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Abstract—The problem addressed in this paper is motivated
by surveillance mission planning with curvature-constrained
trajectories for Dubins vehicles that can be formulated as
the Dubins Traveling Salesman Problem with Neighborhoods
(DTSPN). We aim to provide a tight lower bound of the DTSPN,
especially for the cases where the sequence of visits to the given
regions is available. A problem to find the shortest Dubins path
connecting two regions with prescribed intervals for possible
departure and arrival heading angles of the vehicle is introduced.
This new problem is called the Generalized Dubins Interval
Problem (GDIP) and its optimal solution is addressed. Based
on the solution of the GDIP, a tight lower bound of the above
mentioned DTSPN is provided which is used to steer sampling-
based algorithm to determine a feasible solution that is close to
the optimum.

I. INTRODUCTION

Surveillance missions are frequent tasks for Unmanned
Aerial Vehicles (UAVs) in which the vehicles are requested
to visit a given set of target locations and collect the required
data. The Dubins Traveling Salesman Problem (DTSP) [33]
is one of the suitable problem formulations for planning such
missions that respect the curvature-constrained trajectory of
vehicles modeled as Dubins vehicle [5]. Two optimization
parts can be identified in the DTSP: 1) the combinatorial
optimization of the underlying TSP to determine the best se-
quence to visit the targets, and 2) the continuous optimization
to determine the shortest path of the Dubins vehicle that is
encoded by the vehicle heading angles at the target locations.

The DTSP is a challenging problem because the headings
can be arbitrarily selected from the interval [0, 2π) and it is
known to be NP-hard [17] because of the underlying TSP.
Therefore, the DTSP has been addressed by computation-
ally efficient heuristic approaches that decouple the problem
into the sequencing and the continuous optimization parts
[33, 19, 21, 22, 36, 20, 14], or by simultaneous solution of both
parts by unsupervised learning principles [6, 7]. In contrast,
sampling-based [29, 28, 17, 31, 4] and evolutionary [35, 11]
approaches are assumed to be resolution complete; but they
are computationally demanding and unable to estimate the
absolute quality of found solutions. The heuristic solution
from [33] is proved to be bounded by the solution of the
Euclidean TSP; however, the gap to the optimal solution is not
tight, and it provides only a rough estimation of the solution
quality. An approximation algorithm for the DTSP has been
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Fig. 1. GDIP instance (P1,Θ1, P2,Θ2) and its solution that connects the
regions P1 and P2 using the departure angle θ1 ∈ Θ1 and the arrival angle
θ2 ∈ Θ2 at the particular locations p1 ∈ P1 and p2 ∈ P2.

proposed in [15] and further elaborated in [16] which improves
the worst found solution especially for high-density instances.

A major step towards the optimal solution of the DTSP and
a tight estimation of the solution quality has been made by
introducing the Dubins Interval Problem (DIP) [27]. The DIP
stands to find the shortest Dubins path between two endpoints
with the heading angles restricted to be within the specified
intervals. Based on the DIP, a tight lower bound of the DTSP
has been proposed in [26, 27]. A sub-problem called the
Dubins Touring Problem (DTP) with a given sequence of visits
to the targets has been studied in [26]. Moreover, the solution
of the DIP [27] has been employed to quickly find high-quality
solutions of the DTP by steering sampling of the possible
headings [8]. Such a solution can be utilized in other Dubins
routing problems like the Dubins Orienteering Problem [32],
where solutions are desirable to efficiently evaluate if the
currently selected most rewarding targets fit into the limited
travel budget.

The achievements enabled by the optimal solution of the
DIP [27] motivate us to consider similar advancements for
more practical surveillance missions where vehicles are al-
lowed to save travel cost by covering target locations within
a specified distance. Such missions can be formulated as
the DTSP with Neighborhoods (DTSPN) [30] that has been
addressed by similar methods [13, 10, 12, 23, 37, 34, 7] as
for the DTSP.

Since the DIP cannot be directly utilized for the DTSPN,
because of lack of the particular endpoints, we introduce the
Generalized Dubins Interval Problem (GDIP) to find the
shortest Dubins path between two regions with constrained
heading angles at the endpoints, see an example in Fig. 1.
The GDIP is theoretically analysed and optimal solution is
proposed. Thus, the tight lower bound for the whole class
of Dubins routing problems to visit a given set of regions is
provided. The main contributions of the paper are considered
as follows:



1) The Generalized Dubins Interval Problem (GDIP).
2) The GDIP reduction to the One-Sided GDIP (OS-GDIP).
3) The optimal solution of the GDIP based on the transfor-

mation to the OS-GDIP.
4) Tight lower bound of the DTSPN with a given sequence

of visits to the regions.
The rest of the paper is organized as follows. A brief

description of the DIP and its properties are presented in
the next section together with an overview of the related
work. The proposed GDIP is introduced in Sec. III. The
transformation to the One-Sided GDIP (OS-GDIP) with the
proof of its correctness is in Sec. IV. The optimal solution
of the GDIP is proposed in Sec. V. Benefits of the proposed
GDIP is demonstrated in solving the DTSPN that are presented
in Sec. VI. The final remarks are summarized in Sec. VII.

