Making
 Homework Matter to

More meaningful homework is an easily achievable goal.

Students

Lee Walk and Marshall Lassak

Students must understand the difference between asking another student for help in thinking through a problem and simply asking for the answer. Homework does not need to be complated independently if the primary goal is to learn about mathematics.

LEVELS OF DEMAND

Smith and Stein (1998) argue that the highest learning gains for students result from engagement in high levels
of cognitive thinking and reasoning. They break down tasks in terms of four categories of cognitive demand:

1. Memorization
2. Procedures without connections to concepts or meaning
3. Procedures with connections to concepts
4. Doing mathematics

Keeping in mind the appropriate level
of homework challenge, it appears that most homework tasks should be in the third category (procedures with connections to concepts). The first two categories are considered to have a lower-level demand for students because they can be solved with limited or no cognitive demand. The third and fourth categories of tasks require deeper thinking and understanding. These tasks might be more complex and often have multiple solution paths.

Fig. 1 Students were given this format and asked to find and fix the mistake.

$$
\text { 1) } \begin{aligned}
& 5 x+4 x-x \\
& 9 x
\end{aligned}
$$

Explain mistake:

Correct answer:
2) $5-(x-2)$
$5-x-2$ $3-x$
Explain mistake:

Correct answer:
3) $\quad \begin{aligned} & 2(x+5) \\ & 2 x+5\end{aligned}$

Explain mistake:

Correct answer:

Fig. 2 Jennifer produced this explanation.

$$
\text { 3) } \begin{aligned}
& 2(x+5) \\
& 2 x+5
\end{aligned} \quad 2 x+10
$$

Explain mistake:

The beSOM aid nCo distribute
the the 2 to the 5

Correct answer: $2 x+10$

Fig. 3 Connor found these errors; he was unable to obtain the correct answer for problem 5.
4) $\left.\quad \begin{array}{l}5 x+4 x-x / 5 x+4 x= \\ 9 x \\ 9 x-x=8 x\end{array}\right]$
Explain mistake:
They forgot
to subtroest the
one x.
Correct answer: $8 x$
5) $5-(x-2) 5-(x-2)$
$\begin{array}{ll}5-x-2 & 5-1(-x+2) \\ 3-x & 5\end{array}$
Explain mistake:
they didn't
change the double neqitiut
5.2.

Correct answer: $2 x+10$
6)

$$
\begin{aligned}
& 2(x+5) 2(x+5) \\
& 2 x+52 x+10
\end{aligned}
$$

Explain mistake:
they ad dint multiply

Fig. 4 Kim produced these explanations.

5) $\begin{aligned} & 5-(x-2) \\ & \\ & 5-\mathrm{x}-2\end{aligned}$
$3-\mathrm{x}$
Explain mistake:

Although the fourth level may be appropriate for classroom learning, it is likely to be too difficult for homework on a regular basis and could negatively impact student effort.

CHANGING MY APPROACH

All this research led me to wonder if my students would be more successful in completing and learning from their homework if they were given fewer problems with a higher level of cognitive demand. I already knew that some students have difficulties with procedural questions and that even those students who are able to answer such questions often have a difficult time explaining the reasoning for their methods.

When teaching prealgebra to my eighth-grade students, I typically assign skill-and-drill questions accompanied by one short-response problem. Skill-and-drill problems give students repeated practice of a particular procedure and are intended to help them gain fluency. The majority of my students completed the homework problems, but those who often did not explained that they did not have "enough time" or did not understand what to do. These students were typically habitual offenders in failing to complete their assignments, and the homework never seemed important to them. I tried to motivate my students and access self-motivation by putting more control of the homework into their hands through additional time and choices.

Focusing on the algebraic concept of solving linear equations, I implemented a change in my homework style for several weeks. Manipulating and solving equations is a central concept for my students, and it is a skill that many have difficulty mastering. I thought this would be a good time to provide a better homework experience. My class received "cognitive" homework with fewer problems that

Fig. 5 Revisiting ideas often allowed for better class discussion and participation.

