 

process it may be e.g. the productivity or a profit in a determined time in-

terval. Usually, the controlled variables may be measured (or observed), 

and more generally – the information on their current values may be ob-

tained by processing other information available. In the further considera-

tions we shall use the word “to measure” just in such a generalized sense 

for the variables which are not directly measured. In complex plants a set 

of controlled variables may occur. They will be ordered and treated as 

components of a vector. For example, a turbogenerator in an electrical 

power station may have two controlled variables: the value and the fre-

quency of the output voltage. In a certain production process, variables 

characterizing the product may be controlled variables. 

 By controlling variables (or control variables) we understand the vari-

ables which can be changed or put from outside and which have impact on 

the controlled variables. Their values are the control decisions; the control 

is performed by the proper choosing and changing of these values. In the 

furnace it is the voltage put at the electrical heater, in the turbogenerator – 

a turbine velocity and the current in the rotor, in the production process – 

the size and parameters of a raw material. 

 Disturbances are defined as the variables which except the controlling 

variables have impact on the controlled variables and characterize an in-

fluence of the environment on the plant. The disturbances are divided into 

measurable and unmeasurable where the term measurable means that they 

are measured during the control and their current values are used for the 

control decision making. For the furnace, it is e.g. the environment tem-

perature, for the turbogenerator − the load, for the production process − 

other parameters characterizing the raw material quality, except the vari-

ables chosen as control variables. 
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 We shall apply the following notations (Fig. 1.2)  
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where u(i) − the i-th controlling variable, i = 1, 2, ..., p; y(j) − the j-th con-

trolled variable, j = 1, 2, ..., l; z(m)
 − the m-th disturbance, m = 1, 2, ..., r; u, 

y, z denote the controlling vector (or control vector), the controlled vector 

and the vector of the disturbances, respectively. The vectors are written as 

one-column matrices. 

CP

y

z

u
CP

u (1)

u (2)

u (p)

y (1)

y (2)

y (l)

z (1) z (2) z (r)

. . .

......

 

Fig. 1.2. Control plant 

 Generally, in an element (block, part) of the system we may distinguish 

between the input and the output variables, named shortly the input and the 

output. The inputs determine causes of an inner state of the plant while the 

outputs characterize effects of these causes (and consequently, of this 

state) which may be observed. In other words, there is a dependence of the 

output variables upon the input variables which is the “cause-effect” rela-

tion. In the control plant the controlled variables form the output and the 

input consists of the controlling variables and the disturbances. If the dis-

turbances do not occur, we have the plant with the input u and the output  

y. A formal description of the relationship between the variables character-

izing the plant (i.e. of the “cause-effect” relation) is called a plant model. 

In simple cases it may be the function y = Φ(u, z). In more complicated 

cases it may be e.g. a differential equation containing functions u(t), z(t) 
and y(t) describing time-varying variables. The determination of the plant 

model on the basis of experimental investigations is called a plant identifi-
cation.  
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1.2.2 Controller 

An executor of the control algorithm is called a controller C (controlling 

system, controlling device) and treated uniformly regardless its nature and 

the degree of complexity. It may be e.g. a human operator, a specialized so 

called analog device (e.g. analog electronic controller), a controlling com-

puter, a complex controlling system consisting of cooperating computers, 

analog devices and human operators. The output vector of the controller is 

the control vector u and the components of the input vector are variables 

whose values are introduced into C as data used to finding the control de-

cisions. They may be values taken from the plant, i.e. u and (or) z, or val-

ues characterizing the external information. A control algorithm, i.e. the 

dependence of u upon w or a way of determining control decisions based 

on the input data, corresponds to the model of the plant, i.e. the depend-

ence of y upon u and z. In simple cases it is a function u = Ψ(w), in more 

complicated cases − the relationship between the functions describing 

time-varying variables w and u. Formal descriptions of the control algo-

rithm and the plant model may be the same. However, there are essential 

differences concerning the interpretation of the description and its obtain-

ing. In the case of the plant, it is a formal description of an existing real 

unit, which may be obtained on the basis of observation. In the case of the 

controller, it is a prescription of an action, which is determined by a de-

signer and then is executed by a determined subject of this action, e.g. by 

the controlling computer. 

 In the case of a full automatization possible for the control of technical 

processes and devices, the controlling system, except the executor of the 

control algorithm as a basic part, contains additional devices necessary for 

the acquisition and introducing the information, and for the execution of 

the decisions. In the case of a computer realization, they are additional de-

vices linking the computer and the control plant (a specific interface in the 

computer control system). Technical problems connected with the design 

and exploitation of a computer control system exceed the framework of 

this book and belong to control system engineering and information tech-
nology. It is worth, however, noting now that the computer control systems 

are real-time systems which means that introducing current data, finding 

the control decisions and bringing them out for execution should be per-

formed in determined time intervals and if they are short (which occurs as 

a rule in the cases of a control of technical plants and processes, and in op-

erating management), then the information processing and finding the cur-

rent decisions should be respectively quick.  

 Ending the characteristic of the plant and the controller, let us add two 

additional remarks concerning a determined level of generalization occur-
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ring here and the role of the control theory and engineering: 

1. The control theory and engineering deal with methods and techniques 

common for the control of real plants with various practical nature. From 

the methodology of control algorithms determination point of view, the 

plants having different real nature but described by the same mathematical 

models are identical. To a certain degree, such a universalization concerns 

the executors of control algorithms as well (e.g. universal control com-

puter). That is why, illustrating graphically the control systems, we present 

only blocks denoting parts or elements of the system, i.e. so called block-
schemes as a universal illustration of real systems. 

2. The basic practical effects or “utility products” of the control theory are 

control algorithms which are used as a basis for developing and imple-

menting the corresponding computer programs or (nowadays, to a limited 

degree) for building specialized controlling devices. Methods of the con-

trol theory enable a rational control algorithmization based on a plant 

model and precisely formulated requirements, unlike a control based on an 

undetermined experience and intuition of a human operator, which may 

give much worse effects. The algorithmization is necessary for the automa-

tization (the computerization) of the control but in simple cases the control 

algorithm may be “hand-executed” by a human operator. For that reason, 

from the control theory and methodology point of view, the difference be-

tween an algorithmized control and a control based on an imprecise ex-

perience is much more essential than the difference between automatic and 

hand-executed control. The function of the control computer consists in the 

determination of control decisions which may be executed directly by a 

technical device and (or) by a human operator, or may be given for the 

execution by a manager. Usually, in the second case the final decision is 

made by a manager (generally, by a decision maker) and the computer sys-

tem serves as an expert system supporting the control process. 

1.3 Classification of Control Systems 

In this section we shall use the term classification, although in fact it will 

be the presentation of typical cases, not containing all possible situations. 

1.3.1 Classification with Respect to Connection Between Plant  
and Controller 

Taking into account a kind of the information put at the controller input 

and consequently, a connection between the plant and the controller – one 
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can consider the following cases: 

1. Open-loop system without the measurement of disturbances. 

2. Open-loop system with the measurement of disturbances. 

3. Closed-loop system. 

4. Mixed (combined) system. 

 These concepts, illustrated in Figs. 1.3 and 1.4, differ from each other 

with the kind of information (if any) introduced into the executor of the 

control algorithm and used to the determination of control decisions.  

C CP C CP
u y

z z

z u y

a) b)

 

Fig. 1.3. Block schemes of open-loop control system: a) without measurement of 
disturbances, b) with measurement of disturbances 

C

CP

z
a)

u y

C

CP

z
b)

u y

 

Fig. 1.4. Block schemes of control systems: a) closed-loop, b) mixed 

The open-loop system without the measurement of disturbances has rather 

theoretical importance and in practice it can be applied with a very good 

knowledge of the plant and a lack of disturbances. In the case of the fur-

nace mentioned in the previous sections, the open-loop system with the 

measurement of disturbances means the control based on the temperature 

measured outside the furnace, and the closed-loop system – the control 

based on the temperature measured inside the furnace. Generally, in sys-

tem 2 the decisions are based on observations of other causes which except 

the control u may have an impact on the effect y. In system 3 called also as 

a system with a feed-back – the current decisions are based on the observa-

tions of the effects of former decisions. These are two general and basic 

concepts of decision making, and more generally – concepts of a goal-

oriented activity. Let us note that the closed-loop control systems are sys-

tems with so called negative feed-back which has a stabilizing character. It 
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means that e.g. increasing of the value y will cause a change of u resulting 

in decreasing of the value y. Additionally let us note that the variables oc-

curring in a control system have a character of signals, i.e. variables con-

taining and transferring information. Consequently, we can say that in the 

feed-back system a closed loop of the information transferring occurs. 

 Comparing systems 2 and 3 we can generally say that in system 2 a 

much more precise knowledge of the plant, i.e. of its reaction to the actions 

u and z, is required. In system 3 the additional information on the plant is 

obtained via the observations of the control effects. Furthermore, in system 

2 the control compensates the influence of the measured disturbances only, 

while in system 3 the influence on the observed effect y of all disturbances 

(not only not measured but also not determined) is compensated. However, 

not only the advantages but also the disadvantages of the concept 3 com-

paring with the concept 2 should be taken into account: counteracting the 

changes of z may be much slower than in system 2 and, if the reactions on 

the difference between a real and a required value y are too intensive, the 

value of y may not converge to a steady state, which means that the control 

system does not behave in a stabilizing way. In the example of the furnace, 

after a step change of the outside temperature (in practice, after a very 

quick change of this temperature), the control will begin with a delay, only 

when the effect of this change is measured by the thermometer inside the 

furnace. Too great and quick changes of the voltage put on the heater, de-

pending on the difference between the current temperature inside the fur-

nace and the required value of this temperature, may cause oscillations of 

this difference with an increasing amplitude. The advantages of system 2 

and 3 are combined into a properly designed mixed system which in the 

example with the furnace requires two thermometers – inside and outside 

the furnace. 

1.3.2 Classification with Respect to Control Goal 

Depending on the control goal formulation, two typical cases are usually 

considered: 

1. Control system with the required output. 

2. Extremal control system. 

 We use the identical terms directly for the control, speaking about the 

control for the required output and the extremal control. In the first case 

the required value of y is given, e.g. the required value of the inside tem-

perature in the example with the furnace. The aim of the control is to bring 

y to the required value and to keep the output possibly near to this value in 

the presence of varying disturbances. More generally – the function de-
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scribing the required time variation of the output may be given. For a 

multi-output plant the required values or functions of time for individual 

outputs are given. 

 The second case concerns a single-output plant for which the aim of the 

control is to bring the output to its extremal value (i.e. to the least or the 

greatest from the possible values, depending on a practical sense) and to 

keep the output possibly near to this value in the presence of varying dis-

turbances. For example, it can be the control of a production process for 

the purpose of the productivity or the profit maximization, or of the mini-

mization of the cost under some additional requirements concerning the 

quality. It will be shown in Chap. 4 that the optimal control with the given 

output is reduced to the extremal control where a performance index 

evaluating the distance between the vector y and the required output vector 

is considered as the output of the extremal control plant. 

 A combination of the case 1 with the case 3 from Sect. 1.3.1 forms a 

typical and frequently used control system, namely a closed-loop control 

system with the required output. Such a control is sometimes called a regu-
lation. Figure 1.5 presents the simplest block scheme of the closed-loop 

system with the required output of the plant, containing two basic parts: 

the control plant CP and the controller C. The small circle symbolizes the 

comparison of the controlled variable y with its required value *y . It is an 

example of so called summing junction whose output is the algebraic sum 

of the inputs. The variable ε(t) = y
* – y(t) is called a control error. The 

controller changes the plant input depending on the control error in order 

to decrease the value of ε  and keep it near to zero in the presence of dis-

turbances acting on the plant. For the full automatization of the control it is 

necessary to apply some additional devices such as a measurement element 

and an executing organ changing the plant input according to the signals 

obtained from the controller.  

 In the example with the furnace, the automatic control may be as fol-

lows: the temperature y is measured by an electrical thermometer, the volt-

age proportional to y is compared with the voltage proportional to *y  and 

the difference proportional to the control error steers an electrical motor, 

changing, by means of a transmission, a position of a supplying device and 

consequently changing the voltage put on the heater. As an effect, the 

speed of )(tu  variations is approximately proportional to the control error, 

so the approximate control algorithm is the following: 

∫=
t

dttktu

0

.)()( ε
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Fig. 1.5. Basic scheme of closed-loop control system 

Depending on *y , we divide the control systems into three kinds: 

1. Stabilization systems. 

2. Program control systems. 

3. Tracking systems. 

In the first case y* = const., in the second case the required value changes 

in time but the function y*
(t) is known at the design stage, before starting 

the control. For example, it can be a desirable program of the temperature 

changes in the example with the furnace. In the third case the value of y*
(t) 

can be known by measuring only at the moment when it occurs during the 

control process. For example, y*
(t) may denote the position of a moving 

target tracked by  y(t). 

1.3.3 Other Cases 

Let us mention other divisions or typical cases of control systems: 

1. Continuous and discrete control systems. 

2. One-dimensional and multi-dimensional systems. 

3. Simple and complex control systems. 

Ad 1. In a continuous system the inputs of the plant can change at any time 

and, similarly, the observed variables can be measured at any time. Then in 

the system description we use the functions of time )(),( tytu , etc. In a dis-

crete system (or more precisely speaking – discrete in time), the changes of 

control decisions and observations may be carried out at certain moments  

tn. The moments tn are usually equally spaced in time, i.e. 

Ttt nn =−+1 = const  where T denotes a period or a length of an interval (a 

stage) of the control. Thus the control operations and observations are exe-

cuted in determined periods or stages. In the system description we use so 
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called discrete functions of time, that is sequences nn yu ,  etc. where n de-

notes the index of a successive period. The computer control systems are 

of course discrete systems, i.e. the results of observations are introduced 

and control decisions are brought out for the execution at determined mo-

ments. If T is relatively small, then the control may be approximately con-

sidered as a continuous one. The continuous control or the discrete control 

with a small period is possible and sensible for quickly varying processes 

and disturbances (in particular, in technical plants), but is impossible in the 

case of a project management or a control of production and economic 

processes where the control decisions may be made and executed e.g. once 

a day for an operational management or once a year for a strategic man-

agement. A continuous control algorithm determining a dependence of 

)(tu  upon )(tw  can be presented in a discrete form suitable for the com-

puter implementation as a result of so called discretization. 

Ad 2. In this book we generally consider multi-dimensional systems, i.e. u, 

y etc. are vectors. In particular if they are scalars, that is the number of 

their components is equal to 1 – the system is called one-dimensional. 

Usually, the multi-dimensional systems in the sense defined above are 

called multivariable systems. Sometimes the term multi-dimensional is 

used for systems with variables depending not only on time but also e.g. on 

a position [76, 77]. The considerations concerning such systems exceed the 

framework of this book. 

Ad 3. We speak about a complex system if there occurs more than one 

plant model and (or) more than one control algorithm. Evidently, it is not a 

precise definition and a system may be considered as a complex one as the 

result of a certain approach or a point of view. The determination of sub-

models of a complicated model describing one real plant and consequently 

– the determination of partial control algorithms corresponding to the 

submodels may be the result of a decomposition of a difficult problem into 

simpler partial problems. The complex control algorithms as an intercon-

nection of the partial algorithms can be executed by one control computer. 

On the other hand – the decomposition may have a “natural” character if 

the real complex plant can be considered as a system composed of separate 

but interconnected partial plants for which separate local control com-

puters and a coordinating computer at the higher control level are de-

signed. Complex system problems take an important role in the analysis 

and design of control and management systems for complex plants, proc-

esses and projects. It is important to note that a complex computer system 

can be considered as such a plant. 
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1.4 Stages of Control System Design 

Quite generally and roughly speaking we can list the following stages in 

designing of a computer control system: 

1. System analysis of the control plant. 

2. Plant identification. 

3. Elaborating of the control algorithm. 

4. Elaborating of the controlling program. 

5. Designing of a system executing the controlling program. 

The system analysis contains an initial determination of the control goal 

and possibly subgoals  for a complex plant, a choice of the variables char-

acterizing the plant, presented in Sect. 1.2, and in the case of a complex 

plant – a determination of the components (subplants) and their intercon-

nections. 

 The plant identification [14] means an elaboration of the mathematical 

model of the plant by using the results of observations. It should be a 

model useful for the determination of the control algorithm so as to 

achieve the control goal. If it is not possible to obtain a sufficiently accu-

rate model, the problem of decision making under uncertainty arises. Usu-

ally, the initial control goal should then be reformulated, that is require-

ments should be weaker so that they are possible to satisfy with the 

available knowledge on the plant and (or) on the way of the control. 

 The elaboration of the control algorithm is a basic task in the whole de-

sign process. The control algorithm should be adequate to the control goal 

and to the precisely described information on the plant, and determined 

with the application of suitable rational methods, that is methods which are 

described, investigated and developed in the framework of the control the-

ory. The control algorithm is a basis for the elaboration of the controlling 

computer program and the design of computer system executing this pro-

gram. In practice, the individual stages listed above are interconnected in 

such a sense that the realization of a determined stage requires an initial 

characterization of the next stages and after the realization of a determined 

stage a correction of the former stages may be necessary. 

 Not only a control in real-time but also a design of a control system can 

be computer supported by using special software systems called CAD 

(Computer Aided Design). 
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1.5 Relations Between Control Science and Related Areas  
in Science and Technology 

After a preliminary characteristic of control problems in Sects. 1.2, 1.3 and 

1.4 one can complete the remarks presented in Sect. 1.1 and present shortly 

relations of control theory with information science and technology, auto-

matic control, management, knowledge engineering and systems engineer-

ing: 

1. The control theory and engineering may be considered as part of the in-

formation science and technology, dealing with foundations of computer 

decision systems design, in particular – with elaboration of decision mak-

ing algorithms which may be presented in the form of computer programs 

and implemented in computer systems. It may be said that in fact the con-

trol theory is a decision theory with special emphasis on real-time decision 

making connected with a certain plant which is a part of an information 

control system. 

2. Because of universal applications regardless of a practical nature of con-

trol plants, the control theory is a part of automatic control and manage-

ment considered as scientific disciplines and practical areas. In different 

practical situations there exists a great variety of specific techniques con-

nected with the information acquisition and the execution of decisions. 

Nevertheless, there are common foundations of computer control systems 

and decision support systems for management [20] and often the terms 

control, management and steering are used with similar meaning. 

3. The control theory may be also considered as a part of the computer sci-

ence and technology because of applications for computer systems, since it 

deals with methods and algorithms for the control (or management) of 

computer systems, e.g. the control of a load distribution in a multi-

computer system, the admission, congestion and traffic control in com-

puter networks, steering a complex computational process by a computer 

operating system, the data base management etc. Thus we can speak about 

a double function of the control theory in the general information science 

and technology, corresponding to a double role of a computer: a computer 

as a tool for executing the control decisions and as a subject of such deci-

sions. 

4. The control theory is strongly connected with a knowledge engineering 

which deals with knowledge-based problem solving with the application of 

reasoning, and with related problems such as the knowledge acquisition, 

storing and discovering. So called intelligent control systems are specific 
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expert systems [18, 92] in which the generating of control decisions is 

based on a knowledge representation describing the control plant, or based 

directly on a knowledge about the control. For the design and realization of 

the control systems like these, such methods and techniques of the artifi-

cial intelligence as the computerization of logical operations, learning al-

gorithms, pattern recognition, problem solving based on fuzzy descriptions 

of the knowledge and the computerization of neuron-like algorithms are 

applied. 

5. The control theory is a part of a general systems theory and engineering 

which deals with methods and techniques of modelling, identification, 

analysis, design and control – common for various real systems, and with 

the application of computers for the execution of the operations listed 

above. 

 This repeated role of the control theory and engineering in the areas 

mentioned here rather than following from its universal character is a con-

sequence of interconnections between these areas so that distinguishing be-

tween them is not possible and, after all, not useful. In particular, it con-

cerns the automatic control and the information science and technology 

which nowadays may be treated as interconnected parts of one discipline 

developing on the basis of two fundamental areas: knowledge engineering 

and systems engineering. 

1.6 Character, Scope and Composition of the Book 

The control theory may be presented in a very formal manner, typical for 

so called mathematical control theory, or may be rather oriented to practi-

cal applications as a uniform description of problems and methods useful 

for control systems design. The character of this book is nearer to the latter 

approach. The book presents a unified, systematic description of control 

problems and algorithms, ordered with respect to different cases concern-

ing the formulations and solutions of decision making (control) problems. 

The book consists of five informal parts organized as follows. 

Part one containing Chaps. 1 and 2 serves as an introduction and pre-

sents general characteristic of control problems and basic formal descrip-

tions used in the analysis and design of control systems. 

 Part two comprises three chapters (Chaps. 3, 4 and 5) on basic control 

problems and algorithms without uncertainty, i.e. based on complete in-

formation on the deterministic plants. 

 In Part three containing Chaps. 6, 7, 8 and 9 we present different cases 
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concerning problem formulations and control algorithm determinations 

under uncertainty, without obtaining any additional information on the 

plant during the control. 

 Part four containing Chaps. 10 and 11 presents two different concepts 

of using the information obtained in the closed-loop system: to the direct 

determination of control decisions and to improving of the basic decision 

algorithm in the adaptation and learning process. 

 Finally, Part five (Chaps. 12 and 13) is devoted to additional problems 

of considerable importance, concerning so called intelligent and complex 

control systems.  

 The scope and character of the book takes into account modern role and 

topics of the control theory described preliminarily in Chap. 1, namely the 

computer realization of the control algorithms and the application to the 

control of production and manufacturing processes, to management, and to 

control of computer systems. Consequently, the scope differs considerably 

from the topics of classical, traditional control theory mainly oriented to 

the needs of the automatic control of technical devices and processes. Tak-

ing into consideration a great development of the control and decision the-

ory during last two decades on one hand, and – on the other hand – the 

practical needs mentioned above, has required a proper selection in this 

very large area. The main purpose of the book is to present a compact, uni-

fied and systematic description of traditional analysis and optimization 

problems for control systems as well as control problems with non-

probabilistic description of uncertainty, problems of learning, intelligent, 

knowledge-based and operation systems – important for applications in the 

control of production processes, in the project management and in the con-

trol of computer systems. Such uniform framework of the modern control 

theory may be completed by more advanced problems and details pre-

sented in the literature. The References contain selected books devoted to 

control theory and related problems [1, 2, 3, 6, 60, 64, 66, 68, 69, 71, 72, 

73, 78, 79, 80, 83, 84, 88, 90, 91, 94, 98, 104], books concerning the con-

trol engineering [5, 63, 65, 67, 85, 93] and papers of more special charac-

ter, cited in the text. Into the uniform framework of the book, original 

ideas and results based on the author’s works concerning uncertain and in-

telligent knowledge-based control systems and control of the complexes of 

operations have been included. 

 



2 Formal Models of Control Systems 

To formulate and solve control problems common for different real sys-
tems we use formal descriptions usually called mathematical models. 
Sometimes it is necessary to consider a difference between an exact 
mathematical description of a real system and its approximate mathemati-
cal model. In this chapter we shall present shortly basic descriptions of a 
variable (or signal), a control plant, a control algorithm (or a controller) 
and a whole control system. The descriptions of the plant presented in 
Sects. 2.2−2.4 may be applied to any systems (blocks, elements) with de-
termined inputs and outputs. 

2.1 Description of a Signal 

As it has been already said, the variables in a control system (controlling 
variable, controlled variable etc.) contain and present some information 
and that is why they are often called signals. In general, we consider multi-
dimensional or multivariable signals, i.e. vectors presented in the form of 
one-column matrices. A continuous signal 
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is described by functions of time x(i)(t) for individual components. In par-

ticular x(t) for k=1 is a one-dimensional signal or a scalar. The term con-

tinuous signal does not have to mean that x(i)(t) are continuous functions 

of time, but means that the values x(i)(t) are determined and may change at 

any moment t. The variables x are elements of the vector space X = R
k, 

that is the space of vectors with k real components. If the signal is a subject 
of a linear transformation, it is convenient to use its operational transform 
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(or Laplace transform) )(sX =̂ )(tx , i.e. the function of a complex vari-

able s, which is a result of Laplace transformation of the function x(t): 

∫
∞

−=
0

.)()( dtetxsX
st  

Of course, the function X(s) is a vector as well, and its components are the 
operational transforms of the respective components of the vector x.  
 In discrete (more precisely speaking – discrete in time) control systems 

a discrete signal xn occurs. This is a sequence of the values of x at succes-
sive moments (periods, intervals, stages) n = 0, 1, ... . The discrete signal 
may be obtained by sampling of the continuous signal x(t). Then  

xn = x(nT) where T is a sampling period. If xn subjects to a linear transfor-
mation, it is convenient to use a discrete operational transform or Z-

transform X(z) =̂ xn , i.e. the function of a complex variable z, which is a re-

sult of so called Z transformation of the function xn : 
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Basic information on the operational transforms are presented in the Ap-
pendix. 

2.2 Static Plant 

A static model of the plant with p inputs and l outputs is a function 

y = Φ (u) (2.1) 

presenting the relationship between the output y∈Y = R
l and the input u∈U 

= R
p in a steady state. If the value u is put at the input (generally speaking, 

the decision u is performed) then y denotes the value of the output (the re-
sponse) after a transit state. In other words, y depends directly on u and 
does not depend on the history (on the previous inputs). In the example 
with the electrical furnace considered in Chap. 1, the function Φ may de-
note a relationship between the temperature y and the voltage u where y 
denotes the steady temperature measured in a sufficiently long time after 
the moment of switching on the constant voltage u. Thus the function Φ 
describes the steady-state behaviour of the plant. Quite often Φ denotes the 
dependency of an effect upon a cause which has given this result, observed 
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in a sufficiently long time. For example, it may be a relationship between 
the amount and parameters of a product obtained at the end of a production 
cycle and the amount or parameters of a raw material fixed at the begin-
ning of the cycle. We used to speak about an inertia-less or memory-less 
plant if the steady value of the output as a response for the step input set-
tles very quickly compared to other time intervals considered in the plant. 
The function Φ is sometimes called a static characteristic of the plant. 
 Usually, the mathematical model Φ is a result of a simplification and 
approximation of a reality. If the accuracy of this approximation is suffi-
ciently high, we may say that this is a description of the real plant, which 
means that the value y measured at the output after putting the value u at 
the input is equal to the value y calculated from the mathematical model 
after substituting the same value u into Φ. Then we can speak about a 

mathematical model )(uy Φ=  differing from the exact description Φ. 

Such a distinction has an essential role in an identification problem. Usu-
ally, instead of saying a plant described by a model Φ, we say shortly a 
plant Φ, that is a distinction plant – model is replaced by a distinction real 

plant – plant. In particular, the term static model of a real plant is replaced 
by static plant. Similar remarks concern dynamical plants, other blocks in 
a system and a system as a whole. 
 For the linear plant the relationship (2.1) takes the form 

y = Au + b 

where A∈ R
l×p, i.e. A is a matrix with l rows and p columns or is l × p ma-

trix; b is one-column matrix l × 1. Changing the variables  

byy −=  

we obtain the relationship without a free term. As a rule, the variables in a 
control system denote increments of real variables from a fixed reference 

point. The location of the origin in this point means that 0)0( =Φ  where 

0  denotes the vector with zero components. The model (2.1) can be pre-
sented as a set of separate relationships for the individual output variables: 

y
(j)=Φj(u),         j = 1, 2, ..., l. 

2.3 Continuous Dynamical Plant 

Continuous plant is the term we will use for plants controlled in a time-
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continuous manner, that is systems where the control variables can change 
at any time and, similarly, the observed variables can be measured at any 
time. Thus a dynamic model will involve relations between the time func-
tions describing changes of plant variables. These relationships will most 
often take the form of differential equations for the plants controlled con-
tinuously, or difference equations for the plants controlled discretely. 
Other forms of relations between the time functions characterizing a con-
trol plant may also occur. 
 There are three basic kinds of descriptions of the properties of a dy-
namic system with an input and an output (control plant in our case): 
1. State vector description. 
2. “Input-output” description by means of a differential or difference equa-
tion. 
3. Operational form of the “input-output” description. 
The last two kinds of description represent, in different ways, direct rela-
tions between the plant input and output signals. 

2.3.1 State Vector Description 

To represent relations between time-varying plant variables, we select a 
sufficient set of variables x(1)(t),  x(2)(t), ...,  x(k)(t) and set up a mathemati-

cal model in the form of a system of first order differential equations: 
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 (2.2) 

The variables u(1), u(2), ..., u(p) denote input signals (control signals, in par-

ticular). Thus we consider a multi-input plant with p inputs. If we are in-
terested in the plant output variables, then the relations between the output 
signals y(1), y(2), ..., y(l) (l-output plant), x(1), x(2), ..., x(k) and u(1), u(2), ..., 

u
(p), have also to be determined: 
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In practice, because of the inertia inherent in the plant, the signals u
(1), 

u
(2), ..., u

(p) usually do not appear in the equation (2.3). The equations 

(2.2) and (2.3) can be written in a briefer form using vector notation (with 
u already eliminated from the equation (2.3)): 
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The sets of functions f1, f2, ..., fk and η1, η2, ...,  ηl are now represented by 

f and η. The function f assigns a k-dimensional vector to an ordered pair of 
k- and p-dimensional vectors. The function η assigns an l-dimensional vec-
tor to a k-dimensional one. If u(t) = 0 for  t ≥ 0 (or, in general, u(t) = 
const), then the first of the equations (2.4) describes a free process 

x� =f(x) (2.5) 

and, for a given initial condition x0 = x(0), the solution of the equation 
(2.5) defines the variable x(t) 

x(t) = Φ (x0, t). 

Under the well-known assumptions, knowledge of the function f and of the 

value x(t1) uniquely determines x(t2) for any t2 > t1: 

x(t2) = Φ [x(t1), t1, t2]. 

 The set x(1), x(2), ..., x(k) consists of as many mutually independent vari-

ables as necessary for a description of the plant dynamics in the form of a 
system of first-order differential equations (2.2), i.e. knowledge of the val-

ues of these variables at any time t1 should be sufficient to determine their 

values at any subsequent instant. The variables x(1), x(2), ..., x(k) are called 

the state variables of the plant, vector x − the state vector, the set X of all 
such vectors (x∈X) − the state space, and k − the plant order. The system 
of equations (2.4) is just the mathematical model described by means of 
the state vector.  
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 The choice of state variables for a given plant can be done in infinitely 
many ways. If x is a state vector of a certain plant, then the k-dimensional 
vector 

v = g(x) (2.6) 

where g is a one-to-one mapping, is also a state vector of this plant. The 
transformation (2.6) may, for example, be linear 

v = Px 

where P is a non-singular matrix (i.e. det 0≠P ). Substituting 

)(1 vgx −=  

into the equations (2.4), we obtain the new equations 
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The descriptions (2.4) and (2.7) are said to be equivalent. Thus different 
choices of the state vector yield equivalent descriptions of the same plant. 
In particular, if l = k and  η   in the equation (2.4) is a one-to-one mapping, 

then y is a state vector of the plant. We say then that the plant is measur-

able, which means that knowledge of the output y at a time t uniquely de-
termines the state of the plant at this time. Since we always assume that the 
output signals y can be measured, it is therefore implied that, in the case of 
a measurable plant, all the state variables can be measured at any time t. 

 In particular, for a linear plant, under the assumption that )0,0(f = 0  

and η )0( = 0 , the description (2.4) becomes 

⎭
⎬
⎫

=

+=
 
,

Cxy

BuAxx�
 (2.8) 

where A is a kk ×  matrix, B is a pk ×  matrix and C is a l×k matrix. 

 In the case of a single-input and single-output plant ( p = l = 1) we write 
the equations (2.8) in the form 

⎭
⎬
⎫

=

+=
 
,

T xcy

buAxx�
 (2.9) 

where b and c are vectors (one-column matrices). The plant with time-
varying parameters is called a non-stationary plant. Then in the description 
(2.4) and in related descriptions the variable t occurs: 
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Example 2.1. Let us consider an electromechanical plant consisting of a 
D.C. electrical motor driving, by means of a transmission, a load contain-
ing viscous drag and inertia (Fig. 2.1). 

u

i

Im , B
m

IL

B
L

g

K2

Θ
2

ΘL

Θ
m Θ

1

K1

 

Fig. 2.1. Example of electromechanical plant 

 The dynamic properties of the system can be described by the equations: 

u = L 
dt

di
 + r i + Kb

dt

d mΘ
, 

M = Kb ⋅ i, 

M = Im 2

2

dt

d mΘ
 + Bm

dt

d mΘ
 + K1(Θm – Θ 1), 

Θ 2 = 
g

1
Θ 1, 

gK1(Θ 1 – Θm) = K2(ΘL – Θ 2), 

IL 2

2

dt

d LΘ
 + BL

dt

d LΘ
 + K2(ΘL – Θ 2) = 0 

where u is the supply voltage, i – the current, Θm – the angular position of 

the rotor, Θ 1 and Θ 2 – the angular position of the gear-wheels, ΘL – the 

angular position of the loading shaft, M – the engine moment, Im and IL – 
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the moments of inertia of the rotor and load, respectively, Bm and BL – the 

friction coefficients of the rotor and load; K1 , K2 , L, r, Kb – the other pa-
rameters, g – the transmission ratio. 
 On introducing five state variables: 

x
(1) = i,      x(2) = Θm,      x(3) = mΘ� ,      x(4) = ΘL,      x(5) = LΘ�  

the plant equations, after some transformation, can be reduced to the form 

)1(x� = – 
L

r
x

(1) – 
L

Kb x
(3) + 

L

1
u, 

)2(x� = x(3), 

)3(x� = 
m

b

I

K
x

(1) + α x
(2) – 

m

m

I

B
x

(3) + β x
(4), 

)4(x� = x(5), 

)5(x� = γ x
(2) + δ x(4) – 

L

L

I

B
x

(5) 

where 

α = 
)( 21

2
21

KKgI

KK

m +
− ,  β  = 

)( 21
2

21

KKgI

KgK

m +
, 

γ = 
)( 21

2
21

KKgI

KgK

L +
, δ = 

)( 21
2

21
2

KKgI

KKg

L +
− .                       □

2.3.2 “Input-output” Description by Means of Differential 
Equation  

The relationship between the input vector u(t) and the output vector y(t) 
can be described by means of a differential equation 

F1 ) ,..., ,,(
1

1
y

dt

dy

dt

yd

dt

yd
m

m

m

m

−

−
= F2 ) ,..., ,,(

1

1
u

dt

du

dt

ud

dt

ud
v

v

v

v

−

−
. 

For the linear plant this equation becomes  
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m

m

dt

yd
 + Am –1 1

1

−

−

m

m

dt

yd
 + ... + A1

dt

dy
 + A0 y  

                                            = Bv v

v

dt

ud
 + ... + B1

dt

du
 + B0 u (2.10)

where Ai (i = 0, 1, ..., m – 1) are l×l matrices, Bj (j = 0, 1, ..., v) are l×p ma-
trices. 
 In particular, for single-input and single-output plant (p = l =1) 

y
(m) + am–1 y

(m–1) + ... + a1 y�  + a0 y = bv u
(v) + ... + b1 u�  + b0 u. 

In a non-stationary plant at least some of the coefficients a and (or) b are 
functions of t. 

2.3.3 Operational Form of “Input-output” Description 

The relation between the input and the output plant signals can be de-
scribed by means of an operator Φ  which transforms the function u(t) into 
the function y(t): 

y(t) = Φ [u(t)]. (2.11)

For example, in the case of a one-dimensional linear plant (p = l = 1) with 
zero initial conditions, the formula (2.11) is 

y(t) = ∫
t

i dutk

0

 )( ),( τττ  (2.12)

where ki(t, τ) is the weighting function (time characteristic) of the plant.  
 For linear plants with constant parameters, the type of models consid-
ered includes description by means of operational transmittance. Applying 
an operational transformation to the both sides of the equation (2.10), un-
der zero initial conditions, we obtain 

(Ism + ∑
−

=

1

0

m

i

i
i sA )Y(s) = ( ∑

=

v

j

j
j sB

0

)U(s) (2.13)

where I is the unit matrix, and Y(s) and U(s) denote Laplace transforms of 
the vectors y(t) and u(t), respectively. From the equation (2.13) we have 

Y(s) = K(s) U(s) 
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where  

K(s) = (Ism + ∑
−

=

1

0

m

i

i
i sA )–1 ∑

=

v

j

j
j sB

0

. 

The matrix K(s) is called a matrix operational transmittance (or matrix 
transfer function) of the plant. Its elements are rational functions of s. In 
the case of one-dimensional plant K(s) is itself such a function, i.e.  

K(s) = 
)(

)(

sU

sY
 

where Y(s) and U(s) are polynomials. In real systems the degree of the 
numerator is not greater than the degree of the denominator. This is the 
condition of so called physical existence (or a physical realization) of the 
transmittance. The transmittance is related to equivalent descriptions of the 
plant, namely to the gain-phase (or amplitude-phase) characteristics and 
time characteristics (unit-step response and impulse response). 
 A gain-phase characteristic or a frequency transmittance is defined as 
K(jω) for 0 ≤ ω < ∞. The graphical representation of this function on K(s) 
plane is sometimes called a gain-phase plot or Nyquist plot. If 
u(t) = A sinωt then in the steady state the output signal y(t) is sinusoidal as 
well: y(t) = B sin(ωt ϕ+ ) . It is easy to show that  

| K(jω) | = 
A

B
,  arg K(jω) = ϕ. 

For example, the frequency transmittance K(jω) for  

K(s) = 
)1)(1)(1( 321 +++ sTsTsT

k
 

is illustrated in Fig. 2.2.  
 Let  

u(t) = 
⎩
⎨
⎧

<

≥

.0for        0

0for        1
 

t

t
 

Such a function is called a unit step and is denoted by 1(t). The response of 

the plant y(t) ∆= k(t) for the unit step u(t) = 1(t) is called a unit-step re-

sponse. Let u(t) = δ(t). This is so called Dirac delta, i.e. in practice – very 
short and very high positive impulse in the neighbourhood of t = 0, for 
which  
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∫
∞

∞−

dtt  )(δ = 1. 

Im K(jω)

Re K(jω)

ω  = ∞ ω  = 0

 

Fig. 2.2. Example of frequency transmittance 

The response of the plant y(t) ∆= ki(t) for the input u(t) = δ(t) is called an 
impulse response. It is easy to prove that the transmittance K(s) is Laplace 

transform of the function ki(t) and ki(t) = )(tk� . For the linear stationary 

plant, the relationship (2.12) takes the form  

y(t) = ∫ −
t

i dutk

0

 )( )( τττ . 

For example, the plant described by the equation 

T )(ty�  + y(t) = k u(t) 

has the transmittance  

K(s) = 
1+Ts

k
, 

the unit-step response  

k(t) = k(1 – T

t

e
 −

) 

and the impulse response 
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ki(t) = 
T

k T

t

e
 −

. 

Such a plant is called a first order inert element (or an element with iner-
tia). It is worth recalling that the descriptions presented here are used not 
only for plants but in general – for any dynamical elements or blocks with 
determined inputs and outputs. Basic elements are presented in Table 2.1.  
 
 Table 2.1 
 

Name of the element Transmittance  

Inertia-less element  K(s) = k 

First order inert element K(s) =
1+sT

k
 

Integrating element with first order inertia K(s) =
)1( +sTs

k
 

Differentiating element with first order inertia  K(s) =
1+sT

sk
 

Oscillation element  
K(s) =

βα ++ ss

k

22
, 

 β > α2 

 
 
Complex blocks may be considered as systems composed of basic blocks. 
Figure 2.3 presents a cascade connection and a parallel connection of two 

blocks with the transmittance K1(s) and K2(s).  

K
1

K
2

y

K
2

K
1

u

y
1

u

u

u y
2

y=y
1
+y

2

+

+

a) b)

 

Fig. 2.3. a) Series connection, b) parallel connection 

For multi-dimensional case, in the case of the cascade connection the 

number of outputs of the block K1 must be equal to the number of inputs 

of the block K2, and in the case of the parallel connection, both blocks 
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must have the same number of inputs and the same number of outputs. For 
the cascade connection  

Y(s) = K2(s)K1(s)U(s). 

For the parallel connection 

Y(s) = [K1(s) + K2(s)]U(s). 

 More details concerning the descriptions of linear dynamical blocks and 
their examples may be found in [14, 71, 76, 88]. 

2.4 Discrete Dynamical Plant 

The descriptions of discrete dynamical plants are analogous to the corre-
sponding descriptions for continuous plants presented in Sect. 2.3. The 
state vector description has now the form of a set of first-order difference 
equations, which in vector notation is written as follows: 

⎭
⎬
⎫

=

=+

.)(

),,(1

nn

nnn

xy

uxfx

η
 

The “input-output” description by means of the difference equation is now: 

F1(yn+m, yn+m−1, ..., yn) = F2(yn+v, un+v−1, ..., un). 

In particular, the linear model has the form of the linear difference equa-
tion  

yn+m + Am−1yn+m−1 + ... + A1yn+1 + A0yn   

                    = Bvun+v + Bv−1un+v−1 + ... + B1un+1 + B0un, 

and the operational description is as follows: 

Y(z) = K(z) U(z) 

where K(z) denotes the discrete operational transmittance: 

K(z) = (Izm + ∑ ∑
−

= =

−
1

1 1

1 )()
m

i

v

j

j
jii zBzA . 

The transmittance K(z) is an l × p matrix whose entries Kij(z) are the 
transmittances of interconnections between the j-th input ant i-th output. 
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The functions Y(z) and U(z) denote here the discrete operational trans-

forms (Z-transforms) of the respective discrete signals yn and un. The 

K(ejω) for ππ <<− ω  is called a discrete frequency transmittance (dis-

crete gain-phase characteristic).  
 We shall now present the description of a continuous plant being con-
trolled and observed in a discrete way. Consequently, we have a discrete 

plant whose output yn is a result of sampling of the continuous plant out-

put, i.e. yn = y(nT) where T is the control and observation period. The input 

of the continuous plant v(t) is formed by a sequence of decisions un deter-
mined by a discrete controller and treated as the input of the discrete plant. 
It is a typical situation in the case of a computer control of the continuous 

plant. In the simplest case one assumes that v(t) = un for nT ≤ t <(n+1)T. 
Such a signal for one-dimensional input can be presented as an effect of 

putting a sequence of Dirac impulses unδ (t−nT) at so called zero-order 

hold EO (see Fig. 2.4) with the transmittance  

KE(s) =
s

e sT−−1
 

where e−sT denotes a delay equal to T. It may be shown that the transmit-

tance of the discrete plant with the input un and the output yn is equal to the 

Z-transform of the function ki(nT) where ki(t) denotes the impulse response 

of the element with transmittance KE(s)KO(s), and KO(s) denotes the 
transmittance of the continuous plant. It is easy to note that  

ki(t) = )()( Ttktk ii −− 1(t–T) (2.14)

where )(tki  is the impulse response of the element with the transmittance 

)(
1

O sK
s

. 

ynun y(t)v(t)
EO

KO

 

Fig. 2.4. Discrete plant with zero-order hold 

Example 2.2. One should determine the transmittance of the discrete plant 
for the continuous plant described by the transmittance 
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1
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=
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k
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It is easy to find 

)1()( 0
0

T

t

i ekTkttk
−

−−= . 

After substituting )(tki  into (2.14), putting t = nT and applying Z-

transformation, we obtain  

DzDz

TTDTzDTT
kzK

++−

+−+−−
=

)1(

)()]1([
)(

2
000  

where )exp(
0T

T
D −= .   □ 

2.5 Control Algorithm 

In Chap. 1 we have introduced a term controlling device or controller as 
an executor of the control algorithm. Hence the control algorithm may be 
considered as a description (mathematical model) of the controller. Since 
the descriptions of the plant presented in the previous sections can be ap-
plied to any elements or parts with a determined input and output, then 
they can be used as the basic forms of a control algorithm in these cases 
when it may be presented in an analytical form, i.e. as a mathematical for-
mula. We shall often use the term controller in the place of a control algo-
rithm (and vice versa) as well as the term plant in the place of a model of 
the plant. Let us denote by w the input variable of the control algorithm 
(see similar notation concerning the controller in Sect. 1.2). Then a static 
control algorithm has the form 

u = Ψ(w) 

and a continuous dynamical control algorithm presented by means of the 

state vector xR(t) is described by a set of equations  

)](),([)( RRR twtxftx =� , 

u(t) = ηR[xR(t)]. 

Similarly, one may speak about the descriptions by means of a differential 
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equation or descriptions in an operational form – analogous to those pre-
sented for a plant. For example, in technical control systems one often uses 
the one-dimensional controller described by the equation  

)()()()( 321 tktktktu εεε ���� ++=  

or  

∫ ++=
t

tkdttktktu

0
321 )()()()( εεε �  

where ε(t) denotes the control error. This is so called PID controller, or 
proportional-integrating-differentiating controller. Its transmittance  

sk
s

k
k

sE

sU
sK 3

2
1R

)(

)(
)( ++==  

where E(s) is the Laplace transform of the function ε(t). 
 Similarly, the forms of a discrete dynamical control algorithm are such 
as the descriptions of a discrete plant presented in Sect. 2.4. This is a con-

trol algorithm with a memory, i.e. in order to determine the decision un it 
is necessary to remember the former decisions and the values w. The de-
scription of the algorithm is used as a basis for elaborating the correspond-
ing program for the computer realization of the algorithm in a computer 
control system. One may say that it is an initial description of the control 
program. The block scheme of the algorithm written in the form 

xR,n+1 =  fR(xR,n, wn ) (2.15)

un = ηR(xRn) (2.16)

is presented in Fig. 2.5. The controlling computer determines the decisions 

un in a real-time, in successive periods (intervals) which should be suffi-

ciently long to enable the computer to calculate the decision un in one in-
terval. It determines the requirements concerning the execution time of the 
control program. The description of the control algorithm in the form of 
the difference equation is as follows: 

             un+m + am–1un+m–1+ ... + a1un+1 + a0un  

                                           = bm–1wn+m–1 + ... +  b1wn+1 + b0wn. 

It is more convenient to present it in the form  
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un = –am–1 un–1 – ... – a1 un–m+1 – a0 un–m + bm–1 wn–1  

                                                          + ... +  b1 wn–m–1 – b0 wn–m.  

This is the direct prescription for finding un by using the former values u 
and w, and the coefficients a and b placed in the data base. The number m 
determines the required length of the memory. 

Introduce  w
n

from plant to memory

Introduce from memory

w
n
  , x

R,n

Determine x
R,n+1

according to  (2.15)

Determine decision u
n+1

according to  (2.16)

Bring   u
n+1

  out for execution

( put at plant input )

Plant

Memory

Data base

Parameters of

functions

f
R
  and h

R

w
n

w
n

un+1

 

Fig. 2.5. Basic block scheme of control algorithm 

2.6 Introduction to Control System Analysis 

The description of the control system consists of formal models of the 
parts in the system and the description of the structure, that is interconnec-
tions between the parts. For example, the description of the closed-loop 
discrete control system by means of the state vector is the following  

⎪⎭

⎪
⎬
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 (2.17)
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where xO,n is the state vector of the plant, xR,n is the state vector of the 

controller, zn is the vector of external disturbances acting on the plant, *
ny  

is the varying required value. Thus, in the system two basic parts are de-
termined: the plant (2.17) and the controller (2.18). If it is the control error 

εn = *
ny – yn which is put at the input of the plant, then the first equation in 

(2.18) takes the form  

xR,n+1 = fR(xR,n , εn). 

The control system under consideration may be treated as one dynamical 

block whose state is T
nc = ],[ T

,R
T

,O nn xx  and whose inputs are the distur-

bances zn and *
ny . This block is described by the equations 

⎪⎭
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xy
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η
 (2.19) 

if we consider yn as the output of the system as a whole. The first equation 

in (2.19) may be obtained via the elimination of un and yn from the sets 

(2.17) and (2.18), i.e. by substituting un=ηR(xR,n) into the first equation in 

(2.17) and yn = ηO(xO,n) into the first equation in (2.18). The description 
of the continuous control system by means of the state vector is analogous 
to that presented above for the discrete system. 
 The description of the control system forms a basis for its analysis. We 
may consider a qualitative analysis consisting in the investigation of some 
properties of the system (e.g. stability analysis) or a quantitative analysis 
consisting in the determination of a response of the system for a deter-
mined input and the determination of a performance (quality) index. For 
example, the analysis of the dynamical control system may consist in find-

ing the transit response yn for the given initial state c0 and the given func-

tions zn and *
ny  for n ≥ 0. It requires to solve the set of the difference equa-

tions (2.17), (2.18). Usually, the analysis task is considered as the first 
stage of a design which in a parametric case consists in choosing the val-
ues of control algorithm parameters. The results of the analysis such as de-
pendencies of the investigated property, the transient response or the per-
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formance index upon the control algorithm parameters are needed to the 
proper choice of the values of these parameters. 
 In the case of non-linear and non-stationary (time-varying) systems, 
solving the analysis problem in an analytical way may be very difficult or 
impossible. Then we apply numerical methods or computer simulations, 
e.g. for the investigation of the influence of the control algorithm parame-
ters on the performance index. 

2.6.1 Continuous System 

The operational description of the linear continuous closed-loop control 
system (Fig. 2.6) is the following:  

⎪
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 (2.20)

Controller

KR(s)

Plant

KO(s) ,K(s)

u(t) ε (t)

y(t) y*(t)

z(t)

 

Fig. 2.6. Block scheme of control system under consideration 

 

The plant is described by two transmittances: KO(s) determining the influ-

ence of u on y, and )(sK  describing the influence of z on y. From the set 

of equations (2.20) we obtain 

Y(s) = [I+KO(s)KR(s)]–1[KO(s)KR(s)Y*(s) + K (s)Z(s)], (2.21)

E(s) = [I + KO(s)KR(s)]–1[Y*(s) – K (s)Z(s)] (2.22)

where I is the unit matrix. The product KO(s)KR(s) 
∆
=  K(s) is called a 

transmittance of the open-loop control system, and  
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[I+K(s)]–1
K(s) ∆=  KZ(s) 

is called a transmittance of the closed-loop control system. For the given 
functions y

*(t) and z(t), under assumption of zero initial conditions, one 

can find (or read from a table) the Laplace transforms Y*(s) and Z(s), de-

termine Y(s) according to the formula (2.21) or E(s) according to the for-
mula (2.22), and by applying the inverse Laplace transform to determine 
the transient response y(t) or ε(t). Most often we investigate the transient 
response for the step inputs, i.e. for y(t) = y 1(t) or z(t) = z 1(t) where y  

and z  denote constants, under the assumption that ε(t) = 0 for t ≤ 0. For 
example, in the temperature control system considered in Chap. 1 we can 
determine the function ε(t) for t > 0, under the assumption that till the mo-
ment t = 0 the system was in the equilibrium state (ε = 0) and at the mo-
ment t = 0 a step change of the required value occurred. 
 In general, we have considered the multivariable system with the matrix 
transmittances and the vectors y(t), ε(t), z(t). In one-dimensional case, i.e. 
for the plant with the single input u, the single disturbance z and the single 
output y, the formulas (2.21) (2.22) take the simpler forms 

,
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=  (2.24)

Let us denote by L(s) and M(s) polynomials in numerator and denominator 
of K(s), respectively. From the form of the inverse transform of a function 
rational with respect to s it follows that for a step change of z and (or) y*, 

the control error is a sum of components having the form ts
i

ieA  or 

tsr
i

ietA , and eventually a constant component, where si are the roots of 

the equation 

L(s) + M(s) = 0. 

This is so called characteristic equation of the closed-loop system. If this 
equation has complex roots with imaginary parts differing from zero, then 

the sum of the components ts
i

ieA  corresponding to the pair of conjugate 

roots is reduced to one component having the form )sin( jj
t

j teB j ϕω
σ

+  
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where σj = Re si . Thus, if the all roots satisfy the condition Re si < 0 then 

ε(t) converges to a constant (in particular, to zero) for t→∞. If the all roots 
are real then in the function ε(t) the oscillation components will not occur. 

2.6.2 Discrete System 

Now in the system description Z-transforms and discrete transmittances 
occur. The formulas for the system are the same as (2.20) – (2.24) in which 
one should put z in the place of s, having in mind that e.g. E(z) denotes 

now the Z-transform of the function εn , KR(z) denotes the discrete trans-
mittance of the controller etc. In particular, the formula for the control er-
ror E(z) in one-dimensional system is now written as follows: 
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=  (2.25)

In order to determine εn for the given *
ny  and zn, one should find (or read 

from a table) the Z-transforms Y*(z) and Z(z), determine E(z) according to 

the formula (2.25) and by applying the inverse Z-transform determine εn. 
From the form of the inverse transform of a function rational with respect 
to z it follows that for a step change of the disturbance z and (or) y*, the 

control error is a sum of components having the form Aizi
n  or Ain

r
zi

n 

where zi are the roots of the characteristic equation 

L(z) + M(z) = 0, 

L(z) and M(z) denote polynomials in numerator and denominator of the 

transmittance K(z) = KO(z)KR(z), respectively. It is easy to note that if the 

all roots satisfy the condition 1|| <iz  then εn converges to a constant (in 

particular, to zero) for n→∞. 
 We shall return to the analysis of control systems in Chaps. 5 and 10, 
when a parametric optimization and a stability will be discussed. 

Example 2.3. Let us consider the one-dimensional closed-loop control sys-
tem with the first-order plant and the controller I, i.e. 
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Let us determine the transient response )(tε  after the step change of the 
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required value =)(* ty 1(t). According to the formula (2.24) for z(t) = 0 we 

have 
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where ROkkk = . If the system parameters satisfy the condition 14 <kT  

then the characteristic equation of the closed-loop system 
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has two real negative roots 
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and the formula (2.26) may be written in the form 
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After the inverse transformation we obtain 
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Under the condition 14 <kT , the control error )(tε  converges aperiodi-

cally (without oscillations) to zero for ∞→t . If 14 >kT  then )(tε  has a 

sinusoidal form with the amplitude exponentially decreasing to zero for 

∞→t .  □ 

Example 2.4. Let us consider the discrete closed-loop control system with 
the following transmittances of the plant and the controller: 
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Let us determine the transient response nε  after the step change of the re-
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quired value *
ny = 1(n). According to the formula (2.25), under the as-

sumption that there are no disturbances acting on the plant 
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If the system parameters satisfy the condition )(42 baa +>  then the char-

acteristic equation of the closed-loop system 

02 =++− baazz  

has two real roots 
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and the formula (2.27) may be presented in the form 
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After the inverse transformation we obtain 
nn

n zAzA 2211 +=ε . 

If 1|| 2,1 <z  then the control error converges to zero for ∞→n .   □



3 Control for the Given State (the Given Output) 

Chapters 3, 4 and 5 form the second part of the book (see remarks in Sect. 
1.6) in which deterministic control problems and algorithms are consid-
ered. It means that we consider a deterministic control plant (i.e., the val-
ues of the output are determined by the values of the input), and the de-
scription of the plant is precisely known. The exact meaning of these terms 
will be additionally explained in Sect. 6.1 where two kinds of an uncer-
tainty will be considered: uncertainty concerning the plant (i.e., the plant is 
nondeterministic) and uncertainty of an expert giving the description of the 
plant. When the second uncertainty does not occur, we often say about the 
control with full information of the plant. For dynamical plants, this infor-
mation contains not only the knowledge of the plant description but also 
the initial state and the function describing time-varying disturbances from 
the initial to the final moments of the control, if such disturbances exist. 
 This chapter is devoted to a basic control problem (a basic decision 
problem), i.e., the determination of the control for which we obtain the 
given required output value for a static plant or the given value of the state 
for a dynamical plant. Such a control may be executed in an open-loop or a 
closed-loop system. For the dynamical plant the execution in a closed-loop 
system may require the application of so called observer which determines 
the values of the current states of the plant using the results of the output 
measurements. 

3.1 Control of a Static Plant 

Let us consider a static plant described by a function 

y = Φ(u, z) (3.1)

where  u∈U  is the input vector (or the control vector) with  p  compo-
nents,  y∈Y  is the output vector with  l  components and  z∈Z  is a vector 
of external disturbances with  r  components. For this plant the following 
problems may be formulated: 

Analysis problem: For the given function  Φ  and the values  u  and  z  
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one should determine the value  y. 

Decision making (control) problem: For the given function  Φ,  the value 

z and the required value *y  one should determine such a decision  u  that 

its execution (putting at the input) gives the required output value *y . 

 For the determination of the control decision one should solve the equa-

tion (3.1) with respect to  u,  with *yy = . Under the assumption of exis-

tence and uniqueness of the solution we obtain the control algorithm in the 
form of the function 

u = Ψ(z). (3.2)

This algorithm is executed in the open-loop control system (Fig. 3.1). If 
the solution does not exist, the plant is called uncontrollable. If the solu-
tion is not unique, we obtain a set of possible decisions for the given  z. 

For every decision from this set, the requirement *yy =  will be satisfied. 

Ψ Φ

z

u y

 

Fig. 3.1. Open-loop control system 

In particular, for the linear plant  

y = Au +Bz, (3.3)

under the assumption that lp =  and A is a nonsingular matrix (i.e., the de-

terminant det A ≠ 0), the control algorithm is the following 

u = A–1( y*– Bz) (3.4)

where  A–1  denotes an inverse matrix. The control computer should then 

execute the following operations: 
1. Multiplication of the matrix B by the vector  z. 

2. Subtraction of the result of the operation 1 from *y . 

3. Inverting of the matrix A. 
4. Multiplication of the matrix  A–1  by the result of the operation 2.  

 Obtaining the solution of the equation (3.1) for  *yy =  may be difficult 

for a nonlinear plant. Then a computational algorithm determining a se-
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quence of approximate solutions may be applied. The basic algorithm of 
the successive approximation has the following form: 

um+1 = um +K [ y* – Φ(um, z)] (3.5)

where mu  denotes the m-th approximation and K is a coefficient matrix 

which should be chosen in such a way as to assure the convergence of the 
sequence mu  to the solution (3.2). It is also necessary to determine the 

stop of the procedure, i.e., to determine the final approximation; e.g. if the 
distance between 1+mu  and mu  is less than the given number, the value 

1+ma  is assumed as a decision which is put at the input of the plant. If  z  

is varying in time then the formulas (3.1) and (3.2) take the form 

yn = Φ(un, zn),  un = Ψ(zn), 

respectively, where  un,  yn,  zn  denote the values in the n-th moment of 
the control. Then the algorithm (3.5) has the form 

un,m+1 = un,m + K [ y* – Φ(un,m, zn)] 

where  un,m  denotes the m-th approximation in the n-th period (the n-th in-
terval) of the control. The approximation process till the stop should not 
exceed the control interval, then the convergence of the process must be 
sufficiently fast. 
 If  z  is constant then the algorithm (3.5) may be executed in the closed-
loop control system (Fig. 3.2). It means that instead of putting the succes-

sive approximation into the formula (3.1) and calculating the value  Φ(um, 

z),  one puts nu  at the input of the plant and measures the output ny . The 

value mu  is now the m-th approximation of the solution (3.2) and, on the 

other hand, the control decision in the m-th decision interval. For the unifi-
cation of the notations for discrete-time control system, the index  n  is 
used instead of  m,  as is denoted in Fig. 3.2. According to the formula 
(3.5), the control algorithm in the closed-loop system is the following 

un+1 = un + K⋅εn  (3.6)

where  εn = y* – yn.   

 If the model  Φ  describes precisely the plant (and this is assumed in our 
considerations in this chapter), then the value  y  calculated from the model 
and the value measured at the output are identical. Consequently, the se-

quence  um  in the algorithm (3.5) is exactly the same as the sequence  un  
in the algorithm (3.6). An advantage of the control in the closed-loop sys-
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tem consists in avoiding possible computational difficulties connected with 
the determination of the value  y  from the model. Essential advantages 
arise in the case of control based on an incomplete knowledge of the plant. 
That is why in Chap. 10 we shall return to the concept presented here and 
to the convergence problem.  

Controller Φ

zn

un ynεn y
*

εn
 

Fig. 3.2. Closed-loop control system 

3.2 Control of a Dynamical Plant. Controllability 

The problem analogous to that presented in Sect. 3.1, for the dynamical 
plant is much more complicated and consists in the determination of a con-

trol  u(t)  in the continuous case or  un  in the discrete case, which remove 
the plant from the initial state to the given final state in a finite time inter-
val. The essential difficulty for the dynamical plant is caused by the fact 
that the output value in a determined fixed moment depends not only on 
the nearest input value but also on the former inputs, and the requirement 
does not concern the output value but the state of the plant. As a rule, it is 
an equilibrium state, i.e. when it is reached and the control is finished, the 
output does not change in the next moments. Further considerations con-
cerning the control of the dynamical plants in this chapter will be limited 
to discrete-time plants, and particular exact results and control algorithms 
– to the linear plants. In [76, 80] one may found details concerning the 
problem considered in this chapter for the dynamical plants and, in particu-
lar, properties called controllability and observability which we shall in-
troduce here. 
 Let us consider the discrete plant 

xn+1 = f(xn, un), (3.7)

where  xn  is the state vector and  un  is the input (the control) vector. 

Decision making (control) problem: For the given function  f,  the initial 

state  x0  and the final state *x  one should determine the sequence of the 
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⎭
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⎪
⎪

⎬

⎫

control decisions  u0, u1, ... , uN–1  such that xN = x* and  N <∞. 

 With the existence of the solution the property called controllability of 
the plant is related. 

Definition 3.1. The plant (3.7) is called controllable for a pair  (x0, x*) if 

there exists a solution of the problem under consideration, i.e., there exists 

a control which removes the plant from the state  x0  to the state  x*  in a 

finite time interval. The plant is called fully controllable if it is controllable 

for every pair  (x0, x*).   □ 

 The general approach to the problem solution is based on the set of 
equations containing the equations (3.7) for  n = 0, 1, ... , N – 1  and the 

equation  xN = x*. This set should be solved with respect to  u0, u1, ... ,  

uN–1. The number  N  must be such that the solution exists if it is possible. 
The formulation of the controllability condition and the determination of 
the solution for a nonlinear plant may be very difficult. The precise ana-
lytical solution may be given for linear plants. 
 Let us consider a linear plant with constant parameters and a single in-
put  

xn+1 = Axn + bun. (3.8)

Assume that  A  is a nonsingular matrix, i.e. det A ≠ 0. Besides, let us as-

sume that  x* = 0  (a vector with zero components). The set of equations 

used to determine the values  u0, u1, ... , uN–1  has now the form 

⎭
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 (3.9)

For  N = k  we have the set of  k  linear equations with  k  unknowns. By 

the successive substitutions and elimination of the variables  x1, x2,... , xk–1    
from the set (3.9) we obtain 
 

x1 = Ax0 + bu0 ,  

x2 = Ax1 + bu1  =  A2
x0 + Abu0 + bu1 , 

............................................................ 

xk = 0 = Ak
x0 + Ak–1

bu0 + Ak–2
bu1 + ... + Abuk–2 + buk–1 . 

(3.10)
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The set of equations (3.10) may be rewritten in a vector-matrix notation 

0,0 xAuM k
k −=  (3.11)

where 

M = [ Ak–1
b   Ak–2

b  ...  Ab   b],      T
,0 k

u = [ u0   u1  ...  uk–1]. 

In this notation  Ak–1
b, ..., Ab, b  denote columns of the matrix  M, T de-

notes the transposition of the matrix and ku ,0  is a column-vector with 

components u0, u1,..., uk–1. From the equation (3.11) one obtains 

0
1

,0 xAMu k
k

−−=  (3.12)

under the assumption  det M ≠ 0. In such a way it has been proved that  
det M ≠ 0 is a sufficient controllability condition, i.e., if this condition is 
satisfied then there exists a control which in  k  periods (then, in a finite 

time) removes the plant from the state 0x  to the state *x . It may be shown 

that if such a control does not exist for kN =  then it does not exist for 
kN > , i.e., it may be proved that det M ≠ 0 is also a necessary controlla-

bility condition in the case under consideration. Of course, we are speaking 
about a full controllability because the controllability condition does not 

depend on  (x0, x*).  

 The above results may be summarized in the form of the following theo-
rem: 

Theorem 3.1 (controllability condition). The plant (3.8) in which  
det A ≠ 0  is fully controllable if and only if  

det [ Ak–1
b   Ak–2

b  ...  Ab   b] ≠ 0. (3.13)
□

 The formula (3.12) presents the control algorithm in the open-loop sys-

tem. It shows how to determine the proper sequence of control decisions 

ku ,0  for the given initial state and the plant parameters A, b. Let us com-

plete the considerations with three important remarks: 

Remark 3.1. It may be proved that for the multi-input plant 

xn+1 = Axn + Bun, 

under the assumption  0det ≠A , the necessary and sufficient condition of 
the full controllability is as follows 
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r ( [ Ak–1
B   Ak–2

B  ...  AB   B] ) = k (3.14)

where Ak–i
B  (i = 1, 2, ..., k) denote submatrices, and  r  denotes a rank of 

the matrix, i.e. the number of linearly independent rows (columns). The 
condition (3.14) presents a generalization of the condition (3.13) which 

may be written in the form  r(M) = k.  □ 

Remark 3.2. Let us note that the control may be shorter than  k  periods. If 

kN <  then in the solution (3.12) uN = uN+1 = ... = uk–1 = 0. If 0x  is such 

that there exists 0u  for which Ak
x0 = – bu0 then  N = 1 (see (3.8)). Gener-

ally, if 0x  is such that there exists a sequence  u0, ..., uN–1,  for which  

A
k
x0 = – AN–1

bu0 – AN–2
bu1 – ... – bu0 , 

then the control contains  N  intervals. It may be said that 0x  may be  

taken to x
* = 0  during  N  periods  (N < k)  if  A

k
x0 belongs to  

N-dimensional subspace of the vector space X generated by the basis  

A
N–1

b,  AN–2
b, ... , b.  □ 

Remark 3.3.  Consider the plant with external disturbances nz . Then xn+1 

= f(xn, un, zn) and for the linear plant with one-dimensional disturbance 

xn+1 = Axn + bun + czn . 