II. THE DIP AND RELATED WORK

The Dubins vehicle is a curvature-constrained model defined
by the constant forward speed v and the minimum turning
radius ρ. The state of the vehicle q ∈ SE(2) is given by the
position p = (x, y) and the heading angle θ. The model is

q̇ =

 ẋ
ẏ

θ̇

 = v

 cos θ
sin θ
u
ρ

 , |u| ≤ 1, (1)

where u is the control input.
The shortest path between two configurations (further called

Dubins maneuver [5]) is a combination of up to three straight
segments (S) or arc segments (C) with the radius ρ, which
results in two basic types of the maneuvers: CSC and CCC.
The maneuver length is a piecewise continuous function with
discontinuities at the boundary between these two basic types,
and the transition may occur only if the endpoints are closer
than four times ρ (denoted as D4) [2, 3]; otherwise the CCC
cannot be constructed.

The Dubins Interval Problem (DIP) stands to find the
shortest Dubins maneuver from the state q1 = (p1, θ1) to
q2 = (p2, θ2) while the heading angles θ1, θ2 are from the
specified closed interval Θ1, Θ2 [27], i.e.,

Problem 2.1 (DIP):

min
θ1,θ2

L((p1, θ1), (p2, θ2)),

s.t. θ1 ∈ Θ1, θ2 ∈ Θ2,

where L(·, ·) is the length of the Dubins maneuver between
two configurations of the vehicle.

The DIP was solved in [24] using calculus and monotonicity
properties of the Dubins maneuver and the properties of the
DIP have been confirmed in [25] where the Pontryagin’s min-
imum principle was utilized to prove the necessary conditions
for the optimal solution. These conditions are summarized in
Table I and the maneuvers are divided into nine cases. In this
paper, we follow the original notation [25] in which θmin

i and
θmax
i is the rightmost and leftmost heading angle, respectively.

The subscript Lψ denotes the angle of turn is greater than π.

1LψRψ and RψLψ types are claimed in [27] to be candidates to the optimal
solution of the DIP, but they are not local minima.

TABLE I
LIST OF ALL POSSIBLY OPTIMAL SOLUTIONS OF THE DIP.

Case Maneuvers Conditions on θ1 and θ2

1) S or Lψ or Rψ 1

2) LS or LRψ for θ1 = θmax
1 and θ2 ∈ Θ2

3) RS or RLψ for θ1 = θmin
1 and θ2 ∈ Θ2

4) SL or RψL for θ1 ∈ Θ1 and θ2 = θmin
2

5) SR or LψR for θ1 ∈ Θ1 and θ2 = θmax
2

6) LSR for θ1 = θmax
1 and θ2 = θmax

2
7) LSL or LRψL for θ1 = θmax

1 and θ2 = θmin
2

8) RSL for θ1 = θmin
1 and θ2 = θmin

2
9) RSR or RLψR for θ1 = θmin

1 and θ2 = θmax
2

Based on the necessary conditions for the optimal solution
of the DIP, the shortest path can be constructed separately for
each particular case, if it exists. Then, the final solution is
selected as the shortest one. Importantly, there exists a closed
form expression for each particular case, because the first case
contains only a single segment and at least one heading angle
is fixed for the remaining types.

The DIP is a crucial building block for developing algo-
rithms for more complex problems. In [27], it has been used
for a tight lower bound estimation of the DTSP. The main
idea is based on dividing possible headings at the targets into
a set of heading intervals and transforming the problem into
the Generalized Asymmetric TSP where particular distances
are found as the solution of the corresponding instances of the
DIP. The same idea is used for solving the DTSP with a given
sequence of visits [26, 27], i.e., a solution of the DTP.

Approximation of the DTP is proposed in [18] and for the
D4 constraint, the DTP is reducible to the limited number of
convex optimization sub-problems [9]. The lower bound found
by the DIP enables to estimate the solutions quality and steers
the sampling process in an informative way to find high-quality
solutions of the DTP much faster [8], e.g., finding solutions for
50 targets with the path length less than 1% from the optima in
less than 10 seconds. The motivation of the proposed GDIP
is to achieve similar results also for Dubins path visiting a
sequence of target regions.

III. PROBLEM STATEMENT (GDIP)
The Generalized Dubins Interval Problem (GDIP) can be

defined as follows. Let P1, P2 be compact regions in R2 and
Θ1, Θ2 be closed intervals in S1. The GDIP stands to find the
shortest Dubins maneuver from P1 to P2 such that the heading
angles are within the specified closed intervals Θ1, Θ2.

Problem 3.1 (GDIP):

minp1,θ1,p2,θ2 L((p1, θ1), (p2, θ2)),

s.t. p1 ∈ P1, θ1 ∈ Θ1, p2 ∈ P2, θ2 ∈ Θ2,

where L(·, ·) is the length of the corresponding Dubins ma-
neuver connecting two configurations of the vehicle.

