

Hearing Trig Functions

Michael Lloyd, Ph.D.

Department of Mathematics and Computer Science

Abstract

In this paper, it will be explained how to use the computer algebra system Maple to create sound

files from the graphs of periodic functions.

Introduction

When I have taught trigonometry, I have pointed to a graph of a function and said that it could be

a snapshot of a sound wave. In addition to helping students understand trigonometric functions

better, the ideas in this paper could be used to communicate concept of a graph of a function to

blind students. In this paper, I will describe a tool to create wav or mp3 files that can be played

for students. Note that you can click on many of the graphs in the web version of this paper to

hear the corresponding sound. At the end of this paper, the inverse problem is considered: Sound

files are turned into graphs and their frequencies are analyzed.

Setting Up Maple’s Signal Processing Packages

An explanation of how to create and use Maple packages is found at

http://www.mapleapps.com/packages/acpackages.html. I found it useful, but also sketchy and

confusing, so I will explain the process here. Download the Maple worksheets SigGen

Functions.mws and WAV.mws from the Signal Analysis and Synthesis website

http://www.mapleapps.com/categories/engineering/electrical_electronic/html/signal.htm. The

first worksheet contains signal-generating functions, and the second contains functions for

reading and writing wav files. We will create packages, which are similar to Maple libraries,

from these worksheets. This only has to be done once.

The maple commands in this paper will be prefixed with the symbol >, and the resulting output

will be displayed centered on the page or column in italics. I used Maple version 6.01, and I

know that these packages will not work with Maple version 5.

libname is a Maple system variable that contains a list of the directories on your computer that

contain Maple libraries. For example, libname originally contained "C:\\Program Files\\Maple

6/lib" on my PC. I decided to put the new sound processing packages in a folder called c:\MyLib

that I created. Note that Maple is not case sensitive regarding directory and file names. The

following command will add the directory to the list libname.

> libname:="c:/MyLib",libname;

http://198.16.16.43/faculty/lloydm/index.html
http://198.16.16.43/dept/mth/
http://csc.hsu.edu/
http://www.maplesoft.com/
http://www.pcwebopaedia.com/TERM/W/WAV.html
http://www.pcwebopaedia.com/TERM/M/MP3.html
http://www.mapleapps.com/packages/acpackages.html
http://www.mapleapps.com/categories/Test/Signal_Processing/SigGen%20Functions.mws
http://www.mapleapps.com/categories/Test/Signal_Processing/SigGen%20Functions.mws
http://www.mapleapps.com/categories/Test/Signal_Processing/WAV.mws
http://www.mapleapps.com/categories/engineering/electrical_electronic/html/signal.htm
http://www.pcwebopaedia.com/TERM/P/PC.html
http://www.pcwebopaedia.com/TERM/c/case_sensitive.html

Execute the block of code (a module) at the top if the SigGen Functions.mws file. To create the

package, do

> savelib(SigGen);

The signal generating function package now exists in memory, but it is not permanently stored

on your hard drive until you do

> march('create',libname[1],100);

Now, repeat the process for the other Maple worksheet, WAV.mws. That is, execute the module

block at the top of the WAV.mws file, and then do

> savelib(WAV); march('create',libname[1],100);

The second command will appear to generate the error:

Error, (in march) there is already an archive in "C:/MyLib"

However, Maple added the WAV package to the signal-generating package that you made

earlier. The process I just described only needs to be completed once. However, when you come

back another day and you want to access the functions in the two packages, you will need to tell

Maple the directory you put them in:

> libname:="c:/MyLib",libname;

Then load the packages the same way you load commonly used libraries such as plots and linalg:

> with(SigGen);

[ASD, Attack, Decay, FM_Signal, FM_Sine, Integer2Bytes, LFO, Limiter, Normalize,

Quantize, Sawtooth, Signal, Sine, ViewEnvelope, WriteSound, word2byte, writeintegers]

> with(WAV);

[ReadWAV, WriteWAV]

A complete description of these signal-generating and wav functions will be found at the Maple

Signal Analysis and Synthesis website referred to earlier.

