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1 Linear inequalities, halfspaces, polyhedra

Exercise 1. When does one halfspace contain another? Give conditions under which

{x | aTx ≤ b} ⊆ {x | ãTx ≤ b̃}

(a 6= 0, ã 6= 0). Also find the conditions under which the two halfspaces are equal.

Exercise 2. What is the distance between the two parallel hyperplanes {x ∈ Rn | aTx = b1} and
{x ∈ Rn | aTx = b2} ?

Exercise 3. Consider a waveform
s(x, t) = f(t− aTx)

where t denotes time, x denotes position in R3, f : R → R is a given function, and a ∈ R3

is a given nonzero vector. The surfaces defined by

t− aTx = constant

are called wavefronts. What is the velocity (expressed as a function of a) with which wave-
fronts propagate? As an example, consider a sinusoidal plane wave s(x, t) = sin(ωt− kTx).

Exercise 4. Which of the following sets S are polyhedra? If possible, express S in inequality form,
i.e., give matrices A and b such that S = {x | Ax ≤ b}.

(a) S = {y1a1 + y2a2 | − 1 ≤ y1 ≤ 1,−1 ≤ y2 ≤ 1} for given a1, a2 ∈ Rn.

(b) S = {x ∈ Rn | x ≥ 0, 1Tx = 1,
∑n

i=1 xiai = b1,
∑n

i=1 xia
2
i = b2}, where ai ∈ R

(i = 1, . . . , n), b1 ∈ R, and b2 ∈ R are given.

(c) S = {x ∈ Rn | x ≥ 0, xT y ≤ 1 for all y with ‖y‖ = 1}.
(d) S = {x ∈ Rn | x ≥ 0, xT y ≤ 1 for all y with

∑
i |yi| = 1}.

(e) S = {x ∈ Rn | ‖x − x0‖ ≤ ‖x − x1‖} where x0, x1 ∈ Rn are given. S is the the set of
points that are closer to x0 than to x1.

(f) S = {x ∈ Rn | ‖x− x0‖ ≤ ‖x− xi‖, i = 1, . . . ,K} where x0, . . . , xK ∈ Rn are given. S
is the set of points that are closer to x0 than to the other xi.

Exercise 5. Linear and piecewise-linear classification. The figure shows a block diagram of a
linear classification algorithm.
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The classifier has n inputs xi. These inputs are first multiplied with coefficients ai and added.
The result aTx =

∑n
i=1 aixi is then compared with a threshold b. If aTx ≥ b, the output of

the classifier is y = 1; if aTx < b, the output is y = −1.

The algorithm can be interpreted geometrically as follows. The set defined by aTx = b is a
hyperplane with normal vector a. This hyperplane divides Rn in two open halfspaces: one
halfspace where aTx > b, and another halfspace where aTx < b. The output of the classifier
is y = 1 or y = −1 depending on the halfspace in which x lies. If aTx = b, we arbitrarily
assign +1 to the output. This is illustrated below.

a

aTx = b

aTx > b

aTx < b

By combining linear classifiers, we can build classifiers that divide Rn in more complicated
regions than halfspaces. In the block diagram below we combine four linear classifiers. The
first three take the same input x ∈ R2. Their outputs y1, y2, and y3 are the inputs to the
fourth classifier.
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Make a sketch of the region of input vectors in R2 for which the output y is equal to 1.

Exercise 6. Measurement with bounded errors. A series of K measurements y1, . . . , yK ∈ R, are
taken in order to estimate an unknown vector x ∈ Rq. The measurements are related to the
unknown vector x by yi = aTi x+vi, where vi is a measurement noise that satisfies |vi| ≤ α but
is otherwise unknown. The vectors ai and the measurement noise bound α are known. Let
X denote the set of vectors x that are consistent with the observations y1, . . . , yK , i.e., the
set of x that could have resulted in the measured values of yi. Show that X is a polyhedron.

Now we examine what happens when the measurements are occasionally in error, i.e., for a
few i we have no relation between x and yi. More precisely suppose that Ifault is a subset of
{1, . . . ,K}, and that yi = aTi x+vi with |vi| ≤ α (as above) for i 6∈ Ifault, but for i ∈ Ifault, there
is no relation between x and yi. The set Ifault is the set of times of the faulty measurements.
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Suppose you know that Ifault has at most J elements, i.e., out of K measurements, at most
J are faulty. You do not know Ifault; you know only a bound on its cardinality (size). Is X
(the set of x consistent with the measurements) a polyhedron for J > 0?

2 Some simple linear programs

Exercise 7. Consider the LP
minimize c1x1 + c2x2 + c3x3
subject to x1 + x2 ≥ 1

x1 + 2x2 ≤ 3
x1 ≥ 0
x2 ≥ 0
x3 ≥ 0.

Give the optimal value and the optimal set for the following values of c : c = (−1, 0, 1),
c = (0, 1, 0), c = (0, 0,−1).

Exercise 8. For each of the following LPs, express the optimal value and the optimal solution in
terms of the problem parameters (c, k, d, α, d1, d2). If the optimal solution is not unique, it
is sufficient to give one optimal solution.

(a)

minimize cTx
subject to 0 ≤ x ≤ 1

with variable x ∈ Rn.
(b)

minimize cTx
subject to −1 ≤ 1Tx ≤ 1

with variable x ∈ Rn.
(c)

minimize cTx
subject to 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1.

with variable x ∈ Rn.
(d)

maximize cTx
subject to 1Tx = k

0 ≤ x ≤ 1

with variable x ∈ Rn. k is an integer with 1 ≤ k ≤ n.
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(e)

maximize cTx
subject to 1Tx ≤ k

0 ≤ x ≤ 1

with variable x ∈ Rn. k is an integer with 1 ≤ k ≤ n.

(f)

maximize cTx
subject to −y ≤ x ≤ y

1T y = k
y ≤ 1

with variables x ∈ Rn and y ∈ Rn. k is an integer with 1 ≤ k ≤ n.

(g)

maximize cTx
subject to dTx = α

0 ≤ x ≤ 1

with variable x ∈ Rn. α and the components of d are positive.

(h)

minimize 1Tu+ 1T v
subject to u− v = c

u ≥ 0, v ≥ 0

with variables u ∈ Rn and v ∈ Rn.
(i)

minimize dT1 u− dT2 v
subject to u− v = c

u ≥ 0, v ≥ 0

with variables u ∈ Rn and v ∈ Rn. We assume that d1 ≥ d2.

Exercise 9. An optimal control problem with an analytical solution. We consider the problem of
maximizing a linear function of the final state of a linear system, subject to bounds on the
inputs:

maximize dTx(N)
subject to |u(t)| ≤ U, t = 0, . . . , N − 1

N−1∑
t=0

|u(t)| ≤ α,

(1)

where x and u are related via the recursion

x(t+ 1) = Ax(t) +Bu(t), x(0) = 0,

and the problem data are d ∈ Rn, U,α ∈ R, A ∈ Rn×n and B ∈ Rn. The variables are the
input sequence u(0), . . . , u(N − 1).
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(a) Express (1) as an LP.

(b) Formulate a simple algorithm for solving this LP. (It can be solved very easily, without
using a general LP code.) Hint. The problem is a variation on exercise 8, parts (a),(b),(c).

(c) Apply your method to the matrices

A =




9.9007 10−1 9.9340 10−3 −9.4523 10−3 9.4523 10−3

9.9340 10−2 9.0066 10−1 9.4523 10−2 −9.4523 10−2

9.9502 10−2 4.9793 10−4 9.9952 10−1 4.8172 10−4

4.9793 10−3 9.5021 10−2 4.8172 10−3 9.9518 10−1


 , (2)

B =




9.9502 10−2

4.9793 10−3

4.9834 10−3

1.6617 10−4


 . (3)

(You can download these matrices by executing the matlab file ex9data.m which can
be found on the class webpage. The calling sequence is [A,b] = ex9data.) Use

d = (0, 0, 1,−1), N = 100, U = 2, α = 161.