In general, the regions P1, P2 can be of any shape but in
the rest of this paper the regions are restricted to the disks
with the radii r1 and r2 centered at c1 and c2, respectively.
Thus, for the endpoints p1 ∈ P1 and p2 ∈ P2, it holds

‖p1 − c1‖ ≤ r1, ‖p2 − c2‖ ≤ r2, (2)



where ‖ · ‖ is the Euclidean norm. An example of the GDIP
instance and its solution is depicted in Fig. 1.

Note that in contrary to the DIP, the endpoints are not fixed
in the GDIP, and they can be selected arbitrarily from the
given regions, which significantly increases complexity of the
problem. On the other hand, a solution of the GDIP enables
to find a tight lower bound for a more general problem of the
optimal Dubins path passing a sequence of regions, e.g., the
DTSPN.

A special version of the GDIP (further used to provide an
optimal solution of the GDIP) is a degenerative case when the
departure region P1 is reduced to a single point p′1. Such a
problem is called One-Sided GDIP (OS-GDIP).

Problem 3.2 (OS-GDIP):

minθ′1,p′2,θ′2 L((p′1, θ
′
1), (p′2, θ

′
2)),

s.t. θ′1 ∈ Θ′1, p
′
2 ∈ P ′2, θ′2 ∈ Θ′2,

where all the variables are distinguished (by a prime) from
Problem 3.1 to clarify the OS-GDIP is transformed from the
GDIP. This notation is used in the following analysis.

IV. ANALYSIS OF THE GDIP

The GDIP is a continuous optimization problem minimizing
the length of the Dubins maneuver with respect to the given
regions and intervals of the heading angles. The endpoints of
the maneuver are selected from the compact regions which
can be considered as an extension of the existing DIP. Thus,
the optimization problem has six degrees of freedom as L :
SE(2) × SE(2) → R. Two following ideas are utilized to
reduce the complexity of the GDIP and provide its optimal
solution.

First, the optimal solution of the GDIP is a path that is
also the optimal solution of the corresponding DIP where the
endpoints are fixed. This property is crucial because all the
conditions for the DIP optimal solution summarized in Table I
are directly applicable for the GDIP.

Secondly, the GDIP is reducible to the OS-GDIP, where one
of the regions has zero radius, and thus the region is reduced
to a single point. Such a transformation is possible because
the GDIP is independent of the translation of its solution. The
transformation is provided in the following paragraphs.

A. Transformation of the GDIP to OS-GDIP and Vice-Versa

The main assumption for transforming an GDIP instance
G = (P1,Θ1, P2,Θ2) to a transformed OS-GDIP instance
G′ = (p′1,Θ

′
1, P

′
2,Θ

′
2) is that any translation of the coordina-

tion system does not change the solution; the heading angles,
the given intervals, and the maneuver length are all preserved.
A solution of the original GDIP instance G is further denoted
as τ = (p1, θ1, p2, θ2) and a solution of the transformed G′
as τ ′ = (p′1, θ

′
1, p
′
2, θ
′
2). Therefore Θ1 = Θ′1, Θ2 = Θ′2 and

also θ1 = θ′1, θ2 = θ′2, and thus we can focus only on the
transformation of the endpoints and the regions.

To transform G into G′, a solution of G is translated such
that it starts at the origin, which reduces the dimensionality
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Fig. 2. OS-GDIP instance transformed from the GDIP instance in Fig. 1.

of the problem because the region P1 is reduced to a single
point p′1 = (0, 0). The transformed region P ′1 contains only the
origin and the region P ′2 can be determined using the dilation
operation ⊕ from the mathematical morphology, which is also
known as the Minkowski sum,

P ′1 = {p′1} = {(0, 0)}, (3)
P ′2 = P2 ⊕ P̌1 = ∪{pb − pa, pa ∈ P1, pb ∈ P2}, (4)

where P̌1 is the reflection of P1, i.e., P̌1 = ∪{−p, p ∈ P1}.
An example of the OS-GDIP is shown in Fig. 2.

Note the transformations (3) and (4) hold for regions of any
shape as none of special properties are utilized. However, for
the disk regions, the transformed P ′2 is also a disk with the
radius r′2 centered at c′2

r′2 = r1 + r2, (5)
c′2 = c2 − c1. (6)

The forward transformation Φ12 of a feasible solution
τ of the GDIP instance G to a feasible solution τ ′ of the
OS-GDIP instance G′ is a translation Φ12(p) : p → p′ that
moves the solution endpoint p1 to p′1 = (0, 0). The forward
transformation is unique and it translates a point p ∈ R2 to
the point p′ ∈ R2 by −p1

Φ12(p) : p 7→ p− p1. (7)

Lemma 4.1: Any feasible solution τ of the particular GDIP
instance G can be transformed by Φ12 (7) into a feasible
solution τ ′ of the transformed OS-GDIP instance G′ created
from G.