Simple Sine Wave

Suppose we want to hear what a simple sine wave sounds like. The

frequency obviously must be in the range of human hearing, so I choose

440 Hertz, which is the standard frequency set for the A above middle C.

http://www.pcwebopaedia.com/TERM/h/hard_disk_drive.html
http://www.mapleapps.com/categories/engineering/electrical_electronic/html/signal.htm
http://www.mapleapps.com/categories/engineering/electrical_electronic/html/signal.htm

Of course, the actual formula for a simple sine wave with this frequency is ,

but the shape will be the same. Also, we will not be concerned about the amplitude as long as we

can hear the sound. The following Maple variables will remain the same for all the wav files we

make:

> Duration:=5: # Duration in seconds

> SampleFreq:=44100: # full CD sample rate, number of samples per second

> Resolution:=16: # 2^16 levels is CD quality, 2^8 is telephone

> deltaT:=1/SampleFreq: # time between adjacent sample data

> Npoints:=round(Duration*SampleFreq); # number of points in sample

The number of points required to generate 5 seconds worth of sound at CD quality is

. Consequently, each Maple command often takes several minutes to

execute, even on my 650 MHz computer. The signal information is inputted as lists. You can add

more sine waves to the signal if you like by extending these lists.

Here is a plot of the first 0.01 seconds of the sound:

> plot('Signal(amps,freqs,t)',t=0..0.01, title=”Simple Sine

Wave\nClick to Hear”);

The vertical axis is understood to be pressure, and the

horizontal axis is time in seconds.

> amps:=[1]: # list of amplitudes

> freqs:=[440]: # list of frequencies

I decided to use the function Signal from the SigGen package to keep in the spirit of signal

processing instead of writing out the function in mathematical form. The next command will

generate the data that will be converted to a wav:

< p>>SigData:=Array([seq(Signal(amps,freqs,i*deltaT),i=1..Npoints)],datatype=float):

The Array data type in Maple is similar to a list, except that by specifying the type of its

elements to be float, Maple supposedly will process it faster. Here is the command for writing a

wav file for this sound:

> WriteWAV("c:/~temp/exams/sine440.wav", SigData, SampleFreq, Resolution);

1 channel(s) found.

220500 points per channel found.

"Quantizing to 16 bits..."

C:/Documents and Settings/Michael Lloyd/My Documents/afo/19/mp3s/sine.mp3

"Saving to c:/~temp/exams/sine440.wav"

"Done"

You will get an IO error if a file with that name already exists. I stored these files in the directory

C:/~temp/exams/, but you could store them in any directory that you like. The size of the wav

file “sin.wav” was 430 kilobytes. I compressed it to an mp3 using the freeware, dBPowerAmp

Music Convertor. The corresponding mp3 was 78.7 kilobytes which makes it more suitable for

putting on a web page. In a previous talk, Math in Music, I used midi files exclusively. Midi files

are much smaller than mp3s and wavs, and they are much faster to generate, but I was restricted

to using a limited palette of sounds, and in fact, they may sound differently depending on the

computer they are played on. By using wavs, you hear exactly what the sound looks like.

Square, Saw Tooth, and Triangular Waves

The simple waves which follow, are all the same note that was created above, only the timbre

will be different. To save time and memory, I reused the same SigData variable name to create

the data for a square wave:

> SigData:=

Array([seq(signum(SigData[i]),i=1..Npoints)],datatype=flo

at):

Here is the graph:

> with(plots):

> listplot([seq(SigData[i],i=1..441)],

title="Square Wave\nClick to Hear");

Note that the square corners require many frequencies, so that the

frequency distribution appears fairly flat (Click to hear):

I could hear the mp3 was not quite as good as the wav, and this is

illustrated in its frequency distribution (Click to hear):

http://www.pcwebopaedia.com/TERM/K/KB.html
http://admin.dbpoweramp.com/
http://admin.dbpoweramp.com/
file:///C:/Documents%20and%20Settings/Michael%20Lloyd/My%20Documents/lloydm/papers/mathmusic00/MathInMusic.htm
http://www.pcwebopaedia.com/TERM/M/MIDI.html
http://198.16.16.43/uploadedFiles/Faculty/AFO/19/square(1).wav
file:///C:/Documents%20and%20Settings/Michael%20Lloyd/My%20Documents/afo/19/mp3s/square.mp3
C:/Documents and Settings/Michael Lloyd/My Documents/afo/19/mp3s/sawtooth.mp3
http://198.16.16.43/uploadedFiles/Faculty/AFO/19/square(1).wav
C:/Documents and Settings/Michael Lloyd/My Documents/afo/19/mp3s/square.mp3