(a) Donna's work

had a higher level of demand. Weekly homework assignments contained suggestions about the number of questions to be completed each day. The presentation of the material for the unit and the structure of the classroom still allowed for time spent reviewing homework questions.

In changing the type of homework, I tried not to change my method of assessment or how I integrated homework into my lessons. I continued to collect and check homework for completion and accuracy. Students were allowed and encouraged to ask questions about homework ideas as part of daily lessons. Weekly quizzes were used to help determine student progress throughout the unit.

I emphasized that the new homework had fewer problems for them to
complete and that daily assignments were only suggestions; nothing was due until the end of the week. This meant that if they were busy on a given night, they could get it done later in the week. I tried to motivate them by putting more control of the homework into their hands.

To foster student cooperation, I told students that they could ask me for help but reminded them that they could also rely on their classmates. On several occasions, I told students that they could work with a partner or in small groups to work out problems at the end of class. The class also engaged in think-pair-share activities to jumpstart thinking and discussion.

The new homework problems I created and assigned were influenced by suggestions obtained from reading
work done by Wieman and Arbaugh (2014); Lange, Booth, and Newton (2014); and Friedlander and Arcavi (2012), all of whom offered advice on particular homework style questions as well as questions to elicit the type of thinking and activity advocated by Smith and Stein (1998).

Find and Fix the Mistake

Find and Fix the Mistake problems (see fig. 1) were the most commonly used tasks throughout the new homework implementation. Students were instructed to identify the mistake, explain it, and simplify the expressions or solve the equations correctly. One

Fig. 6 These students sorted equations by using common characteristics.

7) Take the six equations from the previous section and sort them into 2 groups by common characteristics

$f-15=-1$	Group 1 Subtroction sinn
$d-15=-19$	$y+12=-10$ Group 2 addition sign
$n+19=0$	
	$(+6=1$
	$q+8=13$

(a) Connor's work
7) Take the six equations from the previous section and sort them into 2 groups by common characteristics

$\begin{gathered} \text { 1) } y+1 z=-10 \\ y=z z \end{gathered}$	Group 1 these are addilion	$\begin{gathered} (2) F-15=-1 \\ k=14 \end{gathered}$	Group 2
3) $\begin{aligned} & n+19=0 \\ & n=-19 \end{aligned}$		$4)^{(1-15}=-14$ $d=1$	
$\begin{gathered} 5) a+z-13 \\ a=5 \end{gathered}$		b) $c+b=1$ $c=5$	

(b) Mary's work
7) Take the six equations from the previous section and sort them into 2 groups by common characteristics

(d) Debbie's work
advantage of these problems was that they required students to use correct mathematical vocabulary. Jennifer (see fig. 2) includes the term distribute in her response, which was discussed several times in class.

Connor (see fig. 3) and Kim (see fig. 4) both demonstrated their procedural knowledge; writing about the problem helped them participate in class discussion. During this time, I found that students were more confident in class discussions when they had had a chance to think before class about these ideas. Rather than just solving the equations with varying levels of procedural fluency, students were thinking more about the problems and how to explain errors.

Students like Donna and Lois (see fig. 5) were improving on their answers and explanations from previous assignments. These two students-as well as others-were also more likely to volunteer their opinions in class when they had their explanations already on paper. This led to better class discussions in that more students engaged with the ideas. From my perspective, Find and Fix the Mistake problems made it clear what students did and did not understand in terms of mathematical procedures and concepts.

Problem Sorts

Problem Sort questions asked students to sort equations they had already solved into two groups by using common characteristics, such as operations (shown by Connor and Mary's work in figs. 6a-6b), properties, nature of the solution (shown by Jane in fig. 6c), and so on. The open-ended nature of choosing the sorting criteria made this type of question challenging for students. Quite often I received answers like Debbie's (see fig. 6d), which appears to show a separation by operation but no explanation. This

Fig. 7 This grid illustrated a word problem in reverse.
2) The art teacher is making salt dough for an upcoming project. The ratio of flour to salt to water used to make salt dough is shown below.