Proof: To prove the lemma, the endpoints of the trans-
formed solution (Dubins maneuver) have to be in the given
regions, i.e., p′1 ∈ P ′1 and p′2 ∈ P ′2. The first is always correct
by the definition (3). The second endpoint is transformed to
p′2 = p2 − p1 and using (6) it results into (p′2 − c′2) =
(p2 − c2) − (p1 − c1). Using inequalities (2) for the original
GDIP instance G, the terminal position p′2 is constrained by
‖p′2 − c′2‖ ≤ r2 + r1, and thus p′2 ∈ P ′2.

The backward transformation Φ21 is not unique and for a
single feasible solution of the OS-GDIP instance G′, there may
exist multiple solutions of the original GDIP instance G. This
ambiguity happens if p′2 is not at the boundary of P ′2 because
the original GDIP instance G has greater dimensionality than
G′. Nevertheless, a universal formulation of the backward
transformation Φ21(p′) : p′ → p exists as follows

Φ21(p′) : p′ 7→ p′ + (c1 − λ (p′2 − c′2)) , (8)



where λ represents the ratio of the region radii in the original
instance G

λ =
r1

r1 + r2
. (9)

Lemma 4.2: Any feasible solution τ ′ of the transformed
OS-GDIP instance G′ can be transformed by Φ21 (8) into a
feasible solution τ of the original GDIP instance G.

Proof: Analogously to the forward transformation, the
back-transformed solution needs to fulfill the original con-
straints (2). The first endpoint can be transformed back by
Φ21 as p1 = p′1 + c1 − λ(p′2 − c′2), where p′1 can be omitted
because p′1 = (0, 0). Knowing ‖p′2 − c′2‖ ≤ r1 + r2 from
(5) and by substituting it into the transformation Φ21 we get
‖p1 − c1‖ ≤ r1, and thus p1 ∈ P1. Similarly, for the second
endpoint, p2 = p′2 + c1 − λ(p′2 − c′2), and by subtracting
c2 = c′2 + c1 (6) from both sides of the equation, it results in
p2−c2 = (p′2−c′2)(1−λ). Using (5), as for the first endpoint,
it proves ‖p2 − c2‖ ≤ r2, and thus p2 ∈ P2.

Now, we need to show that the optimal solution of the
transformed G′ is the optimal solution of the original G.

Lemma 4.3: Let τ ′∗ be an optimal solution of the trans-
formed OS-GDIP instance G′, then the solution τ transformed
back by Φ21 (8) is an optimal solution of the original GDIP
instance G, i.e., τ is τ∗.

Proof: Let τ∗ be an optimal solution of G, then there
exists an optimal solution τ ′∗ of G′ with the same length
because of Lemma 4.1. If τ ′∗ is transformed back by Φ21 (8)
it has the same length of τ∗ because of Lemma 4.2, and thus
it is an optimal solution of G.

The main result of the forward (7) and backward (8) trans-
formations is that any GDIP instance can be transformed to its
one-sided version OS-GDIP. The transformation significantly
reduces the search space of the original GDIP while all
properties of the solution are preserved. Together with the DIP
results [27], the OS-GDIP allows finding the optimal solution
of the GDIP, which is proposed in the next section.

V. OPTIMAL SOLUTION OF THE GDIP
The main challenge of finding the optimal solution of a

GDIP instance is related to the determination of both departure
and terminal configurations, i.e., (p1, θ1) and (p2, θ2), such
that the length of the corresponding Dubins maneuver is min-
imized. The proposed solution is based on the transformation
of the GDIP instance to the instance of the OS-GDIP using
the transformations (3) and (4), which reduce the complexity
of the problem as the first position p1 of the GDIP becomes
a single point in the OS-GDIP.

The OS-GDIP instance is solved using the necessary con-
ditions for the optimal solution of the DIP summarized in
Table I, which clearly holds even for the GDIP and its sub-
problem OS-GDIP. However, it is still necessary to address
the selection of the second endpoint p′2 ∈ P ′2, which needs to
be found optimally. Therefore, each possible maneuver type
is addressed separately because their geometrical properties
differ significantly. Thus, multiple candidate solutions are
found from which the shortest one is selected similarly as
it is done for the DIP [27].

TABLE II
ALL POSSIBLY OPTIMAL SOLUTIONS OF THE GDIP

Case Maneuver All possible Closed-form
type maneuvers solution

1) S S YES
2) CS L, R, LS, RS, SL, SR YES
3) Cψ Lψ , Rψ YES
4) CSC LSL, RSR YES
5) CSC LR, RL, LSR, RSL YES
6) CCψC LRL, RLR YES
7) CCψ LRψ , RLψ , LψR, RψL NO

Finally, the optimal solution of the OS-GDIP instance is
transformed to the solution of the original GDIP instance
using the backward transformation (8). Since neither of the
transformations changes the solution or its length, the proposed
approach always finds the optimal solution. For the rest of this
section, we provide a solution of the OS-GDIP instance.