Then in the equation presented in the description of the general approach, 
and in particular in the set (3.9) and in the equation analogous to (3.10) the 

sequence z0, z1, ..., zN–1 appears. A priori knowledge of this sequence be-

fore the determination of the decision sequence 1,0 −Nu  belongs to the full 

information on the plant under consideration.  □ 

3.3 Control of a Measurable Plant in the Closed-loop 
System 

The control presented by the formula (3.12) may be obtained in the closed-

loop system for a measurable plant. In this case yn = xn, i.e. in the succes-
sive moments the state of the plant is measured. Let us treat the current 
state in n-th moment as an initial state for the next part of the process. Us-
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ing (3.12), for the given nx  put in place of 0x  one can determine the cur-

rent decision nu  considered in place of 0u , i.e. the first component of the 

vector ku ,0 . As a result one obtains 

un = – 1w  xn  (3.15)

where 1w  denotes the first row of the matrix M–1
A

k. The formula (3.15) 

presents the control algorithm in the closed-loop system and shows how to 
determine the current decision nu  using the result of the measurement nx . 

In the closed-loop control system (Fig. 3.3) the control error εn = x* – xn. 

 The assumption  x
*= 0 , introduced in Sect. 3.2 means that new vari-

ables have been introduced and the state nx  is the difference between *x  

and the original state nx . In other words, the origin in the state space  X  

has been located in the point  *x . In the case under consideration we then 

apply linear static controller with constant parameters un = w1εn, which as-
sures the finite time of the control, i.e., which takes the components of the 
control error to zero values in a finite time interval. The value of the con-
trol decision nu  is a linear combination of the components of the state vec-

tor nx , and the components of the vector 1w−  are the coefficients in this 

combination. 

w
1

A,b
u
n

ε
n x*

ε
n

= − x
n

x
n

 

Fig. 3.3. Closed-loop control system for the plant under consideration 

 Let us note that the concept of the control in the closed-loop system pre-
sented here is in some sense analogous to the concept for the static plant 
presented in Sect. 3.1. If the values of  A  and  b  in the model are the same 
as in a real plant (as it has been assumed here) then the sequence of the 
values nu  determined in real time according to the algorithm (3.15) is the 

same as the sequence (3.12) for n = 0, 1, ..., k–1. In the open-loop system, 

the whole sequence of the decisions u0, u1, ..., uk–1  should be determined 
and put into memory before starting the control process. In the closed-loop 
system it is sufficient to determine the current decisions nu  in real time, 
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using the measurements of the result of former decisions, i.e. the state nx . 

The control algorithm in the closed-loop system is much simpler than that 
in the open-loop system. After determination of the values 1w  by a de-

signer of the system before starting the control – finding the decisions in 
successive moments is reduced to calculating the linear combination nxw1  

in which the values of the components of the vector nx  are transferred 

from the plant. One should however take into account that the current deci-
sion nu  must be calculated relatively quickly, at the beginning of the n-th 

interval (period) of the control process. Introducing the values from the 
plant, determining the current decisions and executing them (putting at the 
input of the plant) in successive control intervals means a real time con-

trol. Essential advantages of the control in closed-loop systems arise in the 
case of control based on an incomplete knowledge of the plant, i.e., when 
the values of bA,  accepted for the calculations by a designer differ from 

the values in the real plant. We shall return to this problem in the fourth 

part of the book.  

Example 3.1. Let us check the controllability condition and determine the 
control algorithm in the closed-loop system for the second-order plant de-
scribed by equations 
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For our plant the matrices  A  and  b  are then as follows: 
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Since det M = –3 ≠ 0, the plant is fully controllable. Next, one should cal-
culate 

M –1 = 
⎥
⎥
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According to (3.15)  
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3.4 Observability 

Let us assume that the plant is not measurable, i.e., the result of the meas-
urement ny  at the output does not determine the state in the n-th moment. 

Then we have a problem of so called observation of the plant, which 
consists in the determination of nx  using the results of the measurements 

of the output ny  in a finite time interval up to the n-th moment. It is also 

an important problem for the plant without a control, described by equa-
tions 
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where ny  is the output vector. 

Observation problem for the plant without a control: For the given 

functions f , η and the sequence yn, yn–1, ..., yn– (N–1), where N < ∞, one 

should determine the value nx . The sequence yn, yn–1, ..., yn– (N–1), i.e. the 

sequence of outputs successively measured during N intervals of observa-
tions is called an observation sequence. The relationship 

xn = G( yn, yn-1, ..., yn– (N–1)) (3.17)

is called an observation algorithm and a system (a unit) executing this al-
gorithm is called an observer. With the existence of the solution of the ob-
servation problem the property called observability of the plant is related. 

Definition 3.2. The state nx  of the plant (3.16) is called observable if it 

may be determined using the finite observation sequence. The plant is fully 

observable if its every state is observable.   □ 
 The general approach to the problem solution is based on the set of 
equations  
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for i = n, n – 1, ..., n – (N–2) and the equation 

yn– (N–1) = η(xn–(N–1)). 

This set should be solved with respect to nx  by the elimination of the vari-

ables xn–1, ..., xn– (N–1). The number N must be such that the solution exists 

if it is possible. Consider now the plant with the control decisions nu  de-

scribed by  
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In this case it is easy to note that in the set of equations described above 
and obtained by successive substitutions n, n – 1, ..., n – (N–1)  in (3.18), 
the sequence of the control decisions appears. 

Observation problem for the controlled plant: For the given functions f, 

η , the sequence of control decisions un–1, ..., un– (N–1) and the observation 

sequence yn, ..., yn– (N–1) where  N < ∞, one should determine the value 

nx . 

 The general form of the observation algorithm is then the following: 

xn = G(un–1, ..., un– (N–1); yn, ..., yn– (N–1)), (3.19)

and the control sequence occurs also in the definition of observability. 
Consequently, the existence of the solution of the observation problem 
may depend on the control sequence. For a single-input and single-output 
plant (p = l = 1) the control and observation sequences may be presented in 
the form of vectors 

un N− −1 1,
T = [un–1  un–2  ...  un– (N–1)],         yn N,

T = [yn  yn–1  ...  yn– (N–1)], 

and the observation algorithm (3.19) has the form 

xn = G( 1,1 −− Nnu ,  Nny , ). 

The block scheme of the observation system is presented in Fig. 3.4. 

Plant

f ,  η
Observer

G

y
n

u
n

x
n

 

Fig. 3.4. Observation system 
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 The formulation of the observability condition and the determination of 
the observation algorithm for a nonlinear plant may be very difficult. The 
precise analytical solution may be given for linear plants. Consider a linear 
single-input plant with constant parameters 

xn+1 = Axn ,   yn = cT
xn    (3.20)

and assume det A ≠ 0. The set of equations used to determine nx  has now 

the following form: 

xn = Axn–1 ,   yn = cT
xn ,  

xn–1 = Axn–2 , yn–1 = cT
xn–1 ,  

….................................................. 

xn– (N–2) = Axn– (N–1) , yn– (N–2) = cT
xn– (N–2) ,  

yn– (N–1) = cT
xn– (N–1) . 

Assume kN =  (the number of components of nx ). Applying the succes-

sive substitutions we obtain  

yn = cT
xn , 

yn–1 = cT
xn–1 =  cT

A
–1

xn , 

yn–2 = cT
xn–2 =  cT

A
–2

xn , 

………………………… 

yn– (k–1) = cT
xn– (k–1) =  cT

A
– (k–1)

xn. 

The above set of equations with the unknown nx  may be rewritten in a 

vector-matrix notation as follows: 

kny , = M
~

xn = M A
1–k

xn (3.21)

where 
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M
~

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−

)1(T

)2(T

1T

T

   

k

k

Ac

Ac

Ac

c

� ,  M =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

−

T

T

2T

1T

   

c

Ac

Ac

Ac
k

k

� . (3.22)

In this notation the rows of the matrices M
~

 and M  have been presented. 
From the equation (3.21) we obtain 

xn =A
k–1 1−M kny ,  (3.23)

under the assumption det M ≠ 0. In such a way it has been proved that 

det M ≠ 0 is a sufficient condition of the full observability. It follows from 
the fact that if this condition is satisfied then any state nx  may be deter-

mined by using the observation sequence containing  k  intervals, i.e., a fi-
nite observation sequence.  It may be shown that if the solution of our 
problem does not exist for kN =  then it does not exist for kN > , which 

means that det M ≠ 0 is also a necessary condition of the full observability. 
The above results may be summarized in the form of the following theo-
rem: 

Theorem 3.2 (observability condition): The plant (3.20) in which det A≠ 0 

is fully observable if and only if det M ≠ 0 where the matrix M  is deter-

mined in (3.22).   □ 

 Since M = M
~

A
k–1 and det A ≠ 0, it is easy to note that the condition 

det M ≠ 0 may be replaced by the equivalent condition det M
~

≠ 0. In the 
case under consideration the formula (3.23) presents the observation algo-

rithm which shows what operations should be performed as to determine 

nx  using the observation sequence. If the observation sequence with 

kN <  is sufficient to the determination of nx  then in the matrix M
~

 there 

are zero columns for kN ...,,1+ . 

 The considerations for the controlled single-input, single-output plant 

xn+1 = Axn+ bun ,   yn = cT
xn (3.24)

are analogous but more complicated. Now the set of equations from which 

nx  should be determined has the following form: 



54      3 Control for the Given State (the Given Output)  

 

yn = cT
xn , 

yn–1 = cT
xn–1 = cT

A
–1(xn – bun–1) = cT

A
–1

xn – cT
A

–1
bun–1 , 

yn–2 = cT
xn–2 = cT

A
–2

xn – cT
A

–2
bun–1 – cT

A
–1

bun–2 , 
……………………………………………………… 

yn– (k–1) = cT
xn– (k–1) 

         = c
T
A

–
 
(k–1)

xn – cT
A

–
 
(k–1)

bun–1 – ... – cT
A

–1
bun– (k–1) . 

The above set of equations with the unknown nx  may be written in the 

form 

kny , = M
~

xn – D 1,1 −− knu  (3.25)

where D is the following matrix with k rows  and (k−1) columns: 

D = 

....

......................................................................................

0...0

0...00

0...000

1T)3(T)2(T)1(T

1T2T

1T

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−

−−

−

bAcbAcbAcbAc

bAcbAc

bAc

kkk

(3.26)

By solving the equation (3.25) we obtain the observation algorithm  

xn = 1~ −M ( kny ,  + D 1,1 −− knu ). (3.27)

Note that the observability condition is now the same as for the plant with-

out control, i.e., det M
~

≠ 0 or det M ≠ 0. It may be shown that for the 
multi-output plant with nn Cxy = , the condition of the full observability is 

as follows: 

r (

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

−

C

CA

CA
k

k

�

2

1

 ) = k . (3.28)

It is a generalization of the condition det M ≠ 0 for single-output plant, 

which may be written in the form kMr =)( . 
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3.5 Control with an Observer in the Closed-loop System 

The observer may be used for the control of an unmeasurable plant in the 
closed-loop system. If  

un = Ψ(xn) (3.29)

denotes the control algorithm for the measurable plant then putting the ob-

servation algorithm (3.19) into (3.29) one obtains the control algorithm Ψ  
in the closed-loop system in which the output ny  is measured: 

un = Ψ [G(un–1, ..., un– (N–1); yn, ..., yn– (N–1))]  

 =
∆ Ψ (un–1, ..., un– (N–1); yn, ..., yn– (N–1)). (3.30)

Comparing with the control algorithm for the measurable plant let us note 
that the control algorithm with the measurement of the output (which is not 
a state) contains a memory and describes the determination of the current 
decision nu  not only on the basis of ny , but also the results of the former 

measurements yn–1,..., yn– (N–1) and the former decisions un–1, ..., un– (N–1) 
taken from the memory. The control is performed in the closed-loop sys-
tem containing the observer (Fig. 3.5). 
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Fig. 3.5. Closed-loop control system with the observer 

It is worth noting that the control can start after the determination of the 

first state, i.e., after measuring y0, y1, ..., yN–1 and determining xN–1. In 

practical situations taking the state 0x  to *x  may be not a unique task and 

may be repeated after a disturbance consisting in the change of the given 

required state *x . Let us remind that nx  is a difference between a real 

state initially formulated and the state *x  (see Fig. 3.3). For a single-
output plant as the state variables nx  we often accept successive values of 
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the output yn, yn–1, ..., yn– (k–1)  or successive values of the control error εn, 

εn–1, ..., εn– (k–1) if the required value *y  differs from zero. In such a case 

there is no additional observation problem (the dependence of nx  on the 

sequence ny  follows directly from the definition) and the algorithm (3.29) 

is reduced directly to the algorithm with a memory for the plant with the 
measured output. 
 Let us note that the composition of the algorithms Ψ  and G leads to one 

resulting control algorithm Ψ  as it is denoted in the right part of Fig. 3.5. 
In the computer implementation it is however worth keeping two separate 
parts G and Ψ , i.e., to design the control program in the form of two co-
operating parts: subprogram of the observation and subprogram of the con-
trol based on nx . It can make easier computer simulations of the system 

and changes of the program parameters according to changes of the plant 
parameters in an adaptive system. 

 For the linear plant (3.24) considered above, the control algorithm Ψ  
presented generally by (3.30) has a precise specific form which may be ob-
tained by substituting the observation algorithm (3.27) into the control al-
gorithm (3.15). As a result we obtain the following control algorithm in the 
closed-loop system: 

un = – w1
1~ −M ( kny ,  + D 1,1 −− knu ) (3.31)

where 1w  denotes the first row of the matrix M 

–1
A

k,  

M = [Ak–1
b   Ak–2

b  ...  Ab   b], 

and the matrices M
~

, D are defined by the formulas (3.22), (3.26), respec-
tively. After some transformations the formula (3.31) may be reduced to 
the form 

         un = – ak–2 un–1 –...– a0 un– (k–1) + bk–1 yn +...+ b0 yn– (k–1) , (3.32)

or  

un+ k–1 + ak–2 un+ k–2 + ... + a0 un = bk–1 yn+ k–1 + ... + b0 yn . 

This relationship presents the control algorithm in the form of a difference 
equation. It may be also presented as an operational transmittance  

KR(z) = 
)(

)(

zY

zU
 = 

01
2

2
1

01
1

1

...

...

azazaz

bzbzb
k

k
k

k
k

++++

+++
−

−
−

−
− . (3.33)
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This is a transmittance of the controller assuring the finite time of the 
control process. After k intervals (in a particular case it may be a smaller 
number) the control error is reduced to zero and kept at this level up to the 
appearing of a disturbance which requires a new control. 
 Taking into account the control problem under consideration let us pay 
attention to two different applications of a computer, related with a control 
system: 
1. A computer as a tool aiding the design of the system. 
2. A computer as an executor of the control in real time. 
In the first case, the computer is applied at the stage of the design and 
determines the values of the coefficients in the control algorithm (3.32) 
using the data A, b, c introduced at the input. Algorithm of the design and 
consequently the design program consists of the following operations: 

a. Determination of the matrices 1~ −M  and D. 

b. Determination of the matrix 1~ −M D. 

c. Determination of 1w , i.e. the first row of the matrix 1~ −M Ak. 

d. Determination of the vector of coefficients [bk–1  ...  b0] =
∆

b : 

b =  –w1
1~ −M . (3.34)

e. Determination of the vector of coefficients [ak–2  ...  a0] =
∆

a : 

a = w1
1~ −M D = – b D. (3.35)

 In the second case, the computer executes the control according to the 
algorithm (3.32), i.e. according to the control program implemented, using 

the data a  and b  introduced to the data base for the control plant, and the 
given values u and y introduced currently in successive intervals from the 
memory and from the plant. A block scheme of the control algorithm, i.e. 
the procedure of the determination of the decision nu  in the n-th step is 

presented in Fig. 3.6. In a similar way as for the design, the computer may 
play only a role of a tool aiding or supporting the control. Then introduc-
ing the current results of the observations ny  and transferring the deci-

sions for the execution (e.g. in a management process) is performed by a 
human operator. For technical plants in which ny  is a result of a meas-

urement and nu  is put at the input of the plant by special executing de-

vices, full automation is possible, i.e., the values ny  are transferred di-

rectly to the control computer and the values nu  are delivered directly to 
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the executing devices. 
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Fig. 3.6. Block scheme of the control algorithm in the case under consideration 

Example 3.2. Let us check the observability condition and determine the 
control algorithm in the closed-loop system for the plant considered in Ex-
ample 3.1, in which 

)2()1( 2 nnn xxy += , 

i.e., cT = [1  2]. After substituting the numerical data we have 

M
~

= 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−1T

T

Ac

c
 = 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
 

3

5

2

      

3

1

1

 ,   D = 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

− bAc 1T

0
 = 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

− 2

0
. 

Since det M
~

= 
3

7
 ≠ 0, then the plant is fully observable. Then we calculate 
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1~ −M = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

 

7

3

7

6

      

7

1

7

5

  

and use the row w1 = [2  –1] determined in Example 3.1. After substituting 
the numerical data into (3.34) and (3.35) we obtain 

⎥⎦

⎤
⎢⎣

⎡−=
7

15

7

9
b  ,  

7

30
=a  . 

Consequently, the control algorithm (3.32) and the transmittance of the 
controller (3.33) are as follows: 

un = 
7

30
− un–1 

7

9
− yn 

7

15
+ yn–1 , 

KR(z) = 
307

159

+
+−

z

z
                                                 □

3.6 Structural Approach 

For the plant  

xn+1 = Axn + bun ,  (3.36)

let us introduce one-to-one linear mapping 

vn = Pxn , det P ≠ 0 , (3.37)

which reduces the equation (3.36) to the form 

vn+1 = A vn + b un  (3.38)

where A = PAP
–1, b = Pb. Such an operation means introducing new state 

variables nv  in place of nx . The descriptions of the plant (3.36) and (3.38) 

are equivalent. Consider the following form of the equation (3.38) contain-

ing zeros in the respective places of the matrices A  and b : 
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⎥
⎥
⎥

⎦

⎤
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⎢
⎢
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n

n

v
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n

n

v

v
 + 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0

Ib

 un  (3.39)

where I
nv  is a subvector of the vector vn with 1k  components, II

nv  is a 

subvector of the vector nv  with 2k  components (k1 + k2 = k),  A11 ,  A12 ,  

A21 ,  A22  are submatrices of the matrix A ,  A21 = 0  (all the entries are 

equal to zero), bI  with  k1 components and bII  with  k2 components are 

subvectors of the vector b , the matrix A11 has 1k  rows and 1k  columns, 

the matrix 12A  has 1k  rows and 2k  columns, the matrix 021 =A  has 2k  

rows and 1k  columns, the matrix 22A  has 2k  rows and 2k  columns. From 

the equation (3.39) it follows 

I
1+nv = A11

I
nv  + A12

II
nv  + bI

un , 
II

1+nv = A22
II
nv . 

It is easy to see that the control nu  has neither direct nor indirect influence 

on the changes of the state vector IIv . It follows from the fact that II
1+nv  

does not depend on I
n

v . The following theorem may be proved: 

Theorem 3.3. The plant (3.36) is fully controllable if and only if one-to-

one mapping P for which A  and b  have the form such as in equation 

(3.38) does not exist.   □ 
 The decomposition of the state vector nv  into two subvectors means the 

decomposition of the plant into two parts: part I with state vector I
nv  and 

part II with state vector II
nv . Assume that the first part is controllable, i.e., 

the pair A11, bI satisfies the controllability condition (3.13) in which A and 

b are replaced by A11 and bI , respectively (it may be shown that the exis-

tence of the second input in the form A11
II
nv  does not change the control-

lability condition in the part under consideration). Hence, the plant (3.38) 
is decomposed into controllable part and uncontrollable part. 
 Analogous considerations may be related to the observability. Let us 
assume that the mapping (3.37) reduces the plant equation 
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xn+1 = Axn ,   yn = cT
xn (3.40)

to the form  

⎥
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⎥
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 ,  yn = [cI  0 ]
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II

I

n

n

v

v
  (3.41)

where Ic  is the first part of the row cT and  A12 = 0 . Then y neither di-

rectly nor indirectly depends on IIv . It follows from the fact that I
1+nv  

does not depend on II
nv . 

Theorem 3.4. The plant (3.40) is fully observable if and only if one-to-one 
mapping P reducing the equation (3.40) to the form (3.41) does not ex-

ist.  □ 

 If the pair  A11, cI satisfies the observability condition for part I then the 

decomposition of the state vector nv  into two subvectros presented here 

means the decomposition of the plant into two parts: the observable part 

with state vector I
nv  and the unobservable part with state vector II

nv . The 

considerations concerning the existence of the mapping P for non-
controllability and non-observability may be presented together and 
generalized for a multi-input and multi-output plant. In a general case, 
there may exist such a nonsingular mapping P that the plant equation  

xn+1 = Axn + Bun ,   yn = Cxn 

is reduced to the form 
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yn = [CI  0   CIII  0 ] 

⎥
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 . (3.43)

Matrices B1, and 2B  are submatrices of matrix B; A11 ,  A22 ,  A33  and A44 

are quadratic matrices and the other matrices are rectangular with respec-
tive numbers of rows and columns. This means that in the plant under con-
sideration it is possible to distinguish four parts (Fig.3.7): controllable and 
observable with the state vI , controllable and unobservable with the state 

v
II , uncontrollable and observable with the state vIII , uncontrollable and 

unobservable with the state vIV . With the help of nu  it is possible to influ-

ence only the parts I and II, and only the parts I and III may be observed 
by measuring ny . 

3.7 Additional Remarks 

The analogous considerations for continuous plants are more complicated. 
It may be shown that for the plant 

x� = Ax + Bu,  y = Cx 

the controllability and observability conditions are the same as for the 
respective discrete plant, i.e., they are the conditions (3.14) and (3.28), 
respectively. The control algorithms in the closed-loop system analogous 
to (3.15) and (3.31) are time-varying (non-stationary). It means that in a 
continuous linear stationary system (i.e. the system with constant 
parameters), unlike a discrete system, the finite control time is not 
possible. 
 Let us note that the decomposition of the plant into four interconnected 
parts presented above has been obtained in a quite formal way by applying 
the mapping P to the equation describing the plant. It does not have  
to mean that inside the plant illustrated in Fig. 3.7 there are real separate 
four parts, e.g. four interconnected technical devices. The structural 
description of the plant presented in Sect. 3.6 is not of constructive 
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importance because it is difficult to check if a given plant is controllable 
and observable by using the conditions in Theorems 3.3 and 3.4. 
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Fig. 3.7. Structure of the plant under consideration 

The structural approach, however, is of a certain methodological and 
auxiliary importance. In particular, using the concepts of controllability 
and observability as well as the decomposition described in Sect. 3.6, it is 
easy to show that, in general, the different descriptions of dynamical plants 
presented in Chap. 2 are not equivalent. The description using a state 
vector is the most precise and fully representing the dynamical properties 
of the plant (in general – the system with an input and output). It contains 
the whole plant, i.e. four parts presented above. The input-output 
description in the form of a differential or difference equation comprises 
the observable parts. For a linear plant with constant parameters it may be 
shown that the description in the form of a transmittance comprises the 
controllable and observable part only. The three descriptions are then 
equivalent if the plant is fully controllable and observable. 
 It is worth noting that the non-controllability and non-observability 
conditions (reduced to the statements that the determinants of the 
respective matrices are equal to zero) are very strong or crisp in this sense 
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that they may be not satisfied as a result of very small changes of the plant 
parameters. In other words, these conditions are very sensitive to the 
changes of the plant parameters. That is why non-controllability and non-
observability are not likely to occur in practice, except the situation when a 
practical plant consists of real four interconnected parts presented in Fig. 
3.7, i.e., in a real plant the selected entries of the matrices A, B and C are 
precisely equal to zero as it was presented in the description (3.42), (3.43). 
 In all considerations concerning the dynamical plant it was assumed that 
there are no external disturbances nz . If the disturbances occur then one 

should use the plant equation  

xn+1 = f(xn, un, zn). 

Hence, in the set of equations considered above the sequence z0, z1, ..., 

1−Nz  will appear. Consequently, to determine the decision nu  it is neces-

sary to know the whole sequence of the disturbances, i.e., not only z0, ..., 

zn, but also zn+1, ..., zN–1. Then, the full information on plant assumed in 
our consideration for the whole second part of the book contains now  
a priori (i.e. before starting the control) knowledge of the values of distur-
bances which will occur in future. Usually, if the sequence nz  is a priori 

known, nz  denotes time-varying parameter of the plant with a known de-

scription. In practical considerations we use the term external disturbance 

if in the n-th moment we may know only z0, z1, ..., nz  (if the disturbances 

are measured and stored in the memory), but we do not know the future 
values of z. That is why in this chapter concerning the full knowledge of 
the plant, the plants without disturbances have been considered. 
 Summarizing, let us note that in this chapter precise control algorithms 
(3.4), (3.6), (3.12), (3.15), (3.31) and (3.32) and observation algorithms 
(3.23), (3.27) have been presented. They may be used as a basis for the 
development of programs for computer aided design and for real-time 

computer control (direct digital control) in control systems considered in 
this chapter. 

































































5 Parametric Optimization 

This is the third and the last chapter of the second part of the book, de-
voted to deterministic control problems. In comparison with the problems 
presented in the previous chapter, now we shall consider the optimization 
problem with restricted possibilities of decision making by a designer. We 
shall assume that the form of the control algorithm has been given in ad-
vance and the designer should determine the best values of the parameters 
in this form. 

5.1 General Idea of Parametric Optimization 

Quite often a designer accepts a determined form of the control algorithm 
with unknown parameters and the problem consists in finding the values of 
these parameters optimizing the control quality, i.e. minimizing the per-
formance index  Q. Thus the choice of the optimal control algorithm is re-
stricted to the choice from a class of algorithms determined by the ac-
cepted form. The problem of finding the optimal values of parameters in a 
given form of the control algorithm is called a parametric optimization. 
For a deterministic plant and full information on this plant, one should as-
sume a determined form of the control algorithm if the absolutely optimal 
algorithm (without a restriction mentioned above) is too difficult to find or 
to perform. In the case of uncertainties caused by a non-deterministic be-
haviour of the plant or an incomplete information on the plant, the parame-
ters in the assumed form of the control algorithm may be changed in an 
adaptation process described in Chap. 11. 
 Let us denote by  a a vector of parameters in the control algorithm, 
which should be found by minimization of  Q. For example, in the linear 
control algorithm considered in Sect. 5.2, the components of the vector  a 
may be all entries of matrices in the description of this algorithm, or only 
some of them if the rest are fixed and their values are not to be chosen by a 
designer. The problem of the static optimization for the control system 
may be considered as a problem of the optimal control for a static plant, 
presented in Sect. 4.1. The control system to be optimized may be treated 
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as a static plant where  Q is an output y  and the vector of the parameters  

a  is an input. Of course, it is a discrete control with a long control interval, 

sufficient for the estimation of  Q. To find the optimal value *a  it is nec-
essary to determine the function )(aQ Φ=  and then to minimize this func-

tion with respect to a, taking into account constraints concerning  a if there 
are any. To obtain the function )(aQ Φ=  one should determine functions 

of time describing the control process, i.e. functions used in the formula 

defining  Q, e.g. ε(t)  or  εn if the integral or additive performance index 
evaluates the control error. This is a problem of the control system analysis 
mentioned in Sect. 2.6. 
 In Sects. 5.2, 5.3 and 5.4, the control analysis and the parametric opti-
mization for selected cases of linear system will be considered. It will be 
shown that for linear stationary systems and quadratic performance in-
dexes it is possible to determine  Q using operational transform of time 
functions included into the formula for  Q (Laplace transform or Z trans-
form in a continuous or discrete case, respectively). 
 For nonlinear systems, in very simple special cases only it is possible to 
obtain an analytical solution of differential or difference equations describ-
ing the control process and consequently, to obtain a formula for  Q. Usu-
ally, for the fixed value  a, only the approximate value of  Q may be calcu-

lated by applying respective numerical methods. Then *a  is determined by 
using one of successive approximation methods mentioned in Sect. 4.1, i.e. 

the successive approximations ma  of the exact result *a  are determined in 

a way analogous to that presented for  um  in Sect. 4.1. For example, the 
algorithm analogous to (4.12) has the form 

am+1  = am – Kwm 

where  wm  denotes an approximate value of the gradient of Q with respect 
to  a, in  m-th step of calculations. 
 In the formulation and solution of the parametric optimization problem 
the given assumed form of the control algorithm is used. In practice, this 
form may be accepted as a result of a designer’s experience or an experi-
ence of a human operator controlling real plants. We shall return to this 
problem in the third part of the book, in the considerations concerning the 
control in uncertain systems. Let us note that different given a priori forms 
of the control algorithm with the numerical values of parameters in these 
forms may be compared by using the performance index  Q  which may be 
calculated or obtained as a result of simulations for the known control 
plant. For the given control plant and two assumed forms of the control 
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algorithm, this form is better for which the minimum value of Q (i.e. the 
value Q for a = a*) is smaller. In Sect. 5.5 we shall present several fre-

quently used forms of the control algorithm (or forms of a controller) in a 
closed-loop system: a linear controller (in particular, PID controller) and 
three nonlinear controllers (including so called fuzzy controller). Let us 
note that the comparison of these controllers based on  Q requires the 
knowledge of the plant necessary to determine the value  Q. So, a general 
statement that e.g. a fuzzy controller is better than a linear PID controller 
(or on the contrary) has no sense, even when the controllers with their op-
timal parameters  a* are compared. The result of comparison depends not 

only on the controller but also on a form of the plant equation and values 
of its parameters.  
 The parametric optimization is applied to different cases of the control 
systems with different forms of the performance index. This is not always 
the integral form considered above, especially with the limits of integration 
0, ∞, which requires a convergence to zero of a function to be integrated. 
For example, in the case of two-position controller which will be presented 
in Sect. 5.5, it is easy to note that ε(t) is a periodic function for  t greater 
than a certain number. Then as a performance index  Q we can use an inte-
gral of  ε2(t) or |ε(t)|  for the time interval equal to the period of  ε(t). The 

amplitude of ε(t) may also be used as a performance index in this case. 

5.2 Continuous Linear Control System 

Let us consider the parametric optimization problem for the closed-loop 
control system with a linear plant 

x� = AOx + BOu , (5.1)

y = COx , (5.2)

in which the following linear dynamical control algorithm (linear control-
ler) has been applied: 

v� = ARv – BRy, (5.3)

u = CRv (5.4)

where  x and  v denote the state of the plant and the state of the controller, 
respectively. In fact, the control error  ε(t) = y* – y(t) is put at the input of 

the controller. To simplify the notation we assume  y* = 0   (Fig. 5.1). 
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Plant

AO
, B

O
, CO

u(t)

Controller

AR
, BR, CR

y (t) y*= 0

ε(t)

 

Fig. 5.1. Control system under consideration 

Substituting (5.2) into (5.3) and (5.4) into (5.1) one obtains the description 
of the control system as a whole with the state vector  c 

c�  = Ac (5.5)

where  

c = 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

v

x
,      A = 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−
    

R

RO

OR

O

A

CB

CB

A
. 

  Parametric optimization problem with quadratic performance index 

  Data: AO, BO, CO and a symmetric positive definite matrix  R. 

  One should determine: controller parameters  AR, BR, CR minimizing 

Q = ∫
∞

0

T )( dtRcc . (5.6)

Hence, one should determine  Q as a function of  AR, BR, CR, i.e.  Q(AR, 

BR, CR), and then minimize this function with respect to AR, BR, CR. A 

necessary condition  for the existence of the integral (5.6) is lim c(t) = 0  
for  t→∞. It is easy to prove that for the linear system under consideration 

this is also a sufficient condition. The value  Q for the data AO, BO, CO, 

AR, BR, CR and the given initial state  c0 may be determined in two ways: 
by determining  c(t) from the equation (5.5) and then determining  Q for 
the function  c(t) obtained, or directly from the definition of  Q. In the sec-
ond way there is no need to solve the equation (5.5). Let us apply the sec-
ond way. We shall prove that 

Q = 0
T
0 cQc c  (5.7)

where  Qc is a properly chosen symmetric positive definite matrix. If the 
dependency of  Q upon the initial state is described by the formula (5.7) 
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then, for the fixed moment  t ≥ 0 treated as an initial moment, one may 
write 

Q(t) = ∫
∞

t

dttRctc )()(T  = cT(t)Qc c(t). (5.8) 

Differentiating both sides of the equality (5.8) with respect to  t yields 

– cT(t)Rc(t) = )(T tc� Qc c(t) + cT(t)Qc )(tc�   

and after substituting into (5.5) 

– cT
Rc = cT(AT

Qc + QcA) c. (5.9) 

The equality (5.9) is satisfied for any  c if and only if  

– R = AT
Qc + QcA. (5.10)

Hence, the performance index  Q may be determined according to the for-

mula (5.7) where  Qc is a solution of the matrix equation (5.10). This is a 
set of equations which are linear with respect to entries of the matrix  Q 
and for  det A ≠ 0 it is easy to obtain its solution. The problem is simpler 
for the performance  index 

Q = ∫
∞

+
0

TT )( dtvRvxRx vx .  

Then  

R = 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

v

x

R

R 0
   

0
.  

In particular, if the performance index evaluates y(t) and  u(t), i.e. 

Q = ∫
∞

+
0

TT )( dtuRuyRy uy  (5.11)

then, according to (5.2) and (5.4) 

OO
T CRCR yx = ,  RR

T CRCR vu = .  

For a measurable plant (y = x) and the static control algorithm  u = – Mx, 
the equation (5.5) is reduced to 
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x� = Ax,  A = AO – BOM.  

It may be proved that in this case, the result of the parametric optimization 
is the same as in Sect. 4.6, i.e. the matrix  M minimizing  Q should be de-
termined according to the formula (4.74) where K is a solution of the ma-
trix equation (4.72). We often consider and estimate the control process 
under the assumption that until the moment  t = 0  the control system was 
in an equilibrium state (for the description (5.1) – (5.4) it means that the 

initial state c0 = 0 ) and in the moment  t = 0 the required output value has 

been changed from 0  to a value  y* constant during the time of the control. 

Then in (5.3) we introduce  ε = y*
 – y instead of  y and the description of 

the control system is as follows: 

c�  = Ac + 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

R

0

B
 y*. (5.12)

Under the assumption  det A ≠ 0 we introduce a new variable  

c  ∆=  c + A–1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

R

0

B
 y*.  

Consequently, (5.12) takes the form  cAc =� . The formulation and solu-
tion of the parametric optimization problem are then such as for (5.5) with 
the initial state 

0c  = c0 + A–1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

R

0

B
 y* = A–1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

R

0

B
 y*.  

Now c  instead of  c occurs in the index (5.6), and the index (5.11) has the 
form 

Q = ∫
∞

+
0

TT )( dtuRuR uεε ε . (5.13)

Hence, if  det A ≠ 0 then for the system (5.5) one may assume  y
* = 0  

without a loss of generality. If the control system as a whole with the input  
y

*(t)  and the output  y(t) is controllable and observable, or (which is usu-

ally satisfied) we are interested in controllable and observable part of the 
system only (i.e. we want to know the change of the output  y(t) caused by 
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the disturbance  y*(t)), then it is sufficient to use the description with the 

help of transmittances 

Y(s) = KO(s)U(s),  

U(s) = KR(s)E(s),     E(s) =  Y*(s) – Y(s)  

where  KR is an assumed form of the controller transmittance with parame-
ters to be determined by a designer. Then  

E(s) = [KO(s)KR(s) + I]–1
Y

*(s)  

(see (2.22)). 

 Applying an inverse transformation for Y*(s) = 
s

y* 
 we obtain the con-

trol error  ε(t) in the situation considered (zero initial conditions and a step 

change of the required output value). If in the index (5.13)  Ru = 0 , i.e. 

only the function  ε(t) is evaluated, then one should determine  Q for the 
obtained function  ε(t) and minimize  Q with respect to the parameters in 

the assumed form of the controller transmittance  KR. To take into account 
the second component in (5.13) it is necessary to determine  u(t) as an in-

verse transform of the function  KR(s)E(s). It is also possible to determine  
Q directly from the functions  E(s) and  U(s), without finding the functions  

ε(t) and  u(t). According to Parseval’s Theorem, if  ε(t) = u(t) = 0  for  
t < 0 then 

Q = ∫
∞

∞−

−+− ωωωωω
π ε djURjUjERjE u )]()()()([

2

1 TT . (5.14)

In particular, for one-dimensional plant (p = l = 1) and the performance in-
dex evaluating  ε(t) only, we have  

Q = ∫
∞

0

2 )( dttε = ∫
∞

∞−

ωω
π

djE
2|)(|

2

1
. (5.15)

Let us be reminded that the components of the vectors E(s) and  U(s) are 
rational functions. For such functions, the formulas for  Q in the case of 
small (sufficient in practice) degrees of polynomials in numerators and de-
nominators of the particular components have been determined. For exam-
ple, for 
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E(s) = 
01

2
2

3
01

2
2

asasas

bsbsb

+++

++
  

the formula (5.15) is as follows:  

Q = ∫
∞

0

2
dtε = 

)(2

)2(

0210

2
2
0020

2
110

2
2

aaaa

ababbbaab

−
+−+

. (5.16)

If except the disturbance y(t) = 1(t)y*, the step disturbance  z(t) = 1(t) z
* 

acts on the plant, then we determine  E(s) from the formula (2.24) for  

Y
*(s) = 

s

y* 
  and  Z(s) = 

s

z* 
. Next, the index  Q and the optimal control-

ler parameters should be determined in the way described above. 
 Finally, let us note that, except the one-dimensional case, a practical 
utility of the parametric optimization is rather limited. According to the 
formulas (5.7) and (5.14), the optimal parameters of the controller in a 
closed-loop system (in other words, parameters of the optimal controller) 

in general depend on  c0 (for an unmeasurable plant) or on  y
* and  z*. 

Consequently, they should be changed according to successive distur-

bances with different values  c0, or  y* and  z*. 

Example 5.1. For the second order plant  

KO(s) = 
1)1)(( 21

O

++ sTsT

k
,        T1,2 > 0,  

let us assume the integrating controller  

KR(s) = 
s

kR 
  

and find the optimal value kR  for the requirement y*(t) = 0, the disturbance 

acting on the plant  z(t) = 1(t) z
*  and the performance index (5.15). The 

function  E(s) is as follows: 

E(s) = 
)1( RO

O
*

KKs

Kz

+
−

 = 
kssTTsTT

kz

++++

−
2

21
3

21

*

)(

O   

where  k = kOkR. Then  b1 = b2 = 0,  
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b0 = 
21

*
O

TT

kz
− ,      a2 = 

21

21

TT

TT +
,      a1 = 

21

1

TT
,     a0 = 

21TT

k
.  

After substituting of these variables into (5.16) and some transformations 
we obtain  

Q = 
)(2

)()(

2121

21
2*

O

TkTTTk

TTkz

−+
+

.  

It is easy to note that  

kopt = arg 
k

min Q = arg 
k

max k(T1 + T2 – kT1T2) = 
21

21

2 TT

TT +
.  

The optimal controller parameter  kR = 
O

opt

k

k
. The condition assuring 

Q < ∞, i.e. ε(t) → 0  for  t → ∞ is the following: 

0 < k < 
21

21

TT

TT +
.  

Assume that we have the first order plant, e.g. T2 = 0. Then  

Q = 
k

kz

2

)( 2*
O   

and the optimization problem without a constraint for  k has no solution, 

i.e.  Q may be arbitrary small if  kR is respectively great. For the constraint  

kR ≤ Rk  (which indirectly means a constraint concerning )(tu� ), the opti-

mal parameter of the controller kR = Rk .   □ 

5.3 Discrete Linear Control System 

Considerations for the discrete plant are analogous to those for the con-
tinuous plant presented in Sect. 5.2. The relationships corresponding to the 
equations (5.1) – (5.5) are now as follows: 

xn+1= AOxn + BOun,  
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yn = CO xn,  

vn+1 = ARvn – BR yn,  

un = CRvn,  

cn+1 = Acn  

where 

cn = 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

n

n

v

x
,      A = 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
    

R

RO

OR

O

A

CB

CB

A
.  

  Parametric optimization problem with quadratic performance index 

  Data:  AO, BO, CO, R. 

  One should determine: controller parameters  AR, BR, CR minimizing 

Q = ∑
∞

=0

T

n
nn Rcc .  

Assume  

Q = 0
T
0 cQc c  (5.17)

where  Qc is a properly chosen symmetric positive definite matrix. The re-
lationships analogous to (5.8) – (5.10) are as follows: 

Qi = ∑
∞

=in
nn RccT = ici cQcT   

Qi+1 – Qi = – ii RccT = 1
T

1 ++ ici cQc  – ici cQcT ,  

and after substituting  ci+1 = Aci  

– ii RccT  = T
ic (AT

QcA – Qc)ci  

and finally 

– R = AT
QcA – Qc . (5.18)

Thus, we determine  Q from the formula (5.17) in which  Q is a solution of 
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the matrix equation (5.18). 
 If the description with the help of transmittances is used then for the 

step disturbance *
ny = 1(n)y* we find 

E(z) = [KO(z)KR(z) + I]–1

1

*

−z

zy
  

and 

U(z) = KR(z)E(z).  

In a way analogous to that in the continuous case, the quadratic perform-
ance index 

Q = ∑
∞

=
+

0

TT )(
n

nunnn uRuR εε ε  (5.19)

may be determined directly from the functions E(z)  and  U(z), without de-

termining the functions  εn and  un. It may be proved that  

Q = ∫
−

−− +
π

π

ωωω
ε

ω ω
π

deUReUeEReE
j

u
jjj )]()()()([

2

1 TT . (5.20)

This is a discrete version of Parseval’s Theorem (5.14). In particular, for 

one-dimensional plant and the performance index evaluating εn only 

Q = ∑
∞

=0

2

n
nε = ∫

−

π

π

ω ω
π

deE
j 2|)(|

2

1
. (5.21)

The integral (5.21) has been determined for small degrees of polynomials 
in numerator and denominator of E(z), in a similar way as the integral in 
(5.15). However, the respective formulas are now much more complicated 
than in the continuous case. They may be found in books devoted to the 
theory of linear discrete or sampled-data control systems (e.g. [102]). 

5.4 System with the Measurement of Disturbances 

In Chaps. 3 and 4 we noted that if during the control process some distur-
bances act on the plant then for the determining of a proper control in an 
open-loop system or a control algorithm in a closed-loop system, the 
knowledge of the functions describing these disturbances is required by a 
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designer before starting the control. In the case of parametric optimization 
considered in this chapter, we can determine optimal parameters in the 
control algorithm when the disturbances are measured. It means that for 
the assumed form of the control algorithm we determine the parameters 
which are optimal for the current knowledge of the disturbances, i.e. are 
optimal in the situation when to determine the control decision in a fixed 
moment we use the knowledge of the disturbances until this moment only 
and not the knowledge of their future values. The control may be per-
formed in an open-loop system with the measurements of disturbances 
(Fig. 5.2) or in a combined system in which the disturbance  z as well as 
the control error are put at the input of the controller. In the first case  Y(s) 
should be determined from the equations 

Y(s) = KO(s)U(s) + KZ(s)Z(s), (5.22)

U(s) = KS(s)Z(s). (5.23)

Then  

Y(s) = [KO(s)KS(s) + KZ(s)]Z(s). (5.24)

Controller

K
S

Plant

K
O

, K
Z

z

u y

z

 

Fig. 5.2. Block scheme of open-loop control system 

Controller

KS1 , KS2

Plant

K
O

, K
Z

uε y*

ε

y

zz

 

Fig. 5.3. Block scheme of combined control system 

For the step disturbance z(t) = 1(t)z*, i.e. Z(s) =
s

z* 
 we find U(s) and Y(s) 

according to (5.23) and (5.24), respectively and then we determine the per-
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formance index as a function of parameters of the transmittance KS for the 

given matrices  Ry and  Ru: 

Q = ∫
∞

∞−

−+− ωωωωω
π

djURjUjYRjY uy )]()()()([
2

1 TT .  

This is the performance index (5.13) under the assumption  y* = 0. The op-

timal values of the parameters of KS are obtained as a result of minimiza-
tion of  Q with respect to these parameters. Let us note that if  

KS(s) = – KO(s)–1⋅KZ(s)  

then  y(t) ≡ 0. Consequently, for  Ru = 0 , the performance index  Q = 0. 

Unfortunately, the transmittance of the controller KS(s) determined in such 
a way may be proved to be physically unrealizable. Then it is reasonable to 
propose a physically realizable transmittance with undetermined parame-
ters, and to choose optimal values of its parameters in a way shown above. 

In a particular case when the matrices  KO, KZ, KS are reduced to scalar, 
one-dimensional transmittances (i.e. the plant has two single inputs u  and  
z, and one output  y), the transmittance assuring  y(t) = 0 for  t ≥ 0, i.e. the 
full compensation of the influence of  z on  y, has the following form: 

KS(s) = 
)()(

)()(

ZO

OZ

sMsL

sMsL
  

where LZ(s), MZ(s), LO(s)  and  MO(s) denote polynomials in numerator 

and denominator of the transmittances KZ(s) and  KO(s), respectively. The 

transmittance  KS  is physically realizable, i.e. the full compensation of the 
influence of  z on  y is possible, if the sum of the degrees of polynomials 

LZ and  MO is smaller than the respective sum for polynomials  LO and  

MZ. 
 The combined system is described by the set of equations (5.22) and 

U(s) = KS1(s)Z(s) + KS2(s)E(s),   E(s) = Y*(s) – Y(s). (5.25)

Then, after some transformations we obtain 

E(s) = [KO(s)KS2(s) + I]–1{Y
*(s) – [KO(s)KS1(s) + KZ(s)]Z(s)}. (5.26)
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For the step disturbances  Y*(s) =
s

y* 
,  Z(s) =

s

z* 
,  we determine  E(s) ac-

cording to the formula (5.26) and  U(s) according to the formula (5.25), 
and next we find the performance index (5.14) which is minimized with 

respect to parameters of the functions  KS1 and  KS2. 
 The considerations and solutions for a discrete system are analogous to 
those for a continuous system. The equations for the discrete transforms 
and transmittances are the same as (5.22) – (5.26) with the variable z in the 
place of  s, and the performance index (5.19) is calculated by using the 

formula (5.20). In the case of an open-loop system  yn ≡ 0  for  

KS(z) = – KO(z)–1
KZ(z).  

The full compensation may be obtained if the discrete transmittance de-
termined in such a way is physically realizable. In particular, for one-
dimensional case 

KS(z) = 
)()(

)()(

ZO

OZ

zMzL

zMzL
  

where LZ, MZ, LO and  MO denote polynomials in numerator and denomi-

nator of the transmittances KZ(z) and KO(z), respectively. The full com-

pensation is possible if the sum of the degrees of polynomials LZ  and MO 

is not greater than the respective sum for polynomials LO  and  MZ. Let us 
note that in general the considerations are concerned with multi-
dimensional system, i.e. in the equation presented above for the continuous 
as well as for the discrete plant appear vectors and matrices. The problem 
is considerably simplified for one-dimensional system, i.e. for a system in 
which  z(t), u(t) and  y(t) are single variables (scalars). It is also worth not-
ing that in general we do not minimize  Q with respect to all parameters of 
the control algorithm, but only with respect to parameters which may be 
chosen by a designer, with fixed values of other parameters. 

5.5 Typical Forms of Control Algorithms in Closed-loop 
Systems 

We shall present shortly several typical forms of control algorithms often 
used in closed-loop systems, with undetermined parameters. For an as-
sumed form, the optimal values of the parameters may be determined by a 
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designer solving the parametric optimization problem with the complete 
knowledge of the plant, or may be changed in an adaptation process which 
will be considered in Chap. 11. For simplicity, let us assume that it is pos-
sible to put the state vector  x(t) at the input of the controller and for sin-
gle-input and single-output plant this is a vector with the components 

x
(1)(t) = ε(t),    x(2)(t) = )(tε� ,    ... ,    x(k)(t) = ε(k–1)(t), (5.27)

or  

⎥
⎥
⎥
⎥
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=
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kε

ε
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�

  

where  ε(k–1)(t) denotes the  (k–1)-th derivative of the function ε(t). The 

descriptions presented below concern single-output controllers. 

5.5.1 Linear Controller 

In the linear controller  u(t) is a linear combination of components of the 
vector  x  

u = a1x
(1) + a2x

(2) + ... + akx
(k) = aT

x (5.28)

where  aT = [a1  a2  ...  ak]. In the case (5.27) 

u = a1ε + a2 ε� + ... + akε
 (k–1). (5.29)

The parameters  a1, a2, ..., ak  take a role of weight coefficients. For  k = 2 

it is PD controller. For  k > 2  instead of the form (5.29), PID controller, 
i.e. the form  

u(t) = a1ε(t) + a2 )(tε�  + a3 ∫
t

dtt

0

)(ε   

is often used. 
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5.5.2 Two-position Controller 

Now 

u = M sign aT
x,  

and more generally 

u = M sign(aT
x + b). (5.30)

The parameter  b may be called a threshold. The decision  u may take two 
values only: u = +M  if the value  aT

x is greater than the threshold  – b, and 

u = – M  otherwise. The controller (5.30) is a special case of a two-position 
controller 

u = M sign f(x)  

where the function  f(x) has a fixed form. Such a controller occurred in Ex-
ample 4.2 where 

u = M sign (ε + 
kM2

1
|ε� |ε� ).  

In the simplest case u = M sign ε , which means that the control decision 
depends on the sign of the control error only, but does not depend on its 
value. 

5.5.3 Neuron-like Controller 

The form of the controller (5.30) may be generalized to the form  

u = f(aT
x + b) (5.31)

where  f is a fixed function of the variable  aT
x + b. It is useful and reason-

able to apply a complex algorithm, which is a system consisting of the 
elements (5.31). In such a way one may improve possibilities of fitting the 
controller to the plant because the number of parameters which may be 
chosen is greater than in the simple case (5.31). These are parameters  a 
and  b, i.e. the weights and the thresholds in all elements being parts of the 
controller. Usually the structure of the controller has a multi-layer (or 
multi-level) form, i.e. the elements are composed into layers, the inputs of 
the first layer elements are the inputs of the controller (components of the 
vector  x), the inputs of successive layers are the outputs of former layers, 
and the outputs of the last layer are the outputs of the whole controller 
(components of the vector  u). A structure of the complex controller with 
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three layers and three state variables is illustrated in Fig. 5.4. For example, 

in the second layer there are three elements;  fij denote the function  f in the  
j-th element of the i-th layer. 

f11

f12

f13

f21

f22

f23

f3

u

x (1)

x(2)

x(3)

 

Fig. 5.4. Structure of controller under consideration 

5.5.4 Fuzzy Controller 

In this case a control algorithm is determined by a given set of functions: 

⎪⎭

⎪
⎬
⎫

=

=

.,...,2,1     ,  )(

  ,,...,2,1     ,  )( )(

lju

kix

uj

i
xi

µ
µ

 (5.32)

Each function in this set takes non-negative values and its maximum value 
is equal to 1. The control algorithm is defined in the following way: 

u = Ψ(x) = 

∫

∫
∞

∞−

∞

∞−

duxu

duxuu

);(

);(

µ

µ

 (5.33)

where  

µ(u; x) = 
j

max [µj(u; x)], (5.34)

µj(u; x) = min{µuj(u), µx(x)},       j = 1, 2, ..., l, (5.35)
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µx(x) = min{µx1(x(1)), µx2(x(2)), ..., µxk(x
(k))}. (5.36)

Minimum in the formulas (5.35) and (5.36) denotes the least number from 
the set in brackets. The control algorithm performed by the fuzzy control-
ler can be presented in the form of the following procedure: 
1. Introducing the values  x(1), x(2), ..., x(k)  from the plant. 

2. Finding the number µx(x)  according to (5.36). 

3. Determining the function  µj(u; x) according to (5.35) for j = 1, 2, ..., l. 

4. Determining the function  µ(u; x) according to (5.34). 
5. Finding the value of  u according to the formula (5.33). 
In this way  the relationship  u = Ψ(x) is determined. The block scheme of 
the control algorithm (or a structure of the fuzzy controller) is presented in 
Fig. 5.5. The left hand side blocks represent the given functions uniquely 
determining the relationship  u = Ψ(x). The right hand side blocks denote 
the procedure defined by the respective numbers. 

(5.36)

(5.35)

(5.34)

(5.33)

µ
x1

, ..., µ
xk

µu1, ..., µul

µx(x)

µ
j
(u; x)

j =1, ..., l

µ(u; x)

u

x

 
 

Fig. 5.5. Block scheme of control algorithm in fuzzy controller 

The controller parameters are here the parameters of the functions  µ in the 
set (5.32). The integrals in the formula (5.33) may be calculated approxi-
mately, by using sums instead of integrals: 
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where  um = m⋅∆u  and  ∆u  is sufficiently small. 
 The simplest versions of neuron-like controller and fuzzy controller 
have been described in this section. The names of these controllers and 
their interpretations will be presented in Chap. 9 for the fuzzy case and in 
Chap. 12 where applications of so called neural networks in control sys-
tems will be described. In Chap. 9 we shall see that, in general, the set of 

functions  µxi(x
(i)) is different for different  j. Consequently, the function  

µx(x) determined according to the formula (5.36) also depends on  j. 

 The forms of control algorithms  u = Ψ(x) listed in 5.5.1, 5.5.2, 5.5.3 
and 5.5.4 are identical for continuous and discrete systems, because we 
considered memory-less controllers. It is a relationship between  u and  x 
for every  t in a continuous case or for every  n in a discrete case. In the 
discrete case, the state variables analogous to (5.27) are as follows 

)1(
nx = εn,    )2(

nx = εn–1, ...,    )(k
nx = εn–(k–1) (5.37)

or 
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It is worth noting that in the case (5.27) and in the case (5.37) as well, the 
state variables of an observable part of the plant are defined. 
 
 
 



6 Application of Relational Description of 

Uncertainty 

The second part of the book containing Chaps. 3, 4 and 5 has been de-
voted to control problems with full information of a deterministic plant. 
Now we start considerations concerning the control under uncertainty or – 
as it is often called – the control in uncertain systems. The problems of de-
cision making and control under uncertainty are very frequent in real situa-
tions and that is why methods and algorithms concerning uncertain sys-
tems are very important from the practical point of view. There exists a 
great variety of definitions and formal models of uncertainties and uncer-
tain systems [52, 81, 82, 86, 96]. Analysis and decision making problems 
are formulated in a way adequate to the applied description of the uncer-
tainty, i.e. so that the problem has a practical sense accepted by a user and 
may be solved by using the assumed model of the uncertainty. 
 The third part of the book contains Chaps. 6, 7, 8 and 9 in which we 
present different cases of the problem formulations and the determinations 
of control algorithms based on descriptions of uncertainty given in ad-
vance, without using any additional information obtained during the con-
trol process. In this chapter, the plants and consequently, the control algo-
rithms and the uncertain control systems will be described by relations 
which are not reduced to functions. 

6.1 Uncertainty and Relational Knowledge Representation 

As it was mentioned in the introduction to Chap. 3, there are two basic rea-
sons of the uncertainty in the decision making: 
1. The plant with a fixed input and output (a state) is non-deterministic. 
2. There is no full information of the plant. 
 Ad 1. Let us consider a static plant with the input vector  u ∈U and the 
output vector  y ∈Y. We say that the plant with the input  u  and the output  
y acts (or behaves) in deterministic way, or shortly, the plant is determinis-

tic if the value  u determines (i.e. uniquely defines) the value  y. It means 
that in the same conditions the decision  u  gives always the same effect  y, 
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or that the plant is described by a function  y = Φ(u). 
 For example, let  y denote the amount of a product in one cycle of a 
production process and  u denote the amount of a resource (e.g. the amount 
of a raw material), and  y = ku. It means that if the value  u will be the 
same in different cycles then in each cycle we obtain the same amount of 

the product  y = ku. If the parameter  k  varies in successive cycles and  un, 

yn, kn  denote the values in the n-th cycle then  yn = kn un, which means that 

the amount of the product  yn is uniquely determined by the amount of the 

raw material  un and the value of the coefficient  kn, or – when the se-

quence  kn is determined in advance – by the index of a cycle. The coeffi-

cient  kn may be treated as a second input, i.e. a disturbance  zn. In the case 
when the disturbances occur in the description of the plant, we can say that 
the plant with the fixed input (u, z) and the output  y is deterministic if the 
values (u, z) uniquely determine the value  y, i.e. the plant is described by a 
function  y = Φ(u, z). Such plants have been considered in Sects. 3.1 and 
4.1. As it has been shown above, a non-deterministic plant with the input  
u and the output  y may be proved to be a deterministic one if other inputs 
which also have an influence on  y are taken into account. In practice to in-
troduce or even to call them may be impossible. Consequently, for the 
fixed  u only a set of possible outputs may be given. In the example con-
sidered, the amount of the product may depend not only on the amount of 
the raw material but also on many other variables and for the fixed  u, only 
the set of possible values of y may be given, e.g. in the form of the inequal-

ity  c1u ≤ y ≤ c2u with the given values  c, which means that  c1 ≤ k ≤ c2. In 

different production cycles one may obtain different values  yn for the 

same value  un. Hence, the different pairs (un, yn) are possible in our  plant. 
A set of examples of such points is illustrated in Fig. 6.1 where the shaded 
domain is a set of all possible points. Of course, the figure concerns a gen-
eral plant of this kind, in which negative values  u and  y  are possible, i.e. 
the plant described by the inequalities 

ucyuc 21 ≤≤  

for  0≥u  and 

ucyuc 12 ≤≤  

for 0≤u , under the assumption that 0, 21 >cc . 

 Ad 2. The plant is deterministic but the function  y = Φ(u) is unknown 
or is not completely known. If in the known form of the function Φ  
some  parameters  are  unknown,  we speak  about  parametric uncertainty. 
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y

u

ucy 2=

ucy 1=

 

Fig. 6.1. Illustration of the relationship between  u and  y in the example under 
consideration 

Using terms known, unknown, uncertain etc. we must determine a subject 
they are concerned with (who knows or does not know?, who is not certain 
or rather not sure?). It is convenient to distinguish in our considerations 
three subjects: an expert as a source of the knowledge, a designer and an 
executor of the decision algorithm (controlling device, controlling com-
puter). The uncertainty caused by an incomplete knowledge of the plant 
concerns the expert who formulates the knowledge, and consequently is 
transferred to the designer which uses this knowledge to design a decision 
algorithm. 
 Both reasons of the uncertainty (points 1. and 2. listed at the beginning 
of this section) concern the designer: the designer’s uncertainty may be 
caused by the non-deterministic behaviour of the plant (an objective uncer-
tainty as a consequence of the non-deterministic plant) or by an incomplete 
information on the plant given by an expert (a subjective uncertainty or the 
expert’s uncertainty). In the first case, the sets of possible values  y which 
may occur in the plant for the fixed  u are exactly defined by the expert. In 

the example considered above it means that the values  c1 and  c2 are 
known. 
 In the case of the second kind of uncertainty  y = ku. The expert, not 
knowing exactly the value  k, may give its estimation in the form of the 

inequality  c1 ≤ k ≤ c2. Formally, the designer’s uncertainty is the same as 
in the first case, i.e. the designer knows the set of possible values  y:   

c1u ≤ y ≤ c2u  for 0≥u . However, the interpretation is now different: pos-

sible points  (un, yn) lie on the line  y = ku located between the lines  y = 

c1u and  y = c2u  in Fig. 6.1. 
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 Both kinds of uncertainty may occur together. It means that for the fixed  
u, different values  y may occur in the plant and the expert does not know 

exactly the sets of possible values  y, e.g. does not know the values  c1 and  

c2 introduced in our example when the first kind of uncertainty was con-
sidered. In both cases of uncertainty described above we shall shortly 
speak about an uncertain plant, remembering that in fact, an uncertainty is 
not necessary to be a feature of a plant but it may be an expert’s uncer-
tainty. In a similar sense we speak generally about an uncertain algorithm 
(uncertain decision maker, uncertain controller) and an uncertain system. 
These names are used for different formal descriptions of an uncertainty, 
not only for the relational description considered in this chapter. 
 Let us denote by  

Dy(u) ⊆ Y 

the set of all possible values  y for the fixed  u ∈U. In the example consid-
ered above  

Dy(u) = { y:  c1u ≤ y ≤ c2u } 

independently from the different interpretations of this set. The formula-

tion of the sets  Dy(u) for all values  u which may occur in the plant means 
the determination of the set of all possible pairs  (u, y) which may appear. 
This is a subset of Cartesian product  U ×Y, i.e. the set of all pairs (u, y) 
such that  u∈U and  y∈Y. Such a subset is called a relation  

u ρ y ∆=  R(u, y) ⊆ U ×Y. (6.1)

In a special case for the deterministic plant, this is the function  y = Φ(u), 
i.e. 

R(u, y) = {(u, y) ∈U ×Y:  (u∈Du) ∧ y = Φ(u)} 

where  Du denotes the set in which the function is defined (in particular  

Du = U ). For simplicity, the plant described by the relation (6.1) we shall 
call a relational plant, remembering that in fact the relational description 
does not have to be a feature of the plant but is a form of the uncertainty 
description. In the further considerations we shall assume that the relation 
describing the plant is not reduced to a function, i.e. the plant is uncertain. 
Usually, the relation (6.1) is defined by a property  ϕ(u, y) concerning  u 
and  y, which for fixed values of the variables  u and  y is a proposition in 
two-valued logic. Such a property is called a predicate. The relation  R de-
notes a set of all pairs (u, y) for which this property is satisfied, i.e.  
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R(u, y) = {(u, y) ∈U ×Y:  w[ϕ(u, y)] = 1} ∆= {(u, y) ∈U ×Y:  ϕ(u, y)}

where  w[ϕ(u, y)] ∈{0,1} is a logical value (0 or 1 means that a sentence is 
false or true, respectively). Usually the property  ϕ(u, y) is directly called a 
relation and instead saying that (u, y) belongs to the relation  R, we say that 

it satisfies this relation. In our example  ϕ(u, y) = “c1u ≤ y ≤ c2u”. The rela-
tion  R(u, y) has often a form of a set of equalities and (or) inequalities 
concerning the vectors  u and  y. Below, four examples of the description 
of a relational plant are given: 
1. p = 2, l = 3 (two inputs, three outputs) 

u
(1) + 2u

(2) – y(1) + 5y
(2) + y(3) = 0, 

3u
(1) – u(2) + y(1) – 2y

(2) + y(3) = 4. 

2. p = 2, l = 2 

u
(1) + ( y(2))2 = 4, 

u
(1) + u(2)

u
(1) + y(1) ≤ 0, 

u
(2) + y(2) ≥ 1. 

3. p = l = 1 

(u(1))2 + (u(2))2 = 4. 

4. p = l = 1 

(u(1))2 + (u(2))2 ≤ 4. 

It is easy to show that none of the above relations is a function. 
 If the disturbances  z ∈Z act on the plant then they appear in the descrip-
tion of the plant by a relation  

R(u, y, z) ⊆ U × Y × Z (6.2)

or the relation  R(u, y; z) ⊆ U × Y for the fixed  z. In many cases an expert 
presents the knowledge on the plant in the form of a set of relations 

Ri(u, w, y, z),    i = 1, 2, ..., k (6.3)

where  w∈W denotes the vector of additional auxiliary variables appearing 
in the knowledge description. The set (6.3) may be reduced to one relation 
by eliminating the variable  w: 
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R(u, y, z) = {(u, y, z)∈U ×Y:  
Ww∈

[(u, w, y, z)∈∩
k

i
i zywuR

1

),,,(
=

]}. (6.4)

It is then the set of all triplets  (u, y, z) for which there exists  w such that  

(u, w, y, z) satisfies all relations  Ri. The formal description of the knowl-
edge of the plant differing from a traditional model (for the static plant it is 
a functional model  y = Φ(u)) is sometimes called a knowledge representa-

tion of the plant. More generally, we speak about the knowledge represen-
tation as a description of the knowledge given by an expert and concerning 
a determined part of a reality, a domain, a system, a way of acting etc. In 
the computer implementation, the knowledge representation is called a 
knowledge base which may be treated as a generalization of a traditional 
data base. The term knowledge representation is defined and understood in 
different ways (not always precisely). That is why, independently of the 
names used, it is so important to formalize precisely terms occurring in 
concrete considerations and to formalize concrete problems based on these 
terms. In the case considered in this chapter the knowledge representation 
is the relation (6.1) or (6.2), and more generally – the set of relations  
(6.3). This is a relational knowledge representation of the static plant under 
consideration [24, 52]. In the next sections analysis and decision making 
problems based on the relational knowledge representation will be de-
scribed. 

