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ABSTRACT
Graph processing is widely used in various domains, while process-
ing large-scale graphs has always been memory-bound. In-situ pro-
cessing is a promising solution to overcome the “memory wall” chal-
lenges in such memory-intensive applications. Previous accelerator
designs for graph processing only focused on integrating more com-
puting units inside memories or using more memory layers, rather
than exploiting the huge parallelism lying in memory banks. In this
paper, we present GraphIA, an In-situ Accelerator for large-scale
graph processing based on DRAM technology. GraphIA couples
large-capacity memory and computing resource in DRAM by con-
necting multiple chips with computation circuits inside. GraphIA
chips are organized into a scaling ring interconnection, which is
able to maximize the individual bandwidth with minimal connec-
tion overheads and scale to larger graphs by using more chips.
Banks in DRAM are organized into heterogeneous edge and ver-
tex banks, cooperating with customized peripheral circuits. Data
duplication and scheduling schemes in heterogeneous banks are
further introduced to overcome the performance loss caused by the
irregular local and remote memory access in our multi-chip ring
structure, achieving 1.63× and 1.16× speedup respectively. Accord-
ing to our extensive experiments, by adopting GraphIA design, our
in-situ accelerator achieves 217× speedup CPU-DRAM designs.
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1 INTRODUCTION
The explosive data analysis requirements for large-scale data and
relationships facilitate the evolving of both algorithms and data
models. Graph, a kind of data structures which can naturally rep-
resent both data and relationships, has been widely used in var-
ious domains, including social network analysis, user behavior
recommendation, etc. With the coming of “big-data” era, the size of
graphs continues to scale and it has been even more challenging to
achieve high graph processing performance on general purposed
architectures. Many customized graph processing accelerators [1, 5–
7, 11, 14, 23, 24, 26, 27] have been put forward.

The essential way to improve the performance of large-scale
graph processing and overcome the “memory wall” for big data
problems is to provide a high bandwidth of data access. Thus,
these graph processing accelerators usually integrated multiple
processing units “closer” to the memory, including using on-chip
eDRAM [11], on-chip SRAM [6, 23], emerging 3D-stacked mem-
ory [1, 7, 27], etc. Such designs can achieve magnitudes of speedup
against graph processing systems on conventional architectures [4,
10, 18, 21, 22, 25, 28–30].

However, integrating processing units “closer” to the memory
still treats the memory as a whole storage part, without exploring
the parallelism and bandwidth inside the memory. Recently, in-situ
processing [8, 20] has been put forward to tackle this problem. For
example, DRISA [20] modified the DRAM into a reconfigurable
in-situ accelerator, and achieved 8.8× speedup against ASIC based
accelerator design [3] on neural network computation [9, 17]. The
main idea of in-situ accelerators is to modify circuits in the mem-
ory to perform computation functions, rather than simply putting
computation units “closer” to the whole memory part.

The idea of in-situ accelerators can be a promising solution to
accelerating large-scale graph processing by utilizing parallelism
inside the memory. However, using in-situ computation for large-
scale graph processing faces two problems: (1) Scaling to larger
graphs is hard due to the poor locality when real-word graphs
(e.g., Table 1) requires to be stored in multiple chips. (2) Intensive
irregular memory access introduces significant overhead. Graph
processing is notoriously known for the intensive irregular memory
access. Processing data in the memory chip may be interfered by
other processing units, leading to efficient bandwidth loss.

In this paper, we present GraphIA, to tackle these two challenges
for large-scale graph processing accelerators. GraphIA follows the
approach of Automata [8] and DRISA [20], which use the DRAM
technology to build an in-situ accelerator with large-capacity mem-
ory and computing resource highly coupled.We propose the scal-
ing ring interconnection topology and communication scheme for
GraphIA chips to make the accelerator scalable to larger graphs.
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For each GraphIA chip, we modify the DRAM chip by designing
heterogeneous banks with peripheral circuits in the DRAM to
fully exploit the huge parallelism lying in memory banks. More-
over, GraphIA design can be easily applied to emerging devices (e.g.,
HMC [1, 7, 27]) by adopting same designs in memory banks and in-
terconnections. Themain contributions of GraphIA are summarized
as follows:
• We propose the first in-situ architecture, GraphIA, for large-scale

graph processing, which highly couples computing elements and
large capacity DRAMmemory. Customized circuits are integrated
into DRAM to reduce the latency for graph data access.