A. Solving the OS-GDIP for Specific Types of Maneuvers

A solution of the GDIP follows the theoretical results of the
DIP, and there exist 20 possibly optimal GDIP maneuvers that
are all listed in Table II. All maneuvers are categorized into
seven basic types according to their geometrical properties.
The original notation of the DIP is slightly modified and the
arc segment is denoted by Cψ if the turning angle is greater
than π, but C stands for an opposite turning direction. This
modification enables to distinguish between CSC in which
both arc segments have the same orientation and CSC for
the opposite orientation, because the method of finding the
optimal solution differs. For each type of the maneuvers, the
optimal solution is provided separately.

The following notation is used in the rest of this section. The
symbol L with a subscript defining the maneuver type denotes
the optimal length of such Dubins maneuver. Particular seg-
ments of the same type in a single maneuver are distinguished
by the subscript defining the order of the segment in the
maneuver, e.g., C1 is the first C segment of the CSC maneuver.
An angle defined by two points pi, cj is denoted ∠picj and
analogously for three points.

1) S maneuver: The simplest maneuver contains a single
straight segment S and its direction is given by the angle θS
at the intersection ΘS of the both given intervals

θS ∈ ΘS, ΘS = Θ1 ∪Θ2, (10)

where ΘS may contain up to two intervals. If the S maneuver
is the optimal solution, one of the following cases occurs:

1.a) If p′1 ∈ P ′2 and ΘS 6= ∅ then LS = 0.
1.b) If the above does not hold and ∠p′1c

′
2 ∈ ΘS then θS =

∠p′1s
′
2 and LS = ‖p′1 − c′2‖ − r′2.

1.c) If the above do not hold and ∃p′2 : p′2 ∈ P ′2 such that
∠p′1s

′
2 ∈ ΘS; then θS is at the boundaries of ΘS.

All of the cases can be found using basic algebra operations
and an example of the 1.b case is shown in Fig. 3.



Fig. 3. An example of the straight maneuver solution of the OS-GDIP.

2) CS maneuvers: The next possible candidates for the
optimal solution are the maneuvers of the CS type with a
non-zero arc segment to differentiate it from the previous case.
There are six possible combinations of maneuvers {R, L, LS,
RS, SL, SR} of the CS type, but only the R and RS maneuvers
are analyzed as the problem is symmetric and can be addressed
as follows. For the combinations SL and SR, an orientation of
the solution is reverted and the original instance of the GDIP
is transformed such that r′2 = 0 and r′1 = r1+r2. Further, both
Θ1 and Θ2 are reverted, and thus the problem is transformed
to a different instance of the OS-GDIP where the solution is
the LS or RS maneuver.

For the R and RS maneuvers, the departure angle θ1 = Θmin
1

is a priory known. Thus, the center o1 of the first arc segment
is fixed and it remains to choose the terminal angle such that
θ2 ∈ Θ2 and the length LRS is minimized. Let the length of
the circle segment be LR > 0 and LS be the length of the
straight segment. Then, three following cases can occur:

2.a) The terminal angle is θ2 = Θmax
2 and LS = 0.

2.b) If ‖o1 − c′2‖ ≤ ρ; the terminal point p′2 is at the
intersection between the arc segment and P ′2, and thus
LS = 0.

2.c) If ‖o1 − c′2‖ > ρ then LS > 0 and the extension of the
straight segment passes through c′2.

A closed-form solution exists for all three cases. The first
two cases 2.a and 2.b are special boundary cases, which are
obviously local optima; however, the optimality of the last case
2.c is proved in the following lemma.

Lemma 5.1: If the optimal solution of the OS-GDIP in-
stance is the RS maneuver and LS > 0, a line extension of
the straight segment passes through s′2 (the center of P ′2).

Fig. 4. RS maneuver of the CS type for various radii of P ′
2 depicted as the

blue disks which become the blue half-plane in the limit case.

Proof: Let L∗R be the optimal length of the R segment, L∗S
be the optimal length of the S segment, and ε be the deviation
from the direction towards c′2 (the center of P ′2), see Fig. 4.
Supposing the optimal solution meets the lemma, the worst
possible case is when the radius of the region P ′2 goes to

infinity. Thus, P ′2 becomes a half-plane which minimizes the
length of all other feasible maneuvers for which ε 6= 0. The
total length of such a maneuver is

LRS =
L∗S + ρ sin(ε)

cos(ε)
+ L∗R − ρ ε. (11)

The derivative of the length function with respect to ε can be
expressed as

∂

∂ε
LRS = tan(ε) sec(ε) (L∗S + ρ sin(ε)) . (12)

The RS maneuver can occur only if ε ∈ (−π, π) and L∗S +
ρ sin(ε) > 0; otherwise LS ≯ 0. The only local optimum
occurs for ε = 0, and thus a line extension of the S segment
passes thought c′2.