Plot the optimal input and the resulting sequences x3(t) and x4(t).

Remark. This model was derived as follows. We consider a system described by two
second-order equations

m1v̈1(t) = −K(v1(t)− v2(t))−D(v̇1(t)− v̇2(t)) + u(t)

m2v̈2(t) = K(v1(t)− v2(t)) +D(v̇1(t)− v̇2(t)).

These equations describe the motion of two masses m1 and m2 with positions v1 ∈ R

and v2 ∈ R, respectively, and connected by a spring with spring constant K and a
damper with constant D. An external force u is applied to the first mass. We use the
values

m1 = m2 = 1, K = 1, D = 0.1,

so the state equations are




v̈1(t)
v̈2(t)
v̇1(t)
v̇2(t)


 =




−0.1 0.1 −1.0 1.0
0.1 −0.1 1.0 −1.0
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0







v̇1(t)
v̇2(t)
v1(t)
v2(t)


+




1
0
0
0


u(t).

We discretize the system by considering inputs u that are piecewise constant with
sampling interval T = 0.1, i.e., we assume u is constant in the intervals [0.1k, 0.1(k+1)),
for k = 0, 1, 2, . . .. It can be shown that the discretized state equations are

z((k + 1)T ) = Az(kT ) +Bu(kT ), k ∈ Z, (4)

where z(t) = (v̇1(t), v̇2(t), v1(t), v2(t)), and A and B given by (2) and (3).

Using the cost function dTx(N) with d = (0, 0, 1,−1) means that we try to maximize
the distance between the two masses after N time steps.
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Exercise 10. Power allocation problem with analytical solution. Consider a system of n transmit-
ters and n receivers. The ith transmitter transmits with power xi, i = 1, . . . , n. The vector
x is the variable in this problem. The path gain from each transmitter j to each receiver i
is denoted Aij and is assumed to be known. (Obviously, Aij ≥ 0, so the matrix A is ele-
mentwise nonnegative. We also assume that Aii > 0.) The signal received by each receiver i
consists of three parts: the desired signal, arriving from transmitter i with power Aiixi, the
interfering signal, arriving from the other transmitters with power

∑
j 6=iAijxj , and noise vi

(vi is positive and known). We are interested in allocating the powers xi in such a way that
the signal to noise plus interference ratio (SNIR) at each of the receivers exceeds a level α.
(Thus α is the minimum acceptable SNIR for the receivers; a typical value might be around
α = 3.) In other words, we want to find x ≥ 0 such that for i = 1, . . . , n

Aiixi ≥ α


∑

j 6=i

Aijxj + vi


 .

Equivalently, the vector x has to satisfy the set of linear inequalities

x ≥ 0, Bx ≥ αv (5)

where B ∈ Rn×n is defined as

Bii = Aii, Bij = −αAij , j 6= i.

(a) Suppose you are given a desired level of α, so the right hand side αv in (5) is a known
positive vector. Show that (5) is feasible if and only if B is invertible and z = B−11 ≥
0 (1 is the vector with all components 1). Show how to construct a feasible power
allocation x from z.

(b) Show how to find the largest possible SNIR, i.e., how to maximize α subject to the
existence of a feasible power allocation.

Hint. You can refer to the following result from linear algebra. Let T ∈ Rn×n be a matrix
with nonnegative elements, and s ∈ R. Then the following statements are equivalent:

(a) There exists an x ≥ 0 with (sI − T )x > 0.

(b) sI − T is nonsingular and the matrix (sI − T )−1 has nonnegative elements.

(c) s > maxi |λi(T )| where λi(T ) (i = 1, . . . , n) are the eigenvalues of T . The quantity
ρ(T ) = maxi |λi(T )| is called the spectral radius of T . It is a complicated but readily
computed function of T .

(For such s, the matrix sI − T is called a nonsingular M-matrix.)

Remark. This problem gives an analytic solution to a very special form of transmitter power
allocation problem. Specifically, there are exactly as many transmitters as receivers, and no
power limits on the transmitters. One consequence is that the receiver noises vi play no role
at all in the solution — just crank up all the transmitters to overpower the noises!
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3 Geometry of linear programming

Exercise 11. (a) Is x̃ = (1, 1, 1, 1) an extreme point of the polyhedron P defined by the linear
inequalities 



−1 −6 1 3
−1 −2 7 1
0 3 −10 −1

−6 −11 −2 12
1 6 −1 −3







x1
x2
x3
x4


 ≤




−3
5

−8
−7
4



?

If it is, find a vector c such that x̃ is the unique minimizer of cTx over P.

(b) Same question for the polyhedron defined by the inequalities




0 −5 −2 −5
−7 −7 −2 −2
−4 −4 −7 −7
−8 −3 −3 −4
−4 −4 2 −2







x1
x2
x3
x4


 ≤




−12
−17
−22
−18
−8




and the equality 8x1 − 7x2 − 10x3 − 11x4 = −20.

Feel free to use MATLAB (in particular the rank command).

Exercise 12. We define a polyhedron

P = {x ∈ R5 | Ax = b, −1 ≤ x ≤ 1},

with

A =




0 1 1 1 −2
0 −1 1 −1 0
2 0 1 0 1


 , b =




1
1
1


 .

The following three vectors x are in P:

(a) x̂ = (1,−1/2, 0,−1/2,−1)

(b) x̂ = (0, 0, 1, 0, 0)

(c) x̂ = (0, 1, 1,−1, 0).

Are these vectors extreme points of P? For each x̂, if it is an extreme point, give a vector c
for which x̂ is the unique solution of the optimization problem

minimize cTx
subject to Ax = b

−1 ≤ x ≤ 1.

Exercise 13. An n× n matrix X is called doubly stochastic if

Xij ≥ 0, i, j = 1, . . . , n,
n∑

i=1

Xij = 1, j = 1, . . . , n,
n∑

j=1

Xij = 1, i = 1, . . . , n,

In words, the entries of X are nonnegative, and its row and column sums are equal to one.
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(a) What are the extreme points of the set of doubly stochastic matrices? How many
extreme points are there? Explain your answer.

(b) What is the optimal value of the LP

maximize aTXb
subject to X doubly stochastic,

with X as variable, for a general vector b ∈ Rn and each of the following choices of a?

• a = (1, 0, 0, . . . , 0).

• a = (1, 1, 0, . . . , 0).

• a = (1,−1, 0, . . . , 0).

Exercise 14. Carathéodory’s theorem. A point of the form θ1v1+· · ·+θmvm, where θ1+· · ·+θm = 1
and θi ≥ 0, i = 1, . . . ,m, is called a convex combination of v1, . . . , vm. Suppose x is a convex
combination of points v1, . . . , vm in Rn. Show that x is a convex combination of a subset of
r ≤ n+ 1 of the points v1, . . . , vm. In other words, show that x can be expressed as

x = θ̂1v1 + · · ·+ θ̂mvm,

where θ̂i ≥ 0,
∑m

i=1 θ̂i = 1, and at most n+ 1 of the coefficients θ̂i are nonzero.

4 Formulating problems as LPs

Exercise 15. Formulate the following problems as LPs:

(a) minimize ‖Ax− b‖1 subject to ‖x‖∞ ≤ 1.

(b) minimize ‖x‖1 subject to ‖Ax− b‖∞ ≤ 1.

(c) minimize ‖Ax− b‖1 + ‖x‖∞.

In each problem, A ∈ Rm×n and b ∈ Rm are given, and x ∈ Rn is the optimization variable.