• We propose the scaling ring interconnection together with our
data scheduling scheme to deal with the scaling out problem
facing by larger graph problems. GraphIA chips are connected
using a ring structured interconnection. In this way, GraphIA can
scale to larger graphs by using more chips without significant
performance loss.

• We design heterogeneous banks with data duplication and
scheduling schemes to further leverage the intrinsic parallelism
in DRAM banks and overcome the performance loss caused by
the irregular local and remote memory access in our multi-chip
ring structure. Simulation result shows that data duplication and
scheduling can achieve 1.63× and 1.16× speedup on average.

• We evaluate the performance of GraphIA through comprehensive
experiments, and the results show that GraphIA outperforms
CPU-DRAM based designs by 217×.

2 BACKGROUND
In this section, we will introduce the background of graph pro-

cessing, including two processing models and the partitioning mod-
els.

2.1 Graph Processing Model
Gather-Apply-Scatter (GAS) model is widely used to represent
various graph algorithms. There are two main ways to implement
the GAS model, vertex-centric model and edge-centric model:
• Vertex-centric model. For each source vertex, it updates all

destination vertices of its outgoing edges.
• Edge-centric model. For each edge, the source vertex updates

the destination vertex.
The edge-centric model is proposed in X-stream [25]. Algo-

rithm 1 shows the pseudo-code of the edge-centric model. When
processing an edge ei, j from source vertex vi to destination vertex

Algorithm 1 Pseudo-code of the edge-centric model [25]

Require: G = (V ,E), initialization
Ensure: Updated V
1: for each vi ∈ V do
2: Initialize(vi , initialization)
3: end for
4: while not finished do
5: for each ei .j ∈ G do
6: value(vi ) = Update(vi , vj , ei, j )
7: end for
8: end while
9: return V

vj , different graph algorithms only differ in the “Update()” function.
By restrict the range of both source and destination vertices, the
edge-centric model can and to ensure the locality for data access.
Thus, we adopt this edge-centric model in our GraphIA design.

2.2 Graph Partitioning Model
In order to ensure the locality and fit the graph into the memory,
graph partitioning methods are required. The interval-block parti-
tioning method is widely adopted in previous systems [4, 29], in
which all vertices are divided into P disjointed intervals, and then
edges are divided into P2 disjointed blocks according to source and
destination vertices. We show an example of the interval-block
partitioning method in Figure 1(a).

Based on the edge-centric processing model and the interval-
block partitioning model, different graph algorithms can be exe-
cuted in the form of iterations. During each iteration, all blocks are
sequentially processed, and edges within each block are sequen-
tially accessed to update the destination vertices.

3 GRAPHIA ARCHITECTURE
In this section, we introduce our GraphIA architecture and the
entire processing flow in detail. In general, our architecture con-
tains N GraphIA chips. The vertex and edge data are divided into
N partitions and distributed equally to all N chips. We will first
introduce our graph partitioning method, followed by the details of
our chip architecture. Then we will show how GraphIA accelerates
graph computation, optimizes memory access, and hides the long
latency of inter-chip data transfer in the processing flow.
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Figure 1: Vertex and edge partitioning in GraphIA, one in-
terval and N blocks are stored in a GraphIA chip.
3.1 Data Partitioning and Allocation
Real world graphs can be very large (millions of vertex and edges,
as shown in Table 1) and require multiple DRAM chips to store
the entire graph. More importantly, we hope to enable parallel
graph processing on multiple chips to make our design scalable to
larger problems. As a result, we adopt the interval-block partition-
ing method mentioned in Section 2.2. In our design, we consider
more about workload balance in this graph partitioning phase while
the memory access optimization will be discussed later in process-
ing flow introduction. In order to balance the workloads of each
GraphIA chip, we use hash-based method [7] to partition the ver-
tices into N intervals and then divide the edges into N 2 blocks.