Here are the commands for generating plots for the saw-

tooth and triangular waves:

> plot(Sawtooth(440,0,t),t=0..0.01, title="Saw Tooth

Wave\nClick to Hear");

> plot(abs(Sawtooth(440,0,t)-.5),t=0..0.01,

title="Triangular Wave\nClick to Hear");

An Almost Perfect Wave

Most people find the simple waves shown above to be

annoying. In the paper “Designing a Pleasing Sound

Mathematically”, Erich Neuwirth said that the function

 is simple, yet

sounds pleasing.

> PleasingSound:=t->sin(2*Pi*440*t)/(1.25-

cos(2*Pi*440*t));

> plot(PleasingSound(t),t=0..0.01, title="A Pleasing

Wave\nClick to Hear");

Beats

The musical phenomenon of beats occurs when two sounds with approximately the same

frequencies combine. The volume of the sound can be heard to oscillate, and the frequency of

this oscillation is called the beat frequency. When I teach trigonometry, I work an example

involving beats where a sum-to-product identity is applied. The beat frequency will be the

difference of the two component frequencies, and the perceived pitch of the combined notes will

be the average of the two pitches. String players often tune their instruments using the concept of

C:/Documents and Settings/Michael Lloyd/My Documents/afo/19/mp3s/sawtooth.mp3
C:/Documents and Settings/Michael Lloyd/My Documents/afo/19/mp3s/triangular.mp3
C:/Documents and Settings/Michael Lloyd/My Documents/afo/19/mp3s/pleasing.mp3

beats: They simply adjust the string tension until the beats disappear.

I decided to use the frequencies 440 Hz and 441 Hz:

> amps:=[1,1]: freqs:=[440,441]:

The beat frequency is and the

perceived frequency is . Here

is a plot of the first 2.5 seconds of the sound.

> plot('Signal(amps,freqs,t)',t=0..2.5, title="Beats\nClick

to Hear");

Note that there are about 440 oscillations squished into each lobe, so a complete graph would

appear solid.

Envelopes

The boundary around the graph of the beats above is called an

envelope. This suggests a method for “hearing” non-

trigonometric curves. For example, suppose you wanted to

“hear” the parabola :

The essence of the shape stays the same if we translate the

parabola horizontally, so I decided to put the vertex in the

middle of a 5 second 440 Hz sine wave.

> amps:=[1]: freqs:=[440]:

> SigData:= Array([seq((i*deltaT-

2.5)^2*Signal(amps,freqs,i*deltaT),i=1..Npoints)],datatype=

float):

> plot('(t-2.5)^2*Signal(amps,freqs,t)',t=0..5,

title="Parabolic Envelope\nClick to Hear);

Unfortunately, you cannot tell from this sound whether the function is above or below the x-axis.

The Maple signal-processing commands do allow the creation of stereo wave files, so one

C:/Documents and Settings/Michael Lloyd/My Documents/afo/19/mp3s/beats.mp3
C:/Documents and Settings/Michael Lloyd/My Documents/afo/19/mp3s/parabola.mp3

solution to this dilemma would be to put the sound through the left channel if the function were

negative, and put it through the right, if the function were positive. For example, suppose we

wanted to hear the graph of the cubic . The commands for creating the stereo sound

appear below. Creating the array took 1 hour and writing the 5-second stereo wav file took

8.5 hours on my 450 MHz PC! Click here or on the far left graph of the cubic to hear the stereo

sound.

> stereo:=t->[piecewise(t<2.5,(t-2.5)^3*Signal(amps,freqs,t),0),piecewise(t>2.5,(t-

2.5)^3*Signal(amps,freqs,t),0)]:

>SigData:=Array([seq(stereo(i*deltaT),i=1..Npoints))],datatype=float):

> WriteWAV("c:/~temp/exams/cubic.wav", SigData2, SampleFreq, Resolution);2 channel(s)

found.