6.2 Analysis Problem 

Before the description of a decision problem which is a basic problem for a 
designer, it is useful to present an analysis problem. For the plant de-
scribed by the model in a form of a function  y = Φ(u), the analysis prob-
lem consists in determination of the value  y = y

* for the given value  

u = u*. In the case of the relational knowledge representation, when the re-

lation is not reduced to the function, only a set of possible values  y may be 
found. The information concerning  u may also be imprecise and consist in 

giving a set  Du ⊂ U  such that  u∈Du. Consequently, the formulation of the 
analysis problem for the plant without disturbances, adequate to the con-
sidered model of uncertainty, is the following: 

Analysis problem: For the given relation  R(u, y) and the set  Du ⊂U  one 

should determine the smallest set  Dy ⊂ Y  for which the implication  
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u ∈Du → y∈Dy 

is satisfied. 
 The term “the smallest set” means that we are interested in the informa-

tion concerning  y as precise as possible. In other words, the set  Dy should 

be such that if  y does not belong to this set then in the set  Du  there is no  

u such that  (u, y) ∈R(u, y). The analysis problem for the single-input and 
single-output plant is illustrated in Fig. 6.2 where the shaded domain de-

notes  R(u, y) and the interval  Dy denotes the problem solution for the 

given interval  Du. 

y

u
uD

yD

 
Fig. 6.2. Illustration of analysis problem 

 The general form of the analysis problem solution is the following: 

Dy = { y ∈Y: 
uDu∈

 [(u, y) ∈R(u, y)]}. (6.5)

This is then the set of all values  y for which in the set  Du  there exists  u 
such that  (u, y) belongs to  R. In particular, for the known value  u, i.e. for  

Du = {u} (a singleton)  

Dy(u) = { y ∈Y:  (u, y) ∈R(u, y)} (6.6)

where  Dy(u) denotes the solution of the problem for the given value  u. 
Finding the solution for a concrete form of the relation  R(u, y) may be 
very difficult and may require special computational methods adequate for 
given forms of the knowledge representations. For example, the methods 
of solving the set of equalities and inequalities if the relation  R(u, y) de-
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scribing the plant is defined by such a set. We shall return to this problem 
in Chap. 12 in which a universal analysis algorithm for the case where the 
relations (6.3) are presented in a form of logical operations will be de-
scribed. It is worth noting that the analysis problem under consideration is 
a generalization of the problem presented at the beginning of this section 
for a functional plant described by a function  y = Φ(u). The properties  

u ∈Du  and  y ∈Dy  may be called input and output properties, respectively. 
In the analysis problem for the functional plant these properties have the 
form  u = u*  and  y = y*. In general, the analysis problem consists then in 

the determination of the output property (exactly speaking, the strongest 

output property with the smallest set Dy) for the given input property. 
 If there are external disturbances  z acting on the plant, and as a result of 

an observation it is known that  z ∈Dz then the analysis problem is formu-
lated as follows: 

 For the given relation  R(u, y, z) and the given sets Du  and  Dz one 

should determine the smallest set  Dy for which the implication 

(u ∈Du) ∧ (z ∈Dz) → y ∈Dy 

or  

(u, z)  ∈ Du × Dz → y ∈Dy 

is satisfied. 
 According to the formula (6.5) we obtain 

Dy = { y ∈Y: 
uDu∈

  
zDz∈

 [(u, y, z) ∈R(u, y, z)]}. (6.7)

Hence,  Dy is a set of all values  y for which in the set  Du  there exists 

such  u and in the set Dz  there exists such  z that  (u, y, z) belongs to  R. 
For the fixed value  z 

Dy(z) = { y∈Y:  
uDu∈

  [(u, y, z)∈R(u, y, z)]}. (6.8)

Example 6.1. Consider the plant with two inputs  u(1) and  u(2) described 

by the inequality 

c1u
(1) + d1u

(2) ≤  y  ≤ c2u
(1) + d2u

(2) (6.9)
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and the set  Du determined by the inequalities 

au
(1) + bu

(2) ≤ α, (6.10)

u
(1) ≥ )1(

minu ,  u
(2) ≥ )2(

minu . (6.11)

For example,  y may denote the amount of a product obtained in a certain 
production process, and  u(1) and  u(2) – the amounts of two kinds of raw 

materials, the inequality (6.10) – the constraints concerning the cost of the 
both raw materials, and the inequalities (6.11) – additional constraints 

caused by technical conditions of the process. The parameters c1, c2, d1, 

d2, a, b, α, )1(
minu , )2(

minu  have the given positive values and  c1< c2, d1< d2. 

One should determine the set of all possible values  y under the assumption 
that the values  u(1) and  u(2) satisfy the inequalities (6.10) and (6.11). 

 It is easy to note that 

C1
)1(

minu  + d1
)2(

minu  ≤ y ≤ ymax (6.12)

where  

ymax  = 
)2()1( ,

max
uu

 (c2 u
(1) + d2 u

(2)) 

with the constraints (6.10) and (6.11). The determination of  ymax is a sim-
ple problem of so called linear programming which is easy to solve with 
the help of a graphical illustration. In Fig. 6.3, the shaded domain denotes 

the set  Du and  P denotes a straight line with the equation  c2u
(1) + d2u

(2) 

= y for the fixed value  y. Then the point  (u(1), u(2)) maximizing  c2u
(1) + 

d2u
(2)  lies in one of the vertexes W1, W2, depending on the inclination of 

the line  P: 
1. If  

b

a

d

c
<

2

2  

then the point maximizing  c2u
(1) + d2u

(2) lies in the vertex  W1, i.e.  

u
(1) = )1(

minu ,  u
(2) = 

b

au
)1(

min−α
, 
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ymax = c2
)1(

minu  + 
b

d2 (α – )1(
minau ). (6.13)

(2)
u

(2)
minu

a

α

b

α

1W

2W

P

(1)
u

(1)
minu

 

Fig. 6.3. Illustration of example 

2. If 

b

a

d

c
>

2

2  

then the point maximizing  c2u
(1) + d2u

(2) lies in the vertex  W2, i.e. 

u
(2) = )2(

minu ,  u
(1) = 

a

bu
)2(

min−α
, 

ymax = 
a

c2 (α – )2(
minbu ) + d2

)2(
minu . (6.14)

3. If 

b

a

d

c
=

2

2  

then for any point  (u(1), u(2)) lying in the line  P between  W1 and  W2, the 

variable  y takes the maximum value determined by the formula (6.13) or 
(6.14) (the results obtained from these formulas are identical). For exam-

ple, for numerical data  c1 = 1, c2 = 2, d1 = 2, d2 = 4, a = 1, b = 4, α = 3, 
)1(

minu = 1, )2(
minu = 0.5  we obtain 
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2

1

2

2 =
d

c
, 

4

1
=

b

a
 < 

2

2

d

c
. 

Substituting the data into the formula (6.14) gives  ymax = 4 and   

ymin = c1
)1(

minu  + d1
)2(

minu = 2, according to the formula (6.12). The set  Dy 

is then determined by the inequality  2 ≤ y ≤ 4.   □ 

6.3 Decision Making Problem 

It is an inverse problem to the analysis problem formulated in Sect. 6.2, 
and for the plant described by the function  y = Φ(u), it consists in deter-
mining such a decision  u = u*  that the respective output  y = Φ(u*) is 

equal to the given required value  y*. This problem for the functional plant 

has been considered in Sect. 3.1. In the relational plant it is not possible to 
satisfy the requirement  y = y* but it has a sense to formulate the require-

ment in the form  y∈Dy  for the fixed set Dy, and to find a decision  u for 
which this requirement is satisfied. Solving the problem consists in deter-

mining the set  Du of all possible (or acceptable) decisions, i.e. in deter-

mining all values  u for which the property  y∈Dy will be fulfilled. 

Decision making (control) problem: For the given relation  R(u, y) and 

the set  Dy ⊂ Y  determining a user’s requirement one should find the larg-

est set  Du ⊂ U such that the implication 

u ∈Du → y ∈Dy (6.15)

is satisfied. 
 The general form of the problem solution is as follows: 

Du = {u ∈U:  Dy(u) ⊆ Dy} (6.16)

where  Dy(u) is defined by the formula (6.6). Then,  Du  is the set of all 
such values  u for which the set of possible values  y belongs to the given 

set  Dy. A remark on difficulties connected with the determination of a fi-

nal solution for concrete forms of  R(u, y)  and  Dy, and on a universal al-
gorithm in the case of logical operations is now analogous to that for the 
analysis problem in Sect. 6.2. Similarly as in Sect. 6.2 it is worth noting 
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that the decision problem for the relational plant may be considered as a 
generalization of the respective problem for the functional plant where the 

input property u ∈Du and the output property  y ∈Dy are reduced to the 

forms  u = u
* and   y = y

*, respectively. 

 The solution of the decision problem under consideration may not exist, 

i.e.  Du may be an empty set. Such a case is illustrated in Fig. 6.4: For the 

given interval  Dy, the interval Du for which the implication (6.15) could 
be satisfied does not exist. It means that the requirement is too strong, i.e. 

that the interval  Dy is too small. The requirement may be satisfied for the 

greater interval  Dy (see Fig. 6.2). If  Du = ∅ (empty set), we can say that 

the plant  R(u, y) is non-controllable for the requirement y ∈Dy. For exam-

ple, let  Dy = [ y1, y2] in the example illustrated by Fig. 6.1, i.e. the property 

y1 ≤ y ≤ y2 is required by a user. It is easy to note that the solution for 

01 >y  is as follows:  

Du = [ ]
2

2

1

1 ,
c

y

c

y
 

and the controllability condition has the form  

1

1

c

y
≤

2

2

c

y
. 

If external disturbances  z act on the plant and as a result of measurement it 
is known that  z ∈Dz then the decision problem is formulated as follows: 

 For the given relation  R(u, y, z) and the given sets  Dz and  Dy one 

should find the largest set  Du for which the implication 

(u ∈Du) ∧ (z ∈Dz) → y ∈Dy 

is satisfied. 
 The general form of the decision problem solution is now the following: 

Du = {u ∈U:   
zDz∈

  [Dy(u, z) ⊆ Dy]} (6.17)

where 

Dy(u, z) = { y ∈Y:  (u, y, z) ∈R(u, y, z)}. (6.18)
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y

u

yD

 

Fig. 6.4. Illustration of the case when solution does not exist 

It is then the set of all decisions  u such that for every  z belonging to  Dz 

the set of all possible values  y belongs to the given set  Dy. One may say 

that the solution  Du is robust with respect to  z, which means that it is not 
sensitive to z, i.e. it gives a satisfying solution  y for every value of the dis-

turbance  z from the fixed  Dz. For the fixed  z, the set of possible decisions 

is defined by the formula (6.16) in which  Dy(u) should be determined ac-
cording to the formula (6.6) for the given relation  R(u, y, z), i.e. the rela-
tion  R(u, y; z) ⊂ U×Y  with the parameter  z. Consequently 

Du(z) = { u ∈U:  Dy(u, z) ⊆ Dy} ∆= ),( uzR  (6.19)

where  Dy(u, z) is defined by the formula (6.18). The formula (6.19) de-

fines a relation between  z and  u which has been denoted by ),( uzR . This 

relation may be considered as a description of a relational decision (con-

trol) algorithm in the open-loop system (Fig. 6.5) or the relational repre-
sentation of a knowledge on the control (i.e. the knowledge representation 
of the controller in the open-loop system). For the functional plant the sys-
tem in Fig. 6.5 is reduced to the system presented in Fig. 3.1. It is interest-
ing and important to note that for an uncertain plant one obtains an uncer-

tain control algorithm determined by using a knowledge representation of 
the plant. In the case of the relational description of uncertainty considered 
in this chapter, it is the relational plant and the corresponding relational 
control algorithm.  
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R (z,u) R (u,y,z)

z

u y

 

Fig. 6.5. Open-loop control system with relational plant and relational control al-
gorithm 

Example 6.2. Consider the plant with two scalar inputs u, z and the single 
output  y, described by the inequality 

cu + z ≤ y ≤ 2cu + z,  c > 0. (6.20)

Determine the set  Du for the given sets  Dz = [z1, z2]  and  Dy = [y1, y2]. In 
other words, we want to obtain the set of all control decisions satisfying 

the requirement  y1 ≤ y ≤ y2 for every  z from the interval  [z1, z2]. The set 
(6.18) is now defined directly by the inequality (6.20). According to (6.17) 

the set  Du is then defined by the inequality 

c

zy 11 −
 ≤ u ≤ 

c

zy

2
22 −

. 

The solution exists if  2( y1 – z1) ≤ ( y2 – z2). For the given value  z the set  

Du(z) is determined by the inequality 

c

zy −1  ≤ u ≤ 
c

zy

2
2 −

. 

It is ),( uzR  or the relational control algorithm in the open-loop system.  □ 

6.4 Dynamical Relational Plant 

The considerations are analogous to those for the static plant but respective 
notations and calculations may now be much more complicated [22, 29, 
52]. That is why the considerations in this section are limited to the sim-
plest form of the relational knowledge representation and the simplest ver-
sion of analysis and decision problems formulated for a discrete plant de-
scribed with the help of a state vector. The deterministic dynamical plant is 
described by the equations 
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⎭
⎬
⎫

=

=+

)(

),,(1

nn

nnn

xy

uxfx

η
 (6.21)

where  xn ∈X is the state vector,  un ∈U is the control vector and  yn ∈Y is 
the output vector. As in the case of the static plant, in the description of the 
relational dynamical plant the functions  f and  η are replaced by the rela-
tions  

⎭
⎬
⎫

×⊆

××⊆+

.),(

,),,(

II

1I

YXyxR

XXUxxuR

nn

nnn  (6.22)

The relations  RI and  RII form the relational knowledge representation of 

the dynamical plant. The relation  RI describes a relationship between the 

state vectors  xn,  xn+1 and the input  un, the relation  RII describes a rela-

tionship between the state vector  xn and the output  yn. The description 
(6.21) as well as (6.22) concerns the stationary plant (the plant with con-
stant parameters). For the non-stationary plant the functions  f and  η  in 

the functional case and the relations  RI and  RII in the relational case de-
pend on  n. As in the static case, a typical form of the relations is presented 
by a set of equalities and (or) inequalities concerning the components of 
the respective vectors. The relations (6.22) have often the form 

⎭
⎬
⎫

≤≤

≤≤ +

),()(

),,(),(

21

211

nnn

nnnnn

xyx

uxfxxuf

ηη
 (6.23)

following from the uncertain information on the plant (6.21). The differen-

tial inequalities (6.23) denote the set of inequalities for the respective 
components of the vectors. 

 Let  Dun, Dxn  and Dyn denote sets of the vectors  un,  xn,  yn, respec-
tively, i.e.  

un ∈Dun ⊆ U,  xn ∈Dxn ⊆ X,  yn ∈Dyn ⊆ Y. 

Analysis problem: For the given relations (6.22), the set  Dx0 and the se-

quence of sets  Dun  (n = 0, 1, ...) one should determine the sequence of the 

smallest sets  Dyn ⊂ Y   (n = 1, 2, ...) for which the implication 

(u0 ∈Du0) ∧ (u1 ∈Du1) ∧ ... ∧ (un–1 ∈Du,n–1) → yn ∈Dyn 

is satisfied. 



132      6 Application of Relational Description of Uncertainty 

 This is a generalization for a relational case of the analysis problem for 

the plant (6.21) consisting in the determination of the sequence  yn for the 

given sequence  un, the known functions  f and  η, and the initial condition  

x0. For the fixed  n, the plant under consideration may be treated as a cas-
cade connection of two static relational plants (Fig. 6.6). The analysis 
problem for the dynamical plant is then reduced to the analysis problem 

for the relational plants  RI and  RII, i.e. to the problem described in  
Sect. 6.2 for the static plant. As a result, according to the formula (6.5) ap-

plied successively to RI and  RII, we obtain the following recursive pro-

cedure for  n = 1, 2, ... .  

R
I
(u

n
, x

n
, x

n+1
) R

II
(x

n+1
, y

n+1
)

x
n+1

y
n+1

x
n

u
n

 

Fig. 6.6. Relational dynamical plant 

1. For the given Dun  and  Dxn  determined in the former step, we deter-

mine  Dx,n+1 using  RI(un, xn, xn+1): 

Dx, n+1 = {xn+1∈X:
unn Du ∈ xnn Dx ∈

[(un, xn,  xn+1)∈RI(un,  xn,  xn+1)]}. (6.24)

2. For the obtained  Dx,n+1  we determine  Dy,n+1  using  RII(xn+1, yn+1): 

Dy,n+1 = {yn+1 ∈Y:  
1,1 ++ ∈ nxn Dx

[(xn+1, yn+1) ∈ RII( xn+1, yn+1)]}. (6.25)

For  n = 0  in the formula (6.24) we use the given set  Dx0. 
 In the case of the plant with disturbances, the analysis problem and the 
solving procedure are analogous, similar to (6.7) and (6.8) in the case of 
the static plant. 

Decision making (control) problem: For the given relations (6.22), the 

set  Dx0  and the sequence of sets Dyn   (n = 1, 2, ..., N) defining a user’s 

requirement concerning  y1, y2, ..., yN  one should determine the sequence 

of sets  Dun   (n = 0, 1, ..., N–1) for which the implication  
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          (u0 ∈Du0) ∧ (u1 ∈Du1) ∧ ... ∧ (uN–1 ∈Du,N–1) 

                          → ( y1 ∈Dy1) ∧ ( y2 ∈Dy2) ∧ ... ∧ ( yN ∈DyN ) 

is satisfied. 
 This is one of possible formulations of a control problem for the rela-

tional dynamical plant. If the requirement concerned the state  xN, i.e. had 

a form  xN ∈DxN  for the given set  DxN  then the problem under considera-
tion would be a generalization of the problem described in Chap. 3 and 

consisting in the determination of the control  u0, u1 , ..., uN–1  removing 

the plant from the state  x0 to the given state  xN  in a finite time. To deter-

mine the sequence  Dun we may apply a decomposition consisting in the 

determination of  Dun  step by step starting from the end, in a similar way 
as in the dynamic programming procedure presented in Chap. 4. Let us 
note that in the formulation of the control problem we do not use the words 
“the sequence of largest sets”. Now the set of all possible controls denotes 

the set of all sequences  u0, u1 , ..., uN–1 for which the requirements are sat-
isfied. If we decide not to determine all such sequences then we may ob-
tain the solution of the control problem by applying the following recur-
sive procedure starting from  n = 0: 

1. For the given  Dy,n+1, using  RII we determine the largest set  Dx,n+1  for 
which the implication 

xn+1 ∈Dx,n+1 → yn+1 ∈Dy,n+1 

is satisfied. It is a decision problem for the plant  RII. Using (6.16) we ob-
tain 

Dx,n+1 = {xn+1 ∈X:  Dy,n+1(xn+1) ⊆ Dy,n+1} (6.26)

where 

Dy,n+1(xn+1) = { yn+1 ∈Y:  (xn+1, yn+1) ∈ RII( xn+1, yn+1)}. 

2. For  Dx,n+1  just determined and Dxn found in the former step, using  RI 

we determine the largest set  Dun for which the implication 

(un ∈Dun) ∧ (xn ∈Dxn) → xn+1 ∈Dx,n+1 

is satisfied. 
 According to (6.17) we have 
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Dun = {un ∈U: 
xnn Dx ∈

 [Dx,n+1(un, xn) ⊆ Dx,n+1]} (6.27)

where 

Dx,n+1(un, xn) = {xn+1∈X:  (un, xn, xn+1) ∈ RI(un, xn, xn+1)}. 

Example 6.3. Consider a simple case of the first order plant described by 
the inequalities 

a1 xn + b1 un ≤ xn+1 ≤ a2 xn + b2 un, 

c1 xn+1 ≤ yn+1 ≤ c2 xn+1. 

Assume that  x01 ≤ x0 ≤ x02 ,  b1, b2, c1, c2 > 0. The requirement concern-

ing  yn is as follows: 

1≥n

  ( y(1) ≤ yn ≤ y(2)) (6.28)

which means that for every  n the plant output is required to belong to the 

constant interval [ y(1), y(2)]. For the given x01, x02, y(1), y(2) and the coef-

ficients  a1, a2, b1, b2, c1, c2, one should find the respective sequence of 
the sets of possible control decisions. For  n = 0, according to the formula 

(6.26) the set  Dx1 is defined by the inequalities 

c2 x1 ≤ y(2) ,   c1 x1 ≥ y(1). 

Then 

Dx1 = [ ]
2

)2(

1

)1(  
,

 

c

y

c

y
 . 

According to (6.27) for  u0 one obtains the following inequalities: 

a2 x02  + b2 u0  ≤ 
2

)2( 

c

y
, 

a1 x01  + b1 u0  ≥ 
1

)1( 

c

y
. 
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Hence, 

Du0 = [ ]
2

022

22

)2(

1

011

11

)1(   
,

  

b

xa

cb

y

b

xa

cb

y
−− . 

For  n ≥ 1  the set  Dx,n+1 = Dx1 and according to (6.27) the set  Dun is de-
fined by the inequalities 

a2
2

)2( 

c

y
 + b2 un  ≤ 

2

)2( 

c

y
, 

a1
1

)1( 

c

y
 + b1 un  ≥ 

1

)1( 

c

y
. 

After some transformations one obtains 

Dun = [ ]
22

2
)2(

11

1
)1( )1( 

,
)1( 

cb

ay

cb

ay −−
. 

Consequently, if 

1

011

11

)1(   

b

xa

cb

y
−  ≤ u0 ≤ 

2

022

22

)2(   

b

xa

cb

y
−  

and for every n > 0  

11

1
)1( )1( 

cb

ay −
 ≤ un ≤ 

22

2
)2( )1( 

cb

ay −
 

then the requirement (6.28) will be satisfied. The conditions for the exis-
tence of the solution are the following: 

1

011

11

)1(   

b

xa

cb

y
−  ≤ 

2

022

22

)2(   

b

xa

cb

y
− , (6.29)

1

)1( 

c

y
 ≤ 

2

)2( 

c

y
, (6.30)

11

1
)1( )1( 

cb

ay −
 ≤ 

22

2
)2( )1( 

cb

ay −
. (6.31)
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If  y(1) > 0 and  a2 < 1 then the conditions (6.30) and (6.31) are reduced to 

the inequality 

)1(

)2( 

y

y
 ≥ max (α, β  ) 

where  max denotes a greater number in the pair (α, β  ), 

α = 
11

22

cb

cb
 

2

1

1

1

a

a

−
−

,  β  = 
1

2

c

c
. 

Hence, the sets  Dun are not empty if the requirement concerning  yn is not 

too strong, i.e. the ratio of  y(1)  to  y(2) is sufficiently great. It should be 

noted that the inequalities (6.29), (6.30) and (6.31) present the conditions 
for the existence of the solution obtained by applying the method presented 

above. The obtained solution may not contain all the sequences  un for 
which the requirement is fulfilled. Then, if the conditions (6.29), (6.30) 
and (6.31) are not satisfied, a sequence satisfying the requirement (6.28) 

may exist.  □ 

6.5 Determinization 

Replacing an uncertain description by its deterministic representation will 
be called a determinization. In our case it means replacing the relational 
description by the deterministic description in the form of a function. The 
determinization may concern the plant and the control algorithm as well. A 
frequently used way of the determinization consists in using a mean value 
of the output of an uncertain system and formulating a dependence of this 
value upon the input. After finding the set of possible control decisions 
(6.17) one must choose from this set and put at the input of the plant a 
concrete decision. It may be a mean value defined as follows: 

u
~  = 

∫

∫

u

u

D

D

du

udu

. 

Then in the computer control system (Fig. 6.7) we may distinguish a block 

denoting the generation of the set  Du based on the knowledge representa-
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tion of the plant  R(u, y, z) and the result of the disturbance observation in 

the form of the set  Dz, and a block denoting the determinization, determin-
ing one concrete decision  u. For the fixed  z one may apply the determini-
zation of the relational control algorithm, i.e. the mean value for the set  

Du(z), defined by the formula (6.19) 

=)(~
zu  

∫

∫

)(

)(

zD

zD

u

u

du

udu

 ∆= )(
~

zΨ . (6.32)

Observation

Determinization Plant
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decision set
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representation
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requirement
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uD u y
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Fig. 6.7. Structure of knowledge-based control system in the  
case under consideration 

In such a way, the deterministic control algorithm )(
~

zΨ  is obtained. In 

the case with the given required value  y*, the determinization of the rela-

tional plant or the determinization of the relational control algorithm may 
be applied. Let us present successively these two concepts. In the first case 
we determine 

=y
~  

∫

∫

),(

),(

zuD

zuD

y

y

dy

ydy

 ∆=  Φ(u, z) (6.33)
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where the set  Dy(u, z)  is defined by the formula (6.18). The relational 
plant is then replaced by the deterministic plant described by the function  
Φ , for which it is possible to formulate the decision problem so as in  
Sect. 3.1, i.e. to find  u for which  y = y*. Then from the equation  

Φ(u, z) = y*  the deterministic control algorithm  u = Ψ(z) is obtained under 

the assumption that for the given  z this equation has a unique solution 
with respect to  u. 
 In the second case we consider the relation  R(u, y*, z), i.e. the set of all 

pairs  (u, z) at the input of the plant for which y = y* may occur at the out-

put, or the set of all possible inputs  (u, z) when  y = y*. Let us introduce 

the notation 

R(u, y*, z) ∆=  Rd(z, u). (6.34)

It is in this case a description of the knowledge on the control or a rela-
tional control algorithm determined for the given knowledge representa-

tion of the plant and the given value  y*. Of course,  Rd(u, z) differs from 

the relation  ),( uzR  introduced in the formula (6.19). The determinization 

of the relational algorithm  Rd leads to the deterministic algorithm 

=)(zud  
∫

∫

)(

)(

zD

zD

ud

ud

du

udu

 ∆= )(zdΨ  (6.35)

where  

Dud(z) = {u ∈U: (u, z) ∈ Rd(z, u)}. 

Thus, for the relational plant one can determine two deterministic algo-
rithms in a closed-loop system: the algorithm Ψ(z)  obtained as a result of 

the determinization of the plant (Fig. 6.8) and the algorithm  Ψd(z)  ob-
tained as a result of the determinization of the relational control algorithm 
determined by using the relational knowledge representation of the plant 
(Fig. 6.9). In the first case the determinization (i.e. the liquidation of the 
uncertainty) occurs just at the level of the plant, and in the second case the 
uncertainty in the plant is transferred to the control algorithm. The similar 
two concepts will be considered for other descriptions of uncertainty in the 
next chapters. The comparison of these two frequently used ideas is so im-
portant that it is useful to present it in the form of a theorem. 
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Fig. 6.8. Decision making via determinization of knowledge of the plant 
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Fig. 6.9. Decision making via determinization of knowledge of the control 

Theorem 6.1. In general  Ψ(z) ≠ Ψd(z).   □  
 The theorem may be proved by an example showing that in a particular 

case  Ψ(z) ≠ Ψd(z)  (see Example 6.4). The theorem means that the control 
decisions determined in the both cases for the same  z may be different. In 
practice, they usually are different except special cases. In other words, for  

ud(z)  the mean value of  y in general differs from the required value  y*.  

 Relatively simple problems and ways of decision making considered in 
this chapter for uncertain plants with a relational description illustrate two 
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general concepts concerning the determinization and two respective ways 
of decision making under uncertainty: 
1. Two concepts of the determinization: 
a. Determinization of the knowledge of the plant. 
b. Determinization of the knowledge of the decision making, based on the 

knowledge of the plant, i.e. obtained by using the knowledge of the 
plant. 

2. Two ways of obtaining the knowledge of the decision making: 
a. The knowledge of the decision making is determined by using the 

knowledge of the plant given by an expert (a descriptive approach). 
b. The knowledge of the decision making is given directly by an expert (a 

prescriptive approach). 
 
The knowledge representation concerning a fixed determined part of a re-
ality (which we called a plant) is a description of this existing reality, so it 
has a descriptive (or declarative) character and presents a knowledge about 
WHAT THE PLANT IS. The knowledge representation concerning the 
decision making (or a decision maker) is a kind of a prescription or in-
struction, so it has a prescriptive (or imperative) character and presents a 
knowledge about HOW TO ACT. In the case of the control, the prescrip-
tive approach means that the expert’s experience and knowledge concern-
ing the plant is not formulated directly in the form of a description of the 
plant but indirectly in the form of a prescription describing how to control 
this plant. Such an approach is widely used in so called fuzzy controllers 
mentioned in Sect. 5.5 and presented more precisely in Chap. 9. It is im-
portant to have in mind that the effect of the control with the algorithm ob-
tained by using the knowledge of the control given directly by an expert 
depends on the plant and can be estimated by a performance index for the 
given description of the plant, as it was shown in Chap. 5 for the given 
form of the control algorithm. In general, this effect is worse than the ef-
fect of the control according to the algorithm obtained by using the known 
description of the plant. In the problem under consideration, the effects of 
the both approaches will be the same if the knowledge representation given 

by an expert is identical with ),( uzR  in the formula (6.19) in the case con-

sidered in Sect. 6.3 or with  Rd(z, u)  in the case considered in this section. 
 Finally, let us summarize the decision making problems and their solu-
tions for the plant  R(u, y, z) with the fixed  z: 

1. For the requirement  y ∈Dy we obtain the relational control algorithm  

Du(z) or ),( uzR  in the formula (6.19). As a result of the determinization 

of the relational algorithm according to (6.32) we have the deterministic 
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control algorithm  u = )(
~

zΨ . 

2. For the requirement formulated with the help of the given desirable 
value  y*  we obtain: 

a. the deterministic control algorithm  u = Ψ(z)  as a result of the deter-
minization of the plant according to (6.33) 

b. the deterministic control algorithm  ud = Ψd(z)  as a result of the deter-
minization of the relational control algorithm according to (6.35). 

Example 6.4. As a result of the determinization of the plant presented in 
Example 6.2, according to (6.33) we obtain 

=y
~ =+ zcu

2

3
 Φ(u, z). 

Consequently, for the given value  y*  from the equation  Φ(u, z) = y*  we 

obtain the control algorithm  

u = Ψ(z) = 
c

zy

3

)(2 * −
. 

Substituting  y* into (6.20) yields the representation of the knowledge of 

the decision making  Rd(z, u) in the form of the inequality 

c

zy

2

* −
 ≤ u ≤ 

c

zy −*
 

and after the determinization 

ud = Ψd(z) = 
c

zy

4

)(3 * −
 ≠ Ψ(z). □

 



7 Application of Probabilistic Descriptions of 

Uncertainty 

In this chapter we shall assume that unknown parameters are values of 
random variables, which means that they have been randomly chosen from 
some sets. As a result, the control will satisfy requirements formulated 
with the help of mean values, i.e. the determined requirements will be ful-
filled in the average. The plant with a probabilistic description of uncer-
tainty will be called shortly a probabilistic plant like a relational plant with 
the relational description of uncertainty considered in the previous chapter. 
In Sects. 7.1 and 7.2 analysis and decision problems which are called here 
basic problems will be presented. Section 7.3 is devoted to the control 
based on current information on the unknown parameters, being obtained 
during the control process in an open-loop system, and Sect. 7.4 concerns 
the case without the knowledge of probability distributions. Sections 7.5 –
 7.8 are concerned with a dynamical plant. In Sect. 7.5 the basic problem 
for the discrete dynamical plant will be presented, and in Sects.7.6 – 7.8 
special problems for the linear control systems very important from a prac-
tical point of view will be described. In Sect. 7.9 we shall consider a plant 
with a second order uncertainty, i.e. a relational plant with random pa-
rameters.  

7.1 Basic Problems for Static Plant and Parametric 
Uncertainty 

Let us consider the static plant 

y = Φ (u, c) (7.1) 

where u∈U is the input vector, Yy ∈  is the output vector and c∈C is the 

vector of unknown parameters. It is then the case of a functional plant with 

a parametric uncertainty. An expert can give only the set Dc ⊂ C of possi-
ble values of the unknown vector parameters c, or can give also some pref-
erences and additional evaluations for the particular values in this set. We 
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shall now assume that these evaluations are presented in the form of a 
probability distribution and that this distribution is known. For example, 

let Dc = {c1, c2, c3} and for each value the probability of its appearing in 
the plant is given: 

pi = P (c = ci),  i = 1, 2, 3.  

Such information means that the unknown parameter c has been randomly 
chosen (drawn) from the set of the values of c, this set contains m ele-

ments, mi of them having the value ci, and then 
m

m
p i

i = . For example, if 

the set contains 500 elements with the value 1c , 200 elements with the 

value 2c  and 300 elements with the value 3c  then  

p1 = P(c = c1) = 0.5,   p2 = P(c = c2) = 0.2,   p3 = P(c = c3) = 0.3.  

These elements may be e.g. resistors with the resistance c of a certain pro-
duction series for which the values 321 ,, ppp  are obtained as results of 

statistical investigations. We assume that the element with an unknown re-
sistance built in the plant has been chosen randomly from this series. Let 
us note that the probabilities ip  given by an expert are not a subjective 

characteristic of his uncertainty but are an objective characteristic of the 
set from which the value c has been randomly chosen, known by the ex-
pert. 

Formally, the assumption about the random choosing of c from a deter-
mined set means the assumption that c is a value of a random variable c , 

i.e. that there exists a probability distribution. In further considerations we 
shall assume that this is a continuous random variable for which there ex-
ists a probability density 

dc

cdF
cf c

c
)(

)( =   

where Fc(c) = P( c ≤ c)  is a distribution function. For the given probability 

density )(cfc  

P( cDc ∈ ) = ∫
cD

c dccf )(  
 

where CDc ⊆  is a subset of the vector space C and  

E( c ) = ∫
C

c dccfc )(                                         (7.2)
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where E( c ) denotes an expected value of the variable c . More generally,  

∫=
C

c
c

dccfcc )()()]([E ΦΦ .  

The density fc(c) characterizes a set (a population) from which the values c 

are randomly chosen. If c1, c2, ..., cn denotes a sequence of the results of 
independent samplings (or so called simple random sample) then for 

∞→n  the arithmetic mean of these values converges in a probabilistic 
sense to the expected value E( c ). For the sequence of random variables 

n
c  the probabilistic convergence can be understood in different ways. The 

definitions for one-dimensional case (C = R1) are the following:  

1. The sequence 
n

c  is convergent to a number a  stochastically (or in 

probability) if, for any 0>ε  

0)|(|lim =>−
∞→

εacP
n

n
.  

2. The sequence 
n

c  converges to  a   in the r-th mean, if 

0)|(|Elim =−
∞→

r
n

n
ac .  

We can also consider a convergence with probability one, which means 
that the probability of the convergence to a is equal to 1, or that the se-
quence is almost always convergent to a. 

In order to formulate the decision problem for the plant (7.1), let us in-
troduce the performance index ϕ (y, y*) described in Sect. 4.1. 

Decision making (control) problem: For the given value *y , the func-

tions Φ  and ϕ , and the probability density fc(c)  one should find the deci-

sion *u  minimizing the performance index 

)()(]),,([)],([E ∆** udccfycuyyQ c

C
c

ΦΦϕϕ === ∫ . (7.3) 

This is a probabilistic optimization problem or the probabilistic version of 
the problem considered in Sect. 4.1. The knowledge of the probability dis-
tribution (the probability density in our case) means that we have the prob-

lem with a full probabilistic information. The procedure of determining *u  
consists of two operations: 
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1. Determination of the integral (7.3). 

2. Minimization of the function )(uΦ subject to possible constraints con-

cerning the decision u.  
Except simple cases, the both operations require the application of re-

spective computational method to obtain an approximate value of the inte-
gral (7.3) with a particular numerical value u, and to find the successive 

approximations of the value *u  minimizing the function )(uΦ . The re-

spective computer program consists then of two cooperating subprograms. 
In one step of the subprogram determining the successive approximations 

mu  of the value *u , the full subprogram of calculating the integral (7.3) 

for muu =  should be executed. 

For the plant 

yn = Φ (un, zn, c) (7.4) 

with the disturbance nz  which can be measured, the value un=Ψ(zn)  

minimizing  

Q = ∫
C

ϕ [Φ (un, zn, c),y*] fc(c)dc (7.5) 

is determined in each interval of the control, and the program calculating  

un  described above is the program for the computer controlling the plant 
in an open-loop system. A simplified block scheme of the control algo-
rithm (or real-time control program), i.e. the algorithm finding the decision 

nu  in the n-th interval is presented in Fig. 7.1 

The determination of un,m+1 using unm is performed according to a 
proper recursive procedure. The condition of the stop may be e.g.: 

||unm – un,m+1|| ≤ α  

where α is a given number. As it was already said, in simple cases it is 
possible to obtain an analytical solution. Let us consider a linear-quadratic 
problem for the plant with p inputs and the single output 

y = c
T
u,  

and quadratic performance index ϕ (y, y*) = (y – y*)2. Then we have  

Q = E( 2*T*TT2*T )()(E2)(E) yucyuccuyuc +−=−   

where the operations E concern the particular entries of the matrices. The 

value *u  can be determined from the equation 
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0)(E2)(E2grad *T =−= cyuccQ
u

  

where 0  denotes the vector with zero components. 
 

Introduce  zn  from plant

Plant

m = 1

Introduce  unm from

memory

Determine integral

(7.5)  for unm

Determine un,m+1
and introduce into

memory

Memory

STOP

?

Transfer decision

unm≈ un  for execution

zn

unm

u n,m+1

No Yes un

m =m + 1

 

Fig. 7.1. Block scheme of control algorithm in the case under consideration 

Consequently, 
*1T* )(E)](E[ ycccu −=  (7.6) 

where )(E T
cc  is the matrix of the second order moments of the compo-

nents of the vector c , i.e. a symmetric matrix containing in the principal 

diagonal the second order moments ])[(E 2)(i
c , pi ,1∈ , and the mixed 

moments ][E )()( ji
cc , pi ,1∈ , pj ,1∈  as other entries of the matrix. As it 
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is seen, in the case considered the knowledge of the probability density 

fc(c) is not needed; it is sufficient to know only the moments occurring in 
the formula (7.6). In particular, for one-dimensional plant y = cu 

22

*

2

*
*

)~(

~

)(E

)(E

cc

cy

c

cy
u

σ+
==  (7.7) 

where c
~  denotes the expected value and 2

cσ  is the variance of the variable 

c , i.e. 22 )]~[(E ccc −=σ . 

For the probabilistic optimization problem not only the interpretation of 
the probabilistic assumption explained above but also the proper 

interpretation of the result *u  is very important. Nothing can be said about 

the quality of the decision *u  applied in one individual plant but for a 
sufficiently large set of the plants (7.1) with different values c chosen 

randomly from the set of values mentioned above, the value *u  is the best 
in the average. It means that if in each plant from the considered set of the 

plants the decision *u  is applied then the arithmetic mean of the values ϕ  

for all the plants from this set will be the smallest. This statement is true 
under two conditions: the random choosing of the value c does not change 

the distribution fc(c) and the number of the plants is sufficiently great as to 
accept the arithmetic mean as an approximation of the expected value.  

The probabilistic optimization problem is similar for the plant 

yn = Φ(un, zn) in which the disturbance nz  is not measured but one may 

assume that for each n the vector zn∈Z is the value of a random variable 

n
z  described by the probability distribution fz(z). It means that the values 

nz  are randomly chosen from the same population characterized by the 

density )(zf z . In other words, these are the randomly chosen values of the 

variable z  with the distribution )(zf z . The disturbance nz  may be also 

denoted by nc  and called a time-varying parameter of the plant. So we can 

say that randomly changing disturbances act on the plant or that this is the 
plant with randomly changing parameter. The sequence 

n
z  or the function 

which to the moments n assigns the respective random variables 
n

z  is 

called a discrete stochastic process. That is why in the case under consid-
eration we often speak about the plant with a stochastic disturbance.  

The decision making (control) problem consists now in the determina-
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tion of the decision *u  minimizing 

∫==
Z

z
z

dzzfyzuyyQ )(]),,([)],((E ** Φϕϕ . (7.8) 

From both the formal and computational point of view this is the problem 
identical with the minimization of the performance index (7.3) for the 
plant with the constant random parameter. However, the interpretation of 

the result of the probabilistic optimization is now different: the value *u  is 
the optimal in the average with respect to time and not in the average 

with respect to a set. It means that if in the plant the decision *u  constant 
in the successive moments is applied then the arithmetic mean of the val-
ues ϕ  for a large number of the moments (i.e. in a sufficiently large time 

interval) will be minimal. However, nothing can be said about the quality 

of the decision *u  in one particular moment. 
 Finally, let us pay attention to two other possibilities of the decision 
problem statement for the plant (7.1) or (7.4), i.e. 

y = Φ(u, z, c): (7.9) 

a) One should find  *u  such that *)(E yy = . 

b) One should find  

);(maxarg ** uyfu y
u

b =  

where fy(y; u)  is the probability density of the variable y  for the fixed 

value u.  

 In the version a), for the decision *u  the expected value of the output is 

equal to the required value *y , and in the version b) the decision *
bu  

maximizes the value of the probability density for *yy = . If the distribu-

tion fy(y)  is symmetric, the value y maximizing )(yf y  is equal to )(E y . 

For the plant (7.9), by solving the equation 

∫ ===
C

c yzudccfczuzuy *∆ ),()(),,(),;(E ΦΦ  (7.10)

with respect to u, we obtain the control algorithm in an open-loop system 
u = Ψ(z). In the second problem formulation, the control algorithm can be 
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obtained as a result of maximization of the probability density fy(y
*; u, z) 

with respect to  u: 

)(),(maxarg ∆
zzuu bb

u
b ΨΦ ==  (7.11)

where Φb(u, z) = fy(y
*; u, z)  and the density yf  can be obtained by using 

the known function Φ  and the density )(cfc  and applying a known way 

of the determination of the distribution of a random variable which is a 

function of another random variable. The functions Φ  and Φb are the re-

sults of two ways of the plant determinization, the functions Ψ and Ψb are 
the decision algorithms found by using the knowledge representation of 
the plant, i.e. are based on the knowledge of the plant 

KP = <Φ, fc > (7.12)

in the version a) and b), respectively. In this case the knowledge of the 

plant (KP) contains the function Φ  and the probability distribution cf . 

The solution of the equation 

Φ(u, z, c) = y
*
 (7.13)

with respect to u yields the relationship 

u = Φd(z, c) (7.14)

which together with cf  may be treated as a knowledge of the decision 

making (KD) 

KD = <Φd , fc >. (7.15)

The relationship (7.14) together with the additional characteristic of the pa-
rameter c in the form of cf  may be also called a probabilistic control al-

gorithm (or a probabilistic decision algorithm) in an open-loop system, 
based on the knowledge of the plant. The determinization of this algorithm 
leads to two different versions of the deterministic control algorithm, cor-
responding to the versions a) and b) or (7.10) and (7.11) in the case of the 
plant determinization:  

a)                 ∫ ===
C

dcdd zdccfczzuu )()(),();(E ∆ΨΦ , (7.16)
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b)                       )();(maxarg ∆
zzufu bdu

u
bd Ψ==  (7.17)

where fu(u; z)  is the probability density of the variable u  which can be ob-

tained on the basis of KD. 

Theorem 7.1. In general, for the plant described by KP (7.12) and for KD 
(7.15), 

Ψ(z) ≠ Ψd(z),          Ψb(z) ≠ Ψbd(z).                     □
The theorem can be proved by an example showing that in a particular 
case the inequalities presented above are satisfied (see Example 7.1). The 
theorem means that the control decisions u determined via the different 
ways of the determinization may be different. It is worth paying attention 
to the analogy between the relational plant considered in Chap. 6 and the 
plant described in the probabilistic way. The knowledge of the plant 
R(u, y, z)  corresponds now to KP (7.12), the knowledge of the decision 

making Rd(z, u)  corresponds to KD (7.15), two concepts of the determini-
zation are analogous as well, in particular Theorem 7.1 is analogous to 
Theorem 6.1. 

Example 7.1. Let 1,, Rzyu ∈  (one-dimensional variables) and  

y = cu + z. 

Let us find the deterministic decision algorithm via the determinization of 
the plant. 
 In the version a), according to (7.10) 

*)(E);(E yzcuzy =+=  

and  

1* )](E)[()( −−== czyzu Ψ . 

 In the version b), according to (7.11) 

ub = Ψb(z) = 
||

1
)(maxarg

*

uu

zy
fc

u

−
. 

From the equation cu + z = y
* we obtain the probabilistic decision algo-

rithm dΦ : 
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c

zy
czu d

−
==

*
),(Φ . 

Applying the determinization of this algorithm gives two versions of the 
deterministic decision algorithm. 
 In the version a), according to (7.16) 

)()(E)()();(E 1* zczyzzuu dd ΨΨ ≠−=== − . 

 In the version b), according to (7.17) 

ubd = Ψbd(z) = )(
||

)(maxarg
2

**

z
u

zy

u

zy
f bc

u
Ψ≠

−−
.                  □

7.2 Basic Problems for Static Plant and Non-parametric 
Uncertainty  

Now we shall consider an uncertainty referring to the description of the 
plant as a whole and not referring to the unknown constant or time-varying 
parameters in the known description, as it was considered in Sect. 7.1. For 
the plant described by the relation R(u, y) presented in Sect. 6.1 we can 
speak about an additional characteristic of the uncertainty which may 
consist in giving some preferences or additional evaluations for different 
points (u, y) in the set R(u, y) of all possible pairs (u, y) which may appear 
in this plant. More generally, we may accept a possibility of appearing the 
pairs (u, y) not belonging to R, which means that the fact (u, y)∈R(u, y) is 
not certain. Assume that (u, y) are values of the pair of continuous random 
variables ( yu, ). The property (u, y)∈R is then a random fact and its truth 

is a random event characterized by the probabilities  

)],(),[(1 yuRyuPp ∈= ,     12 1)],(),[( pyuRyuPp −=∉= . (7.18)

Then, the simplest description of the uncertain plant consists in giving the 
relation R(u, y) and the probabilities (7.18). The more precise or more ex-
act description consists in giving a joint probability density f (u, y) defined 
in the whole set YU × . The probability density f (u, y) is an additional 
characteristic of the uncertainty referring to R, under the assumption that 
the points (u, y) may belong to R only, i.e. f (u, y) ≡ 0 for (u, y) ∈ RYU −×  
(a complement of the set R). If the pairs not belonging to R may occur as 
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well, then the joint probability density f (u, y) characterizes the pairs (u, y) 
in R and in its complement as well. Consequently, the determination of the 
relation R is no more needed. Now the density ),( yuf  is the knowledge 

representation of the plant. This is a product of the density fu(u) and the 

conditional density fy(y|u), i.e. the density of the variable y  for the fixed 

value  u: 

f(u, y) = fu(u)fy(y|u) (7.19)

where 

fu(u) = ∫
Y

dyyuf ),( ,     
∫

=

Y

y
dyyuf

yuf
uyf

),(

),(
)|( . (7.20)

More precisely speaking, the acting of the plant itself is described only by 

the density fy(y|u) characterizing a dispersedness of possible outputs y for 

the fixed value u, and fu(u) characterizes a dispersedness of possible inputs 

of the plant. Knowing the distribution fy(y|u) it is possible to formulate and 

solve the problem of the determination of *u  minimizing the performance 
index 

∫==
Y

y
y

duuyfyyyyQ )|(),()],([E ** ϕϕ . 

This problem is analogous to the problem of the minimization of the index 
(7.3) in the parametric case. For the plant with the disturbance z with the 
known density f(u| y; z) for the fixed z, one can formulate the optimization 
problem analogous to the minimization (7.5) and consisting in the deter-
mination of u =Ψ(z) minimizing the performance index 

∫==
Y

y
y

dyzuyfyyyyQ );|(),()],([E ** ϕϕ . 

Let us consider now two versions of the decision problem with the given 

required value *y , analogous to the versions a) and b) in Sect. 7.1. 

Decision making problem for the given f(u, y; z), z and *y : 

a) One should find u for which the expected value of the output is equal to 

the required value, i.e. yzuy
~);|(E ∆=  is equal to *y  or, according to (7.20)  
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*∆ ),(
);,(

);,(
~

yzu
dyzyuf

dyzyuyf

y

Y

Y ===
∫

∫
Φ . (7.21)

Solving the equation (7.21) with respect to u we obtain the decision algo-
rithm )(zu Ψ= . 

b) One should determine  

)(),(maxarg ∆
zzuu bb

u
b ΨΦ ==  (7.22)

where  

∫
==

Y

yb
dyzyuf

zyuf
zuyfzu

);,(

);,(
);|(),(

*
*Φ . 

The functions Φ and Φb are the results of two versions concerning the 

plant determinization, and Ψ  and Ψb are the decision algorithms based on 
the knowledge of the plant KP = f(u, y; z) in the version a) and b), respec-

tively. Putting *y  into the function  f(u, y; z) we obtain the function 

f(u, y*; z) 
∆= fud(u ; z) which may be treated as the knowledge of the decision 

making KD or the probabilistic decision algorithm in our case. The deter-
minization of this algorithm gives two versions of the  deterministic algo-
rithm, corresponding to the versions a) and b) of the plant determinization: 

a)                   )(
);(

);(

);|(E
∆*

z
duzuf

duzuuf

zyuu d

U

ud

U

ud

d Ψ===
∫

∫
, (7.23)

b)                          )(),(maxarg ∆
zzuu bdbd

u
bd ΨΦ ==  (7.24)

where   

∫
==

U

ud

ud
ubd

duzuf

zuf
zyufzu

);(

);(
);|(),( *Φ . 
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The formulas (7.21), (7.22), (7.23) and (7.24) are analogous to the respec-
tive formulas (7.10), (7.11), (7.16), (7.17) for the parametric uncertainty. It 
is worth noting that as KP and KD it is sufficient to accept );|( zuyf y  and 

);|( zyufu , respectively. In the formulas (7.22), (7.23) and (7.24) these 

probability densities should be determined as marginal densities from the 
joint densities 

KP = < f(u, y ; z) >,       KD = < fud(u ; z) >. 

Theorem 7.2. In general, for the plant described by KP = f(u, y; z) and for 

KD = fud(u; z) 

Ψ(z) ≠ Ψd(z),          Ψb(z) ≠Ψbd(z) .                               □

It may be shown by using the result in Example 7.1. Let the density 
f(u, y; z) be such that  
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where fc(c) is the density such as in Example 7.1. Then, according to the 
result in this example  

Ψ(z) ≠ Ψd(z)    and     Ψb(z)≠Ψbd(z). 

 Let us pay attention to another decision problem which consists in the 

determination of a probabilistic decision algorithm in the form of fu(u;z) 

for the given required distribution fy(y) and the given fu(u|y;z) or fy(y|u;z) 
characterizing the plant. 

Decision making problem with the given z and )(yf y : 

1. One should find fu(u;z) for the given fu(u|y;z). 
2. Under the assumption that z is a value of a random variable, one should 

determine fu(u;z) = fu(u|z) for the given fz(z) and fy(y|u;z). 
 In the first case  

∫=
Y

yuu dyyfzyufzuf )();|();( , (7.25)

under the assumption that the equality (7.25) cannot be satisfied for an-

other fy(y), i.e. that the integral equation 
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∫ ∫=
Y Y

yuyu dyyfzyufdyyfzyuf )();|()();|(  

with the unknown function )(yf y  has only one solution )()( yfyf yy = . 

 In the second case fu(u;z) = fu(u|z) is determined by the integral equation 

∫ ∫=
U Z

yuzy dzduzuyfzufzfyf );|()|()()( . (7.26)

This problem is analogous to that presented in Sect. 6.3 for the relational 
plant and the fixed z. The relation R(u, y; z) corresponds to the description 

of the plant in the form of the probability density fy(y|u;z) or fu(u|y;z) char-
acterizing a dispersedness of y for the fixed u or on the contrary. This is 
the more precise information on the plant than in the relation case, and 
makes it possible to replace the requirement yDy ∈  for the given yD  by 

the more precise requirement in the form of the given distribution )(yf y  

characterizing a dispersedness of the values which may occur at the output 
of the plant. In this way, for any set yD  we determine the probability that 

yDy ∈ . Consequently, the result having the form of the set of decisions 

)(zDu  or the relational decision algorithm (6.19) is replaced by the result 

in the form fu(u;z) or by the probabilistic decision algorithm which for the 
measured value z gives the probability distribution for the decision u. A 
concrete, particular decision may be chosen randomly from the set U, ac-

cording to the probability distribution fud(u;z). For the realization of such a 
concept, the application of a random numbers generator is needed. One 
may also perform a determinization of the probabilistic algorithm and de-
termine 

)();(E ∆
zzuu Ψ== . 

The application of the algorithm )(zΨ  does not, however, assure the satis-

faction of the requirement in the form of the probability distribution fy(y). 
In the prescriptive approach, KD described by an expert in the form of 

fud(u;z) will give the same result as the descriptive approach, i.e. will as-

sure the satisfaction of the requirement in the form of fy(y), if fud(u;z) is 

equal to the density fu(u;z) presented by the formula (7.25) in the first case, 
or if it satisfies the equation (7.26) in the second case. 
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7.3 Control of Static Plant Using Results of Observations 

Let us consider a static plant  

y = Φ(u,c) 

with the unknown parameter c and the known probability distribution fc(c). 
Assume that it is possible to increase the initial information on the un-
known parameter in the form )(cfc  as a result of current observations dur-

ing the control process and consequently, it is possible to improve succes-
sively the control decisions. Speaking about the observation we have in 
mind the measuring of the parameter c in the presence of random distur-
bances (random noises). 
 Let  

wn = h(c, zn) (7.27)

denote the result of the n-th measurement, dependent on the value of the 
measured parameter c (Fig. 7.2), h is a function determining this depend-
ence, nz  denotes the disturbance, and  

=nw (w1, w2, ..., wn) 

is a sequence of the results of measurements till the moment n, used to the 
determination of the control decision according to the control algorithm 

nΨ , i.e. 

un = Ψn( nw ) 

which should be properly designed. 

Plant

ΦΨn

c

un yn

h
c

zn

wn

 

Fig. 7.2. Block scheme of the control system under consideration 

 We assume that nz  is varying in a random way or, more exactly speak-
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ing, that for every n the vector nz  is a value of the random variable 
n

z  

with the probability density )(zf z , the same for different n, and that the 

variables 
n

z  are stochastically independent for different n. The latter as-

sumption means that for every n the joint density of the pair (
n

z , 1+n
z ) is 

equal to the product of marginal densities for 
n

z  and 1+n
z , i.e. is equal to 

)()( 1+nznz zfzf . We shall present two ways of the determination of the 

algorithm nΨ : indirect and direct approach. 

7.3.1 Indirect Approach  

The idea consists in a decomposition of the problem under consideration 
into two easier problems:  
1. Determination of the control for the known parameter c.  
2. Estimation of the unknown parameter using the result of the observa-
tion. 
The first problem has been considered in Chaps. 3 and 4. It consists in 

finding the value u for which *yy =  or, more generally, the value u which 

minimizes the given performance index ϕ( y, y
*). For the given parameter 

c, this value depends on c. Consequently, the result of this problem is the 
determination of the dependence of u upon c, which we shall denote by H, 
i.e. u =H(c). The second problem consists in the determination of the esti-
mator nc  for the parameter c on the basis of nw  

cn = Gn( nw ) 

where Gn denotes the estimation algorithm. Substituting the estimate nc  

into H in the place of c gives the control algorithm Ψn: 

un = H[Gn( nw )]
∆= Ψn( nw ). (7.28)

If the estimator is consistent (i.e. 
n

c  converges in probabilistic sense to c 

for ∞→n ) and )(cH  is a continuous function, then nu  converges to 

H(c), i.e. to the decision which we would determine for the known parame-
ter c. Then, the control algorithm (Fig. 7.3) consists of two blocks nG  and 

H, and consequently, the program in the controlling computer contains two 
parts: the part determining the estimation of the unknown parameter and 
the part finding the decision u for the known parameter. The composition 
of these two subalgorithms leads to one control algorithm (control pro-
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gram) determining nu  on the basis of nw . Usually we try to present the 

estimation algorithm in a recursive form, i.e. in the form of a formula 
showing how to calculate 1+nc  on the basis of nc  and nw . Then it is nec-

essary to keep only nc  in the computer memory to calculate the next esti-

mation. 

Plant

ΦH

c

un yn

h
c

zn

Gn

cnwn

Controller

Ψn
 

Fig. 7.3. Control system with two blocks of control algorithm 

 A universal method for the determination of the estimator G under the 
assumption that c is a value of a random variable c  and with the known 

distribution )(cfc  is a minimum risk method. To evaluate the quality of 

the estimation, let as introduce so called loss function L(c, cn) whose value 

is equal to zero if and only if ncc = , and for ncc ≠  is positive and evalu-

ates the distance between c and nc . Most often L(c, cn) = ||c – cn|| or 

L(c, cn) = ||c – cn||2. The expected value of the loss function 

)],([E
n

ccLR =  

is called a mean risk. 

Estimation problem: For the given function h describing the influence of 
the noise on the result of the measurement nw , the given densities 

)(),( zfcf zc  and the loss function L, one should determine the estimation 

algorithm Gn( nw ) minimizing the mean risk R. 

 According to the definition 

∫ ∫=

C W

nnnn

n

wdcdwcfwGcLR ),()](,[  (7.29)
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where C is a space of vectors c, nW  is a set of all sequences nw , f(c, nw ) 

is a joint probability density of the variables c and ;)...,,,( 21 nn
wwww =  

),(
ii

zchw = . The formula (7.29) defines a functional which to the func-

tions nG  assigns the numbers R. The determination of the optimal algo-

rithm nG  is then a problem of a functional minimization. It may be shown 

that the optimal algorithm nG  can be obtained as a result of minimization 

with respect to nc  of so called conditional risk  

∫=
C

ncnnn dcwcfccLwcr )|(),(),( , (7.30)

i.e. minimization with respect to nc  of the conditional expected value for 

the given nw . In the relationship (7.30), fc(c| nw ) denotes the conditional 

probability density. According to Bayesian rule  

)(

)|()(
)|(

nn

nwnc
nc

wf

cwfcf
wcf =  (7.31)

where fwn denotes the conditional density of 
n

w  for the given c, and nf  

denotes the marginal density of 
n

w . Since fn( nw ) does not depend on c 

and nc , it is sufficient to minimize the function  

∫ ==
C

nnnwncnnnnn wcrdccwfcfccLwfwcr ),()|()(),()(),( ∆  (7.32)

with respect to nc . Since 
n

z  are stochastically independent for different n, 

the same may be said for 
n

w . Then 

∏
=

=
n

i
iwnwn cwfcwf

1

)|()|(  (7.33)

where fw(wi|c) (i.e. the conditional density of the individual variable 
i

w ) 

may be determined for the given function (7.27) and the known )(cfc . 

The procedure of the determining of the estimation algorithm is the follow-
ing: 

1. For the given h  and cf  we find fwn according to (7.33). 

2. We determine ),( nn wcr  according to (7.32). 
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3. We minimize ),( nn wcr  with respect to nc  and obtain cn = Gn(wn). 

 The computational problems may be similar to those connected with the 
determination and minimization of the integral (7.3). In simple cases it is 

possible to obtain the result in an analytical form. For L(c, cn) = –δ (c–cn) 
(Dirac delta), the risk (7.30) is reduced to  

)|(),( nncnn wcfwcr −= . 

The optimal estimate nc  is then the value c maximizing the density (7.31), 

i.e.  

)()|()(maxarg ∆
nnnwnc

c
n wGcwfcfc == . (7.34)

In the above considerations we use a priori distribution )(cfc presenting 

the information on c before the observations have been started, and a pos-

teriori distribution fc(c| nw ) presenting the information on c after n meas-

urements. The minimum risk method in the case (7.34) may be shortly 
called a maximum probability method. The name is fully justified when c 
is a discrete random variable. In the case of a continuous random variable 
under consideration, it is a method using maximum a posteriori probability 
density and consisting in the determination of the estimate nc  maximizing 

this density. It is interesting and useful to compare this method with a 
maximum likelihood method which is used when )(cfc  is unknown or 

when there are no reasons to assume that the value c has been taken ran-
domly from any set, i.e. when the probability distribution does not exist. 
The maximum likelihood method consists in finding the estimate 

cn = );(maxarg cwf nwn
c

, (7.35)

i.e. the estimate maximizing so called likelihood function 

);();( ∆
nnwn wcLcwf = . The form of the function );( cwf nwn  is the same as 

)|( cwf nwn , it is then the density of 
n

w  for the fixed c, which cannot be 

called a conditional density if c is not a value of a random variable. The 
comparison of the estimates (7.34) and (7.35) shows the difference be-
tween the most probable and the most likely estimation. 

Example 7.2. Let us determine the control algorithm Ψn( nw ) for the one-

dimensional plant yn = cun where c is measured with an additive noise, i.e. 
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wn = c + zn. Assume that c  has Gaussian distribution with the expected 

value c
~  and the variance 2

cσ , i.e.  

),~(]
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)~(
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=

−
−= , (7.36)

and nz  has Gaussian distribution with the expected value 0~ =z  and the 

variance 2
zσ , i.e. 

)
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−= . 

Assume the performance index  

ϕ (y, y*) = (y – y
*)2 

which is reduced to the requirement *yy = . Then 

c

y
cHu

*

)( == . 

Let us find the most probable estimate nc . For this purpose one should de-

termine fwn( nw |c). According to (7.33) for wi = c + zi we have 

∏ ∑
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After substituting (7.36) and (7.37) into (7.34) and omitting the coeffi-
cients independent on c we obtain  
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Differentiating the function in the bracket with respect to c and equating 
the derivative to zero we obtain the following estimation algorithm: 

n

wc

c

z

c

n

i
i

z

c

n
2

1

2

)(1

)(~

σ
σ

σ
σ

+

+

=
∑
= . (7.39)
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If the ratio of the variance of c to the variance of the noise is small and the 
number of measurements n is small then ccn

~≈ , i.e. we accept that the 

unknown parameter is approximately equal to the expected value c
~ , and 

the influence of the measurement data is small. If this ratio is great then for 
large n   

∑
=

≈
n

i
in w

n
c

1

1
, 

i.e. we accept that the approximate value of the unknown parameter is 
equal to the arithmetic mean of the results of the measurement, and the 

knowledge of c
~ , σc and σz does not take a role. The formula (7.39) shows 

how to use both the  a priori information ( c
~ , σc and σz) and the current 

information obtained as a result of the measurements (w1, w2, ..., wn) to de-

termine the estimate minimizing the mean risk.   □ 
 The result (7.39) can be extended to an important case of a linear multi-
input plant  

yn = cT
un = )()2(

2
)1(

1 ... p
npnn ucucuc +++  

with the vector of the unknown parameters ]...[ 21
T

pcccc = . The distri-

bution of the additive noise 
n

z  is Gaussian as in the previous case and the 

vector c has the multi-dimensional Gaussian distribution  
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where c
~  is a vector of the expected values  )(E )(i

c  and 

pj
pi

jjii
ccccM

...,,1
...,,1

)()()()( )}]~)(~{(E[
=
=−−=  

is a covariance matrix (see e.g. [14]). Let us note that for the single-input 
plant considered above, the maximum likelihood method is reduced to a 
least square method, i.e. to the determination of 

∑
=

−=
n

i
i

c
n cwc

1

2)(minarg . 

It follows from the fact that the first component in the formula (7.38) is 
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equal to zero. Consequently, in this case the most likely estimate is equal 
to the arithmetic mean of the measurement results. 

7.3.2 Direct Approach 

Now we shall not decompose our problem and find the solution via the es-
timation of the unknown parameter but we shall determine directly the 

control algorithm Ψn in the system presented in Fig. 7.3, minimizing the 

value of the performance index ϕ(y,y*). 

Decision making (control) problem: For the given Φ, h, fc, fz and ϕ  one 

should determine the algorithm un = Ψn( nw ) minimizing for every n the 

probabilistic performance index 

)],(([E *yyQ
n

y

ϕ= . 

According to the definition 

∫ ∫=
C W

nnnn

n

wdcdwcfycwQ ),(}],),([{ *ΨΦϕ . (7.40)

The minimization of the functional (7.40) with respect to the function Ψn 
may be replaced by the minimization of the conditional expected value  

∫==
C

ncnnnnn dcwcfycuwyywuq )|(]),,([]|),([E),( ** Φϕϕ  

with respect to nu . According to Bayesian rule and after omitting the de-

nominator in (7.31), we minimize the function 

∫==
C

nwncnnnnnnn dccwfcfycuwfwuqwuq )|()(]),,([)(),(),( *∆ Φϕ  

with respect to nu  and we obtain un=Ψn(wn). 

 In general, the result obtained via the indirect approach differs from the 
result obtained by applying the direct method. It is then the result worse in 
general, i.e. giving the value of the probabilistic performance index Q de-
fined by the formula (7.40) greater than the minimum value obtained by 
applying the algorithm obtained with the help of the direct method. How-
ever, the direct method is usually much more complicated from the 
computational point of view. In the linear-quadratic problems with 
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putational point of view. In the linear-quadratic problems with Gaussian 
distributions the both approaches give the same result. 

7.4 Application of Games Theory 

Let us come back to the plant  

yn = Φ (un, zn) (7.41)

in which the disturbance nz  is not measured. This case has been consid-

ered in Sect.7.1 under the assumption that the distribution fz(z) is given. 
Then the decision problem has consisted in the determination of the con-

stant decision *u  minimizing the expected value of the performance index 

(7.8). Let us assume now that the probability density fz(z) is not known and 

consequently, the determination of the decision *u  minimizing the index 
(7.8) is not possible. Then we can apply so called game approach or, more 
precisely speaking, a two-person zero-sum game theory. One player is the 
controlling system generating the decision nu  (Player A) while the envi-

ronment generating the disturbance nz  is treated as the other player 

(Player B). The source of the disturbances is then “personificated” (con-
sidered as a person) and treated as a partner playing with a decision maker. 
Let us assume that sets of possible decisions for the both partners are fi-
nite. These are the sets  

}...,,,{ )()2()1( MuuuU =  

and 

}...,,,{ )()2()1( NzzzZ =  

for the partner A and B, respectively, which means that un∈U  and zn∈ Z  
for every n. If the elements in the sets are determined and the elements are 
marked by their indexes, it is sufficient to use the indexes i = 1, 2, ..., M 
and j = 1, 2, ..., N where i denotes the i-th decision and j denotes the j-th 
disturbance. Choosing of the values ( nn zu , ) or the indexes ( nn ji , ) in a 

successive stage is called a move. An effect of the move is the respective 
value of the performance index  

ϕ (yn, y*) = ϕ [Φ(un, zn), y*] ∆=  G(un, zn) = vn. 
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We assume that the loss nv  of Player A is equal to the profit of Player B. 