We reorder the vertices after partitioning and Figure 1(a) shows
the result. The adjacent matrix is divided into N columns marked
by different colors. Each column contains approximately the same
amount of vertices and edges since we partition the vertices using
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hash function [7]. The destination vertices and the edges in one col-
umn are mapped onto one GraphIA chip (as shown in Figure 1(b)).
Each chip contains one vertex interval’s data and N edge blocks’
data. Now our architecture is similar to a distributed graph process-
ing system while one node in this “distributed system” is a DRAM
chip rather than a processor.

3.2 Overall Architecture
Figure 2 shows the entire architecture of GraphIA . The left side
shows the N GraphIA chips (modified DRAM chips) connected in a
ring topology. The right side shows the inside of one chip. We use
some memory banks to store edge data and vertex data. We also add
some peripheral circuits to enable inner- and inter-chip communi-
cation. Our data layout and processing flow design could provide
high parallelism. All chips process edges in parallel and there are
simple ALUs (sALU) for basic arithmetic/logical operations on each
chip. But such high parallelism requires high memory bandwidth
support. In GraphIA , the memory access is also optimized for edge
data access, vertex data access, and inter-chip data transfer. For
edge data access and inter-chip data transfer, the memory accesses
are serialized to increase row buffer hit rate. For the random vertex
access in the computation, we use multiple banks and hashed vertex
data layout to provide a bank-level parallelism.

Details of each component and peripheral circuits are introduced
in the following sections.

3.2.1 Scaling Ring Connection: All the N chips are connected
in a ring topology. During the execution, each chip will only need
to transfer some vertex data to the neighbor chip and there is no
data traffic conflict on the N connections. This connection makes
our GraphIA scalable since we can increase the number of chips to
store a larger graph and obtain more chip-level parallelism.

3.2.2 Heterogeneous Banks. The memory banks in the GraphIA
are organized as edge and vertex banks. The data duplication and
scheduling schemeswill be introducedwith the processing flow.
• Edge Bank: The edge data of each partition are stored in the

edge banks. The edges are first sorted by the partition number
of the source vertex and then sorted by the index of destination

vertex. This data layout and the sequential edge-centric execution
guarantee high row buffer hit rate because once a row is activated,
all the data in this row will be read.

• Vertex Bank and Controller: The Vertex Banks are divided
into 4 groups. At the different time during the execution, different
groups have different functions. In general, two groups will be
used to support computation. One of them stores the updated
destination vertex value after computation and the other one
stores the source vertex value for the computation. These two
vertex bank groups will receive the vertex info of the edges from
the FIFOs, read the requested data from the vertex banks, and
send the data to computing components. Two remaining groups
will store the vertex data transferred from the previous chip. The
function of the vertex banks will change in different phases of the
execution. A detailed explanation of how to use these 4 vertex
bank groups is in the following section.
3.2.3 Peripheral Circuits & Computing Components. We employ

a scheduler to fetch edge data from edge banks sequentially and
then put the vertex data requests in FIFOs. Different FIFOs contain
the addresses of vertices in different banks inside a bank group. The
vertex data are stored across all the banks inside a group so that the
bank-level parallelism is fully enabled during vertex data access.
The Computing Components module has 4 sALUs that are able to
compute 4 edges simultaneously. The destination vertex data will
be updated after the computation for each edge in the vertex banks.

3.3 Processing Flow
The processing flow of GraphIA follows the edge-centric model. In
each iteration, we will traverse all edges and update the destination
vertex data for each edge. As mentioned in section 3.1, all the vertex
and edge data are divided into N parts and stored on N DRAM
chips. Suppose the N intervals in the vertex set V are represented
by {Ii , 0 ≤ i ≤ N − 1} and the N 2 blocks in the edge set E are
{Bi .j , 0 ≤ i, j ≤ N − 1}. Both Ii and B {0,1, ...,N−1}.i are stored on
chip i (shown in Figure 1). This data partitioning guarantees that
when we update the destination vertex, we only need to update it
locally since all the edges with the same destination will be in the
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Figure 3: Vertex Data Transfer and Processing Flow

same chip as well as the vertex data. Thus we do not need to have
a complex protocol to maintain memory coherence.

