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Abstract

The Bitcoin ecosystem has suffered frequent thefts and
losses affecting both businesses and individuals. Due
to the irreversibility, automation, and pseudonymity of
transactions, Bitcoin currently lacks support for the so-
phisticated internal control systems deployed by modern
businesses to deter fraud.

To address this problem, we present the first thresh-
old signature scheme compatible with Bitcoin’s ECDSA
signatures and show how distributed Bitcoin wallets can
be built using this primitive. For businesses, we show
how our distributed wallets can be used to systematically
eliminate single points of failure at every stage of the
flow of bitcoins through the system. For individuals, we
design, implement, and evaluate a two-factor secure Bit-
coin wallet.

1 INTRODUCTION

1.1 Bitcoin’s security conundrum

The statistics on Bitcoin1 hacks, thefts, and losses are ex-
traordinary — there have been ten thefts of over 10,000
BTC each since mid-2011, and another thirty of over
1,000 BTC2 [1]. Kaspersky labs report detecting about
a million infections per month of malware designed to
search for and steal bitcoins from machines they infect
[2].

The pervasiveness and regularity of these vulnerabili-
ties highlights how Bitcoin is inherently theft-prone. Al-
though similar in functionality, Bitcoin transactions dif-
fer from traditional payments in several crucial ways:

• Irreversibility. Once a Bitcoin transaction has been
broadcast and confirmed in the block chain, it is

1Here and throughout the paper, our discussion refers to Bitcoin,
but our results are equally applicable to the other signature-based cryp-
tocurrencies such as Litecoin.

2As of this writing, a bitcoin trades for around USD 230

generally irreversible even if later shown to be
fraudulent (e.g., a stolen private key was used).

• Automation. Banking transactions beyond a certain
size typically require human action. Bitcoin trans-
actions of any size can be fully automated, autho-
rized only with a cryptographic signature.

• Pseudonymity. If traditional corporate assets are
fraudulently transferred, banks may be able to (or
be legally obligated to) assist in identifying the re-
ceiving account owner. Bitcoin addresses are not
required to be linked to an offline identity.

In traditional business and banking, there are a vari-
ety of internal controls to deter fraud, encompassing pre-
vention, detection, and recovery. In the Bitcoin context,
preventive internal controls become both more important
(due to irreversibility and pseudonymity) and harder to
implement (due to automation). These problems are par-
ticularly acute when bitcoins are in hot storage, i.e., the
private keys are stored on online devices. Businesses that
actively transact in Bitcoin must necessarily keep some
of their balance in hot storage.

For Bitcoin and cryptocurrencies to gain mainstream
adoption, a breakthrough in security is needed — the cur-
rent situation where a single rogue employee or a piece of
malware can empty an organization’s funds in hot storage
instantly, irreversibly, and anonymously is simply unten-
able.

One possible improvement is joint control of bitcoins,
i.e., requiring multiple designated participants to sign a
transaction before it will be considered valid. Joint con-
trol mitigates the risk of internal fraud as no participant
(employee, device, department, etc., as the case may be)
has the ability to single-handedly misappropriate funds.
Completing a fraudulent transaction would require mul-
tiple insiders to collude, or multiple devices to be stolen
or compromised.

1

mailto:stevenag@cs.princeton.edu
mailto:rosario@cs.ccny.cuny.edu
mailto:kalodner@cs.princeton.edu
mailto:jbonneau@cs.stanford.edu
mailto:kroll@cs.princeton.edu
mailto:felten@cs.princeton.edu
mailto:arvindn@cs.princeton.edu


Bitcoin natively supports “multi-signature” addresses.
These are special addresses associated with n specified
public keys and a threshold t ≤ n. Spending bitcoins
from such addresses requires signatures from at least t of
the n keys. This can be used to achieve joint control, but
multi-signature transactions inherently suffer significant
drawbacks in Bitcoin: the number of keys n has a hard-
coded limit, mult-sig transactions require a business’s ac-
cess control policies to be made public and can severely
harm the anonymity of individual users, and these trans-
actions incur increased transaction fees (Section 4.3).

Instead, we observe that joint control can be accom-
plished using threshold signatures. In a threshold signa-
ture scheme, the ability to construct a signature is dis-
tributed among n participants, or players, each of whom
receives a share of the private signing key. The partici-
pation of t or more of them is required to sign (for some
fixed t ≤ n). Thus a business can implement joint con-
trol of a Bitcoin address by distributing shares of the pri-
vate key to multiple participants. Threshold signatures
look no different from single-key signatures and thus
avoid the shortcomings of multi-signature transactions.
Threshold signatures applied to Bitcoin wallets can be
considered “stealth multi-signatures.”

1.2 Our contributions

Bitcoin uses ECDSA signatures [3], the elliptic curve
variant of the Digital Signature Algorithm (DSA) [4], to
validate transactions. Unfortunately, ECDSA (and DSA
in general) is not a particularly friendly signature scheme
for threshold cryptography3 The best known scheme is a
2-party threshold DSA signature protocol due Macken-
zie and Reiter [6, 7].

Our primary contribution is to introduce the first prac-
tical t-of-n threshold signature scheme compatible with
ECDSA signatures (and hence compatible with Bitcoin).
More specifically, we construct a t-out-of-t threshold
signature protocol, and derive a t-out-of-n protocol via
a combinatorial construction that involves

(n
t

)
sets of

shares. This is acceptable in practice since n and t are
both very small in virtually every practical application.
We present concrete running time measurements of the
protocol, summarized below.

Next, we show how to secure Bitcoin wallets using
threshold cryptography. A Bitcoin wallet is a software
abstraction that seamlessly manages multiple addresses
on behalf of the user. We begin by identifying neces-
sary and desirable security properties of Bitcoin wallets

3Plausible alternative schemes with equivalent security, such as
Schnorr signatures have well-known and relatively straightforward
threshold versions [5]. While proposals for introducing alternative sig-
natures schemes for Bitcoin do exist, there’s no evidence that a soft
fork (which is necessary) to incorporate such a scheme into Bitcoin is
planned.

and construct a DNF wallet, a wallet that utilizes our
signature scheme and realizes any access structure (ac-
cess control policy) expressed as a disjunctive normal
formula. As a special case of a DNF wallet we derive
a threshold Bitcoin wallet. A key aspect of the construc-
tion is to realize threshold deterministic wallets, a prop-
erty that allows a single set of shares to control an arbi-
trary number of addresses.

Third, we show how a merchant or another organiza-
tion transacting in Bitcoin can prevent single points of
failure throughout the flow of bitcoins through the sys-
tem. This breaks down into three sub-problems: a thresh-
old version of the BIP-70 payment protocol for receiv-
ing payments, securing bitcoins at rest using threshold
wallets, and finally, cryptographic enforcement of “func-
tional separation of duties” wherein an operation suc-
ceeds if and only if multiple parties act at different points
on its path according to a specified policy.

Fourth, we address several important design consid-
erations in implementing our protocols, including syn-
chronous vs. asynchronous design and back-up and re-
covery of shares.

Finally, we design, implement and evaluate a two-
factor secure wallet by modifying the Multibit wallet
program and building an Android app to go with it. Our
implementation uses a QR code displayed on one device
and captured via the camera on the other in order to se-
curely pair and share key material. The signature proto-
col completes in under 15 seconds.

1.3 Implications.

Threshold wallets promise a significant leap in Bit-
coin security. In terms of the prevent-detect-recover
paradigm, Bitcoin doesn’t allow recovery due to irre-
versible transactions, with or without threshold signa-
tures, but when it comes to prevention and detection, our
methods match and in some cases even improve on tra-
ditional controls in finance, as we will show.

How much can such improvements affect the Bitcoin
ecosystem? The benefits of using Bitcoin over govern-
ment currencies either for individuals or businesses are
currently questionable. For individuals, anonymity (i.e.,
pseudonymity) and financial privacy are the main poten-
tial benefits, but this potential has not been realized for a
simple reason: maintaining one’s own wallet was quickly
found to be far too insecure, and so most Bitcoin users
instead use online services such as Coinbase, losing any
anonymity. Multi-signature wallets have been proposed
as a way to take control of one’s own bitcoins, but as
we show in Section 4.3, multi-signature addresses are far
more identifiable than vanilla Bitcoin addresses.

For merchants and payment services, the main benefit
of Bitcoin is fast, low-cost transactions, but so far the
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lower transaction fees have been more than nullified by
the premium arising from fraud in the system. If theft and
fraud can be controlled, the economic benefits can finally
be realized. Again, multi-signature wallets are just as
problematic: we explain in Section 4.3 why they break
confidentiality of transactions. Most businesses would
rather keep their books private!

Thus, the availability of threshold wallets may finally
make good on Bitcoin’s promise to bring various benefits
over traditional payments to consumers and businesses.
Additionally, better security will indirectly lead to im-
proved privacy and lower service fees and arguably pave
the way for mainstream adoption of cryptocurrencies.

2 BACKGROUND

2.1 Internal controls

Internal financial controls are conventionally classified
as preventive, detective, and corrective [8, 9], or prevent-
detect-recover [10]. Not all controls are technical, and
many can be applied to Bitcoin assets without modifi-
cation. Let us discuss the three classes of controls and
highlight those for which a Bitcoin-specific solution is
necessary.
Prevention: dual control. Two of the most common
techniques for fraud prevention are functional separation
and dual control. Both are ways of requiring two (or
more) employees to co-operate to complete a financial
transaction or some other action.

1. Functional separation (series). Different employ-
ees are involved at different points in the path of a
transaction. Ross Anderson provides a classic ex-
ample: “A manager takes a purchase decision and
tells the purchasing department; a clerk there raises
a purchase order; the store clerk records the goods’
arrival; an invoice arrives at accounts; the accounts
clerk correlates it with the purchase order and the
stores receipt and raises a check; and the accounts
manager signs the check.” Anderson also notes that
functional separation continues after the completion
of the transaction with many levels of logging and
audit. [10].

2. Dual control (parallel). Here two or more employ-
ees must simultaneously sign off on a given trans-
action. Our manager in the above example would
not be able to single-handedly approve a transac-
tion, but may need a second manager to sign off.

Detection: bookkeeping. A business may decide that it
is not cost efficient or simply impossible to prevent all
fraudulent transactions. This necessitates ways to detect

fraud after the fact with the aim of potentially recovering
some of the theft.

A key component for detecting fraud is bookkeeping.
Businesses need to keep accurate records of all of their
assets. Every transaction must be logged along with the
identity of all employees who acted on the transaction’s
path. These logs can then be audited to detect fraudulent
transactions.
Recovery. Once fraud has been detected, the business
must take corrective action to recover. In the recovery
phase, Bitcoin transactions deviate greatly from normal
bank transactions. In the traditional system, if fraud is
detected quickly, the victim can contact their bank and
have the transaction reversed. Even if some time has
passed, legal measures could be taken to coerce the bank
to reverse the transaction. In the Bitcoin protocol as it
currently stands, this is not possible. Transactions are ir-
reversible; as soon as a valid transaction is included in
the block chain it cannot be undone even if it is known to
have been fraudulent.