Exercise 16. An illumination problem. We consider an illumination system of m lamps, at posi-
tions l1, . . . , lm ∈ R2, illuminating n flat patches.

lamp j lj

vi

vi+1

patch i

rij
θij
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The patches are line segments; the ith patch is given by [vi, vi+1] where v1, . . . , vn+1 ∈ R2.
The variables in the problem are the lamp powers p1, . . . , pm, which can vary between 0
and 1.

The illumination at (the midpoint of) patch i is denoted Ii. We will use a simple model for
the illumination:

Ii =
m∑

j=1

aijpj , aij = r−2
ij max{cos θij , 0}, (6)

where rij denotes the distance between lamp j and the midpoint of patch i, and θij denotes
the angle between the upward normal of patch i and the vector from the midpoint of patch
i to lamp j, as shown in the figure. This model takes into account “self-shading” (i.e., the
fact that a patch is illuminated only by lamps in the halfspace it faces) but not shading of
one patch caused by another. Of course we could use a more complex illumination model,
including shading and even reflections. This just changes the matrix relating the lamp powers
to the patch illumination levels.

The problem is to determine lamp powers that make the illumination levels close to a given
desired illumination level Ides, subject to the power limits 0 ≤ pi ≤ 1.

(a) Suppose we use the maximum deviation

φ(p) = max
k=1,...,n

|Ik − Ides|

as a measure for the deviation from the desired illumination level. Formulate the illu-
mination problem using this criterion as a linear programming problem.

(b) There are several suboptimal approaches based on weighted least-squares. We consider
two examples.

i. Saturated least-squares. We can solve the least-squares problem

minimize
n∑

k=1
(Ik − Ides)

2

ignoring the constraints. If the solution is not feasible, we saturate it, i.e., set
pj := 0 if pj ≤ 0 and pj := 1 if pj ≥ 1.
Download the MATLAB file ex16data.m from the class webpage and generate
problem data by [A,Ides] = ex16data. (The elements of A are the coefficients
aij in (6).) Compute a feasible p using this first method, and calculate φ(p).
Note. Use the ‘backslash’ operator \ to solve least-squares problem in MATLAB:
x=A\b computes the solution of

minimize ‖Ax− b‖2.
Try ‘help slash’ for details.

ii. Weighted least-squares. We consider another least-squares problem:

minimize
n∑

k=1
(Ik − Ides)

2 + µ
m∑
i=1

(pi − 0.5)2,

where µ ≥ 0 is used to attach a cost to a deviation of the powers from the value
0.5, which lies in the middle of the power limits. For large enough µ, the solution
of this problem will satisfy 0 ≤ pi ≤ 1, i.e., be feasible for the original problem.
Explain how you solve this problem in MATLAB. For the problem data generated
by ex16data.m, find the smallest µ such that p becomes feasible, and evaluate φ(p).
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(c) Using the same data as in part (b), solve the LP you derived in part (a). Compare the
solution with the solutions you obtained using the (weighted) least-squares methods of
part (b).

Exercise 17. In exercise 16, we encountered the problem

minimize maxk=1,...,n |aTk p− Ides|
subject to 0 ≤ p ≤ 1

(7)

(with variables p). We have seen that this is readily cast as an LP.

In (7) we use the maximum of the absolute deviations |Ik − Ides| to measure the difference
from the desired intensity. Suppose we prefer to use the relative deviations instead, where
the relative deviation is defined as

max{Ik/Ides, Ides/Ik} − 1 =

{
(Ik − Ides)/Ides if Ik ≥ Ides
(Ides − Ik)/Ik if Ik ≤ Ides.

This leads us to the following formulation:

minimize maxk=1,...,nmax{ aTk p/Ides, Ides/(aTk p) }
subject to 0 ≤ p ≤ 1

aTk p > 0, k = 1, . . . , n.
(8)

Explain how you can solve this using linear programming (i.e., by solving one or more LPs).

Exercise 18. Download the file ex18data.m from the class website and execute it in MATLAB
using the command [t,y] = ex18data. This will generate two vectors t, y ∈ R42. We are
interested in fitting a linear function f(t) = α + βt through the points (ti, yi), i.e., we want
to select α and β such that f(ti) ≈ yi, i = 1, . . . , 42.

We can calculate α and β by optimizing the following three criteria.

(a) Least-squares: select α and β by minimizing

42∑

i=1

(yi − α− βti)
2.

(Note that the recommended method for solving a least-squares problem

minimize ‖Ax− b‖2

in MATLAB is x = A\b.)

(b) ℓ1-norm approximation: select α and β by minimizing

42∑

i=1

|yi − α− βti|.

(c) ℓ∞-norm approximation: select α and β by minimizing

max
i=1,...,42

|yi − α− βti|.
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Find the optimal values of α and β for each the three optimization criteria. This yields three
linear functions fls(t), fℓ1(t), fℓ∞(t). Plot the 42 data points, and the three functions f .
What do you observe?

Exercise 19. This exercise is concerned with a problem that has applications in VLSI. The prob-
lem is to find the optimal positions of n cells or modules on an integrated circuit. More
specifically, the variables are the coordinates xi, yi, i = 1, . . . , n, of the n cells. The cells
must be placed in a square C = {(x, y) | − 1 ≤ x ≤ 1,−1 ≤ y ≤ 1}.
Each cell has several terminals, which are connected to terminals on other cells, or to in-
put/output (I/O) terminals on the perimeter of C. The positions of the I/O terminals are
known and fixed.

The connections between the cells are specified as follows. We are given a matrix A ∈ RN×n

and two vectors bx ∈ RN , by ∈ RN . Each row of A and each component of bx and by
describe a connection between two terminals. For each i = 1, . . . , N , we can distinguish two
possibilities, depending on whether row i of A describes a connection between two cells, or
between a cell and an I/O terminal.

• If row i describes a connection between two cells j and k (with j < k), then

ail =





1 if l = j
−1 if l = k
0 otherwise

, bx,i = 0, by,i = 0.

In other words, we have

aTi x− bx,i = xj − xk, aTi y − by,i = yj − yk.

• If row i describes a connection between a cell j and an I/O terminal with coordinates
(x̄, ȳ), then

ail =

{
1 if l = j
0 otherwise

, bi,x = x̄, bi,y = ȳ,

so we have
aTi x− bx,i = xj − x̄, aTi y − by,i = yj − ȳ.

The figure illustrates this notation for an example with n = 3, N = 6.

(−1,−1)

(−1, 1) (1, 1)

(1,−1)

(−1, 0)

(0.5, 1)

(1, 0.5)

(0,−1)

(x1, y1)

(x2, y2)

(x3, y3)
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For this example, A, bx and by given by

A =




1 −1 0
1 0 −1
1 0 0
0 1 0
0 0 1
0 0 1




, bx =




0.0
0.0

−1.0
0.5
0.0
1.0




, by =




0.0
0.0
0.0
1.0

−1.0
0.5




.

The problem we consider is to determine the coordinates (xi, yi) that minimize some measure
of the total wirelength of the connections. We can formulate different variations.

(a) Suppose we use the Euclidean distance between terminals to measure the length of a
connection, and that we minimize the sum of the squares of the connection lengths. In
other words we determine x and y by solving

minimize
N∑
i=1

(
(aTi x− bx,i)

2 + (aTi y − by,i)
2
)

or, in matrix notation,

minimize ‖Ax− bx‖2 + ‖Ay − by‖2. (9)

The variables are x ∈ Rn and y ∈ Rn. (Note that we don’t have to add the constraints
−1 ≤ xi ≤ 1 and −1 ≤ yi ≤ 1 explicitly, since a solution with a cell outside C can never
be optimal.) Since the two terms in (9) are independent, the solution can be obtained
by solving two least-squares problems, one to determine x, and one to determine y.
Equivalently, we can solve two sets of linear equations

(ATA)x = AT bx, (ATA)y = AT by.

