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Preface

The fast Fourier transform (FFT) algorithm, together with its many successful applica-
tions, represents one of the most important advancements in scientific and engineering
computing in this century. The wide usage of computers has been instrumental in
driving the study of the FFT, and a very large number of articles have been written
about the algorithm over the past thirty years. Some of these articles describe modi-
fications of the basic algorithm to make it more efficient or more applicable in various
circumstances. Other work has focused on implementation issues, in particular, the de-
velopment of parallel computers has spawned numerous articles about implementation
of the FFT on multiprocessors. However, to many computing and engineering profes-
sionals, the large collection of serial and parallel algorithms remain hidden inside the
FFT black box because: (1) coverage of the FFT in computing and engineering text-
books is usually brief, typically only a few pages are spent on the algorithmic aspects
of the FFT; (2) cryptic and highly variable mathematical and algorithmic notation; (3)
limited length of journal articles; and (4) important ideas and techniques in designing
efficient algorithms are sometimes buried in software or hardware-implemented FFT
programs, and not published in the open literature.

This book is intended to help rectify this situation. Our objective is to bring these
numerous and varied ideas together in a common notational framework, and make the
study of FFT an inviting and relatively painless task. In particular, the book employs
a unified and systematic approach in developing the multitude of ideas and computing
techniques employed by the FFT, and in so doing, it closes the gap between the often
brief introduction in textbooks and the equally often intimidating treatments in the
FFT literature. The unified notation and approach also facilitates the development of
new parallel FFT algorithms in the book.

This book is self-contained at several levels. First, because the fast Fourier trans-
form (FFT) is a fast “algorithm” for computing the discrete Fourier transform (DFT),
an “algorithmic approach” is adopted throughout the book. To make the material fully
accessible to readers who are not familiar with the design and analysis of computer al-
gorithms, two appendices are given to provide necessary background. Second, with the
help of examples and diagrams, the algorithms are explained in full. By exercising the
appropriate notation in a consistent manner, the algorithms are explicitly connected
to the mathematics underlying the FFT—this is often the “missing link” in the liter-
ature. The algorithms are presented in pseudo-code and a complexity analysis of each
is provided.
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Features of the book

• The book is written to bridge the gap between textbooks and literature. We believe
this book is unique in this respect. The majority of textbooks largely focus on the
underlying mathematical transform (DFT) and its applications, and only a small part
is devoted to the FFT, which is a fast algorithm for computing the DFT.
• The book teaches up-to-date computational techniques relevant to the FFT. The

book systematically and thoroughly reviews, explains, and unifies FFT ideas from
journals across the disciplines of engineering, mathematics, and computer science from
1960 to 1999. In addition, the book contains several parallel FFT algorithms that are
believed to be new.
• Only background found in standard undergraduate mathematical science, computer

science, or engineering curricula is required. The notations used in the book are fully
explained and demonstrated by examples. As a consequence, this book should make
FFT literature accessible to senior undergraduates, graduate students, and computing
professionals. The book should serve as a self-teaching guide for learning about the
FFT. Also, many of the ideas discussed are of general importance in algorithm design
and analysis, efficient numerical computation, and scientific programming for both
serial or parallel computers.

Use of the book

It is expected that this book will be of interest and of use to senior undergraduate
students, graduate students, computer scientists, numerical analysts, engineering pro-
fessionals, specialists in parallel and distributed computing, and researchers working in
computational mathematics in general.

The book also has potential as a supplementary text for undergraduate and graduate
courses offered in mathematical science, computer science, and engineering programs.
Specifically, it could be used for courses in scientific computation, numerical analysis,
digital signal processing, the design and analysis of computer algorithms, parallel algo-
rithms and architectures, parallel and distributed computing, and engineering courses
treating the discrete Fourier transform and its applications.