For this reason, the prevent-detect-recover model is
different with Bitcoin than it is with traditional banking.
More resources must be spent on prevention, as the re-
covery options are far more limited. Of course, fraud
detection is still extremely valuable — employees can be
held accountable for theft, and even if recovery is not
possible, detection helps evaluate the preventive controls
[8].

2.2 Bitcoin

Bitcoin is a decentralized digital currency [11]. Bitcoins
are owned by addresses; an address is simply the hash
of a public key. To transfer bitcoins from one address to
another, a transaction is constructed that specifies one or
more input addresses from which the funds are to be deb-
ited, and one or more output addresses to which the funds
are to be credited. For each input address, the transaction
contains a reference to a previous transaction which con-
tained this address as an output address. In order for the
transaction to be valid, it must be signed by the private
key associated with each input address, and the funds in
the referenced transactions must not have already been
spent [11, 12].

Each output of a transaction may only be referenced
as the input to a single subsequent transaction. It is thus
necessary to spend the entire output at once. It is often
the case that one only wishes to spend a part of the out-
put that was received in a previous transaction. This is
accomplished by means of a change address where one
lists their own address as an output of the transaction. So,
for example, if Alice received 5 bitcoins in a transaction
and wants to transfer 3 of them to Bob, she constructs a
transaction in which she transfers 3 to Bob’s address and
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the remaining 2 to her own change address.

While it is possible for the sender to include their input
address in the output, the best and recommended prac-
tice is to send the change to a newly generated addresses.
The motivation for generating new addresses is increased
anonymity since it makes it harder to track which ad-
dresses are owned by which individuals.

A Bitcoin wallet is a software abstraction which seam-
lessly manages multiple addresses on behalf of a user.
Users do not deal with the low level details of their ad-
dresses. They just see their total balance, and when they
want to transfer bitcoins to another address, they spec-
ify the amount to be transferred. The wallet software
chooses the input addresses and change addresses and
constructs the transaction. New addresses can be gener-
ated at any point, and individual Bitcoin users typically
have many addresses. The standard Bitcoin wallet im-
plementation generates a new change address for every
transaction.

Separate from change addresses, businesses may wish
to maintain multiple addresses in their wallet for other
reasons. A common practice is to provide a fresh ad-
dress every time someone wishes to send bitcoins. This
serves two purposes: it allows the business to easily dis-
ambiguate between multiple payers (e.g. if Alice and
Bob are each paying 1 BTC, by giving a different ad-
dress to each payer, the business can now track whom it
received payment from) and it also increases unlinkabil-
ity between the business’s various transactions.

Signed transactions are broadcast to the Bitcoin peer-
to-peer network. They are validated by miners who
group transactions together into blocks. Miners partic-
ipate in a distributed consensus protocol that collects
these blocks into an append-only global log called the
block chain.

Our treatment of transactions thus far has described
what a typical Bitcoin transaction looks like. However,
Bitcoin allows for far more complex transactions. Every
transaction contains a script that specifies how the trans-
ferred funds may be redeemed. For a typical transaction,
the script specifies that one who wants to spend the bit-
coins must present a public key that when hashed yields
the output address, and they must sign the new transac-
tion with the corresponding private key. A transaction
can include a script that specifies complex series of rules
that need to be enforced in order for the bitcoins to be
spent.

While the original Bitcoin paper does not specify the
signature algorithm to be used, the current implementa-
tion uses the Elliptic Curve Digital Signature Algorithm
(ECDSA) over the secp256k1 curve [12, 13, 14].

2.3 Secret sharing and threshold cryptography

Threshold secret sharing is a way to split a secret value
into shares that can be given to different participants, or
players, with two properties: (1) any subset of shares can
reconstruct the secret, as long as the size of the subset
equals or exceeds a specified threshold (2) any subset of
shares smaller than this threshold together yields no in-
formation about the secret. In the most popular scheme,
due to Shamir, the secret can be encoded as a degree t−1
polynomial and a random point on the polynomial given
to each of n players, any t of which can be used to pre-
cisely reconstruct the polynomial using Lagrange inter-
polation [15].

For the (t, t) case, a simple secret sharing scheme is
realized by giving each of the t players a value xi such
that the secret is equal to the product of the t shares.

Secret sharing schemes are fundamentally one-time
use in that once the secret is reconstructed, it is known
to those who participated in reconstructing it. A more
general approach is threshold cryptography, whereby a
sufficient quorum of participants can agree to use a se-
cret to execute a cryptographic computation without nec-
essarily reconstructing the secret in the process. A (t,n)-
threshold signature scheme distributes signing power to
n players. In a threshold signature scheme, any group
of at least t players can generate a signature, whereas a
group of less than t cannot.

A key property of threshold signatures is that the pri-
vate key need not ever be reconstructed. Even after re-
peated signing, nobody learns any information about the
private key that would allow them to produce signatures
without a threshold sized group. Indeed, threshold cryp-
tography is a specific case which led to the more general
development of secure multiparty computation [16].

3 A NEW THRESHOLD
DSA/ECDSA SIGNATURE

SCHEME

3.1 Overview

In this section, we present a threshold signature scheme
for DSA and ECDSA. We introduce a generic notation
that applies to both DSA and ECDSA, and we present
our scheme using this notation.

We define a generic G-DSA signature algorithm as fol-
lows. The public parameters, pp, include a cyclic group
G of prime order q generated by an element G, and an-
other hash function H ′ defined from G to Zq.

• (x,y)← Gen(pp)
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– The secret key x is chosen uniformly at ran-
dom in Zq.

– The public key y = Gx computed in G .

• (r,s)← Sign(M,x)

– On input an of an arbitrary message M, com-
pute m = H(M)∈ Zq. Then the signer chooses
k uniformly at random in Zq and computes
R = Gk in G and r = H ′(R) ∈ Zq. Then she
computes s = k−1(m+ xr) mod q. The signa-
ture on M is the pair (r,s).

• Yes/No← Verify(M,(r,s),y)

– The receiver checks that r,s ∈ Zq and com-
putes

R′ = Gms−1 mod qyrs−1 mod q in G

and accepts if H ′(R′) = r.

The traditional DSA algorithm is obtained by choos-
ing large primes p,q such that q|(p−1) and setting G to
be the subgroup of Z∗p of order q. In this case the multi-
plication operation in G is multiplication modulo p. The
function H ′ is defined as H ′(R) = R mod q.

The ECDSA scheme is obtained by choosing G as a
group of points on an elliptic curve of cardinality q. In
this case the multiplication operation in G is the group
operation over the curve. The function H ′ is defined as
H ′(R) = Rx mod q where Rx is the x-coordinate of the
point R.

3.2 Threshold DSA: what’s known

Definition 1 (Threshold signature scheme (informal))
In a t-out-of-n threshold signature scheme the secret key
is shared among n participants in such a way that any t
of them can execute a protocol to compute the signature
of a given message. Moreover the signature scheme is
unforgeable against any t−1 colluding participants.

Note that the definition rules out the trivial solution
of reconstructing the key and having one of the partici-
pants sign the message, as this would violate the unforge-
ability property — if a malicious participant reconstructs
the key, he can later sign messages by himself. For a
full, formal definition of threshold signature schemes,
see Boldyreva [17].

There have been other schemes in the literature that
use a weaker definition of threshold signatures. In par-
ticular, these schemes allow for a larger separation be-
tween the number of participants that can learn informa-
tion about the key and the number of participants that can
produce a signature. For the case of the DSA signature

scheme, in [18, 19] Gennaro et al. present such a scheme
for which s participants could jointly reconstruct the key,
but t = 2s+ 1 participants were required to construct a
signature. Ibrahim et al. explicitly convert Gennaro’s
scheme to ECDSA [20].

Unfortunately, the weaker definition does not allow
the most common use cases of threshold signatures. In
particular, it does not support the commonly desired 2-
out-of-2 case, in which the key is split among 2 partic-
ipants so that both have to cooperate to sign, while nei-
ther participant by himself has any information about the
secret key (in [18, 19] if 1 participant has no informa-
tion about the key, then one would need at least 3 partic-
ipants to sign). Indeed, the majority of applications that
we present in Section 5 are not realizable with schemes
that only meet this weaker definition.

Mackenzie and Reiter present a solution that supports
only the 2-out-of-2 case [7] which we extend. They
present their scheme for the specific case of the DSA
scheme, but the G-DSA notation and the method for
conversion that we showed in Section 3.1 applies to
their work as well, and thus shows how to convert their
scheme from DSA to ECDSA. We present all of our
results using the G-DSA notation that we introduced,
and they therefore immediately apply to both DSA and
ECDSA.

Our definition of threshold signatures requires the
stronger property that that t players can sign and t − 1
learn nothing. There has been no threshold DSA/ECDSA
signature scheme that meets this requirement except for
the case in which t = 2.4

3.3 Our scheme

The difficulty of building a threshold G-DSA threshold
signature scheme results from the fact that it requires
adding, multiplying, and inverting shared secrets. With
Shamir’s secret sharing scheme, shares can easily be
added, but multiplication and inversion cause the degree
of the shared polynomial to increase. Indeed, this is the
basis of Gennaro et al.’s protocol in [18, 19], and the rea-
son why it requires t = 2s+1 participants to construct a
signature.

Mackenzie and Reiter use multiplicative secret shar-
ing which makes multiplication and inversion of secrets
easy. Addition of secrets is now more difficult, and to

4For the sake of completeness, we mention that Langford presents a
scheme for DSA that achieves this with the help of a trusted dealer that
precomputes and distributes shares for every signature that will ever be
created. Note that this is quite different than a trusted dealer on setup,
as the trusted dealer has to distribute shares for every signature that will
be generated. The protocol does not solve the difficulties associated
with DSA threshold signatures, but instead relies on a trusted dealer
to precompute them. Its limitations make it not useful in the Bitcoin
context.
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get around this, they use an additively homomorphic en-
cryption scheme. Their scheme is specifically for the two
party case, and one of the two parties has a decryption
key for the additively homomorphic scheme. This party
uses its secret share to compute a partial signature, en-
crypts the partial signature, and sends the resulting en-
crypted values to the second party. The second party can-
not learn the value of the encrypted partial signature, but
it uses its share of the key to contribute its portion of the
signature to the ciphertext (as the scheme is additively
homomorphic), and then sends the resulting ciphertext
back to the first party. The first party then decrypts the
ciphertext to reveal the signature. The scheme also incor-
porates zero knowledge proofs to prove that each party is
following the protocol and that the encrypted values that
they produce are consistent with well-formed shares (i.e.
it is secure against malicious parties).

Our scheme generalizes Mackenzie and Reiter’s
scheme to the t-of-t case. The intuitive idea is that t
parties pass around the ciphertext and do computations
on it with their share, and also construct zero knowledge
proofs that their values are consistent. As in Mackenzie
and Reiter’s scheme, the end result is a ciphertext which
is an encryption of the signature. However, whereas in
the two party case, one of the parties held the decryption
key and can single-handedly decrypt the final signature,
in the t party case, the homomorphic decryption key is
itself distributed among the parties such that all of them
have to cooperate to decrypt the key.

Our protocol proceeds in 3t−2 rounds, after which the
parties have an encrypted signature which they can then
jointly decrypt.