(b) A second and more realistic choice is to use the Manhattan distance between two con-
nected terminals as a measure for the length of the connection, i.e., to consider the
optimization problem

minimize
N∑
i=1

(
|aTi x− bx,i|+ |aTi y − by,i|

)
.

In matrix notation, this can be written as

minimize ‖Ax− bx‖1 + ‖Ay − by‖1.

(c) As a third variation, suppose we measure the length of a connection between two ter-
minals by the Manhattan distance between the two points, as in (b) , but instead of
minimizing the sum of the lengths, we minimize the maximum length, i.e., we solve

minimize maxi=1,...,N

(
|aTi x− bx,i|+ |aTi y − by,i|

)
.
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(d) Finally, we can consider the problem

minimize
N∑
i=1

(
h(aTi x− bx,i) + h(aTi y − by,i)

)

where h is a piecewise-linear function defined as h(z) = max{z,−z, γ} and γ is a given
positive constant. The function h is plotted below.

z

h(z)

+γ−γ

Give LP formulations for problems (b), (c) and (d). You may introduce new variables, but
you must explain clearly why your formulation and the original problem are equivalent.

Numerical example. We compare the solutions obtained from the four variations for a small
example. For simplicity, we consider a one-dimensional version of the problem, i.e., the
variables are x ∈ Rn, and the goal is to place the cells on the interval [−1, 1]. We also drop
the subscript in bx. The four formulations of the one-dimensional placement problem are the
following.

(a) ℓ2-placement: minimize ‖Ax− b‖2 =∑
i(a

T
i x− bi)

2.

(b) ℓ1-placement: minimize ‖Ax− b‖1 =
∑

i |aTi x− bi|.
(c) ℓ∞-placement: minimize ‖Ax− b‖∞ = maxi |aTi x− bi|.
(d) ℓ1-placement with ‘dead zone’: minimize

∑
i h(a

T
i x− bi). We use a value γ = 0.02.

To generate the data, download the file ex19data.m from the class webpage. The command
[A,b] = ex19data(’large’) generates a problem with 100 cells and 300 connections; [A,b]
= ex18data(’small’) generates a problem with with 50 cells and 150 connections. You can
choose either problem.

A few remarks and suggestions:

• Use the ‘backslash’ operator, x = A\b, to solve a least-squares problem

minimize ‖Ax− b‖2.

An alternative is x = (A’*A)\(A’*b), which is somewhat faster but less accurate.

• The other three problems require an LP solver.

Compare the solutions obtained by the four methods.

• Plot a histogram of the n positions xi for each solution (using the hist command).

• Also plot a histogram of the connnection lengths |aTi x− bi|.
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• Compute the total wire length
∑

i |aTi x− bi| for each of the four solutions.

• Compute the length of the longest connection maxi |aTi x − bi| for each of the four
solutions.

• So far we have assumed that the cells have zero width. In practice we have to take
overlap between cells into account. Assume that two cells i and j overlap when |xi−xj | ≤
0.01. For each of the four solutions, calculate how many pairs of cells overlap. You can
express the overlap as a percentage of the total number n(n− 1)/2 of pairs of cells.

Are the results what you expect? Which of the four solutions would you prefer if the most
important criteria are total wirelength

∑
i |aTi x− bi| and overlap?

Exercise 20. Suppose you are given two sets of points {v1, v2, . . . , vK} and {w1, w2, . . . , wL} in
Rn. Can you formulate the following two problems as LP feasibility problems?

(a) Determine a hyperplane that separates the two sets, i.e., find a ∈ Rn and b ∈ R with
a 6= 0 such that

aT vi ≤ b, i = 1, . . . ,K, aTwi ≥ b, i = 1, . . . , L.

Note that we require a 6= 0, so you have to make sure your method does not return the
trivial solution a = 0, b = 0. You can assume that the matrices

[
v1 v2 · · · vK

1 1 · · · 1

]
,

[
w1 w2 · · · wL

1 1 · · · 1

]

have rank n+ 1.

(b) Determine a sphere separating the two sets of points, i.e., find xc ∈ Rn, R ≥ 0 such
that

(vi − xc)
T (vi − xc) ≤ R2, i = 1, . . . ,K, (wi − xc)

T (wi − xc) ≥ R2, i = 1, . . . , L.

(xc is the center of the sphere; R is its radius.)

Exercise 21. Download the file ex21data.m from the class website and run it in MATLAB using
the command [X,Y] = ex21data(id), where id is your student ID number (a nine-digit
integer). This will create two matrices X ∈ R4×100 and Y ∈ R4×100. Let xi and yi be the
ith columns of X and Y , respectively.

(a) Verify (prove) that it is impossible to strictly separate the points xi from the points yi
by a hyperplane. In other words, show that there exist no a ∈ R4 and b ∈ R such that

aTxi + b ≤ −1, i = 1, . . . , 100, aT yi + b ≥ 1, i = 1, . . . , 100.

(b) Find a quadratic function that strictly separates the two sets, i.e., find A = AT ∈ R4×4,
b ∈ R4, c ∈ R, such that

xTi Axi + bTxi + c ≤ −1, i = 1, . . . , 100, yTi Ayi + bT yi + c ≥ 1, i = 1, . . . , 100.
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(c) It may be impossible to find a hyperplane that strictly separates the two sets, but we can
try to find a hyperplane that separates as many of the points as possible. Formulate a
heuristic (i.e., suboptimal method), based on solving a single LP, for finding a ∈ R4 and
b ∈ R that minimize the number of misclassified points. We consider xi as misclassified
if aTxi + b > −1, and yi as misclassified if aT yi + b < 1.

Describe and justify your method, and test it on the problem data.

Exercise 22. Robot grasp problem with static friction.

We consider a rigid object held by N robot fingers. For simplicity we assume that the object
and all forces acting on it lie in a plane.

  

(0, 0)

F ext
x

F ext
y

T ext

Fi

Gi

θi
(xi, yi)

F1

G1

θ1

(x1, y1)

F2

G2

θ2

(x2, y2)

FN

GN

θN

(xN , yN )

The fingers make contact with the object at points (xi, yi), i = 1, . . . , N . (Although it does
not matter, you can assume that the origin (0, 0) is at the center of gravity of the object.)
Each finger applies a force with magnitude Fi on the object, in a direction normal to the
surface at that contact point, and pointing towards the object. The horizontal component of
the ith contact force is equal to Fi cos θi, and the vertical component is Fi sin θi, where θi is
the angle between the inward pointing normal to the surface and a horizontal line.

At each contact point there is a friction force Gi which is tangential to the surface. The
horizontal component is Gi sin θi and the vertical component is −Gi cos θi. The orientation
of the friction force is arbitrary (i.e., Gi can be positive or negative), but its magnitude |Gi|
cannot exceed µFi, where µ ≥ 0 is a given constant (the friction coefficient).

Finally, there are several external forces and torques that act on the object. We can replace
those external forces by equivalent horizontal and vertical forces F ext

x and F ext
y at the origin,

and an equivalent torque T ext. These two external forces and the external torque are given.

The static equilibrium of the object is characterized by the following three equations:

N∑

i=1

(Fi cos θi +Gi sin θi) + F ext
x = 0 (10)

(the horizontal forces add up to zero),

N∑

i=1

(Fi sin θi −Gi cos θi) + F ext
y = 0 (11)
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(the vertical forces add up to zero),

N∑

i=1

((Fi cos θi +Gi sin θi)yi − (Fi sin θi −Gi cos θi)xi) + T ext = 0 (12)

(the total torque is zero). As mentioned above, we assume the friction model can be expressed
as a set of inequalities

|Gi| ≤ µFi, i = 1, . . . , N. (13)

If we had no friction, then N = 3 fingers would in general be sufficient to hold the object, and
we could find the forces Fi by solving the three linear equations (10)-(12) for the variables
Fi. If there is friction, or N > 3, we have more unkown forces than equilibrium equations, so
the system of equations is underdetermined. We can then take advantage of the additional
degrees of freedom to find a set of forces Fi that are ‘small’. Express the following two
problems as LPs.