3) Cψ maneuvers: If p′1 and P ′2 are close enough, ma-
neuvers of the Cψ type may become the optimal solution.
The boundary cases of the heading angles are already covered
by the CS type of the maneuvers, and therefore, such cases
are forbidden for the Cψ type of maneuvers, which can be
expressed as

θ1 ∈ Θ1 \ {θmin
1 , θmax

1 }, θ2 ∈ Θ2 \ {θmin
2 , θmax

2 } . (13)

Lemma 5.2: If the optimal solution of the OS-GDIP in-
stance is of the Cψ type, then p′2 = maxp∈P ′

2
‖p− p′1‖.

Fig. 5. Rψ maneuver of the Cψ type in the solution of the OS-GDIP.

Proof: Let LCψ be the length of the Cψ maneuver which
depends on the distance l = ‖p′1 − p′2‖, see Fig. 5. Then

LCψ = ρ

(
2π − 2 arcsin

(
l

2ρ

))
. (14)

The length LCψ depends only on the distance l and it is
independent on the specific p′2 location and its derivative can
be expressed as

∂

∂l
LRψ =

−2√
4− l2

ρ2

. (15)

The derivative is always negative for the cases in which a
maneuver of the Cψ type can be constructed, i.e., for l < 2ρ.
Thus, the terminal position p′2 of the optimal maneuver of the
Cψ type is such that the value of l is maximized.

Notice the maneuver of the Cψ type can be optimal only
if the farthermost p′2 location meets l < 2ρ; otherwise there
exists a shorter maneuver of a different type. Therefore, the
necessary condition that a maneuver of the Cψ type can be
optimal is ‖p′1 − s′2‖+ r′2 < 2ρ.



4) CSC maneuvers: Maneuvers of the CSC type contain
two C segments C1 and C2 with the same orientation connected
by the central S segment. All three segments are considered to
have a non-zero length; otherwise the maneuver reduces into
one of the above cases. Both the heading angles are known to
be at the limits of the intervals:

CSC

{
LSL : θ1 = θmax

1 ∧ θ2 = θmin
2 ,

RSR : θ1 = θmin
1 ∧ θ2 = θmax

2 .
(16)

The total length of the C maneuvers (LC1 + LC2 ) is given by
θ1, θ2. However, the optimal position of p′2 needs to be found.
Let p′′2 be a virtual endpoint of the maneuver of the CSC type,
where the central S segment is omitted, see Fig. 6. Then, the
following lemma can be formulated.

Lemma 5.3: If the optimal solution of the OS-GDIP in-
stance is a maneuver of the CSC type and all three segments
have non-zero length, then p′2 = minp∈P ′

2
‖p− p′′2‖.

Fig. 6. RSR maneuver of the CSC type in the solution of the OS-GDIP.

Proof: Since the sum of LC1 and LC2 is a priory known,
the total length is influenced only by the length LS of the
straight segment. The orientation of the S segment is parallel
to p′′2p

′
2 and LS = ‖p′′2 − p′2‖. Therefore, LS needs to be

minimized to get the optimal solution.

5) CSC maneuvers: Maneuvers of the CSC type contain
two arc segments with the opposite orientations and the center
S segment which may have zero length. Similarly to the
previous case, the optimal heading angles are a priory known:

CSC

{
LSR : θ1 = θmax

1 ∧ θ2 = θmax
2 ,

RSL : θ1 = θmin
1 ∧ θ2 = θmin

2 .
(17)

In contrast to the previous CSC type, this type of maneuvers is
more complex because the lengths of the arc segments cannot
be determined directly from θ1, θ2. Therefore, a transformation
to a different OS-GDIP instance is considered.

Lemma 5.4: If the optimal solution of the OS-GDIP is
a maneuver of the CSC type, the problem instance can be
transformed into a OS-GDIP instance where the solution is of
the CS type.

Proof: Since θ1, θ2 are fixed, the center o1 of the first
C segment is known and the second center o2 lies inside
the disk region O2 which corresponds to P ′2 translated by ρ
perpendicularly to θ2, see Fig. 7. Let t be the center of the S
segment, then t is also a midpoint between o1 and o2 because
of the central symmetry of the maneuver. Based on o1 and
O2, a set of all possible t positions is a circle region T with

Fig. 7. RSL maneuver of the CSC type in the solution of the OS-GDIP.

the center at the midpoint between o1 and O2 center and with
the radius r′2. Thus, the problem is transformed into finding
a maneuver of the CS type from (p1, θ1) into the region T
without any constraint on the terminal angle. This defines a
different OS-GDIP instance in which a maneuver of the CS
type is to be found.
As a result of Lemma 5.4, the problem of finding a maneuver
of the CSC type is transformed into a less complex problem
for which a closed-form solution exists as it is shown above.