For all possible moves, i.e. all pairs ( nn zu , ), the function G determines 

the following table of the respective values v:  
 

u
z 1 2 ... j ... N 

1 v11 v12 ... v1j ... v1N 

2 v21 v22 ... v2j ... v2N 

..

.
..
.

..

.
..
.

..

.
..
.

..

.

i vi1 vi2 ... vij ... viN 

..

.
..
.

..

.
..
.

..

.
..
.

..

.

M vM1 vM2 ... vMj ... vMN 

 

In the table ),( )()( ji
ij zuGv = . In a concrete game this table may be given 

directly and not by the function G as in the decision problem under consid-
eration. The value nv  may denote an amount of money which Player A 

pays to Player B if A has chosen the index i and B has chosen the index j. 
Of course, the players do not know each other choices before making their 
own choice. The above table, i.e. 

Nj
MiijvM

...,,2,1
...,,2,1][

=
==  

is called a payoff matrix. The game denotes a sequence of successive 
moves. For the large number of moves, Player B would like the sum of 
payments (his winnings) to be as great as possible, while Player B would 
like this sum (his loss) to be as small as possible. Of course, Player A 
would take part in the game with such rules only if the chances were not 
evident, i.e. if some numbers in the payoff matrix were negative which 
would mean that in fact in such a case it is Player B who pays. A strategy 
of Player A is presented by a sequence of probabilities 

( p1, p2, ..., pM ) p
∆=  

according to which he will make the choices in the successive stages. Let 
us denote by  

(q1, q2, ..., qN ) q
∆=  

the respective strategy of Player B. A main idea of the game approach 
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from Player A point of view consists in the assumption that Player B 
chooses his strategy q in such a way as to maximize the expected winning. 
Then Player A determines his strategy p in such a way as to minimize the 
expected winning of Player B (the expected payment), i.e. to minimize the 
function  

∑ ∑∑∑
= ===

=
N

j

M

i
jiij

qq

N

j
jij

M

i
i

qq
qpvqvp

NN 1 1,...,11,...,
)(max)(max

11

 (7.42)

with respect to Mppp ...,,, 21 , subject to constraints  

∑
=

=≥
M

i
ii

i

pp
1

1),0( . (7.43)

The identical constraints concerning q should be taken into account for the 
maximization with respect to q. As it is seen from (7.42), Player A, not 
knowing the strategy of Player B, chooses the strategy p in such a way as 
to minimize the worst situation.  
 Using the game approach we can formulate the following decision prob-
lem for the plant (7.41). 

Decision making (control) problem: For the given function Φ , the set 

U  and the set Z  one should determine the strategy p1, p2, ..., pM mini-
mizing (7.42) and satisfying the constraints (7.43) where  

]),,([ *)()( yzuv ji
ij Φϕ= . (7.44)

Let us note that with the constraints concerning q, the result of the maxi-

mization with respect to q in (7.42) is such that qj = 1 if the coefficient at qj 

is the greatest, and qj = 0 at the other coefficients. Hence, the following 
function: 

∑
=

=
M

i
iij

j
Vpv

1

∆
)(max  (7.45)

should be minimized with respect to p1, p2, ..., pM. The minimization of V 
with the constraints (7.43) is similar to a linear programming problem. To 
its solution existing iterative algorithms and respective computer programs 
may be used. For the determined strategy p one may calculate the value V 
by substituting into (7.45). It will be so called guaranteed expected per-
formance index, what means that the average value v (for many repetitions 
of the decision making) cannot be greater than V. A simplified scheme of 
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the algorithm determining the strategy p and the value V is illustrated in 
Fig. 7.4. 
 

Introduce data

START

Determine payoff matrix

v
ij
 according to (7.44)

Determine p
1
, ..., p

M

according to subprogram

for minimization  (7.45)

Determine V  according

to (7.45)

Bring the result out

Result: p
1
, ..., p

M
;V

STOP

Data base

,,, ϕΦ Mi 1∈for

Nj 1,∈for

u i)(

z j)(

p

 

Fig. 7.4. Simplified scheme of algorithm determining control strategy 

 The execution of the determined strategy requires two generators of 
random numbers for the random choosing of the decision nu , and a discre-

tization of the disturbance for the determination of the set Z . If nz  is one-

dimensional disturbance varying in the interval [ βα , ] then this interval 

may be divided into ( 1−m ) equal parts with a length z  and accept  

zjz j )1()( −+= α ,     j = 1, 2, ..., m. 

Consequently, the computer program will contain three blocks (Fig. 7.5): 
the discretization block, the subprogram determining the strategy and the 
generator of random numbers needed for the execution of the random 

strategy. It is a subprogram which generates the decisions un∈U  accord-

ing to the given probability distribution p1, p2, ..., pM. In the figure, the 
transferring of the information on the range of variation [ βα , ] is marked. 

 The determination of the control strategy is simplified for 2=M , i.e. 

for i = 1, 2. Then p2 = 1 – p1, 
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p1 = arg 
p

min max{v11p + v21(1 – p), v12p + v22(1 – p),  

        ..., v1N p + v2N(1 – p)} (7.46)

where max denotes the greatest number in the brackets. Finally, let us note 
that the dependence of the performance index v = y  (see Sect. 4.1) upon u 

can be formulated directly, without using the required value *y . It means 

the direct formulation of the model vn = Φ(un, zn) for an extremal control 

(static optimization) plant with an input nu  and one-dimensional output to 

be minimized. An example of an application of the game approach to the 
determination of decisions in a production management may be found in 
[20]. 
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determining strategy
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Generation of decision
Plant

z( j)

z n
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Control algorithm
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p1 ,..., pM

α,  β

F

 
Fig. 7.5. System determining and executing control strategy 

Example 7.3. A relationship between a profit v and a production size u in 
a certain production process may have the form  

v = cu – F(u) 

where c is a unit price of the product, cu is an income from the sale and F 
is so called cost function. Let us assume that the production is repeated 
every day and at the beginning of the day one should plan the daily pro-

duction size 500)1( =u  or 600)2( =u  units. Every day one of two sorts of 
a raw material is supplied but the quality (the sort) may be estimated after 
receiving the product only. The price c and a parameter of the cost func-
tion depend on the sort of the raw material. The result of the daily profit 
calculation (in determined money units) is as follows: 
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 Sort I Sort II 

u = 500 20 70 
u = 600 40 15 

 
 Let us denote by p the probability of the choice u = 500. If the sort I was 
supplied every day then the expected profit would be  

)(E v = 20p + 40(1 – p) = –20p + 40. 

If however the sort II was supplied then  

)(E v = 70p + 15(1 – p) = 55p + 15. 

According to (7.46), the optimal value p can be obtained by solving the 
equation 

–20p + 40 = 55p + 15 

and as a result 
3

1
=p . In many days of the random daily choosing of the 

production sizes according to the probabilities 
3

1
 and 

3

2
, the average daily 

profit will be not less than 3.3315
3

55
≈+ .   □ 

7.5 Basic Problem for Dynamical Plant 

One of the basic problems considered in Sect. 7.1 for the static plant 

yn = Φ(un, zn) consisted in the determination of the decision *u  minimiz-
ing the expected value of the performance index (7.8) for the given prob-
ability density )(zf z . Now we shall present an analogous problem for the 

discrete dynamic plant described by the equation. 

xn+1 = f(xn, un, zn) (7.47)

where xn∈X is the state vector, un∈U is the control vector and z is the vec-

tor of disturbances. We assume that nz  is a value of a random variable 
n

z , 

the variables 
n

z  are stochastically independent for different n and have the 

same probability density fz(z). Let us introduce the performance index  
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Problem of the control optimal in a probabilistic sense: For the given f, 

x0, ϕ  and fz one should determine the sequence of optimal control deci-

sions *
0u , *

1u , ..., *
1−Nu  minimizing the expected value of the index Q, i.e. 
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=  (7.48)

where  

g(xn, un, zn) = ϕ [f(xn, un, zn), un]. 

This is a probabilistic version of the optimal control problem described in 
Sect. 4.2 for the deterministic discrete plant. In the formula (7.48) it has 
been taken into account that 

n
x  is a random variable what follows from 

the assumption that 
n

z  is a random variable.  

 The determination of the sequence of the optimal decisions directly 
from the definition (7.48) is, in general, very difficult. One may make the 
solution easier by applying dynamic programming procedure described in 
Sect. 4.3 and consisting in a decomposition of the problem into separate 
stages considered from the end, i.e. from Nn = . As a result one obtains 

the relationships un = Ψn(xn) or the control algorithm in a closed-loop sys-
tem. Let us introduce the notation  

                  VN – n(xn) = 
1 ..., ,

min
−Nuun

{
nz 

E [ g(
n

x , un, 
n

z )]  

                                  +
11  ..., , 

E
−+ Nn zz

[ ∑
−

+=

1

1

) , ,(
N

ni
iii

zuxg | xn]}. 

For n = N – 1 

V1(xN –1) = 
1 

min
−Nu

 ∫
Z

g(xN –1, uN –1, z) fz(z) d z. 

As a result we obtain a relationship between the minimizing value *
1−Nu  

and the state xN –1 , which we denote by ΨN –1, i.e. 

*
1−Nu = ΨN –1(xN –1). 
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For two stages from the end  

V2(xN –2) = 
2 

min
−Nu

 ∫
Z

{ g(xN –2, uN –2, z) + V1[ f(xN –2, uN –2, z)] } fz(z) d z. 

As a result we obtain  

*
2−Nu = ΨN –2(xN –2). 

Hence, the algorithm of the determination of the optimal control may be 
presented in the form of the following recursive procedure: 

                VN – n(xn) = 
nu

min  ∫
Z

{ g(xn , un , zn)  

                                                  + VN – n – 1[ f(xn , un , z)] fz(z) d z }, (7.49) 

n = N – 1, N – 2, ... , 0,      V0 = 0. 

 As a result we obtain the relationships *
nu  = Ψn(xn), that is the control 

algorithm in a closed-loop system for the measurable plant. Applying the 
decomposition described above we have used the property that the condi-

tional probability distribution of the random variable 1+n
x  for the given un 

depends on nx  only, but does not depend on the former states, i.e. 

fx( 1+nx |  un, xn, ... , x0) = fx( 1+nx |  un, xn). 

This property follows from the fact that the stochastic process described by 
the equation  

1+n
x  = f(

n
x , un, 

n
z ) 

is a discrete Markov process. 
 The procedure (7.49) determining the multistage decision process opti-
mal in a probabilistic sense may be called a probabilistic version of dy-

namic programming. In a similar way as in deterministic situations, the al-
gorithm may be obtained analytically in simple cases only. Most often it is 
necessary to apply numerical successive approximation procedures. The 
determination of the multistage decision process with the probabilistic de-
scription of uncertainty has numerous practical applications not only to the 
control of technological processes but also in a management, in particular 
to the determination of a business plan, to the planning of investments pro-
cesses etc. [20].  
 In a way analogous to that in Sect. 4.3, one may present the determina-
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tion of the multistage decision process for the terminal control, i.e. the de-
termination of the decision sequence minimizing the expected value of the 
performance index 

).,,()( 111 −−−== NNNNN zuxgxQ ϕ  

Let us introduce the notation  

]|),,([Emin)( 111...,,...,, 11
nNNN

zzuu
nnN xzuxgxV

NnNn
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−−
= . 

For 1−= Nn  

∫ −−−
−

=
Z

zNN
u

N dzzfzuxgxV
N

)(),,(min)( 1111
1

. 

As a result we obtain the relationship 

)( 11
*

1 −−− = NNN xu Ψ . 

For two stages from the end  

∫ −−−
−

=
Z

zNN
u

N dzzfzuxfVxV
N

)(),,([min)( 22122
2

, 

)( 22
*

2 −−− = NNN xu Ψ . 

Consequently, the algorithm of the determination of the optimal control 
may be presented in the form of the following recursive procedure:  

∫ −−− =
Z

znnnN
u

nnN dzzfzuxfVxV
n

)()],,([min)( 1 , 

0...,,2,1 −−= NNn ;         ),,( 110 zuxgV NN −−= . 

As a result we obtain the relationships ),(*
nnn xu Ψ=  that is the control al-

gorithm in a closed-loop system.  
 It is worth noting that in the cases considered in this section it is not 
possible to obtain concrete values of the control decisions 110 ...,,, −Nuuu  

by applying the second series of calculations from the beginning to the end 
as it was described in Sect. 4.3. It is caused by the presence of the distur-
bance nz  in the plant equation, which makes it impossible to determine 

1+nx  for the given nx  and nu . 



174      7 Application of Probabilistic Descriptions of Uncertainty 

7.6 Stationary Stochastic Process  

For dynamical plants with a random parameter c one may apply the para-
metric optimization in a way similar to that presented in Chap. 5. Now the 
performance index Q = Φ(c, a) is a function of the unknown plant parame-
ter c and the parameter a in the control algorithm, which is to be deter-
mined. The problem is then reduced to a static probabilistic optimization 
and consists in the determination of the value a minimizing the expected 
value )],([E acΦ . It is possible to apply another approach consisting in the 

determination of the control algorithm for the fixed c treated as a known 
parameter. Consequently, c will appear as a parameter in the control algo-
rithm. Such an algorithm with the random parameter c may be called a 
random control algorithm in the case under considerations, or shortly – a 
random controller in an open-loop or closed-loop system. The determinis-
tic algorithm may be obtained as a result of the determinization consisting 
in the determination of the decision equal to the expected value of the con-
troller output. We shall return to this concept in Chap. 8. 
 The problem is much more complicated if the incomplete knowledge of 
the plant concerns unknown time-varying disturbances which are not 
measured and are assumed to be random disturbances. In the next sections 
we shall consider a special probabilistic optimization problem for dynami-
cal plants, namely an optimization problem for linear closed-loop control 
system with constant parameters and stationary random disturbances. For 
this purpose the basic information concerning a stationary stochastic proc-
ess will be shortly presented. Let us consider a variable Xtx ∈)(  (in gen-

eral, a vector variable) varying randomly. In every moment t  the value x(t) 
is assumed to be a value of a random variable x(t) characterized by a prob-
ability distribution, in general depending on t. It means that for different t 
the corresponding value x(t) is chosen randomly from different sets charac-
terized by different probability distributions. In the further considerations 
we shall assume that there exists a probability density, as for the static 
plant in the previous sections. As it was already mentioned, a function as-
signing to the variable t a corresponding random variable x (t) is called a 

stochastic process. That is why a concrete function x(t) is called a realiza-

tion or an observation of the stochastic process. A more general descrip-
tion of x (t) is given by a joint probability density of the random variables 

x (t1) = 1x , x (t2) = 2x , ..., x (tn) = x n in selected n moments, which we 

denote by fn(x1, x2, ..., xn; t1, t2, ..., tn). A stochastic process x (t) is called 

stationary if this probability density depends only on the distances be-
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tween the points x1, ..., xn and does not depend on their location on the axis 

of the time, i.e. for any τ  

fn(x1, x2, ..., xn; t1+τ, t2+τ, ..., tn+τ) = fn(x1, x2, ..., xn; t1, t2, ..., tn). 

In particular, f1(x) = f(x)  does not depend on t. We may say that the statis-
tical properties of the stationary process are constant in time. For example, 
if in the case of one-dimensional process, using many observed realiza-
tions we shall determine the arithmetic mean of the value x observed in the 
same moment t, or having one long realization we shall determine the 

arithmetic mean of the values x(t) in many moments t1, t2, ..., tn, then these 
mean values will be approximately equal. In general, the mean value with 

respect to a set, i.e.  

∫==
X

dxxxfxx )()(E~  

is equal with probability 1 to the mean value with respect to time  

∫
−∞→

=
T

T
T

dttx
T

x )(
2

1
lim  

(except in very special cases rather not occurring in practice). This is so 
called  ergodic property which is also satisfied for functions of the vari-

ables x1, x2, ..., xn. If the stationary stochastic process is an object of linear 
transformations (in other words, the stationary stochastic signal is put at an 
input of a linear dynamical system), its description in the form of so called 
correlation functions and spectral densities are more convenient than the 
description in the form of the probability densities. Let us define these de-
scriptions for a one-dimensional process x (t). An autocorrelation function 

of the process x (t) is defined as follows: 

∫ ∫
∞

∞−

∞

∞−

=⋅= 212122121 );,(][E)( dxdxxxfxxxxRxx ττ  (7.50)

where x1 = x(t),  x2 = x(t + τ). According to the ergodic property  

∫
−∞→

+=
T

T
T

xx dttxtx
T

R .)()(
2

1
lim)( ττ  (7.51)

In the further considerations we shall assume E( x )= 0. Then, according to 
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(7.50), the value of the autocorrelation function for the fixed τ is a covari-
ance (a correlation moment) of the random variables 1x  and 2x , i.e. is a 

measure of a correlation between two values x(t) and x( τ+t ). Then 

0)(lim =
∞→

τ
τ

xxR . 

According to the definition, Rxx(τ) = Rxx(−τ)  and  

∫
−∞→

==
T

T
T

xx xdttx
T

R
2∆2 )(

2

1
lim)0( . 

The number 2x  is called a mean-square value of the signal x(t). Using a 
power interpretation we may say that this is a value proportional to the 
power of the signal. Frequently used simple examples of the autocorrela-
tion functions are as follows (Fig. 7.6): 

2
)( αττ −= ceRxx ,       

τατ −= ceRxx )( . 

A spectral density )(ωxxS  of the process x (t) may be defined as Fourier 

transformation of the autocorrelation function 

∫
∞

∞−

−= ττω ωτ
deRS xxxx

j)()( . (7.52)

R xx(τ )

τ

Rxx(τ )

τ  
Fig. 7.6. Examples of autocorrelation functions 

The descriptions Rxx(τ ) and )(ωxxS are equivalent and 

∫
∞

∞−

= ωωτ ωτ
deSR xxxx

j)(
π2

1
)( . (7.53)

Using the definition (7.52) and the property Rxx(τ ) = Rxx(–τ ), it is easy to 
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note that )(ωxxS = )( ω−xxS and that )(ωxxS  has real values. According to 

(7.51) and (7.53)  

∫ ∫
∞

∞−

∞
==

0

2 )(
π

1
)(

π2

1
ωωωω dSdSx xxxx . (7.54)

The formula (7.54) shows how to determine the mean-square value using 
the spectral density. Applying the power interpretation one may say that 
the integral of the spectral density (7.54) is proportional to the power of 
the signal or that )(ωxxS  presents a power distribution in a frequency do-

main. The signal with the autocorrelation function Rxx(τ ) = cδ (τ) (Dirac 
delta) is called a white noise. It is a fully random signal with no correlation 
between the neighbour values x for an arbitrarily small 0≠τ . According to 

(7.52), for the white noise Sxx = const = c. It is then a signal with an infi-
nitely great power, which may be approximated by so called practical 

white noise for which Rxx(τ ) is a very short and very high impulse in the 

neighbourhood of 0=τ  and Sxx(ω) is constant in the large interval of ω  
starting from 0=ω .  
 For two stationary stochastic processes x (t) and y (t) let us introduce a 

cross-correlation function Rxy(τ ) and a corresponding spectral density: 

∫
−∞→
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∫
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It is easy to note that Ryx(τ ) = Rxy(–τ )  and the values of Sxy(jω) do not 
have to be real. The presented descriptions may be generalized for the vec-
tor signals x(t) and y(t). In this case 

∫
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Now the autocorrelation function )(τxxR  is a matrix. In its principal di-

agonal there are the autocorrelation functions of the components of the 
vector x and outside the diagonal − the cross-correlation functions of the 
different components, i.e. 

Rxx(τ )
kj
kixx jiR

,...,2,1
,...,2,1)]([ )()(

=
== τ  

where x(i) is the i-th component of the vector x with k components. The 

matrix Rxy(τ )  has a similar form. If the pairs of the different components 

of the vector x(t) are uncorrelated then Rxx(τ ) is a diagonal matrix. In the 

multi-dimensional case under consideration, the spectral densities Sxx(jω) 

and Sxy(jω) are matrices defined by the formulas (7.52) and (7.55), respec-

tively, where multiplying by ωτj−e  and integrating refer to the particular 

entries of the matrix Rxx(τ ) and Rxy(τ ). Considerations concerning one-
dimensional and multi-dimensional correlation functions and their applica-
tion in an identification problem for control plants may be found e.g. in 
[14, 100]. 

7.7 Analysis and Parametric Optimization of Linear  
       Closed-loop Control System with Stationary  
      Stochastic Disturbances  

Let us consider a continuous, one-dimensional linear stationary system 
with two inputs x(t) and z(t), and the output y(t), described by the transmit-
tances 

)()()()()( 21 sZsKsXsKsY += . (7.56)

Assume that x(t) and z(t) are realizations of stationary stochastic processes. 
Consequently, after passing a transit process caused by putting x(t) and z(t) 
at the input, the response y(t) is also a realization of a stationary stochastic 
process. For such a system, the analysis problem cannot consist in the de-
termination of the response y(t) for the given functions x(t) and z(t), but it 

can consist in the determination of the mean-square value 2y  for the given 

correlation functions of the inputs and the given transmittances of the sys-
tem. 

Analysis problem for the dynamical system: For the given K1(s), K2(s), 
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Rxx(τ), Rzz(τ), Rxz(τ) one should find 2y .  

 Instead of the correlation functions one may use the equivalent descrip-
tions in the form of the respective spectral densities. It may be shown that 
the relationship between the spectral densities of the inputs and the output 
is the following:  

).j()j()j()j()j()j(

)()j()()j()(
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2
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2
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ωωωωωω
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+=
 

(7.57)

If the processes x(t) and z(t) are uncorrelated then only the first and the 
second components will occur in the formula (7.57). According to the for-
mula (7.54) we find 
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2 )(
π

1
ωω dSy yy . (7.58)

In typical cases the spectral density is a rational function of 2ω  and may 
be presented in the form  
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where  

Gp(ω) = b0ω2p–2 + b1ω2p–4 + ...+ bp –1, 

Hp(ω) = a0ωp
 + a1ω 

p–1
 + ...+ap, 

and all zeros of the polynomial Hp(ω) lie in the upper half-plane. The inte-
grals (7.58) for the function (7.59) have been found for small degrees p. 
The results for p = 1, 2, 3  are the following: 
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where Ip denotes the integral (7.58) for the spectral density (7.59).  
 The method of the analysis for the dynamical system presented above 
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may be applied to the analysis and the parametric optimization of the lin-
ear closed-loop control system (Fig.7.7) with the stationary stochastic dis-
turbances y*(t) and z(t), in which the plant and the controller are described 

by the transmittances )(O sK  and )(R sK , respectively, i.e.  

Y(s) = KO(s)U(s) + KZ(s)Z(s), 

U(s) = KR(s)E(s) 

where 

E(s) = Y*(s) – Y(s). 

Hence, 

E(s) = K1(s)Y*(s) + K2(s)Z(s) 

where  

,
)()(1

1
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1
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+
=  
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2
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u (t)

y (t) y
*
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Fig. 7.7.  Scheme of control system under consideration 

Analysis problem for the closed-loop control system: For the given 

KO(s), KZ(s), KR(s), ** yy
R (τ ), Rzz(τ),

zy
R * (τ )  one should find the mean-

square control error 2ε .  
 The closed-loop control system may be treated as a dynamical system 
with the inputs y*(t) and z(t), and the output ε(t). Then, according to (7.58)  
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∫
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ωωε εε dS  

where Sεε(ω) should be determined according to the formula (7.57) with 
*y  in the place of  x  and with ε  in the place of y .  

 In a similar way as in deterministic cases considered in Chap. 5, the 
analysis may be used as the first stage of the parametric optimization of the 
control system. If we assume a determined form of the controller transmit-

tance  KR(s ; a) where a is a vector of parameters, then as a result of the 

analysis we have the dependence of the performance index 2ε ∆= Q upon a. 
Then the design of the controller consists in the determination of the value 
a

* minimizing the function Q(a). If the function Q(a)  is differentiable 

with respect to a then a*  may be determined from the equation 

_
0)(grad =aQ

a

 (7.62)

under the assumption that a* is a unique solution of the equation (7.62) and 

that in this point the function Q(a) takes its local minimum.  
 The analysis problem for the dynamical system with two inputs x, z and 
one output y may be generalized for a multi-dimensional system with the 
input vector x and the output vector y, described by the relationship 

Y(s) = K(s)X(s) 

where K(s) denotes a matrix transmittance. Then 

Syy(jω) = K(jω)Sxx(jω)KT(–jω) 

where Sxx(jω) and Syy(jω) denote matrix spectral densities. Now the mean-
square value of the output 

=2y ∫
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and according to (7.54) 
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where )(ωyyS  denotes the sum of entries in the principal diagonal of the 

matrix )(ωyyS . The generalization for a multi-dimensional dynamical sys-

tem presented above may be used to the analysis and the parametric opti-
mization of multi-dimensional closed-loop control system considered as a 
specific dynamical system, in a way similar to that used for the one-
dimensional system illustrated in Fig. 7.7. 

Example 7.4. Let us determine 2ε  in the closed-loop control system 
(Fig. 7.7) where  

1
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O +
=
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k
sK  ,      KR(s) = kR, 
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It is easy to prove that )(* ty  is a result of integrating a signal with auto-

correlation function  

τατ −= eR )( . 

Assume that the disturbance z(t) is a white noise, i.e. Szz(ω) = c,  

zy
R * (τ) = 0. Assume that z(t) is an additive noise added to )(* ty . Then  

KZ(s) = KO(s)KR(s). 

Applying the formula (7.57) for y* and ε  we obtain  
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The first term )(I ωεεS  after substituting KO and KR may be presented in 

the form  
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where  
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H3(ω) = jTω3
 – αTω2

 – j(α + k)ω + αk,          k = kOkR. 

In a similar way, the second term )(II ωεεS  may be reduced to the form  
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where  

H2(ω) = –Tω2 + jω + k. 

Using the formula (7.58) for ε  and the formulas (7.60), (7.61) in order to 
determine the integrals of the both terms, after some transformations we 
obtain  
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7.8 Non-parametric Optimization of Linear Closed-loop 
      Control System with Stationary Stochastic 
      Disturbances  

For the linear stationary system (Fig. 7.7) with stationary stochastic distur-
bances, the non-parametric optimization is sometimes called a synthesis of 
an optimal controller and consists in the determination of a linear control-
ler minimizing a mean-square control error. As in the case of analysis, we 
shall start with a more general problem concerning the optimization of a 
linear dynamical system. Let us assume that a signal x(t) is a realization of 
a stationary stochastic process and we want to obtain a signal which will 
be a result of a linear transformation of the signal x(t), determined by a 
transmittance H(s), i.e. we want to obtain a signal v(t) such that V(s) = 
H(s)X(s). For example, H(s) = s means that we want to differentiate the 
signal x(t). If the transmittance H(s) is physically realizable (a degree of 
the numerator is not greater than a degree of the denominator) and the sig-
nal x(t) is available without a noise then it is sufficient to put x(t) at the in-
put of a system described by H(s) and to obtain v(t) at the output. If H(s) is 
not realizable and (or) only the signal with a stationary stochastic noise 
x(t) + z(t) is available then we can try to determine such a transmittance 
K(s) that the signal x(t) + z(t) put at the input of a system described by 
K(s), gives at the output the signal w(t) which is the best approximation of 
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v(t) , minimizing the mean-square error (Fig. 7.8). It is so called Wiener’s 

problem. The typical and the most frequently considered cases of this 
problem are the following:  

1. Filtration  

H(s) = 1,   i.e.  v(t) = x(t). 

2. Differentiation  

H(s) = s,  i.e.  v(t) = x� (t). 

3. Prediction  

H(s) = sTe ,   i.e.  v(t) = x( Tt + ) 

where T > 0.  

H(s)

K(s)

ε (t)

v (t)

w (t)

x (t)

x (t)+z (t)

 
Fig. 7.8. Illustration of the approximation problem under consideration 

Optimization problem for the dynamical system: For the given H(s), 

Rxx(τ), Rzz(τ), Rxz(τ) one should determine the transmittance K(s)  mini-

mizing the mean-square approximation error 2ε  where )()()( twtvt −=ε . 

 The given functions determine a functional which assigns the numbers 
2ε  to the functions K(s). By applying a variatonal calculus to the minimi-

zation of this functional one may show that the result should satisfy the 
following integral equation: 

∫
∞

−=
0

,)()()( λλλττ dkRR immvm       τ ≥ 0 (7.63)

where m(t) = x(t) + z(t), and ki(t) is the impulse response of the system to 

be determined, i.e. K(s) is the Laplace transform of the function )(tki . The 

integral equation (7.63) with the unknown function )(⋅ik  is called a Wie-
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ner-Hopf equation. It may be shown that its solution in the form of the fre-
quency transmittance )j( ωK  satisfying the realizability condition is as fol-

lows: 

∫∫
∞

∞−

∞
−= ω

ωΨ
ω

ωΨ
ω ωω

de
S

dteK
tvmt j

20

j

1 )j(

)j(

)j(π2

1
)j(  (7.64)

where  

Ψ1(jω)Ψ2(jω) = Smm(ω), (7.65)

Ψ2(jω) = Ψ1(–jω), all poles and zeros of the function Ψ1(jω) lie in the up-

per half-plane. The presentation of Smm in the form (7.65) is always possi-

ble because Smm(ω) is a real rational function and Smm(ω) = Smm(– ω). 
Consequently, for each pole (zero) of this function there exist three other 
poles (zeros) lying symmetrically with respect to the both coordinate axes. 

 In the filtration problem Svm = Sxx + Sxz, Smm = Sxx + Szz + Sxz + Szx. Let 
us note that  

)(
)j(

)(

π2

1 ∆j

2
tde

S tvm βω
ωΨ
ω ω =∫

∞

∞−

 

is an inverse Fourier transform of the function ,
)j(

)(

2 ωΨ
ωvmS

 and  

∫
∞

− =
0

∆j )j()( ωβ ω
Bdtet

t  

is the Fourier transform of the function β(t)  for t > 0. Consequently, in or-
der to determine )j( ωB  and then to determine 

)j(

)j(
)j(

1 ωΨ
ω

ω
B

K =  

according to (7.64), one should present 
)j(

)(

2 ωΨ
ωvmS

 as a sum of partial frac-

tions and take into account only the fractions corresponding to the poles in 
the upper half-plane. 

Optimization problem for the closed-loop control system: For the given 
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KO(s), KZ(s), ** yy
R (τ), Rzz(τ), 

zy
R * (τ) in the system presented in 

Fig. 7.7, one should determine the transmittance KR(s)  minimizing the 

mean-square control error 2ε .  
 Without loss of generality one may assume that z(t) is an additive noise 

added to y*(t), i.e. KZ = –KOKR. Then it is not the control error ε  but the 

signal e = y* + z – y that is put at the input of the controller. Denote by 

z (t)  a disturbance acting on the plant according to the transmittance KZ 
(as in the analysis problem in Sect. 7.7). The disturbance z (t) may be re-

placed by the disturbance z(t) added to *y , and  

).(
)()(

)(
)(

RO

Z sZ
sKsK

sK
sZ =  

The closed-loop control system with the input y* + z and the output y may 

be treated as a filter. Consequently, we can determine the transmittance of 
the closed-loop system as a whole 

)(
)()(1

)()( ∆

RO

RO sK
sKsK

sKsK
=

+
 (7.66)

in the same way as the transmittance of an optimal filter in the problem 
considered in the first part of this section. Then, from the equation (7.66) 

for the given transmittances )(sK and KO(s) one should determine KR(s), 

i.e. such transmittance of the controller that the control system as a whole 
acts as an optimal filter. It is worth noting that in some cases the transmit-

tance KR(s) determined in this way may be unrealizable. The considera-
tions for multi-dimensional systems with matrix correlation functions and 
matrix spectral densities are similar but much more complicated. Analo-
gous problems and methods may be formulated and applied for discrete 
systems in which discrete correlation functions  

∑
−=

+
∞→ +

=
N

Nn
mnn

N
xx xx

N
mR

12

1
lim)(  

and discrete spectral densities  

∑
∞

−∞=

−=
m

m
xxxx emReS ωω jj )()(  
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occur. Wide considerations concerning the analysis and optimization prob-
lems for linear systems with stationary stochastic disturbances may be 
found e.g. in [100] and for discrete systems also in [102].  

Example 7.5. Let us consider the control system with the plant KO(s) = kO 

and the stationary stochastic input y*(t) + z(t). Assume that  

ττ −= eR ** yy 2

1
)( , 

z(t) is a white noise, i.e. Szz(τ) = c, the signals y* and z are uncorrelated. 

One should find the optimal controller KR(s) minimizing the mean-square 
control error. 
 Using Fourier transformation of the function ** yy

R  yields  

1

1
2 +

=
ω

** yy
S . 

In the case under consideration )()()( * tztytm += , )()( * tytv =  (the filtra-

tion problem) and 

1

1
2 +

==
ω

** yyvm SS , 
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In the above expression only the first fraction corresponds to the pole in 
the upper half-plane ( j=ω ), i.e.  
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)j1)(1(

1
)j(

2 ω
ω

+++
=

cc

B  

and the optimal transmittance of the closed-loop control system as a whole 
is the following: 

.
)1)(1(

1
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221 sccccs
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++++
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Solving the equation (7.66) with respect to KR(s)  for the given KO(s), we 
obtain 

1
)( R

R +
=

sT

k
sK  

where  

,
]11)1[(

1

22
O

R
−+++

=
ccck

k  

11)1(

)1(

22

2

−+++

++
=

ccc

ccc
T . 

In this way it is possible to determine the transmittance of the optimal con-
troller if 

22 1)1( ccc +++  > 1 

i.e. if c  is sufficiently large.   □ 

7.9 Relational Plant with Random Parameter  

Let us turn back now to the static plant with the input u∈U and the output 
y∈Y, and let us consider a relational plant described by the relation 

R(u, y; c) ⊂ U×Y 

where c is an unknown parameter. Assume that c is a value of a random 
variable c described by the probability density )(cfc . This is a case of so 

called second order uncertainty or two-level uncertainty. The first (lower) 
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level denotes the uncertainty concerning the plant and described by the re-
lation R  which is not a function. For example, for one-dimensional case 
the description 

cu ≤ y ≤ 2cu (7.67)

means that the plant is non-deterministic and for the same value u, differ-
ent values y satisfying the inequality (7.67) may occur at the output. In our 
consideration c  is an unknown parameter which means an expert’s uncer-
tainty (see remarks in Sect. 6.1). This is the second uncertainty level de-
scribed here by the probability distribution )(cfc . Hence, the relational 

plant with a random parameter is a plant with the second order uncertainty, 
where a plant uncertainty is described in a relational way and an expert un-
certainty is characterized in a probabilistic way. The second description 
means that the parameter c  in the plant has been randomly chosen from 
the set of values C described by the probability density )(cfc  or that the 

plant has been randomly chosen from the set of plants with different values 
c  in the relation R. If the relation );,( cyuR  is reduced to the function 

y = Φ(u, c) then for the fixed u the output y is a value of the random vari-
able ),( cuy Φ=  and the analysis problem may consist in the determina-

tion of the probability density );( uyf y  for the fixed u. If R is not a func-

tion, such a formulation of the analysis problem is not possible. Now, for 
the fixed u the set of possible outputs 

Dy(u; c) = {y∈Y: (u, y)∈R(u, y; c)} 

may be found (see (6.6)). Consequently, u does not determine a random 

variable y  but a random set Dy(u; c ). Then the analysis problem for the 

given y may consist in the determination of the probability that this value 
may occur at the output of the plant. The problem may be generalized for 

a set of output values ∆y ⊂ Y given by a user. 

Analysis problem: For the given R, fc(c ), u and ∆y one should determine 

P[∆y ⊆ Dy(u; c )] 
∆
=  p(∆y, u), (7.68)

i.e. the probability that every value y belonging to the set ∆y given by a 
user may appear at the output of the plant. 
 Let us note that 

P[∆y ⊆ Dy(u; c )] = P[ c ∈Dc(∆y, u)] (7.69)
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where  

Dc(∆y, u) = {c∈C: ∆y ⊆ Dy(u; c)}. 

Consequently, 

p(∆y, u) = ∫
),∆(

)(
uD

c

yc

dccf . (7.70)

In particular for ∆y = {y}  (a singleton), the probability that the given value 
y may appear at the output of the plant is the following:  

∫=
),(

)(),(
uyD

c

c

dccfuyp  

where 

Dc(y, u) = {c∈C: y∈Dy(u; c)}. 

Decision making (control problem): For the given R, fc(c) and Dy formu-

lated by a user one should determine the decision *u  maximizing the prob-
ability  

P[Dy(u; c ) ⊆ Dy] 
∆=  p(u). (7.71)

This is one of possible formulations of the decision problem, consisting in 

the determination of the decision *u  maximizing the probability that the 

set of possible outputs belongs to the given set Dy, i.e. that y not belonging 

to Dy will not appear at the output. Another version of the decision prob-
lem is presented in [52]. Since 

P[Dy(u; c ) ⊆ Dy] = P[ c ∈Dc(Dy, u)] (7.72)

where 

Dc(Dy, u) = {c∈C : Dy(u; c) ⊆ Dy} 

then 

∫=
),(

* )(maxarg
uDD

c
u

yc

dccfu . (7.73)

The above considerations can be extended for the plant described by the 
relation R(u, y, z; c) where z is the disturbance which is measured. Then, 

for the given R, fc(c), z and Dy, the decision making problem consists in 
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finding the decision u maximizing the probability 

P [Dy(u, z ; c ) ⊆ Dy] 
∆=  p(u, z) 

where 

Dy(u, z; c) = {y∈Y : (u, y, z)∈R(u, y, z; c)}. 

In the way similar to that for the plant without the disturbances, we shall 
determine u = Ψ(z), i.e. the control algorithm in an open-loop system. It 
will be a control algorithm determined directly by using the knowledge of 

the plant KP = < R, fc >, i.e. a control algorithm based on the knowledge of 

the plant. For the fixed c and z, in the same way as in (6.19) one can de-

termine the largest set Du(z; c) for which the implication  

u∈Du(z; c) → y∈Dy 

is satisfied. Since u∈Du(z; c) and Dy(u, z; c) ⊆ Dy  are equivalent proper-
ties, the relationship )(zu Ψ=  may be also obtained by maximization of 

the probability 

P[u∈Du(z; c )] = ∫
cD

c dccf )(  

where 

Dc = Dc(Dy, u, z) = {c∈C : u∈Du(z, c)}. 

Such a way of obtaining the decision )(zu Ψ=  or the decision *u  in the 

case without disturbances, makes it possible to present a more understand-
able practical interpretation of the result: This is a decision which with the 
greatest probability belongs to the set of decisions uD  for which the re-

quirement yDy ∈  is satisfied. It is worth noting that it is not a probability 

that yDy ∈  because the properties uDu ∈  and yDy ∈  are not equivalent. 

Then the implication inverse to u∈Du→ y∈Dy may not be satisfied and 

consequently, for y the probability distribution )(yf y  does not exist, i.e. y 

is not a value of a random variable under the assumption that R is not a 
function. 

Example 7.6. Let us determine the optimal decision *u  for one-
dimensional plant and the following data: 
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cu ≤ y ≤ 2cu,       u ≥ 0,       Dy = [y1, y2],          ,
2
2
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8 Uncertain Variables and Their Applications 

In Chap. 7 we assumed that values of unknown quantities (parameters or 
signals) were values of random variables, i.e. that they had been chosen 
randomly from determined sets and the descriptions of the uncertainty had 
a form of probability distributions. Now we shall present the applications 
of two non-probabilistic descriptions of uncertainty, given by an expert 
and characterizing his (or her) subjective opinions on values of the un-
known quantities. These will be descriptions using so called uncertain 
variables and fuzzy variables. We shall assume in the first case that values 
of the unknown quantities are values of uncertain variables, and in the sec-
ond case that they are values of fuzzy variables. Consequently, we shall 
speak about uncertain plants and uncertain control algorithms in the first 
case, and about fuzzy plants and fuzzy control algorithms in the second 
case. In the wide sense of the word an uncertain system is understood in 
the book as a system containing any kind and any form of uncertainty in its 
description (see remarks on the uncertainty in Chaps. 6 and 7). In a narrow 
sense, an uncertain system is understood as a system with the description 
based on uncertain variables. In this sense, such names as “random, uncer-
tain and fuzzy knowledge” or “random, uncertain and fuzzy controllers” 
will be used. Additional remarks will be introduced, if necessary, to avoid 
misunderstandings. 
 This chapter concerns the first part of non-probabilistic descriptions of 
the uncertainty and is devoted to the applications of uncertain variables to 
analysis and decision making in uncertain control systems. The applica-
tions of fuzzy variables will be presented in Chap. 9. Foundations of the 
uncertain variables theory and their applications to analysis and decision 
making in uncertain systems may be found in two books [43, 52] and in a 
lot of papers [26, 32–37, 41, 44, 47, 51, 55, 56]. 

8.1 Uncertain Variables 

Let  ω ∈Ω  denote an element of a certain set Ω for which the function  
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x = g(ω) 

∆= )(ωx  determines the value of a certain numerical feature as-

signed to the element ω. For example, Ω  is a determined set of persons 
and  )(ωx  denotes the age of the person  ω, or  Ω  is a set of resistors and 

)(ωx  denotes the resistance of the resistor ω. Let us assume that the ex-

pert does not know the exact value of  x  for the fixed given ω, but using 
some information concerning x  and his experience, he gives different ap-

proximate values  x1, x2, ..., xm of x  and for each of them presents a de-

gree of certainty  v(xi) that  xi is an approximate value of the feature x . 

The estimation  v(xi) will be called a certainty index that  x  is approxi-

mately equal to  xi. 

 For example, the expert looking at the person  ω  characterizes the age 
of  ω  as follows: v(46) = 0.3, v(47) = 0.6, v(48) = 0.7, v(49) = 0.7,  
v(50) = 1.0, v(51) = 0.9, v(52) = 0.8, v(53) = 0.5; which means: “ω  is ap-
proximately 46 years old” with the certainty index 0.3, “ω  is approxi-
mately 47 years old” with the certainty index 0.6 etc.  
 Let us note that the sentence  “ x  is approximately equal to  x” for the 
fixed  x is not a proposition in two-valued logic, i.e. it is not possible to say 
whether it is true (its logic value is equal to 1) or false (its logic value is 

equal to 0). Two-valued propositional logic deals with propositions (α1, 

α2, ...) whose logic values  w(α)∈{0,1}, and the logic values of negation  

¬α, disjunction  α1∨α2  and conjunction  α1∧α2  are defined by using 

w(α), w(α1) and w(α2). The set {0,1} with the definitions of the operations 
mentioned above is called a  two-valued logic algebra. 
 In multi-valued logic we consider the propositions for which the logic 
value w(α)∈[0,1], i.e. may be any number from the set [0,1]. The opera-
tions in the set of logic values may be defined as follows: 

⎪
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 (8.1)

where max (min) denotes the greater (the less) from the values in the 
brackets. It is easy to note that the definitions (8.1) are the same as the 
known definitions of the operations ¬, ∨, ∧ in two-valued logic algebra. 
So the algebra [0,1] with the definitions (8.1) is an extension of two-valued 
logic algebra to the set [0,1]. In Sect. 6.1 a predicate in two-valued logic 
has been defined. In multi-valued logic a predicate is such a property ϕ (x) 
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concerning the variable  x∈X, which for a fixed value  x is a proposition in 
multi-valued logic, i.e. w[ϕ (x)] ∈ [0,1]  for every  x. If  w[ϕ (x)] ∈ {0,1} for 
every  x then ϕ (x) will be called a crisp property. Otherwise, ϕ (x) will be 
called a soft property. There exist different interpretations of the logic 
value in multi-valued logic. In our considerations w[ϕ (x)]  denotes a de-
gree of the expert’s certainty that for the fixed  x  the property ϕ (x) is satis-
fied. It will be denoted by v[ϕ (x)]  and called a certainty index of the prop-
erty ϕ (x). 
 Now we shall present formal definitions of two versions of an uncertain 
variable (in general – a vector uncertain variable). Let  X ⊆ Rk denote real 

number vector space and  g: Ω → X  denote a function x = g(ω) 

∆= )(ωx  

where  X ⊆ Rk  and  X ⊇ X.  

 Let us introduce two soft properties: 
1. The property  “ x ≅  x” which means: “ x  is approximately equal to  x”. 
The equivalent formulations are the following: “x is an approximate value 
of x ” or  “x belongs to a small neighbourhood of x ”. This is a soft prop-
erty in  X. Denote by  h(x) the logic value of this property  

w( x ≅ x) = v( x ≅ x) 
∆=  h(x) 

and assume that 

Xx∈
max  h(x) = 1. 

2. The property  “ x ∈~ Dx” where Dx ⊆ X, which means: “an approximate 

value of x  belongs to Dx” or “ x  approximately belongs to Dx”. This is a 

soft property of a family of sets Dx, generated by “ x ≅  x” and the crisp 

property “x∈Dx”. The variable x  will be called an uncertain variable. the 
complete definition contains  h(x) and the definitions of the certainty in-

dexes v( x ∈~ Dx), v( x ∉~ Dx), v( x ∈~ D1∨ x ∈~ D2), v( x ∈~ D1∧ x ∈~ D2) where 

D1, D2 ⊆ X  [36, 37, 52]. 

Definition 8.1 (uncertain variable). An uncertain variable x  is defined by 
the set of values X, the function )()( xxvxh ≅=  (i.e. the certainty index 

that xx ≅ , given by an expert) and the following definitions: 
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(8.5)

The function )(xh  will be called a  certainty distribution.   □ 

 In particular, two cases can occur: the discrete case when  X = {x1, x2, 

..., xm} and the continuous case when  h(x) is a continuous function. 
 In the definition of the uncertain variable not only the formal description 
but also its interpretation (semantics) is important. The semantics are pro-
vided in the following: for the given  ω  it is not possible to state whether 

the crisp property “x∈Dx” is true or false because the function g(ω) and 

consequently the value of  x  corresponding to ω  are unknown. The exact 
information, i.e. the knowledge of the function  g is replaced by the cer-
tainty distribution  h(x), which for the given ω  characterizes the different 
possible approximate values of )(ωx . The expert giving the function h(x) 

in this way determines for the different values  x his degree of certainty 
that x  is approximately equal to  x. The certainty index may be given di-
rectly by an expert or may be determined when  x  is a known function of 

an uncertain variable y  described by a certainty distribution hy(y) given by 

an expert. 
 Using the definitions (8.2) – (8.5) one may prove the following theorem 

concerning the property v( x ∈~ Dx) [52]. 

Theorem 8.1. 

v( x ∈~ D1∪D2) = max {v( x ∈~ D1), v( x ∈~ D2)}, (8.6)

v( x ∈~ D1∩D2) ≤ min {v( x ∈~ D1), v( x ∈~ D2)}, (8.7)

v( x ∈~ xD ) ≥ v( x ∉~ Dx) = 1 – v( x ∈~ Dx) (8.8)

where xD  is a complement of  Dx, i.e. xD = X – Dx.   □ 

 It is worth noting that the certainty index  v of the property “ x  ap-

proximately belongs to the complement of  Dx” may be greater than the 

certainty index  v of the property “ x  does not belong approximately to Dx” 
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or “an approximate value of  x  does not belong to Dx”. 
 We shall define now another version of the uncertain variable called a  

C-uncertain variable. In this version the logic value  w( x ∈~ Dx) denoted by 

vc is defined in another way. 

Definition 8.2 (C-uncertain variable). A C-uncertain variable x  is defined 
by the set of values X, the function )()( xxvxh ≅=  given by an expert and 

the following definitions: 

)]( max1+ )( max[
2

1
 )~( xhxhDxv

xx DxDx
xc

∈∈
−=∈ , (8.9)

)~( )
~

( xcxc DxvDxv ∈=∉ , (8.10)

 )  ~()~ ~( 2121 DDxvDxDxv cc ∪∈=∈∨∈ , (8.11)

 )  ~()~ ~( 2121 DDxvDxDxv cc ∩∈=∈∧∈ . (8.12)

□ 
 According to (8.2) and (8.3)  

vc( x ∈~ Dx) = 
2

1
[v( x ∈~ Dx) + v( x ∉~ xD )]  

                         = 
2

1
[v( x ∈~ Dx) + 1 – v( x ∈~ xD )]. (8.13)

In the formulation of  v( x ∈~ Dx), the certainty index of the property  

x ∈~ Dx is defined “in a positive way”, and in the formulation of 

v( x ∉~ xD ) 
∆=  vn( x ∈~ Dx) – is defined “in a negative way” as a certainty 

index that x  does not belong approximately to the complement of Dx. The 

certainty index  vc is defined “in a complex way” taking into account the 

both properties “ x ∈~ Dx” and “ x ∉~ xD ” which are equivalent for C-

uncertain variable (see (8.10)). 

 For example, if max [h(x):  x∈Dx] = 0.8 and  max [h(x):  x∈ xD ] = 1 

(Fig. 8.1) then  v( x ∈~ Dx) = 0.8,  vn( x ∈~ Dx) = 1 – v( x ∈~ xD ) = 0,   

vc( x ∈~ Dx) = 0.4. 

Thus, in the definition of  vc( x ∈~ Dx)  the values of  h(x) in the set xD  

are also taken into account. It is also worth noting that in the case of C-
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uncertain variable the logic operations (negation, disjunction and conjunc-

tion) correspond to the operations in the family of sets Dx (complement, 
union and intersection). On the other hand, one should note that the cer-

tainty indexes  vc for disjunction and conjunction are not determined by 

vc( x ∈~ D1)  and  vc( x ∈~ D2), i.e. the determination of these indexes cannot 

be reduced to the operations in sets of the indexes vc( x ∈~ Dx). 

h(x)

1

Dx

x

0.8

�� ��� ��

 

Fig. 8.1. Example of certainty distribution 

 The theorem presenting relationships between the operations for  vc, 
analogous to Theorem 8.1, is as follows: 

Theorem 8.2.  

vc( x ∈~ D1∪D2) ≥ max {vc( x ∈~ D1), vc( x ∈~ D2)}, 

vc( x ∈~ D1∩D2) ≤ min {vc( x ∈~ D1), vc( x ∈~ D2)}, 

vc( x ∉~ Dx) = 1 – vc( x ∈~ Dx). □

 The formula (8.9) or (8.13) can be presented in the form 

vc( x ~∈Dx)  

= 

⎪
⎪
⎩

⎪⎪
⎨

⎧

∈−∈=−

=∈=

∈

∈∈

.otherwise      )~(
2

1
)~()(max

2

1
1

1)(max  if                        )~(
2

1
)(max

2

1

 

xx
Dx

Dx
x

Dx

DxvDxvxh

xhDxvxh

x

xx  (8.14)



8.1 Uncertain Variables      199 

In particular, for Dx = {x} (a singleton), the function vc( x =~  x) 
∆=  hc(x) 

may be called a C-certainty distribution. It is easy to note that in a continu-

ous case hc(x) = )(
2

1
xh , and in a discrete case   

hc(xi) = 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−

=

≠

≠

otherwise.         )(max
2

1
1

1)(max if            )(
2

1

 
xh

xhxh

i

i

xx

xx
i

 (8.15)

The C-certainty distribution hc(x) does not determine the certainty index 

vc( x ∈~ Dx). In order to determine  vc one should use  h(x) given by an ex-
pert and apply the formula (8.9) or (8.13). For the uncertain variable one 
can define a mean value  )(M x  in a similar way as an expected value for a 

random variable. In the discrete case 

)(M x  = ∑
=

m

i
ii xhx

1

)(  

where 

)( ixh =

∑
=

m

j
j

i

xh

xh

1

)(

)(
. 

In the continuous case  

)(M x  = ∫
X

dxxhx )( , 

)(xh =
∫
X

dxxh

xh

)(

)(
 

under the assumption that the respective integrals exist. For C-uncertain 

variable the definition of )(M xc  is identical, with  hc(x) instead of  h(x). It 

is easy to note that in the continuous case  Mc = M. 
 Let us now consider a pair of uncertain variables  

>×<= ),( ,),( yxhYXyx   where  )],(),[(),( yxyxvyxh ≅=   is given by 

an expert and is called a joint certainty distribution. Then, using  (8.1) for 
the disjunction in multi-valued logic, we have the following  marginal cer-

tainty distributions: 
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),( max  )()(
   

yxhxxvxh
Yy

x
∈

=≅= , (8.16)

),( max  )()(
   

yxhyyvyh
Xx

y
∈

=≅= . (8.17)

If the certainty index  ])([ xxv ≅ω   given by an expert depends on the 

value of  y  for the same  ω  (i.e. if the expert changes the value  )(xhx  

when he obtains the value  y  for the element ω  “under observation”) then 
)|( yxhx  may be called a  conditional certainty distribution. The variables 

x , y  are called independent when 

)()|( xhyxh xx = ,            )()|( yhxyh yy = . 

Using  (8.1)  for the conjunction in multi-valued logic we obtain 

)}.|( ),(min{

)}|( ),(min{)  (),(

yxhyh

xyhxhyyxxvyxh

xy

yx

=

=≅∧≅=
 

(8.18)

Remark 8.1. The definitions of two versions of the uncertain variables  
are based on the definitions of so called uncertain logics described in [43, 

52].   □ 

Example 8.1. Let X = {1, 2, 3, 4, 5, 6, 7} and the respective values of  h(x) 
be  (0.5, 0.8, 1, 0.6, 0.5, 0.4, 0.2), i.e. h(1) = 0.5, h(2) = 0.8 etc. Using 

(8.15) we obtain hc(1) = 0.25, hc(2) = 0.4, hc(3) = 1 – 
2

8.0
 = 0.6,  

hc(4) = 0.3,  hc(5) = 0.25,  hc(6) = 0.2,  hc(7) = 0.1. 
 Let 

D1 = {1, 2, 4, 5, 6},                D2 = {3, 4, 5}. 

Then D1∪D2 = {1, 2, 3, 4, 5, 6),  D1∩D2 = {4, 5}, v( x ∈~ D1) = max {0.5, 

0.8, 0.6, 0.5, 0.4} = 0.8,  v( x ∈~ D2) = 1,  v( x ∈~ D1∪D2) = max {0.5, 0.8, 1, 

0.6, 0.5, 0.4} = 1, v( x ∈~ D1∨ x ∈~ D2) = max {0.8, 1} = 1,  v( x ∈~ D1∩D2) 

= max {0.6, 0.5} = 0.6,  v( x ∈~ D1∧ x ∈~ D2) = min {0.8, 1} = 0.8. 
 Using (8.14) we have 

vc( x ∈~ D1) = 
2

1
v( x ∈~ D1) = 0.4, 

vc( x ∈~ D2) = 1 – 
2

1
v( x ∈~ D2) = 1 – 

2

8.0
 = 0.6, 
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vc( x ∈~ D1∨ x ∈~ D2) = vc( x ∈~ D1∪D2) = 1 – 
2

2.0
 = 0.9, 

vc( x ∈~ D1∧ x ∈~ D2) = vc( x ~∈D1∩D2) = 
2

6.0
 = 0.3. 

In the example considered, for  D1 as well as for  D2 we have 

vc( x ∈~ D) = max hc(x)  for  x∈D. Let  D = {2, 3, 4}. Now 

vc( x ∈~ D) = 1 – 
2

5.0
 = 0.75 

and  

max hc(x) = max {0.4, 0.6, 0.3} = 0.6 < vc. □

8.2 Application of Uncertain Variables to Analysis and 
      Decision Making (Control) for Static Plant 

Now let us consider shortly decision making problems using uncertain 
variables, analogous to the problems considered in Sects. 7.1, 7.2 and 7.9 
for the static plant with a probabilistic description of uncertainty. The deci-
sion problems will be preceded by a short presentation of the analysis 
problems. 

8.2.1 Parametric Uncertainty 

Let us consider a plant described by a function 

y = Φ (u, z, c) 

where  z∈Z is a vector of the disturbances which can be measured (see 
(7.9)) and c∈C is an unknown vector parameter which is assumed to be a 

value of an uncertain variable with the certainty distribution  hc(c) given 
by an expert. Consequently,  y is a value of an uncertain variable  
y = Φ (u, z, c ).  

Analysis problem: For the given Φ, )(chc , u and z find the certainty dis-

tribution )( yhy . 

 According to (8.2) 

)(max)],;(~[)~(),;(
),;(

chzuyDcvyyvzuyh c
zuyDc

cy
c∈

=∈===  (8.19)
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where 

}),,(:{),;( yczuCczuyDc =∈= Φ . 

Having ),;( zuyhy  one can determine the mean value 

∫∫ −⋅=
Y

y

Y

yy dyzuyhdyzuyyhzuy 1]),;([),;(),;(M
∆
= ),( zubΦ  (8.20)

(for the continuous case) and 

),;(maxargˆ zuyhy y
Yy∈

= , 

i.e. such a value ŷ  that 1),;ˆ( =zuyhy . If Φ  as a function of c is one-to-

one mapping and ),,(1 yzuc −=Φ  then 

)],,([),;( 1 yzuhzuyh cy
−= Φ  (8.21)

and )ˆ,,(ˆ czuy Φ=  where ĉ  satisfies the equation 1)( =chc . It is easy to 

note that cyy ˆˆ =  where 

),;(maxargˆ zuyhy cy
Yy

c
∈

=  

and cyh  is a certainty distribution for the C-uncertain variable. 

Decision problem: For the given Φ, )(chc , z and *y  

I. One should find  u
∆
= au  maximizing )( *yyv ≅ . 

II. One should find  u
∆
= bu  such that *)(M yyy = . 

 In version I 

),(maxarg zuu a
Uu

a Φ
∈

=
∆
= )(zaΨ  (8.22)

where ),;(),( * zuyhzu ya =Φ  and yh  is determined according to (8.19). 

The result au  is a function of z if au  is a unique value maximizing aΦ  for 

the given  z.  
 In version II one should solve the equation 

*),( yzub =Φ  (8.23)

where the function bΦ  is determined by (8.20). If equation (8.23) has a 

unique solution with respect to  u for the given z then as a result one ob-
tains )(zu bb Ψ= . The functions aΨ  and bΨ  are two versions of the deci-
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sion algorithm )(zu Ψ=  in an open-loop decision system. It is worth not-

ing that au  is a decision for which 1)( * =≅ yyv . 

 The functions aΦ , bΦ  are the results of two different ways of deter-

minization of the uncertain plant, and the functions aΨ , bΨ  are the re-

spective decision algorithms based on the knowledge of the plant (KP): 

><= ch,KP Φ . (8.24)

Assume that the equation 
*),,( yczu =Φ  

has a unique solution with respect to  u: 

u
∆
= ),( czdΦ . (8.25)

The relationship (8.25) together with the certainty distribution )(chc  may 

be considered as a knowledge of the decision making (KD): 

><= cd h,KD Φ , (8.26)

obtained by using KP and *y . Equation (8.25) together with ch  may also 

be called an uncertain decision algorithm in the open-loop decision sys-
tem. The determinization of this algorithm leads to two versions of the de-
terministic decision algorithm dΨ , corresponding to versions I and II of 

the decision problem: 
 Version I. 

);(maxarg zuhu u
Uu

ad
∈

=
∆
= )(zadΨ  (8.27)

where 

)(max);(
);(

chzuh c
zuDc

u
c∈

=  (8.28)

and  

)},(:{);( czuCczuD dc Φ=∈= . 

 Version II. 

);(M zuu ubd =
∆
= )(zbdΨ . (8.29)

 The decision algorithms adΨ  and bdΨ  are based directly on the 

knowledge of the decision making. Two concepts of the determination of 
deterministic decision algorithms are illustrated in Figs. 8.2 and 8.3. In the 
first case (Fig. 8.2) the decision algorithms )(zaΨ  and )(zbΨ  are ob-

tained via the determinization of the knowledge of the plant KP. In the 
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second case (Fig. 8.3) the decision algorithms )(zadΨ  and )(zbdΨ  are 

based on the determinization of the knowledge of the decision making KD 

obtained from KP for the given *y . The results of these two approaches 

may be different. 

Determinization

ba ΦΦ ,

ba ΨΨ ,

KP

>< xh,Φ

yu

z

*
y

Plant
z

 
 

Fig. 8.2. Decision system with determinization – the first case 

KD

Determinization

bdad ΨΨ ,

KP

>< xh,Φ

ydu

z

*y

Plant

>< xd h,Φ

z

 
 

Fig. 8.3. Decision system with determinization – the second case 
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Theorem 8.3. For the plant described by KP in the form (8.24) and for KD 

in the form (8.26), if there exists an inverse function ),,(1 yzuc −=Φ  then 

)()( zz ada ΨΨ = . 

Proof:   According to (8.21) and (8.27) 

)],,([),;( *1* yzuhzuyh cy
−= Φ , 

)],,([);( *1 yzuhzuh cu
−= Φ . 

Then, by using (8.22) and (8.27) we obtain )()( zz ada ΨΨ = .   □ 

Example 8.2. Let  u, y, c, z 1R∈  and 

zucy += . 

Then  

zcuy cy += )(M)(M  

and from the equation *)(M yyy =  we obtain 

)(M
)(

*

c

zy
zu

c
bb

−
==Ψ . 

The uncertain decision algorithm is 

c

zy
czu d

−
==

*

),(Φ  

and after the determinization 

)()(M)()( 1* zczyzu bcbdbd ΨΨ ≠−== − . □
 This very simple example shows that the deterministic decision algo-
rithm )(zbΨ  obtained via the determinization of the uncertain plant may 

differ from the deterministic decision algorithm )(zbdΨ  obtained as a re-

sult of the determinization of the uncertain decision algorithm. 

8.2.2 Non-parametric Uncertainty 

Now we shall present a non-parametric decision problem analogous to that 
described in Sect. 7.2 for the probabilistic description of uncertainty. Con-
sider a static plant with input vector  ,Uu ∈  output vector  Yy ∈   and a 

vector of external disturbances  ,Zz ∈  and assume that ),,( zyu  are values 
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of the uncertain variables ),,( zyu . The plant is described by 

><= ),|(KP zuyhy  

where  ),|( zuyhy   is a conditional certainty distribution given by an ex-

pert. The decision problem consists in finding an uncertain decision (con-

trol) algorithm in the form of  hu(u | z) for the required  hy( y) given by a 
user. 

Decision (control) problem: For the given  ><= ),|(KP zuyhy   and  

)( yhy   required by a user one should determine  )|( zuhu . 

 The determination of  )|( zuhu   may be decomposed into two steps. In 

the first step, one should find the function  ),( zuhuz   satisfying the equa-

tion 

)},|(),,(min{max)(
,

zuyhzuhyh yuz
ZzUu

y
∈∈

=  (8.30)

and the conditions for a certainty distribution: 

1),(max,0),(
,

=≥
∈∈∈∈

zuhzuh uz
ZzUu

uz
ZzUu

. 

In the second step, one should determine the function )|( zuhu  satisfying 

the equation 

)}|(),(min{),( zuhzhzuh uzuz =  (8.31)

where 

),,(max)( zuhzh uz
Uu

z
∈

=  (8.32)

and the conditions for a certainty distribution: 

1)|(max,0)|( =≥
∈∈∈∈

zuhzuh u
UuZz

u
ZzUu

. 

The solution may be not unique. The function  )|( zuhu   may be consid-

ered as a knowledge of the decision making  ><= )|(KD zuhu  or an un-

certain decision algorithm (the description of an uncertain controller in 
the open-loop control system). Having )|( zuhu , one can obtain the deter-

ministic decision algorithm  )(zΨ  as a result of the determinization of the 

uncertain decision algorithm  )|( zuhu . Two versions corresponding to the 

versions presented in Sect. 7.2 are the following: 
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 Version I. 

)()|(maxarg ∆
zzuhu au

Uu
a Ψ==

∈
. (8.33)

 Version II. 

)(])|([)|()|(M ∆1 zduzuhduzuuhzuu b

U

u

U

uub Ψ=⋅== −∫∫ . (8.34)

The deterministic decision algorithms  )(zaΨ   or  )(zbΨ   are based on the 

knowledge of the decision making ><= )|(KD zuhu , which is deter-

mined from the knowledge of the plant KP for the given  )( yhy . 

Theorem 8.4. The set of functions )|( zuhu  satisfying equation (8.31) is 

determined as follows: 

⎩
⎨
⎧

∈≥

∉=
=

),(),(for),(

),(),(for),(
)|(

zuDzuzuh

zuDzuzuh
zuh

uz

uz
u  

(8.35)

(8.36)

where 

)},()(:),{(),( zuhzhZUzuzuD uzz =×∈= . 

Proof:   From (8.31) it follows that 

)],()([ zuhzh uzz
ZzUu

≥
∈∈

. 

If ),()( zuhzh uzz >  then, according to (8.31), )|(),( zuhzuh uuz = . If 

),()( zuhzh uzz = , i.e. ),(),( zuDzu ∈  then ),()|( zuhzuh uzu ≥ .  □ 
 In general, the solution of the problem in the second step is not unique, 
i.e. we can choose any function  )|( zuhu   satisfying the condition (8.36) 

for  ),(),( zuDzu ∈ , such that 

1)|(max =
∈∈

zuhu
UuZz

. 

For the fixed  z , the set 

)},(),(:{)( zuDzuUuzDu ∈∈=  

is a set of values  u   maximizing  ),( zuhuz . If  )}(ˆ{)( zuzDu =   (a single-

ton), then 

),(maxarg)(ˆ zuhzu uz
Uu∈

=  
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and  1)|ˆ( =zuhu ,  i.e. 