Even though the destination vertices of all the edges on chip i
are limited in Ii , the source vertex set can still be the entire vertex
set V under our hash-based vertex partitioning. As a result, chip
i can fetch vertex data in Ii from local DRAM banks but need to
access Ij (j , i) data from DRAM banks on other chips. Such remote
memory access suffers long latency which will degrade the system
performance.

In order to solve this problem, we further divide each itera-
tion into N phases. In one phase, each chip only computes the
edges in one block. A complete processing flow is explained as
follows (shown in Figure 3):

(1) Before an iterationK , each interval Ii is duplicated and stored
in two Vertex Bank Groups, group 0 and group 1 on chip i .

(2) In iteration K phase 0, chip i will compute the block Bi .i .
Data in Vertex Bank Group 1 will be used as the source vertex
set, and Vertex Bank Group 0 will be used as the destination
vertex set and store the updated vertex data during this
iteration.

(3) Data Duplication and Scheduling happens in this step.
At the same time with step (2) in iteration K phase 0, chip
i will also send its vertex data (interval Ii ) in Vertex Bank
Group 0 to the Vertex Bank Group 2 and 3 of the next chip
i + 1 in the ring. Ii is now duplicated and both Vertex Bank
Group 2 and 3 in chip i + 1 have a copy of Ii .

(4) In iteration K phase 1, chip i now have an updated interval
Ii stored in Vertex Bank Group 0 and two copied of Ii−1 in
Vertex Bank Group 2 and 3 transferred from chip i − 1. Chip
i will compute block Bi−1.i using data from Vertex Bank
Group 2 and 0 without access another chip since Ii−1 has
already been transferred in the last phase.

(5) At the same time with step (4), chip i will also send interval
Ii−1 from its Vertex Bank Group 3 to the Vertex Bank Group
3 and 1 of the next chip i + 1 since Vertex Bank Group 2 will
be used for computation in this phase.

(6) This procedure can repeat until phase N − 1, which is the
last phase in this iteration K . During this phase, chip i will
compute block Bi+1,i and duplicate the destination vertex
set in both Vertex Bank Group 0 and 1. We do not need to
transfer data to the next chip in the last phase. Now chip i has
done the computation for all blocks B0.i ,B1.i , . . . ,BN−1.i
and one iteration is completed. We can go back to step 2 to
start the next iteration K + 1.

Figure 3 shows the one entire flow in iteration K . The horizontal
axis represents chips and the vertical axis is time. The black arrows
represent the data transfer between chips. The letter ‘D’, ‘S’, and
‘B’ represent different states of the Vertex Bank Groups in each
chip. ‘D’ and ‘S’ mean that the Vertex Bank Groups are being used
to store the source and destination vertices for the computation
respectively, and ‘B’ means that it is used as a buffer to store the
vertex data transferred from the previous chip.

Memory Access Optimization Analysis: To avoid the perfor-
mance loss caused by remote memory access, our data scheduling
will prefetch the data used in the next phase so that all computation
data accesses will happen locally. However, the prefetched data
need to be used by the computation and sent to the next chip at
the same time. This will introduce bank conflicts which can signifi-
cantly reduce the performance (discussed in 4.3.2). In our design, all
prefetched data will be duplicated so that the computation and data
transfer will access different Vertex Bank Groups. For edge banks,
since the order of access to the edges is fixed in our processing flow,
we can organize the edge data to make the subarray row buffer in
the edge banks can always be hit until the next row is activated.
For source and destination vertex banks access during computation,
we use multiple banks and spread the vertices among all banks to
provide bank-level parallelism. For inter-chip data transfer, a bulk
of continuous data is transferred so that data in the subarray row
buffer can be fully utilized.

4 EVALUATION
In this section, we will introduce our experiment setup and analyze
the benefits coming from our design.Wewill also explore the design
space in terms of scalability.

4.1 Experiment Setup
4.1.1 Datasets and Benchmarks. Five real-world graph datasets

of different types are selected from SNAP datasets [19] to evalu-
ate the system performance in our experiments, including web-
Google (WG, web graph), wiki-Talk (WT, communication network),
soc-Pokec (PK, social network), email-EuAll (EA, email network),
and cit-Patents (CP, citation network). We also choose another 4
synthetic graphs [13] with different sizes to test the scalability of
our design. Table 1 shows the property of the graphs with the num-
ber of vertices and edges. Three graph algorithms, PageRank (PR),
Breadth-First Search (BFS), and Connected Components (CC), are
selected as benchmarks.