Our protocol works for t-out-of-t case, and we use
standard combinatorial structures we show how to use
the t-out-of-t scheme to build a t-out-of-n scheme.

Assumptions and Setup. We assume that there are t
participants P1, . . . ,Pt initialized as follows:

• Participant Pi holds a value xi ∈ Zq chosen uni-
formly at random. The secret key is x = Πixi mod q
and the public key is y = Gx in G . We assume the
values yi = Gxi are public.

• There is a separate public key additively homo-
morphic encryption scheme E, whose secret key
D is shared in a t-out-of-t fashion among the par-
ticipants. The encryption scheme is homomorphic
modulo a large integer N: i.e. given α = E(a) and
β = E(b), where a,b ∈ ZN , there is an efficiently
computable operation +E over the ciphertext space
such that

α +E β = E(a+b mod N)

Note that if x is an integer, given α = E(a) we can
also compute E(xa mod N) efficiently. We refer to
this operation as x×E α .

We denote the message space of E by ME and the
ciphertext space by CE .

We will choose N large enough so that operations
modulo N will not “wrap around” and will be con-
sistent to doing them over the integers (that’s be-
cause we are interested in really doing the opera-
tions modulo q, the order of the group). This re-
quires N > q3t+3.

• The participants are associated to signature public
keys. We assume that they sign every message. In
the following the signature is implicitly contained in
the messages and verified by each participant upon
receipt of a signed message.5

With and without a trusted dealer In our protocol, we
have two different shared keys, the main G-DSA key
and the key for the threshold homomorphic encryption
scheme, and an important question is how these shares
are generated and distributed.

The simplest way to do this involves a trusted dealer
who begins with the constructed key, generates the
shares, and distributes them to each party. Of course this
has a weakness in that the trusted dealer is a single point
of failure. A more sophisticated approach eliminates the
trusted dealer and allows the parties to generate shares of
a key in a distributed manner without ever constructing
the key in the process.

Neither approach is strictly better than the other. Al-
though having a trusted dealer is a weakness, in some
cases it is strictly necessary. A dealerless protocol al-
lows the parties to generate a new key, but it does not
allow players to distribute an already existing key. In
particular, in the Bitcoin context, if someone already has
an address that they want to later add threshold security
to, they would use the trusted dealer protocol to generate
shares from the existing private key.

When generating a new address, however, the dealer-
less protocol is generally superior. Mackenzie and Re-
iter show how to distribute key shares without a trusted
dealer in the two party case, and their scheme can be
extended to the multiparty case. For the homomorphic
encryption scheme, one good candidate is the Paillier en-
cryption scheme, and techniques exist in the literature to
distribute Paillier key shares without a trusted dealer (See
[21, 22, 23]).

Threshold signature protocol. We now present our
threshold G-DSA protocol. The protocol proceeds in

5 In our protocol participant Pi will forward to Pj something he re-
ceived from P̀ . By verifying P̀ ’s signature on the forwarded message,
Pj is guaranteed of its authenticity.
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rounds, where each player receives some input, performs
some computation, and then passes along the output of
this computation. There are n players, P1, . . . ,Pn. In our
protocol, players P2, . . . ,Pn−1 have completely symmet-
ric roles. That is, they all receive inputs of identical form
from the previous player, run the same algorithm, and
pass along the message to the next player. However, the
computation done by P1 and Pn is not identical.

We stress, however, that while from a computational
perspective not all players have the same role, from a se-
curity perspective, all players are identically secure in the
same threat model. No player is privileged or trusted in
any manner. Consequently, from a security perspective it
makes absolutely no difference how the players are num-
bered and which players are given the roles of P1 and Pn.

• Round 1

On input the message M, participant P1

– chooses k1 ∈R Zq and computes z1 = k−1
1 mod

q

– computes α1 =E(z1) and β1 =E(x1z1 mod q)

– sets α̂1 = β̂1 =⊥
– sends M,α1,β1, α̂1, β̂1 to P2

• Rounds 2 to t−1

At round i = 2, . . . , t − 1, on input the mes-
sage M,α1, . . . ,αi−1,β1, . . . ,βi−1, α̂1, . . . , ˆαi−1,
β̂1, . . . , ˆβi−1, participant Pi

– abort if α1, . . . ,αi−1,β1, . . . ,βi−1, α̂1, . . . ,
ˆαi−1, β̂1, . . . , ˆβi−1 /∈ CE

– chooses ki ∈R Zq and computes zi = k−1
i mod

q

– computes αi = zi×E αi−1 and βi = (xizi mod
q)×E βi−1

– computes α̂i = E(zi) and β̂i = E(xizi mod q)

– sends M,α1, . . . ,αi,β1, . . . ,βi, α̂1, . . . , α̂i, β̂1,
. . . , β̂i to Pi+1

• Round t

On input the message M,α1, . . . ,αt−1, β1, . . . ,βt−1,
α̂1, . . . , ˆαt−1, β̂1, . . . , ˆβt−1, participant Pt

– abort if α1, . . . ,αt−1,β1, . . . ,βt−1,
α̂1, . . . , ˆαt−1, β̂1, . . . , ˆβt−1 /∈ CE

– chooses kt ∈R Zq and computes zt = k−1
t mod

q

– computes Rt = Gkt in G

– sends Rt to Pt−1

• Rounds t +1 to 2t−2

At round t + i for i = 1, . . . , t−2, on input the mes-
sage Rt , . . . ,Rt−i+1, participant Pt−i

– computes Rt−i = Rkt−i
t−i+1 in G

– sends Rt , . . . ,Rt−i to Pt−i−1

• Round 2t−1

On input the message Rt , . . . ,R2, participant P1

– computes R1 = Rk1
2 in G.

– computes the ZK proof Π1 which states

∗ ∃ η1,η2 ∈ [−q3,q3] such that
∗ Rη1

1 = R2 and Gη2/η1 = y1

∗ D(α1) = η1 and D(β1) = η2

– sends R1,Π1 to P2

• Round 2t + i−2 for i = 2, . . . , t−1

On input R1, . . . ,Ri−1, Π1, . . . ,Πi−1, participant Pi

– computes the ZK proof Πi which states

∗ ∃ η1,η2 ∈ [−q3,q3] such that
∗ Rη1

i = Ri+1 and Gη2/η1 = yi

∗ D(αi) = η1D(αi−1) and D(βi) =
η2D(βi−1)

∗ D(α̂i) = η1 and D(β̂i) = η2

– sends R1, . . . ,Ri, Π1, . . . ,Πi to Pi+1

• Round 3t−2

On input R1, . . . ,Rt−1, Π1, . . . ,Πt−1, participant Pt

– choose c ∈R Zq3t−1

– computes m = H(M) and r = H ′(R1) ∈ Zq

– computes µ̂ = E(zt)

– computes µ = [(mz3 mod q) ×E αt−1] +E
[(rx3z3×E βt−1]+E E(cq)

– computes the ZK proof Πt which states

∗ ∃ η1,η2 ∈ [−q3,q3] such that
∗ Rη1

t = G and Gη2/η1 = yt

∗ D(µ) = mη1D(αt−1)+ rη2D(βt−1)

∗ D(µ̂) = η1

– sends µ, µ̂,Πi, . . . ,Πt to all the other partici-
pants

• Final Decryption Rounds

At the end of the protocol, each player should have
a proof from every other player. They must ver-
ify these proofs and abort if the verification fails6.

6We aimed to simplify the communication channel, but if there is
a broadcast channel, each player can directly broadcast its proof to all
other players.
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The participants invoke the distributed decryption
protocol for D over the ciphertext µ . Let s =
D(µ) mod q. The participants output (r,s) as the
signature for M.

Encryption Scheme As in [7] we instantiate E with
Paillier’s encryption scheme [24]. We recall the scheme
here.

• Key Generation: generate two large primes P,Q of
equal length. and set N = PQ. Let λ (N) = lcm(P−
1,Q− 1) be the Carmichael function of N. Finally
choose g∈ Z∗N2 such that its order is a multiple of N.
The public key is (N,g) and the secret key is λ (N).

• Encryption: to encrypt a message m ∈ ZN , select
x ∈R Z∗N and return c = gmxN mod N2.

• Decryption: to decrypt a ciphertext c ∈ ZN2 ,
let L be a function defined over the set {u ∈
ZN2 : u = 1 mod N} computed as L(u) = (u −
1)/N. Then the decryption of c is computed as
L(cλ (N))/L(gλ (N)) mod N.

• Homomorphic Properties: Given two ciphertexts
c1,c2 ∈ ZN2 it is easy to see that c1 +E c2 =
c1c2 mod N2 (If ci = E(mi) then c1+E c2 = E(m1+
m2 mod N). Similarly, given a ciphertext c =
E(m) ∈ ZN2 and a number a ∈ Zn we have that
a×E c = ca mod N2 = E(am mod N).

We point out that threshold variations of Paillier’s
scheme have been presented in the literature [21, 22].

Zero-knowledge proofs. The ZK proof Π1 is already
described in [7] (as ZK proof Π in their paper). Similarly
the ZK proof Πt is described as Π′ in [7].

We now describe the ZK proof Πi used by the inter-
mediate participants. This is always the same proof Π̂

called on different inputs. As in [7] we make use of an
auxiliary RSA modulus Ñ which is the product of two
safe primes Ñ = P̃Q̃ and two elements h1,h2 ∈ Z∗Ñ used
to construct range commitments.

For public values c,d,w1,w2,m1,m2,m3,m4,m5,m6
we construct a ZK proof Π̂ that proves

• ∃ x1,x2 ∈ [−q3,q3] such that

• cx1 = w1 and dx2/x1 = w2

• D(m1) = x1D(m3) and D(m2) = x2D(m4)

• D(m5) = x1 and D(m6) = x2

The protocol is as follows. We assume the Prover
knows the values r5,r6 ∈ Z∗N such that m5 = gx1rN

5 mod

N2 and m6 = gx2rN
6 mod N2. Moreover, the proof that

we give is non-interactive. It relies on using a hash func-
tion to compute the challenge, e, and it is secure in the
Random Oracle Model.

The prover chooses uniformly at random:

α,δ ∈ Zq3

ρ1,ρ2 ∈ ZqÑ

β1,β2 ∈ Z∗N

γ,ν ∈ Zq3Ñ

ρ3,ε ∈ Zq

The prover computes

z1 = hx1
1 hρ1

2 mod Ñ

u1 = cα in G

u2 = gα β N
1 mod N2

u3 = hα
1 hγ

2 mod Ñ

z2 = hx2
1 hρ2

2 mod Ñ

y = dx2+ρ3 in G

v1 = dδ+ε in G

v2 = wα
2 dε in G

v3 = mα
3 mod N2

v4 = mδ
4 mod N2

v5 = gδ β N
2 mod N2

v6 = hδ
1 hν

2 mod Ñ

e = hash(c,d,w1,w2,m1,m2,m3,m4,m5,m6,z1,
u1,u2,u3,z2,y,v1,v2,v3,v4,v5,v6)

7

s1 = ex1 +α

s2 = (r5)
eβ1 mod N

s3 = eρ1 + γ

t1 = ex2 +δ

t2 = eρ3 + ε

t3 = (r6)
eβ2 mod N

t4 = eρ2 +ν

The prover sends all of these values to the Verifier.
The Verifier checks that all the values are in the correct

range and moreover that the following equations hold

u1 = cs1w−e
1 in G

u2 = gs1sN
2 m−e

5 mod N2

u3 = hs1
1 hs3

2 z−e
1 mod Ñ

v1 = dt1+t2 y−e in G

v2 = ws1
2 dt2y−e in G

v3 = ms1
3 m−e

1 mod N2

v4 = mt1
4 m−e

2 mod N2

v5 = gt1tN
3 m−e

6 mod N2

v6 = ht1
1 ht4

2 z−e
2 mod Ñ

e = hash(c,d,w1,w2,
m1,m2,m3,m4,m5,m6,
z1,u1,u2,u3,z2,y,v1,v2,
v3,v4,v5,v6)

See Figure 1 for a diagram of the protocol in the three
party case.