⎩
⎨
⎧

=

≠
=

).(ˆfor1

)(ˆfor),(
)|(

zuu

zuuzuh
zuh uz

u  (8.37)

It is easy to note that  )|( zuhu   determined by (8.37) is a continuous func-

tion for every  Zz ∈   if and only if 

]1)([ =
∈

zhz
Dz z

, 

i.e. 

]1),(max[ =
∈∈

zuhuz
UuDz z

 (8.38)

where 

}0),(:{ ≠∈=
∈

zuhZzD uz
Uu

z . 

If the condition (8.38) is satisfied then  ),()|( zuhzuh uz= . In this case , ac-

cording to (8.33) the decision  au   does not depend on  z  and the decision 

bu  (8.34) does not depend on  z  if  ab uu = . It is worth noting that if  

)(zDu   is a continuous domain, we may obtain a continuous function  

)|( zuhu   and the decisions  au , bu   depending on  z . 

Remark 8.2. The distribution ),|( zuyhy  given by an expert and/or the 

result )|( zuhu  may not satisfy the condition 1max =h  (see Example 8.3). 

The normalization in the form 

)|(max

)|(
)|(

zuh

zuh
zuh

u
Uu

u
u

∈

=  (8.39)

is not necessary if we are interested in the deterministic decisions au  and 

bu , which are the same for uh  and uh .   □ 

 In a way analogous to that for the probabilistic description (Sect. 7.2), 
we may formulate two versions of the non-parametric decision problem for 

the deterministic requirement *yy = : 
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 Version I. 

)(),|(max
∆*

zzuyhu ay
Uu

a Ψ==
∈

. 

 Version II. bu )(
∆

zbΨ= is a solution of the equation 

∫ ∫ =⋅ −

Y Y

yy ydyzuyhdyzuyhy *1]),|([),|( . 

 The deterministic algorithms )(zaΨ  and )(zbΨ  are based on the deter-

minization of the plant and, in general, differ from the algorithms )(zaΨ  

and )(zbΨ  in (8.33) and (8.34), obtained via the determinization of the un-

certain decision algorithm )|( zuhu . 

Example 8.3. Consider a plant with 1,, Rzyu ∈ , described by the condi-

tional certainty distribution given by an expert: 

)(1)(),|( 2 zbudyzuyhy −−−+−−=  (8.40)

for 

2

1
0 ≤≤ u ,         bzb ≤≤−

2

1
, 

dzbuydzbu +−−−≤≤+−−−− )(1)(1 , 

and 0),|( =zuyhy  otherwise. 

1

y

)(yhy

c1−c 1+c  

Fig. 8.4. Parabolic certainty distribution 

 For the certainty distribution required by a user (Fig. 8.4): 

⎪⎩

⎪
⎨
⎧ +−−

=
0

1)(
)(

2cy
yhy    

,otherwise               

11for +≤≤− cyc
 

one should determine the uncertain decision algorithm in the form 
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),()|( zuhzuh uzu = . 

Let us assume that 1,0 >> cb  and 

21 +≤≤+ cdc . (8.41)

Then the equation 

),|()( zuyhyh yy =  

has a unique solution ),( zuy , which is reduced to the solution of the equa-

tion 

)(1)(1)( 22 zbudycy −−−+−−=+−−  

and 

)(
2

1

)(2
),(

22

cd

zbu
cd

cd

zbucd
zuy

−
−+

++=
−

−++−
= . (8.42)

Using (8.42) and (8.41) we obtain 

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤≤−≤≤

−−−−−≤+
−

−++−
−

=

==

.otherwise                         0

2

1
,

2

1
0

),(]1)[(1for1]
)(2

)(
[

)],([),()|(

22
2

bzbu

zbcdu
cd

zbucd

zuyhzuhzuh yuzuz

 

The values of ),( zuhuz  may be greater than zero (i.e. the solution of our 

decision problem exists) if for every z  

0)(]1)[(1 2 >−−−−− zbcd . (8.43)

Taking into account the inequality 

2

1
0 ≤−≤ zb , 

and (8.41), we obtain from (8.43) the following condition: 

2

1
1 +<− cd . 

Note that the description (8.40) given by an expert and the solution 
),()|( zuhzuh uzu =  do not satisfy the condition 1max =h  (see Remark 

8.2).   □ 
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8.3 Relational Plant with Uncertain Parameter 

Let us consider the plant such as in Sect. 7.9, i.e. described by the relation 

R(u, y; c) ⊂ U×Y 

with an unknown parameter  c∈C which is assumed to be a value of an un-

certain variable c  with the certainty distribution  hc(c)  given by an expert. 
As in Sect. 7.9 let us introduce the set of possible outputs for the given  u  

Dy(u; c) = { y∈Y: (u, y)  ∈ R(u, y; c)}. (8.44)

Analysis problem: For the given R, hc(c), u and  ∆y ⊂ Y  one should de-
termine 

v[∆y ⊆~  Dy(u; c )] 
∆=  g(∆y, u), (8.45)

i.e. the certainty index that every value  y belonging to the set  ∆y given by 
a user may appear at the output of the plant. In other words, this is the cer-
tainty index that for the given  u the approximate set of possible outputs 

contains all values from the set  ∆y, or that the set of possible outputs ap-

proximately contains the set ∆y. 
 Let us note that 

v[∆y ⊆~  Dy(u; c )] = v[ c ∈~ Dc(∆y, u)] (8.46)

where 

Dc(∆y, u) = {c∈C:   ∆y ⊆ Dy(u; c)}. 

Then  

g(∆y, u) = 
) ,∆(

max
uDc yc∈

 hc(c). (8.47)

In particular, for }{∆ yy =  the certainty index that the given value may 

appear at the output of the plant is the following: 

)(max),(
),(

chuyg c
uyDc c∈

=  

where 

Dc( y, u) = {c∈C:   y ∈Dy(u; c)}. 

The formulas (8.45), (8.46) and (8.47) are analogous to the formulas 
(7.68), (7.69) and (7.70) for the probabilistic description. 
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Decision making problem: For the given R, hc(c) and Dy ⊂ Y  formulated 

by a user one should determine the decision   u* maximizing 

v[Dy(u; c ) ⊆~  Dy] 
∆=  v(u) (8.48)

where  Dy(u; c) is defined by the formula (8.44). 
 It is one of possible formulations of a decision problem, consisting in 
the determination of the decision  u

* giving the greatest certainty index 

that the approximate set  of possible outputs (i.e. the set of possible outputs 

for an approximate value of  c ) belongs to the given set  Dy, or that the set 

of possible outputs approximately belongs to  Dy. Since  

v[Dy(u; c ) ⊆~  Dy] = v[ c ∈~ Dc(Dy , u)] = 
) ,(

max
uDDc yc∈

 hc(c) (8.49)

where  

Dc(Dy , u) = {c∈C:  Dy(u; c) ⊆ Dy } 

then  

u
*= arg )(max uv

u
= arg 

u
max

) ,(
max

uDDc yc∈
 hc(c). (8.50)

The formulas  (8.48), (8.49) and (8.50) are analogous to the formulas  
(7.71), (7.72) and (7.73) for the probabilistic description. It is worth noting 
that the solution may be not unique, i.e. we may obtain the set of decisions 

Du (8.50). Denote by c
~  the value maximizing  hc , i.e. hc( c

~ ) = 1. Then  

Du = {u∈U:  c
~ ∈Dc(Dy , u)} (8.51)

and for every  u∈Du  the maximum value of the certainty index  v(u) = 1. 

Hence, to determine  Du it is not necessary to know the form of  hc(c) but 

it is sufficient to know c
~  only. If c  is considered as C-uncertain variable 

then one should determine  v  according to the formula (8.49) and 

) ,(

max
uDDc yc∈

 hc(c) ∆=  v  (8.52)

where ),( uDD yc  is a complement of the set  Dc(Dy, u). Then, according 

to (8.13)   

vc[Dy(u, c ) ⊆~  Dy] = vc[ c ∈~ Dc(Dy, u)] = )1(
2

1
vv −+ ∆=  vc(u) (8.53)

and  
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*
cu = arg 

u
max  vc[Dy(u, c ) ⊆~  Dy]. 

Now the knowledge of  hc(c)  is necessary to determine the optimal deci-
sion. 
 The above considerations can be extended to the plant described by the 
relation  R(u, y, z; c) where the disturbance  z  can be measured. 

Decision making problem: For the given R, hc(c), z and  Dy one should 
determine  u  maximizing  

v[Dy(u, z; c ) ⊆~  Dy] 
∆= Φ (u, z) 

where  Dy(u, z; c) = { y∈Y: (u, y, z)  ∈ R(u, y, z; c)}. In the same way as for 
the plant without the disturbance we determine the control algorithm in an 

open-loop system in the form of the set of optimal decisions  Du(z) de-

pendent on  z. For every u∈Du(z) the certainty index Φ (u, z) = 1. In the 
case of a unique solution, the control algorithm is reduced to the function 
u = Ψ (z). This is a control algorithm based on the knowledge of the plant  

KP = < R, hc >. 
 For the fixed  c and  z one can solve the decision problem such as in 

Sect. 6.3,  i.e. determine the largest set  Du(z ; c)  such that the implication 
u∈Du(z ; c) → y∈Dy  is satisfied. According to (6.19)

Du(z ; c) = {u∈U:  Dy(u, z ; c) ⊆ Dy} 
∆= );,(   cuzR . 

Then we can find the decision 

ud = arg 
u

max v[u∈~ );(  czDu ] 
∆= Ψd(z) (8.54)

where  

v[u∈~ );(  czDu ] = v[ c ∈~ Dcd(Dy, u, z)] = 
cdDc∈

max  hc(c), 

Dcd(Dy, u, z) = {c∈C:  u∈Du(z ; c)}. 

In a similar way as in the former case, we can obtain not one decision  

ud =Ψd(z) but the set of decisions, maximizing the certainty index in 

(8.54). Let us note that  Ψd(z)  is a decision algorithm (a control algorithm 
in an open-loop system) based on the knowledge of the decision making 

KD = < R , hc >. The relation R  or the set Du(z ; c) is an uncertain control 
algorithm in our case. For a concrete measured  z, it is the set of all possi-
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ble control decisions or the set of all  u for which the requirement is satis-

fied. It is easy to note that now ud = u for every  z, i.e. Ψd(z) =Ψ(z). This 

equality follows from the fact that the properties u∈Du(z ; c) and   

Dy(u, z ; c) ⊆ Dy  are equivalent. Consequently, the certainty indexes that 
these properties are approximately satisfied are identical. This remark pro-

vides a clearer interpretation of the decision  u = ud   or the decision  u* 

(8.50) in the case without disturbances: This is a decision which with the 

greatest certainty index belongs approximately to the decision set Du for 

which the requirement  y∈Dy is satisfied. When the standard version of an 
uncertain variable (i.e. not C-uncertain variable) is applied, this greatest 
certainty index is equal to 1. It is worth noting that we cannot determine 

and maximize directly a certainty index that  y approximately belongs Dy 

because the properties  u∈Du and  y∈Dy  are not equivalent, i.e. the impli-

cation inverse to u∈Du → y∈Dy may not be satisfied. In other words, for  

y the distribution hy( y) does not exist, i.e.  y  is not a value of an uncertain 
variable. 
 More details on uncertain variables and their applications to analysis 
and decision making in uncertain systems may be found in [36, 37, 43, 52]. 

Example 8.4. Consider the plant such as in Example 7.6 in Sect. 7.9 and 
assume that the value of an unknown parameter  c is a value of an uncer-
tain variable with the triangular certainty distribution presented in Fig. 8.5. 
One should determine the decision  u*.  

hc(c)

c

u

y2

2
1

1

2u

y2

 

Fig. 8.5. Example of certainty distribution 
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In this case  

Dc(Dy, u) = ]
2

,[ 21

u

y

u

y
,         c

~ = 
2

1
. 

By applying the index  v (a standard version) we obtain the following set 

Du of the decisions  u*  (8.53): 

Du = {u∈U:  c
~ ∈ 

u

y1[ , ]
2

2

u

y
} = 

c

y
~[ 1 , ]~2

2

c

y
 = [2y1, y2]. 

For every decision from this set, the certainty index that this decision be-

longs to the set of decisions for which the requirement y∈[ y1, y2]  is satis-

fied – is equal to 1. Let us assume now that  c  is C-uncertain variable and 

determine vc(u). In order to find it we determine  v(u) according to the 
formula (8.49): 

v(u) = 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤

≤≤−

≤≤

≥

1

11
1

21

2
2

     for            0     

2     for    )1(2

2for             1     

    for              

 
   

yu

yuy
u

y

yuy

yu
u

y

. 

The case  u ≥ y2, i.e. 
u

y

2
2 ≤

2

1
 has been illustrated in Fig. 8.5. In a similar 

way we determine )(uv  according to the formula (8.52): 

)(uv  = 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤

+≤≤

≤≤+−

≥

1

2
11 1

2
2

1
2

2

2for            1   
2

2for          
2

2
for      2

for              1  
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 . 

According to (8.53), after some transformations we obtain 

vc(u) = 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤

+≤≤−

+≥

1

2
11

1

2
1

2

   for
 

        0   

2
   for    1

2
for       

2
 

 

    

yu

y
yuy

u

y

y
yu

u

y

 

and  
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*
cu = arg max  vc(u). 

For example, for  y1 = 2 and  y2 = 12 we obtain  u*∈[4, 12],  v = 1 in the 

first case and  *
cu = 8,   vc = 0.75 in the second case. The function  vc(u)  is 

illustrated in Fig. 8.6.   □ 
 

0.75

0 2 4 6 10 12 14

1

uuc= 8*

vc(u)

 

Fig. 8.6. Illustration of relationship vc(u)  

8.4 Control for Dynamical Plants. Uncertain Controller 

The description based on uncertain variables can be used to control prob-
lems for a dynamical plant in a way analogous to that for the dynamical 
plant with a probabilistic description. In particular, one can consider a mul-
tistage decision problem (a control of a discrete dynamical plant) analo-

gous to that described in Sect. 7.5, in which the certainty distribution  hz(z)  

will occur in the place of  fz(z) and an expected value E( Q ) will be re-

placed by a mean value  M( Q ).  

 In this section the considerations will be limited to two basic problems 
for a dynamical plant with a parametric uncertainty, analogous to the prob-
lems mentioned at the beginning of Sect. 7.6 for the probabilistic case. For 
the plant with an uncertain parameter  c one may apply the parametric op-
timization in a way similar to that presented in Chap. 5. Now, the perform-
ance index  Q =Φ(c, a)  is a function of the unknown parameter  c and the 
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parameter  a in the control algorithm, which is to be determined. The 
closed-loop control system is then considered as a static plant with the in-
put  a, the output  Q and the unknown parameter  c, for which we can for-
mulate and solve the decision  problems described in Sect. 8.2.1. The con-
trol problem consisting in the determination of  a (in general, a vector 
parameter) may be formulated as follows. 

Control problem: For the given models of the plant and the controller 

find the value *a  minimizing )(M Q , i.e. the mean value of the perform-

ance index. 
 The procedure for solving the problem is then the following: 
1. To determine the function ),( caQ Φ= . 

2. To determine the certainty distribution );( aqhq  for Q  using the func-

tion Φ  and the distribution )(chc  in the same way as in the formula (8.19) 

for y . 

3. To determine the mean value );(M aQ . 

4. To find *a  minimizing );(M aQ . 

 In order to apply the second case of the determinization, corresponding 
to the determination of dΨ  for the static plant (see Sect. 8.2.1), it is neces-

sary to find the value )(ca  minimizing ),( caQ Φ=  for the fixed  c. The 

control algorithm with the uncertain parameter )(ca  may be considered as 

a knowledge of the control in our case, and the controller with this parame-
ter is an uncertain controller in the closed-loop system. To obtain the de-
terministic control algorithm, one should substitute )(M a  in place of )(ca  

in the uncertain control algorithm, where the mean value )(M a  should be 

determined by using the function )(ca  and the certainty distribution 

)(chc . 

 Assume that the state of the plant )(tx  is put at the input of the control-

ler. Then the uncertain controller has a form 

),( cxu Ψ=  

which may be obtained as a result of non-parametric optimization, i.e. Ψ  

is the optimal control algorithm for the given model of the plant with the 
fixed  c and for the given form of a performance index. Then 

)();(M
∆

xxuu dd Ψ==  

where );(M xu  is determined by using the distribution 
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)(max)];(~[);(
);(

chxuDcvxuh c
xuDc

cu
c∈

=∈=  

and 

)},(:{);( cxuCcxuDc Ψ=∈= . 

Example 8.5. The data for the linear control system under consideration 
(Fig. 8.7) are the following: 

)1)(1(
);(

21
O ++

=
sTsT

c
csK ,       

s

a
asK =);(R , 

z(t) = 0 for  t < 0,  z(t) = 1 for  t ≥ 0, )(chc  has a triangular form presented 

in Fig. 8.8.  

z

zu+

u

y

y−=ε

0* =y

−
);(O csK

);(R asK

 

Fig. 8.7. Closed-loop control system 

h
c
(c)

c

1

bb - d b + d  

Fig. 8.8. Example of certainty distribution 

In Example 5.1 we determined the function  ),( acQ Φ=  for the optimiza-

tion problem considered and we found the optimal parameter of the con-
troller  
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c
a

α
= ,              

21

21

TT

TT +
=α . 

The uncertain controller is then described by  

css

ca
sK

α
==

)(
)(R . (8.55)

The certainty distribution  )(aha  is as follows: 

⎪
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From the definition of a mean value we obtain 

22

2
2

22

ln2

)2(
)(M

db

b
b

bdd
a

−

+
=

α
. (8.56)

Finally, the deterministic controller is described by 

s

a
sK d

)(M
)(,R = . □

 To apply the first approach described in the previous section, it is neces-
sary to find the certainty distribution for Q  using the function ),( acQ Φ=  

determined in Example 5.1, and the distribution )(chc , then to determine 

);(M aQ  and to find the value *a  minimizing );(M aQ . It may be shown 

that )(M* aa ≠  given by the formula (8.56). 

Example 8.6. Let us consider the time-optimal control of the plant with 
2

O );( −= cscsK  (Fig. 8.9), subject to constraint Mtu ≤|)(| . It is well 

known that the optimal control algorithm ),( cxu Ψ=  is the following: 

)
2

||
sgn()(

Mc
Mtu

εε
ε

��
+=  
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where ],[ εε �=x . For the given )(chc  we can determine ),;( εε �uhu , 

which is reduced to three values )~(1 Muvv == , )~(2 Muvv −== , 

)0~(3 == uvv . Then 

1
32121 ))(()(M)( −++−== vvvvvMutud . 

);(O csK
y 0u

εε�
dt

d

−

 

Fig. 8.9. Example of control system 

It is easy to see that 

)(max
1

1 chv c
Dc c∈

= ,      )(max
2

2 chv c
Dc c∈

=  

where 

}|)|2(||sgn:{ 1
1

−−>= εεεε MccDc
�� , 

}|)|2(||sgn:{ 1
2

−−<= εεεε MccDc
��  

and  

)
2

||
(3 ε

εε
M

hv c

��−
= . 

Assume that the certainty distribution of c  is the same as in Example 8.5. 
For 0>ε , 0<ε�  and bcg <  it is easy to obtain the following control al-

gorithm 

⎪
⎩

⎪
⎨

⎧

−≥
−−

−
−≤

==
g

g

g

g

d cbd
cbd

cb
M

cbdM

uu
for

)(23

for

)(M  

where 12 )2()( −= εε Mcg
� . For example, for 5.0=M , 3−=ε� , 1=ε , 

16=b  and 10=d  we obtain  2.0=du .   □ 



 

9 Fuzzy Variables, Analogies and Soft Variables 

This chapter concerns the second part of non-probabilistic descriptions of 
the uncertainty. The first part of the chapter presents the application of 
fuzzy variables to non-parametric problems for a static plant, analogous to 
those described for random and uncertain variables. In Sect. 9.1, a very 
short description of fuzzy variables (see e.g. [52, 75, 81, 82, 95]) is given 
in the form needed to formulate our problems and to indicate analogies for 
non-parametric problems based on random, uncertain and fuzzy variables. 
These analogies lead to a generalization in the form of soft variables and 
their applications to non-parametric decision problems. The considerations 
are completed with a presentation of a fuzzy controller in a closed-loop 
control system and with some remarks concerning so called descriptive 
and prescriptive approaches. 

9.1 Fuzzy Sets and Fuzzy Numbers 

Let us consider a universal set X and a property (a predicate) )(xϕ  defined 

on a set X, i.e. a property concerning the variable Xx ∈ . If )(xϕ  is a 

crisp property, then for the fixed value x the logic value 
}1,0{)]([ ∈xw ϕ and the property )(xϕ  defines a set 

)}(:{}1)]([:{
∆

xXxxwXxDx ϕϕ ∈==∈=  

(see Sect. 8.1). If )(xϕ  is a soft property then, for the fixed  x, )(xϕ  

forms a proposition in multi-valued logic and ]1,0[)]([ ∈xw ϕ . The logic 

value )]([ xw ϕ  denotes the degree of truth, i.e. for the fixed  x the value 

)]([ xw ϕ  shows to what degree the property )(xϕ  is satisfied. The deter-

mination of the value )]([ xw ϕ  for every Xx ∈  leads to the determination 

of a function 

]1,0[: →Xµ ,   i.e. )()]([
∆

xxw µϕ = . 

In two-valued logic 
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}1,0{)()(
∆ ∈= xIxµ  

and the set xD  is defined by the pair X, I(x): 

}1)(:{)(, =∈=><= xIXxxIXDx . (9.1)

The function )(xµ is called a membership function and the pair 

>< )(, xX µ  is called a fuzzy set. This is a generalization of the function 

I(x) and the set (9.1), respectively. To every element, the membership 
function assigns the value )(xµ  from the set [0, 1]. In practical interpreta-

tions it is necessary to determine the property )(xϕ  for which the mem-

bership function is given. We assume that the membership function is 
given by an expert and describes his/her subjective opinions concerning 
the degree of truth (degree of satisfaction) of the property )(xϕ for the 

different elements Xx ∈ . For example, let X denote a set of women living 
in some region. Consider two properties (predicates): 
1. )(xϕ = “the age of  x  is less than 30 years”. 

2. )(xϕ = “x  is beautiful”. 

The first predicate is a crisp property because for the fixed woman x the 
sentence )(xϕ  is true or false, i.e. }1,0{)]([ ∈xw ϕ . The property )(xϕ  

determines the set of women (the subset XDx ⊂ ) who are less than 30 

years old. The second predicate is a soft property and 
]1,0[)()]([ ∈= xxw µϕ  may denote a degree of beauty assigned to a 

woman x by an expert. The property )(xϕ  together with the function 

)(xµ  determines the set of beautiful women. This is a fuzzy set, and for 

every x the function )(xµ  determines a degree of membership to this set. 

In the first case (for the crisp property )(xϕ ) the expert, not knowing the 

age of the woman x, may give his/her estimate ]1,0[)( ∈xµ  of the property 

)(xϕ . Such an estimate is not a membership function of the property 

)(xϕ  but a value of a certainty index characterizing the expert’s uncer-

tainty. Such a difference is important for the proper understanding of fuzzy 
numbers and their comparison with uncertain variables, presented in 
Sect. 9.3. We may say that the estimate )(xµ  is a membership function of 

the property “it seems to me that  x is less than 30 years old”, formulated 
by the expert. 
 Let us consider another example: the points  x on a plane are red to dif-
ferent degrees: from definitely red via different degrees of pink to defi-
nitely white. The value )(xµ  assigned to the point x denotes the degree of 
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red colour of this point. If the definitely red points are concentrated in 
some domain and the further from this domain they are less red (more 
white), then the function )(xµ  (the surface upon the plane) reaches its 

maximum value equal to 1 in this domain and decreases to 0 for the points 
far from this domain. 
 According to (8.1), for the determined X and any two functions 

)(1 xµ , )(2 xµ  (i.e. any two fuzzy sets) 

)}(),(max{)()( 2121 xxxx µµµµ =∨ , (9.2)

)}(),(min{)()( 2121 xxxx µµµµ =∧ , (9.3)

)(1)( 11 xx µµ −=¬ . (9.4)

These are definitions of the basic operations in the algebra of fuzzy sets 
>< )(, xX µ . The relation 

)()( 21 xx µµ ≤  

denotes the inclusion for fuzzy sets, which is a generalization of the inclu-
sion )()( 21 xIxI ≤ , i.e. 21 xx DD ⊆ . It is worth noting that except (8.1) 

one considers other definitions of the operations ∨  and ∧  in the set [0, 1], 
and consequently – other definitions of the operations (9.2) and (9.3). 

 If X is a subset of 1R  (the set of real numbers) then the pair 

xxX ˆ)(,
∆=>< µ  is called a fuzzy number. In further considerations x̂  will 

be called a fuzzy variable to indicate the analogy with random and uncer-

tain variables, and the equation xx =ˆ  will denote that the variable x̂  takes 
a value x. The function )(xµ  is now the membership function of a soft 

property )(xϕ  concerning a number. The possibilities of the formulation 

of such properties are rather limited. They may be the formulations con-
cerning the size of the number, e.g. for positive numbers, “x is small”, “x is 
very large” etc. and for real numbers, “x is small positive”, “x is large 

negative” etc. Generally, for the property “ x̂  is d ”, the value )(xµ  de-

notes to what degree this property is satisfied for the value xx =ˆ . For the 
interpretation of the fuzzy number described by )(xµ  it is necessary to 

determine the property )(xϕ  for which )(xµ  is given. One assumes that 

1)(max =
∈

x
Xx

µ . 

Usually one considers two cases: the discrete case with 
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},,,{ 21 mxxxX …=  and the continuous case in which )(xµ  is a continu-

ous function. In the case of fuzzy variables the determinization is called a 
defuzzification. In a way similar to that for random and uncertain numbers, 

it may consist in replacing the uncertain variable x̂  by its deterministic 
representation 

)(maxarg* xx
Xx

µ
∈

=  

on the assumption that *x  is a unique point such that 1)( * =xµ , or by the 

mean value )ˆ(M x . In the discrete case 

∑

∑

=

==
m

i
i

m

i
ii

x

xx

x

1

1

)(

)(

)ˆ(M

µ

µ

 (9.5)

and in the continuous case 

∫

∫
∞

∞−

∞

∞−=

dxx

dxxx

x

)(

)(

)ˆ(M

µ

µ

 (9.6)

on the assumption that the respective integrals exist. 

 Let us consider two fuzzy numbers defined by sets of values 1RX ⊆ , 
1RY ⊆  and membership functions )(xxµ , )( yyµ , respectively. The 

membership function )(xxµ  is the logic value of the soft property 

)(xxϕ = “if xx =ˆ  then x̂  is 1d ” or shortly “ x̂  is 1d ”, and )( yyµ  is the 

logic value of the soft property )( yyϕ = “ ŷ  is 2d ”, i.e. 

)()]([ xxw xx µϕ = ,           )()]([ yyw yy µϕ =  

where 1d  and 2d  denote the size of the number, e.g. )(xxϕ = “ x̂  is 

small”, )( yyϕ = “ ŷ  is large”. Using the properties xϕ  and yϕ  we can 

introduce the property yx ϕϕ →  (e.g. “if x̂  is small, then ŷ  is large”) 

with the respective membership function 

)|(][
∆

xyw yyx µϕϕ =→ , 
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and the properties 

yx ϕϕ ∨         and        ][ yxxyx ϕϕϕϕϕ →∧=∧  

for which the membership functions are defined as follows: 

)}(),(max{][ yxw yxyx µµϕϕ =∨ , 

),()}|(),(min{][
∆

yxxyxw xyyxyx µµµϕϕ ==∧ . (9.7)

If we assume that 

][][ xyyyxx ϕϕϕϕϕϕ →∧=→∧  

then 

)}|(),(min{)}|(),(min{),( yxyxyxyx xyyxxy µµµµµ == . (9.8)

The properties xϕ , yϕ  and the corresponding fuzzy numbers x̂ , ŷ  are 

called independent if 

)}(),(min{),(][ yxyxw yxxyyx µµµϕϕ ==∧ . 

Using  (9.8)  it is easy to show that 

),(max)( yxx xy
Yy

x µµ
∈

= , (9.9)

),(max)( yxy xy
Xx

y µµ
∈

= . (9.10)

The equations  (9.8), (9.9) and  (9.10)  describe the relationships between 

xµ , yµ , xyµ , )|( yxxµ  as being analogous to the relationships (8.18), 

(8.16), (8.17) for uncertain variables, in general defined in the multi-
dimensional sets X  and Y . For the given ),( yxxyµ , the set of functions 

)|( xyyµ  is determined by equation  (9.7) in which 

),(max)( yxx xy
Yy

x µµ
∈

= . 

Theorem 9.1. The set of functions )|( xyyµ  satisfying equation  (9.7) is 

determined as follows: 

⎩
⎨
⎧

∈≥

∉=

),(),(for),(

),(),(for),(
)|(

yxDyxyx

yxDyxyx
xy

xy

xy
y µ

µ
µ  (9.11)

where 

)},()(:),{(),( yxxYXyxyxD xyx µµ =×∈= . 
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Proof: From  (9.7)  it follows that 

)],()([ yxx xyx
YyXx

µµ ≥
∈∈

. 

If ),()( yxx xyx µµ >  then, according to (9.7), )|(),( xyyx yxy µµ = . If 

),()( yxx xyx µµ = , i.e. ),(),( yxDyx ∈  then ),()|( yxxy xyy µµ ≥ .  □ 

 In particular, as one of the solutions of equation  (9.7), i.e. one of the 
possible definitions of the membership function for an implication we may 
accept 

),()|( yxxy xyy µµ = . (9.12)

If )}(),(min{),( yxyx yxxy µµµ =  then according to  (9.12) 

)}(),(min{)|( yxxy yxy µµµ =  

and according to  (9.7) 

)()|( yxy yy µµ = . 

Except )()( yx yx ϕϕ →  (i.e. the property )( yyϕ  under the condition xϕ ), 

we can consider the property )( yyϕ  for the given value xx =ˆ  (i.e. the 

property )( yyϕ  under the condition xx =ˆ ): 

“ )(ˆ yxx yϕ→= ”
∆= “ xyy |)(ϕ ”,  

and the membership function of this property 

.),()}|()(min{

)]}()([)](ˆ{[)](ˆ[]|)([

yxxyx

yxxxxwyxxwxyw

xyyx

yxxyy

µµµ

ϕϕϕϕϕ

=∧=

→∧∧==→==

Then ),( yxxyµ  may be interpreted as a conditional membership function 

of the property )( yyϕ  for the given x, determined with the help of the 

property )(xxϕ . Such an interpretation is widely used in the description of 

fuzzy controllers in closed-loop systems. 
 It is worth noting that, according to (9.11), we may use the different 
functions )|( xyyµ  for the given ),( yxxyµ  and, consequently, for the 

fixed 

),(max)( yxx xy
Yy

x µµ
∈

=   
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and 

),(max)( yxy xy
Xx

y µµ
∈

= .  

In other words, the membership function of the implication 

)|()]()([ xyyxw yyx µϕϕ =→  
 

may be defined in different ways. 
 For the fixed x, the set 

)},(),(:{)( yxDyxYyxDy ∈∈=   

is a set of values x maximizing ),( yxxyµ . If )}({)( * xyxDy =  (a single-

ton), then 

),(maxarg)(*
yxxy xy

Yy
µ

∈
=   

and 1)|( * =xyyµ , i.e. 

⎪⎩

⎪
⎨
⎧

=

≠
=

).(for1

)(for),(
)|(

*

*

xyy

xyyyx
xy xy

y
µ

µ  (9.13)

It is easy to note that )|( xyyµ  determined by (9.13) is a continuous func-

tion for every Xx ∈  if and only if 

]1)([ =
∈

xx
Dx x

µ , 

i.e.  

]1),(max[ =
∈∈

yxxy
YyDx x

µ  (9.14)

where 

}.0),(:{ ≠∈=
∈

yxXxD xy
Yy

x µ  

If the condition (9.14) is satisfied then ).,()|( yxxy xyy µµ =  
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9.2 Application of Fuzzy Description to Decision Making  

       (Control) for Static Plant 

9.2.1 Plant without Disturbances 

The description concerning the pair of fuzzy variables may be directly 
applied to a one-dimensional static plant with single input Uu ∈ and single 

output Yy ∈  ),( 1RYU ⊆ . The non-parametric description of uncertainty 

using fuzzy variables may be formulated by introducing two soft proper-
ties )(uuϕ  and )( yyϕ . This description (the knowledge of the plant KP) 

is given by an expert in the form of the membership function 

)|(][ uyw yyu µϕϕ =→ . 

For example, the expert says that “if û  is large then ŷ  is small” and gives 

the membership function )|( uyyµ  for this property. In this case the 

analysis problem may consist in the determination of the membership 
function )( yyµ  characterizing the output property yϕ  for the given 

membership function )(uuµ  characterizing the input property. The deci-

sion problem may be stated as an inverse problem, consisting in finding 
)(uuϕ  for a desirable membership function )( yyµ  given by a user. From 

a formal point of view, the formulations of these problems and the respec-
tive formulas are similar to those for random variables (see Sect. 7.2) and 
for uncertain variables (see Sect. 8.2.2). 
 The essential difference is the following: 
The descriptions in the form of )(ufu  or )(uhu , and in the form of )( yf y  

or )( yhy , are concerned directly with values of the input and output, re-

spectively, and the descriptions in the form of )(uuµ  and )( yyµ  are con-

cerned with determined input and output properties, respectively. In par-
ticular, in the decision problem the functions )( yf y  or )( yhy  describe 

the user’s requirement characterizing directly the value of the output, and 
the function )( yyµ  required by the user characterizes the determined out-

put property )( yyϕ . Consequently, the solution )(uuµ  concerns the de-

termined input property )(uuϕ , and not directly the input value  u as in the 

case of )(ufu or )(uhu . 
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Analysis problem: For the determined properties )(uuϕ , )( yyϕ , the 

given ><= )|(KP uyyµ  and )(uuµ  find the membership function 

)( yyµ . 

 According to (9.10) and (9.7) with  u in place of  x 

)}|(),(min{max)( uyuy yu
Uu

y µµµ
∈

= . (9.15)

We can also formulate the analysis problem for the given input: Find 

)}|(),({min]|)([),( uyuuywyu yuyuy µµϕµ == . 

Having ),( yuuyµ , one can determine the value of  y  maximizing 

),( yuuyµ  or the conditional mean value for the given  u: 

∫

∫
∞+

∞−

+∞

∞−=

dyyu

dyyuy

uy

uy

uy

),(

),(

)|ˆ(M

µ

µ

. 

Decision problem: For the determined properties )(uuϕ , )( yyϕ , the 

given ><= )|(KP uyyµ and )( yyµ  find the membership function 

)(uuϕ . 

 To find the solution one should solve equation (9.15) with respect to the 
function )(uuµ  satisfying the conditions for a membership function: 

0)( ≥
∈

uu
Uu

µ ,           1)(max =
∈

uu
Uu

µ . 

The membership function )(uuµ  may be called a fuzzy decision. The de-

terministic decision may be obtained via a determinization which consists 
in finding the value au  maximizing the membership function )(uuµ  or the 

mean value )ˆ(M uub = . 

 Assume that the function 

)}|(),(min{),( uyuyu yuuy µµµ =  

for the given y takes its maximum value at one point 

)}|(),(min{maxarg)(ˆ uyuyu yu
Uu

µµ
∈

= . 
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Theorem 9.2. For the continuous case (i.e. continuous membership func-
tions), assume that: 
1. The function )(uuµ  has one local maximum for 

)(maxarg* uu u
Uu

µ
∈

=  

and it is a unique point such that 1)( * =uuµ . 

2. For every Yy ∈  the membership function )|( uyyµ  as a function of u 

has at most one local maximum equal to 1, i.e. the equation 

1)|( =uyyµ  

has at most one solution 

)|(maxarg)(~
uyyu y

Uu
µ

∈
= . 

Then 

)|(maxarg)(ˆ
)(

uyyu y
yDu u

µ
∈

=  

where )( yDu  is a set of values  u satisfying the equation 

)|()( uyu yu µµ = . □
 The proof of Theorem 9.2 may be found in [52]. The procedure for the 
determination of )(uuµ  for the fixed  u is the following: 

1. To solve the equation 

)|()( uyu yu µµ =  

with respect to  y  and to obtain a solution )(uy  (in general, a set of solu-

tions )(uDy ). 

2. To determine 

]|)([)]([)( uuyuyu yyu µµµ == . (9.16)

3. To prove whether 

)|(max)(
)(

~ uyy y
yDu

y
u

µµ
∈

=  (9.17)

where )(
~

yDu is a set of values  u  satisfying the equation 

)|()( uyu yu µµ = . 

4. To accept the solution )()( uu uu µµ = for which (9.17) is satisfied. 

Remark 9.1. The same considerations concerning non-parametric analysis 
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and decision problems may be presented for the description based on un-
certain variables with the distributions  h instead of the membership func-
tions  µ. The same remark concerns the plant with the disturbances, de-

scribed in the next section.   □ 

Example 9.1. Consider a plant with 1, Ryu ∈ , described by the member-

ship function 

⎪⎩

⎪
⎨
⎧ +≤≤−+−−=

.otherwise0
2

1

2

1
for1)(4)|(

2
uyuuy

uyyµ  

For the membership function required by a user (Fig. 9.1) 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

+≤≤−

+≤≤+

−≤≤−
+−−

=

,otherwise0

11for1

21

12

or

for
2)(

)(

2

cyc

cyc

cyc
cy

yyµ  (9.18)

one should determine the fuzzy decision in the form of the membership 
function )(uuµ . 

1

y

)(yyµ

2−c 1−c 1+c 2+c
 

Fig. 9.1. Example of the membership function 

 The solution of the equation 

)|()( uyy yy µµ =  (9.19)

has the following form: 
1. For 

11 +≤≤− cuc  

equation (9.19) has one solution: 
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uuy =)( . 

2. For 

1
2

1
2 −<<−− cuc           or         

2

1
21 ++<<+ cuc  

equation (9.19) is reduced to the equation 

01)()(4 22 =+−−− cyuy  

which has one solution such that 0)( >yhy : 

⎪
⎪
⎩

⎪⎪
⎨

⎧

++<<+
−−

−<<−−
+−

=

2

1
21for

3

∆4

1
2

1
2for

3

∆4

)(

cuc
cu

cuc
cu

uy  

where 

3)(4∆ 2 +−= cu . 

3. Otherwise, equation (9.19) has no solution such that 0)( >yhy . 

Then, according to (9.16) and (9.18) 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

++≤≤++
−−

+≤≤−

−≤≤−−+
+−

==

.otherwise0
2

1
21for2)

3

∆44
(

11for1

1
2

1
2for2)

3

∆44
(

)]([)(
2

2

cuc
cu

cuc

cuc
cu

uyu yu µµ  

□ 

Remark 9.2. The properties )(uuϕ  and )( yyϕ  considered in the example 

may be introduced by using additional descriptions. For example, if 

    

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

>

+≤≤−+−−

=

 otherwise0

2

1
   and

2

1

2

1
for1)(4

)|(

2

u

uyuuy

uyyµ  
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and 
2

1
2 +>c , then we can say that 

=)(uuϕ “u is medium positive”, 

=)( yyϕ “y is medium positive” 

and )|( uyyµ  is a membership function of the property: 

)()( yu yu ϕϕ →  = “If u is medium positive then y is medium positive”.

If we introduce a new variable cuu −=  with the respective constraint 
then 

)()( yu yu ϕϕ →  = “if || u  is small then  y is medium positive”. □

9.2.2 Plant with External Disturbances 

Consider a static plant with single input Uu ∈ , single output Yy ∈  and 

single disturbance Zz ∈  ),,( 1RZYU ⊆ . Now the non-parametric descrip-

tion of uncertainty using fuzzy variables may be formulated by introducing 
three soft properties: )(uuϕ , )(zzϕ  and )( yyϕ . This description is given 

by an expert in the form of the membership function 

),|(][ zuyw yyzu µϕϕϕ =→∧ , 

i.e. the knowledge of the plant 

><= ),|(KP zuyyµ . 

For example, the expert says that “if û  is large and ẑ  is medium then ŷ  is 

small” and gives the membership function ),|( zuyyµ  for this property. 

For such a plant the analysis and decision problems may be formulated as 
extensions of the problems described in the previous section. 

Analysis problem: For the given ><= ),|(KP zuyyµ , )|( zuuµ  and 

)(zzµ  find the membership function )( yyµ . 

 According to (9.10) and (9.7)  

),,(max)(
,

zuyyu y
ZzUu

y µ
∈∈

=  (9.20)

where 
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][),,( yzuy wzuy ϕϕϕµ ∧∧=  

i.e.  

)},|(),,(min{),,( zuyzuzuy yuzy µµµ = . (9.21)

Putting 

)}|(),(min{),( zuzzu uzuz µµµ =  (9.22)

and (9.21) into (9.20) yields 

)},|(),|(),(min{maxarg)(
,

zuyzuzy yuz
ZzUu

y µµµµ
∈∈

= . (9.23)

Decision problem: For the given ><= ),|(KP zuyyµ  and )( yyµ  re-

quired by a user one should determine )|( zuuµ . 

 The determination of )|( zuuµ  may be decomposed into two steps. In 

the first step, one should find the function ),( zuuzµ  satisfying the equa-

tion 

}),(),,(min{max)(
,

zuyzuy yuz
ZzUu

y µµµ
∈∈

=  (9.24)

and the conditions for a membership function: 

0),( ≥
∈∈

zuuz
ZzUu

µ ,       1),(max
,

=
∈∈

zuuz
ZzUu

µ . 

In the second step, one should determine the function )( zuuµ  satisfying 

the equation 

})(),(min{),( zuzzu uzuz µµµ =  (9.25)

where 

),(max)( zuz uz
Uu

z µµ
∈

= , 

and the conditions for a membership function: 

0)( ≥
∈∈

zuu
ZzUu

µ ,         1)(max =
∈∈

zuu
UuZz

µ . 

The solution may not be unique. The function )( zuuµ  may be considered 

as a knowledge of the decision making ><= )|(KD zuuµ  or a fuzzy deci-

sion algorithm (the description of a fuzzy controller in the open-loop con-
trol system). It is important to remember that the description of the fuzzy 
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controller is concerned with the determined input and output properties, 
i.e. 

])()([)|( uzwzu uzu ϕϕµ →=  

where the properties )(zzϕ  and )(uuϕ  have been used in the description 

of the plants. Having )|( zuuµ , one can obtain the deterministic decision 

algorithm )(zΨ  as a result of the determinization (defuzzification) of the 

fuzzy decision algorithm )|( zuuµ . Two versions corresponding to ver-

sions I and II in Sect. 8.2.2 are the following: 
 Version I. 

)()|(maxarg
∆

zzuu au
Uu

a Ψµ ==
∈

. 

 Version II. 

)(])|([)|()|ˆ(M
∆1 zduzuduzuuzuu b

U

u

U

uub Ψµµ === ∫∫ − . (9.26)

Using )|( zuuµ  or ),( zuuzµ  with the fixed z in the determination of au  or 

bu , one obtains two versions of )(zΨ . In the second version the fuzzy 

controller has the form ><=><= ),(]|)([KD zuzuw uzu µϕ  and the sec-

ond step with equation (9.25) is not necessary. Both versions are the same 
if we assume that ),()|( zuzu uzu µµ = . Let us note that in the analogous 

problems for random variables (Sect. 7.2) and for uncertain variables 
(Sect. 8.2.2) it is not possible to introduce two versions of  KD  considered 
here for fuzzy numbers. It is caused by the fact that ),( zuuzµ  and 

)|( zuuµ  do not concern directly the values of the variables (as probability 

distributions or certainty distributions) but are concerned with the proper-

ties uϕ , zϕ  and 

][),( zuuz wzu ϕϕµ ∧= ,    ]|[][)|( zuuzu wwzu ϕϕϕϕµ =→= . 

The deterministic decision algorithms )(zaΨ  or )(zbΨ  are based on the 

knowledge of the decision making ><= )(KD zuuµ , which is deter-

mined from the knowledge of the plant KP for the given )( yyµ . It is 

worth noting that the deterministic decision algorithms )(zaΨ  or )(zbΨ  

have no clear practical interpretation.  
 From a formal point of view the considerations in this section are the 
same as in Sect. 8.2.2 for uncertain variables. Then we can repeat here 
Theorem 8.4 and the next considerations including Remark 8.2 with 
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)(uuµ , )( yyµ , )(zzµ , ),( zuuzµ , )|( zuuµ , ),|( zuyyµ  in place of 

)(uhu , )( yhy , )(zhz , ),( zuhuz , )|( zuhu , ),|( zuyhy , respectively. 

 Let us note that the condition 

]1)([ =
∈

zz
Dz z

µ  

corresponding to the condition (8.38) means that )(zzϕ  is reduced to a 

crisp property “ zDz ∈ ”. 

 The considerations may be extended to the multi-dimensional case with 
vectors zyu ,, . To formulate the knowledge of the plant one introduces 

soft properties of the following form: )( juiϕ  = “ )(iu  is jd ”,     )( jziϕ  = 

“ )(iz  is jd ”,     )( jyiϕ  = “ )(iy  is jd ” where )()()( ,, iii yzu  denote the  

i-th components of yzu ,, , respectively. The determinization of the fuzzy 

algorithm may be made according to versions I and II presented for the 
one-dimensional case. In particular, version II consists in the determination 

of )ˆ(M )(iu  for the fixed z  and each component of the vector u , using the 

membership functions ),( )( zu i
uiµ  or )|( )( zu i

uiµ  where 

)},(),...,,2(),,1(max{),( )( zmzzzu uiuiui
i

ui µµµµ =  

and ),( zjuiµ  corresponds to =)( juiϕ “ j
i du is)( ”. 

Example 9.2. Consider a plant with 1,, Rzyu ∈  described by the follow-

ing KP: 
“If  u is small non-negative and z is large but not greater than  b (i.e. zb −  
is small non-negative) then  y is medium”. Then 

)(uuϕ = “ u  is small non-negative”, 

)(zzϕ = “ z  is large, not greater than  b”, 

)( yyϕ = “ y  is medium”. 

 The membership function ][ yzuw ϕϕϕ →∧  is as follows: 

)(1)(),|( 2 zbudyzuyy −−−+−−=µ  

for 

2

1
0 ≤≤ u ,            bzb ≤≤−

2

1
, 
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dzbuydzbu +−−−≤≤+−−−− )(1)(1  

and 0),|( =zuyyµ  otherwise. 

 For the membership function required by a user 

⎪⎩

⎪
⎨
⎧ +≤≤−+−−

=
,otherwise

11for

0

1)(
)(

2 cyccy
yyµ  

one should determine the fuzzy decision algorithm in the form 
),()|( zuzu uzu µµ = . 

 Let us assume that 1,0 >> cb  and 

21 +≤≤+ cdc . 

Then the equation ),|()( zuyy yy µµ =  has a unique solution which is 

reduced to the solution of the equation 

)(1)(1)( 22 zbudycy −−−+−−=+−− . 

Further considerations are the same as in Example 8.3, which is identical 
from the formal point of view. Consequently, we obtain the following re-
sult: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤≤−≤≤

−−−−−≤+
−

−++−
−

=

=

.otherwise0
2

1
,

2

1
0

)(]1)[(1for
1]

)(2

)(
[

)|(),(

2
2

2

bzbu

zbcdu

cd

zbucd

zuzu uuz µµ

 

By applying the determinization (defuzzification) we can determine the 
deterministic decision algorithm in an open-loop decision system: 

)()|(maxarg
∆

zzuu au
Uu

a Ψµ ==
∈

 

or 

)()|ˆ(M
∆

zzuu bub Ψ== . □

Remark 9.3. The description ),|( zuyyµ  given by an expert and the solu-

tion ),()|( zuzu uzu µµ = do not satisfy the condition 1max =µ . The nor-

malization in the form analogous to (8.39) is not necessary if we are inter-
ested in the deterministic decisions au  or  bu , which are the same for 

)|( zuuµ  and the normalized form )|( zuuµ .   □ 
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9.3 Comparison of Uncertain Variables with Random and 

      Fuzzy Variables 

The formal part of the definitions of a random variable, a fuzzy number 
and an uncertain variable is the same: >< )(, xX µ , that is a set X  and a 

function 1: RX →µ  where )(0 xµ≤  for every Xx ∈ . For the fuzzy 

number, the uncertain variable and for the random variable in the discrete 
case, 1)( ≤xµ . For the random variable the property of additivity is re-

quired, which in the discrete case },...,,{ 21 mxxxX =  is reduced to the 

equality 1)(...)()( 21 =+++ mxxx µµµ . Without any additional descrip-

tion, one can say that each variable is defined by a fuzzy set >< )(, xX µ . 

In fact, each definition contains an additional description of semantics 
which discriminates the respective variables. To compare the uncertain 
variables with probabilistic and fuzzy approaches, take into account the 

definitions for 1RX ⊆ , using ωΩ ,  and )()( ωω xg =  introduced in 

Sect. 8.1. The random variable x
~  is defined by X  and probability distri-

bution )()( xFx =µ  (or probability density )(')( xFxf =  if this exists) 

where )(xF  is the probability that xx ≤~ . In the discrete case 

)~()()( iii xxPxpx ===µ  (probability that ixx =~ ). For example, if Ω  is 

a set of 100  persons and 20  of them have the age 30)( =ωx , then the 

probability that a person chosen randomly from Ω  has 30=x  is equal to 
2.0 . In general, the function )(xp  (or )(xf  in a continuous case) is an 

objective characteristic of Ω  as a whole and )(xhω  is a subjective charac-

teristic given by an expert and describes his or her individual opinion of 
the fixed particular ω . 
 To compare uncertain variables with fuzzy numbers, let us recall three 
basic definitions of the fuzzy number in a wide sense of the word, that is 

the definitions of the fuzzy set based on the number set 1RX = . 

1. The fuzzy number )(ˆ dx  for the given fixed value Xd ∈  is defined by 

X  and the membership function ),( dxµ , which may be considered as a 

logic value (degree of truth) of the soft property “if xx =ˆ  then dx =~ˆ ”. 

2. The linguistic fuzzy variable x̂  is defined by X  and a set of member-
ship functions )(xiµ  corresponding to different descriptions of the size of 

x̂  (small, medium, large, etc.). For example, )(1 xµ  is a logic value of the 

soft property “if xx =ˆ  then x̂  is small”. 
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3. The fuzzy number )(ˆ ωx  (where Ωω ∈  was introduced at the beginning 

of Sect. 8.1) is defined by X  and the membership function )(xωµ , which 

is a logic value (degree of possibility) of the soft property “it is possible 
that the value  x is assigned to ω ”. 
In the first two definitions the membership function does not depend on 
ω ; in the third case there is a family of membership functions (a family of 

fuzzy sets) for Ωω ∈ . The difference between )(ˆ dx  or the linguistic 

fuzzy variable x̂  and the uncertain variable )(ωx  is quite evident. The 

variables )(ˆ ωx  and )(ωx  are formally defined in the same way by the 

fuzzy sets >< )(, xX ωµ  and >< )(, xhX ω , respectively, but the interpre-

tations of )(xωµ  and )(xhω  are different. In the case of the uncertain 

variable there exists a function )(ωgx = , the value x  is determined for 

the fixed ω  but is unknown to an expert who formulates the degree of 

certainty that xx =~)(ω  for the different values Xx ∈ . In the case of )(ˆ ωx  

the function g  may not exist. Instead we have a property of the type “it is 

possible that ),( xP ω ” (or, briefly, “it is possible that the value x  is as-

signed to ω ”) where ),( xP ω  is such a property concerning ω  and x  for 

which it makes sense to use the words “it is possible”. Then )(xωµ  for 

fixed ω  means the degree of possibility for the different values Xx ∈  
given by an expert. The example with persons and age is not adequate for 
this interpretation. In the popular example of the possibilistic approach 

=),( xP ω  “John )(ω  ate x  eggs at his breakfast”. 

 From the point of view presented above, )(ωx  may be considered as a 

special case of )(ˆ ωx  (when the relation ),( xP ω  is reduced to the function 

g ), with a specific interpretation of )()( xhx ωωµ = . A further difference 

is connected with the definitions of )~( xDxw ∈ , )
~

( xDxw ∉ , 

)~~( 21 DxDxw ∈∨∈  and )~~( 21 DxDxw ∈∧∈ . The function 

)()~(
∆

xx DmDxw =∈  may be considered as a measure defined for the fam-

ily of sets XDx ⊆ . Two measures have been defined in the definitions of 

the uncertain variables: )()~(
∆

xx DmDxv =∈  and )()~(
∆

xcxc DmDxv =∈ . 

Let us recall the following special cases of monotonic non-additive meas-
ures (see for example [81]) and their properties for every 1D , 2D . 

1. If )( xDm  is a belief measure, then 
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           )()()()( 212121 DDmDmDmDDm ∩−+≥∪ . 

2. If )( xDm  is a plausibility measure, then 

           )()()()( 212121 DDmDmDmDDm ∪−+≤∩ . 

3. A necessity measure is a belief measure for which 

           )}.(),({min)( 2121 DmDmDDm =∩  

4. A possibility measure is a plausibility measure for which 

           )}.(),({max)( 2121 DmDmDDm =∪  

Taking into account the properties of m  and cm  presented in Sect. 8.1, it 

is easy to see that m  is a possibility measure, that )~(1
∆

xn Dxvm ∈−=  is a 

necessity measure and that cm  is neither a belief nor a plausibility meas-

ure. 
 The interpretation of the membership function )(xµ  as a logic value w  

of a given soft property )(xP , that is )]([)( xPwx =µ , is especially impor-

tant and necessary if we consider two fuzzy numbers ),( yx  and a relation 

),( yxR  or a function )(xfy = . Consequently, it is necessary if we formu-

late analysis and decision problems. The formal relationships (see for ex-
ample [95]) 

])(:)([max)( yxfxy x
x

y == µµ  

for the function and 

]),(:)([max)( Ryxxy x
x

y ∈= µµ  

for the relation do not determine evidently )( yPy  for the given )(xPx . If  

)]([)( xPwx xx =µ   where =)(xPx  “if xx =ˆ  then dx =~ˆ ”, then we can 

accept that  )]([)( yPwy yy =µ   where =)( yPy  “if  yy =ˆ  then 

)ˆ(~ˆ xfy = ” in the case of the function, but in the case of the relation )( yPy  

is not determined. If =)(xPx “if xx =ˆ  then x̂  is small” , then )( yPy  may 

not be evident even in the case of the function, for example .sin xy =  For 

the uncertain variable )~()()( xxvxhx xx ===µ  with the definitions  

(8.2) – (8.5), the property )( yPy  such that )]([)( yPvy yy =µ  is deter-
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mined precisely: in the case of the function, )~()()( yyvyhy yy ===µ  

and, in the case of the relation, )( yyµ  is the certainty index of the prop-

erty =)( yPy “there exist x  such that  ),(~),( yxRyx ∈ ”. 

 Consequently, using uncertain variables it is possible not only to formu-
late the analysis and decision problems in the form considered in Chap. 8, 
but also to define precisely the meaning of these formulations and solu-
tions. This corresponds to the two parts of the definition of the uncertain 
variable mentioned in Sect. 8.1 after the Definition 8.1: a formal descrip-
tion and its interpretation. The remark concerning ω  in this definition is 
also very important because it makes it possible to interpret precisely the 
source of the information about the unknown parameter x  and the term 
“certainty index”. 
 In the theory of fuzzy sets and systems there exist other formulations of 
analysis and decision problems (see for example [75]), different from those 
presented in this chapter. The decision problem with a fuzzy goal is usu-

ally based on the given )( yyµ  as the logic value of the property “ ŷ  is 

satisfactory” or related properties. 
 The statements of analysis and decision problems in Chap. 8 for the 
system with the known relation R  and unknown parameter c  considered 
as an uncertain variable are similar to analogous approaches for the prob-
abilistic model and together with the deterministic case form a unified set 
of problems. For ),( cuy Φ=  and given y  the decision problem is as fol-

lows: 
1. If c  is known (the deterministic case), find u  such that ycu =),(Φ . 

2. If c  is a value of random variable c
~  with given certainty distribution, 

find u , maximizing the probability that yy =~  (for the discrete variable), 

or find u  such that yuy =),~(E  where E  denotes the expected value of 

y
~ . 

3. If c  is a value of uncertain variable c  with given certainty distribution, 
find u , maximizing the certainty index of the property yy =~ , or find u  

such that yuy =)(M  where  M denotes the mean value of y . 

The definition of the uncertain variable has been used to introduce a C-
uncertain variable, especially recommended for analysis and decision 
problems with unknown parameters because of its advantages mentioned 
in Sect. 8.1. Not only the interpretation but also a formal description of the 
C-uncertain variable differ in an obvious way from the known definitions 
of fuzzy numbers (see Definition 8.2 and the remark concerning the meas-
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ure cm  in this section). 

9.4 Comparisons and Analogies for Non-parametric 
Problems 

To indicate analogies and differences between the descriptions based on 
random, uncertain and fuzzy variables let us present together basic non-
parametric problems (i.e. the problems based on the non-parametric de-
scriptions), discussed in Sects. 6.3, 7.2, 8.2.2 and 9.2.2. The general ap-
proach to the decision problem is illustrated in Fig. 9.2, for a static plant 
with input vector Uu ∈ , output vector Yy ∈  and vector of external dis-

turbances Zz ∈ . The knowledge of the decision making KD  is deter-
mined from the knowledge of the plant KP  and the requirement concern-
ing y , given by a user. The deterministic decision algorithm )(zud Ψ=  is 

obtained as a result of the determinization of KD . For simplicity, we shall 
recall only the mean value as a result of the determinization. 
 

KD

Determinization

Ψ

KP

ydu

z

Plant

requirement

z

 

Fig. 9.2. General idea of the decision system under consideration 

A. Relational system 

The knowledge of the plant KP  has the form of a relation 

ZYUzyuR ××⊂),,( , 

which determines the set of possible outputs for the given u  and z : 
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}),,(:{),( RzyuYyzuDy ∈∈= . (9.27)

Analysis problem: For the given ),( zuDy , UDu ⊂  and ZDz ⊂ one 

should determine the smallest set YDy ⊂ for which the implication 

yzu DyDzDu ∈→∈∧∈ )()(  

is satisfied. 
 According to (6.5) and (9.27) 

∪∪
zu Dz

y
Du

y zuDD

∈∈
= ),( . (9.28)

Decision problem: For the given ),( zuDy  and yD  required by a user one 

should determine the largest set  )(zDu  such that for the given  z   the 

implication 

yu DyzDu ∈→∈ )(  

is satisfied. 
 According to (6.19) 

),(}),(:{)(
∆

uzRDzuDUuzD yyu =⊆∈= . (9.29)

The knowledge of the decision making ><= ),(KD uzR  has been called a 

relational decision algorithm (the description of a relational controller in 
the open-loop control system). The determinization in the form of a mean 
value gives the deterministic decision algorithm 

)(][
∆1

)()(

zduuduu d

zDzD

d

uu

Ψ=⋅= −∫∫ . 

The deterministic decision algorithm )(zdΨ  is based on the knowledge of 

the decision making KD , which is determined from the knowledge of the 
plant KP  (reduced to ),( zuDy ), for the given yD . 

B. Description based on random variables 

The knowledge of the plant has the form of a conditional probability den-
sity 

><= ),(KP zuyf y . (9.30)

Analysis problem: For the given ><= ),(KP zuyf y , )( zufu  and 

)(zf z  find the probability density )( yf y : 
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dzduzuyfzufzfyf

Z

yuz

U

y ∫∫= ),()()()( . (9.31)

Decision problem: For the given ><= ),(KP zuyf y  and )( yf y  re-

quired by a user one should determine )( zufu . 

 The determination of )( zufu  may be decomposed into two steps. In 

the first step one, should find the function ),( zufuz satisfying the equation 

dzduzuyfzufyf

Z

yuz

U

y ∫∫= ),(),()(  (9.32)

and the conditions for a probability density: 

0),( ≥
∈∈

zufuz
ZzUu

,         1),( =∫∫ dzduzuf

Z

uz

U

. 

In the second step, one should determine the function )( zufu : 

∫
=

U

uz

uz
u

duzuf

zuf
zuf

),(

),(
)(  . (9.33)

The knowledge of the decision making ><= )(KD zufu  has been called 

a random decision algorithm (the description of a random controller in the 
open-loop control system). The deterministic decision algorithm 

)()(
∆

zduzufuu d

U

ud Ψ== ∫  

is based on KD  determined from KP, for the given )( yf y . 

C. Description based on uncertain variables 

The knowledge of the plant has the form of a conditional certainty distri-
bution given by an expert: 

><= ),|(KP zuyhy . (9.34)

Analysis problem: For the given ><= ),|(KP zuyhy , )|( zuhu  and 

)(zhz  find the certainty distribution )( yhy . 

 According to (8.30) 
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}),|(),|(),({minmax)(
,

zuyhzuhzhyh yuz
ZzUu

y
∈∈

= . (9.35)

Decision problem: For the given ><= ),(KP zuyhy  and )( yhy  re-

quired by a user one should determine )|( zuhu . 

 According to (8.30) and (8.31), the determination of )|( zuhu may be 

decomposed into two steps. First, one should find the function ),( zuhuz  

satisfying the equation 

}),|(),,({minmax)(
,

zuyhzuhyh yuz
ZzUu

y
∈∈

=  (9.36)

and the conditions for a certainty distribution 

0),( ≥
∈∈

zuhuz
ZzUu

,       1),(max
,

=
∈∈

zuhuz
ZzUu

. 

Then, one should determine the function )|( zuhu  satisfying the equation 

})|(),,(max{min),( zuhzuhzuh uuz
Uu

uz
∈

=  (9.37)

and the conditions for a certainty distribution. The knowledge of the deci-

sion making ><= )(KD zuhu  has been called an uncertain decision 

algorithm (the description of an uncertain controller in the open-loop con-
trol system). The deterministic decision algorithm 

)(])|([)|(
∆1

zduzuhduzuhuu d

U

u

U

ud Ψ=⋅= −∫∫  

is based on KD determined from KP, for the given )( yhy . 

D. Description based on fuzzy variables 

For the determined soft properties )(uuϕ , )(zzϕ  and )( yyϕ , the knowl-

edge of the plant has the form of a membership function 

><= ),|(KP zuyyµ . (9.38)

Analysis problem: For the given ><= ),|(KP zuyyµ , )|( zuuµ  and 

)(zzµ  find the membership function )( yyµ . 

 The solution is given by the formula (9.23). 

Decision problem: For the given ><= ),|(KP zuyyµ  and )( yyµ  re-

quired by a user one should determine )|( zuuµ . 
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 Two steps of the solution are described by the formulas (9.24) and 
(9.25). The deterministic decision algorithm 

)(])|([)|(
∆1

zduzuduzuuu d

U

u

U

ud Ψµµ =⋅= −∫∫  

is based on the fuzzy decision algorithm (the description of a fuzzy control-

ler in the open-loop control system) ><= )|(KD zuuµ , and is determined 

from KP for the given )( yyµ  with  dΨ   in place of  ba ΨΨ , . 

Remark 9.4. In special cases of the decision problem considered in Sects. 
8.2.2 and 9.2.2, when the solution in the first step in the form of ),( zuhuz  

or ),( zuuzµ  is not unique, the distribution )(zhz  or )(zzµ  may be given 

a priori.   □ 
 The different cases of KP  are described by (9.27), (9.30), (9.34), (9.38) 
and the respective results of the analysis problem are given by (9.28), 
(9.31), (9.35), (9.23). The solution of the decision problem (9.29) corre-
sponds to the solution in two steps described by (9.32) and (9.33) for the 
random variables, by (9.36) and (9.37) for the uncertain variables, and by 
(9.24) and (9.25) for the fuzzy variables. The essential differences are the 
following: 
1. Cases A, B are based on the objective descriptions of KP, and cases C, 
D are based on the subjective descriptions given by an expert. 
2. The descriptions in cases B, C are concerned directly with values of 

),,( zyu , and the description in case D is concerned with determined prop-

erties of ),,( zyu . 

9.5 Introduction to Soft Variables 

The uncertain, random and fuzzy variables may be considered as special 
cases of a more general description of the uncertainty in the form of soft 

variables and evaluating functions [50, 52], which may be introduced as a 
tool for a unification and generalization of non-parametric analysis and 
decision problems based on the uncertain knowledge representation. The 
definition of a soft variable should be completed with the determination of 
relationships for the pair of soft variables. 

Definition 9.1 (soft variable and the pair of soft variables). A soft variable 

><=
∨

)(, xgXx  is defined by the set of values  X  (a real number vector 
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space) and a bounded evaluating function +→ RXg : , satisfying the fol-

lowing condition: 

∫ ∞<
X

xxg )(  

for the continuous case and 

∞<∑
∞

=1

)(
i

ii xgx  

for the discrete case. 

 Let us consider two soft variables ><=
∨

)(, xgXx x , ><=
∨

)(, ygYy y  

and the variable ),(
∨∨
yx  described by +→× RYXyxg xy :),( . Denote by 

)|( xyg y  the evaluating function of 
∨
y  for the given value  x  (the condi-

tional evaluating function). The pair ),(
∨∨
yx  is defined by ),( yxgxy  and 

two operations: 

)]|(),([),( 1 xygxgOyxg yxxy = , (9.39)

)],([)( 2 yxgOxg xyx = , (9.40)

i.e. 

xyggygx DDDO ,1 : →× ,      xgxyg DDO ,,2 : →  

where gxD , )(xDgy  and xygD ,  are sets of the functions )(xgx , 

)|( xyg y  and ),( yxgxy , respectively. The mean value )(M
∨
x  is defined 

in the same way as for an uncertain variable (see Sect.8.1), with )(xgx  in 

place of )(xhx .   □ 

 The evaluating function may have different practical interpretations. In 
the random case, a soft variable is a random variable described by the 
probability density )()( xfxg =  or by probabilities )~()( ii xxPxg == . In 

the case of an uncertain variable, )()( xhxg =  is the certainty distribution. 