(a) Find the set of forces Fi that minimizes
∑N

i=1 Fi subject to the constraint that the
object is in equilibrium. More precisely, the constraint is that there exist friction forces
Gi that, together with Fi, satisfy (10)-(13).

(b) Find a set of forces Fi that minimizes maxi=1,...,N Fi subject to the constraint that the
object is in equilibrium.

Which of these two problems do you expect will have a solution with a larger number of Fi’s
equal to zero?

Exercise 23. Linear programming in decision theory. Suppose we have a choice of p available
actions a ∈ {1, . . . , p}, and each action has a certain cost (which can be positive, negative
or zero). The costs depend on the value of an unknown parameter θ ∈ {1, . . . ,m}, and are
specified in the form of a loss matrix L ∈ Rm×p, with Lij equal to the cost of action a = j
when θ = i.

We do not know θ, but we can observe a random variable x with a distribution that depends
on θ. We will assume that x is a discrete random variable with values in {1, 2, . . . , n}, so we
can represent its distribution, for the m possible values of θ, by a matrix P ∈ Rn×m with

Pki = prob(x = k |θ = i).

A strategy is a rule for selecting an action a based on the observed value of x. A pure or
deterministic strategy assigns to each of the possible observations a unique action a. A pure
stratey can be represented by a matrix T ∈ Rp×n, with

Tjk =

{
1 action j is selected when x = k is observed
0 otherwise.

Note that each column of a pure strategy matrix T contains exactly one entry equal to one,
and the other entries are zero. We can therefore enumerate all possible pure strategies by
enumerating the 0-1 matrices with this property.

As a generalization, we can consider mixed or randomized strategies. In a mixed strategy we
select an action randomly, using a distribution that depends on the observed x. A mixed
strategy is represented by a matrix T ∈ Rp×n, with

Tjk = prob(a = j | x = k).
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The entries of a mixed strategy matrix T are nonnegative and have column sums equal to
one:

Tjk ≥ 0, j = 1, . . . , p, k = 1, . . . , n, 1TT = 1T .

A pure strategy is a special case of a mixed strategy with all the entries Tjk equal to zero or
one.

Now suppose the value of θ is i and we apply the strategy T . Then the expected loss is given
by

n∑

k=1

p∑

j=1

LijTjkPki = (LTP )ii.

The diagonal elements of the matrix LTP are the expected losses for the different values of
θ = 1, . . . ,m. We consider two popular definitions of an optimal mixed strategy, based on
minimizing a function of the expected losses.

(a) Minimax strategies. A minimax strategy minimizes the maximum of the expected losses:
the matrix T is computed by solving

minimize maxi=1,...,m(LTP )ii
subject to Tjk ≥ 0, j = 1, . . . , p, k = 1, . . . , n

1TT = 1T .

The variables are the pn entries of T . Express this problem as a linear program.

(b) Bayes strategies. Assume that the parameter θ itself is random with a known distribu-
tion qi = prob(θ = i). The Bayes strategy minimizes the average expected loss, where
the average is taken over θ. The matrix T of a Bayes strategy is the optimal solution
of the problem

minimize
m∑
i=1

qi(LTP )ii

subject to Tjk ≥ 0, j = 1, . . . , p, k = 1, . . . , n
1TT = 1T .

This is a linear program in the pn variables Tjk. Formulate a simple algorithm for
solving this LP. Show that it is always possible to find an optimal Bayes strategy that
is a pure strategy.

Hint. First note that each column of the optimal T can be determined independently
of the other columns. Then reduce the optimization problem over column k of T to one
of the simple LPs in Exercise 8.

(c) As a simple numerical example, we consider a quality control system in a factory. The
products that are examined can be in one of two conditions (m = 2): θ = 1 means
the product is defective; θ = 2 means the product works properly. To examine the
quality of a product we use an automated measurement system that rates the product
on a scale of 1 to 4. This rating is the observed variable x: n = 4 and x ∈ {1, 2, 3, 4}.
We have calibrated the system to find the probabilities Pij = prob(x = i |θ = j) of
producing a rating x = i when the state of the product is θ = j. The matrix P is

P =




0.7 0.0
0.2 0.1
0.05 0.1
0.05 0.8


 .
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We have a choice of three possible actions (p = 3): a = 1 means we accept the product
and forward it to be sold; a = 2 means we subject it to a manual inspection to determine
whether it is defective or not; a = 3 means we discard the product. The loss matrix is

L =

[
10 3 1
0 2 6

]
.

Thus, for example, selling a defective product costs us $10; discarding a good product
costs $6, et cetera.

i. Compute the minimax strategy for this L and P (using an LP solver). Is the
minimax strategy a pure strategy?

ii. Compute the Bayes strategy for q = (0.2, 0.8) (using an LP solver or the simple
algorithm formulated in part 2).

iii. Enumerate all (34 = 81) possible pure strategies T (in MATLAB), and plot the
expected losses ((LTP )11, (LTP )22) of each of these strategies in a plane.

iv. On the same graph, show the losses for the minimax strategy and the Bayes strategy
computed in parts (a) and (b).

v. Suppose we let q vary over all possible prior distributions (all vectors with q1+q2 =
1, q1 ≥ 0, q2 ≥ 0). Indicate on the graph the expected losses ((LTP )11, (LTP )22)
of the corresponding Bayes strategies.

Exercise 24. Robust linear programming.

(a) Let x ∈ Rn be a given vector. Prove that xT y ≤ ‖x‖1 for all y with ‖y‖∞ ≤ 1. Is the
inequality tight, i.e., does there exist a y that satisfies ‖y‖∞ ≤ 1 and xT y = ‖x‖1?

(b) Consider the set of linear inequalities

aTi x ≤ bi, i = 1, . . . ,m. (14)

Suppose you don’t know the coefficients ai exactly. Instead you are given nominal values
āi, and you know that the actual coefficient vectors satisfy

‖ai − āi‖∞ ≤ ρ

for a given ρ > 0. In other words the actual coefficients aij can be anywhere in the
intervals [āij − ρ, āij + ρ], or equivalently, each vector ai can lie anywhere in a rectangle
with corners āi + v where v ∈ {−ρ, ρ}n (i.e., v has components ρ or −ρ).
The set of inequalities (14) must be satisfied for all possible values of ai, i.e., we re-
place (14) with the constraints

aTi x ≤ bi for all ai ∈ {āi + v | ‖v‖∞ ≤ ρ} and for i = 1, . . . ,m. (15)

A straightforward but very inefficient way to express this constraint is to enumerate the
2n corners of the rectangle of possible values ai and to require that

āTi x+ vTx ≤ bi for all v ∈ {−ρ, ρ}n and for i = 1, . . . ,m.

This is a system of m2n inequalities.

Use the result in (a) to show that (15) is in fact equivalent to the much more compact
set of nonlinear inequalities

āTi x+ ρ‖x‖1 ≤ bi, i = 1, . . . ,m. (16)
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(c) Consider the LP
minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m.

Again we are interested in situations where the coefficient vectors ai are uncertain, but
satisfy bounds ‖ai − āi‖∞ ≤ ρ for given āi and ρ. We want to minimize cTx subject to
the constraint that the inequalities aTi x ≤ bi are satisfied for all possible values of ai.
We call this a robust LP :

minimize cTx
subject to aTi x ≤ bi for all ai ∈ {āi + v | ‖v‖∞ ≤ ρ} and for i = 1, . . . ,m.