6) CCψC maneuvers: If ‖p′1 − p′2‖ < 4ρ, the maneuvers
of the CCψC type can be the optimal solution because one
of the maneuvers of the CSC type cannot be constructed. The
optimal heading angles are a priory known

CCψC

{
LRψL : θ1 = θmax

1 ∧ θ2 = θmin
2 ,

RLψR : θ1 = θmin
1 ∧ θ2 = θmax

2 .
(18)

Similarly to the CSC type of maneuvers, the center o1 of the
first C segment is known and the third center o3 lies inside the
disk region O3 derived from P ′2, see Fig. 8. Then, the third
center o3 is determined based on the following lemma.

Lemma 5.5: If the optimal solution of the OS-GDIP is a
maneuver of the CCψC type, then o3 = maxs∈O3 ‖s− o1‖.

Fig. 8. LRL maneuver of the CCψC type in the solution for the OS-GDIP.

Proof: Since θ1, θ2 are fixed, the length of the maneuver
can be determined based on the angle % = ∠o1o2o3

LCCψC = ±(θ1 − θ2)− 2%+ 2kπ, (19)

where k ∈ Z is for the angle normalization. Therefore % needs
to be maximized to get the optimal solution which causes the
distance l = ‖o1 − o3‖ is maximized.

Notice o3 can be found by a closed-form expression because
O3 is a circular region. Having p1 and p3, the maneuver is well
defined and easy to construct.



7) CCψ maneuvers: The last type of maneuvers is CCψ
which can also occurs only if ‖p′1−p′2‖ < 4ρ. There may exist
up to four maneuvers for which one of the heading angles is
known:

CCψ


LRψ : θ1 = θmax

1 ∧ θ2 ∈ Θ2,

RLψ : θ1 = θmin
1 ∧ θ2 ∈ Θ2,

RψL : θ1 ∈ Θ1 ∧ θ2 = θmin
2 ,

LψR : θ1 ∈ Θ1 ∧ θ2 = θmax
2 .

(20)

Only the maneuver LRψ of the CCψ type is further studied
because other maneuvers share the same properties. Let o1 and
o2 be the centers of the C segments, then the length of the
maneuver depends on p′2:

LLRψ = ρ(2π − α+ β + ϕ), (21)

where ϕ = ∠p′1o1p
′
2 and α = ∠o1o2p′2, β = ∠p′2o1o2

which depends on the distance d = ‖o1 − p′2‖, see Fig. 9.
The maneuver length from (21) can be expressed in the polar

Fig. 9. LRψ maneuver of the CCψ type in the solution of the OS-GDIP.

coordination system of (ψ, d) as

LLRψ = ρ

[
2π − cos−1

(
5ρ2 − d2

4 ρ2

)
+ cos−1

(
3ρ2 + d2

4 d ρ

)
+ ϕ

]
. (22)

The derivatives of the maneuver length are

∂

∂ϕ
LLRψ = ρ,

∂

∂d
LLRψ =

3ρ2 − 3d2

d
√
−d4 + 10d2ρ2 − 9ρ4

, (23)

From the domain of the second derivative according to d, the
necessary condition for the CCψ maneuver to exist is

ρ ≤ d ≤ 3ρ, (24)

which corresponds to a direct geometrical representation.
Thus, the signs of both derivatives are fixed

∂

∂ϕ
LLRψ > 0,

∂

∂d
LLRψ < 0. (25)

Based on these preliminaries, the optimality of the maneuver
is shown in Lemma 5.6.

Lemma 5.6: If the optimal solution of the OS-GDIP in-
stance is the CCψ maneuver, the terminal position p′2 lies at
the boundary of the departure region P ′2.

Proof: The sings of both length derivatives are fixed, and
thus the minimum of the length function is at the boundary of
P ′2 or a maneuver of the CCψ type is not optimal.

Notice the second derivative of the LLRψ over d can be
expressed as

∂2

∂d
LLRψ =

3(9ρ4 − 2ρ2d2 + d4)

d2(d2 − 9ρ2)
√
−9ρ4 + 10ρ2d2 − d4

, (26)

for which ∂2

∂dLLRψ < 0 holds if d is in the interval from (24).

The second derivative over ψ is always zero, i.e., ∂
2

∂ψLLRψ = 0.
Knowing one of the second derivatives is zero and the other

derivative is always negative, the problem can be seen as
an optimization problem which contains a single minimum.
Furthermore, the position of p′2 in the optimal solution is
known to be at the boundary of P ′2, which reduces the problem
to a convex optimization problem with a single variable. A
close-form formula is not known but the problem can be easily
solved by a numerical method, e.g., hill-climbing.

B. Implementation of the optimal solution

An algorithm evaluating the above-presented cases for find-
ing the optimal solution of the GDIP has been implemented in
C++.2 For the first six types of the maneuvers, a closed-form
solution exists and it can be implemented using trigonometric
functions. However, for the last type of the CCψ maneuver, no
closed-form solution has been found, and therefore, it is solved
as a convex optimization problem with a single variable. Based
on the implementation, the required computational time of
the optimal solution of the GDIP is about 22 times slower
than a single determination of the Dubins maneuver for fixed
configurations. The achieved average computation times from
one million randomly generated GDIP instances are reported
in Table III to provide an overview of the real computational
requirements.