In the case of the fuzzy description, a soft variable is a fuzzy variable de-
scribed by the membership function )]([)()( xwxxg ϕµ ==  where w de-

notes a logic value of a given soft property )(xϕ . In general, we can say 
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that )(xg  describes an evaluation of the set of possible values X, 

characterizing for every value x its significance (importance or weight). 

This description presents a knowledge concerning the variable 
∨
x , which 

may be given by an expert describing his / her subjective opinion, or may 
have an objective character such as in the case of a random variable. 
 The non-parametric decision (control) problems considered for random, 
uncertain and fuzzy variables may be written together and generalized by 
using soft variables. For the plant with  Uu ∈ , Yy ∈   and  Zz ∈  we as-

sume that ),,( zyu  are values of soft variables ),,(
∨∨∨
zyu  and the knowledge 

of the plant has the form of a conditional evaluating function  

>=< ),|(KP zuyg y . 

Decision problem: For the given ><= ),(KP zuyg y  and )( yg y  re-

quired by a user one should determine )( zugu . 

 The determination of )( zugu  may be decomposed into two steps. In 

the first step, one should find the evaluating function ),( zuguz satisfying 

the equation 

}]),(),,([{)( 12 zuygzugOOyg yuzy = . 

In the second step, one should determine the function )( zugu  satisfying 

the equation 

])(),([),( 1 zugzgOzug uzuz =  

where 

]),([)( 2 zugOzg uzz = . 

The function )( zugu  may be called a knowledge of the decision making 

><= )(KD zugu  or a soft decision algorithm (the description of a soft 

controller in the open-loop control system). Having )( zugu  one can ob-

tain the deterministic decision algorithm as a result of the determinization 
of the soft decision algorithm. Two versions of the determinization are the 
following: 
 

Version I. 

)()(maxarg
∆

zzugu au
Uu

a Ψ==
∈

. 
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Version II. 

)(])([)()(M
∆1 zduzugduzuguzuu b

U

u

U

ub Ψ=⋅== −∨
∫∫ . 

The deterministic decision algorithms )(zaΨ  or )(zbΨ  are based on the 

knowledge of the decision making ><= )(KD zugu  determined from the 

knowledge of the plant KP for the given )( yg y . 

9.6 Descriptive and Prescriptive Approaches. Quality of 
Decisions 

In the analysis and design of knowledge-based uncertain systems it may be 
important to investigate a relation between two concepts concerning two 
different subjects of the knowledge given by an expert, which have been 
mentioned in Sect. 6.5 and Sect. 7.2 [39, 52]. In the descriptive approach 
an expert gives the knowledge of the plant KP, and the knowledge of the 
decision making KD is obtained from KP for the given requirement. This 
approach is widely used in the traditional decision and control theory. The 
deterministic decision algorithm may be obtained via the determinization 
of KP or the determinization of KD based on KP. Such a situation is illus-
trated in Figs. 6.8 and 6.9 for the relational description and in Figs. 8.2 and 
8.3 for the formulation based on uncertain variables. In the prescriptive 

approach the knowledge of the decision making KD  is given directly by 
an expert. This approach is used in the design of fuzzy controllers where 
the deterministic control algorithm is obtained via the defuzzification of 
the knowledge of the control given by an expert. The descriptive approach 
to the decision making based on the fuzzy description may be found in  
[75]. 
 Generally speaking, the descriptive and prescriptive approaches may be 
called equivalent if the deterministic decision algorithms based on KP and 

KD  are the same. Different particular cases considered in the previous 
chapters may be illustrated in Figs. 9.3 and 9.4 for two different concepts 
of the determinization. Fig. 9.5 illustrates the prescriptive approach. In the 

first version (Fig. 9.3) the approaches are equivalent if )()( zz dΨΨ =  for 

every z. In the second version (Fig. 9.4) the approaches are equivalent if 

KDKD = . Then )()( zz dd ΨΨ =  for every z. 
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Determinization

Deterministic

plant model

Ψ

KP
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z

requirement
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Expert
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Fig. 9.3. Illustration of descriptive approach – the first version 

Determinization

dΨ

KP

du

z

requirement

Plant

ExpertKD

z

 

Fig. 9.4. Illustration of descriptive approach – the second version 

 Let us consider more precisely version I of the decision problem de-
scribed in Sect. 8.2.1. An expert formulates ><= ch,KP Φ  (the descrip-

tive approach) or ><= cd h,KD Φ  (the prescriptive approach). In the first 

version of the determinization illustrated in Fig. 8.2, the approaches are 

equivalent if )()( zz ada ΨΨ =  for every z, where )(zaΨ  is determined by 
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(8.22) and )(zadΨ  is determined by (8.27) with ),( czdΦ  instead of 

),( czdΦ  obtained as a solution of the equation 

*),,( yczu =Φ . (9.41)

In the second version of the determinization illustrated in Fig. 8.3, the ap-
proaches are equivalent if the solution of equation (9.41) with respect to u 

has the form ),( czdΦ , i.e. 

*],),,([ yczczd =ΦΦ . 

For the non-parametric problem described in Sect. 8.2.2 only the second 
version of the determinization may be applied. 
 The similar formulation of the equivalency may be given for the random 
and fuzzy descriptions presented in Chap. 7 and in this chapter, respec-
tively. The generalization for the soft variables and evaluating functions 
described in Sect. 9.5 may be formulated as a principle of equivalency. 

Principle of equivalency: If the knowledge of the decision making KD  
given by an expert has the form of an evaluating function )|(ˆ zugu  and 

)()|(ˆ zDzug guu ∈  where )(zDgu  is the set of all solutions of the decision 

problem presented in Sect. 9.5, then the decision algorithm based on the 
knowledge of the decision making given by an expert is equivalent to one 

of the decision algorithms based on the knowledge of the plant.   □ 

 For the non-parametric cases described together in Sect. 9.4, descriptive 
and prescriptive approaches are equivalent if: 

1. )|( zufu  given by an expert satisfies equation (9.31). 

2. )|( zuhu  given by an expert satisfies equation (9.35). 

3. )|( zuuµ  given by an expert satisfies equation (9.23). 

4. )|( zugu  given by an expert satisfies equation  

}]),|()),|(),(([{)( 112 zuygzugzgOOOyg yuzy = . 

It is worth noting that the determination of the decision algorithm Ψ  

based on KD  means the solution of the analysis problem for the unit (the 

plant) described by KD  and for the given input of this unit: z in the open-
loop system and  x in the closed-loop system. It may be useful to present 

together the determinizations of KD  in non-parametric cases for static 
plants in an open-loop system (see Fig. 9.5). 
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A. Description based on random variables 

For the given )|( zufu one should determine 

∫ ===
U

dud zduzufuzuu )()|()|~(E
∆

Ψ . 

Determinization

dΨ
du

z

requirement

Plant

ExpertKD

z

 

Fig. 9.5. Illustration of prescriptive approach 

B. Description based on uncertain variables 

For the given )|( zuhu one should determine 

∫ ∫ =⋅== −

U

d

U

uud zduzuhduzuhuzuu )(]),([)|()|(M
∆1 Ψ . 

C. Description based on fuzzy variables ( 1RU = ) 
In this case we can consider two versions (see Sects. 9.1 and 9.2): 
1. For the given )]()([)|( uzwzu uzu ϕϕµ →= one should determine 

∫∫
∞

∞−

−
∞

∞−

=⋅== )(]),([)|()|ˆ(M
∆1

zduzuduzuuzuu duud Ψµµ . (9.42)

2. For the given 

)}|(),(min{)](ˆ[),( zuzuzzwzu uzuuz µµϕµ =→==  

one should determine 

)(])|([)|()|ˆ(M
∆1

zduzuduzuuzuu duzuzd Ψµµ =⋅== ∫∫
∞

∞−

−
∞

∞−

. (9.43)
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Cases 1 and 2 are equivalent if )|()|( zuzu uzu µµ = . 

 Instead of the mean value E or M we can use the value of  u  maximiz-
ing the distribution, e.g. in case A 

).|(maxarg zufu u
Uu

d
∈

=  

Denote by  a  the vector of parameters in the description given by an ex-

pert. They may be parameters in )|( zufu , )|( zuhu  or )|( zuuµ . Conse-

quently, the deterministic decision algorithm ),( azu dd Ψ=  depends on  a. 

Then the problem of a parametric optimization consisting in choosing *a  
minimizing the performance index  Q, and the problem of adaptation con-

sisting in adjusting  a to *a , may be considered (see Sect. 11.4). 
 The cases corresponding to A, B, C may be listed for the dynamical 
plant with  x instead of  z. Note that the description for the fuzzy variables 
is concerned with a simple one-dimensional case. In the next section we 
shall present it for a multi-dimensional case in the closed-loop system. 
 Different approaches to the determination of the deterministic decision 
(control) algorithm, based on different formal descriptions of the uncer-
tainty (and including descriptive and prescriptive approaches) may be veri-
fied and compared by evaluating the quality of decisions based on an un-
certain description and applied to a concrete deterministic plant with a 
known description. Consider a plant described by a function ),( zuy Φ=  

and introduce the performance index evaluating the quality of the decision  
u  for the given  z 

]),([]),([)()(),( *T**T* yzuyzuyyyyzuQ −−=−−= ΦΦ  

where *y  denotes a desirable value of the output. Assume that the func-

tion Φ  (i.e. the exact deterministic description of the plant) is unknown, 
),,( zyu  are values of uncertain variables ),,( zyu  and a user presents the 

requirement in the form of a certainty distribution )( yhy  in which 

*)(maxarg yyhy
y

= . 

If ),( azud Ψ=  is the deterministic decision algorithm obtained as a result 

of a determinization of the uncertain decision algorithm )|( zuhu  obtained 

from KP or given directly by a user, then 

)(])),,(([])),,(([)(
∆*T* zyzazyzazzQ ΦΨΦΨΦ =−−=  (9.44)
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where  a  is the vector of parameters in the certainty distribution )|( zyhy  

(in the descriptive approach) or directly in the certainty distribution 
)|( zuhu  (in the prescriptive approach). For the given z, the performance 

index (9.44) evaluates the quality of the decision du  based on the uncer-

tain knowledge and applied to the real plant described by Φ . To evaluate 
the quality of the algorithm dΨ  for different possible values of  z, one can 

use the mean value 

1

00

])([)()(M −
+∞+∞

∫∫ ⋅= dqqhdqqhqQ qq  (9.45)

where )(qhq  is the certainty distribution of )(zQ Φ=  which should be 

determined for the given function Φ  and the certainty distribution 

),(max)( zuhzh uz
Uu

z
∈

= , 

and ),( zuhuz  is the distribution obtained in the first step of the decision 

problem solution (see (8.30) in Sect. 8.2.2). In the prescriptive approach 
)(zhz  should be given by an expert. The performance index (9.44) or 

(9.45) may be used in: 
1. Investigation of the influence of the parameter  a  in the description of 
the uncertain knowledge on the quality of the decisions based on this 
knowledge. 
2. Comparison of the descriptive and prescriptive approaches in the case 

when )|( zuhu  and )|( zuhu  have the same form with different values of 

the parameter  a. 
3. Parametric optimization and adaptation, when 

)(minarg* aQa
a

=  

is obtained by the adaptation process consisting in step by step changing of 
the parameters of the controller in an open-loop decision system with a 
simulator of the plant described by the model Φ . 
 The considerations for fuzzy controllers are analogous, with 

),|( zuyyµ , )(zzµ  and )|( zuuµ  in place of ),|( zuyhy , )(zhz  and 

)|( zuhu . 
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9.7 Control for Dynamical Plants. Fuzzy Controller 

Let us consider the closed-loop control system with a dynamical plant 
(continuous- or discrete-time) in which the state  x is put at the input of the 

controller. In the simple one-dimensional case the knowledge KD  (or the 
fuzzy controller) given by an expert consists of two parts: 
1. The rule 

)()( ux ux ϕϕ →  (9.46)

with the determined properties )(and)( ux ux ϕϕ : “x is xd ”  and  “u is 

ud ”, i.e. “if x̂ = x  then  x is xd ”  and  “if û = u  then  u is ud ” (see 

Sect. 9.1). 
2. In the first version corresponding to (9.42) for the open-loop system – 
the membership function )|( xuuµ  of the property (9.46). In the second 

version corresponding to (9.43) – the membership function )|( xuuµ  and 

the membership function )(xxµ  of the property )(xxϕ , or directly the 

membership function 

)}|(),(min{)](ˆ[),( xuxuxxwxu uxuux µµϕµ =→== . (9.47)

Then the deterministic control algorithm (or deterministic controller) is 
described by the following procedure: 
1. Put  x at the input of the controller. 
2. In the first version, determine the decision 

∫ ∫
∞

∞−

∞

∞−

−⋅= 1])|([)|( duxuduxuuu uud µµ . 

In the second version, for the given )|( xuuµ  and )(xxµ  determine 

),( xuuxµ  according to (9.47) and find the decision 

∫ ∫
∞

∞−

∞

∞−

−⋅= 1]),([),( duxuduxuuu uxuxd µµ . 

Instead of the mean value we can determine and use the decision du  

maximizing the membership function )|( xuuµ  or ),( xuuxµ . 

 Let us present the extension of the second version to the controller with 

k  inputs )()2()1( ...,,, kxxx  (the components of the state vector x ) and one 

output u .The description of the fuzzy controller  ( KD ) given by an expert 
has a form analogous to that for the fuzzy description of a multi-
dimensional static plant (see Sect. 9.2.2) and contains two parts: 
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1. The set of rules 

Nj

xxxx
u

ju
k

jkjj

...,,2,1

,)()(...)()( )()()2(
2

)1(
1

=

→∧∧∧ ϕϕϕϕ
 

(9.48)

where N  is a number of rules, )( )(i
ji xϕ = “ )(ix  is jid ”  and  =)(ujuϕ  

“u is jd ”, jid  and jd  denote the size of the numbers as in Sects. 9.1 and 

9.2.2. The meaning of the rules (9.48) is then as follows: 

IF ( )1(x  is 1jd ) AND ( )2(x  is 2jd ) AND ... AND ( )(kx  is jkd ) 

THEN  u is jd . 

For example ( 3=k ) 

( )1(x  is small positive) ∧ ( )2(x  is large negative) ∧ ( )3(x  is small negative)
→  u  is medium positive. 

2. The matrix of the membership functions 

Nj
ki

xwx
i

ji
i

xji

...,,2,1
,...,,2,1

],)([)( )()(

=
=

= ϕµ
 

and the sequence of the membership functions 

Njxxxu k
uj ...,,2,1,)...,,,|( )()2()1( =µ  

for the properties (9.48). 
 The deterministic controller (i.e. the deterministic control algorithm 

obtained as a result of the determinization of KD ) is described by the 
following procedure: 
1. Put x  at the input of the controller. 
2. Find the sequence of values 

Njxxxx k
xjkxjxjxj ...,,2,1,})(...,,)(,)(min{)( )()2(

2
)1(

1 == µµµµ .

3. From each rule determine the membership function 

....,,2,1

,})(),(min{]isˆ[),(,

Nj

xuxduxxwxu ujxjjjux

=

=→== µµµ
  

4. Determine the membership function )(xuµ  of the property 

)is(...)is()is()ˆ( 21 Ndududuxx ∨∨∨→= . 

Then 
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)},(...,),,(),,(max{)( ,2,1, xuxuxux Nuxuxuxu µµµµ = . 

5. Determine the decision du  as a result of the determinization (defuzzifi-

cation) of )(xuµ : 

)()(maxarg
∆

xxu adu
u

ad Ψµ ==  

or 

)(])([)(
∆1

xduxduxuu bduubd Ψµµ == −
+∞

∞−

+∞

∞−
∫∫ . 

In a discrete case the integrals are replaced by the sums (see (9.5)). For 
simplicity, it may be assumed that the membership function of the implica-
tion (9.48) does not depend on x . Then 

)()|( ∆
uxu ujuj µµ =  

and 

)}(),({min]isˆ[),(, uxduxxwxu ujxjjjux µµµ =→== . 

The relations between xjuj µµ ,  and uxjµ  are illustrated in Fig. 9.6. 

1

u

,

)(

)(

, u

u

jux

uj

µ

µ,juxµujµ

xjµ

 
Fig. 9.6. Example of ujµ  and jux,µ  

If for a single-output continuous dynamical plant ...,),(),([T ttx εε �=  

)]()1( tk −ε  (where )(tε  is the control error put at the input of the control-

ler), then the properties in the rules and the corresponding membership 
functions concern the control error and its derivatives. If u  is a vector (in 
the case of a multi-input plant) then the knowledge given by an expert and 
the procedure of finding the decision are for each component of u  the 
same as for one-dimensional u  considered above. There exist different 
versions and modifications of fuzzy controllers described in the literature 
(e.g. [62]). To characterize the fuzzy controllers based on the knowledge 
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of the control given by an expert, the following remarks should be taken 
into account: 
1. In fact, the control decisions du  are determined by the deterministic 

controller dΨ   in the closed-loop control system. 

2. The deterministic control algorithm dΨ  has a form of the procedure 

presented in this section, based on the description of the fuzzy controller 

(i.e. the knowledge of the control KD ) given by an expert (Fig. 9.7). 
3. The deterministic control algorithm ),( axu dd Ψ=  where  a is the vec-

tor of parameters of the membership functions in KD  − may be consid-
ered as a parametric form of a deterministic controller. This form is deter-

mined by the forms of rules and membership functions in KD , i.e. is pro-
posed indirectly by an expert. 
4. The parametric form ),( axu dd Ψ=  is proposed in a rather arbitrary 

way, not reasoned by the description of the plant. Besides, it is a rather 
complicated form (in comparison with traditional and given directly para-
metric forms of a deterministic controller) and the decisions  du  may be 

very sensitive to changes of forms and parameters of the membership func-

tions in KD . 
5. It is reasonable and recommended to apply the parametric optimization 

described in Chap. 5 and adaptation presented in Sect. 11.4, to achieve the 

value *a  optimal for the accepted form dΨ , i.e. for the forms of rules and 

membership functions in KD  given by an expert. 

Plant

Deterministic controller

Fuzzy controller

dΨ

KD

du x

 

Fig. 9.7. Control system based on fuzzy controller 



10 Control in Closed-loop System. Stability 

Chapters 10 and 11 form the fourth part of the book, which is devoted to 
control under uncertainties, as the former part. Unlike the third part con-
taining Chaps. 6, 7, 8 and 9, now we shall consider two concepts of using 
information obtained during the control process in a closed-loop system: to 
the direct determination of control decision (Chap. 10) and to step by step 
improving of a basic decision algorithm in an adaptation and learning 
process (Chap. 11). 

10.1 General Problem Description 

In Chaps. 7 and 8 we considered control plants with unknown parameters 
with the description of the uncertainty in the form of probability distribu-
tions or certainty distributions. These have been the descriptions of a pri-

ori information on the unknown parameters, i.e. the information known at 
the stage of a design, before starting the control process. Only in Sect. 7.3 
we considered a case when the information on the unknown parameter was 
obtained during the control process and was used to current modifications 
of control decisions. Obtaining the information had there a direct character 
and consisted in a direct observation of the unknown parameter c, more 
precisely – in the measurement of this parameter with the presence of ran-
dom noises. As a result, the information on the parameter c could be for-
mulated in an explicit form (directly and precisely), i.e. in the form of a 

priori probability density fc(c) and a posteriori probability density 

fc(c | nw ). Now we shall consider a concept consisting in obtaining the in-

formation on the plant during the control process in an indirect way, via 
observations of control results in a closed-loop control system. In such a 
case, it is important to use effects of the earlier control decisions for the 
determination of the proper next decisions and to design the closed-loop 
system in such a way as to assure the convergence of the control process to 
the values required. This is the main idea of the design and the perform-
ance of a feed-back system. Let us note that obtaining the information as a 
result of the direct observation of the unknown parameters does not require 
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a simultaneous control, i.e. has a passive character, while obtaining the in-
formation by the observations of control results requires a variation of the 
plant input, i.e. has an active character.  
 Let us present more precisely the above concept for a static plant 

y = Φ(u),      u∈U,   y∈Y, 

described in Sect. 3.1. Finding the solution u* of the equation y*
 = Φ(u) for 

the determination of the decision u = u
* satisfying the requirement y = y

* 

may be obtained by using the successive approximation method, according 
to the algorithm 

un+1 = un + K [ y*
 – Φ(un)] (10.1)

where un is the n-th approximation of the solution, K is the matrix of coef-

ficients whose values should be chosen in such a way that un → u
* for 

n → ∞. The algorithm (10.1) may be executed in the closed-loop control 

system (Fig. 10.1). It means that the substituting of the approximation un 

into the formula Φ and calculating the value Φ(un) is replaced by putting 

the value un at the input of the plant and measuring the output yn. Then, un 
is now the control decision in the n-th period of the control and, according 
to (10.1), the control algorithm in the closed-loop system is a follows: 

un+1 = un + Kεn (10.2)

where εn = y
*
 – yn denotes the control error. Consequently, the control sys-

tem as a whole is a discrete dynamical system described by the equation 

un+1 = F(un) where 

F(un) = un + K[y*
 – Φ(un)]. 

Controller
Plant

Φ

un yn
εn y

*

εn
 

Fig. 10.1. Closed-loop control system with static plant 

The value u* satisfying the equation u =F(u) may be called an equilibrium 

state of the system and the property un → u
* for n → ∞ may be called a 
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stability of the equilibrium state or shortly – a stability of the system. So, 
instead of speaking about the convergence of the approximation process in 

an approximation system in which the successive approximations un are 

executed starting with the initial value u0, one can speak about the stability 

of the control system, meaning the convergence of un to the equilibrium 

state u*, i.e. the returning to the equilibrium state. The initial state u0 ≠ u
* 

is an effect of a disturbance which acted before the moment n and removed 
the system from the equilibrium state.  
 In the further considerations we shall use the term stability, remember-
ing that the stability conditions under consideration have a wider meaning 
and may be used as convergence conditions in an approximation system 
containing a plant of approximation and an approximation algorithm. This 
is a uniform approach to convergence problems in different systems realiz-
ing recursive approximation processes, such as a computational system de-
termining successive approximations of a solution, a system of identifica-
tion, control, recognition, self-optimization seeking an extremum, 
adaptation etc. [8]. 
 Let us assume now that an unknown parameter c occurs in the function 
Φ, i.e. y = Φ(u, c) where in general c is a vector (c∈C), and note that the 
exact knowledge of the value c is not necessary for the determination of 

the solution of the equation )(* uy Φ=  by the successive approximation 

procedure (10.1) with any initial value u0, or for the satisfaction of the sta-
bility condition in the respective control system with any initial state (see 
the remark at the end of Sect. 3.1). In other words, by the proper choosing 
of K, the property of the convergence (stability) can be satisfied for a set of 
different values c. Then, for the proper choosing of the matrix K, the exact 
knowledge of c is not required; it is sufficient to know the set of all possi-
ble values c. So, the matrix K assuring the convergence may be determined 
for an uncertain plant with the description of the uncertainty in the form of 
a set of all possible values c. 
 For example, let in the one-dimensional case y = cu. Then according to 
(10.1) 

nnnn ukcukcuu )1(1 −=−=+  

where nu = un – u
*. Hence, the inequality |1–kc| ≤ 1, or 0 < kc < 2 is the 

necessary and sufficient condition of the convergence of nu  to 0 for any 

u0. If it is known that the unknown parameter c∈(0, c ] then this condition 

will be fulfilled for every k∈(0,
c

2
), i.e. every k satisfying the inequality 
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0 < k <
c

2
. 

 The above considerations may be generalized for the dynamical plant in 
the closed-loop control system 

⎭
⎬
⎫

==

==

+

+

)(),,(

),(),,(

RRRR1,R

OOOO1,O

nnnnn

nnnnn

xuyxfx

xyuxfx

η
η

 (10.3)

where xOn is the state vector of the plant, xRn is the state of the controller, 

un is the input vector of the plant and yn is the output vector of the plant. 

 By substituting un = ηR(xRn) into fO and yn = ηO(xOn) into fR, the set of 
equations (10.3) may be reduced to one equation 

xn+1 = F(xn),             xn ∈ X = R
k (10.4)

where 

⎥
⎦

⎤
⎢
⎣

⎡
=

n

n
n

x

x
x

R

O  

is the state vector of the control system. The solution exx
∆=  of the equa-

tion x = F(x) is called an equilibrium state. Let us assume that the system 
described by (10.4) has one and only one equilibrium state. 

Definition 10.1 (stability). The system (10.4) (or its equilibrium state ex ) 

is called globally asymptotically stable in the domain XDx ⊆  if and only 

if en
n

xx =
∞→

lim  for every x0 xD∈ .   □ 

 In the further considerations we shall speak only about asymptotic sta-

bility. Sometimes, the system globally stable for Dx = X is called totally 

stable. For practical reasons, for the system (10.4) with the fixed input nu  

and output ny , i.e. described by the equation  

xn+1 = F(xn, nu ),      ny = η(xn) 

we introduce a property called input-output stability. This property means 

that if uun →  for n → ∞ then yxy en
∆)( =→η  where ex  is the equilib-

rium state for un = const. = u , i.e. is a solution of the equation x = F(x, u ). 

In other words, if a disturbance uun −  acting at the input is converging to 

0 then the response at the output is converging to the value y  correspond-
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ing to the equilibrium state. In the next considerations we shall assume that 

0=ex , 0=u  and 0=y . The input-output stability depends on the equa-

tions describing the system and on the choice of the pair ( nu , ny ). If the 

system is stable in the sense determined in Definition 10.1 for Dx = X then 

the property of the input-output stability is satisfied for any disturbance nu  

converging to 0 . The inverse theorem is true if the system is fully control-
lable and observable, i.e. the disturbance nu  can remove the system from 

the equilibrium state and it can be observed by measuring ny . 

 In the next text, speaking about input-output stability we shall use the 
term stability only, which means that we shall speak only about the stabil-
ity of the controllable and observable part of the system, or that we shall 
assume full controllability and observability of the system as a whole. Let 
us assume that until the moment n = 0 the control system was in the equi-

librium state (the control error εn = 0  for n < 0) and in the moment n = 0 a 

step disturbance zzn = ⋅1(n) was put at the plant (which means that 

zn = const = z  for n ≥ 0) and/or the required value of the plant output 

changed: ⋅= ** yyn 1(n) ( 0* =ny  for n < 0). The stability of the control sys-

tem (exactly speaking, input-output stability) means that as a result of the 

action of the controller, the control error εn converges to a constant value 

ε∞, in particular to 0 . 
 For the static plant described by )(uy Φ=  it is not possible to satisfy 

the requirement y = y
* by putting directly the proper decision u* at the in-

put as it was presented in the case of the full information on the plant in 
Sect. 3.1, but it is possible to achieve the value u* as a result of step by step 

approximation process in a stable closed-loop control system with the con-
trol algorithm (10.2). Similarly, for the system (10.3) it is not possible to 
achieve a required state of the plant in a finite time as it was described in 
Chap. 3 in the case of the full information on the plant, but it is possible to 
achieve it for n → ∞, and practically after a sufficiently long time, such 

that after this time the distance ||xn – x
*|| is already less than the given 

small number. 
 Analogous terms and definitions are applied to a continuous dynamical 
closed-loop control system described by the equations 

⎭
⎬
⎫

==

==

)],([)()],(),([)(

)],([)()],(),([)(

RRRRR
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txtutytxftx
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η
η

�

�
 (10.5)
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i.e. 

)]([)( txFtx =�  (10.6)

where  

                                         ⎥
⎦

⎤
⎢
⎣

⎡
=

)(

)(
)(

R

O

tx

tx
tx  

is the state of the control system and the equilibrium state x = ex  is a solu-

tion of the equation F(x) = 0 . In the stable control system, the control er-

ror ε(t) caused by a step disturbance converges to a constant value ε∞, in 

particular to 0 . The designing of the closed-loop control system with the 
plant containing an unknown parameter c and with an assumed form of the 
controller containing a parameter a consists in the choice of the value a 
such that for every value c from the set of all possible values, the system is 
stable. The requirement of the system stability replaces now the require-
ment of the minimization of the performance index considered in Chap. 5 
which is possible to satisfy with the full information on the plant, i.e. with 
the knowledge of c. It is a parametric design problem as well as an optimi-
zation problem considered in Chap. 5 but with a weaker requirement 
caused by the incomplete information on the plant. As a result, usually a 
solution of the problem is not unique, i.e. one obtains a set of values a 
which together with the value c satisfy the stability condition for the given 
forms of the plant model and the control algorithm. In order to determine 
this set, it is necessary to determine the stability condition concerning 

),( ac . 

10.2 Stability Conditions for Linear Stationary System 

10.2.1 Continuous System 

Let the system (10.6) be the linear and stationary system (i.e. with constant 
parameters) 

x� (t) = Ax(t),        x∈X = R
k. (10.7)

For the given initial condition x(0) = x0 one can find the concrete solution 
of the equation (10.7) 
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x(t) = e
At

x0. (10.8)

By using (10.8), the following theorem may be proved: 

Theorem 10.1. The system (10.7) is stable if and only if  

ki ,1∈

Re si < 0 (10.9)

where si are eigenvalues of the matrix A, i.e. the roots of the characteristic 
equation 

det(A – sI) = 0. (10.10)

□ 

The property x(t) → 0  for (10.8) does not depend on x0, then (10.9) is 

the condition of the global stability for Dx = X. The equation (10.10) may 
be presented in the form 

sk + ak-1s
k–1

 + ... + a1s + a0 = 0. (10.11)

Consequently, the system is stable if and only if the roots of the linear al-
gebraic equation (10.11) are all located in the left half-plane of the s-plane. 
The condition may be proved without solving the equation (10.11), by ap-
plying so called Hurwitz criterion. For this purpose we consider the fol-
lowing k-th degree determinant: 

...........................................................................................
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All the roots of the equation (10.11) lie in the left half-plane if and only if 

all principal subdeterminants (minors) ∆1, ∆2, ..., ∆k with the form 

∆1 = ak–1,     ∆2 = 
23

1 1

−−

−

kk

k

aa

a
,      ∆3 = 

345

123

1 01

−−−

−−−

−

kkk

kkk

k

aaa

aaa

a

,  

etc., are positive. The stability analysis may be based on transmittances. 
For one-dimensional closed-loop control system (see (2.24)) 
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E(s) = 
)(1

)(*

sK

sY

+
 

where the function K(s) = KR(s)KO(s) is a transmittance of an open-loop 

control system. For y
*(t) = y

*⋅1(t), the form of ε(t) is determined by the 

characteristic roots of the closed-loop system, i.e. the roots of the charac-
teristic equation 

L(s) + M(s) = 0 

where L(s) and M(s) denote the polynomials in the numerator and the de-
nominator of the transmittance K(s), respectively. The location of all char-
acteristic roots of the closed-loop system in the left half-plane is a suffi-
cient and necessary stability condition. It follows directly from the forms 
of components (addends) of the function ε(t), corresponding to the real 
roots or to the pair of the complex roots (conjugate to each other) of the 
equation L(s) + M(s) = 0.  
 It is worth noting that the function K(s) may be considered as a mapping 
transferring all roots of the equation K(s) + 1 = 0 from s-plane into one 
point (–1, j0) in K(s)-plane, and transferring the half-axis jω for 0 < ω < ∞ 
into the graph of the frequency transmittance K(jω). Then, instead to inves-
tigate the location of the roots of equation K(s) + 1 = 0 with respect to axis 
jω in s-plane, one can investigate the location of the point (–1, j0) with re-
spect to the graph of K(jω) in K(s)-plane. Since K(jω) is symmetric with 
respect to real number axis, i.e. K(–jω) and K(jω) are conjugate to each 
other, it is sufficient to investigate the location of the point (–1, j0) with re-
spect to K(jω) for 0 < ω < ∞. From these considerations so called frequency 

stability criterion or Nyquist criterion follows. In the simple case, under 
the assumption that all poles of K(s) (i.e. roots of the equation M(s) = 0) lie 
in the left half-plane of s-plane, the control system is stable if and only if 
the graph of K(jω) for 0 <ω < ∞ does not encircle the point (–1, j0). 

10.2.2 Discrete System 

Stability conditions for the discrete linear system are analogous to those 
for the continuous system. The solution of the equation 

xn+1 = Axn (10.12)

has the following form: 

xn = A
n
x0. 



10.2 Stability Conditions for Linear Stationary System      267 

 

By using this solution, the following theorem may be proved: 

Theorem 10.2. The system (10.12) is stable if and only if  

ki ,1∈

 |zi| < 1 (10.13)

where zi are the roots of the equation 

det(A – zI) = 0. (10.14)

□ 

This is a global stability condition for Dx = X. After transformations the 
equation (10.14) takes the form (10.11) with the unknown z instead of s. In 
order to determine the condition that all the roots of this equation satisfy 
the property (10.13), i.e. lie inside the circle with radius 1 in z-plane − one 
may apply the transformation 

1

1

−
+

=
w

w
z  

which transfers the left half-plane in w-plane into the circle with the radius 
1 in z-plane. Substituting this expression in the place of z, after some trans-
formations we obtain the k-th degree linear algebraic equation with the un-
known w, for which we may apply Hurtwitz criterion. 
 For one-dimensional closed-loop system with the transmittance of the 

open-loop system K(z) = KR(z)KO(z), the condition (10.13) concerns the 
roots of the equation 

                                            L(z) + M(z) = 0  

where L(z) and M(z) denote the polynomials in the numerator and the de-
nominator of K(z), respectively. The function K(z) transfers all roots of the 
equation K(z) + 1 = 0 from z-plane into one point (–1, j0) in K(z)-plane, and 

the circle ejω for –π < ω < π into the graph of the discrete frequency trans-

mittance K(ejω). Thus, the discrete form of Nyquist criterion may be ap-

plied. In the simplest case, under the assumption that all roots of the equa-
tion M(z) = 0 lie inside the circle with radius 1, the control system is stable 

if and only if the graph of K(ejω) does not encircle the point (–1, j0). 

Example 10.1. Let us determine the stability condition for the closed-loop 
control system with the following transmittances of the plant and of the 
controller 
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KO(s) = 
)1( 1

O

+sT

k
,           KR(s) = 

)1( 2

R

+sTs

k
. 

The characteristic equation of the closed-loop system is as follows: 

k + s(sT1 + 1) (sT2 + 1) = T1T2s
3

 + (T1 + T2)s2
 + s + k = 0 

where k = kOkR is an amplification factor of the open-loop system. Then 
we have 

a2 = 
21

21

TT

TT +
,    a1 = 

21

1

TT
,    a0 = 

21TT

k
. 

Applying Hurwitz criterion, i.e. the inequalities ∆1 > 0, ∆2 > 0, ∆3 > 0, we 

obtain a2 > 0, a1a2 – a0 > 0, a0∆2 > 0 or a0 > 0. Since T1,T2 > 0, the stabil-
ity condition is the following: 

0 < k <
21

11

TT
+ . (10.15)

The condition k > 0 is evident because it means that the feed-back must be 
negative. The right-hand side of (10.15) means that the amplification fac-

tor should be sufficiently small and that for too great values of T1 and (or) 

T2 the stability limit 
21

11

TT
k +=  may be exceeded. Having the condition 

(10.15), for the given numerical data k, T1, T2, we can prove whether the 
system is stable. 
 The application of this condition in the designing of the controller con-

sists in the proper choice of the values kR and T2 by a designer (see re-
marks in Sect. 10.1). If the exact values of the plant parameters are un-

known but it is known that kO ≤ kO,max and T1 ≤ T1max, then one should 

choose such values kR and T2 that the condition 

)
11

(
1

2max1max,O
R

TTk
k +<  

is satisfied. The condition (10.15) can be also obtained by applying Ny-
quist criterion. For this purpose one should find the value ω  from the 
equation ImK(jω) = 0 and use the condition ReK(j ω ) > –1, what is illus-
trated in Fig. 10.2. After some transformation we obtain  
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ReK(jω ) = 
21

21

TT

TkT

+
−

 

and consequently the condition (10.15).   □ 
 

Im K (jω)

Re K(jω)

ω =  ∞

ω = ω

ω  = 0

(− 1, j0)

 

Fig. 10.2. Example of frequency transmittance 

Example 10.2. Let us determine the stability condition for the discrete 
closed-loop control system in which the plant and the controller are de-
scribed by the equations  

yn+1 – αyn = kOun+1,    εn+1 = 
R

1

k
(un+1 – un), 

respectively. The discrete transmittances are then as follows: 

KO(z) = 
α−z

zkO ,           KR(z) = 
1

R

−z

zk
. 

The equation L(z) + M(z) = 0 is here the following: 

z
2

 + a1z + a0 = 0 (10.16)

where  

a1 = 
1

1

+
+

−
k

α
,    a0 = 

1+k

α
. 

Substituting  z = 
1

1

−
+

w

w
 we obtain  

(1 + a1 + a0)w2
 + 2(1 – a0)w + 1 – a1 + a0 = 0. 
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For the 2-nd degree equation, the conditions in Hurwitz criterion are satis-
fied if the coefficients in this equation are positive. Hence, 

a0 < 1,    a0 > a1 – 1,    a0 > –a1 – 1 (10.17)

and after some transformations it gives the following stability condition: 

k > max{0, α – 1, –2(α + 1)}. 

Consequently, k > 0 if | α | < 1 (the plant is stable), k > –2(α + 1) if α ≤ –1, 

and k > α – 1 if α ≥ 1. For example, if it is known that 1 ≤ α ≤ 7 and kO ≥ 3 

then the designer should choose kR > 2.   □ 

10.3 Stability of Non-linear and Non-stationary Discrete 
Systems 

A general method of the determination of sufficient stability conditions for 
non-linear and non-stationary (time-varying) discrete systems is based on 
so called principle of contraction mapping [7, 10, 12]. The function F in 
the formula (10.4) is called a contraction mapping if for any two vectors x, 

Xx ∈  

|| F( x ) – F(x) || < || x  – x || 

and |||| ⋅  denotes a norm of the vector. If F(x) is a contraction mapping then 

the equation x = F(x) has one and only one solution (so called fixed point 
of the mapping F) equal to the limit of the recursive sequence (10.4). Let 
us consider the non-linear and non-stationary system 

xn+1 = F(cn, xn ) (10.18)

where cn∈C is a vector of time-varying parameters. If the system is sta-
tionary then the equation (10.18) is reduced to (10.4). Let us present 
(10.18) in the form  

),()(
1 nni

i
n xcFx =+ ,    i = 1, 2, ..., k 

and assume that the functions Fi have the following form: 

Fi(cn, xn) = ∑
=

k

j

j
nnnij xxca

1

)(),( , 

i.e. 
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xn+1 = A(cn , xn ) xn (10.19)

where the matrix A(cn, xn ) = [aij(cn, xn )]∈R
k×k. According to the earlier 

assumption about the solution of the equation x = F(x), for every c∈C the 

equation x = A(c, x)x has the unique solution 0=ex  (the equilibrium 

point). For the linear system 

xn+1 = A(cn)xn 

and for the stationary system 

xn+1 = A(xn)xn. 

It is convenient to formulate the principle of contraction mapping for 
F(x) = Ax by using a norm of the matrix. A norm of the matrix || A || for the 
determined norm of the vector || x || is defined as follows: 

|| A || = 
d

Ax

xx

||||
max

∆∈
,    ∆x = {x∈X : || x || = d}. (10.20)

Hence, it is the maximum ratio of the length of the vector Ax to the length 
of the vector x, for different vectors x with the same length. The following 
norms are most frequently used: 

1. || x || = xxT  (Euclidean norm) 

|| A || 
∆
=  || A ||2 = )( T

max AAλ  (10.21)

where λmax is the maximum eigenvalue of the matrix AT
A. 

2. If 

|| x || = 
ki≤≤1

max | x(i) | (10.22)

or 

|| x || = ∑
=

k

i

ix
1

)( ||  (10.23)

then 

|| A || 
∆
=  || A ||1 = ∑

=≤≤

k

j
ij

ki
a

11
||max , (10.24)

|| A || 
∆
=  || A ||∞ = ∑

=≤≤

k

i
ij

kj
a

11
||max , (10.25)
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respectively. 
The following theorems are based on [7, 12]. 

Theorem 10.3. If there exists a norm |||| ⋅  such that 

 

Xxn ∈≥ 0
1||),(|| <xcA n  (10.26)

then the system (10.19) is globally stable for XDx = , i.e. is totally sta-

ble.   □ 

Theorem 10.4. If there exists a norm |||| ⋅  and a non-singular matrix  

P∈ kkR ×   such that 
 

Xxn ∈≥ 0
1||),(|| 1 <− PxcAP n  (10.27)

then the system (10.19) is totally stable.  □ 

Theorem 10.5. Denote by )(Aiλ = ),( xcniλ  the eigenvalues of the matrix  

A  (i = 1, 2, ..., k). If ),( xcA n  is a symmetric matrix and  

 

Xxn ∈≥0 i
max 1),( <xcniλ  (10.28)

then the system (10.19) is totally stable.   □ 
Theorem 10.3 follows from the fact that under the assumption (10.26) 

xxcA n ),(  is a contraction mapping in X. The condition (10.27) is obtained 

by introducing the new state vector nn xPv 1−=  and using Theorem 10.3 

for the equation  

nnnn vPxcAPv ),(1
1

−
+ = . 

Theorem 10.5 may be easily proved (see [12]) by using the norm (10.21). 

If A is a symmetric matrix then )( T
max AAλ =

i
max 2|)(| Aiλ . 

Remark 10.1. For the norm 2|||| ⋅  and 1T1)( −− PP
∆
= Q, the condition 

(10.27) is reduced to the following statement. If there exists a positive 
definite matrix  Q  such that 
 



10.3 Stability of Non-linear and Non-stationary Discrete Systems      273 

 

 

Xxn ∈≥ 0
0),(),(T <− QxcQAxcA nn  

then the system (10.19) is totally stable.   □ 
Condition (10.26) may be presented in the form 

 

Xxn ∈≥0
),( xcA n ∈ A (10.29)

where  A   is a set of  kk ×  matrices  Â  defined as 

A = }1||ˆ|| :ˆ{ <AA . (10.30)

We shall also use another form of the stability condition (10.26) 
 

0≥n
nc ∈ cD  (10.31)

where 

cD = }1||)(||     :{ <∈
∈

c,xACc
Xx

. (10.32)

Conditions (10.27) and (10.28) may be presented in an analogous form 

with ||ˆ|| 1 PAP−  or 
i

max  |)ˆ(| Aiλ  instead of ||ˆ|| A  in (10.30) and with 

||),(|| 1 PxcAP−  or 
i

max |),(| xciλ  instead of ||),(|| xcA  in (10.32). 

Theorem 10.5 shows that if ),( xcA n  is a symmetric matrix then for the 

non-linear and non-stationary system one may apply the condition such as 
for a linear and stationary system. 
 Let us note that Theorems 10.3, 10.4, 10.5 formulate sufficient stability 
conditions only. The satisfaction of these conditions assures a monotonic 

convergence of || xn || to 0, which is not necessary for the stability. When 
the condition (10.26) will not be satisfied, we do not know whether the 
system is stable. For the different norms, different particular sufficient 
conditions (10.26) may be obtained, and by a proper choice of the matrix P 
one can try to obtain a weaker condition (10.26). We can use the basic 
condition (10.26) in two ways: 
1. We try to determine the total stability condition for the parameters of the 
system, and consequently – for the control parameters a. If it is not possi-
ble to choose the value a as to satisfy the condition (10.26), we try to de-

termine the domain of global stability Dx for the fixed a. 
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2. We determine the global stability domain Dx, i.e. such a set Dx contain-

ing the equilibrium state 0  that if x0∈Dx then xn → 0 . Let us note that if 

xN∈ xD  where 

xD = {x∈X:  
Nn≥

 || A(cn, x ) || < 1 } 

then || xN+1 || < || xN ||. On the other hand, if xN ∈ Dx then xn converges to 

0  for n > N. The set Dx is then the maximum domain determined by the 

inequality || x || ≤ d and contained in the domain xD , i.e. 

Dx = {x∈X:  || x || ≤ d} 

for the maximum d such that 

dx ≤||||
(x ∈ xD ). 

The convergence problem is more complicated when the output of the 

plant in a closed-loop system is measured with a random noise zn. In such 
a case one can apply so called stochastic approximation algorithm which 
for the static plant y = Φ (u) considered in Sect. 10.1 takes the form  

un+1 = un + γn(y* – ny ) 

where ny = yn + zn is  the result of the output measurement. Under some 

very general assumptions concerning the function Φ  and the noise nz , 

usually satisfied in practice − it can be proved that such a process in a 
probabilistic sense (see Sec. 7.1) converges to u*, i.e. to the solution of the 

equation Φ (u) = y*, if γn > 0 for every n, the sequences γn converges to 0 

and satisfies the conditions 

∞=∑
∞

=0n
nγ ,           ∞<∑

∞

=0

2

n
nγ . 

In order to assure the convergence of the approximation process so called 
degressive feed-back [9, 11] should be applied, i.e. a feed-back acting 

weaker and weaker (with less and less γn) for increasing n. The conditions 

presented above are satisfied by the sequence 
n

n
γ

γ = . The stochastic ap-

proximation is widely applied in approximation processes for control and 
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identification as well as adaptation and learning which will be described in 
Chap. 11. More precise information on the stochastic approximation and 
its applications may be found in [14, 103]. 

Example 10.3. Let us consider a one-dimensional feed-back control sys-
tem with a continuous plant consisting of a non-linear static part described 
by the function w = Φ(u) and the linear dynamical part described by the 
transmittance 

KO(s) = 
)1(

O

+ss

k
. 

The plant is controlled in a discrete way via zero-order hold (Fig. 10.3), 

u(t) = kRε(t), un = u(nT) where T is a sampling period (see the description 
of a continuous plant controlled in a discrete way, presented in Chap. 2). It 

is easy to show that, choosing the state variables )1(
nx = y(nT) = –ε (nT), 

)2(
nx = y� (nT), one obtains the following equation: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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where 

RO

1

kk
 g(–x

(1)) = g(u) =
⎪
⎩

⎪
⎨

⎧

=

≠

→
.0for

0for

)(
lim

)(

0
u

u

u

u
u

u

u

Φ

Φ

 

Φ

k
R

ε (t)u(t)

w(t)v(t)un
y(t) 0 for t ≥ 0

s

e sT--1
)1( +ss

kO

 

Fig. 10.3. Block scheme of the control system under consideration 

Applying the condition (10.26) with the norm (10.24) yields 

| 1 – kOkR g(u)(T – 1 + e–T )| + (1 – e–T) < 1, 
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| kOkR g(u)(1 – e–T) | + e–T < 1 

and finally 

⎪
⎭

⎪
⎬

⎫

<<−
+−

+
<<

+−

−
−

−

−

−

,1)(1

,
)1(

1
)(

)1(

1

RORO
ug

eTkk

e
ug

eTkk

e

T

T

T

T

 (10.33)

under the assumption that T – 1 + e–T > 0. The inequalities (10.33) deter-

mine the bounds g1 and g2 for g(u). If g1 ≤ g(u) ≤ g2 for every u, i.e. the 

characteristic w = Φ (u) lies between the lines w = g1u  and  w = g2u 
(Fig. 10.4) then the system is totally stable. Sometimes in this case we use 
the term absolute stability condition, i.e. the condition concerning the 
whole set of non-linear characteristics. If the given characteristic w = Φ (u) 
is located between the lines mentioned and it is known that 

kO,min ≤ kO ≤ kO,max then the choice of kR satisfying the condition 

)1(

1

)1(

1

max,O2
R

min,O1
T

T

T

T

eTkg

e
k

eTkg

e
−

−

−

−

+−

+
<<

+−

+
 

assures the stability. It is also a condition for a non-stationary system under 
the assumption that for every n ≥ 0 

kO,min ≤ kO,n ≤ kO,max.                              □

w

u

w=g
2
u

w=g
1
u

w=Φ (u)

 

Fig. 10.4. Characteristic of static non-linear element 
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10.4 Stability of Non-linear and Non-stationary 
Continuous Systems 

Let us assume that the continuous system 

x� = F[c(t), x(t)] = A[c(t), x(t)]x(t) (10.34)

has one equilibrium state 0=ex , i.e. for every c∈C the equation 

A(c, x)x = 0  has the unique solution 0=ex . The considerations are now 

analogous to those for a discrete case. The requirement || xn+1 || < || xn || 
may be replaced by the requirement for || x(t) || to be a decreasing function 
of t. If it is a differentiable function then we may determine the condition 
assuring for every t > 0 the inequality 

0
||)(||

<
dt

txd
, 

(10.35)

i.e. 

0)()](),([]|||||grad[)(]|||||grad[ T
)(

T
)( <=⋅ == txtxtcAxtxx txx

x
txx

x

� . (10.36)

The requirement that || x(t) || is a differentiable function restricts the choice 
of the norm || x ||. It is however worth noting that instead of a norm one 
may use any function V(x) assigning non-negative real number to a vector 
x and satisfying the following properties: 

1. V(x) = 0 ⇔ x = 0 . 

2. For every sequence xn such that || xn || → ∞, the sequence V(xn) → ∞.  
Of course, || x || is a function V(x) for any norm. Now the inequalities 
(10.35) and (10.36) take the forms 

0
)]([

<
dt

txdV
, (10.37)

0]),([)](grad[ T <xxtcAxV
x

 (10.38)

under the assumption that the function V(x) is differentiable with respect to 
x. If for every t the condition (10.37) is satisfied then for t → ∞ the value V 

converges to 0, and consequently x(t) → 0 . Then the following theorem, 
analogous to Theorem 10.3, is true. 

Theorem 10.6. If  there exists a function V(x) such that the inequality 
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(10.38) is satisfied for every t > 0 and every x∈X then the system (10.34) is 

globally stable for Dx = X.   □ 
Consequently, theorems analogous to Theorems 10.4 and 10.5 are also 

true. In the first case, in the place of A in (10.38) P–1
AP occurs, and in the 

second case the property | λi(cn, x ) | < 1 is replaced by the inequality 

Reλi[c(t), x] < 0, i.e. the condition is the same as for a linear stationary sys-
tem. The function V(x) satisfying for every t the condition (10.37) is called 
a Lyapunov function, and the respective method of the stability analysis is 
called the second Lyapunov method (the first Lyapunov method concerns 
the investigation of a local stability, based on a linear approximation). The 
approach described in Sect. 10.3 may be called the second Lyapunov 

method in a discrete form, with the function V(x) equal to || x || or (|| x ||)2. 

 If V(x) = xT
Qx where Q is a positive definite matrix then 

xQAQAxQAxxAxxV
x

)(2)](grad[ TTTT +== . 

Thus, if there exists a positive definite matrix Q such that for every t > 0 
and every x∈X the matrix 

QA[c(t), x] + AT[c(t), x]Q (10.39)

is negative definite then, according to Theorem 10.6 the system is globally 

stable for Dx = X. This condition is analogous to the condition in Remark 
10.1 for the discrete case. 

10.5 Special Case. Describing Function Method 

Let us consider a special case of a closed-loop control system, namely one-
dimensional system containing two parts: a non-linear static part with the 
characteristic v = Φ(ε) and a linear dynamical part described by the trans-
mittance K(s) (Fig. 10.5). 
 In order to apply the second Lyapunov method one can introduce the 
state vector in the form x

T
 = [ε, ε� , ..., ε(k–1)] where ε(k–1) denotes the  

(k–1)-th derivative of ε(t) and k is the order of the plant. Frequently, as a 
Lyapunov function in this case one chooses 

V(x) = x
T
Qx + ∫

)1(

0

)(
x

dεεΦ . 
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Φ

K(s)

v(t)

0 for t ≥ 0

ε (t)

y(t)

 

Fig. 10.5. Control system with static non-linear part 

Then 
)(2)(grad xQxxV

x

α+=  

where α(x) is a zero vector except the first component equal to Φ(x(1)). 

The condition (10.38) takes now the form 

x
T[QA(c, x) + A

T(c, x)Q]x + Φ(x(1))w1(c, x)x < 0 (10.40)

where c denotes a parameter of the transmittance K(s) and w1(x, c) denotes 
the first row of the matrix A(c, x) which should be determined by transfer-
ring the initial description of the system into the description using the state 
vector. As a result we may obtain a condition concerning Φ(x(1)), i.e. Φ(ε). 

 The using of the condition (10.40) may be difficult in more complicated 
cases and may not give an effective result, i.e. the total stability condition. 
That is why in this case one often applies an approximate method consist-
ing in a harmonic linearization and called a describing function method. 
Let us assume that the system under consideration is not stable and there 
occur oscillations in the system, i.e. ε(t), v(t), y(t) are periodic functions. 
Assume that ε(t) is approximately equal to Asinω t, expand the function 
v(t) = Φ(Asinω t) in Fourier series and take into account the first term (a 
fundamental harmonic) only 

v(t) ≈ v1(t) = Bsin(ω t + ϕ). 

The approximation is acceptable if the linear dynamical part is a low pass 
filter (what usually occurs in practice) and the higher harmonics of v(t) are 

much smaller than the fundamental one. If the signal v1(t) at the input of 

the part K(s) is sinusoidal then the signal at the output y(t) = –ε(t) is also 
sinusoidal with the amplitude B| K(jω) | and the phase ϕ + arg K(jω). Then 

B| K(jω) |sin[ω t + ϕ + arg K(jω)] = –Asinω t = Asin(ω t + π). 
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Consequently, 

B| K(jω) | = A,    ϕ + arg K(jω) = π, 

what may be written in the form 

K(jω)J(A) = –1 (10.41)

where 

J(A) = 
ϕje

A

B
 (10.42)

is called a describing function of the element Φ ; |J(A)| is a ratio of the am-
plitude of the first harmonic of the output signal to the amplitude of the si-
nusoidal input signal, and arg J(A)=ϕ  is the phase of the output with re-

spect to the input. If the relationship between ε and v is a function v = Φ (ε) 
(i.e. ε  uniquely defines v) then ϕ = 0. The phase ϕ ≠ 0 if so called histere-

sis occurs in the non-linear element, which means that the value v depends 
not only on ε but also on whether the fixed value ε has been achieved by 
increasing or decreasing of ε(t). The equality (10.41) defines the condition 
for the existence of oscillations in our system. In fact (10.41) contains two 
equations: for |J(A)| and arg J(A) or for real and imaginary parts. From 
these equations one can find the approximate values of  ω and A for the os-
cillations. 
 For the linear static element v = )(εΦ  = kε the describing function 

J(A) = k. Then the condition for the oscillations (10.41) takes the form 

K (jω) + 1 = 0 where K (jω) = kK(jω) is the frequency transmittance of the 
open-loop control system. This form corresponds to the stability limit (see 
Nyquist criterion in Sect. 10.2), i.e. the system is stable if K(jω) does not 

encircle the point (
k

1
− , j0). In the non-linear system, the point 

k

1
−  is 

“expanded” to the curve 
)(

1

AJ
− . In the linear system the amplitude of 

possible oscillations is not determined by a description and parameters of 
the system but depends on initial conditions. In the non-linear system the 
amplitude of the oscillations called a limit cycle depends on the description 
and parameters of the system. Substitution of Φ (ε) by J(A) may be treated 
as a kind of a linearization of the non-linear element for the fixed A, con-
sisting in omitting the higher harmonics. 
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Fig. 10.6. Illustration of describing function method 

Let us consider the graphs of K(jω) and 
)(

1

AJ
−  presented in Fig. 10.6 

where the arrow in the second curve indicates increasing of A, i.e. if A is 
increasing then the respective point is moving in the direction indicated by 
the arrow. As it is illustrated in the figure, the condition (10.41) may be 
satisfied for two pairs (A, ω), i.e. two limit cycles corresponding to the in-
tersection points I and II. It can be proved that only one of these cycles is 
stable, i.e. may exist after disappearing of a disturbance removing the sys-
tem from this cycle. In an approximate way it may be explained as fol-
lows: If in the state (oscillation regime) II a transit disappearing distur-
bance causes a small increase of the amplitude, the point of the curve 

)(

1

AJ
−  will not be encircled by the graph of K(jω), then the system will 

be stable, the amplitude of the oscillations will decrease and the oscilla-
tions will return to the limit cycle II. The similar return will occur in the 
case of a transit decrease of the amplitude because the point of the curve 

)(

1

AJ
−  will be encircled by the graph of K(jω) and the amplitude will in-

crease after disappearing of a disturbance. If in the state (oscillation re-
gime) I a transit disappearing disturbance causes a small increase of the 

amplitude, the point of the curve 
)(

1

AJ
−  will be encircled by the graph of 

K(jω), then the system will be unstable, the amplitude of the oscillations 
will increase and the system will remove to the state II. If the disturbance 
causes a small decrease of the amplitude, the amplitude will continue to 
decrease and the oscillations will disappear. 
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 The situation may be summarized as follows: 
1. The system is stable for small disturbances (such that their effect, i.e. the 
initial state for the further process, is sufficiently near to the equilibrium 
state), and is unstable for the greater disturbances. Then the limit oscilla-
tions corresponding to the point II will occur in the system. 
2. The system is totally stable if the graph of K(jω) does not encircle the 

curve 
)(

1

AJ
−  (the case indicated by the broken line in Fig. 10.6). 

 As an illustration of the describing function method let us analyze the 
stability of three-position control system in which the signal v may take 
three values only: v = D for ε > M, v = –D for ε < –M, v = 0 for | ε | ≤ M. The 

values of J(A) are now real positive, the points of the curve 
)(

1

AJ
−  lie in 

the negative real half-axis, the function J(A) = 0 for A ≤ M, then it increases 
and after taking the maximum converges to 0 for A → ∞. To determine the 
stability condition it is sufficient to find the maximum of this function. Af-
ter finding the amplitude of the first harmonic one can determine 

M

D
AJ

A π

2
)(max = . 

Thus, the system is totally stable if the point 

)(max

1

AJ
A

−  

lies on the left from the point in which the graph K(jω) intersects the 
imaginary axis, i.e. 

)j(Re
2

π
ωK

D

M
−>  

and ω  can be find by solving the equation ImK(jω) = 0. 

10.6 Stability of Uncertain Systems. Robustness 

Let us recall that according to the concept described in Sect.10.1, stability 
conditions are defined in order to choose parameters of the control algo-
rithm (the controller) assuring stability of the system for every plant from a 
determined set of plants including the plant considered. In this case, the 
determination of the set of possible plants means the description of an un-
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certainty. The choice of a suitable control algorithm assuring the stability 
for every plant from the determined set means the designing of a stable 
control system for an uncertain plant or a stabilization of the system. Usu-
ally the considered design task is a parametric problem, i.e. one should de-
termine suitable parameters a in a given form of the control algorithm. As 
a rule, one does not obtain a unique value a but a set of possible values 
such that for every a from this set and every plant from the set of possible 
plants the system is stable. In general, the description of the uncertainty 
may have a non-parametric form of the set of possible plants, or a paramet-
ric form of the set of possible values of a plant parameter c in a given form 
of the plant model. 
 Usually, the feature consisting in satisfying by a system a certain prop-
erty for a fixed set of its elements (and in the parametric formulation − for 
a fixed set of values of parameters) is called a robustness, and the system 
is called robust. The main idea of a robust system design is as follows: A 
designer wants to design the system satisfying a determined property W 
(e.g. stability, controllability, observability). The satisfaction of this prop-
erty depends on an existing system parameter c∈C and on a parameter 
a∈A which is to be chosen by the designer. The sufficient condition of this 

property is formulated in the form of a set Da,c ⊂ A × C: 

(a, c)∈Da,c   →   W. 

The designer knows the set Dc of all possible values of c (i.e. the descrip-
tion of the uncertainty in this case). Then the designer should determine 

the largest set Da ⊂ A such that for every a∈ Da and every c∈Dc the suffi-

cient condition (a, c) ∈ Da,c is satisfied. Hence, 
 

Da = {a∈A:  
cDc∈

[(a, c)∈Da,c]}. 

Such a procedure can be applied in the task of designing the stable system 
with the uncertain plant, considered in this section. The uncertainty may 
concern the function ),( xcA  and the sequence nc . In general, it may be 

formulated as 

 
Xxn ∈≥0

),( xcA n ∈Au (10.43)  

where Au  is a given set of the matrices  Â ∈ kkR × . Then the general con-
dition of the total stability for the uncertain system corresponding to 
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(10.26) is Au ⊆ A   and may be expressed in the following way. 

Theorem 10.7. If  1|||| <A  for every  A∈Au   then the system is globally 

stable for XDx = .   □ 

When the function ),( xcA  is known and the uncertainty concerns only 

the sequence nc , it may be formulated as 
 

 
0≥n

nc ∈ cD  (10.44)  

where cD ⊂ C  is a given subset of  C. 

Theorem 10.8.  If  cD ⊆ cD   where cD  is determined by (10.32), i.e. if 

 

 
XxDc c ∈∈

1||)(|| <c,xA  (10.45)  

then the system is globally stable for XDx = .   □ 

The theorem follows immediately from (10.31), (10.32) and (10.44). 
The conditions corresponding to (10.27) and (10.28) have the analogous 
form. 
 For simplicity let us denote ),( nn xcA  by nA . In the case of an additive 

uncertainty nn AAA += , i.e. 

 nnn xAAx )(1 +=+ . (10.46)  

The uncertainty concerns the matrix nA  and is formulated by one of the 

three forms denoted by (10.47), (10.48) and (10.49): 
 

 
Xxn ∈≥ 0

+
nA ≤ MA  (10.47)  

where MA  is a given non-negative matrix (i.e. all entries of MA  are non-

negative) and +
nA  is the matrix obtained by replacing the entries of  nA  by 

their absolute values, 

 
Xxn ∈≥ 0

|||| nA ≤ β  , (10.48)  
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Xxn ∈≥0 i

max  |)(| ni Aλ ≤ β  (10.49)  

where β  and β  are given positive numbers. The inequalities (10.47), 

(10.48) and (10.49) define the set  Au  in (10.43) for the cases under con-
sideration. 

Lemma 1. If  A  and  B  are quadratic matrices with non-negative entries 
(some of the entries are positive) and  A ≥ B  (i.e. ija ≥ ijb   for each  i  and  

j) then |||| A ≥ |||| B  for the norm (10.21), (10.24) and (10.25). 

Proof: For (10.24) and (10.25) the lemma follows immediately from the 
definition of the norm. Denote 

x
∆
=  arg 

Xx∈
max  )1||||:||(|| 22 =xAx  

i.e., 
 2|||| A = 2|||| xA  (10.50)  

where 

2
2|||| Ax = ∑

=
+++

k

i

k
ikii xaxaxa

1

2)()2(
2

)1(
1 )...( = ∑ ∑ ∑

= = =

k

i

k

l

k

j

jl
ijil xxaa

1 1 1

)()( . 

(10.51)  

Suppose that there exist  l  and   j  such that  )(lx > 0  and  )( jx < 0. Then 
from (10.51) under the assumption about the entries of  A   

 2||ˆ|| xA > 2|||| xA  (10.52)  

where )(ˆ ix = )(ix   for  i ≠ j  and   )(ˆ ix = )(ix−   for  i = j. From (10.52) we 
see that x  does not maximize  2|||| Ax . Hence 
 

 
jl,

)(lx )( jx ≥ 0 (10.53)  

and from (10.51) it follows that the norm (10.50) is an increasing function 

of its entries, which proves the lemma.   □ 

Theorem 10.9. Assume that  A  has distinct eigenvalues. Then the system 
(10.46) with the uncertainty (10.47) is globally stable for XDx =  if 

 α  + 1||)(|| 1 <++− MAM M  (10.54)  
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where |||| ⋅  is one of the norms (10.21), (10.24), (10.25), M  is the modal 

matrix of  A (i.e. the columns of  M  are the eigenvectors of  A) and 

 α  = 
i

max   |)(| Aiλ . 

Proof: Let us use Theorem 10.4 with P = M and the equality AMM 1−  = 
[ ])(,,)(,)(diag 21 A...AA kλλλ . Then 

 ||)(|| 1 MAAM n+− = |||| 11 MAMAMM n
−− + ≤α + |||| 1 MAM n

− . (10.55)  

It is easy to see that for any matrices  A  and  B 

 +)(AB ≤ ++BA . (10.56)  

It is known that for any matrix  A 

 2|||| A ≤ 2|||| +A . (10.57)  

For the norms (10.24) and (10.25) the equality |||| A = |||| +A  follows di-

rectly from the definitions of the norms. Then, using (10.55), (10.56), 
(10.57) (or the equality for the norms 1|||| ⋅ , ∞⋅ |||| ), Lemma 1 and (10.47), 

we obtain 

 ||)(|| 1 MAAM n+−  ≤ α + ||)(|| 1 +− MAM n  ≤ α + ||)(|| 1 ++− MAM M . 

Finally, using Theorem 10.4 yields the desired result.   □ 
The result (10.54) and the other conditions described in this section 

have been presented in [27, 38]. It has been shown that by using  
Theorem 10.4 based on the general principle of the contraction mapping  
it is possible to obtain a more general result than conditions presented  
earlier in the literature, for special cases of non-linear and time-varying 
systems. 