(17)

It follows from (b) that we can express this problem as a nonlinear optimization problem

minimize cTx
subject to āTi x+ ρ‖x‖1 ≤ bi, i = 1, . . . ,m.

(18)

Express (18) as an LP.

Solving (18) is a worst-case approach to dealing with uncertainty in the data. If x⋆ is
the optimal solution of (18), then for any specific value of ai, it may be possible to find
feasible x with a lower objective value than x⋆. However such an x would be infeasible
for some other value of ai.

Exercise 25. Robust Chebyshev approximation.
In a similar way as in the previous problem, we can consider Chebyshev approximation
problems

minimize ‖Ax− b‖∞
in which A ∈ Rm×n is uncertain. Suppose we can characterize the uncertainty as follows.
The values of A depend on parameters u ∈ Rp, which are unknown but satisfy ‖u‖∞ ≤ ρ.
Each row vector ai can be written as ai = āi +Biu where āi ∈ Rn and Bi ∈ Rn×p are given.
In the robust Chebyshev approximation we minimize the worst-case value of ‖Ax− b‖∞. This
problem can be written as

minimize max‖u‖∞≤ρ maxi=1....,m

∣∣∣(āi +Biu)
Tx− bi

∣∣∣ . (19)

Show that (19) is equivalent to

minimize maxi=1....,m(|āTi x− bi|+ ρ‖BT
i x‖1). (20)

To prove this you can use the results from exercise 24. There is also a fairly straightforward
direct proof. Express (20) as an LP.

Exercise 26. Describe how you would use linear programming to solve the following problem.
You are given an LP

minimize cTx
subject to Ax ≤ b

(21)

in which the coefficients of A ∈ Rm×n are uncertain. Each coefficient Aij can take arbitrary
values in the interval

[Āij −∆Aij , Āij +∆Aij ],
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where Āij and ∆Aij are given with ∆Aij ≥ 0. The optimization variable x in (21) must be
feasible for all possible values of A. In other words, we want to solve

minimize cTx
subject to Ax ≤ b for all A ∈ A

where A ⊆ Rm×n is the set

A = {A ∈ Rm×n | Āij −∆Aij ≤ Aij ≤ Āij +∆Aij , i = 1, . . . ,m, j = 1, . . . , n}.

If you know more than one solution method, you should give the most efficient one.

Exercise 27. Optimization problems with uncertain data sometimes involve two sets of variables
that can be selected in two stages. When the first set of variables is chosen, the problem data
are uncertain. The second set of variables, however, can be selected after the actual values
of the parameters have become known.

As an example, we consider two-stage robust formulations of the Chebyshev approximation
problem

minimize ‖Ax+By + b‖∞,
with variables x ∈ Rn and y ∈ Rp. The problem parameters A, B, b are uncertain, and we
model the uncertainty by assuming that there are m possible scenarios (or instances of the
problem). In scenario k, the values of A, B, b are Ak, Bk, bk.

In the two-stage setting we first select x before the scenario is known; then we choose y after
learning the actual value of k. The optimal choice of y in the second stage is the value that
minimizes ‖Akx+Bky+bk‖∞, for given x, Ak, Bk, bk. We denote by fk(x) the optimal value
of this second-stage optimization problem for scenario k:

fk(x) = min
y

‖Akx+Bky + bk‖∞, k = 1, . . . ,m.

(a) We can minimize the worst-case objective by solving the optimization problem

minimize max
k=1,...,m

fk(x)

with x as variable. Formulate this problem as an LP.

(b) If we know the probability distribution of the scenarios we can also minimize the ex-
pected cost, by solving

minimize
m∑

k=1

πkfk(x)

with x as variable. The coefficient πk ≥ 0 is the probability that (A,B, b) is equal to
(Ak, Bk, bk). Formulate this problem as an LP.

Exercise 28. Feedback design for a static linear system. In this problem we use linear program-
ming to design a linear feedback controller for a static linear system. (The method extends
to dynamical systems but we will not consider the extension here.) The figure shows the
system and the controller.

21



K

P

w

u

z

y

The elements of the vector w ∈ Rnw are called the exogeneous inputs, z ∈ Rnz are the critical
outputs, y ∈ Rny are the sensed outputs, and u ∈ Rnu are the actuator inputs. These vectors
are related as

z = Pzww + Pzuu
y = Pyww + Pyuu,

(22)

where the matrices Pzu, Pzw, Pyu, Pyw are given.

The controller feeds back the sensed outputs y to the actuator inputs u. The relation is

u = Ky (23)

where K ∈ Rnu×ny . The matrix K will be the design variable.

Assuming I−Pyu is invertible, we can eliminate y from the second equation in (22). We have

y = (I − PyuK)−1Pyww

and substituting in the first equation we can write z = Hw with

H = Pzw + PzuK(I − PyuK)−1Pyw. (24)

The matrix H is a complicated nonlinear function of K.

Suppose that the signals w are disturbances or noises acting on the system, and that they
can take any values with ‖w‖∞ ≤ ρ for some given ρ. We would like to choose K so that
the effect of the disturbances w on the output z is minimized, i.e., we would like z to be as
close as possible to zero, regardless of the values of w. Specifically, if we use the infinity norm
‖z‖∞ to measure the size of z, we are interested in determining K by solving the optimization
problem

minimize max
‖w‖∞≤ρ

‖Hw‖∞, (25)

where H depends on the variable K through the formula (24).

(a) We first derive an explicit expression for the objective function in (25). Show that

max
‖w‖∞≤ρ

‖Hw‖∞ = ρ max
i=1,...,nz

∑

j=1,...,nw

|hij |

where hij are the elements of H. Up to the constant ρ, this is the maximum row sum
of H: for each row of H we calculate the sum of the absolute values of its elements; we
then select the largest of these row sums.
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(b) Using this expression, we can reformulate problem (25) as

minimize ρmaxi=1,...,nz

∑
j=1,...,nw

|hij |, (26)

where hij depends on the variable K through the formula (24). Formulate (25) as an
LP. Hint. Use a change of variables

Q = K(I − PyuK)−1,

and optimize overQ ∈ Rnu×ny instead ofK. You may assume that I+QPyu is invertible,
so the transformation is invertible: we can find K from Q as K = (I +QPyu)

−1Q.

Exercise 29. Formulate the following problem as an LP. Find the largest ball

B(xc, R) = {x | ‖x− xc‖ ≤ R}

enclosed in a given polyhedron

P = {x | aTi x ≤ bi, i = 1, . . . ,m}.

In other words, express the problem

maximize R
subject to B(xc, R) ⊆ P

as an LP. The problem variables are the center xc ∈ Rn and the radius R of the ball.

Exercise 30. Let P1 and P2 be two polyhedra described as

P1 = {x | Ax ≤ b} , P2 = {x | − 1 ≤ Cx ≤ 1} ,

where A ∈ Rm×n, C ∈ Rp×n, and b ∈ Rm. The polyhedron P2 is symmetric about the
origin, i.e., if x ∈ P2, then −x ∈ P2. We say the origin is the center of P2.

For t > 0 and xc ∈ Rn, we use the notation tP2 + xc to denote the polyhedron

tP2 + xc = {tx+ xc | x ∈ P2},

which is obtained by first scaling P2 by a factor t about the origin, and then translating its
center to xc.

Explain how you would solve the following two problems using linear programming. If you
know different formulations, you should choose the most efficient method.

(a) Find the largest polyhedron tP2 + xc enclosed in P1, i.e.,

maximize t
subject to tP2 + xc ⊆ P1.

(b) Find the smallest polyhedron tP2 + xc containing P1, i.e.,

minimize t
subject to P1 ⊆ tP2 + xc.
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In both problems the variables are t ∈ R and xc ∈ Rn.