220500 points per channel found.

"Interweaving sound data..."

Combining Trigonometric Functions

For the first example below, I made the amplitudes the same, and used a Maple function called

chord. This function generates a list of frequencies if you tell it the names of the notes and

octaves to which these notes belong. A complete description of this function and its listing are

given in the appendix. The two notes in this example are an octave apart, that is, the higher

frequency is twice the other. The shape of the graph is the same as the graph of the function

.

file:///C:/Documents%20and%20Settings/Michael%20Lloyd/My%20Documents/afo/19/mp3s/cubic.mp3
C:/Documents and Settings/Michael Lloyd/My Documents/afo/19/mp3s/cubic.mp3

> amps:=[1,1]: freqs:=chord(["A","A"],[4,5]);

freqs := [440.00, 880.00]

A major chord is generated for this second

example. This graph is close to the graph

of .

> amps:=[1,1,1]:

> freqs:=chord(["C","E","G"],[4,4,4]);

freqs := [261.6255653, 329.6275568, 391.9954358]

For the third example, the

middle note is dropped half

of a step to form a C minor

chord. This graph is close to

the graph of

.

> freqs:=chord(["C","Eb","G"],[4,4,4]);

freqs := [261.6255653, 311.1269838, 391.9954358]

It is not clear by looking at the graphs of these pressure-versus-time plots why a major chord is

more consonant than a minor chord. I believe that the right way to visualize a complex sound is

to look at a frequency distribution. According to the resonance theory of hearing, our ears acts

like a Fourier transform by separating the sound into its component frequencies before sending

the signals to our brain. The major chord is more consonant because the frequencies that make

up that sound are roughly proportional to smaller integers.

C:/Documents and Settings/Michael Lloyd/My Documents/afo/19/mp3s/octaves.mp3
C:/Documents and Settings/Michael Lloyd/My Documents/afo/19/mp3s/cmajor.mp3
C:/Documents and Settings/Michael Lloyd/My Documents/afo/19/mp3s/cminor.mp3

Analyzing CBL Data

The following Maple commands create a buffer for reading in pressure data. This data was

obtained by playing a guitar string into a microphone attached to a Calculator Based Laboratory

(CBL) like the one pictured here.

> fd := fopen(`C:/~temp/exams/FFTpress.txt`,READ,TEXT):

> InData:=readdata(fd, float):

> fclose(fd):

> InDataSize:=nops(InData);

InDataSize := 32

We will do a Fast Fourier Transform (FFT) on this data to compute the component frequencies.

The original data contained 99 time-pressure pairs of data. (99 is the largest dimension for a list

on the TI-82 graphing calculator.) Since the FFT requires that the data size be a power of 2, I

applied linear interpolation to the original data to get exactly 32 points for one cycle of the

sound. For thousands of points, it is unnecessary to do this interpolation or get an integral

number of cycles, just take the largest power of 2 points. Here is a graph of the cycle that I

chose:

> listplot([seq(InData[k][1],k=1..InDataSize)], title="D String");

The following Maple commands are used to set up the FFT:

> m:=5: SigSize:=2^m;

SigSize := 32

> RealPart:=hfarray([seq(InData[i][1],

i=1..SigSize)]):

>ImagPart:=hfarray([seq(0,i=1..SigSize)]):

Now to perform the FFT:

> evalhf(FFT(m,RealPart,ImagPart)):

http://www.pcwebopaedia.com/TERM/b/buffer.html
http://education.ti.com/us/product/tech/82/features/features.html

The hardware float arrays RealPart and ImagPart now contain the complex frequencies. We will

use the following Maple function to find the real magnitude for each frequency:

> mag:=proc(RealPart, ImagPart): sqrt(RealPart^2+ImagPart^2): end:

The sample period 000210266 in units of seconds was manually obtained from the time text file.

> SampleFreq:=1/.000210266;

SampleFreq := 4755.880646

The variable df (delta frequency) is a scaling factor that relates the indices of the RealPart and

ImagPart arrays to the actual frequency.