Corollary 1.  Assume that  A has distinct eigenvalues and all eigenvalues 

of ++− MAM M)( 1  are real. Then the system (10.46) with the uncertainty 

(10.47) is globally stable for XDx =  if 

 α + 1])[( 1
max <++− MAM Mλ  (10.58)  

where  maxλ   is the maximum eigenvalue of  ++− MAM M)( 1 . 

Proof: Let  N  be a diagonal matrix with real positive entries. Then  MN is 
also the modal matrix of  A. It is known that 
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N

inf  2
11 ||)(|| NMAMN M

++−− = ])[( 1
max

++− MAM Mλ .   (10.59)  

Condition (10.58) follows from (10.54) and (10.59).   □ 

Theorem 10.10. If  A  is a symmetric matrix and 

 α + 1|||| 2 <MA  (10.60)  

then the system (10.46) with the uncertainty (10.47) is globally stable for 
XDx = . 

Proof: If  A  is a symmetric matrix then  

 2|||| A = 
i

max   |)(| Aiλ  = α . (10.61)  

Using (10.61), (10.57) and Lemma 1 we obtain 

 2|||| nAA + ≤ 2|||| A + 2|||| nA  ≤ α  + 2|||| +
nA  ≤α  + 2|||| MA . 

Finally, using Theorem 10.3 yields the desired result.   □ 

Theorem 10.11.  If there exists a non-singular matrix  P∈ kkR ×  such that 

 1||)()(|| 1 <+ +++− PAAP M  (10.62)  

where |||| ⋅  is one of the norms (10.21), (10.24) and (10.25), then the sys-

tem (10.46) with the uncertainty (10.47) is globally stable for XDx = . 

Proof: Using (10.57) (or the equality for the norms 1|||| ⋅ , ∞⋅ |||| ), (10.56) 

and Lemma 1, we obtain 

 ||)(|| 1 PAAP n+−  ≤ ||)()(|| 1 ++++− + PAAP n  ≤ ||)()(|| 1 +++− + PAAP M . 

Consequently, (10.62) implies the inequality 1||)(|| 1 <+− PAAP n  and ac-

cording to Theorem 10.4 the system is globally stable for XDx = .   □ 

 In particular we can apply diagonal positive matrix  P. If  P = I (identity 
matrix) then (10.62) becomes  

 1|||| <++
MAA .  (10.63)  

Other theorems and more details concerning the stability of uncertain sys-
tems may be found in [27, 38, 52]. 

Example 10.4. Let in (10.46) and (10.47)  k = 2, 
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⎥
⎥
⎥

⎦

⎤

⎢
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⎢

⎣

⎡

+

+
=

2221
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0    

aba
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A ,        

⎥
⎥
⎥

⎦

⎤

⎢
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⎢

⎣

⎡
=

2221

1211

   

    

MM

MM

M

aa

aa

A  , 

11a , 21a , 22a , b > 0. 

Applying the condition (10.63) with the norm 1|||| ⋅  yields  

 11a + b + 11Ma + 12Ma  < 1 , 

 21a + b + 21Ma + 22a + 22Ma  < 1 

and finally 

  b < 1 – max )}(  ),{( 22212221121111 MMMM aaaaaaa +++++ . (10.64)  

Let us now apply the condition (10.54) with the norm 1|||| ⋅ . We have 

)(1 Aλ = 11a +b, )(2 Aλ = 22a , )(max Aλ = max ) ,( 2211 aba + . It is easy to 

show that 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

1   

0   1

s
M  

with 

 
2211

21

aba

ba
s

−+
+

=  

is a modal matrix of  A  and  

++− MAM M)( 1  

 

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++++

+

22122221
2

1211

121211

||     ||||||

    

MMMMMM

MMM

asasaasasa

aaa

.  (10.65)  

Suppose that  11a ≥ 22a , i.e. α = 11a + b. Applying (10.54) we obtain 

                 ||[],2max{[1 11121111 saaaab MMM +−−≤  

                 )]}1|(||)||(| 2221
2

12 +++++ saassa MMM . (10.66)  

Since  s  depends on  b, the final condition for  b  may be very compli-
cated. To show that the condition (10.66) may be more conservative than 
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(10.64) assume that 21a = 11a – 22a , i.e. s =1. Then (10.64) and (10.66) be-

come 

 b < 1 – 11a  – max }  ,{ 22211211 MMMM aaaa ++  ,  (10.67)  

 b < 1 – 11a  – )22( 22211211 MMMM aaaa +++  . (10.68)  

Let us now use condition (10.58). The eigenvalues of the matrix (10.65) 
are 

                      2,1λ =  
2

|)|1( 221211 MMM asaa +++
 

 
2

4]|)|1([ 2
221211 easaa MMM ++++

±            (10.69)  

where 

 221122122112
22

12 )1|(||)||(| MMMMMMM aasaaaassae −−++−=  

and condition (10.58) becomes 

 b < 1 – 11a  – maxλ  (10.70)  

where maxλ  is obtained by putting  +  in the numerator of (10.69). To 

compare it with (10.67) and (10.68) let us put s =1. Then 

 22112112 MMMM aaaae −= . 

If  e ≥ 0  and  211211 2 MMM aaa >+  then 

 maxλ ≥ 221211 2 MMM aaa ++  > 2221 MM aa +  

and the condition (10.68) is more conservative than (10.67). The condition 
(10.68) may be more conservative than (10.70) but is easier to obtain. 
When 21Ma = 22Ma = 0  (10.68) and (10.70) give the same result.  

 For numerical data 11a = 0.4, 21a = 0.3, 22a = 0.1, 11Ma = 0.1, 

12Ma = 0.1, 21Ma = 0.1 and 22Ma = 0.05  we obtain 

 from condition (10.63), i.e. from (10.64):       b < 0.4, 

 from condition (10.54), i.e. from (10.66):       b < 0.1, 

 from condition (10.58), i.e. from (10.70):       b < 0.24. 

For  11a = 0.65  from (10.64) we obtain  b < 0.15; positive  b  satisfying 
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condition (10.54) or condition (10.58) does not exist. 
 The obtained conditions for  b  may be applied to different forms of the 
matrix ),( nn xcA . Let us list the typical cases. 

1. Linear time-varying system 

 n

nn

nn

n x

cacba

ccba

x  

   

    

)4(
22

)3(
21

)2()1(
11

1
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+++

++
=+  

with the uncertainties 

0≥n

)|[(| 11
)1(

Mn ac ≤  ∧ )|(| 12
)2(

Mn ac ≤  

                                      ∧ )|(| 21
)3(

Mn ac ≤  ∧ )]|(| 22
)4(

Mn ac ≤ . 

Now T
nc = ]      [ )4()3()2()1(

nnnn cccc . 

2. Non-linear system 

 
)1(
1+nx = )1(

11 )( nxba + + )( )1()1(
1 nxF + )( )2()1(

2 nxF , 

 
)2(
1+nx = )1(

21 )( nxba + + )2(
22 nxa + )( )1()2(

1 nxF + )( )2()2(
2 nxF  

with the uncertainties 

∞<<∞− )1(x

   )
)(

( 11)1(

)1()1(
1

Ma
x

xF
≤  ∧ )

)(
( 21)1(

)1()2(
1

Ma
x

xF
≤ ,   (10.71)  

∞<<∞− )2(x

   )
)(

( 12)2(

)2()1(
2

Ma
x

xF
≤  ∧ )

)(
( 22)2(

)2()2(
2

Ma
x

xF
≤ .   (10.72)  

For  x = 0  one should put 

 
x

xF

x

)(
lim

0→
 

under the assumption that the limit exists. 
3. Non-linear time-varying system 

 
)1(
1+nx = )1(

11 )( nxba + + ),( )1()1()1(
1 nn xcF + ),( )2()2()1(

2 nn xcF , 
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)2(
1+nx = )1(

21 )( nxba + + )2(
22 nxa + ),( )1()3()2(

1 nn xcF + ),( )2()4()2(
2 nn xcF , 

with the uncertainties analogous to the statements (10.71) and (10.72) 
which should be satisfied for every  n ≥ 0. For example 

 
∞<<∞−≥ )1(0 xn

   )
),(

( 11)1(

)1()1()1(
1

M
n

a
x

xcF
≤   (10.73)  

means that the function  ),( )1()1()1(
1 xcF   and the sequence  )1(

nc   are such 

that (10.73) is satisfied, e.g. the function 

 
),( )1()1()1(

1 xcF  = 
⎪
⎩

⎪
⎨

⎧

<−

≥−−

0for              ]1)2exp([

0for           ])2exp(1[

 
)1()1()1(

)1()1()1(

xxc

xxc

 

and the sequence )1(
nc  such that 

 
0≥n

11
)1(

2

1
|| Mn ac ≤  

satisfy the condition (10.73). For the function 

),( )1()1()1(
1 xcF = )( )1(

1
)1( xFc , if 

 
0≥n

γ≤|| )1(
nc ,  

∞<<∞− )1(x

δ≤
)1(

)1(
1 )(

x

xF
 

and 11Ma=⋅δγ   then the condition  (10.73) is satisfied.   □ 

10.7 An Approach Based on Random and Uncertain 
Variables 

Consider a non-linear time-varying system described by  

 nnnn xxbcAx ),,(1 =+  (10.74)  

where Xxn ∈  is the state vector, Ccn ∈  is the vector of time-varying pa-

rameters, Bb∈  is the vector of constant parameters; kRX = , C and B  
are real number vector spaces. The matrix  
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 kk
nnijnn RxbcaxbcA ×∈= )],,([),,( . 

Assume that for every Cc ∈  and Bb∈  the equation ),,( xbcAx =  has a 

unique solution 0=ex  (the vector with zero components). According to 

Definition 10.1, the system (10.74) (or the equilibrium state ex ) is globally 

asymptotically stable in XDx ⊂  iff  nx  converges to 0  for any xDx ∈0 . 

 Assume now that the parameters nc  and b are unknown and the uncer-

tainties concerning nc  and b are formulated as follows: 

1. )(
0

cn
n

Dc ∈
≥

 (10.75)  

where cD  is a given set in  C. 

2.  b is a value of random variable b
~

 described by the probability density  

fb(b), and  fb(b)  is known. 

 Denote by sP  the probability that the uncertain system (10.74), (10.75) 

is globally stable for XDx = . The problem considered here consists in the 

determination of an estimation of  sP  [38, 51]. Let  W(b)  and  V(b)  de-

note properties concerning  b  such that  W(b)  is a sufficient condition and  
V(b)  is a necessary condition of the global asymptotic stability for the sys-
tem (10.74), (10.75), i.e. 

W(b) →  the system (10.74), (10.75) is globally stable for XDx = , 

the system (10.74), (10.75) is globally stable for XDx =  →  V(b). 

Then 

 wP  ≤ sP  ≤ vP  (10.76)  

where 

 ∫=

bwD

bw dbbfP )( ,      ∫=

bvD

bv dbbfP )( , (10.77)  

 Dbw = { b ∈ B: W(b)},         Dbv = { b ∈ B: V(b)}, 

Pw  is the probability that the sufficient condition is satisfied and vP  is the 

probability that the necessary condition is satisfied. In general,  Dbw ⊆ Dbv 

and  Dbv – Dbw  may be called a “grey zone”, which is a result of an addi-

tional uncertainty caused by the fact that  W(b) ≠ V(b). The condition  V(b) 
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may be determined as a negation of a sufficient condition that the system is 

not globally stable for XDx = , i.e. such a property  Vneg(b)  that  

Vneg(b) →  there exists  cn  satisfying (10.75)  

 such that  (10.74) is  not globally stable for XDx = . (10.78)  

To estimate the probability sP  according to (10.76), it is necessary to de-

termine the conditions  W(b) and  V(b). The sufficient conditions for the 
uncertain system under consideration may have forms presented in the 
previous section, based on a general form (10.26). It is not possible to de-
termine an analogous general necessary condition )(bV  or a sufficient 

condition of non-stability )(bVneg . Particular forms of necessary condi-

tions are presented in [52]. 
 Let us consider one of the typical cases of uncertain systems (10.74), 
(10.75), when 

 )]}(),,()([:{ bAxbcAbACcD
Xx

c ≤≤∈=
∈

, (10.79) 

A(b)  and )(bA  are given matrices and the inequality in (10.79) denotes 

the inequalities for the entries: 

 )(),,()( baxbcaba ijijij
≤≤ . (10.80) 

The definition (10.79) of the set  cD  means that if  cn  satisfies (10.75) 

then for every  n ≥ 0 

 )(),,()( bAxbcAbA nn ≤≤ . 

If we introduce the notation 

 )]()([
2

1
)( bAbAbA += ,         ),,()(),,( xbcAbAxbcA +=  

then the inequality in (10.79) may be replaced by 

 )(),,( bAxbcA M≤+  (10.81) 

where +A is the matrix obtained by replacing the entries of A  by their ab-

solute values and )()()( bAbAbAM −= . Then the inequality (10.81) cor-

responds to the form (10.47) with )(bAM  in place of MA . Consequently, 

we can use the sufficient conditions (10.54) and (10.63): 
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 1||)()()](||)( 1 <+ ++− bMbAbMb Mα  

where |)]([|max)( bAb iλα = , and 

 1||)()(|| <++ bAbA M  

which for 0)( ≥bA  (all entries of )(bA  are non-negative) is reduced to  

 1||)(|| <bA . (10.82) 

Under the assumption A(b) ≥ 0 it may be proved (see [52]) that if the 
system (10.74), (10.75) is globally stable for XDx =  then 

]1)([

1

<∑
=

k

i

ij

j

ba .          (10.83) 

 The considerations for the description based on uncertain variables are 
analogous to those presented for random variables. Assume that b is a 

value of an uncertain variable b  described by the certainty distribution 
)(bhb  given by an expert. Denote by sv  the certainty index that the uncer-

tain system (10.74), (10.75) is globally stable for XDx = . The problem 

considered here consists in the determination of an estimation of sν . Using 

the sets bwD  and bvD  introduced above, one obtains 

gsw vvv ≤≤  

where 
),(max bhv b

Db
w

bw∈
=     ),(max bhv b

Db
g

bv∈
=  

wv  is the certainty index that the sufficient condition is satisfied and gv  is 

the certainty index that the necessary condition is satisfied. Precisely 
speaking, they are the certainty indexes that the respective conditions are 
satisfied for approximate value of b, i.e., are “approximately satisfied”. 
Choosing different sufficient and necessary conditions we may obtain dif-
ferent estimations of sv . For example, if we choose the condition (10.82) 

with the norm ∞⋅ |||| (see (10.25)) and the negation of (10.83), then 

)(max)(max bhvbh b
Db

sb
Db bvbw ∈∈

≤≤ , 

where 
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More details on this subject are presented in [38, 45, 51, 52]. 

10.8 Convergence of Static Optimization Process 

The convergence (stability) conditions presented in the previous sections 
may be also applied to the static optimization process for the plant y = Φ(u) 
with a single output, described in Sect. 4.1 and called an extremum search-

ing process or extremal control (in Sect. 4.1 the notations y  and Φ  have 

been applied to differ from the control plant with the required output). The 
convergence of the extremum searching process may be also called the 
stability of the closed-loop extremal control system. Assume that the func-
tion y = Φ(u) is differentiable with respect to u and has one local minimum 
in the point u* (the considerations for the maximum are analogous), and 

that this is a unique point in which 

0)(
~

)(grad
∆∆ === wuu

u

ΦΦ  

(see 4.11). Then one may apply the optimization algorithm (4.13), i.e. the 
control algorithm in the closed-loop system for a substitutional plant 

w = Φ
~

(u) and the given output 0* =w . If 0* =u  and the description of 

the substitutional plant may be presented in the form w = )(uA u then, ap-

plying (4.13) we obtain the description of the closed-loop system  

un+1 = un – K A (un)un = A(un)un (10.84)

where A(un) = I – K A (un). If y = u
T
Pu where P is a symmetric positive 

definite matrix then the substitutional plant is linear w = 2Pu and for the 
linear stationary system (10.84) with the matrix A = I – 2KP one can apply 
the stability condition: The extremum searching process (4.13) converges 

to 0* =u  if and only if all eigenvalues of the matrix I – 2KP lie inside the 
circle with radius 1. Using this condition and the information on an uncer-
tain plant in the form of a set of possible matrices P, one can define a set 
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of the matrices K such that for every K belonging to this set the searching 
process is convergent. For the non-linear and (or) the non-stationary plant 
the condition (10.26) or related conditions presented in Sect. 10.6 may be 
applied. 
 In order to apply the algorithm (4.13) in the closed-loop control system 
it is necessary to obtain at the output of the substitutional plant the values 

nw  in successive periods n. It is possible to obtain approximate values of 

the components of the vector nw  replacing the components of the gradient 

by the ratio of increments obtained as results of trial steps. Then we use 
the algorithm (4.13) in which in the place of nw  we put the approximate 

value of the gradient, with the following i-th component: 

i

inini
n

uu
w

σ
δΦδΦ

2

)()()( −−+
≈ ,        i = 1, 2, ..., p 

where p is a number of inputs, δi is a vector with zero components except 

the i-th component equal to σi and σi is a value of the trial step for the i-th 
input. Finally, the extremum searching algorithm for the current interval n 
(and consequently, the program for a real-time controlling computer) is the 
following: 
1. For the successive i = 1, 2, ..., p put at the plant input (or execute) the de-
cision nu  with the components 

⎪⎩

⎪
⎨
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==+

≠
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measure and put into memory the output value iny ,1− . 

2. For the successive i = 1, 2, ..., p put at the plant input the vector nu
~  with 

the components 

⎪⎩
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measure and put into memory the output value iny ,1
~

− . 

3. Find the next decision according to the formula (4.13) in which 

i

inini
n

yy
w

σ2

~
,1,1)( −− −

= . 

As it can be seen, the determination of one decision un requires 2p trial 
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steps, each of them consists in a trial changing of the i-th input 
(i = 1, 2, ..., p) and observing of the result in the form iny ,1−  or iny ,1

~
− . 

One should take into account that the extremum searching process may be 
long and the execution of the trial steps must be acceptable in practice. In 
order to determine the convergence condition, for the given function Φ one 

should find the function w = Φ
~

(u) (in the same way as in the former con-

siderations) and present it in the form w = )(uA u. 

 If the plant output is measured with random noises, to the extremum 
searching process the stochastic approximation algorithm mentioned at the 
end of Sec. 10.3 can be applied. In the case of a gradient method this is the 
following algorithm: 

un+1 = un – γnwn 

where wn denotes the gradient of the function Φ with respect to u, and γn  
is a sequence of coefficients presented in Sect. 10.3. For the approach with 
trial steps, the values of these steps should decrease in successive n and 
converge to zero for n → ∞ ( see [10, 103]). 



 
 
 
 

11 Adaptive and Learning Control Systems 

11.1 General Concepts of Adaptation 

The present chapter as well as the previous one are devoted to problems 
connected with obtaining information on the plant (or decreasing an uncer-
tainty concerning the plant) during the control process. Unlike the ap-
proach presented in Chap. 10, we shall now assume that there exists al-
ready a basic control algorithm and the additional information is used to 
gradual improving of this algorithm. As a rule, it is a parametric approach, 
i.e. improving consists in step by step changing of parameters a in the ba-
sic algorithm. The improving is needed in order to adapt the basic control 
algorithm to the control plant. That is why such a control is called an adap-

tive control (more generally, an adaptive decision making). The adaptation 
is reasonable when, because of an uncertainty, a designer could not design 
the basic algorithm so as it would perform in an optimal way (more gener-
ally, determined requirements would be satisfied) for the concrete plant 
and disturbances, or when the plant is varying and data accepted by a de-
signer in some time differ from the current data. 
 Consequently, the control algorithm in an adaptive system consists of 
two parts: the basic algorithm and the algorithm of adaptation, i.e. the pro-
cedure improving the basic algorithm. In other words, in the adaptive con-
trol system two levels may be distinguished (Fig. 11.1): the lower level 
with the basic controller (the executor of the control algorithm) directly re-
ceiving the data from the plant and determining the control decision u, and 
the upper level at which the adaptator (the executor of the adaptation algo-
rithm) acts. The levels are called a basic control level and an adaptation 

level, respectively, and the two-level system in which the upper level im-
proves the performance of the lower one − is sometimes called a two-layer 

system. Into the basic controller as well as into the adaptator, the results of 
the observation of the plant and (or) the environment in which the plant 
acts are introduced (in Fig. 11.1, for the basic control device they are the 
current values of y and z). However, they are not obligatorily to be the 
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same data (as it is indicated in the figure). Besides, the data for the basic 
controller usually are introduced more frequently than the data introduced  

Basic control

algorithm

Adaptator

Control plant
CP

a

u

y

z

z

y

 

Fig. 11.1. Illustration of basic adaptation concept 

into the adaptator because usually the adaptator acts much more slowly 
than the basic controller, i.e. the period of the basic control is short in 
comparison with the period of improving the basic control. The general 
idea of the adaptation presented here may be additionally characterized by 
the following remarks: 
1. In the case of a parametric uncertainty concerning the plant parameter c, 
the idea of the adaptation is connected with the parametric optimization 
concept presented in Chap. 5. Now, it is not possible to find the optimum 
value of the parameter a because the parameter c is unknown. It is possible 
however to adapt this algorithm to the plant by changing the parameter a 
currently during the control process.  
2. From the adaptator level point of view, the adaptive system may be 
treated as a control system in which the basic control system is a plant with 
the input a, and the adaptator determining the decisions a is a controller. 
The same adaptive system may also be treated as a control system with the 
basic control plant CP and a controller (a controlling system) consisting of 
two interconnected parts marked in Fig. 11.1: the basic controller and the 
adaptator. Thus, it is a control system with the plant CP and a complex 
control algorithm being a composition of two subalgorithms and using the 
information introduced to determine the decisions u. 
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3. One may try to determine directly the complex control algorithm. The 
concept of adaptation means a decomposition of this problem into two 
subproblems: the determination of the basic control algorithm (or only the 
determination of the values of parameters in the given form of this algo-
rithm as it was discussed in Chap. 5) and the determination of the adapta-
tion algorithm. Such a decomposition may be motivated by the fact that, as 
a rule, the subproblems are easier to solve and by other reasons which will 
be presented in Sect. 11.2.  
4. Even if the complex algorithm is obtained via the decomposition, it can 
be executed in a coherent form as one computer control program. Some-
times, however, it may be reasonable to keep the separation of the subalgo-
rithms (i.e. the basic control algorithm and the adaptation algorithm). They 
can be two cooperating subprograms implemented in one controlling com-
puter or in two separate computers, or the program in computer adaptator 
improving the performance of a conventional controller at the lower level, 
as it occurs in practice, in the case of automatic control systems with plants 
being technical devices or industrial processes. A practical separation of 
the algorithms also occurs when the basic controller acted without im-
provements in the past and at some time an adaptator was inserted into the 
system. Sometimes it is worth keeping the separation because of reliability 
reasons: faults of the adaptator do not have to cause the break of the con-
trol, although the quality of the control may be decreasing at some time. 
Let us note that if the separation of the subalgorithms is liquidated or is not 
observable “from outside” then it will be possible to state that this is an 
adaptive system knowing how the system was composed (came into exis-
tence) but not by observing the final effect of this composition. 
5. The basic problem of an adaptive control system design consists in the 
determination of the adaptation algorithm for the given existing basic con-
trol algorithm. In this chapter we shall present shortly the problem of the 
adaptation algorithm design for fixed forms of the basic algorithms, deter-
mined or described in the previous chapters.  
6. All the remarks, concepts and algorithms of the adaptation concerning 
here the control, one may generally refer to decision making problems tell-
ing about methods and algorithms of the adaptive decision making and 
adaptive decision systems.  
 Various described and realized ideas of the adaptation most often can be 
reduced to one of two basic concepts: 
a. Adaptation via identification. 
b. Adaptation via adjustment of system parameters. 
Let us explain them for a problem most frequently considered, in which 
the aim of changes of the parameter a in the control algorithm is to achieve 
a minimum of the performance index Q, and these changes are needed be-
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cause the plant parameter c is changing. The first concept consists in a 
successive identification of the control plant (see [14]) and using the result 
in the form of the current value mc  (as a rule, the approximate value of the 

real plant parameter c) to the determination of the value ma . By m the in-

dex of a successive period of adaptation has been denoted (usually it is a 
multiple of the basic control period denoted here by n), and ma  denotes 

the value of a minimizing the performance index Q for mcc = . For the ba-

sic control system treated as a control plant with the output mQ , input ma  

and a disturbance mc , this concept means a control in an open-loop system 

(Fig. 11.2). The second concept means an extremal control of the plant 
mentioned above in a closed-loop system (Fig. 11.3), i.e. changing ma  as a 

result of observations of the former changes, i.e. the process of minimum 
Q searching by a suitable change of a. 

Adaptator Basic control system

cmcm

am
Qm

 

Fig. 11.2. Adaptation via identification in open-loop system 

Adaptator Basic control system

cm

am

Qm

 

Fig. 11.3. Adaptation via adjustment in closed-loop system 

The second part of the title of this chapter, i.e. a learning control system, is 
more difficult to define precisely and uniquely. This difficulty is caused by 
a great variety of different definitions, concepts and methods for which the 
term learning is used. Generally and roughly speaking, the learning proc-
ess consists in a gradual improving (increasing) of an initial knowledge, 
based on additional information given by a trainer or obtained as a result of 
observations. For different methods of algorithmization and computeriza-
tion of learning processes, developed in the first period mainly for needs of 
a classification and recognition − a common term machine learning has 
been used (see e.g. [89]). Generally and roughly speaking one can say that 
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adaptive control systems are systems in which a control learning process is 
performed. Thus, in wide sense of the word, every adaptive system is a 
learning system. In a more narrow sense, the term learning control system 
is understood in a different way. Usually, this term is used when in the 
control system at least one of the following features occurs: 
1. The improvement of the control occurs as a result of the trainer’s per-
formance imitating. 
2. In the adaptive system there is a third level (learning level) which im-
proves the performance of the second level (adaptation level). 
3. A knowledge representation of the plant (KP) or of the decision making 
or control (KD) differs from conventional mathematical models. 
A short characteristic of learning control systems presented in Sects. 11.5 
and 11.6 concerns the systems having the third feature mentioned above, 
i.e. systems with a knowledge representation, in which the learning process 
consists in step by step knowledge validation and updating and using the 
results of updating to the determination of current control decisions. They 
are then adaptive systems containing a knowledge representation consid-
ered as a generalization or a modification of traditional functional models. 
The first feature, i.e. learning with a trainer, may occur in such a system as 
well. 

11.2 Adaptation via Identification for Static Plant   

The value of the control algorithm parameter a to be determined by a de-
signer depends on the plant parameter c (in general, a and c are vector pa-
rameters). Let us denote this relationship by H, i.e. )(cHa = . If the value 

c is known then the respective value a may be calculated by the designer. 
Otherwise, the designer can only give the relationship H in the form of a 
formula or a computational procedure. Such a relationship has been con-
sidered for the static plant in Sect. 7.3 (see (7.28) and Fig. 7.3). In Chap. 5 
we considered the determination of such relationship as a result of minimi-
zation of the performance index Q. In this case, the dependency of Q upon 
c and u, i.e. 

Q = Φ(c, a) 

is a description of the adaptation plant, or the plant of the extremal control 
mentioned in the previous section. The relationship )(cHa =  is obtained 

as a result of minimization of the function Φ  with respect to a, with the 
fixed c. In Sect. 7.3 it has been assumed that c is directly measured with 
noises and the estimation of c is put into the formula a = H(c) in the place 
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of c. Now we consider a case when the estimation of c is determined as a 
result of the plant identification, i.e. using a sequence of successive meas-
urements of the plant input and output. What is more, it does not have to 
be an estimate of the unknown parameter in the known plant description, 
based on input and output measurements with noises − but the best pa-
rameter in a model accepted as an approximate description of the plant. 
Then the identification consists in the determination of the optimal model 
parameter ([17]). The value mc  in a certain moment m is determined by 

using a sequence of measurement results, according to an identification al-
gorithm G, properly designed. By substituting the current value mc  into 

the relationship H  we obtain the value am = H(cm) in the successive m-th 
adaptation period. 
 Figure 11.4 illustrates the concept of the adaptation via identification 
more precisely than Fig. 11.2. The adaptator consists of two parts: the iden-
tifier executing an identification algorithm and the part determining the 

current value am = H(cm) which is introduced into the basic control algo-
rithm, i.e. is set in the basic controller.  

H

Identif ier

G

PlantBasic control algorithm

Adaptator

ynun

am

cm

 

Fig. 11.4. Block scheme of system with adaptation via identification 

Figure 11.4 presents the adaptation for a closed-loop system, but the con-
cept described is general and may be applied to basic systems with differ-
ent structures. Its essence consists in the fact that the difficult problem of 
determining directly the parameter ma  based on observations of previous 

plant inputs and outputs is decomposed into two simpler problems: the de-
termination of the identification algorithm G and the designing algorithm 
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H. Thus, the identification problem is separated here in a similar way as 
the estimation problem of the parameter c based on its direct observation 
was separated in Sect. 7.3. 
 Nevertheless, designing the adaptation system with the decomposition 
mentioned above may be connected with some difficulties concerning the 
determination of the length of the adaptation period (how frequently one 
should determine new values of c and improve a), and concerning the con-
vergence of mc  to the unknown value c under the assumption that c is con-

stant during the identification process, and consequently the convergence 
of ma  to a = H(c). The main reason of these difficulties is the fact that the 

identification is performed in a control system, in a specific situation when 
the plant inputs may not be changed in an arbitrary way but are determined 
by the basic controller updated as a result of the previous identification. 
Usually the formalisms describing the control process in the adaptive sys-
tem are so complicated that an analytical investigation of the adaptive 
process convergence and the adaptive control quality is not possible and 
computer simulations should be applied.  
 The problems described above are relatively simple for static plants in 
which making the decision u considered in Sect. 3.1 is evaluated in one pe-
riod. Hence, the period of the evaluation and improving of the control (i.e. 
adaptation period) may be equal to the period of the basic control, and if 
the plant is stationary, all previous values u and y from the beginning of 
the control may be used for the identification, that is for the determination 
of nc . In this case, it is convenient to present the identification algorithm 

as a recursive procedure finding nc  on the basis of 1−nc  and the current 

results of the (u, y ) measurements.  
 Let us consider a one-dimensional plant for which a linear model y = cu 

is accepted. If one assumes an identification quality index in the form  

QI, n = ∑
−

=
−

1

1

2)(
n

i
ii cuy  

then the optimal value of cn minimizing QI, n is 
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. (11.1)

This is the identification algorithm showing how to find cn on the basis of 
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(u1, y1), (u2 , y2), ..., (un–1, yn–1). It can be presented in the recursive form 
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bn = bn–1 + 2
1−nu ,        n = 2, 3, ..., (11.3)

with the initial conditions 011 == bc . The relationship (11.2) can be also 

presented in another form: 

cn = cn–1(1 – 
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Then  

cn = cn–1 + γn–1( yn–1 – cn–1un–1) (11.4)

where  

γn–1 = 
2

11

1

−−

−

+ nn

n

ub

u
 (11.5)

For the sequence γn, the recursive formula can be also given without using 

nb . The form (11.4) is connected with the known concept of the identifica-

tion with a reference model, where the correction of the model parameter c 
depends on the difference between the plant output 1−ny  and the model 

output ny  = cn–1un–1. Let us note that the coefficient γn converges to zero 

for ∞→n . The correction is then performed in a system with degressive 

feed-back mentioned in Chap. 10. 

 For the requirement y = y* ≠ 0, the relationship H is reduced to u =  `    ,  

and the algorithm of the control with adaptation is the following: 

un = 
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The recursive form of this algorithm is determined by the relationships 

n
n

c

y
u

*
= , (11.2) and (11.3), or (11.4), (11,5) and (11.3), which can be re-

placed by one relationship describing the dependency of γn upon γn–1 and  

un–1. A question arises whether this control process is convergent and to 
what limit, if it is. For this purpose one should distinguish the case  

yn = cn un + zn (i.e. c is the parameter to be estimated in the linear plant in 
which the output is measured with a noise) and the case when c is the pa-
rameter in the model y = cu, which has to approximate a real plant. In the 

first case nc  may be convergent to c and consequently, ny  may be con-

vergent to *y . In the second case the limit of the sequence nc  may not ex-

ist and a definition of a value of c optimal for a real plant to which nc  

might converge is not unique and it is not always formulated.  
 Comparing the concept of a control with the adaptation described above 
with the concept of a control described at the beginning of Chap. 10, it is 
worth noting that we can consider two control processes for the same 
plant:  
1. The control process based on the plant model, in which successive con-
trol decisions are determined on the basis of comparison of the plant and 

the model outputs in the previous period.  
2. The control process in which successive control decisions are deter-
mined directly on the basis of comparison of the plant output with a re-

quired value. 
 It is not possible to answer uniquely the question which control process 
is better. The above difficulties and doubts arisen in a rather simple exam-
ple considered here show that the application of the adaptation via identifi-
cation without a deep formal analysis or simulations may give not pre-
cisely defined and sometimes poor effects of using rather complicated 
control algorithms.  
 The considerations concerning the adaptation via identification can be 
extended for the multi-input and single-output plant with the linear model 

y = cT
u,  u, c ∈R

p. 

The generalization of the identification algorithm (11.1) is the relationship 

cn = (Un–1
T

1−nU  )–1
Un–1

T
1−nY  

where 
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Un–1 = [u1  u2  ...  un–1],      Yn–1 = [ y1  y2  ...  yn–1] 

denote the matrices of the measurement results; Yn–1  is a one-row matrix. 
The formulas and transformations analogous to (11.2), (11.3), (11.4) and 
(11.5) are now the following: 

cn = [Un–2
T

2−nU  + un–1
T

1−nu ] 
–1 (Un–2

T
2−nY  + un–1 yn–1)  

          = (Bn–1 + un–1
T

1−nu )–1(Bn–1cn–1 + un–1 yn–1), (11.6)

Bn = Bn–1 + un–1
T

1−nu ,          n = p + 1, p + 2, ... , (11.7)

cp = 0 ,  Bp = T
11 −− pp UU , 

cn = [I – (Bn–1 + un–1
T

1−nu )–1] cn–1 + (Bn–1 + un–1
T

1−nu )–1
un–1 yn–1. 

Then 

cn = cn–1 + γn–1( yn−1 – T
1−nc un−1) (11.8)

where  

γn–1 = (Bn–1 + un–1
T

1−nu )–1
 un . (11.9)

The algorithm (11.8), frequently and in a rather complicated way described 
in the literature (e.g. [66]) has a substantial negative feature limiting its 
usefulness in the concept of adaptation presented here: The correction of p 
parameters (components of the vector c) is based on one scalar value, that 

is on the difference yn – ny . It is worth noting that in this case the basic 

control algorithm is not unique, i.e. there exist infinitely many solutions of 
the equation aT

u = y*. Returning to the identification one can say that it 

would be more reasonable to correct c after a successive sequence of the 
input and output measurements, containing  p individual measurements 
(see [9, 11]). 

Let  yn = cT
u + zn where zn is a random noise. The identification prob-

lem is now reduced to the estimation problem, that is to the determination 
of an estimate nc  of the unknown parameter c. Then finding nc  means 

determining a successive approximation of the value  
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c
* = arg 

c
min E[( yn – cT

un)2], 

that is a successive approximation of the value *c  satisfying the equation 

E[
c

grad ( yn – cT
un)] = 0. 

The application of stochastic approximation method (see Sect. 10.7) yields 
the following recursive identification algorithm:  

cn = cn–1 + 1−nγ un( yn–1 – T
1−nc un–1) (11.10)

where the scalar coefficient nγ  converges to zero and satisfies other con-

vergence conditions of the stochastic approximation process. The algo-
rithm (11.10) has then the form (11.8) in which nnn u11 −− = γγ . It means 

that in the case where yn = cT
u + zn  and under the conditions of stochastic 

approximation convergence, in the algorithm (11.8) one may put the ma-

trix In
1
1

−
−γ  in the place of (Bn–1 + un–1

T
1−nu ). The algorithm is then much 

simpler and the convergence is assured but if the procedure (11.8) and 
(11.9) is convergent, it can give a better identification quality and conse-
quently, a better adaptive control quality. 

11.3 Adaptation via Identification for Dynamical Plant 

Let us consider a one-dimensional linear stationary discrete plant described 
by the difference equation 

yn+m + am–1 yn+m –1 + ... + a1 yn+1 + a0 yn = bm–1 un+m–1 + ...  

                                                                       + b1 un+1 + b0 un, 

i.e.  

               yn = bm–1 un –1 + ... + b1 un – m+1 + b0 un – m – am–1 yn–1 – ...  

                       – a1 yn – m+1 – a0 yn – m . 

This equation may be written in the form 

vn = cT
wn (11.11)

where 
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c
T = [bm–1   bm–2   ...   b1   b0   am–1   am–2   ...   a1   a0], 

T
nw  = [un –1   un –2   ...   un – m   – yn–1   – yn –2   ...   – yn – m ]. 

Consequently, in order to identify the parameters c, that is to estimate their 
values in the known plant description or to determine their values in the 
model approximating the plant – one may apply the same algorithm as for 
identification of a static plant with the input nw  and the output nv . Then, 

one may apply recursive algorithms (11.6), (11.8) or (11.10) in which one 
should put nw  in the place of nu  and ny  in the place of nv . If as a result 

of the parametric designing of the system with a fixed parameter a one ob-
tains the formula a = H(c), then the application of an adaptation period 
equal to a basic control period leads to changing the parameters of a basic 

control algorithm according to the formula an = H(cn). When the parame-
ter c is constant during the identification and the control corrections, and 
the recursive sequence nc  converges to c, then (under the assumption that 

H  is a continuous function, which has been assumed in previous consid-
erations as well) na  converges to the value of a, for which the requirement 

assumed in a designing stage is fulfilled. In particular, in a parametric op-
timization problem considered in Chap. 5, na  converges to the value 

minimizing the performance index Q = Φ(c, a). 
 All the remarks and doubts concerning the convergence of an adaptation 
process and the quality of an adaptive control discussed in the previous 
section refer to the process mentioned above as well. For a dynamical 
plant, a concept of the choice of the adaptation interval as a sufficiently 
large multiple of the basic control interval is justified and frequently de-
scribed. This means that the determination of a new parameter ma  is not 

performed in every control period by using nn yy −  but in a period suffi-

ciently long to estimate a quality of the control with a constant parameter 

1−ma , or, more precisely speaking, to determine the control performance 

index as a sum of local indexes for particular control periods within one 
adaptation period. In this case 

∑
=

+−=
=

Nmn

mNn
nm yQ
1)1(

)(ϕ  (11.12)

where using N means that one adaptation period contains N basic control 
periods, mc  is a value of nc  for n = Nm, i.e. the value determined at the 
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end of the (m−1)-th adaptation period, am = H(cm)  and is constant during 
the m-th adaptation period. Now, the basic control process and the process 
of the improvement of the control are separated in time, in such a sense 
that the improvement is performed in every N periods of the basic control. 
To design an adaptive control algorithm the knowledge of the recursive 
identification algorithm and the procedure H (i.e. the procedure of a para-
metric design with a fixed parameter c) is needed. It is also necessary to 
investigate the convergence of an identification process in the control sys-
tem under consideration, for which simulations may be useful. 
 More details on different cases of the adaptation via identification may 
be found in [66]. 

11.4 Adaptation via Adjustment of Controller Parameters 

This concept consists in the application of a suitable extremum searching 
algorithm (extremal control) to the minimization of Q = Φ(c, a), that is to 
a basic control system considered as a static optimization plant with the 
input ma  and output mQ  (Fig. 11.3). Such an adaptive system is usually 

called a self-adjusting or self-tuning control system. The value  

Qm = Φ(c, am) is defined by the formula (11.12) or by another formula 
corresponding to another definition of the performance index estimating 
the control during N periods. We assume that the value of the parameter c 
is constant during an adjustment process and if a convergence condition is 
satisfied, ma  converges to the value )(cHa =  minimizing the perform-

ance index Q = Φ(c, a). To the determination of an adjustment algorithm, 
known algorithms of the extremal control in a closed-loop system can be 
used. Under some assumptions, one may apply the gradient algorithm 

am+1 = am – Kwm (11.13)

where 

maa
a

m acQw ==
 

),( grad  

or the algorithm with trial steps (see Sect. 10.7), i.e. the algorithm (11.13) 

in which the  i-th component of the vector  wm  is as follows 

i

imimi
m

acQacQ
w

σ
δδ

2

),(),()( −−+
=  
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where δi is the vector with zero components except the i-th component 

equal to iσ  (the value of trial step). The matrix K denotes the matrix of 

coefficients in the adjustment algorithm which are to be chosen by a de-
signer in such a way as to assure the convergence of the adjustment proc-
ess. For this purpose, the convergence conditions described in Chap. 10 
and the stochastic approximation algorithm in the case of the searching 
process with noises can be applied [10]. It should be noted that the func-
tion Q = Φ(c, a)  may be very complicated and may not satisfy the as-
sumptions necessary to apply the algorithms mentioned above, in particu-
lar – it may have many local extrema. Then, to determine  a   step by step, 
one can apply so called genetic algorithm. The main idea of this approach 
is the following: at each step not a single “candidate” ma  as a possible ex-

tremizing (minimizing) value but a set of such candidates is evaluated, and 
a way of decreasing this set in the successive steps is given. 
 To apply the gradient algorithm it is necessary to know the formula  
Q = Φ(c, a), i.e. the performance index should be presented in an analyti-
cal form as a function of c and a. Such functions for linear systems and 
quadratic performance indexes have been considered in Chap. 5. An im-
portant advantage of the adjustment algorithm with trial steps is that the 
knowledge of the function Φ  is not required and the adjustment process is 
performed during the control of a real plant or its simulator by the basic 
control algorithm being adjusted. The algorithm with trial steps has to be 

applied not only when the function Φ  and consequently, the function am = 

H(cm)  (i.e. the extremal control algorithm in an open-loop system) are dif-
ficult to determine, but also when this determination is not possible. Such a 
situation occurs when the form of the control algorithm with undefined pa-
rameters is less or more arbitrary given as a universal form which by ad-
justing may be adapted to concrete plants from a wide class, or as a form 
describing more or less reasoned expert’s knowledge on the control. It 
concerns mainly a neuron-like controller mentioned in Chap. 5, which will 
be described more precisely in the next chapter, and a fuzzy controller in 
which parameters of membership functions are treated as the components 
of the vector a. An adaptive fuzzy controller (or an adaptive fuzzy control 
algorithm) denotes then a fuzzy controller with the parameters adjusted 
during the control process. 
 Finally, let us note that the adaptation process consisting in the adjust-
ment with trial steps may be very long. To determine and perform one ba-
sic step it is necessary to perform  2p trial steps where p is a number of pa-
rameters to be adjusted, which requires 2p adaptation periods, sufficiently 
long to estimate a quality control within one such period. That is why a 
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simulator of the plant should be used (if it is possible) to generate the rela-
tionship )( mm cHa =  in a form of a table containing a sequence of differ-

ent values mc  and a sequence of corresponding values ma  obtained as a 

result of the adjustment using the simulator. This table forms a data base in 
a computer executing an adaptive control of a real plant. The adaptive 

program consists of the following parts: 
1. Determination of mc  according to a recursive identification algorithm. 

2. Finding in the table mentioned above the value mc  for which mm cc −  

is the smallest for a given form of the norm. 
3. Putting ma  corresponding to mc  into a basic control algorithm. 

Such an adaptation process is sometimes called an adaptation with learn-

ing. In this case obtaining the table by using the simulator may be consid-
ered as an effect of learning. In other words, this is a combination of a 
concept of adaptation via identification in an open-loop system with a con-
cept of adjustment adapting the control algorithm to the plant simulator. 
This concept as well as other ideas concerning the adaptation we present in 
a rather descriptive informal way because, in principle, designing the con-
trol program consists here in designing of subprograms according to the 
algorithms described in a formal way in the previous chapters or in other 
books devoted to identification and static optimization. 

11.5 Learning Control System Based on Knowledge of 

         the Plant 

According to the remark at the end of Sect. 11.1, this section concerns 
plants described by a knowledge representation in the form of relations 
with unknown parameters. The learning process consists here in step by 

step knowledge validation and updating [25, 26, 28–31, 42, 52, 53]. At 
each step one should prove if the current observation “belongs” to the 
knowledge representation determined before this step (knowledge valida-

tion) and if not – one should modify the current estimation of the parame-
ters in the knowledge representation (knowledge updating). The results of 
the successive estimation of the unknown parameters are used in the cur-
rent determination of the decisions in a learning decision making system. 
This approach may be considered as an extension of the known idea of ad-
aptation via identification for the plants described by traditional mathe-
matical models (see e.g. [14]). We shall consider two versions of learning 
systems. In the first version the knowledge validation and updating is con-
cerned with the knowledge of the plant (i.e. the relation R describing the 
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plant), and in the second version – with the knowledge of the decision 
making (i.e. the set of decisions uD ). In both versions the learning algo-

rithms based on the knowledge validation and updating will be presented. 
 Consider a static plant described by a relation 

YUcyuR ×⊂);,(  (11.14)

where Cc ∈  is a vector parameter (a vector of parameters). As it was said 
in Chap. 6, the relation R  may by described by a set of equalities and/or 
inequalities concerning the components of  u and  y, e.g. 

22T cyuu ≤+  (11.15)

where u is a column vector, c and y are one-dimensional variables, or 

                                        ubyua TT ≤≤  

where a, b are vectors of parameters, i.e. c = (a, b). As a solution of the de-
cision problem for the given YDy ⊂  (see Sect. 6.3) we obtain a set of de-

cisions 

});(:{)( yyu DcuDUucD ⊆∈=  (11.16)

where 

                       )};,(),(:{);( cyuRyuYycuDy ∈∈=  

is a set of possible outputs for the given u, and )(cDu  is the largest set 

such that the implication  yu DyDu ∈→∈   is satisfied. For example, if in 

the case (11.15) we have the requirement 22 α≤y  then the solution 

)(cDu  is determined by the inequality 

                                   2T22 cuuc ≤≤−α . 

For the further considerations we assume that );,( cyuR  for every Cc∈  is 

a continuous and closed domain in YU × . Assume now that the parameter 
c in the relation R has the value cc =  and c is unknown. 

11.5.1 Knowledge Validation and Updating 

Let us assume that the sequence of observations 
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)];,(),[(),,(,),,(),,(

,1

2211 cyuRyuyuyuyu ii

ni

nn ∈
∈

…  

is available and may be used for the estimation of c . For the value iu  at 

the input, the corresponding value iy  is “generated” by the plant. The 

greater the variation of ),( ii yu  inside R, the better the estimation that may 

be obtained. Let us introduce the set 
 

)]};,(),[(:{)( cyuRyuCcnD ii

i

c ∈∈= .                    (11.17)

It is easy to note that )(nDc  is a closed set in C. The boundary )(nc∆  of 

the set )(nDc  may be proposed as the estimation of c . In the example 

(11.15) the set ),[)( min, ∞= nc cnD  and }{)( min,nc cn =∆  (a singleton) 

where 

)(max 2T2
min, iii

i
n

yuuc += . (11.18)

For one-dimensional u, the estimation of c  is illustrated in Fig. 11.5. 
 Assume that the points ),( ii yu  occur randomly from );,( cyuR  with 

probability density ),( yuf , i.e. that ),( ii yu  are the values of random 

variables )~,~( yu  with probability density ),( yuf . 

Theorem 11.1. If 0),( >yuf  for every );,(),( cyuRyu ∈  and for every 

);,();,( cyuRcyuRcc ≠≠  then )(n∆c  converges to }{c  with probabil-

ity 1. 
Proof: From (11.17) 
 

)}.;,(),()];,(),[(:{)1( 11

,1

cyuRyucyuRyuCcnD nnii

ni

c ∈∧∈∈=+ ++
∈

 

Then )()1( nDnD cc ⊆+ , which means that )(nDc  is a convergent se-

quence of sets. We shall show that cc DD =  with probability 1, where 

)]};,(),[(:{)(lim

,1

cyuRyuCcnDD ii

i

c
n

c ∈∈==
∞∈

∞→
,          (11.19)
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)};,();,(:{ cyuRcyuRCcDc ⊆∈= .                        (11.20)

cmin

y

uc

 

Fig. 11.5. Illustration of the estimation in example under consideration 

Assume that cc DD ≠ , i.e. there exists cDc∈ˆ  such that 

)ˆ;,();,( cyuRcyuR ⊄ . There exists then the subset of );,( cyuR  

RDcyuRcyuR
∆

)ˆ,,();,( =−                            (11.21)

such that for every ∞∈ ,1i  Rii Dyu ∉),( . The probability of this property 

is the following: 

                                         ∞
∞→

= Ppn

n

∆
lim  

 

where 

∫
−×

=−×∈=

RDYU

R dudyyufDYUyuPp ),(])~,~[( . 

From the assumption about ),( yuf  it follows that 1<p  and 0=∞P . 

Then cc DD =  with probability 1. From (11.19) 
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cc
n

∆n∆
∆

)(lim =
∞→

 
 

where c∆  is the boundary of cD . Using the assumption about R it is easy 

to note from (11.20) that }{c∆c =  where c∆  is the boundary of cD . Then 

with probability 1 

 }{)(lim c∆n∆ cc
n

==
∞→

.                                             □

 The determination of )(n∆c  may be presented in the form of the follow-

ing recursive algorithm: 
1. Knowledge validation. Prove if 
 

)];,(),[(
)1(

cyuRyu nn

nDc c

∈
−∈

.                             (11.22)

If yes then )1()( −= nDnD cc  and )1()( −= n∆n∆ cc . If not then one 

should determine the new )(nDc  and )(n∆c , i.e. update the knowledge. 

2. Knowledge updating. 

)};,(),(:)1({)( cyuRyunDcnD nncc ∈−∈=             (11.23)

and )(n∆c  is the boundary of )(nDc . For n = 1 

                          )};,(),(:{)1( 11 cyuRyuCcDc ∈∈= . 

The successive estimations may be used in current updating of the solution 
of the decision problem in the open-loop learning system, in which the set 

)( nu cD  is determined by putting nc  in (11.16), where nc  is chosen ran-

domly from )(n∆c . For the random choice of nc  a generator of random 

numbers is required. 

11.5.2 Learning Algorithm for Decision Making in Closed-loop  
System 

The successive estimations of c  may be performed in a closed-loop learn-
ing system where iu  is the sequence of the decisions. For the successive 

decision nu  and its result ny , knowledge validation and updating should 

be performed by using the algorithm presented in the first part of this sec-
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tion. The next decision 1+nu  is based on the updated knowledge and is 

chosen randomly from )( nu cD . Finally, the decision making algorithm in 

the closed-loop learning system is the following: 
1. Put nu  at the input of the plant and measure ny . 

2. Prove the condition (11.22), determine )(nDc  and )(n∆c . If (11.22) is 

not satisfied, then knowledge updating according to (11.23) is necessary. 
3. Choose randomly nc  from )(n∆c . 

4. Determine )( nu cD  according to (11.16) with ncc = . 

5. Choose randomly 1+nu  from )( nu cD . 

For n = 1 one should choose randomly 1u  from U and determine )1(cD . If 

for all pn <  the value nu  is such that ny  does not exist (i.e. nu  does not 

belong to the projection of );,( cyuR  on U), then the estimation starts from 

n = p. If )( nu cD  is an empty set (i.e. for ncc =  the solution of the deci-

sion problem does not exist) then 1+nu  should be chosen randomly from 

U. The block scheme of the learning system is presented in Fig. 11.6. For 
the random choice of nc  and nu  the generators 1G  and 2G  are required. 

The probability distributions should be determined currently for )(n∆c  and 

)( nu cD . 

Know ledge-based

decision making 2G Plant

Know ledge

validation and
updating

Memory

Know ledge
representation

1G

)( 1-nu cD nu ny

ny

nu

nc
1-nc

);,( cyuR

)(nc

yD

∆

 

Fig. 11.6.  Learning system based on the knowledge of the plant 

 Assume that the points nc  are chosen randomly from )(n∆c  with prob-

ability density )(cfcn , the points nu  are chosen randomly from )( 1−nu cD  

with probability density )|( 1−nu cuf  and the points ny  “are generated” 



11.6 Learning Control System Based on Knowledge of      319 

 
 
 
 

randomly by the plant with probability density );|( cuyf ny  from the set 

)};,(),(:{);( cyuRyuYycuDy ∈∈=  where nuu =  and cc = . It means 

that ),,( 11 ++ iii yuc  are the values of random variables )~,~,~( 11 ++ iii yuc  

with probability density )|()( 1 iiuici cufcf +⋅ );|( 11 cuyf iiy ++⋅ . 

11.6 Learning Control System Based on Knowledge of  

        Decisions 

In this version the validation and updating directly concerns )(cDu , i.e. 

the knowledge of the decision making. When the parameter c  is unknown 
then for the fixed value u it is not known if u is a correct decision, i.e. if 

)(cDu u∈  and consequently yDy ∈ . Our problem may be considered as a 

classification problem with two classes. The point  u  should be classified 
to class j = 1 if )(cDu u∈  and to class j = 2 if )(cDu u∉ . Assume that we 

can use the learning sequence 

nnn Sjujuju
∆

2211 ),(,),,(),,( =…  

where }2,1{∈ij  are the results of the correct classification given by an ex-

ternal trainer or obtained by testing the property yi Dy ∈  at the output of 

the plant. Let us assume for the further considerations that )(cDu  is a con-

tinuous and closed domain in U, and consider the approaches analogous to 
those presented in the previous section. 

11.6.1 Knowledge Validation and Updating 

Let us denote by iu  the subsequence for which 1=ij , i.e. )(cDu ui ∈  and 

by iû  the subsequence for which 2=ij , and introduce the following sets 

in C: 

)(:{)( cDuCcnD uic ∈∈=  for every iu in }nS , (11.24)

)(ˆ:{)(ˆ cDUuCcnD uic −∈∈=  for every iû in }nS . (11.25)

It is easy to see that cD  and cD̂  are closed sets in C. The set 
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)()(ˆ)(
∆

n∆nDnD ccc =∩  

may be proposed as the estimation of c . For example, if )(cDu  is de-

scribed by the inequality 2T cuu ≤  then 

),,[)( min, ∞= nc cnD    ),,0[)(ˆ
max,nc cnD =     ),[)( max,min, nnc ccn =∆  

where 

,max T2
min, ii

i
n uuc =         .ˆˆmin T2

max, ii
i

n uuc =  

Assume that the points iu are chosen randomly from U with probability 

density f(u). 
 

Theorem 11.2. If 0)( >uf  for every Uu ∈ and )()( cDcD uu ≠  for every 

cc ≠  then  )(n∆c  converges to }{c  with probability 1 (w.p.1). 

Proof:  In the same way as for Theorem 11.1 we can prove that 

,)(lim cc
n

DnD =
∞→

    cc
n

DnD ˆ)(ˆlim =
∞→

 (11.26)

w.p.1 where 

)},()(:{ cDcDCcD uuc ⊆∈=   )}.()(:{ˆ cDcDCcD uuc ⊆∈=  (11.27)

From (11.26) one can derive that )(n∆c  converges to ccc ∆DD
∆ˆ =∩  (the 

boundary of cD ) w.p.1. Using the assumption about uD  it is easy to note 

that }{c∆c = .    □ 

 The determination of )(n∆c  may be presented in the form of the follow-

ing recursive algorithm: 
 If 1=nj  ( nn uu = ). 

1. Knowledge validation for nu . Prove if 

 

)]([
)1(

cDu un
nDc c

∈
−∈

. 

If yes then )1()( −= nDnD cc . If not then one should determine the new 
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)(nDc , i.e. update the knowledge. 

2. Knowledge updating for nu  

)}(:)1({)( cDunDcnD uncc ∈−∈= . 

Put )1(ˆ)(ˆ −= nDnD cc . 

    If 2=nj  ( nn uu ˆ= ). 

3. Knowledge validation for nû . Prove if 

 

)]([
)1(ˆ

cDUu un

nDc c

−∈
−∈

. 

If yes then )1(ˆ)(ˆ −= nDnD cc . If not then one should determine the new 

)(ˆ nDc , i.e. update the knowledge. 

4. Knowledge updating for nû  

)}(:)1(ˆ{)(ˆ cDUunDcnD uncc −∈−∈= . 

Put )1()( −= nDnD cc  and )(ˆ)()( nDnDn∆ ccc ∩= . 

 For 1=n , if 11 uu =  determine 

)}(:{)1( 1 cDuCcD uc ∈∈= , 

if 11 ûu =  determine 

)}(:{)1(ˆ
1 cDUuCcD uc −∈∈= . 

If for all  pi ≤    ii uu =    (or ii uu ˆ= ),  put  CpDc =)(ˆ   (or CpDc =)( ). 

11.6.2 Learning Algorithm for Control in Closed-loop System 

The successive estimation of c  may be performed in a closed-loop learn-
ing control system where iu  is the sequence of the decisions. The control 

algorithm is as follows: 
1.  Put nu  at the input of the plant and measure ny . 

2.  Introduce nj  given by a trainer. 

3.  Determine )(n∆c  using the estimation algorithm with knowledge vali-



322      11 Adaptive and Learning Control Systems 

 

 
 
 
 

dation and updating. 

4. Choose randomly nc  from )(n∆c , put nc  into );,( cyuR  and determine 

)(cDu , or put nc  directly into )(cDu  if the set )(cDu  may be deter- 

mined from R in an analytical form. 
5. Choose randomly 1+nu  from )( nu cD . 

At the beginning of the learning process iu  should be chosen randomly 

from U. The block scheme of the learning control system in the case when 

nc  is put directly into )(cDu  is presented in Fig. 11.7, and in the case 

when )( nu cD  is determined from );,( ncyuR  is presented in Fig. 11.8. 

The blocks 1G  and 2G  are the generators of random variables for the ran-

dom choosing of nc  from )(n∆c  and 1+nu  from )( nu cD , respectively. 

Trainer

Know ledge-

based decision

making
2G Plant

Know ledge

validation and

updating

Know ledge

representation

1G

uD nu

nj

nu
nc

);,( cyuR

)(nc

yD

Memory

)(cDu

1-nc

ny

nu

∆

 

Fig. 11.7. Learning control system in the first version 

 Assume that the points nc  are chosen randomly from )(n∆c  with prob-

ability density )(cfcn  and the points nu  are chosen randomly from 

)( 1−nu cD  with probability density )|( 1−nu cuf , i.e. ),( 1+ii uc  are the val-

ues of random variables )~,~( 1+ii uc . 

Theorem 11.3. If 
 

0)(
)(c

>
∈

cfci
i∆ci

,     0)|(
)(

>
∈∈

cufu
cDuCc u

 (11.28)

and for every cc ≠  
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)()( cDcD uu ≠  (11.29)

then )(n∆c  converges to }{c  w.p.1. 
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Fig. 11.8. Learning control system in the second version 

Proof:  From (11.24) it is easy to note that )()1( nDnD cc ⊆+ , which 

means that )(nDc  is a convergent sequence of sets. We shall show that 

cc DD =  w.p.1. where 

                                      )(lim nDD c
n

c
∞→

=  

and cD  is defined in (11.27). Assume that cc DD ≠ , i.e. there exists 

cDc∈ˆ  such that )ˆ()( cDcD uu ⊄ . There exists then the subset of )(cDu  

Ruu DcDcD
∆)ˆ()( =−  

such that Ri Du ∉  for every iu  in ∞S . The probability of this property is 

the following:  

∏
=

∞
∞→

=
n

i
i

n
Pp

1

∆
lim  

where 

∫
−

=−∈=

RDU

uiRii duufDUuPp )()~( , 
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∫=
)(

)()|()(

i∆

ciuui

c

dccfcufuf .                             (11.30)

Since )(i∆c c∈  for every i then from (11.28) and (11.30) it follows that 

0)( >ufui  for every )(cDu u∈  and consequently 0)( >ufui  for every 

RDu ∈ . Thus, 1<ip  for every i and 0=∞P . Then cc DD =  w.p.1. In the 

same way it may be proved that  

cc
n

DnD ˆ)(ˆlim =
∞→

,  w.p.1 

where cD̂  is defined in (11.27). Consequently, )(n∆c  converges w.p.1 to 

ccc ∆DD =∩ ˆ  (the boundary of cD ). Using (11.29) it is easy to note that 

}{c∆c = .    □ 

Remark 11.1. Let us note that the decisions in a closed-loop learning sys-
tem may be based on nj  given by an external trainer, i.e. 1=nj  if 

)(cDu un ∈  and 2=nj  if )(cDu un ∉ , or may be obtained by testing the 

property yn Dy ∈ . In this case, 

if yn Dy ∉  then 2=nj  and )(cDu un ∉ , 

if yn Dy ∈  then 1=nj  and )(
~

cDu un ∈  

where 

})(:{)(
~

∅≠∩∈= yyu DcDUucD  

and 

)};,(),(:{)( cyuRyuYycDy ∈∈= . 

Consequently, in (11.24) and in the first part of the recursive algorithm 

presented in Sect. 11.6.1 for nu , one should use )(
~

cDu  instead of )(cDu . 

It is worth noting that Theorem 11.3  concerns the case with an external 

trainer.   □ 

Example 11.1. Consider the single-output plant described by the inequal-
ity 
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                                   Puu
c

y T1
0 ≤≤  

where P is a positive definite matrix. For the requirement yy ≤  we obtain 

}   :{)( T ycPuuUucDu ≤∈= . (11.31)

According to (11.24) and (11.25) 

), [)( min, ∞= nc cnD ,   )  ,0[)(ˆ
max,nc cnD = ,  )  , [)( max,min, nnc ccn∆ =  

where 

ii
i

n uPuyc T1
min,  max⋅= − ,       ii

i
n uPuyc ˆˆ min T1

max, ⋅= − . 

The decision making algorithm in the closed-loop learning system is the 
following: 
1. Put nu  at the input, measure ny . 

2. Introduce nj  given by a trainer. 

3. For nj = 1 ( nn uu = ), prove if 

                                 1min,
T1

−
− ≤ nnn cPuuy . 

If yes then 1min,min, −= nn cc . If not, determine new ncmin,  

                                  nnn Puuyc T1
min,  −= . 

Put  1max,max, −= nn cc . 

4. For nj = 2 ( nn uu ˆ= ), prove if 

1max,
T1

−
− ≥ nnn cPuuy . 

If yes then  1max,max, −= nn cc . If not, determine new  ncmax,  

nnn Puuyc T1
max,  −= . 

Put  1min,min, −= nn cc , )  , [)( max,min, nnc ccn∆ = . 

5. Choose randomly nc  from )(n∆c  and put 1−= ncc  in (11.31). 

6. Choose randomly nu  from )( nu cD .   □ 
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The example may be easily extended for the case when )(cDu  is a do-

main closed by a hypersurface cuF =)(  for one-dimensional c and a given 

function F. The simulations showed the significant influence of the shape 
of )(cDu  and the probability distributions )(cfc , )|( cufu , on the con-

vergence of the learning process and the quality of the decisions. 









































































 

13 Control of Operation Systems 

Now we shall present basic problems and control algorithms for a specific 
control plant, namely for an operation system or a complex of operations. 
It may be a complex of technical operations in a production system (in a 
manufacturing process) or a complex of computational operations in a 
computer system. Control problems for the operation systems are con-
cerned with a design of control systems for so called discrete manufactur-
ing processes considered as a complex of technical operations (e.g. control 
of an assembly process) and with a control of multicomputer or multiproc-
essor systems. The problems of the control of operation systems have also 
an important role in a design of management systems, in particular, for a 
project management. 

13.1 General Characteristic 

By a complex of operations (or operation system) in a wide sense of the 
word we call a complex system composed of operations, i.e. some activi-
ties which are characterized by an initial moment, a final moment and a 
duration time. In “input-output” system, a system structure is determined 
by the interconnections between the components (the parts) of the system, 
i.e. outputs of some parts are inputs of others. In a complex of operations, 
a system structure is defined by time interrelations and successions of the 
moments, i.e. some operations cannot start until the other ones are fin-
ished. The structure of the complex may be described in the form of a 
graph, in which branches denote the operations and nodes denote the start-
ing and finishing moments. For example the graph presented in Fig. 13.1 
means that the operations 3O  and 4O  may start after finishing the opera-

tion 1O , and the operation 5O  may start after finishing the operations 2O  

and 3O . The node 1W  denotes the starting moment and the node 2W  – 

the finishing moment of the whole complex.  
The operation usually consists in performing (executing) a determined 

task which requires certain resources. Among them one can distinguish 
basic resources called executors (e.g. tools needed to perform technical 
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operations) and additional resources (e.g. fuel or additional materials nec-
essary to perform a technical operation). Roughly and generally speaking a 
control of the complex of operations consists in distributed in time assign-
ing of resources to tasks or on the contrary, satisfying determined require-
ments, in particular – optimizing a quality index, e.g. minimizing the exe-
cution time of the complex or the amount of resources used for the 
execution of the complex, with different kinds of constraints. Most often 
we consider the following control functions, interconnected in one system: 
1. Control of tasks and resources distribution (or allocation). 
2. Control of a succession of operations (scheduling problems). 
3. Control of a service of tasks. 
4. Control of the execution process for individual operations.  

1

2

3

4

W1

W2

O1

O2

O3

O4

O5

 
Fig. 13.1. Example of complex operation structure 

In the control of operation system problems, the operation is considered 
as a whole from the upper level of the control, e.g. it is one cycle of a pro-
duction process. In point 4 we take into account that during an execution 
of one operation the control is required, e.g. the temperature control during 
one cycle of a production process.  