Exercise 31. Consider the linear system of exercise 9, equation (4). We study two optimal control
problems. In both problems we assume the system is initially at rest at the origin, i.e.,
z(0) = 0.

(a) In the first problem we want to determine the most efficient input sequence u(kT ),
k = 0, . . . , 79, that brings the system to state (0, 0, 10, 10) in 80 time periods (i.e., at
t = 8 the two masses should be at rest at position v1 = v2 = 10). We assume the cost
(e.g., fuel consumption) of the input signal u is proportional to

∑
k |u(kT )|. We also

impose the constraint that the amplitude of the input must not exceed 2. This leads us
to the following problem:

minimize
79∑
k=0

|u(kT )|
subject to z(80T ) = (0, 0, 10, 10)

|u(kT )| ≤ 2, k = 0, . . . , 79.

(27)

The state z and the input u are related by (4) with z(0) = 0. The variables in (27) are
u(0), u(T ), . . . , u(79T ).

(b) In the second problem we want to bring the system to the state (0, 0, 10, 10) as quickly
as possible, subject to the limit on the magnitude of u:

minimize N
subject to z(NT ) = (0, 0, 10, 10)

|u(kT )| ≤ 2, k = 0, . . . , N − 1.

The variables are N ∈ Z, and u(0), u(T ), . . . , u(N − 1)T .

Solve these two problems numerically. Plot the input u and the positions v1, v2 as functions
of time.

Exercise 32. We consider a linear dynamical system with state x(t) ∈ Rn, t = 0, . . . , N , and
actuator or input signal u(t) ∈ R, for t = 0, . . . , N − 1. The dynamics of the system is given
by the linear recurrence

x(t+ 1) = Ax(t) + bu(t), t = 0, . . . , N − 1,

where A ∈ Rn×n and b ∈ Rn are given. We assume that the initial state is zero, i.e., x(0) = 0.

The minimum fuel optimal control problem is to choose the inputs u(0), . . . , u(N − 1) so as
to minimize the total fuel consumed, which is given by

F =
N−1∑

t=0

f(u(t)),

subject to the constraint that x(N) = xdes, where N is the (given) time horizon, and xdes ∈
Rn is the (given) final or target state. The function f : R → R is the fuel use map for the
actuator, which gives the amount of fuel used as a function of the actuator signal amplitude.
In this problem we use

f(a) =

{
|a| |a| ≤ 1
2|a| − 1 |a| > 1.

24



This means that fuel use is proportional to the absolute value of the actuator signal, for
actuator signals between −1 and 1; for larger actuator signals the marginal fuel efficiency is
half.

(a) Formulate the minimum fuel optimal control problem as an LP.

(b) Solve the following instance of the problem:

A =

[
1 1
0 0.95

]
, b =

[
0
0.1

]
, x(0) = (0, 0), xdes = (10, 0), N = 20.

We can interpret the system as a simple model of a vehicle moving in one dimension.
The state dimension is n = 2, with x1(t) denoting the position of the vehicle at time t,
and x2(t) giving its velocity. The initial state is (0, 0), which corresponds to the vehicle
at rest at position 0; the final state is xdes = (10, 0), which corresponds to the vehicle
being at rest at position 10. Roughly speaking, this means that the actuator input
affects the velocity, which in turn affects the position. The coefficient A22 = 0.95 means
that velocity decays by 5% in one sample period, if no actuator signal is applied.

Plot the input signal u(t) for t = 0, . . . , 19, and the position and velocity (i.e., x1(t)
and x2(t)) for t = 0, . . . , 20.

Exercise 33. Approximating a matrix in infinity norm. The infinity (induced) norm of a matrix
A ∈ Rm×n, denoted ‖A‖∞,i, is defined as

‖A‖∞,i = max
i=1,...,m

n∑

j=1

|aij |.

The infinity norm gives the maximum ratio of the infinity norm of Ax to the infinity norm
of x:

‖A‖∞,i = max
x 6=0

‖Ax‖∞
‖x‖∞

.

This norm is sometimes called the max-row-sum norm, for obvious reasons.

Consider the problem of approximating a matrix, in the max-row-sum norm, by a linear
combination of other matrices. That is, we are given k + 1 matrices A0, . . . , Ak ∈ Rm×n,
and need to find x ∈ Rk that minimizes

‖A0 + x1A1 + · · ·+ xkAk‖∞,i.

Express this problem as a linear program. Explain the significance of any extra variables in
your LP. Carefully explain why your LP formulation solves this problem, e.g., what is the
relation between the feasible set for your LP and this problem?

Exercise 34. We are given p matrices Ai ∈ Rn×n, and we would like to find a single matrix
X ∈ Rn×n that we can use as an approximate right-inverse for each matrix Ai, i.e., we would
like to have

AiX ≈ I, i = 1, . . . , p.

We can do this by solving the following optimization problem with X as variable:

minimize maxi=1,...,p ‖I −AiX‖∞. (28)
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Here ‖H‖∞ is the ‘infinity-norm’ or ‘max-row-sum norm’ of a matrix H, defined as

‖H‖∞ = max
i=1,...,m

n∑

j=1

|Hij |,

if H ∈ Rm×n.

Express the problem (28) as an LP. You don’t have to reduce the LP to a canonical form,
as long as you are clear about what the variables are, what the meaning is of any auxiliary
variables that you introduce, and why the LP is equivalent to the problem (28).

Exercise 35. Explain how you would use linear programming to solve the following optimization
problems.

(a) Given A ∈ Rm×n, b ∈ Rm,

minimize
m∑

i=1

max{0, aTi x+ bi}.

The variable is x ∈ Rn.

(b) Given A ∈ Rm×n, b ∈ Rm,

minimize maxi=1,...,mmax{aTi x+ bi, 1/(a
T
i x+ bi)}

subject to Ax+ b > 0.

The variable is x ∈ Rn.

(c) Given m numbers a1, a2, . . . , am ∈ R, and two vectors l, u ∈ Rm, find the polynomial
f(t) = c0 + c1t+ · · ·+ cnt

n of lowest degree that satisfies the bounds

li ≤ f(ai) ≤ ui, i = 1, . . . ,m.

The variables in the problem are the coefficients ci of the polynomial.

(d) Given p+ 1 matrices A0, A1, . . . , Ap ∈ Rm×n, find the vector x ∈ Rp that minimizes

max
‖y‖1=1

‖(A0 + x1A1 + · · ·+ xpAp)y‖1 .

Exercise 36. Suppose you are given an infeasible set of linear inequalities

aTi x ≤ bi, i = 1, . . . ,m,

and you are asked to find an x that satisfies many of the inequalities (ideally, as many as
possible). Of course, the exact solution of this problem is difficult and requires combinatorial
or integer optimization techniques, so you should concentrate on heuristic or sub-optimal
methods. More specifically, you are asked to formulate a heuristic method based on solving
a single LP.

Test the method on the example problem in the file ex36data.m available on the class web-
page. (The MATLAB command [A,b] = ex36data generates a sparse matrix A ∈ R100×50

and a vector b ∈ R100, that define an infeasible set of linear inequalities.) To count the
number of inequalities satisfied by x, you can use the MATLAB command
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length(find(b-A*x > -1e-5)).

Exercise 37. Consider the linear-fractional program

minimize (cTx+ γ)/(dTx+ δ)
subject to Ax ≤ b,

(29)

where A ∈ Rm×n, b ∈ Rm, c, d ∈ Rn, and γ, δ ∈ R. We assume that the polyhedron

P = {x ∈ Rn | Ax ≤ b}
is bounded and that dTx+ δ > 0 for all x ∈ P.