7This is the step of the proof that relies on the Random Oracle
Model. We can construct the proof without random oracles using an in-
teractive proof. In the interactive version of the proof, the Prover sends
all of the values computed until this point. The Verifier then issues a
challenge e, and the proof proceeds exactly as in the non-interactive
version.
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t-out-of-n threshold signature scheme. A t-out-of-n
scheme can be obtained by considering all possible sub-
sets of t participants and instantiating the above protocol
for each subset. We stress that the performance of the
t-of-n protocol depends on t and not on n. The only per-
formance overhead of t-of-n over t-of-t is identifying the
proper t-of-t share to use.

One possible optimization is that the n participants can
use a single encryption key E (rather than one for each
subset), where the secret key D is shared in a t-out-of-n
fashion among the participants. Again we point out that
this exists for Paillier [21, 22].

3.4 Size of shares

The combinatorial structure to go from t-out-of-t to t-
out-of-n requires O(nt) storage, making it feasible only
for small values of n and t. It is an interesting open ques-
tion to construct threshold DSA signature scheme that
does not require storage that is exponential in t.

Interestingly, every application of threshold security
to Bitcoin appears to be easily capable of handling the
combinatorial structure, for one of two reasons.

1. Many applications require (t, t) sharing and not
(t,n) for t < n. The (t, t) case does not use the com-
binatorial structure and thus only requires a single
key share stored by each party. Indeed, ours is the
first work to propose a (t, t) threshold DSA signa-
ture scheme for t > 2.

2. Even for our applications that do require a (t,n)
signature, the values of t and n are inherently very
small due to the nature of security policies used in
practice (Section 5.2).

3.5 Security Analysis

A detailed security analysis will be presented in the fi-
nal version, however it is not hard to see that the secu-
rity proof follows the same lines of the proof in [7], and
therefore the security of the entire distributed DSA sig-
nature scheme can be reduced to (i) the unforgeability of
the DSA signature scheme; (ii) the semantic security of
the Paillier encryption scheme (which we recall is equiv-
alent to the N-residuosity assumption modulo N2) and
(iii) to the Strong-RSA Assumption (modulo Ñ).

More specifically we prove existential unforgeability
against chosen message attack, the strongest security no-
tion for signatures. In the distributed case consider an
adversary A controlling t−1 players. Even after the en-
tire set of t parties signs ` messages M(1), . . . ,M(`) cho-
sen by A , it should be computationally infeasible for A
to compute a valid signature on a message M 6= Mi. We
prove that this is the case by a simulation argument which

shows that if such an adversary A exists then there exists
a forger F that can forge a signatures in the underlying
”centralized” DSA signature scheme. Since we assume
the latter to be unforgeable, then the former cannot hap-
pen. We assume a static corruption model, in which A
assumes control of t− 1 players at the beginning of the
protocol.

So let us assume by contradiction that A exists and
show how to construct F . This forger F also works in
the chosen message attack model, i.e. on input a DSA
public key y, it has access to a ”signature oracle” which
on input M̂ returns the signature r̂, ŝ under the public key
y.

F runs on input y, the public key of the underlying
DSA scheme. It will initiate A and assume the role of Pi
the only honest player not corrupted by A .

Key Generation. Assuming a trusted party initialization
of the system, F will create the public key for the pk for
the encryption scheme E and share sk among the players.
Note that F knows sk. Then it will generate random
values x j ∈ Zq as the secret share of player Pj; it will
compute λ = (Π j 6=ix j)

−1 mod q and will set yi = yλ .

Signature Generation. When A requests the signature
of a message M, the forger F will query its signature
oracle and get r,s. Let R = GH(M)s−1

yrs−1
. We now show

how to simulate a signature protocol so that it results in
this signature being output.

Simulating r. The players run the protocol up to Round
2t− 1 with the difference that at Round i the Forger en-
crypts arbitrary values (e.g. 0) in the αi, α̂i,βi, β̂i cipher-
texts. Note that at the end of Round t, the Forger knows
all the values k j chosen by A (since he knows the sk).
At round 2t− i when F has to announce Ri it will it will
compute λ ′ = (Π j 6=ik j)

−1 mod q and will set Ri = Rλ ′ .

Simulating s. The players run the protocol from Round
2t − 1 to the end. The forger F will simulate the ZK
proof Πi, since it is now proving an incorrect statement.
Over the final ciphertext µ , the forger will now simulate
the distributed decryption protocol for E so that it results
in a value s′ ∈ Zq3t s.t. s′ = s mod q

In order to conclude the proof we must argue that the
above simulation is indistinguishable from a real execu-
tion of the protocol. Indeed only under this condition we
can claim that A will output a forgery, and therefore F
will succeed.

We note that the above simulation differs from the real
execution in three main points

• The final decryption protocol is simulated to “hit”
a specific value, instead of the correct decryption
of the ciphertext µ . But if the threshold encryption
scheme used to do distributed decryption is secure,
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then this step is indistinguishable from the real-life
protocol.

• the ZK proof Πi is simulated. Due to the zero-
knowledge properties, a simulated proof is indistin-
guishable from the real one.

• The simulated ciphertexts αi, α̂i,βi, β̂i sent by F
encrypt values with a different distribution that in
the real protocol. But if E is semantically secure
then these simulated ciphertexts are computation-
ally indistinguishable from the real ones. Note that
this requires another reduction, where we use A to
break the encryption scheme E (in this case the sim-
ulation knows the secret key x of the DSA scheme,
but does not know sk).

4 THRESHOLD WALLETS

In this section, we describe a set of threshold-signature
based protocols that will allow both businesses and indi-
viduals to secure their Bitcoin wallets. Before presenting
the protocols, we discuss the threat model.

4.1 Threat model

To classify the problems, we distinguish between inter-
nal and external threats as well as between hot and cold
wallets. While the term wallet is generally used loosely
to refer to a software abstraction (described in Section
2.1), we will use the term in the rest of the paper in a
more precise sense.

Definition 2 (wallet) A collection of addresses with the
same security policy together with a software program
or protocol that allows spending from those addresses in
accordance with that policy.

“Security policy” encompasses the ownership or
access-control list and the conditions under which bit-
coins in the wallet may be spent.

The terms hot wallet and cold wallet derive from the
more general terms hot storage, meaning online storage,
and cold storage, meaning offline storage. A hot wallet
is a Bitcoin wallet for which the private keys are stored
on a network-connected machine (i.e. in hot storage).
By contrast, for a cold wallet the private keys are stored
offline.

Definition 3 (Hot wallet/Cold wallet) A hot wallet is a
wallet from which bitcoins can be spent without access-
ing cold storage. Conversely, a cold wallet is a wallet
from which bitcoins cannot be spent without accessing
cold storage.

Adversary Hot wallet Cold wallet

Insider
Vulnerable by

default; our methods
are necessary

Reduces to physical
security by default;

our methods can help

External
(network)

Reduces to network
security by default;

our methods can help
Safe

Table 1: Taxonomy of threats

Note that these new definitions refer to the desired ef-
fect, not the method of achieving it. The desired effect
of a business that maintains a hot wallet is the ability to
spend bitcoins online without having to access cold stor-
age.

Table 1 shows four types of possible threats. Secur-
ing a cold wallet is a physical security problem. While a
network adversary is unable to get to a cold wallet, tradi-
tional physical security measures can be used to protect
it from insiders — for example, private keys printed on
paper and stored in a locked safe with video surveillance.

In addition, our methods may be used to supplement
physical security measures. Instead of storing the key
in a single location, the business can store shares of the
key in different locations. The adversary will thus have
to compromise security in multiple locations in order to
recover the key. This is all we will say about securing
cold wallets.

Protecting hot wallets from external attackers is a net-
work security problem; if the network were completely
secure, then this would not be an issue. We can use
threshold signatures to reduce our reliance on network
security. Protecting hot wallets from internal attackers is
the most pressing problem. Our central claim is that the
level of insecurity of this threat category has no parallels
in traditional finance or network security, necessitating
Bitcoin-specific solutions. Our protocols in Section 5 ad-
dress the protection of hot wallets from both insider and
external attacks.

4.2 DNF wallets and threshold wallets

For a typical Bitcoin wallet, the security policy specifies
that a single user logs on to their computer (if they man-
age their own wallet) or authenticate to some web service
(if they use an online provider). But, security policies
can be far more complex, and they can involve multiple
participants.

Given a set of participants P1, . . . ,Pn, a security policy
may specify conditions of which the approval of multi-
ple parties is required to authorize a transaction. Such
a security policy can be specified as a boolean formula
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Alice Bob Carol

k1 ←R Zq

z1 = k−1
1 mod q

α1 = E(z1)
β1 = E(x1z1 mod q)

α̂1 = β̂1 = ⊥

〈M,α1, β1, α̂1, β̂1〉

k2 ←R Zq

z2 = k−1
2 mod q

α2 = z2 ⊗ α2

β2 = (x2z2 mod q)⊗ β1

α̂2 = E(z2)

β̂2 = E(x2z2 mod q)

〈M,α1, α2, β1, β2, α̂1, α̂2, β̂1β̂2〉

k3 ←R Zq

z3 = k−1
3 mod q

R3 = Gk3 in G
〈R3〉

R2 = Rk2
3 in G

〈R3, R2〉

R1 = Rk1
2 in G

Π1 ← zkp




∃η1, η2 ∈ [−q3, q3] :
Rη1

1 = R2

∧ Gη2/η1 = y1
∧ D(α1) = η1
∧ D(β1) = η2




〈R1,Π1〉

Verifies Π1

Π2 ← zkp




∃η1, η2 ∈ [−q3, q3] :
Rη1

2 = R3

∧ Gη2/η1 = y2
∧ D(α2) = η1D(α1)
∧ D(β2) = η2D(β1)
∧ D(α̂2) = η1
∧ D(β̂2) = η2




〈R1, R2,Π1,Π2〉

Verifies Π1,Π2

c←R Zq8

m = H(M)
r = H ′(R1) ∈ Zq

µ̂ = E(z3)
µ = [(mz3 mod q)⊗ α2]⊗ [(rx3z3 ⊗ β2]⊗ E(cq)

Π3 ← zkp




∃η1, η2 ∈ [−q3, q3] :
Rη1

3 = G

∧ Gη2/η1 = y3
∧ D(µ) = mη1D(α2) + rη2D(β2)
∧ D(µ̂) = η1




〈µ, µ̂,Π3〉
〈µ, µ̂,Π2,Π3〉

Verifies Π3Verifies Π2,Π3

The players invoke the distributed decryption protocol for D to obtain
s = D(µ) mod q

They output (r, s) as the signature for M .

