5.5 Double-Angle and Half-Angle Formulas

In these section we want to find formulas for $\cos 2 \theta, \sin 2 \theta$, and $\tan 2 \theta$ in terms of $\cos \theta, \sin \theta$, and $\tan \theta$ respectively. These are called double angle formulas. Then we will use them to find half-angle formulas for $\cos \frac{\theta}{2}, \sin \frac{\theta}{2}$, and $\tan \frac{\theta}{2}$.

The Cosine of 2θ

We may form an isosceles triangle with an angle of 2θ by flipping a triangle across the horizontal axis on the unit circle. Then the law of cosines would yield the double angle formula for cosine:

$$
\cos 2 \theta=1-2 \sin ^{2} \theta=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1
$$

Example 1. Evaluate $\cos 2 \theta$, given some trigonometric function of an angle θ.

The Sine of 2θ

We apply the law of sines to the isosceles triangle at the beginning of this section to obtain the law of sines:

$$
\sin 2 \theta=2 \sin \theta \cos \theta
$$

The Tangent of 2θ

Using the previous double angle formulas, we find:

$$
\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}
$$

Example 2. Given $\tan \theta$, find $\tan 2 \theta$.
The Cosine and Sine of $\frac{\theta}{2}$
Using the double angle formula for cosine, we obtain

$$
\cos \frac{\theta}{2}= \pm \sqrt{\frac{1+\cos \theta}{2}}
$$

and

$$
\sin \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos \theta}{2}}
$$

where the choice of plus or minus depends on the angle θ.
Example 3. Find an exact expression for sine or cosine of half of a famous angle, in a quadrant with negative value(s).

The Tangent of $\frac{\theta}{2}$

Using algebra, we may obtain

$$
\tan \frac{\theta}{2}=\frac{\sin \theta}{1+\cos \theta}=\frac{1-\cos \theta}{\sin \theta}
$$

Example 4. Evaluate the tangent of half of a famous angle.