> df:=evalf(SampleFreq/SigSize):

> FreqSpectrum:= [seq([(i-

1)*df,(2*mag(RealPart[i],ImagPart[i])/SigSize)],i=1..floor((SigSize/2)))]:

Here is a plot of the frequency spectrum:

> listplot([seq(FreqSpectrum[i],i=1..10)],

title="Frequency Spectrum");

The two peaks are

> FreqSpectrum[2];FreqSpectrum[7];

[148.6212702, .03009241976]

[891.7276212, .001030763241]

A useful feature in Maple is that you can left click on a graph and read the coordinates. Doing

that and then looking at the list, we see that the peaks are at approximately 149 Hz and 892 Hz. If

the data set had been much larger, then these peaks would be very narrow. 149 Hz is close to the

note D (146.8 Hz), and 892 Hz is close to the note A (880 Hz), the harmonic which is about 6

times higher. I generated the sound by plucking the D string in the middle, which explains the

lack of the harmonics 2 through 5. If I had used a pick near the bridge and the data set had been

much larger, these other harmonics should have been visible.

Analyzing WAV Data

In this section, we will analyze a wav file that I created by connecting a tape player to my sound

card. I trimmed the file using the software GoldWave. This wav is the sung word, “wonderful”

(click to hear) in a song called “Cornerstone”. At this point in the song, the pianist at our church

and I disagreed on the chord accompaniment. She believed the chord to be minor while I

http://www.goldwave.com/
file:///C:/Documents%20and%20Settings/Michael%20Lloyd/My%20Documents/afo/19/mp3s/wonderful.mp3

believed the chord should be major. We will do a spectral analysis on this wav to determine who

was correct.

The first step is to make sure that the variable SampleFreq is free.

> SampleFreq:='SampleFreq':

The function ReadWAV will pass the sample frequency to its second argument.

> SigData:=ReadWAV("c:/~temp/exams/wavs/wonderful.wav",SampleFreq):

> SampleFreq;

44100

Here are three graphs of the sampled sound to demonstrate its appearance at various time scales:

The Maple command ArrayNumElems(SigData) gives 80970 for the sample size, so we will use

the first points for the FFT. A graph of the frequency spectrum appears here.

The frequencies for the two highest peaks in Hertz are 125 Hz and 254 Hz, clearly an octave

apart. These notes are close to a B, which I will take to be the root of the appropriate chord for

the sampled portion of the song.

I decided not to include the Maple commands which were used to generate the remaining plots

for this paper because they were a bit tedious. Many of the commands were tedious and some are

at the website. Each graph shows the original frequency spectrum on the bottom. The downward

pointing spikes for the first graph locate the powers of 2 times the root frequency 254 Hz. The

next two graphs compare the original frequency spectrum with the powers of 2 multiples of the

major and minor 3
rd

, respectively. (A major 3
rd

 above 254 Hz is computed ; a minor 3
rd

 above

254 Hz is computed .)

The major 3
rds

 (the middle graph) matches better than the minor 3
rds

 (the last graph), so a B major

chord is a better fit than B minor.

C:/Documents and Settings/Michael Lloyd/My Documents/afo/19/mp3s/wonderful.mp3
C:/Documents and Settings/Michael Lloyd/My Documents/afo/19/mp3s/wonderful.mp3
C:/Documents and Settings/Michael Lloyd/My Documents/afo/19/mp3s/wonderful.mp3

I made an animation of the frequency spectrum evolving over time, but the sample size was only

large enough to make 4 time frames. Each frame pictured here is 0.37 seconds apart.

The waterfall plot is another way to visualize the frequencies evolving over time. The row axis is

time (slice 1, 2, 3, and 4); the column axis is frequency (Hz).

Appendix: Maple Function for Generating Chord

Frequencies

Author: Michael Lloyd Date: August 2001

Description

This function takes a sequence of notes and corresponding octaves and returns a frequency list to

be used by the functions in the SigGen Maple package. The 0th octave corresponds to the lowest

notes on a piano, and the 4th octave is middle C up to and including the B on the treble clef.