Figure 1: 3-of-3 G-DSA Threshold Signature protocol
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over p1, . . . , pn which are boolean variables that indicate
which participants are present. A transaction is autho-
rized if and only if the formula evaluates to true.

Policies whose formulas are in Disjunctive Normal
From (DNF) are of particular interest to us. A DNF for-
mula is a disjunction of conjunctions of literals, as in:

(p1∧ p3∧ p4)∨ (p2∧ p3)∨ (p5)

We refer to a wallet whose security policy is a DNF
over a set of participants a DNF wallet. A special case
of a DNF formula is the disjunction of all possible con-
junctions of size t. We denote by n the total number of
participants, and we call such a policy a t-of-n threshold
policy as it specifies that any group of at least size t can
authorize a transaction. We refer to a wallet with a t-of-n
threshold policy as a (t,n)-threshold wallet. Moreover,
in the special case in which the DNF contains just a sin-
gle clause that is a conjunction of all the participants, we
call this a (t, t)-threshold wallet.

Realizing DNF wallets and threshold wallets. First,
a security policy consisting of a single conjunction pi1 ∧
. . .∧ pit can be realized by t-out-of-t secret sharing of
the wallet private key among the participants Pi1 ∧ . . .∧
Pit . To sign a transaction, those participants execute the
threshold signature protocol.

Next, a DNF policy which is a disjunction of m
conjunctions can be implemented by m separate secret
sharings (with possibly different thresholds) of the key.
When a group of participants wish to sign, they first de-
termine one of the conjunctions that is satisfied (recall
that participants in our threshold signature protocol know
each other’s identities). Once they find a conjunction,
they use the corresponding set of shares.

Finally, a t-out-of-n threshold policy is realized as a
DNF policy with

(n
t

)
different conjunctions, one corre-

sponding to each subset of t participants. This is equiva-
lent to using the t-out-of-n signature scheme that we de-
scribed.

Note that a wallet has many addresses and many pri-
vate keys associated with them, but the above description
refers to a single wallet private key. In Section 4.4 we
show how a single set of key shares can control arbitrar-
ily many addresses in a shared wallet.

4.3 Comparison with multisignature approach

While most Bitcoin transactions are spent with a sin-
gle signature, Bitcoin in fact specifies a script writ-
ten in a stack-based programming language which de-
fines the conditions under which a transaction may be
redeemed. This scripting language includes support
(OP CHECKMULTISIG) for multisignature scripts [25]
which require at least t of n specified ECDSA public keys
to provide a signature on the redeeming transaction. By

default, multisignature transactions are currently only re-
layed with n≤ 3 keys, but may specify up to an absolute
limit of n = 20.

A relatively recent feature of Bitcoin, pay-to-script-
hash, enables payment to an address that is the hash of a
script. When this is used, senders specify a script hash,
and the exact script is provided by the recipient when
funds are redeemed. This enables multisignature trans-
actions without the sender knowing the access control
policy at the time of sending. A quirk of pay-to-script
hash is that the n ≤ 3 restriction is removed from t-out-
of-n multisignature transactions. However, due to a hard-
coded limit on the overall size of a hashed script, the re-
cipients are still limited to n≤ 15.

4.3.1 Advantages of multi-signatures.

Multi-signature transactions have one clear benefit over
using threshold signatures in that they can be signed
independently by each participant in a non-interactive
manner, whereas the ECDSA threshold signature proto-
col requires multiple rounds of interaction. Another po-
tential benefit is that the redeeming transaction provides
a public record of exactly which t of n keys were used to
redeem the transaction, meaning secure bookkeeping is
provided by default (though is also leaked publicly).

4.3.2 Advantages of threshold signatures.

We argue that threshold signatures offer fundamental ad-
vantages stemming from the fact that in the multisigna-
ture approach, the access-control policy is encoded in the
transaction and eventually publicly revealed:
Flexibility. Threshold signatures are more flexible than
multisignatures in the access policies that they permit as
well as in the ability to modify the access policies.

Whereas threshold signatures can realize any DNF-
wallet structure, multisignatures are far less expressive
and only allow for t-of-n access structures.

Threshold signatures also allow more flexibility for
making changes to the access control policy. If a busi-
ness using multisignature transactions wants to make any
modification to its access control policy, such as adding
or removing an employee from those with transaction ap-
proval power, this requires a new script and thus a new
address. This prevents businesses wishing to transact in
Bitcoin from using a long-term static address as it re-
quires moving funds to a new address with each policy
update. For some business practices, the ability to have
a static address is fundamental. As an example, consider
an organization that prints promotional materials with a
donation address on it. Multisignatures would not allow
them to change the access control policy while keeping
that address.
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With threshold signatures, the policy is encoded not in
the address but in the shares. To change the policy, the
business would just need to re-deal key shares according
to the new policy. Businesses can still use a static ad-
dress for a receivable account and can maintain the ad-
dress even if the access control policy changes.

More generally, it is impossible to add multisignature
security to an existing address since the two types of ad-
dresses are syntactically distinct. The only way to attain
multi-factor security is to create a new multisignature ad-
dress. Threshold signatures, on the other hand, allow one
to split up the key of an existing address.
Anonymity. While Bitcoin allows users to be pseudony-
mous, it does not provide any anonymity guarantees. In-
deed, it has been shown that it is not difficult to link vari-
ous addresses belonging to a single user [26]. Moreover,
because the entire transaction log is public, once an ad-
dress has been associated with a real world identity, one
can immediately view every other transaction associated
with that address.

Because of Bitcoin’s inherent lack of anonymity, var-
ious techniques have been developed to provide addi-
tional anonymity for Bitcoin users. Three of the most
prominent techniques are Mixcoin [?], CoinJoin [?], and
the use of change addresses. We show now that none
of these techniques are compatible with multisignatures,
while they all work as intended with threshold signatures.

As we mentioned in Section 2.1, for purposes of
increasing anonymity, the general practice is to use
newly generated change addresses which cannot easily
be linked to the input addresses [26]. With multisigna-
ture transactions, unlinkable change addresses are much
harder to achieve. Suppose Alice uses multisignature-
based security and makes a purchase. Then the spending
address(es) and change address will all have the same
t-of-n access control structure, whereas the destination
address most likely will not. This allows easily linking
Alice’s input and output addresses. With threshold signa-
tures, on the other hand, change addresses will be unlink-
able when sending funds to any regular (single-key) ad-
dress or other threshold address (though not when inter-
acting with multisignature addresses or other script hash
addresses). In particular, change addresses will provide
the exact same benefits with threshold signatures as they
do with a single-key address. In Section 4.4 we show
how to generate change addresses with equivalent thresh-
old access control without distributing new shares.

Mixcoin and CoinJoin are both based on the technique
of mixing, or shuffling the inputs amongst multiple users.
Both protocols proceed in independent rounds. During a
single Mixcoin round, each user sends a fixed amount
of coins to a mixing party which sends the same amount
of coins back to a fresh address provided by that user.
CoinJoin is also based on the mixing idea but instead of

having a centralized mixing party, users combine their in-
puts and outputs into a single joint transaction that they
all sign. Once coins have been mixed with either proto-
col, it becomes nearly impossible to identify the mapping
between input and output addresses.

Consider what happens, however, when one tries to
use either Mixcoin or CoinJoin with multisignature ad-
dresses. Both of these protocols rely on the fact that all
of the input and output addresses are structurally iden-
tical and that there is an abundance of such addresses.
In order to maintain multisignature security, both the in-
put and output addresses will have to be multisignature
addresses. Moreover, they will have to have the same ac-
cess structure (i.e. the same t and n). Multisignature ad-
dresses cannot be mixed together with regular addresses
as it is trivial to link an input address with an output ad-
dress by just examining the access structure. Moreover,
it is highly unlikely that there will be a sufficient number
of addresses with a given access structure that are inter-
ested in mixing to facilitate mixing each type of address
on its own. 8

Multisignatures also cause a loss of anonymity since
the access structure is published on the block chain.
When a business presents its script to spend a transac-
tion, its internal access control policy is exposed to the
world. Many companies will want confidentiality as to
the internal controls that they enforce. Threshold-signed
transactions are completely indistinguishable from regu-
lar transactions. Not only do they not leak the details of
the access-control policy, they do not reveal that access
control is being used at all.

Advantages of multi-signatures. Multi-signature trans-
actions have a clear benefit over using threshold sig-
natures in that they can be signed independently by
each participant in a non-interactive manner, whereas the
ECDSA threshold signature protocol requires multiple
rounds of interaction. The performance of multisigna-
tures is also an advantage. Whereas our threshold sig-
nature scheme requires zero knowledge proofs which are
computationally expensive, multisignatures only require
t standard ECDSA signatures.

8One might be tempted to suggest that funds be temporarily trans-
ferred to a single signature address for mixing. This is problematic for
two reasons, however. Firstly, transferring to a single signature address
introduces a single point of failure as the bitcoins can be stolen during
this period if the key is compromised. Moreover, one can do second-
order analysis and still link the input and output addresses by examin-
ing the access structure of the multisignature addresses that transferred
bitcoins to the input address and received bitcoins from the output ad-
dress.
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4.4 Extending security policies from addresses to
wallets

Our discussion of parallel control until this point has fo-
cussed on addresses. We now describe how to extend our
threshold-signature based system to wallets.

The key technical challenge in extending threshold
signatures to wallets (i.e., collections of addresses) is
that new addresses need to be generated on demand and
we do not know in advance how many addresses will be
needed. It is not feasible to execute the dealing step of se-
cret sharing each time we need to generate a new address,
since this step affects all the participants in the group and
requires extra security precautions.

Two approaches can be used to generate fresh ad-
dresses in the threshold context. As we’ll see the latter
approach is clearly superior.
Deterministic wallets

Deterministic wallets [28] are sophisticated wallets in
which fresh keys can be derived from previous keys, with
the additional property that the fresh public key can’t be
linked to the previous public key without knowledge of
the private key(s), preserving unlinkability.9

We present a construction that realizes deterministic
wallets for shared addresses. In particular, consider a
public key, pkmas, for which the corresponding private
key, skmas is shared in a (t,n) manner amongst n play-
ers — the jth participant has key share sk( j)

mas We con-
struct a threshold scheme for deriving the ith child key
pair (pki,ski)

10such that the following properties hold:

• For a given index i, any participant can indepen-
dently generate pki from pkmas

• For a given index i, participant Pj can independently
generate its new key share sk( j)

i from its master key
share sk( j)

mas

• The resulting key pair (pki,ski) is shared with the
identical threshold properties of the master pair
(pkmas,skmas)

It is clear from the above specification that for each
additional child address, participants must only store the
index i as the rest can be derived. We now present the de-
tails of our construction, and we stress that it is compati-
ble both with the 2-of-2 threshold signature scheme in [7]
as well as with our generalized (t, t) and (t,n) schemes.

9Deterministic wallets typically have another property, hierarchical
key derivation, which is not relevant to us.