TABLE III
AVERAGE COMPUTATIONAL TIME PER ONE SOLUTION

Problem Time [µs] Ratio to DM

Dubins Maneuver (DM) 0.58 1.00
DIP 2.86 4.93
GDIP 12.63 21.78

Note that all the results reported in this paper have been
computed using a single core of the Intel Core i5-7600K CPU
running at 3.8 GHz.

VI. GDIP IN SOLUTION OF THE DTSPN

The main motivation of the proposed GDIP is to provide
tight lower bound of the problem to find a shortest Dubins path
through a sequence of the given target regions. Moreover, the
lower bound can be utilized in finding high-quality solutions
of the DTSPN similarly as the DIP is employed in the solution
of the DTP and DTSP [26, 27, 8]. Therefore, we consider the

2 The source codes are publicly available at https://github.com/comrob/gdip.

https://github.com/comrob/gdip


GDIP in the solution of the DTSPN for which the sequence
of visits to the disk-shaped target regions is determined as a
solution of the Euclidean TSP (ETSP) using the centers of
the disks. The DTSPN with a sequence of visits is called the
Dubins Touring Regions Problem (DTRP) to distinguish the
sequence is given or found independently on the continuous
optimization part of the DTSPN.

Fig. 10. An example of the DTRP instance with n = 10 target regions with
the radius δ = 1 (visualized as light blue disks) and ρ = 1. A lower bound
path is 17.68 long (red) and a feasible solution is 22.07 long (blue) both
determined in 0.66 s for kmax = 16. The green circles are the samples and
the orange lines correspond to intervals of the heading angles.

The solution of the DTRP follows the idea of the DTP [8]
and samples the configuration space of the vehicle. Each
sample of the target region consists of a circular sub-region
and interval of the heading angle. The sampled circular sub-
regions are located on the boundary of the region because the
final Dubins path has to intersect the boundary of each target
region, see example of the solution with the samples, lower
bound, and feasible solutions in Fig. 10.

The samples are iteratively refined to find a feasible solution
tightly bounded by the lower bound solution provided by
the introduced GDIP. This procedure ends when maximum
resolution of kmax samples (per each region) is reached.
Then, a feasible solution is found by forward search using
the samples selected from the lower bound solution.

A full description of the algorithm is out of the scope of
this paper due to the page limit. Therefore, a brief overview is
provided to support benefits of the introduced GDIP. Let the
given n compact regions to be visited by the shortest Dubins
path be P = {P1, . . . , Pn}, Pi ∈ R2. The solution of the
DTSPN is determined as follows.

1) Determine the sequence of visits to P as a solution of
the ETSP using centers of Pi ∈ P , e.g., using [1].

2) For each target in the sequence, use the given disk regions
and unconstrained headings as the first samples.

3) Determine the lower bound solution of the DTRP by the
GDIP and use it to select promising samples.

4) Refine the selected samples and recompute the lower
bound to improve the lower bound estimation.

5) Use the samples in the lower bound solution to find a
feasible solution by the forward search (as in [8]).

6) Return the solution if the resolution kmax is reached;
otherwise go to Step 4.

The tight lower bound provided by the GDIP has been
evaluated in randomly generated3 DTSPN instances with n ∈
{10, 20, 50, 70, 100}, δ = 1, and ρ = 1.
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Fig. 11. Convergence of the solution cost to the lower bound and the required
computational time for increasing kmax. The solution cost is normalized by
the best found solution accompanied by a computational time. The presented
results are average values of 20 random problem instances for n = 10
target regions. Note the resolution and computational time are presented in
logarithmic scales.

The convergence of the DTRP solution to the lower bound
has been studied for increasing the maximal number of
samples kmax. The results are depicted in Fig. 11, where
the absolute solution cost is normalized to the best known
solution of the particular problem instance. Based on the
presented results, the computational time can be approximated
by O(nk1.8max) which is mainly because of informed sampling
of the regions and heading intervals.

VII. CONCLUSION

In this paper, we introduce the Generalized Dubins Interval
Problem (GDIP) and provides its optimal solution based on the
transformation of the GDIP to the OS-GDIP. Both forward and
backward transformations are provided together with proofs of
their correctness. Moreover, the benefits of the GDIP to the
solution of the DTSPN with known sequence of the visits to
the targets (called the DTRP) are demonstrated by providing
a tight lower bound of the solution cost in the sampling-based
solution of the DTRP. Besides, the provided lower bound
allows to determine the solution quality of the DTRP (and
thus the DTSPN). The reported results indicate it is possible to
find a solution of the DTRP with 10 overlapping disk regions
and the solution quality is around 1% from the optimum in
less than 10 seconds using a single core of a conventional
processor.

3Instances have been generated with the relative density d = 0.3 and
possibly overlapping regions where the centers are randomly placed in the
square bounding box with the size s = ρ

√
n/d.
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