Making Sour Dough	Story
Cups of flour: 2 c	
Cups of salt: c	
Cups of water: $3 / 4 \mathrm{c}$	
$2 \mathrm{c}+\mathrm{c}+3 / 4 \mathrm{c}=60 \mathrm{cups}$	

a. Write a story that matches the expressions and equation shown above.
b. Solve the equation. How many cups of each ingredient is the art teacher planning to use?

Fig. 8 These students had difficulty determining the number of cups needed for each ingredient.

Making Sour Dough	Story
Cups of flour: 2c	Mrs. Need is making salt douah.
Cups of salt: \mathbf{c}	The ratio of the flour is $2 c$ the
Cups of water: 3/4 c	ratio of the salt is a amount of cups
$2 \mathrm{c}+\mathrm{c}+3 / 4 \mathrm{c}=60 \mathrm{cups}$	and the ratio of the reter is $3 / 4 \mathrm{C}$
$2 c+\dot{c}+3 / 4 c$	and the retal ratio is cocups.
$=60$ cups	

a. Write a story that matches the expressions and equation shown above.
b. Solve the equation. How many cupsefeach ingredient is theagt teacher planning to use?

(a) Kim's work

(b) Connor's work
although the level of demand may have been high, the problem was useful in determining students' understanding and misconceptions of certain types of linear equations.

Justify Your Reasoning

This type of problem is designed to help students analyze why linear equations can have one, none, or infinitely many solutions. The concept of a math
equation not having a solution was a new idea for many of the students at this grade level. This question was asked after students were already solving linear equations that might not have had a solution.

Many students, including Sharon (see fig. 10a), repeated phrases that were discussed in class. Although these statements may be true, students did not offer any justification or evidence that they really understood how the inequality and the no-solution equation were related. Amy (see fig. 10b) also tried to relate the problem directly to class conversation. Like Sharon, Amy may simply be repeating what others have said in class, making it more difficult to perceive individual reasoning. Other students were able to provide some insight into how they viewed the problem. Kim attempted to describe
actions she took to solve these types of problems (see fig. 10c). This does not necessarily demonstrate understanding; rather, it is an observed connection between the process and end result.

Connor's response (see fig. 10d) dug a little bit deeper. Connor was able to explain his answer by talking about how inequalities went with no solutions because the equations were "never true in the first place." He continued to describe how these equations may initially look like the others but do not hold up under mathematical investigation.

Students completed the Justify Your Reasoning problems relatively quickly, and most students attempted them. Allowing students to explain their responses in class helped them to make connections with other students and their ideas.

Fig. 9 Jane struggled with the first version of this problem. Weeks later, she improved with a different version.

Making Sour Dough	How to mare Story
Cups of flour: 2 c	2 cups of masned potatoa flares
Cups of salt: c	ω = how many cups of waten
Cups of water: $3 / 4 \mathrm{c}$	$3 / 4$ a cud of milk
$2 \mathrm{c}+\mathrm{c}+3 / 4 \mathrm{c}=60 \mathrm{cups}$	$2 C+W+3 / 4 C=60$ cups
$2 c+c+3 / 4 c=4$	$\begin{aligned} & 3 c+3 / 5 c=60 \\ & 3^{3} / 4 c=60 \end{aligned}$

(a)

Fixing Your Car	Story
Time (hours): h	I coot my car repaired t they daraed
Cost of Mike's Mechanics: $15 \mathrm{~h}+75$	Mire Mechanics cost 15 clollars a hour
Cost of Bubba's Body Shop: 25h	Buboci's Body shop cost 25 ciullars a hour
$15 \mathrm{~h}+75=25 \mathrm{~h}$	Either way its going to take
	the same nimount of nours.
$\therefore \quad \frac{75=10 n}{10}$	The houls they will spent on

a. Write a story that matches the expressions and equation shown above.
b. Solve the equation.
c. Interpret the answer.

(b)

POSITIVE PERCEPTION OF HOMEWORK

I feel that these tasks had a positive impact on my students' perception of homework. A careful selection of homework tasks can help students practice, understand, and explore mathematical concepts. If students are confused about what a question is asking or how to begin, they are not as likely to persevere through the problem.