10In our scheme, we refer to the public keys rather than addresses,
but the address is computed by simply hashing the public key

Threshold deterministic address derivation

We refer to a curve of order n with base point G. We
define a function f (P), which outputs a serialized form
(that can be input into a hash function) of the curve point
P. As before, the master private key is skmas, and cor-
responding master public key is pkmas = skmas ·G. Our
construction also refers to c, a 256-bit nonce that is cho-
sen uniformly at random. c is known to each of the par-
ticipants but is not shared publicly. We also use a hash
function H that maps arbitrary input strings to 256-bit
output strings.

We assume that skmas is multiplicatively shared
amongst t participants as in [7] and in our ECDSA pro-
tocol. In particular, participant Pj has a share sk( j)

mas of
skmas.

When the master key pair (pkmas,skmas) is initially
shared among the t participants, one of the participants
is designated as the leader L. The child key pair deriva-
tion protocol consists of the following two functions:
Child Key Share Derivation Function for player Pj:

• If Pj = L

– compute T = H(c|| f (pkmas)||i)
– sk( j)

i = sk( j)
mas ·T

• else

– sk( j)
i = sk( j)

mas

Public Key Derivation Function:

• compute T = H(c|| f (pkmas)||i)

• pki = pkmas ·T
It is clear that the t participants now hold multiplica-

tive shares of ski, the private key corresponding to the
derived public key pki. In particular, we have:

pki = pkmas ·T
= skmas ·G ·T

=

[ t

∏
j=1

sk( j)
mas

]
·T ·G

=

[ t

∏
j=1

sk( j)
i

]
·G

= ski ·G

It is worth noting that both of the derivation functions
are non-interactive. Participants can derive their shares
of the new private key as well as the public key com-
pletely on their own.
Security analysis. Participants can use their shares of the
child private key to construct a signature from the new

14



address in a threshold manner. At no point in the child
key share derivation protocol or the subsequent signature
generations is either key constructed.

Note that for all participants other than the leader, the
child key share is identical to its master key share. For
the leader the child key share is its master share multi-
plied by T . Since for all players, the child key share is
fully dependent on the master key share, an adversary
that does not know the master key share cannot derive
the child key share (even if the adversary knows T ).

It is important that the nonce be kept secret. If we
publicize c, anybody that knows the master public key
can derive the public keys and addresses for the ith child.
If we are using the child addresses as change addresses,
this would defeat the purpose of change addresses since
they can be derived from, and hence linked to, the ini-
tial address (assuming that i is chosen in a predictable
manner).

Note that if an adversary compromises any one of the
participants, the adversary will learn c and all of the i’s
that are used, and they can therefore link all of the ac-
counts addresses. This is acceptable as even in the non-
deterministic wallet version, it is expected that partici-
pants are aware of and store the public key associated
with their share. Importantly, there is no security risk as
the adversary cannot learn the private key unless it has
compromised all t participants.

If a breach of any of the participants is detected, the
key should be re-shared and all participants should delete
their old shares so that the share that the adversary learns
is no longer useful. Note that as long as even a single par-
ticipant successfully deletes its share, the compromised
share is no longer useful. Moreover, to recover from a
breach, a new c should be chosen so that the adversary
cannot link freshly generated addresses to the other ad-
dresses.

We have thus shown how we can generalize our pro-
tocols from addresses to wallets. The scheme presented
here enables generating new addresses on demand that
have the same access-control policy as the original ad-
dress. The protocol is non-interactive, and eliminates the
need for a dealer to generate and distribute shares of new
addresses. We have shown the scheme for a (t, t) shared
address. For the combinatorial (t,n) scheme, the deriva-
tion function is applied to each set of (t, t) shares.

5 THRESHOLD SECURITY FOR AN
ORGANIZATION

Since security is only as good as the weakest link, in
this section we consider the question, can an organiza-
tion remove single points of failure in every step of the
flow of bitcoins through the system — receiving bitcoins,

transferring and managing them internally, and finally
spending them? We show how this can be achieved us-
ing DNF and threshold wallets, borrowing many ideas
from traditional financial control mechanisms. We also
show that throughout this process we can generate secure
audit logs.

5.1 Receiving bitcoins securely

The first stage in the flow of bitcoins through an orga-
nization is receiving them. Most commonly, it may be
a merchant receiving payment from a user, or an online
wallet receiving a deposit, and so on.

Here the merchant’s web server is a single point of
failure. If it is compromised, when the user executes the
payment protocol (BIP 70), the attacker may substitute
his address for the merchant’s.

Threshold cryptography once again provides a solu-
tion. Note that the goal here is only to securely commu-
nicate the receiving address to the user; how bitcoins re-
ceived at that address are secured is an orthogonal ques-
tion. So the threshold cryptography we use is unrelated
to Bitcoin’s cryptography.

In the BIP 70 protocol, the merchant authenticates
himself using standard PKI, and in particular, presents an
X.509 certificate that authenticates the merchant’s iden-
tity. X.509 provides RSA, DSA, and ECDSA signature
options. Our description references details of the BIP 70
protocol, and we refer the reader to it [30].

The merchant implements a user-facing web server
and t share servers.

Setup. The merchant sets up shares of the private key
for the X.509 certificate on each share server.

Payment protocol.

• Each share server independently generates a fresh
address according to the threshold deterministic
wallet protocol of Section 4.4.

• The share servers threshold-sign the address using
their shares of the X.509 private key.

• The webserver executes the payment protocol as
usual, except that when it computes PaymentDe-
tails, it leaves the Output field empty (which repre-
sents the address). It then sends PaymentDetails to
the share servers which fill in the newly generated
address, execute a threshold signature protocol, and
return it to the webserver which uses the result as
the signature field in its PaymentRequest message
to the user.

Not that the threshold signing of the address is just a
local protocol executed by the share servers. In particu-
lar, it is not constrained by the Bitcoin protocol, and thus
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Figure 2: Removing single points of failure: illustrative example. First a customer interacts with a front-end server run
by the sales department and executes the BIP 70 protocol. The payment address is generated in a 3-out-of-3 threshold
fashion. The treasury department controls the address at which the user makes a payment. The treasury managers
authorize disbursements to various departments in a 2-out-of-3 fashion (Section 5.2), but a compliance server must
be involved for secure audits (Section 5.4). One of the departments receiving funds is purchasing, who controls
their spending based on a functional-separation-of-duties security policy enforced cryptographically using distributed
wallets (Section 5.3).

we can support any X.509-compatible signature. Thresh-
old RSA signatures are well-known [31, 32], whereas
threshold DSA and ECDSA signatures are known, fit-
tingly enough, from the present work.

5.2 Bitcoins at rest: joint control

Bitcoins will spend most of their lifecycle within an orga-
nization at rest. Ideally, they will be in cold storage. Or-
ganizations may have a treasury department to centrally
manage funds at this stage. The treasury manages funds
and disburses them to different departments for spend-
ing as needed. These internal flows are less frequent and
larger than the external flows that we’ll discuss in the
next subsection.

Security for bitcions at rest can be implemented using
joint control or shared custody. The participants are func-
tionally equivalent and all have access to the same infor-
mation. This is a straightforward application of threshold
wallets. A physical world analog would be a safe that re-
quires two keys to be simultaneously turned.

5.3 Spending

Let us return to our motivating example: an account-
ing system might be willing to disburse up to $1000 to
a supplier as long as (1) there is a valid purchase order
issued by the purchasing department to the supplier, and
(2) the receiving department has a record of receiving the

goods named in the purchase order (3) an accounts man-
ager initiates a payment that matches the items/amount in
the purchase order, and (4) the purchase order and store
receipt have not already been used to authorize another
disbursement.

Such business logic is traditionally handled in soft-
ware by business process management software using
role-based access control. Unfortunately, since a single
OS or middleware layer must authenticate users and per-
form necessary checks, it inevitably introduces a single
point of failure. System administrators, in particular, are
typically in a position to override controls, defeating the
point of functional separation. Anderson notes that such
vulnerabilities are in fact very common in practice [10].

To realize functional separation despite fallible soft-
ware components, we must maintain cryptographic sep-
aration between components that implement different
roles/duties. This suggests separate servers for each role
that together implement a DNF wallet. But first, we need
some formalism. We assume that there is evolving state
Si associated with each participant (i.e., duty or role).
For example, the state associated with the receiving role
might consist of the set of records of all items received.

Definition 4 A functional-separation-of-duties security
policy is a set of authorization paths and an authorization
condition corresponding to each path. An authorization
path is a subset of participants; an authorization condi-
tion is boolean function that takes as input a set of partic-
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ipant states and the transaction’s parameters. The policy
evaluates to true if at least one of the authorization con-
ditions does.

Under this formalism, our motivating corporate pur-
chasing example would translate to a single authoriza-
tion path. If the same corporate wallet were also used for
disbursing salaries, it would result entirely different au-
thorization path involving different participants and con-
dition for authorization. Perhaps it is more prudent to
use entirely different wallets for different purposes, but
for full generality we discuss security policies that are
composites of multiple separations of duty.

Definition 5 To say that a wallet implements a policy
means that signing a given transaction is possible if and
only if: (1) all participants involved in one of the au-
thorization paths participate in the signature protocol
and (2) the corresponding authorization condition over
those participants’ inputs and the transaction’s parame-
ters evaluates to true.

DNF wallets are a good fit for implementing
functional-separation-of-duties security policies; we just
need the participants to execute a preliminary step to ver-
ify the authorization condition before proceeding with
the signature step. We call this an extended DNF wal-
let. Concretely:

Setup. For each authorization path Ai, we create a sep-
arate |Ai|-out-of-|Ai| sharing of its private key and dis-
tribute shares to participants involved in Ai.

Spend. One of the participants initiates a spend by
proposing a transaction and and sending a message to
participants on a potential authorization path. The partic-
ipants on that path first execute a joint protocol to verify
the authorization condition based on their inputs and pro-
posed transaction parameters. Each participant aborts if
the check fails, otherwise proceeds to the threshold sig-
nature step.

How the authorization condition is verified is left in-
tentionally unspecified. The participants could conceiv-
ably broadcast their state files to each other, since there
is no secrecy requirement over these inputs. In practice
we would use an efficient protocol that exchanges only
the state relevant to the transaction in question, such as
the appropriate purchase record.

Observe that functional separation of duties maps pre-
cisely to DNF formulas. If we instead had a CNF wallet,
for example, it is not clear how to realize functional sep-
aration. This observation motivates:

Claim 1 Extended DNF wallets efficiently implement
functional-separation-of-duties security policies. By ef-
ficient we mean that the total size of each participant’s
shares is linear in the size of the policy.

Back to our example: to raise a purchase order, the
purchase clerk creates a record (supplier id, order id,
item id, amount, payment address) in the purchase
server. When the receiving clerk receives an item, he cre-
ates a record (supplier id, order id, item id). When the
account manager receives an invoice, she creates a record
(supplier id, order id, amount, payment address) and
initiates a spend. Each server checks that the various
ID fields are consistent between all participants and that
the same (supplier id, order id) pair — which acts as a
unique ID for the transaction — has not been previously
used. If the checks pass the servers proceed to the thresh-
old signature protocol.