(This is the octave identification system recommended by the International Acoustical Society

and also used in Braille music notation.) For example, a command for generating the frequencies

for a C chord is chord(["C","E","G"],[4,4,4]); This will return the list [261.6255653,

329.6275568, 391.9954358] where each frequency is in Hertz.

This function can be improved by adding enharmonic notes that require double sharps or double

flats such as “FX” or “Ebb”. This would accommodate musically correct spellings of the chords

in unusual keys or chords such as Ab diminished which should be spelled as Ab Cb Ebb.

Program Listing

chord := proc(notes, octaves)

If the waterfall plot is turned on end, then the

graph is almost the same as the original

frequency spectrum.

Looking at the other end, you can see how the

wav is getting quieter over time. (Increasing

time is right to left.)

http://198.16.16.43/uploadedImages/Faculty/AFO/19/wonderful(1).gif

local freqs, k, scale;

 freqs := NULL;

 for k to nops(notes)

 do

 if notes[k] = "C" or notes[k] = "B#" then scale := 0 end if;

 if notes[k] = "C#" or notes[k] = "Db" then scale := 1 end if;

 if notes[k] = "D" then scale := 2 end if;

 if notes[k] = "D#" or notes[k] = "Eb" then scale := 3 end if;

 if notes[k] = "E" or notes[k] = "Fb" then scale := 4 end if;

 if notes[k] = "F" or notes[k] = "E#" then scale := 5 end if;

 if notes[k] = "F#" or notes[k] = "Gb" then scale := 6 end if;

 if notes[k] = "G" then scale := 7 end if;

 if notes[k] = "G#" or notes[k] = "Ab" then scale := 8 end if;

 if notes[k] = "A" then scale := 9 end if;

 if notes[k] = "A#" or notes[k] = "Bb" then scale := 10 end if;

 if notes[k] = "B" or notes[k] = "Cb" then scale := 11 end if;

 freqs := freqs, 13.75*2^(octaves[k] + 1/12*scale + .25)

 end do;

 freqs := [freqs]

end proc

References

Creating Maple 6 Library Packages, http://www.mapleapps.com/packages/acpackages.html.

“Designing a Pleasing Sound Mathematically” by Erich Neuwirth, Mathematics Magazine,

Vol. 74, No. 2, April 2001, pp. 91-98.

"Music in Theory and Practice" by Bruce Benward and Gary White ©1989 WmC Brown

Publishing Co.

Signal Analysis and Synthesis,

http://www.mapleapps.com/categories/engineering/electrical_electronic/html/signal.htm.

Software Used in This Paper

dBPowerAmp (music convertor), http://admin.dbpoweramp.com/

GoldWave (digital audio editor), http://www.goldwave.com/

Maple version 6.01 (computer algebra system), http://www.maplesoft.com

Microsoft Photo Editor

Noteworthy Composer (music composer), http://www.NoteworthyComposer.com

NullSoft WinAmp (mp3 player), http://www.winamp.com/

Biographical Sketch

Michael Lloyd received his B.S in Chemical Engineering in 1984 and his Ph.D. in Mathematics

from Kansas State University in Manhattan. He has presented papers at meetings of the

Mathematical Association of America, the Arkansas Conference on Teaching, and the American

Mathematical Society. He has been at Henderson State University since August 1993.

Disclaimer: Henderson State University and the Office of Computer and Communication Services assume no responsibility for any information or representations contained in the

student/faculty/alumni web pages. These web pages and any opinions, information or representations contained therein are the creation of the particular individual or organization and do not

necessarily reflect the opinion of Henderson State University or its Office of Computer and Communication Services. All individuals publishing materials on the Henderson State University Web

Server understand that the submission, installation, copying, distribution, and use of such materials in connection with the Web Server will not violate any other party's proprietary rights.

http://www.mapleapps.com/packages/acpackages.html
http://www.mapleapps.com/categories/engineering/electrical_electronic/html/signal.htm
http://admin.dbpoweramp.com/
http://www.goldwave.com/
http://www.maplesoft.com/
http://www.noteworthycomposer.com/
http://www.winamp.com/