Teachers and students evaluate homework questions differently, and they cannot be labeled as simply easy or difficult. The appropriateness of the level of demand of the problem is important when considering what students should gain from completing a task. Questions such as those in Find and Fix the Problem were very popular and successful with students. They had clear expectations, and students were able to determine answers that they thought made sense and were acceptable to them.

I found the benefits of using this style of homework to include the following:

- Improved class discussions: Students were able to explain the mathematical concepts with more confidence and use better vocabulary in the classroom setting.
- Teacher insights: Explanations for and justification of the homework problems made it easier for me to determine current levels of understanding as well as notice common misconceptions shared by the class.

This small change in my homework approach helped me gain information about students' perception of homework in a different way. Although the process did not determine why some students continu-

Fig. 10 Some students simply repeated classroom phrases, whereas others went a little deeper.
6) In your own words, explain what it means when a solution to an equation results in an inequality, such as $3 \neq 4$.

wisdras that there is ro solution to the problum.

(a) Sharon's work
6) In your own words, explain what it means when a solution to an equation results in an inequality, such as $3 \neq 4$. Wo Selistion if variabies cancel and tle anewer is farse.
(b) Amy's work
6) In your own words, explain what it means when a solution to an equation results in an inequality, such as $3 \neq 4$.

When a solution to an equation results in an in equality, such as 3 t 4 because the numbers on each side of the equation does not come togather to equal each other out.
(c) Kim's work
6) In your own words, explain what it means when a solution to an equation results in an inequality, such as $3 \neq 4$. That means no Solution, no solution memens

$$
3 \text { and } 4 \text { con never equal each othere. }
$$

(d) Connor's work
ally fail to complete their homework, it did help me see why certain students skip the occasional problem. In working with new homework practices, I learned how important it is for homework to contain an appropriate level of demand. Skills-practice problems are beneficial to students' math knowledge, but good cognitive problems require students to invoke deeper levels of thinking. I plan to continue to adjust my homework structure to include skills practice and cognitive thought. Problems with an appropriate level of demand and timely feedback allow students to learn from their homework and be confident that the
work they do outside of class is meaningful.

REFERENCES

Dettmers, S., Ulrich Trautwein, Oliver Lüdtke, Mareike Kunter, and Jurgen Baumert. 2010. "Homework Works If Homework Quality Is High: Using Multilevel Modeling to Predict the Development of Achievement in Mathematics." Journal of Educational Psychology 102 (May): 467-82.
Friedlander, Alex, and Abraham Arcavi. 2012. "Practicing Algebraic Skills: A Conceptual Approach." The Mathematics Teacher 105 (April): 608-14.
Lange, Karin E., Julie L. Booth, and Kristie J. Newton. 2014. "Learning Algebra from Worked Examples." The Mathematics Teacher 107 (March): 534-40.
Smith, Margaret Schwan, and Mary Kay

Stein. 1998. "Selecting and Creating Mathematical Tasks: From Research to Practice." Mathematics Teaching in the Middle School 3 (February): 344-50.
Trautwein, Ulrich. 2007. "The
Homework-Achievement Relation
Reconsidered: Differentiating Homework Time, Homework Frequency, and Homework Effort." Learning and Instruction 17 (3): 372-88.
Wieman, Rob, and Fran Arbaugh. 2014. "Making Homework More Meaningful." Mathematics Teaching in the Middle School 20 (October): 160-65.

Lee Walk, Iwalk@ cumberland.k12.il.us, teaches eighth-grade math and science at Cumberland Middle School in Toledo, Illinois. He particularly enjoys using logic puzzles and riddles when teaching mathematics. Marshall Lassak, mblassak@eiu.edu, teaches at Eastern Illinois University in Charleston. He is interested in improving the teaching of mathematics through effective action research experiences.

- Let's Chat about Homework

On Wednesday, May 17, 9:00 p.m. ET, we will expand on "Making Homework Matter to Students," by Lee Walk and Marshall Lassak (pp. 546-53). Join us at \#MTMSchat.