4.1.2 Simulation Configuration. We simulate the entire system
performance considering both memory access trace and circuits
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Table 1: Datasets
Graph Name No. Vertices No. Edges Type

web-Google (WG) [19] 875,713 5,105,039 web
soc-Pokec (PK) [19] 1,632,803 30,622,564 social
email-EuAll (EA) [19] 265,214 420,045 email
wiki-Talk (WT) [19] 2,394,385 5,021,410 communication
cit-Patents (CP) [19] 3,774,768 16,518,948 citation
delaunay_n20 [13] 1,048,576 6,291,372 synthetic
delaunay_n21 [13] 2,097,152 12,582,816 synthetic
delaunay_n22 [13] 4,194,304 25,165,738 synthetic
delaunay_n23 [13] 8,388,608 50,331,568 synthetic

model. The parameters of our DRAM components are estimated
by Micron DDR3 SDRAM [15] and SDRAM System-Power Calcula-
tor [16]. For Computing Components, we use the data from [12] to
obtain the latency and energy for 32-bit adder and multiplier. The
single core CPU model is from Intel i7-6700 (Skylake) [2].

We choose N = 16 as a default configuration so that we have 16
chips connected in a ring. Each chip has 4 edge banks and 16 vertex
banks. 4 vertex banks will be one vertex bank groups so that we
can have 4 groups. There are 65536 rows in one bank and each row
has 1024 bits. Such that the entire system could contain around 67
million edges in so that all the 5 real-world datasets we used can
be placed inside the DRAM. In the scalability test, we will change
the value of N to show GraphIA can support larger graph without
a significant loss of performance.

4.2 Overall Performance Improvement
To evaluate the performance gained from GraphIA , we simulate
the single core off-chip graph processing performance. Figure 4
shows the normalized execution time for the off-chip processing
system and our GraphIA achieves 217× speedup on average. This
acceleration comes from (1) the huge internal memory bandwidth
of the in-situ accelerator and (2) parallel processing supported by
the multiple sALUs on multiple chips. Moreover, we improve the
memory access locality by graph partitioning, eliminate the bank
conflicts by data duplication, and conceal the long remote data
access latency by specialized data movement scheduling.CPU 
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Figure 4: Normalized Off-Chip Execution Time
4.3 Evaluation of Memory Access Optimization
Weevaluate the effect of thememory access optimization inGraphIA
by comparing with two different designs. The first one is that we do
not employ data movement scheduling (Non-Scheduling) in the
ring architecture so that remote data access can not be overlapped
with computation. The second one is that we do not use duplicate
the data (Non-Duplication) transferred from another chip so that
the computation and data transfer will access the same Vertex Bank
Group and affect each other.

4.3.1 Benefits of Data Movement Scheduling. Data access onto a
remote chip has longer latency and will degrade the entire system
performance if we do not overlap the computation and remote data

Non_Scheduling 
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Figure 5: Normalized Execution Time without Scheduling
access. Figure 5 shows the normalized execution time without data
movement scheduling to hide the long remote data access latency.
As we can see, the system performance is improved by 1.13× on
average after adopting the data movement scheduling scheme.Non_Extra_Bank 
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Figure 6: Normalized Execution Time without Duplication
4.3.2 Benefits of Data Duplication. If we do not use data du-

plication to separate the vertex data access for computation and
movement, both of them will be slower due to bank conflict. Fig-
ure 6 shows the normalized execution time without data duplication
compared with our default configuration, and this is a 1.63× im-
provement by adopting data duplication in GraphIA on average.