Scope of the book

The book is organized into 24 chapters and 2 appendices. It contains 97 figures and 38
tables, as well as 25 algorithms presented in pseudo-code, along with numerous code
segments. The bibliography contains more than 100 references dated from 1960 to
1999. The chapters are organized into three parts.

I. Preliminaries Part I presents a brief introduction to the discrete Fourier trans-
form through a simple example involving trigonometric interpolation. This part is
included to make the book self-contained. Some details about floating point arithmetic
as it relates to FFT computation is also included in Part I.

II. Sequential FFT Algorithms This part contains fourteen relatively short
chapters (3 through 16). Although the FFT, like binary search and quicksort, is com-
monly used in textbooks to illustrate the divide and conquer paradigm and recursive
algorithms, the FFT has a unique feature: the application of the basic FFT algorithm
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to “naturally ordered” input, if performed “in place,” yields output in “bit-reversed”
order. While this feature may be taken for granted by FFT insiders, it is often not
addressed in detail in textbooks. Again, partly because of the lack of notation linking
the underlying mathematics to the algorithm, and because it is understood by FFT
professionals, this aspect of the FFT is either left unexplained or explained very briefly
in the literature. This phenomenon, its consequences, and how to deal with it, is one
of the topics of Part II.

Similarly, the basic FFT algorithm is generally introduced as most efficient when
applied to vectors whose length N is a power of two, although it can be made even
more efficient if N is a power of four, and even more so if it is a power of eight, and so
on. These situations, as well as the case when N is arbitrary, are considered in Part
II. Other special situations, such as when the input is real rather than complex, and
various programming “tricks,” are also considered in Part II, which concludes with a
chapter on selected applications of FFT algorithms.

III. Parallel FFT Algorithms The last part deals with the many and varied
issues that arise in implementing FFT algorithms on multiprocessor computers. Part
III begins with a chapter that discusses the mapping of data to processors, because the
designs of the parallel FFTs are mainly driven by data distribution, rather than by the
way the processors are physically connected (through shared memory or by way of a
communication network.) This is a feature not shared by parallel numerical algorithms
in general.

Distributed-memory multiprocessors are discussed next, because implementing the
algorithms on shared-memory architecture is straightforward. The hypercube multi-
processor architecture is particularly considered because it is so naturally compatible
with the FFT algorithm. However, the material discussed later does not specifically
depend on the hypercube architecture.

Following that, a series of chapters contains a large collection of parallel algorithms,
including some that are believed to be new. All of the algorithms are described using
a common notation that has been derived from one introduced in the literature. As in
part II, dealing with the bit-reversal phenomenon is considered, along with balancing
the computational load and avoiding communication congestion. The last two chapters
deal with two-dimensional FFTs and the task of distributing the “twiddle factors”
among the individual processors.

Appendix A contains basic information about efficient computation, together with
some fundamentals on complexity notions and notation. Appendix B contains tech-
niques that are helpful in solving recurrence equations. Since FFT algorithms are
recursive, analysis of their complexity leads naturally to such equations.
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Chapter 1

An Elementary Introduction

to the Discrete Fourier

Transform

This chapter is intended to provide a brief introduction to the discrete Fourier transform
(DFT). It is not intended to be comprehensive; instead, through a simple example, it
provides an illustration of how the computation that is the subject of this book arises,
and how its results can be used. The DFT arises in a multitude of other contexts
as well, and a dozen more DFT-related applications, together with information on a
number of excellent references, are presented in Chapter 16 in Part II of this book.
Readers familiar with the DFT may safely skip this chapter.

A major application of Fourier transforms is the analysis of a series of observations:
x�, � = 0, . . . , N−1. Typically, N will be quite large: 10000 would not be unusual. The
sources of such observations are many: ocean tidal records over many years, commu-
nication signals over many microseconds, stock prices over a few months, sonar signals
over a few minutes, and so on. The assumption is that there are repeating patterns
in the data that form part of the x�. However, usually there will be other phenomena
which may not repeat, or repeat in a way that is not discernably cyclic. This is called
“noise.” The DFT helps to identify and quantify the cyclic phenomena. If a pattern
repeats itself m times in the N observations, it is said to have Fourier frequency m.