The compliance server can be used to enforce addi-
tional, custom rules that aren’t dictated by the basic logic
of purchasing. Examples include: (i) no orders above
$1,000 (ii) orders above $1,000 will trigger email warn-
ings to an accounts supervisor (iii) orders above $1,000
require additional approval by an accounts supervisor
(iv) no more than $10,000 of orders per supplier per
month (v) orders must be within 20% of the cheapest
price of a similar item with another supplier.

How do we handle the fact that there may be many
purchasing and receiving clerks, and perhaps many ac-
count managers? We might assign a separate share to
each possible employee in each role, but this is a bad de-
sign because adding an employee to a role would require
changes to other employees’ shares. We could provide
each employee in each role (duty) with a copy of that
role’s share, but this makes revocation of role assignment
a nightmare.

Instead, an elegant solution is to combine threshold
wallets and regular access control. Specifically, each role
server authenticates the employee and participates in the
signature protocol on her behalf. The server does not
allow employees to access their shares directly. Within
each role, there is an arbitrary level of flexibility as long
as it can be enforced by software. For example, the pur-
chase server or receiving server might require two differ-
ent clerks to sign off. The account manager might have
the ability to configure the accounts server to automati-
cally approve up to $50/day per purchasing clerk.

As in any internal control system, technological mea-
sures are not enough; we need best practices to minimize
human error. For example, the accounts manager should
use the Bitcoin address in the invoice rather than copying
it from the purchasing clerk’s record. Thus, even though
each server’s state is not cryptographically hidden from
other servers, servers should not present them to employ-
ees. Instead, the accounting server and the purchasing
server should each require that the Bitcoin address is in-
put directly to them. This encourage independent up-
dates to state filess and minimize errors due to laziness.
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5.4 Secure bookkeeping

Bookkeeping and auditing are crucial components of in-
ternal control. To enable auditing, we must ensure that
all transactions are logged accurately.

Each participant could log its own records, of course,
but these logs can be tampered with or destroyed. A bet-
ter solution is to have a dedicated logging server. This al-
lows enforcing extra security properties since the server’s
functionality is minimal: it can be physically secured
and configured to output logs to redundant write-only
tamper-proof media.

Definition 6 (Secure bookkeeping) A bookkeeper is an
entity that logs transactions along with all transaction
metadata. A bookkeeping system is secure if a valid
transaction cannot be generated without creating a cor-
rect log entry of it.

DNF wallets lend themselves well to the addition of a
bookkeeping entity. Given a policy c1 ∨ . . .∨ cN where
each ci represents a conjunction over a subset of partic-
ipants, we simply convert it to (c1 ∧ b)∨ . . .∨ (cN ∧ b)
where b represents the presence of the bookkeeper. In
other words, we add the bookkeeper to every possible
authorization path.

Thus, in the purchasing example, we simply use 5-out-
of-5 instead of 4-out-of-4 secret sharing and give an extra
share to a logging server. The signature cannot be gen-
erated without the logging server’s participation. This
server does not enforce any policies and always com-
pletes the protocol, ensuring that it keeps a complete log
of all messages signed by the respective participants. An
auditor can later verify, for example, that receiving clerk
Alice logged a certain (supplier id, order id, item id) tu-
ple. Here we’re assuming that the ‘receiving’ role server
adds the identity of the employee to each record created
by that employee.

6 SYSTEM DESIGN

We address the most important design decisions that
need to be made to build a system that implements the
protocols we’ve presented. Our primary design goal is
to build usable systems that have a clear security model
and are easy to administer. Our decisions, therefore, fa-
vor simplicity over designs that require expert knowledge
to administer securely.

6.1 Identity

For t > 2 the threshold signature protocol requires that all
protocol messages are signed, since it involves partici-
pants forwarding other participants’ messages. The ideal

solution is X.509 certificates [33] because many compa-
nies already issue certificates to their employees. This
also allows layering the protocol over TLS which is a
convenient way to prevent spam or denial-of-service at-
tacks.

6.2 Synchronous vs. asynchronous design

The ECDSA threshold signature protocol proceeds in
rounds and requires interaction between players. The re-
quirement for interaction favors a synchronous design in
which all participants are online when the signature is be-
ing generated. While non-interactive threshold signature
schemes do exist for other signing algorithms [31], there
is no known non-interactive ECDSA threshold signature
algorithm.

Non-interactivity is not a limitation in the corporate
context, as all the application scenarios we’ve described
use a synchronous design anyway. In the case of a two-
factor wallet for individuals, we can see how a non-
interactive signature scheme might be better: the user can
generate a share of a signature on her phone, whereupon
the phone app would email it to herself. On her desktop,
she would paste the share from her email into her wallet
app, which would complete the signature. This would
avoid the need for a custom protocol for the devices to
securely pair and communicate with each other.

We do not believe that interactivity is a significant lim-
itation in practice — as we detail in Section 7, our im-
plementation of a protocol for two nearby devices to dis-
cover each other over a shared WiFi connection was very
straightforward.

6.3 Size of shares

Unlike functional separation policies, there is the worry
that joint control policies might require a large number of
shares using DNF wallets due to the combinatorial con-
struction. However, a look practical setups shows that
this worry is unfounded. For example, for joint con-
trol over transaction approval in banks, the value of the
threshold t is overwhelmingly just 2 [10, 29] . When
t = 2 the number of shares per participant is only linear
in n, resulting in trivially small sets of shares even for say
n = 100.

At any rate, if there are 100 managers sharing cus-
tody of an account, the chance that some two of them
might collude starts to become high, or at least difficult
to estimate and manage. For this reason, security poli-
cies in practice are always kept tractable. Another way of
looking at it is that the cognitive complexity of reasoning
about security becomes a problem long before computa-
tional concerns do.
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6.4 The curse of homogeneity

Our main goal in designing internal control systems has
been to eliminate single points of failure. For this reason
we believe our protocols in Section 5 are more secure
than alternatives that don’t use internal controls or im-
plement them via access control.

In a corporate environment, however, all employees
often use standard-issue systems, and system adminis-
trators sometimes have the ability to access all of these
machines. A rogue system administrator or an adversary
who gains access to a system administrator’s credentials
may be able to bypass systems that implement separation
of duties. Further, malware may simultaneously compro-
mise many or all machines due to software homogeneity.

Thus internal technical controls are more effective
when the software platform is internally heterogeneous
and system administrators don’t directly control em-
ployee machines. Another possibility is to combine two-
factor security (Section 7) with parallel control. In-
evitably, these defenses all introduce a security-usability
trade-off.

6.5 Security of the dealing step

The threshold signature protocol as presented relies on
administrators to distribute shares. Proper checks must
be put in place on administrators to ensure that they do
not deal extra key shares to themselves. To mitigate
this risk, dealing should only be done very infrequently
and with human oversight rather than in an automated
way. The shared deterministic wallet protocol of 4.4 ob-
viates the need to re-deal shares unless the security policy
changes, and the techniques of Section 6.6 minimize the
need to re-share even when the list does change.

Alternately, we can utilize protocols to deal shares
without a dedicated dealer using secure multi-party com-
putation [7, 21, 22].

6.6 Changing the security policy or access-control
list

DNF wallets implementing functional separation (Sec-
tion 5.3) support changes to the security policy rela-
tively easily. Adding a new authorization path is a matter
of generating a new set of shares and does not require
changing existing shares. To enable removing authoriza-
tion path, we can proceed as follows: we add a revocation
server that is part of every authorization path, and to re-
move a path, we simply remove the share corresponding
to that path from the revocation server.

In a joint control threshold wallet scenario where
shares are given to employees who may join or leave
the group, one technique is to generate some extra shares

during the dealing step and store them on physically se-
cured media (analogous to cold storage). If there are ini-
tially n participants and we wish to share with a threshold
of t, we create n+m shares with the same threshold t.
When new employees arrive, we give them one of these
extra shares, and we can do this until all m extra shares
have been used up. Handling employees leaving can be
done as before, using a revocation server that’s a neces-
sary for all signatures. Re-sharing the key is arguably
a more secure option. We note that when t = 2, even
with a revocation server, each participant’s total share
size linear in n+m. The revocation server’s share size
is quadratic. See the discussion in Section 5.2 for why
these parameters are typically very small in practice.

6.7 Parallel control backup and recovery

Losing a share (due to malware, data loss, accidental
deletion, physical loss of a device, etc.) has a similar ef-
fect as changes to the access-control list — specifically,
an addition and a deletion. The most secure option is to
re-share the key every time a loss or theft of any share
is detected or suspected. Alternately, we can use a com-
bination of extra shares and a revocation server as dis-
cussed above.

Unlike the corporate scenario, for online Bitcoin ser-
vice providers (merchants, exchanges, wallets, etc.)
there is another failure mode: a server going down. Ser-
vice providers would like to maintain as high an uptime
as possible, and the worry is that a threshold wallet multi-
plies the downtime by a factor of t.11 Ideally, the thresh-
old wallet must be able to recover from failure of a server
with no downtime, i.e., without requiring any manual in-
tervention. We can accomplish this by having one or two
backup machines with additional shares. Instead of a
t-out-of-t sharing, we would use t-out-of-t +m sharing
where m is the number of backup servers.

6.8 Two-factor security backup and recovery

In the two-factor security system described in Section 7,
if one of Alice’s devices is stolen but the other is secure,
the thief will not be able to spend Alice’s bitcoins, but
neither will Alice. The ideal solution is to store backups
of each share independently to minimize the chances of
both being stolen.

Once Alice detects a loss, theft or intrusion that af-
fects one share, she can re-secure her wallet by recon-
structing the keys, re-sharing them, and deleting the orig-
inal shares. As our wallets are deterministic, the only
keyshares that need to be backed up are shares of the

11In our conversations with a prominent service provider who ap-
proached us about adopting our technology, it turned out that this was
their primary concern.
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master key. Once the master key has been reshared, par-
ticipants can derive their shares for all other keys in the
wallet.

7 IMPLEMENTATION AND
EVALUATION

In this section, we describe the design, creation, and eval-
uation of a two-factor-secure distributed wallet that we
described briefly in Section 7.

We can extend the principles of dual control to the se-
curity of an individual’s wallet — here we split control
between different the user’s personal devices. The pri-
vate key is not stored on any machine nor is it ever re-
constructed during signature generation.

To protect against theft, Alice distributes 2-out-of-2
shares of her private key among two devices that she
owns, say her computer and smartphone. When Al-
ice initiates a Bitcoin transaction from her computer, a
prompt containing the transaction details will appear on
her smartphone via her wallet app. If she confirms, the
two devices will sign the transaction using the threshold
scheme and broadcast it. We stress that at no point was
the key reconstructed on either device; on its own, neither
device contains enough information to create a signature.
An attacker will have to compromise both her computer
and her smartphone to steal her bitcoins.

A Bitcoin wallet with two-factor security is arguably
more secure than cash, especially with appropriate
backup and recovery options (Section 6.8). We can fur-
ther improve security by generalizing to multi-factor se-
curity, but given the usability drawbacks it is not clear if
this will be useful in practice.