4.4 Scalability Study
We choose 4 synthetic graphs, delaunay_n20, delaunay_n21, de-
launay_n22, and delaunay_n23, from Delaunay Graphs [13]. The
size of delaunay_n23 is 2× of delaunay_n22, 4× of delaunay_n21,
and 8× of delaunay_n20, We use a 2-chip GraphIA configuration
to process delaunay_n20 and increase the number of chips based
on the size of the graph. Finally, we will use the default 16-chip
GraphIA configuration for delaunay_n23. All other memory pa-
rameters remain the same. Figure 7 shows normalized execution
time for different GraphIA configurations with graphs of different
sizes. We can see that there is no significant performance loss as
the number of chips increases. This could prove that our GraphIA
is able to scale up by increasing the number of chips.

Scalability 
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Figure 7: Normalized Memory Access Time

We can further scale up GraphIA by increasing the memory ca-
pacity inside one chip or the total number chips. Increasing single
memory capacity may not affect the entire data movement sched-
uling. However, larger memory will cause longer latency. And the
largest possible capacity of one chip is limited since we could not
have a chip with too much DRAM inside within a specific area.
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On the other hand, increasing the number of chips seems to be
easier in term of scalability but it will increase the data movement
overhead. Suppose we have N chips in our system. The execution
time in one phase is proportional to the number of edges in one
block, |Bi, j | ≈ |E |/N 2. The data movement time in one phase is
proportional to the number of vertices in one interval, |Ii | ≈ |V |/N .
As N increases, the data movement will dominate the total execu-
tion time. The inter chip data bandwidth needs to be increased, e.g.
using near memory data compression to increase the effective data
bandwidth. If the computation time is longer then data movement
time, the computation throughput by should be increased, for ex-
ample, increasing the number of banks to provide higher inner chip
data bandwidth and the number of computing components.
5 RELATEDWORK
The essential way to improve the performance of graph processing
is to provide higher bandwidth for graph data access. One possi-
ble solution is adopting processing-in-memory (PIM) designs. By
integrating processing units into the memory, PIM can achieve mag-
nitudes of higher bandwidth compared with conventional memory
systems, and provide “memory-capacity-proportional” bandwidth.

Many previous works focused on using PIM for large-scale graph
processing are based on Hybrid Memory Cube (HMC) devices.
HMC is a 3D stack PIM device with multiple DRAM layers for
storage connected to a logic layer for computation. Tesseract [1]
proposed an HMC array structure to map graph processing flow to
it. GraphP [27] and GraphH [7] further improved the performance
of Tesseract by carefully designing connections and data allocations
among cubes in the array. All these works used the processing units
on the logic layer to process graphs, and these processing units can
only access one memory bank at one time.

There are also some other graph processing accelerators. Ozdal
et al. [24] proposed an energy-efficient ASIC design by integrat-
ing specific circuits for “Gather”, “Apply” and “Scatter” operations,
cooperating with customized buffers and caches for vertex and
edge data supplement. Graphicionado [11] proposed an on-chip
pipeline structure and used eDRAM for on-chip graph data stor-
age. GraphOps [23] and ForeGraph [6] proposed parallel graph
processing architectures with on-chip memory on FPGA.

6 CONCLUSIONS
In this paper, we modify conventional DRAM architectures into
GraphIA to overcome the “memory wall” challenges in large-scale
graph processing problems. GraphIA is an In-situ Accelerator,
which couples both large-capacity memory and computing re-
sources in DRAM. Unlike previous graph processing accelerator
designs, GraphIA fully exploits the internal memory bandwidth in
DRAM for graph processing, rather than simply puts processing
units “closer” to the memory. We organize heterogeneous banks
in GraphIA chips into edge banks and vertex banks, cooperating
with customized peripheral circuits. For scalability consideration,
GraphIA chips are connected using scaling ring interconnection
topology, which makes GraphIA scalable to larger graphs by em-
ploying more GraphIA chips. To tackle the performance loss caused
by the irregular memory access in our multi-chip ring structure, we
propose data duplication and scheduling schemes to optimize the
memory access in heterogeneous banks, leading to 1.63× and 1.13×
speedup respectively against baseline designs. Both heterogeneous

banks (including data duplication and scheduling) and scaling ring
interconnection scheme in GraphIA can be applied to previous
graph processing accelerators. Our experimental results show that,
by adopting above designs in GraphIA, our accelerator achieves
217× speedup against conventional CPU-DRAM designs.
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