To make this more specific, suppose one measures a signal from time t = 0 to
t = 680 in steps of 2.5 seconds, giving 273 observations. The measurements might
appear as shown in Figure 1.1. How does one make any sense out of it? As shown
later, the DFT can help.

1.1 Complex Numbers

Effective computation of the DFT relies heavily on the use of complex numbers, so it is
useful to review their basic properties. This material is elementary and probably well-
known to most readers of this book, but it is included for completeness. Historically,
complex numbers were introduced to deal with polynomial equations, such as x2 +1 =
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Figure 1.1 Example of a noisy signal.
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0, which have no real solutions. Informally, they can be defined as the set C of all
“numbers” of the form a + jb where a and b are real numbers and j2 = −1.

Addition, subtraction, and multiplication are performed among complex numbers
by treating them as binomials in the unknown j and using j2 = −1 to simplify the
result. Thus

(a + jb) + (c + jd) = (a + c) + j(b + d)

and
(a + jb) × (c + jd) = (ac− bd) + j(ad + bc).

For the complex number z = a+jb, a is the real part of z and b is the imaginary part of
z. The zero element of C is 0 + 0i, and the additive inverse of z = a+ jb is −a+ i(−b).
The multiplicative inverse z−1 is

z−1 =
a− jb

a2 + b2
.

The complex conjugate of z = a + jb is denoted by z̄ and is equal to a − jb. The
modulus of z, denoted by |z |, is

√
zz̄ =

√
a2 + b2.

Some additional facts that will be used later are

ez = e(a+jb) = eaejb and ejb = cos b + j sin b.

Thus, Re(ez) = ea cos b and Im(z) = ea sin b.
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Just as a real number can be pictured as a point lying on a line, a complex number
can be pictured as a point lying in a plane. With each complex number a+ jb one can
associate a vector beginning at the origin and terminating at the point (a, b). These
notions are depicted in Figure 1.2.

Figure 1.2 Visualizing complex numbers.

Instead of the pair (a, b), one can use the “length” (modulus) together with the
angle the number makes with the real axis. Thus, a+jb can be represented as r cos θ+
jr sin θ = rejθ, where r =|z |=

√
a2 + b2 and θ = arctan(b/a). This representation of a

complex number is depicted in Figure 1.3.

Figure 1.3 Polar representation of a complex number.

Multiplication of complex numbers in polar form is straightforward: if z1 = a+jb =
r1e

jθ1 and z2 = c + jd = r2e
jθ2 , then

z1z2 = r1r2e
j(θ1+θ2).

The moduli are multiplied together, and the angles are added. Note that if z = ejθ,
then |z |= 1 for all values of θ.

1.2 Trigonometric Interpolation

Suppose a function f(θ) is defined on the interval (0, 2π), with f assumed to be periodic
on the interval; thus, f(θ) = f(θ ± 2π).
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Now consider constructing a trigonometric polynomial p(θ) to interpolate f(θ) of
the form

p(θ) = a0 +
n∑
k=1

ak cos kθ + bk sin kθ.(1.1)

This function has 2n+1 coefficients, so it should be possible to interpolate f at 2n+1
points. In the applications considered in this book, the points at which to interpolate
are always equally spaced on the interval:

θ� =
2�π

2n + 1
, � = 0, 1, . . . , 2n.(1.2)

Let x� = f(θ�), and consider an example with n = 2. Then the interpolation conditions
are x� = p(θ�), or

x� = a0 + a1 cos θ� + b1 sin θ� + a2 cos 2θ� + b2 sin 2θ�, � = 0, 1, . . . , 4.