Generally formulated control problems for a complex of operations may 
have various practical applications depending on a practical character of a 
real complex. For a complex of production or service operations with a 
technical character, they are problems concerning a control of so called 
discrete manufacturing processes and (or) of service operations, e.g. the 
control of an assembly process, of processing of elements in a production 
of tools and machines, control of a transport, a diagnostic process, storing 
of materials etc. In the case of computational and decision operations they 
are problems concerning the control of performing complex computation 
and decision algorithms by a computer system, that is problems connected 
with the design of computer operating systems. 
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From the general control theory point of view, the complexes of opera-
tions are specific control plants in which the relationship between the out-
put  y  and the input  u  (or the plant model) may have a special form, and 
in which specific control goals and constraints can occur. Most often the 
operations and complexes of operations may be treated as static plants. 
Sometimes, however, in a sequence of operations (e.g. in the assembly 
process considered in Sect. 13.6), relations between the successive stages 
in the sequence can occur and consequently, the whole complex should be 
considered as a dynamical plant. It is worth reminding that speaking about 
a control we have in mind a decision making which may be a single opera-
tion or may be distributed in time. 
The methods and algorithms of the operation systems control are based on 
general methods and algorithms developed in the area called operational 

researches, strictly connected with a control and management sciences. To 
operational researches and their application to control and management a 
wide literature is devoted (e.g. [4, 105]). In some cases presented in the 
next sections, the considerations will be limited to problem formulations 
only, in such a form to which known and widely described algorithms can 
be applied. For example, the algorithm for solving classical transportation 
problem and the algorithms in integer programming and in related prob-
lems reduced to this programming. 

13.2 Control of Task Distribution  

This section is concerned with the control of the complex of parallel opera-
tions containing unknown parameters in the relational knowledge 
representation. The complex of parallel operations is considered here as a 
specific control plant. The control consists in a proper distribution of the 
given size of a task taking into account the execution time of the whole 
complex. It may mean the distribution of raw material in the case of a 
manufacturing process or a load distribution in a group of parallel 
computers. In the deterministic case where the operations are described by 
functions determining the relationship between the execution time and the 
size of the task, the optimization problem consisting in the determination 
of the distribution that minimizes the execution time of the complex may 
be formulated and solved (see e.g. [13]). 
 In order to formulate and solve the task distribution or allocation prob-
lem it is necessary to introduce models of individual operations. For our 
purpose it is sufficient to handle static models formulating the relationship 
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between the execution time and the size of the task assigned to the opera-
tion 

Ti = ϕi(ui, ci),       i =1, 2, ..., k (13.1)

where iT  denotes the execution time of the i-th operation, iu  is the size of 

the task assigned, ic  is a vector of parameters and  k  is a number of opera-

tions in the complex. Of course, all the names one can apply to the opera-
tion or to the executor of the operation, speaking about the model of the 
executor, the execution time of a task assigned to the executor etc. The 

functions (13.1) are increasing functions of iu  and ϕi(0, ci) = 0. Under the 

assumption that all operations start in the same time, the moment of finish-
ing the whole complex is the moment of finishing the last operation. Then 
the execution time of the complex 

T = 
i

max  Ti = max{ϕ1(u1, c1), ϕ2(u2, c2), 

                                                    ..., ϕk(uk, ck)} ∆=  Φ(u, c) (13.2)

where uT = [u1  u2  ...  uk] U∈  is a control vector, yT =  is the control 

plant output and c = [c1  c2  ...  ck] is the matrix of parameters. The set 
kRU ⊂  is determined by the constraints 

i

    ui ≥ 0,                      ∑
=

k

i
iu

1

= U (13.3)

where U is the total size of the task to be distributed among the operations. 
The parameters zc =  may be also treated as disturbances which can be 
measured and which can change in successive periods or cycles of the con-
trol in which the successive global task to be distributed appears. The 
complex of parallel operations may be considered as a specific decision 
(control) plant (Fig. 13.2) with the input vector  u  and a single output 

,Ty =  described by the function ),( cuΦ  determined according to (13.2). 

The problem of the time optimal distribution considered here is then the 
problem of static optimization to which all methods described in former 
chapters can be applied, regardless the specific terms and the form of the 
plant model. However, the special form of the model (13.2) and the con-
straints (13.3) require additional considerations concerning this problem. 

Let us assume that U may be divided in any way to kuu ...,,1 , i.e. 1Rui ∈ . 

Then we speak about the problem with a continuous division of the total 
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size U, distinguishing it from a discrete division where U and iu  denote 

numbers of some elementary tasks. 

Allocation

Plant

.

.

.
.
.
.

1u

2u

ku

U Ty =

 

Fig. 13.2. Complex of parallel operations as a decision plant 

Decision making (control) problem: For the given functions iϕ , parame-

ters ci (i∈ k,1 ) and the value U one should determine the distribution *u  
minimizing the execution time (13.2) subject to constraints (13.3).  

 It is easy to show that if all operations start at the same time then *u  
satisfies the following equation: 

min2211 )(...)()( TuTuTuT kk ==== . 

That is why the optimal distribution or allocation problem in this case is 

often called a load balancing problem. From the property of *u  mentioned 
above, the algorithm of the optimal distribution determination follows: 
1. From the equations (13.1) one should determine the relationships 

ui = ),(1
iii cT−ϕ . (13.4)

2. One should solve the equation 

∑
=

−
k

i
ii cT

1

1 ),(ϕ = U (13.5)

with respect to T. 

3. One should substitute the solution of this equation T ∆=  Tmin into (13.4) 
and in such a way find the optimal distribution 

*
iu  = ),( min

1
ii cT−ϕ  ∆=  Ψi(c). (13.6)

Consider as an example the following models of the operations: 

Ti = 
i

i

c

uα
,      α > 0,   ci > 0. (13.7)
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According to (13.4) 

ui = α
1

)( iiTc . 

Then the equation (13.5) takes the form  

α
1

T ∑
=

k

i
ic

1

1
α  = U. 

From this equation we obtain 

Tmin = 

αα

α

)(
1

1

∑
=

k

i
ic

U
 

and  

*
iu  = 

α
1

ic  U 1

1

1

)( −

=
∑
k

i
ic
α

 = Ψi(c),       i = 1, ..., k. (13.8)

The set of relationships (13.8) may be presented in a unified form  

u
* = Ψ  (c). 

In particular, for the linear models )1( =α , the optimal distribution is as 

follows:  

*
iu  = ci U 1

1

)( −

=
∑
k

i
ic . 

For more complicated models (13.1) it is not possible to obtain a result in 
analytical form and for finding the optimal distribution suitable numerical 
methods should be used. As it was already said, the determination of the 
decision  u  may be repeated in successive cycles. In these cycles the val-
ues ic  may change because they depend on features of the global tasks 

which appear at the beginning of the cycle (e.g. on properties and parame-
ters of a raw material which influence the time of the material processing 
in a production process) and on executors productivity which may change 

in the successive cycles as well. If by nc  = (c1n, c2n, ..., ckn) we denote a 

vector of parameters ic  in the n-th cycle then the determination of the con-
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trol decisions will consist in finding the distribution T
nu  = [u1n  u2n  ...  ukn] 

minimizing the time T of this cycle for the given nc . In more complicated 

cases the values nc  must be determined by using the measurement results 

of the respective variables characterizing the global task and the executors 
(Fig. 13.3). These variables or directly the parameters nc  take a role of 

disturbances in an open-loop control system. For the models (13.7), the 

control algorithm Ψi(c) is defined by the formula (13.8). 

B

DistributionGlobal task

R1

Rk

nc

nu nu1

knu

nU

Controller

)(cΨ

 

Fig. 13.3. Control system for task distribution, B – block determining nc  

 For the complex of operations as a specific control plant with the input 
u and the output ,Ty =  other problems and algorithms described in previ-

ous chapters can be considered. If zc =  is a random disturbance with a 
known probability distribution, one can state and formulate a static optimi-
zation problem considered in Chap. 7 and consisting in the determination 

of the distribution *u  minimizing the expected value of the execution time 
T, that is  

Q = E(T ) = ∫
Z

ziii
i

dzzfzu )(),( max ϕ  (13.9)
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where z = (z1, z2, ..., zk). Assume that the random variables 
i

z  are inde-

pendent for different i. Then it is more convenient to handle probability 
distributions in the form of the distribution function 

Fi(zi) = P(
i

z ≤ zi) (13.10)

where P denotes the probability that the random variable 
i

z  takes a value 

not greater than  zi. Knowing (13.10) and the relationship 
i

T = ϕi(ui, i
z ), 

one can determine the distribution function iTF (λ) for the random variable 

i
T , i.e. 

iTF (λ) = P(
i

T < λ). 

Consequently, the formula (13.9) becomes  

Q = E(max 
i

T ) = ∫ ∏
∞

=0 1

))((
k

i
iTFd λλ . 

The relationship Q(u1, u2, ..., uk) can be obtained in an analytical form for 
special probability distributions only. It will be shown in an example of an 
analogous problem for the resource distribution, which will be presented in 
the next section. 
 If the parameters of the control plant ic  are unknown, the control in a 

closed-loop system or extremal control presented in Chap. 10 can be ap-
plied. Then the convergence condition for the minimum searching process 

(i.e. the convergence of nu  to *u ) should be determined and satisfied. 

Since the function Φ  (13.2) describing the plant is not differentiable with 
respect to u, the gradient method is useless and in practice the method of 
trial steps, that is a step by step correction of the distribution nu  based on 

the evaluation of current execution time in the n-th period should be ap-
plied. 
 Distribution or allocation problems, both for the task distribution de-
scribed in this section and for resource allocation which will be presented 
in the next section, can be much more complicated, connected with a de-
composition and multilevel control, and concerned with an adaptive con-
trol using the methods and algorithms of so called global identification of 
the complex of operations [13, 14, 15, 17, 57, 59]. 
 Finally, let us consider shortly a case of a discrete distribution and as-
sume that the global task is a set of N identical undividable elementary 
tasks with the size eu . For example, it may be a set of identical portions of 

a raw material to be distributed among devices processing the material or a 
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set of identical elementary programs to be distributed among computers 

[46]. Now U = N ⋅ ue and ui = ni ⋅ ue where in  denotes the number of 

elementary tasks assigned to the i-th executor. If the number of all 

elementary tasks is large and ue is small then one can solve the problem for 

a continuous distribution, i.e. find 1* Rui ∈  as it has been presented above, 

and then find ni such that  ni ⋅ ue  is the nearest to the value *
iu . If such an 

approximation is not acceptable, the problem from the beginning should be 
treated as a discrete one, as it will be presented in Sect. 13.4. 

13.3 Control of Resource Distribution 

The problem of resource distribution or allocation in a complex of parallel 
operations is analogous to that of task distribution considered in the previ-

ous section. Let ui in (13.1) denotes the amount of a resource assigned to 

the i-th operation (or to the i-th executor). We assume that ϕi are decreas-

ing functions of iu  and ϕi(ui, ci) → ∞ for ui → 0. The decision making or 

control problem is the same as in Sect. 13.2, i.e. one should find the distri-

bution *
1u , ..., *

ku  minimizing the execution time (13.2) subject to con-

straints (13.3). As in the former case, when the optimal distribution is ap-

plied then T1 = T2 = ... = Tk = Tmin. The algorithm generating the optimal 
allocation is the same as in Sect. 13.2, i.e. it consists of steps in which the 
formulas (13.4), (13.5), (13.6) occur. 
 As an example let us consider the following models of the operations, 
analogous to the models (13.7): 

Ti = 
α
i

i

u

c
,      α > 0,   ci > 0. 

According to (13.4) 

ui = α
1

)(
i

i

T

c
. (13.11)

Solving the equation (13.5) we obtain 

Tmin = 
α

αα

U

c
k

i
i )(

1

1

∑
=  
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and after substituting Ti = Tmin into (13.11) we have the optimal distribu-
tion algorithm 

*
iu  = 

α
1

ic U 1

1

1

)( −

=
∑
k

i
ic
α

= Ψi(c). 

The time-optimal resource distribution is more complicated for more com-
plex structures of the complex of operations (differing from the parallel 
structure), e.g. such as presented in Fig.13.1. Under the assumption that the 
same kind of a resource is assigned to each operation, one should now de-

termine the values of *
iu  for each operation so as to minimize the execu-

tion time of the whole complex and that the sum of iu  for all operations 

executed at the same time is equal to U. The considerations concerning this 
problem are limited here to a basic idea and a sketch of a procedure giving 
the optimal distribution. 
 Let us consider a structure described by a graph which has one initial 
node (i.e. there are no branches ending in this node) and one final node 
(i.e. there are no branches starting from this node). Assume that this is a 
graph without cycles, plane and connective, which means that for each pair 
of nodes there exists a path connecting these nodes. Let us order the nodes 
in such a way that the later node has the greater index, e.g. as it is shown in 
Fig. 13.1. The execution time of the whole complex may be divided into 
separate intervals by the moments corresponding to the nodes. Then one 
can introduce the following sets: 

1. Qj – the set of indexes of the operations which may be executed in the j-
th interval, j = 1, 2, ..., m. In the example in Fig. 13.1 we have three inter-
vals: from 1 to 2 ( j = 1), from 2 to 3 ( j = 2), and from 3 to 4 ( j = 3); 

Q1 = {1, 2}, Q2 = {2, 3, 4}, Q3 = {4, 5}. 

2. Pi –  the set of indexes of the intervals in which the i-th operation may 

be executed. In the example P1 = {1}, P2 = {1, 2}, P3 = {2}, P4 = {2, 3}, 

P5 = {3}. 

 Let iu  be a flow intensity of a resource supplied to the i-th operation 

(e.g. energy, fuel, material, a financial resource etc.) which is assumed to 
be constant during the execution of the operation. The constraint concern-
ing iu  is then as follows: 

∑
∈∈

=
jQi

i
mj

Uu )(
,1

 (13.12)
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which means that the sum of iu  for all operations executed in the j-th in-

terval should be equal to the total value U. In order to find *u  it would be 
necessary to determine the model of the plant, i.e. 

T = Φ (u1, u2, ..., uk) (13.13)

where k denotes the number of operations in the complex and for simplic-
ity the parameters c are omitted, and then the function (13.13) should be 
minimized with the constraint (13.12). Unfortunately, for the given struc-

ture and the given functions ϕi(ui), the function (13.13) cannot be pre-
sented in an analytical form, by a formula convenient for the minimization. 
There exist however algorithms enabling to obtain the value T for the 
given values iu  and consequently, for the given iT . They are algorithms 

determining so called critical path [105], i.e. such a path connecting the 
initial and final nodes for which the sum of the times iT  for the operation 

on this path is the greatest. This sum is equal to the execution time T of the 
whole complex. The general procedure for the determination of the opti-
mal resource distribution consists in finding successive approximations of 

the solution. For the given approximation of the optimal allocation *u  one 
determines the critical path and the corresponding time T, and on this basis 
one corrects the approximation and finds the next one. The successive ap-
proximation process can be performed in a closed-loop control system 
where the control computer using the current values iT  determines the 

next approximation of the optimal distribution. 
 The problem is modified if a transfer of resources between operations 

during their execution is possible and acceptable. Denote by xi(t) one-
dimensional operation state at the moment t and introduce operation mod-
els determining the relationship between the velocity of the state changes 
and the value iu : 

ix� = Φi(ui). 

Let *
ix  denote so called operation size, which means that the operation is 

finished when the state *
ix  is reached. If ui is constant and xi(0) = 0 then 

),(
)(

*∆
*

iii
ii

i
i xu

u

x
T ϕ

Φ
== . (13.14)

Let us divide *
ix  into parts  xij  executed in the separate intervals of the set 

Pi. Then the complex described can be considered as a sequence of sub-
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complexes with a parallel structure, executed in the separate time intervals. 

In the j-th interval the parts of operations belonging to the set Qj are exe-
cuted. Consequently, our problem may be decomposed into two subprob-
lems:  
1. The optimization of the subcomplexes of parallel operations in the suc-
cessive time intervals using the formulas (13.14) with constraints (13.12). 

As a result we obtain the functions )( jj xu  and )(min jj xT  where ju  de-

notes an optimal distribution in the j-th subcomplex, jx  is a set of xij for 

all  i∈Qj, )(min jj xT  is the minimal execution time of the j-th subcomplex.  

2. Minimization of T with respect to all xij, i.e. finding *
jx  ( j = 1, ..., m) 

which minimize 

T = ∑
=

m

j
jj xT

1
min )(  

and satisfy the constraints 

∑
∈∈

=
iQj

iij

ki

xx )( *

,1

 

which means that the whole size of each operation will be executed in the 
successive intervals. Referring to Sect. 12.7 one can say that this is another 
example of decomposition which in this case consists in the division of the 
execution time of the whole complex into time intervals and consequently, 
in the decomposition of the complex into a sequence of subcomplexes. The 

variables  xij  take here a role of coordinating variables. 
 If  c = z  is a random disturbance with a known probability distribution 
then we may formulate the problem of the determination of a resource dis-
tribution minimizing the expected value of T [17, 57]. For the complex of 
parallel operations the problem solving is analogous to that for the case of 
a task distribution. Knowing the distribution function (13.10) one should 
determine Q (13.9), i.e.  

Q = E(max 
i

T ) = ∫ ∏
∞

=0 1

))((
k

i
iTFd λλ  = Q(u1, u2, ..., uk). (13.15)

The determination of the function (13.15) and its minimization subject to 
the constraints (13.3) may be connected with great computational difficul-
ties and it is possible to obtain an analytical solution in simple cases only. 
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Example 13.1. Let us determine the resource distribution optimal in a 
probabilistic sense for two operations with the models 

T1 = 
1

1

u

z
,   T2 = 

2

22

u

z
 

where the random variables 1z  and 2z  have the same exponential prob-

ability density  

fz(z) = ae – az   

for  z > 0  and  fz(z) = 0  for  z ≤ 0. According to (13.15), after substituting 

u2 = U – u1 and some transformations we obtain  

Q = 
))((

3

111

2
1

2

uUuUau

uU

+−

+
. 

Equating to zero the derivative of Q with respect to 1u  gives the equation  

063 42
1

24
1 =−+ UuUu . 

A unique root of this equation satisfying the constraint 0 < u1 < U is the 
following 

13
3

2*
1 −= Uu . 

Then 

)13
3

2
1(*

1
*
2 −−=−= UuUu .                                 □

13.4 Control of Assignment and Scheduling 

In the problem of a discrete task distribution considered at the end of 
Sect. 13.2, the size iu  of the task assigned to the i-th executor has been re-

duced to a number of elementary tasks, which can be obtained by rounding 
off the result of a continuous distribution. If the total number of elementary 
tasks is not large, such an approximation may be not acceptable and the 
problem from the beginning should be considered as a discrete one. Then 
one should find the numbers of elementary tasks knnn ...,,, 21  minimizing 
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the execution time of the global task 

T = max {n1τ1, n2τ2, ..., nkτk}  

and satisfying the constraint n1 + n2 + ... + nk = N where N is a total num-

ber of elementary tasks to be distributed, in  is a number of elementary 

tasks assigned to the i-th executor and iτ  is an execution time of an ele-

mentary task by the i-th executor. The problem of minimization of a func-
tion with respect to variables which may take only integer values is called 
an integer programming, and in the case when the variables may have only 
the values 0 or 1 – a zero-one programming. Many problems from the area 
of operational researches are reduced to so called combinatorial problems 
in which one should choose a decision from a finite set of possible deci-
sions. Consequently, a combinatorial problem is reduced to the integer 
programming for which suitable algorithms (such as branch and bound al-
gorithm and its different modifications) and corresponding computer pro-
grams have been developed. They may be found in the literature cited in 
Sect. 13.1 and will not be presented here. The next considerations will be 
limited to formulations of basic assignment and scheduling problems for 
which the known algorithms may be applied.  
 Let us return to the problem of task distribution among executors and 

consider a set of tasks Z = {Z1, Z2, ..., ZM}. Unlike the case mentioned 
formerly, the tasks do not have to be identical. That is why in this case we 
do not speak about a distribution of the tasks among the executors but 
about an assignment of the determined tasks to the executors from the set 

R = {R1, R2, ..., Rk}. For the fixed ordering of the tasks and the executors 
it is more convenient to handle the set of task indexes J = {1, 2, ..., M} and 
the set of executor indexes I = {1, 2, ..., k}. If the execution time is as-
sumed as a quality index (as in former considerations), the problem con-
sists in a partition of the set J into separate subsets assigned to the particu-
lar executors and the optimal partition is a partition minimizing the 

execution time for the whole set of the tasks. Denote by τij the execution 
time of the j-th task by the i-th executor and introduce the numbers 

cij 
∈{0,1} determining the assignment, i.e. cij = 1 if the j-th task is assigned 

to the i-th executor and cij = 0 otherwise. The matrix  

Mj
kiij

,...,1
,...,1 ][

=
=τ ∆=  τ (13.16)

is a matrix of data necessary for the problem solution and the zero-one ma-
trix  
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Mj
kiijc

,...,1
,...,1 ][

=
=

∆=  P  

denotes a decision to be determined. Using the terms introduced in the 
previous sections we can say that the entries of this matrix are the compo-
nents of the control vector  u. The working time of the i-th executor, i.e. 
the time needed for the execution of all tasks assigned to this executor is 
the following 

Ti = ∑
=

M

j
ijij c

1

 τ ,      i∈ k,1 . (13.17)

Decision making (assignment) problem: For the given matrix  τ one 
should find the matrix  P minimizing  

T = max {T1, T2, ..., Tk} (13.18)

subject to constraints 

cij ∈{0,1}   for every (i, j) 

and  

Mj ,1∈

 )1(
1

∑
=

=
k

i
ijc . (13.19)

The constraint (13.19) means that each task should be assigned to one and 
only one executor. The above problem may be also called a problem of 

task assignment control. The determination and realization of the decisions 
may be repeated in successive cycles of the operations performing. At the 
n-th period (i.e. in the n-th cycle of the task execution) a controlling com-
puter finds the assignment matrix nP  on the basis of the data nτ  intro-

duced, and in practice – finds a set of the pairs (i, j) for which cij = 1. The 
control is more complicated if the execution times for the successive sets 
of tasks are not given directly but should be calculated by using the given 

functions τij(z) where z is a parameter of disturbances, i.e. variables influ-

encing the execution time τij. For example, they may be sizes or properties 
(features) of the j-th element which is to be an object of a manufacturing 
operation, or it may be number evaluating a complexity of an operation in-
fluencing the execution time in a case of a project management. Then the 

control program consists in the calculation of the matrix τn  on the basis of 

the data  zn introduced and next the determination of the matrix  Pn. For an 
uncertain plant, the control can be performed in a closed-loop system in 
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which for the fixed  z  a successive approximation process for the determi-

nation of  Pn on the basis of the evaluation of the execution time  Tn is re-
alized, as it has been mentioned in Sect. 13.2 in the cases of a task distribu-
tion. 
 Now let us consider the case with different kinds of the executors, i.e. 

assume that for each task  j, a set Ij ⊂ I of the indexes of executors able to 

execute this task is determined. In such a way, the sets Ji ⊂ J of the in-
dexes of tasks which may be executed by the i-th executor (i = 1, ..., k) are 
determined as well. Then into the formula (13.18) one should put 

Ti = ∑
∈ iJj

ijij c τ ,      i∈ k,1  (13.20)

i.e. the summing is performed for all  j∈Ji. Instead of the constraint (13.19) 
we have now 

Mj ,1∈
 )1( ∑

∈
=

jIi
ijc . (13.21)

The formulas (13.17) and (13.19) are special cases of the formulas (13.20) 
and (13.21), respectively. 
 Essential complications occur when we should take into account some 
succession constraints for the task executions, formulated with the help of 
a set of pairs ( j, l)∈ J×J where the pair ( j, l) means that the l-th task should 
be executed after the j-th task. Then the decision problem under considera-
tion is often called a task scheduling problem. Its solution means the de-

termination of the partition of the set  J into the subsets iJ  assigned to the 

i-th executor and the determination of the succession of the execution for 

the tasks from the set iJ  in each executor, with taking into account the 

succession constraints. To describe these constraints, it is convenient to in-
troduce starting moments for individual tasks. Consequently, the finishing 
moments obtained by adding the execution time to the starting moments 
are determined as well. The succession of the task execution is defined by 

a sequence of task indexes in particular sets iJ , i.e. by so called permuta-

tion. This is one-to-one mapping m = Fi( j) which to each  j∈ iJ   assigns  

m∈ iJ  where m determines the succession, e.g. if  F(4) = 2  then the task 

with the index 4 will be executed as the second in a sequence. 

Decision making (scheduling) problem: For the given matrix τ  and the 
set of pairs ( j, l) ∈ J×J  defining the succession constraints one should find 
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the decision in the form of  

  < iJ , Fi>      for   i = 1, 2, ..., k. 

 Of course, the sets iJ  can be presented in the form of a zero-one matrix 

P, as previously. One should note that there is an interconnection between 

the determination of iJ  and Fi which cannot be performed independently.  

 The problem of task scheduling control will be presented more precisely 
for an important case when the task means an execution of a certain opera-
tion on a certain object. Let us assume that we have a set of objects (ele-

ments) {S1, S2, ..., SN} and for each of them a sequence of operations O1, 

O2, ..., Ok  should be executed successively by the executors R1, R2, ..., Rk. 

It means that the object is entering the executor R1 which performs the op-

eration O1, then is leaving the executor R1 and entering the executor R2 

which performs the operation O2 etc. Quite often in this case we use a term 
servicing or processing channel instead of an executor and we say that the 

object enters the servicing channel  Ri where the operation  Oi is per-
formed. The problem consists in the following: For the known execution 
times of all operations for each object, one should find the succession of 
putting the objects at the input of the sequence of the servicing channels, 
minimizing the execution time of the all operations for the all objects. 

 It is convenient to identify the tasks in the set Z by two indexes: zij de-
notes the i-th operation executed on the j-th object; i = 1, ..., k; j = 1, ..., N. 

The succession constraint means that for each j the tasks  zij  form a se-

quence of tasks executed in the succession z1j, z2j, ..., zkj. The entries τij  in 
the matrix (13.16) denote the execution times of the i-th operation for the 
j-th object. The succession of putting the objects at the input of the servic-
ing channel sequence is determined by a permutation  m = F( j), as in the 

former considerations, e.g. if F(4) = 2 then the object S4 will be put as the 
second in the succession. The decision making problem can be then stated 
as follows: For the given matrix τ  one should find the permutation  F for 
which the execution time of all operations is the smallest. 

 For the given permutation  F let us introduce the notation Sj = mS   (i.e. 

this permutation defines a succession of the objects 1S , 2S , ..., NS ) and 

τij = imτ . Denote by  tim  the starting moment of the i-th operation for the 

m-th object (i.e. for the object mS ) or the moment of putting the m-th ob-

ject into the i-th executor. The global execution time is then 
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T = tkN + kNτ  

and since kNτ  is given, the problem is reduced to the minimization of tkN. 

Let us note that two-index sequence tim for i = 1, 2, ..., k and m = 1, 2, ..., N 
is described by the following difference equation: 

tim = max {ti–1,m + mi ,1−τ , ti,m–1 + 1, −miτ }. (13.22)

It means that the moment tim does not have to precede the finishing mo-
ment of the operation for the m-th object in the previous executor, equal to 

ti–1,m + mi ,1−τ  and the finishing moment of the operation for the (m–1)-th 

object in the i-th executor equal to  ti,m–1 + 1, −miτ . The initial conditions 

for the difference equation (13.22) are as follows: 
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The problem under consideration is then reduced to the determination of 

such a succession F which minimizes the solution  tkN of the equation 
(13.22) with the initial conditions (13.23). The determination of  F can be 

presented as a zero-one problem by introducing the matrix P = [cjs] with  

N rows and N columns, in which cjs = 1 if the object Ss is introduced into 

the sequence of the executors directly after the object Sj, and cjs = 0 other-
wise. It is easy to note that there is one and only one unit in each row and 
in each column of the matrix P. Choosing the matrix  P is subject to con-
straints  

j

   )1 (
1

∑
=

=
N

s
sjc ,              

s

   )1 (
1

∑
=

=
N

j
sjc .  

A block scheme of the system controlling the scheduling in a successive 
cycle is illustrated in Fig. 13.4. At the beginning of the  n-th cycle, the 

block B1 determines the execution times τn using the measured values of 

the parameters characterizing the set of objects Sn which has appeared in 
this cycle for an execution and the current values of the executors parame-

ters which can influence the values of the entries of the matrix τn. Then the 
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block B2, using a suitable algorithm of a zero-one programming for the 

scheduling problem under consideration, determines the decision Pn defin-
ing a succession of the objects entering the sequence of the executors. 
 

B2 B1

S R1 R2 Rk

n

nP

NSS ... ,,1

τ

 

Fig. 13.4. Control system for scheduling in a case under consideration 

 The case under consideration may have different practical interpreta-

tions. In a production process O1, O2, ..., Ok  may denote successive pro-
duction operations performed on objects forming the set S, e.g. assembly 

operations. Then Ri is a sequence of devices or processing channels per-

forming these operations. In the case of a project management O1, O2, ..., 

Ok may denote successively performed operations in a complex project, 
e.g. S may be a set of designs (of the same kind) to be elaborated, in which 

the same sequence of operations is defined, and  Ri denotes a designer or a 
designing group performing only one from these operations. In a computer 
system, S may denote a set of computation tasks (programs) divided into 

successively executed partial tasks and Ri are processors in a multiproces-
sor system with a parallel processing. If each processor can execute each 
partial task then the execution time can be additionally decreased by put-
ting a successive partial task to one of the processor free at the moment. 
 The problems described above have been concerned with the control of 
a succession of operations. The control of a service of tasks mentioned in 
Sect. 13.1 will occur when the set S is not given in advance but the objects 
are arriving at the input of the system (most often at random moments) and 
are waiting in a waiting line. The control decisions may consist in defining 
an index of the objects which should be taken from the queue at the mo-
ment when one of the servicing channels is free and ready to admit the ob-
ject. Related situations occur in so called admission control in computer 
networks (see e.g. [99]). Generally speaking they are problems considered 
in an area of queuing and mass service systems which are not described 
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here. Their importance in the control theory and engineering (especially 
oriented for the control of computer systems) shows deep and essential 
connections between the control science and other related areas such as 
operational researches. 

13.5 Control of Allocation in Systems with Transport 

The control of a complex of operations is getting complicated when differ-
ent functions should be taken into account simultaneously, e.g. the control 
of an allocation (task and/or resource distribution) and a service or the con-
trol of a task scheduling and a traffic of executors and/or of objects of 
technical operations, under the assumption that executors or objects may 
remove in so called flexible manufacturing system [42, 74]. From this wide 
area let us take for the consideration a case of the allocation control with 
taking into account a transport of raw materials and products in a produc-
tion system (Fig. 13.5).  
 

Controlling
system

Production
units

Stores of raw

material

Stores of
products

transport

plan

allocation

pU

U

transport

plan

 

Fig. 13.5. Simplified scheme of the system under consideration 

The system consists of  k production units working in parallel and produc-
ing the same kind of a product, raw material stores from which the raw 
material is transported to the production units, and product stores to which 
the product is transported from the production units. The controlling sys-
tem is performing three functions: the control of the raw material transport, 
of the raw material distribution among the units and of the product trans-
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port. As a quality index in one production cycle one may introduce the 
sum of three components [54, 58] 

Q = Q1 + Q2 + Q3  

where Q1 denotes the cost of the raw material transport, Q2 is the cost pro-

portional to the production time in one cycle, and Q3 is the cost of the 
product transport. The value of a production time (and consequently, the 

value Q2) depends on the distribution of the total amount of the raw mate-
rial U among the units, and if the transport was not taken into account we 

would determine the optimal distribution  u1, ..., uk  as it has been pre-

sented in Sect. 13.2. The minimization of Q1 means the determination of 
such amounts of the raw material transported from the individual stores to 
the individual units, i.e. such a transport plan that the global transportation 
cost is minimal under the assumption that the sum of the raw materials 
which can be taken from the stores is equal to U. Similarly, the minimiza-

tion of Q3 means the determination of such amounts of the product trans-
ported from the individual units to the individual stores that the global 

transportation cost is minimal. The separate minimization of Q1 and Q3 is 
called a transportation problem for which there exist suitable algorithms 
and computer programs [105]. However, the minimization of the global 

cost Q could not be decomposed into independent minimization of Q1, Q2, 

Q3 because these problems are interconnected: Q2 depends on the values 

u1, u2, ..., uk which at the same time are data for both transportation prob-
lems. One should then find directly (without a decomposition) the deci-

sions *
1u , *

2u , ..., *
ku   and the transport plans for the raw material and the 

product – minimizing the global quality index Q. It may be obtained by 
applying a suitable computation algorithm or by realizing successive ap-
proximate control decisions in a closed-loop control system. 
 The problem is much simpler in the case of one raw material store and 
one product store, and is reduced to the determination of the optimal dis-
tribution  u* taking into account the transport cost. Let us introduce the fol-

lowing notation concerning one cycle containing the transport of the raw 
material, the distribution of the raw material among the units, obtaining the 
product and the transport of the product to the stores: 

Ti – the production time in the i-th unit, 

ui – the amount of the raw material assigned to the i-th unit, 

vi – the amount of the product obtained from the i-th unit, 
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ic  – the unit cost of the raw material transport, 

iĉ  – the unit cost of the product transport. 

Assume that 
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where T = max {T1, T2, ... , Tk}  is the production time of the global 
amount of the product. Then the problem consists in finding the values  

*
1u , *

2u ,..., *
ku  minimizing the cost 

Q(u1, u2, ... , uk) = Q1 + Q2 + Q3 

subject to constraints (13.3). Hence, it is a task allocation problem taking 
into account the cost of the transport. Introducing this cost may signifi-

cantly change the distribution optimal with respect to Q2 or T only. For ex-

ample, when only T is taken into account, the value  ui for a unit with a 
great productivity will be great in comparison with the values of  u  for 

other units, however taking into account  Q1 may cause a significant de-

crease in  ui if the transport of the raw material to this unit is expensive. 
 According to (13.24) 

Q(u1, u2, ..., uk) = p⋅ ∑
=

+
k

i
iii

i
ucu

1

)]([max ϕ  (13.25)

where iiii cdcc ˆ+= . The optimal distribution *
1u , *

2u , ..., *
ku   minimizing 

the function (13.25) with the constraints (13.3) may be obtained in an ana-
lytical form in simple cases only. Let us consider two production units and 

linear relationships between  Ti and  ui: 

T1 = k1u1,              T2 = k2u2.  

The optimal distribution minimizing  T = max{T1, T2}  is the following 

(see (13.8) for α = 1): 

21
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= ,                 
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u

+
= .  

Substituting  u2 = U – u1 to the function (13.25) yields 
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Q = max{k1u1, k2(U – u1)} + c1u1+c2(U – u1) ∆= F(u1).  

An analysis of this function leads to the following rules for the determina-

tion of *
1u : 

1. If F(u1)  is an increasing function for  u1 < 1u  then *
1u = 0. 

2. If F(u1)  is a decreasing function for  u1 < 1u  and is an increasing func-

tion for  u1 > 1u  then *
1u = 1u . 

3. If F(u1)  is a decreasing function for  u1 > 1u  then  u*
 = U. 

From these rules we obtain the following algorithm of the optimal distribu-

tion taking into account the transport cost, in which the notation c1 – c2 = c  
has been introduced: 

1. If  c – k2 > 0  then  *
1u = 0, *

2u = U. 

2. If  c – k2 < 0  and  c + k1 > 0  then  *
1u = 1u , *

2u = 2u . 

3. If  c + k1 < 0  then  *
1u = U, *

2u = 0. 

4. If  c – k2 = 0  then *
1u  is any value from the interval [0, 1u ]. 

The block scheme of the control algorithm is presented in Fig. 13.6. 
 Until now we have assumed that three parts of the cycle (raw material 
transport, production and product transport) are separated in time, i.e. the 
distribution is executed after obtaining the global amount of the raw mate-
rial from the stores and the production in each unit starts at the same time. 
These operations, however, can be organized in the other way: the produc-
tion in a unit starts immediately after receiving the raw material and the 
product is taken from the unit directly after finishing the production proc-
ess. Then, the whole system can be treated as a complex of  k parallel op-
erations, each of them consisting of the raw material transport, the produc-
tion and the product transport. Consequently, the problem is reduced to the 
time-optimal task distribution considered in Sect. 13.2, i.e. to the determi-

nation of the decisions *
1u , *

2u , ..., *
ku   minimizing 

T = max { 1T , 2T , ..., kT }  

where iT  denotes the sum of production time and the time of both trans-

portations, i.e. 

iT  = ϕ (ui) + ciui  

where iiii cdcc ˆ+=  as formerly, and  ci, iĉ   denote the transport times for 

a unit of the raw material and the product, respectively, under the assump-
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tion that the transport time is proportional to an amount of a material. In 

particular, for the linear models Ti = ki ui, according to (13.8) for α = 1 the 
control algorithm is as follows: 

1

1

11* )( −

=

−− ∑⋅=
k

i
iii eUeu ,         i = 1, 2, ..., k  

where  ei = ki + ci. 
 

Introduce data

c ,k1, k 2, U

c - k2 > 0

c - k 2< 0

c + k1 > 0
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Fig. 13.6. Scheme of the control algorithm in one cycle 

13.6 Control of an Assembly Process 

In a traditional assembly process, the sequence of assembly operations 
executed in successive stages is given in advance, and the control consists 
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only in a controlling of technical actions necessary to perform assembly 
operations. An essential decision making problem arises when in succes-
sive stages the assembly operations are chosen currently, based on a rec-
ognition of the current state of an assembly object. If these operations are 
executed by an intelligent assembly robot, its basic functions at one stage 
are the following: the recognition of the object state based on the results of 
observations, the choice of a corresponding operation from a set of opera-
tions given for this stage, and the execution of this operation. The decision 
problem described here and consisting in a choice of a sequence of opera-
tions in the assembly process may be considered as a specific example of a 
multistage decision process described in Sect. 4.3 in connection with dy-
namic programming application [41, 52]. 
 Let us introduce the following notations: 

Sn = {Sn1, Sn2, ..., 
nnkS } – the set of possible object states at the n-th 

stage, 

sn ∈ {1, 2, ..., kn} – the set of indexes indicating the possible states at the 
n-th stage, 

On = {On1, On2, ..., 
nnmO } – the set of possible operations at the n-th 

stage, 

ln ∈ {1, 2, ..., mn} – the set of indexes indicating the possible operations at 
the n-th stage, 

yn – the vector of the observation (measurement) results at the n-th stage. 

The components of the vector yn denote features of the assembly object, 
i.e. variables characterizing the current effect of the assembly process and 
used to the evaluation of the assembly quality. They may be e.g. dimen-
sions or sizes evaluating the precision, accuracy or tolerance in the place-
ment and fastening of elements. Assume that the recognitions of the state 

sn on the basis of  yn are correct and performed according to a known rec-
ognition algorithm 

sn = Gn( yn).  

Assume also that the relationship between the state  sn, the next state sn+1 
and the current operation 

sn+1 = fn(sn, ln)  

is known. This relationship is given in the form of table (matrix) where the 

index  sn+1 is written in the row with index  sn and the column with index  

ln. Let us introduce a performance index  ϕn(sn) evaluating the state  sn 
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with the help of a non-negative number  ϕn(sn) so that this number is as 
less as the current effect of the assembly is better. 

Assembly control problem: For the given sets  sn, ln and the functions 

Gn, fn for every n = 0, 1, ..., N, one should determine the control algorithm 

in a closed-loop system  ln = )( nn yΨ , which minimizes the global quality 

index evaluating the whole N-stage assembly process: 

NQ  = ∑
=

N

n
nn s

1

)(ϕ . 
 

In order to apply dynamic programming in a way similar to that presented 
in Sect. 4.3, let us introduce the notation: 

ϕn(sn) = ϕn[fn(sn–1, ln–1)] 
∆=  gn(sn–1, ln–1)  

QN = ∑
=

−−

N

n
nnn lsg

1
11 ),( = ∑

−

=

1

0

),(
N

n
nnn lsg  (13.26)

VN–n(sn) = 
Nnn lll ,...,, 1

min
+

∑
−

=

1
),(

N

ni
nnn lsg .  

The  gn is presented in the form of a table containing the number 

vn 
∆=  gn(sn, ln)  in the row with index  sn and the column with index  ln. 

For  n = N – 1  we minimize the last component of the sum (13.26) with 

respect to  ln and as a result we obtain  lN–1 = ΨN–1(sN–1), i.e. the relation-

ship between the last optimal decision and the state  sN–1. Let us note that 

the minimization of  gN–1 with respect to  lN–1  is an integer programming 

problem. It should be solved for all  sN–1∈{1, 2, ..., kN–1}. Since usually 

the numbers of possible operations and states are not great for each  sN–1 it 

is possible to determine  gN–1 for each  lN–1  and to choose  lN–1 for which 

gN–1  is minimal. As a result, the relationship lN–1 = ΨN–1(sN–1) is ob-

tained in the form of a table giving for each state  sN–1 the corresponding 

decision  lN–1. Next, one should determine the relationship  

V1(sN–1) =  V1[fN–2(sN–2, lN–2)]  

in the form of a table containing the number  V1 in the row with index  
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sN–2  and the column with index  lN–2. This table is obtained in such a way 

that for the pair (sN–2, lN–2)  we take  sN–1  from the table fN–2, lN–1 from 

the table  ΨN–1  and  vN–1 from the table  gN–1. At the next step we find the 

relationship  lN–2 = ΨN–2(sN–2)  by minimization 

2

min
−Nl

{gN–2(sN–2, lN–2) + V1[fN–2(sN–2, lN–2)]}.  

Continuing this procedure we finally obtain the table  l0 = Ψ0(s0). The al-

gorithm for the determination of Ψn can be presented in the form of the 
following recursive procedure: 

VN–n(sn) = 
nl

min {gn(sn, ln) + VN–n–1[ fn(sn, ln)]},  

n = N – 1, N – 2, ..., 0;  V0 = 0. 
 As a result we obtain the relationships 

ln = Ψn(sn),              n = 0, 1, ..., N – 1,  

and after substituting the formula  sn = Gn( yn), we have the relationships  

ln = Ψn[Gn( yn)] = )( nn yΨ   

determining the control algorithm in a closed-loop system. 

 The algorithm for the determination of the tables Ψn may be called an 
algorithm for a control system design. It can be written as follows: 

1. Using the tables  gn and  VN–n–1 taken from the memory, determine the 

table Ψn  in the following way: for each index sn = 1, 2, ..., kn  find the in-

dex  ln for which the sum of numbers corresponding to the pair of indexes 

(sn, ln) is the smallest. 

2. Using the tables  fn–1 and  gn taken from the memory and the table Ψn 

which has been determined, find the table  VN–n. 

3. Introduce the tables Ψn and VN–n  into the memory. 

 The way of finding the tables Ψn  and VN–n  has been described above 
for  n = N – 1. In the data base of a computer executing the above algo-

rithm (Fig. 13.7) one should put the tables  fn and the tables gn obtained 

from  fn for the given functions  ϕn defining the way of the performance 
index calculation. The determined tables should be put into the data base 
of a controlling computer. 
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Fig. 13.7. Simplified block scheme of algorithm for control system design 
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Fig. 13.8. Scheme of control system for assembly process under consideration 

 The algorithm of a real-time control (Fig. 13.8) is the following: 

1. Introduce the measurement results  yn. 

2. Determine the index of a current state  sn = Gn( yn). 
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3. From the table Ψn read over the index of an assembly operation ln and 
bring it out for the execution. 

13.7 Application of Relational Description and Uncertain  

Variables 

For uncertain complexes of operations one can apply the methods de-
scribed in the former chapters for control of uncertain plants, in particular 
– methods and algorithms based on a relational knowledge representation, 
on descriptions using uncertain and fuzzy variables and on the knowledge 
validation and updating in a learning process [30, 34, 42, 46, 48, 49, 52]. 
Now we shall describe shortly the distribution problems based on a rela-
tional knowledge representation in the form of a set of inequalities, and on 
a description with uncertain variables. 
 Consider an uncertain complex of operations described by a set of ine-
qualities 

)( iii uT ϕ≤  (13.27)

where iϕ  is a known function, increasing in the case of tasks and decreas-

ing in the case of resources. The inequalities (13.27) together with the 
function }...,,,max{ 21 kTTTT =  form a relational knowledge representa-

tion ),( yuR  in our case. For a user’s requirement α≤T  or ],0[ α∈T  one 

can formulate the decision problem in a way described in Sect. 6.3. 

Decision problem: For the given iϕ  )...,,2,1( ki =  and α  one should find 

the largest set UDu ⊂  such that the implication 

],0[ α∈→∈ TDu u   

is satisfied, where the set U  is determined by the constraints (13.3). 
 Then 

]},0[)(:{ α⊆∈= uDUuD Tu  (13.28)

where )(uDT  is the set of possible values T  for the fixed u, i.e. )(uDT  is 

determined by the inequality 

)(max ii
i

uT ϕ≤ .  

Consequently, 
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]})([:{
,1

αϕ <∈=
∈

ii

ki

u uUuD . (13.29)

For iii ucu =)(ϕ  

)}()0()(:{
,11

α≤∧≥∧=∈=
∈=

∑ iii

ki

k

i
i

k
u ucuUuRuD . 

 

It is easy to note that the solution exists (i.e. uD  is not an empty set) if 
*T≥α  where *T  is the minimal execution time obtained for the optimal 

allocation *u . In this case uDu ∈* . For example, if 2=k  and 

*

21

21 T
cc

Ucc
=

+
≥α   

then uD  is determined by equality 12 uUu −=  and inequality δβ ≤≤ 1u  

where 

1c

α
β = ,          

2c
U

α
δ −= .  

 Let us consider a complex of parallel operations described by the ine-
qualities 

),( iiii xuT ϕ≤ ,       ki ...,,2,1=  (13.30)

where iu  is the size of a task assigned to the i-th operation, 1Rxi ∈  is a 

parameter and iϕ  is a known increasing function of iu . The parameter ix  

is unknown and is assumed to be a value of an uncertain variable ix  de-

scribed by a certainty distribution )( ixi xh  given by an expert. Now the re-

lational knowledge representation, consisting of (13.30) and the relation-
ship )...,,,max( 21 kTTTT = , is completed by the functions )( ixi xh . We 

assume that kxxx ...,,, 21  are independent uncertain variables, i.e. 

)(min)( ixi
i

x xhxh =   

where )...,,,( 21 kxxxx = . The largest set of decisions )(xDu  depends on 

x and is determined by (13.29) with ),( iii xuϕ  in place of )( ii uϕ . The de-

scription of the complex is analogous for the resource allocation problem. 
Then iu  is the amount of a resource assigned to the i-th operation, iϕ  is a 

decreasing function of iu  and U denotes the total amount of the resource 
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to be distributed. 
 According to the general formulation of the decision problem presented 
in Sect. 8.2, the allocation problem may be formulated as an optimization 

problem consisting in finding the optimal allocation *u  that maximizes the 
certainty index of the soft property: “u approximately belongs to )(xDu ” 

or “the set of possible values T approximately belongs to ],0[ α ” (i.e. be-

longs to ],0[ α  for an approximate value of x ). 

Optimal allocation (decision) problem:  For the given iϕ , xih  ),1( ki ∈ ,  

U  and α  find 

)(maxarg* uvu
Uu∈

=   

where 

)
~

),((]},0[~);({)( αα ≤=⊆= xuTvxuDvuv T . (13.31)

The soft property “ ],0[~);( α⊂xuDT ” is denoted here by “ α≤
~

),( xuT ”, 

and );( xuDT  denotes the set of possible values T for the fixed u, deter-

mined by the inequality 

),(max iii
i

xuT ϕ≤ .  

 According to (13.31) 

]}
~

),([...]
~

),([]
~

),({[)( 222111 ααα ≤∧∧≤∧≤= kkk xuTxuTxuTvuv . 

Then 

)(minmaxarg*
ii

iUu

uvu
∈

=  (13.32)

where 

)](~[]
~

),([]
~

),([)( ixiiiiiiiiii uDxvxuvxuTvuv ∈=≤=≤= αϕα , 

}),(:{)( 1 αϕ ≤∈= iiiiixi xuRxuD . 

Finally 

)(max)(
)(

ixi
uDx

ii xhuv
ixii ∈

=  (13.33)

and 

)(maxminmaxarg
)(

*
ixi

uDxiUu

xhu

ixii ∈∈
= . (13.34)

The value )( ii uv  denotes the certainty index that in the i-th operation an 
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approximate value of the execution time is less than α . The procedure of 

finding the optimal allocation *u  is then the following: 
1. To determine )( ii uv  using (13.33). 

2. To determine *u  according to (13.32), subject to constraints (13.3). 
Assume that ),( iii xuϕ  is an increasing function of ix . Then the set 

)( ixi uD  is determined by the inequality )(ˆ
iii uxx ≤  where )(ˆ uxi  is the 

solution of the equation 

αϕ =),( iii xu  (13.35)

and 

)(max)(
)(ˆ

ixi
uxx

ii xhuv
iii ≤

= . (13.36)

 In many cases an expert gives the value *
ix  and the interval of the ap-

proximate values of ix : iiiii dxxdx +≤≤− ** . Then we assume that 

)( ixi xh  has a triangular form presented in Fig. 13.9 where *
ii xd ≤ . Let us 

consider the relation (13.30) in the form iii uxT ≤  where 0>ix  and iu  

denotes the size of a task. In this case, using (13.36) it is easy to obtain the 
following formula for the functions )( ii uv : 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−
≥

−
≤≤+−

≤

=

.for0

for1)(
1

for1

)(

*

**
*

*

ii

i

ii

i

i

i
ii

i

i

ii

dx
u

dx
u

x
x

ud

x
u

uv

α

ααα

α

 (13.37)
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Fig. 13.9. Example of certainty distribution 
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For the relations 1−≤ iii uxT  where iu  denotes the size of a resource, the 

functions )( ii uv  have an analogous form, with 1−
iu  in place of iu : 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≥

≤≤
−

+−

−
≤

=

.for1

for1)(
1

for0

)(

*

**
*

*

α

αα
α

α

i
i

i
i

ii
ii

i

ii
i

ii

x
u

x
u

dx
xu

d

dx
u

uv (13.38)

Example 13.2. Let us consider the task allocation for two operations. In 

the maximization problem (13.32) the decision *
1u  may be found by solv-

ing the equation )()( 1211 uUvuv −=  and *
1

*
2 uUu −= . Using (13.37), we 

obtain the following result: 
1. For 

2
*
21

*
1

2
*
21

*
1 ))((

dxdx

dxdxU

−+−

−−
≤α  (13.39)

0)( =uv  for any 1u . 

2. For 

*
2

*
1

*
2

*
1

2
*
21

*
1

2
*
21

*
1 ))((

xx

xUx

dxdx

dxdxU

+
≤≤

−+−

−−
α  (13.40)

*
1u  is a root of the equation 

)(
1

)(
1 *

2
12

*
1

11
x

uUd
x

ud
−

−
=−

αα
  

satisfying the condition 

1
*
1

*
1*

1 dx
u

x −
≤≤

αα
,  

and )()( *
11

* uvuv = . 

3. For 

*
2

*
1

*
2

*
1

 x x

 xUx

+
≥α  (13.41)

1)( * =uv  for any 1u  satisfying the condition 
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*
1

1*
2 x

u
x

U
αα

≤≤− .  

For example, if 2=U , 2=α , 2*
1 =x , 3*

2 =x , 121 == dd  then using 

(13.40) yields 25.1*
1 =u , 75.0*

2 =u , 6.0)( * =uv . 

 The result is simpler under the assumption 

γ
∆

2

*
2

1

*
1 ==

d

x

d

x
. (13.42)

Then in the case (13.42) 

*
2
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1

*
2*

1
xx

Ux
u

+
= ,             

*
2

*
1

*
1*

2
xx

Ux
u
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= ,  

1]1
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1
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11
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11
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xxU

xx
x

ud
uvuv

α
γ

α
. (13.43)

The formula (13.43) shows that )( *uv  is a linear function of the parameter 

γ  characterizing the expert’s uncertainty.   □ 

 The determination of the control decision *u  may be difficult for 2>k  
because of great computational difficulties. To decrease these difficulties 
we can apply the decomposition of the complex into two subcomplexes 
and consequently obtain a two-level control system (Fig. 13.10). This ap-
proach is based on the idea of decomposition and two-level control pre-
sented for the deterministic case [13]. At the upper level the value U is di-
vided into 1U  and 2U  assigned to the first and the second subcomplex, 

respectively, and at the lower level the allocation )1(u , )2(u  for the sub-
complexes is determined. Let us introduce the following notation: 

mn,  − the number of operations in the first and the second complex, re-

spectively, kmn =+ ,  
)1(T , )2(T  − the execution times in the subcomplexes, i.e. 

),...,,max( 21
)1(

nTTTT = ,        ),...,,max( 21
)2(

mnnn TTTT +++= ,  

)1(u , )2(u  − the allocations in the subcomplexes, i.e. 

)...,,( 1
)1(

nuuu = ,           )...,,( 1
)2(

mnn uuu ++= .  
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Fig. 13.10. Two-level control system 

The procedure of the determination of *u  is then the following: 

1. To determine the allocation )( 1
*)1( Uu , )( 2

*)2( Uu  and the certainty in-

dexes )( 1
*)1( Uv , )( 2

*)2( Uv  in the same way as *u , *v  in the first part of 

this section where the direct approach has been applied, with 1U  and 2U  

in place of U. 

2. To determine *
1U , *

2U  via the maximization of 

),()]
~

()
~

[()
~

( 21
∆)2()1( UUvTTvTv =≤∧≤=≤ ααα .  

Then 

)}(),(min{maxarg),( 2
*)2(

1
*)1(

,

*
2

*
1

21

UvUvUU
UU

=   

with the constraints: 02,1 ≥U , UUU =+ 21 . 

3. To find the values of *)1(u , *)2(u  and *v  putting *
1U  and *

2U  into the 

results )( 1
*)1( Uu , )( 2

*)2( Uu  obtained in point 1 and into ),( 21 UUv  in 

point 2. 
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13.8 Application of Neural Network [21] 

Let us pay attention to the possibility of using a neuron-like algorithm as 
an approximate control algorithm for the task distribution in a complex of 
parallel operations described in Sect. 13.2. For the operation models 
(13.7), the exact control algorithm determining the distribution  u on the 
basis of the measurement result  z = c is given by the formula (13.8). For 
more complicated operation models (13.1) this algorithm can be presented 
in the form of a computational procedure. The simplest neuron-like algo-
rithm for the execution of these computations has the form of one-layer net 
with single neurons for the individual operations in the complex 
(Fig. 13.11). The algorithm of a single neuron with the input 

s11, s12, ..., s1,k−1  is here the following: 

yi = | wi1si1 + wi2si2 + ... + wi,k−1si,k−1 + 1|,        i = 1, 2, ..., k (13.44)

where 

si1 =
ic

c1 , si2 =
ic

c2 , ..., si,i−1 =
i

i

c

c 1− , sii =
i

i

c

c 1+ ,..., si,k−1 =
i

k

c

c
. (13.45)

The elements  e marked in the scheme of the control system are blocks de-

termining the decisions  ui = 
1−

iy . The form (13.44) is reasoned by the 

form of the algorithm (13.8) obtained for the model (13.7) which may be 

an acceptable approximation of the dependency of  Ti upon  ui for real op-

erations. It is easy to note that for the positive values wi,1, wi,2, ..., wi,k−1  

the dependency of ui = 
1−

iy  upon  c1, c2, ..., ck is identical with the exact 

algorithm (13.8) for α = 1. The block B denoted in the figure determines 

the values si,1, si,2, ..., si,k−1  according to (13.45). It is worth noting that to 
apply correctly the neuron-like algorithm in our case, it is necessary to take 
into account the form of a control plant model and consequently to process 

initially the values  c1 , c2 ,..., ck introduced in the control algorithm and to 
process the outputs of the neurons by the blocks  e.  
 For changing the weights in the neuron-like algorithm presented, one 
can apply a learning process and concepts of learning mentioned in 
Sect. 12.6. In particular an exact algorithm (if it exists) may be used as a 
generator of a learning sequence, or an adjustment process based on the 
current evaluation of the execution time of whole complex  T may be ap-
plied. In order to improve the accuracy of the approximation one may ap-
ply multi-layer networks, having in mind that it may result in the increas-
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ing of the time of learning. The neuron-like algorithms may be also used in 
other control systems with a control plant being a complex of operations, 
e.g. in a resource distribution system. 
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Fig. 13.11. An example of control system with one-layer neural network 



 

Conclusions 

The book has presented a uniform description of basic control problems, 
methods and algorithms for different cases concerning the information on 
the control plant and for different ways of obtaining and using the knowl-
edge of the plant during the control process. The division of the subject 
into five parts presented in Sect. 1.6 is more clear and understandable after 
reading the whole text. Part two containing Chaps. 3, 4 and 5 has been 
devoted to deterministic control problems, i.e. to considerations for deter-
ministic plants, under the assumption that the plant description in the form 
of a function for the static case and in the form of a difference (differen-
tial) equation (or an equivalent form) for the dynamical case – is exactly 
known. Part three consisting of Chaps. 6, 7, 8 and 9 has been concerned 
with different formal descriptions of a priori uncertainty and with control 
problems formulated adequately to the model of the uncertainty taken into 
consideration. The uncertainty has been caused by the non-deterministic 
behaviour of the plant and (or) the uncertainty of an expert formulating the 
knowledge of the plant. In Chap. 6 we have considered the plant described 
in the form of a relational knowledge representation, and in Chaps. 7, 8, 9 
we have presented the control problems for the plants with the description 
of the uncertainty using random, uncertain and fuzzy variables, respec-
tively. Analogies and relations between formulations and solutions of the 
decision problems based on different descriptions of the uncertainty have 
been indicated, and different interpretations of the models and results in 
spite of their formal similarities have been discussed. It is worth noting 
that different cases of the uncertainty may occur in a single system. In par-
ticular, it may be so called second order uncertainty, that is the uncertainty 
concerning parameters occurring in a basic model of the uncertainty. Such 
cases have been presented in Chaps. 7 and 8 where the relational knowl-
edge representation with unknown parameters has been considered. 
 Part four consisting of Chaps. 10 and 11 has been concerned with the 
uncertain control systems as well, but unlike the considerations in Part 

tree, we have described the control problems with using the information 
obtained in a closed-loop system. Two concepts have been considered: us-
ing the evaluations of the control effects to the direct determination of the 
next control decisions (Chap. 10) and to the improvement of the basic con-
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trol algorithm in the adaptation and learning processes (Chap. 11). In both 
cases, the convergence problem for the approximation process executed in 
a closed-loop control system is of a significant importance. In the case of 
the first concept, it is the stability problem, widely developed and de-
scribed in the literature. 
 Part five containing Chaps. 12 and 13 has been devoted to selected 
problems important in practical situations, namely the applications of se-
lected artificial intelligence methods (neural networks and logical formulas 
processing), complex control systems and the control of complexes of op-
erations treated as specific control plants consisting of interconnected ac-
tivities. 
 The uniform and compact description of various control problems and 
methods presented in the book may be considered as a basis for studying 
more advanced and specific problems which may be put into the frame-
work given in the book (as it was said in Sect. 1.6). Precise formulas and 
algorithms presented for particular cases can be directly used for the de-
velopment of corresponding computer programs or may be useful in de-
veloping control algorithms and programs in more complicated situations 
occurring in the design of computer control and management systems, and 
more generally – the design of decision support systems. 
 Characterizing present and future directions and perspectives of the 
modern control theory one should take into account the following aspects: 
1. Various technical and non-technical plants and processes can be consid-
ered as subjects of decision making (control and management). They are 
not only continuous technological processes but also so called flexible 
manufacturing systems and processes, complex systems, organizations and 
projects as management plants, and computer systems as specific decision 
plants. In many cases like these, even advanced methods and results of the 
traditional control theory are proved to be useless. They can be applied 
with good results e.g. to the control of continuous chemical reactors, but 
they cannot be used e.g. to the transport or traffic control, to the control of 
an assembly process or the control of computational process and data 
processing in a multiprocessor computer system. 
2. In many practical situations, traditional mathematical models of control 
plants are proved to be insufficient or useless and it is necessary to develop 
algorithms for solving difficult problems based on different forms of the 
plant knowledge formulated by experts. Quite often this is incomplete and 
imprecise knowledge, sometimes not presented in the form of formulas 
and numbers but in the form of a linguistic description of facts and rules. 
3. As a rule, modern control and management systems may be considered 
as specific information systems containing computers for determining the 
decisions or for supporting the decision making process. They are often so 
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called expert systems in which the computer-expert solves a problem on 
the basis of a knowledge representation, using a reasoning procedure [18, 
92].  
4. Nowadays, distinguishing between decision problems for control and 
management is not necessary and not possible. The same concerns distin-
guishing between information science and control science which may be 
treated as interconnected disciplines based on two fundamental areas: sys-
tem engineering and knowledge engineering. 
 Taking into account the above remarks, one should indicate the follow-
ing interconnected directions of the future development of the modern con-
trol theory treated as a part of the information and computer science deal-
ing with foundations of the design of computer decision systems for the 
needs of control and management (see remarks in Sect. 1.5): 
1. Problems of uncertain control systems using different forms of knowl-
edge representations. 
2. Developing artificial intelligence methods and the design of intelligent 
control systems with the application of a prediction, the algorithmization 
of reasoning, logic formulas processing, learning processes, neural net-
works, evolutionary programming etc. 
3. Applications of advanced operational research methods to the control of 
complex manufacturing and computational operations, and to the man-
agement of complex organizations and projects. 
4. Developing formal foundations of a diagnosis and reliability of control 
systems. 
5. Problems of complex control systems, in particular – hybrid systems 
with various forms of knowledge representations for different parts of the 
complex plants and consequently, with different formulations of partial 
control problems adequate to the forms of the knowledge representation 
and to the models of uncertainty. 
6. Developing the knowledge exploration and discovering problems and 
the concepts of decision making based on so called distributed knowledge 
(see [28, 40, 53]), oriented towards the needs of control and management 
systems. 
 There are different important and interesting technical problems con-
nected with the design, building and exploitation of computer control and 
management systems. They exceed the framework of the control theory 
and have not been presented in this book. 



 

Appendix 

Operational Transforms 

An operational transform or Laplace transform of the function  x(t) deter-
mined for  t ≥ 0 is defined as a function of a complex variable  s, assigned 
to the function  x(t) according to the following formula: 

)}({)()(
∆

0

txdtetxsX
st

L== ∫
∞

− . 
 

Such a mapping is called an operational transformation (Laplace transfor-
mation), the transformation of the function  X(s) into the function  x(t) is 
called an inverse operational transformation and its result  x(t) – an inverse 
Laplace transform of  X(s). The most important properties of this transfor-
mation are the following: 
1. For any functions  )(1 tx  and )(2 tx  for which there exist Laplace trans-

forms, and for any real numbers 1c  and 2c  

)()()}()({ 22112211 sXcsXctxctxc +=+L   

where )(1 sX  and )(2 sX  are Laplace transforms of the functions )(1 tx  

and )(2 tx , respectively. 

2. For any function )(tx  for which there exists Laplace transform  X(s)  

)0()()}({ xssXtx −=�L .  

Under the condition 0)0( =x , differentiating of the function  x(t) corre-

sponds to multiplying )(sX  by  s. That is why the variable  s is called a 

differential operator. 
 A linear differential equation for one-dimensional functions )(tx  and 

)(ty   
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in the operational transforms “language” takes the form of an algebraic 
equation. For zero initial conditions 
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To solve the differential equation (D1) one should determine  X(s) accord-
ing to the formula (D2) and then determine or read over from suitable ta-
bles the inverse transform  x(t). If  X(s) is a rational function of  s (i.e. is a 
ratio of two polynomials) then it is convenient to present X(s) as a sum of 
so called partial fractions and read from the tables the inverse transforms 
for the separate components. The list of the Laplace transforms for the 
most frequently used functions is presented in Table D1. 
 Procedures of handling the operational transformations in solving dif-
ferential equations and in related problems are called an operational calcu-

lus. 
 

 Table D1 
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 A discrete operational transform or  Z-transform of the discrete func-

tion  xn determined for n ≥ 0  is defined as a function of a complex variable  

z, assigned to the function  xn according to the following formula  

}{)(
∆

0
nZ

n

n
n xTzxzX == ∑

∞

=

− . 

Such a mapping is called a discrete operational transformation or Z-
transformation, the transformation of the function  X(z) into the function  

xn is called an inverse discrete operational transformation and its result  xn 
– an inverse  Z-transform. The most important properties of this transfor-
mation are the following: 
1. For any functions nx1  and nx2  for which there exist  Z-transforms, and 

for any real numbers 1c  and 2c   

)()(}{ 22112211 zXczXcxcxcT nnZ +=+  

where )(1 zX  and )(2 zX  are Z-transforms of the functions nx1  and nx2 , 

respectively. 
2. For any function nx  for which there exists Z-transform  X(z)  

01 )(}{ zxzzXxT nZ −=+ . 

Under the condition  x0 = 0, shifting of the function  xn corresponds to mul-
tiplying  X(z) by  z. That is why the variable  z is called a shift operator. 
 A linear difference equation for one-dimensional functions nx  and ny  
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in the operational transforms “language” takes the form of an algebraic 
equation. For zero initial conditions 
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To solve the difference equation (D3) one should determine  X(z) accord-
ing to the formula (D4) and then determine or read from the suitable tables 

the inverse transform  xn. If X(z) is a rational function of  z then, after pre-

senting it in the form of a sum of partial fractions, we obtain  xn as a sum 
of inverse transforms for the partial fractions, read from the tables. The list 
of  Z-transforms for the most frequently used functions is presented in Ta-
ble D2. 
 
 Table D2 
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