7.1 Design decisions

Our goal was to create pair of applications, one for
a desktop computer and one for a smartphone, which
would together form a easy to use wallet. We chose Java
because of its cross-platform nature and the availability
of many useful libraries. We wanted our code to be easily
incorporated into other wallets, so we decided to make
our code part of BitcoinJ, the most commonly used Java
Bitcoin Library. As a result, we used BouncyCastle, the
crypto library used by BitcoinJ, to implement our crypto
code.

On the desktop, we created a modified version of the
MultiBit wallet software since it is Java based and open
source. On the phone (Android) we wrote a simple ap-
plication from scratch since we required very little user
interface.

The options for communication between the two de-
vices are Bluetooth, WiFi, or a centralized server. We

ruled out the latter since direct communication is faster,
simpler, and more privacy-preserving. Our experience
with Bluetooth on Android taught us that it it fairly unre-
liable, so we settled on WiFi communication. For device
discovery (to initiate the communication) we used DNS
Service Discovery, (DNS-SD), a system that uses DNS
messaging to advertise services on a network. Once the
phone and desktop had discovered each other, they used
TLS in order to establish secure communication.

To initiate a secure connection we need an out-of-band
exchange of key material (since there is no PKI); the
method with the best usability-security trade-off seems
to be using the phone’s camera to capture a 2D-barcode
on the desktop. We used the ZXIng barcode library. It
can both create and read bar codes so we were able to use
it on both devices.

7.2 Security Model

The desktop acts as a trusted dealer when distributing the
phone’s keyshare. Although there is some risk in using
a trusted dealer, it can be alleviated by booting off a live
disk image. Since the initialization phase requires no in-
ternet connection, this eliminates the danger of malware
as long as the disk is trusted. The desktop transfers the
keyshare and public key to the phone which completes
the initialization. The desktop then deletes all record of
the phone’s keyshare.

After this point all future communication occurs over
TLS (with self-signed client and server certificates) en-
suring a completely secure and trusted connection. Al-
though only authenticated messages are required by the
threshold signature protocol (since it leaks no confiden-
tial information), using TLS prevents any denial of ser-
vice attacks against the desktop.

7.3 Two-factor application protocol

• Initialization

– Desktop: Create wallet and display QR code
with Public Certificate and one-time-password

– Phone: Scan QR code and initiate TLS con-
nection using Public Certificate.

– Phone: Authenticate using one-time-password
– Phone: Send over public certificate and re-

ceive keyshare

• Transaction

– Desktop: Create transaction
– Desktop: Create TLS server socket and wait

for phone to connect
– Phone: Connect to desktop using TLS with

client side authentication
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Figure 3: Initialization Protocol

– Phone: Give user choice to approve transac-
tion. Continue if the user approves

– Desktop: Initiate threshold protocol

– Phone: Participate in threshold protocol

– Desktop: Complete transaction with produced
signature and add to blockchain

7.4 Usage

When a new wallet is created in MultiBit, a QR code is
displayed. The Android application scans the QR code
which contains a self-signed certificate for the desktop
and a one-time-password. The phone then initiates a TLS
connection with the desktop using the certificate. The
phone authenticates itself using the one-time-password
and then sends its own self-signed certificate so that TLS
client authentication can be enabled on future connec-
tions. The desktop then sends the phone’s keyshare and
deletes it from memory.

When MultiBit tries to sign a transaction, a server is
started and a DNS-SD service is registered to advertise
the server. While the phone application runs, it looks for
this service and tries to initiate a TLS connection with
the server. If it succeeds, the desktop sends the trans-
action information along with the wallet public key to
the phone. If the phone has a keyshare for the public
key, it presents the user with the transaction information
along with the ability to allow or cancel the transaction.
If the user chooses to allow it, the threshold scheme is
run to produce a signature on the desktop. Finally the
desktop broadcasts the signed transaction to the Bitcoin

Time (Seconds)
Round 1 (Computer) 0.26
Round 2 (Phone) 0.36
Round 3 (Computer) 0.58
Round 4 (Phone) 11.04
Total 13.26

Table 2: This table demonstrates the per round running
time of the threshold wallet app as recorded directly on
the devices. The majority of time is spent in round 4.
During this round 89% is spent creating and verifying
zero knowledge proofs. The discrepancy between total
time and the sum of the rounds is due to the computer
verifying the phones final zero knowledge proof.

peer-to-peer network. The precise protocol is presented
in Appendix 7.3.

We transferred a small amount of bitcoin to our spe-
cially created wallet and then spent it by threshold-
signing a transaction. Our threshold-signed transaction
can be viewed in the block chain.12

7.5 Implementation performance

Our implementation exhibits reasonable performance.
As seen in table 2, the vast majority of time spent while
signing is during round 4 creating and verifying zero
knowledge proofs. All other parts of the signing take

12Full details of this transaction can be viewed online at

https://blockchain.info/tx/

cf5344b625fe87efa351aadf0

bd542ec437c327b7c29e52245d3b41cea3e205b
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negligible amounts of time. Thus the total execution time
is is small compared to the time required for a Bitcoin
transaction to receive a confirmation on the block chain,
which is 10 minutes on average. Thus our system is ef-
ficient enough to work well in practice. It is important
to note that the signature generated by the protocol is a
regular Bitcoin signature and thus can be verified in the
same amount of time.

7.6 t-out-of-t performance

We evaluated the performance of the t-out-of-t threshold
signature scheme. We implemented all participants on a
single desktop but measured the running time for each
participant; we report the per-participant execution time.

The encryption scheme uses a large modulus N whose
size grows linearly with t, the number of participants.
The bottleneck step is contained in the zero knowledge
proofs which repeatedly invoke exponentiation with a
modulus of N2 whose size is again linear in t. The num-
ber of ZK proofs is O(t).

Note that the running time is not dependent on n: even
though our t-out-of-n signature scheme involves a com-
binatorial construction to distribute shares, the signature
protocol itself is just a t-out-of-t protocol.

Figure 5: Running time versus number of participants

8 CONCLUSION

Corporations require internal financial controls to oper-
ate effectively. We demonstrated that current Bitcoin
technologies such as multi-signature scripts are inad-
equate for realizing such controls in a practical man-
ner. Instead, we showed why a threshold-signature-based
system is the right approach. We presented the first prac-
tical DSA/ECDSA threshold-signature scheme, which
we believe to be of independent interest. We showed how

to use this to realize threshold wallets and various inter-
nal control protocols. We are currently in discussions
with a prominent Bitcoin wallet software to integrate our
implementation of two-factor security. Our techniques
have the potential to dramatically improve Bitcoin secu-
rity, moving it closer to widespread adoption as a cur-
rency.
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Figure 4: Transaction Protocol
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A SECURE DELEGATION

Say Alice wants to give Bob control of her Bitcoin wallet
while enforcing some policy. The policy may be tempo-
ral, limiting the period of time for which Bob has control,
or it might contain a spending limit. Policies can be ar-
bitrarily complex, but we will restrict our focus to those
policies that are algorithmically enforceable.

Note that Alice cannot give Bob her private key since
once Bob has the key, Alice can no longer restrict how he
uses it. To avoid this issue, we will consider delegation
protocols in which Alice gives Bob some credential other
than the key. Bob will be able to access a server that
Alice set up and use this credential to create a transaction
that is allowed by the policy.

Alice can run a server that authenticates Bob and signs
transactions on her behalf provided that they are permit-
ted by the policy. While this would work, it relies heavily
on network security. An adversary who compromises the
server will learn the key. This motivates:

Definition 7 (Secure delegation) A wallet delegation
protocol is secure if: (1) Bob can produce signed trans-
actions if and only if they are allowed by the policy, and
(2) Alice does not use a hot wallet.

We can achieve secure delegation with a 2-out-of-2
threshold signature scheme. Alice creates two shares of
her private key.13 She gives one to Bob and stores the
other on her server. Alice configures her server to only
participate in generating a threshold signature for trans-
actions that are allowed by the policy. In this system, an
attacker who compromises Alice’s server will gain noth-
ing as the key share on the server is useless without Bob’s
share. Of course if an attacker learns Alice’s key he can
steal her bitcoins, but Alice’s key is stored offline, mak-
ing this attack much more difficult.

Recall that because we are using threshold signatures,
the key is never reconstructed. Thus even after Bob suc-
cessfully creates a signed transaction from Alice’s ad-
dress, he is still unable to sign further transactions with-
out the participation of Alice’s server. Furthermore, Al-
ice can revoke the delegation by simply destroying her
share. Bob’s share is now useless, and Alice’s wallet re-
mains secure.

B ONLINE WALLETS: SECURE
WITHDRAWAL

In our corporate purchasing example, security derives
from the fact that every piece of information necessary

13For simplicity of exposition we can assume that there is a single
address that Alice is delegating, but as described in Section 4.4, to del-
egate a wallet Alice would share her master private key.

for completion of the transaction is entered into the sys-
tem by at least two participants. In particular, the sup-
plier communicates his receiving address to the purchas-
ing clerk, and then again to the accounts department as
part of the invoice.

Consider, on the other hand, an online wallet service
that holds funds on users’ behalf. Users may withdraw
bitcoins (to their own wallets, or another service) at any
time simply by using the web interface. Avoiding a sin-
gle point of failure in such a system appears hopeless:
anyone who hacks into or controls the web server might
be able to withdraw all users’ funds.

One solution is a 2-out-of-2 wallet where one share
is held by the user and the other by the online wallet
provider. However, this results in a severe usability and
security cost for the user — he may not want to run a Bit-
coin node, and losing his device might make his funds
unrecoverable. Perhaps more importantly, it locks up
users’ deposits and prevents the service provider from
maintaining fractional reserves, as virtually all banks do.

Surprisingly, there is a solution to this conundrum us-
ing threshold wallets. It requires introducing a delay
(say, 24 hours) between a user requesting a withdrawal
and actually executing the transaction. This delay is
used to notify the user by email and allow him to cancel
the transaction if it is unauthorized. All security-critical
steps are executed in a threshold fashion.

• There are t share servers in addition to a web server.
Each share server maintains the user’s current Bit-
coin balance and a list of user-uploaded withdrawal
addresses a table (user id, user email addr, bal-
ance, withdrawal addresses).

• The user may request a withdrawal at any time,
and the web server sends this request to each share
server. If the user has sufficient balance and the re-
quested withdrawal address is on the approved list,
the share servers execute a threshold signature pro-
tocol immediately to transfer the funds.

• If the address is not on the approved list, the share
servers add it to a pending address list and each
share server emails the user that a new pending ad-
dress has been added.

• If the user takes no action, the pending address gets
added to the approved list after the delay period and
the transaction is then executed.

Thus, even if the web server and all but one share
server are compromised, the user has a delay period to
take action. Since the web server may be compromised,
the recovery procedure should not be web-based; it could
instead involve calling the company’s customer support
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line. As an incidental benefit, the scheme also provides
protection against compromise of the user’s account.

When the user wishes to initiate a payment to a mer-
chant via the wallet service (rather than withdrawing the
bulk of his funds), a 24-hour delay is not acceptable. So
there would have to be a daily spending limit for ad-
dresses not on the approved list; below this limit, there
is no delay period.

From a usability perspective, having each share server
independently email the user is undesirable. It is not
clear if it is possible to avoid this without compromis-
ing security.
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