This leads to the system of equations
1 cos θ0 sin θ0 cos 2θ0 sin 2θ0

1 cos θ1 sin θ1 cos 2θ1 sin 2θ1

1 cos θ2 sin θ2 cos 2θ2 sin 2θ2

1 cos θ3 sin θ3 cos 2θ3 sin 2θ3

1 cos θ4 sin θ4 cos 2θ4 sin 2θ4




a0

a1

b1
a2

b2

 =


x0

x1

x2

x3

x4

 .

Recall that ejθ = cos θ + j sin θ, which implies that

cos θ =
ejθ + e−jθ

2
and sin θ =

ejθ − e−jθ

2j
.

Using these in (1.1) with n = 2 yields

p(θ) = a0 +
(a1

2

)
ejθ +

(a1

2

)
e−jθ +

(
b1
2j

)
ejθ −

(
b1
2j

)
e−jθ

+
(a2

2

)
e2jθ +

(a2

2

)
e−2jθ +

(
b2
2j

)
e2jθ −

(
b2
2j

)
e−2jθ

=
(
a2 + j b2

2

)
e−2jθ +

(
a1 + j b1

2

)
e−jθ

+a0 +
(
a1 − j b1

2

)
ejθ +

(
a2 − j b2

2

)
e2jθ.

Giving the coefficients names corresponding to the powers of ejθ yields

p(θ) = X−2e
−2jθ + X−1e

−jθ + X0 + X1e
jθ + X2e

2jθ.(1.3)

Note that the coefficients appear in complex conjugate pairs. When the x� are real, it
is straightforward to show that this is true in general. (See the next section.)

Recall (see (1.2)) that the points at which interpolation occurs are evenly spaced;
that is, θ� = �θ1. Let ω = ejθ1 = e

2jπ
2n+1 . Then all ejθ� can be expressed in terms of ω:

ejθ� = ej�θ1 = ω�, � = 0, 1, . . . , 2n.
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Also, note that ω� = ω�±(2n+1) and ω−� = ω−�±(2n+1). For the example with n = 2,
ω = e

2jπ
5 , and the interpolation condition at θ� in (1.3) is

f(θ�) = x� = p(θ�) = X−2ω
−2� + X−1ω

−� + X0ω
0 + X1ω

� + X2ω
2�.

Using the fact that ω−� = ω(2n+1−�), and renaming the coefficients similarly (X−� →
X2n+1−�), the interpolation condition at x� becomes

x� = X0 + X1ω
� + X2ω

2� + X3ω
3� + X4ω

4�,

which has to be satisfied for � = 0, 1, . . . , 4 :
1 1 1 1 1
1 ω ω2 ω3 ω4

1 ω2 ω4 ω6 ω8

1 ω3 ω6 ω9 ω12

1 ω4 ω8 ω12 ω16




X0

X1

X2

X3

X4

 =


x0

x1

x2

x3

x4

 .(1.4)

This can be written as a matrix equation

MX = x.

It will be useful to have some additional properties of ω. First note that

1 + ω + ω2 + . . . + ω2n = 0.

This can be established by observing that the expression on the left side is a geometric
sum equal to

1 − ω2n+1

1 − ω
,

and this quantity is zero because ω2n+1 = 1. For integers r and s one can show in a
similar way that

2n∑
k=0

ω(kr−ks) =
{

0 if r �= s

2n + 1 if r = s.
(1.5)

These simple results make solving MX = x easy. To begin, let

M =


1 1 1 1 1
1 ω̄ ω̄2 ω̄3 ω̄4

1 ω̄2 ω̄4 ω̄6 ω̄8

1 ω̄3 ω̄6 ω̄9 ω̄12

1 ω̄4 ω̄8 ω̄12 ω̄16

 .

Then using (1.5) above, together with the fact that ω̄� = ω−�, shows that MM is
5 0 0 0 0
0 5 0 0 0
0 0 5 0 0
0 0 0 5 0
0 0 0 0 5

 .
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