Show that you can solve (29) by solving the LP

minimize cT y + γz
subject to Ay − zb ≤ 0

dT y + δz = 1
z ≥ 0

(30)

in the variables y ∈ Rn and z ∈ R. More precisely, suppose ŷ and ẑ are a solution of (30).
Show that ẑ > 0 and that ŷ/ẑ solves (29).

Exercise 38. Consider the problem

minimize ‖Ax− b‖1/(cTx+ d)
subject to ‖x‖∞ ≤ 1,

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and d ∈ R. We assume that d > ‖c‖1.

(a) Formulate this problem as a linear-fractional program.

(b) Show that d > ‖c‖1 implies that cTx+ d > 0 for all feasible x.

(c) Show that the problem is equivalent to the convex optimization problem

minimize ‖Ay − bt‖1
subject to ‖y‖∞ ≤ t

cT y + dt = 1,
(31)

with variables y ∈ Rn, t ∈ R.

(d) Formulate problem (31) as an LP.

Exercise 39. Explain how you would solve the following problem using linear programming. You
are given two sets of points in Rn:

S1 = {x1, . . . , xN}, S2 = {y1, . . . , yM}.
You are asked to find a polyhedron

P = {x | aTi x ≤ bi, i = 1, . . . ,m}
that contains the points in S1 in its interior, and does not contain any of the points in S2:

S1 ⊆ {x | aTi x < bi, i = 1, . . . ,m}, S2 ⊆ {x | aTi x > bi for at least one i} = Rn \ P.
An example is shown in the figure, with the points in S1 shown as open circles and the points
in S2 as filled circles.
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You can assume that the two sets are separable in the way described. Your solution method
should return ai and bi, i = 1, . . . ,m, given the sets S1 and S2. The number of inequalities
m is not specified, but it should not exceed M + N . You are allowed to solve one or more
LPs or LP feasibility problems. The method should be efficient, i.e., the dimensions of the
LPs you solve should not be exponential as a function of N and M .

Exercise 40. Explain how you would solve the following problem using linear programming. Given
two polyhedra

P1 = {x | Ax ≤ b}, P2 = {x | Cx ≤ d},
prove that P1 ⊆ P2, or find a point in P1 that is not in P2. The matrices A ∈ Rm×n and
C ∈ Rp×n, and the vectors b ∈ Rm and d ∈ Rp are given.

If you know several solution methods, give the most efficient one.

Exercise 41. Formulate the following problem as an LP:

maximize
n∑

j=1
rj(xj)

subject to
n∑

j=1
Aijxj ≤ cmax

i , i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n.

(32)

The functions rj are defined as

rj(u) =

{
pju 0 ≤ u ≤ qj
pjqj + pdiscj (u− qj) u ≥ qj ,

(33)

where pj > 0, qj > 0 and 0 < pdiscj < pj . The variables in the problem are xj , j = 1, . . . , n.

The parameters Aij , c
max
i , pj , qj and pdiscj are given.

The variables xj in the problem represent activity levels (for example, production levels
for different products manufactured by a company). These activities consume m resources,
which are limited. Activity j consumes Aijxj of resource i. (Ordinarily we have Aij ≥ 0, i.e.,
activity j consumes resource i. But we allow the possibility that Aij < 0, which means that
activity j actually generates resource i as a by-product.) The total resource consumption is
additive, so the total of resource i consumed is ci =

∑n
j=1Aijxj . Each resource consumption

is limited: we must have ci ≤ cmax
i , where cmax

i are given.
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Activity j generates revenue rj(xj), given by the expression (33). In this definition pj > 0

is the basic price, qj > 0 is the quantity discount level, and pdiscj is the quantity discount

price, for (the product of) activity j. We have 0 < pdiscj < pj . The total revenue is the sum
of the revenues associated with each activity, i.e.,

∑n
j=1 rj(xj). The goal in (32) is to choose

activity levels that maximize the total revenue while respecting the resource limits.

5 Duality

Exercise 42. The main result of linear programming duality is that the optimal value of the LP

minimize cTx
subject to Ax ≤ b

is equal to the optimal value of the LP

maximize −bT z
subject to AT z + c = 0

z ≥ 0,

except when they are both infeasible. Give an example in which both problems are infeasible.

Exercise 43. Consider the LP

minimize 47x1 + 93x2 + 17x3 − 93x4

subject to




−1 −6 1 3
−1 −2 7 1
0 3 −10 −1

−6 −11 −2 12
1 6 −1 −3







x1
x2
x3
x4


 ≤




−3
5

−8
−7
4



.

Prove, without using any LP code, that x = (1, 1, 1, 1) is optimal.

Exercise 44. Consider the polyhedron

P = {x ∈ R4 | Ax ≤ b, Cx = d}

where

A =




−1 −1 −3 −4
−4 −2 −2 −9
−8 −2 0 −5
0 −6 −7 −4


 , b =




−8
−17
−15
−17




and
C =

[
13 11 12 22

]
, d = 58.

(a) Prove that x̂ = (1, 1, 1, 1) is an extreme point of P.
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(b) Prove that x̂ is optimal for the LP

minimize cTx
subject to Ax ≤ b

Cx = d

with c = (59, 39, 38, 85).

(c) Is x̂ the only optimal point? If not, describe the entire optimal set.

You can use any software, but you have to justify your answers analytically.

Exercise 45. Consider the LP

minimize 47x1 + 93x2 + 17x3 − 93x4

subject to




−1 −6 1 3
−1 −2 7 1
0 3 −10 −1

−6 −11 −2 12
1 6 −1 −3
11 1 −1 −8







x1
x2
x3
x4


 ≤




−3
5

−8
−7
4
5




+ ǫ




1
−3
13
46
−2
−75




.
(34)

where ǫ ∈ R is a parameter. For ǫ = 0, this is the LP of exercise 43, with one extra inequality
(the sixth inequality). This inequality is inactive at x̂ = (1, 1, 1, 1), so x̂ is also the optimal
solution for (34) when ǫ = 0.

(a) Determine the range of values of ǫ for which the first four constraints are active at the
optimum.

(b) Give an explicit expression for the optimal primal solution, the optimal dual solution,
and the optimal value, within the range of ǫ you determined in part (a). (If for some
value of ǫ the optimal points are not unique, it is sufficient to give one optimal point.)

Exercise 46. Consider the parametrized primal and dual LPs

minimize (c+ ǫd)Tx
subject to Ax ≤ b,

maximize −bT z
subject to AT z + c+ ǫd = 0

z ≥ 0

where

A =




2 3 5 −4
2 −1 −3 4

−2 −1 3 1
−4 2 4 −2
2 −3 −9 1



, b =




6
2
1
0

−8



,

c = (8,−32,−66, 14), d = (−16,−6,−2, 3).

(a) Prove that x⋆ = (1, 1, 1, 1) and z⋆ = (9, 9, 4, 9, 0) are optimal when ǫ = 0.

(b) How does p⋆(ǫ) vary as a function of ǫ around ǫ = 0? Give an explicit expression for
p⋆(ǫ), and specify the interval in which it is valid.
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(c) Also give an explicit expression for the primal and dual optimal solutions for values of
ǫ around ǫ = 0.

Remark: The problem is similar to the sensitivity problem discussed in the lecture notes.
Here we consider the case where c is subject to a perturbation, while b is fixed, so you have
to develop the ‘dual’ of the derivation in the lecture notes.

Exercise 47. Consider the pair of primal and dual LPs

minimize (c+ ǫd)Tx
subject to Ax ≤ b+ ǫf,

maximize −(b+ ǫf)T z
subject to AT z + c+ ǫd = 0

z ≥ 0

where

A =




−4 12 −2 1
−17 12 7 11

1 0 −6 1
3 3 22 −1

−11 2 −1 −8



, b =




8
13
−4
27

−18



, c =




49
−34
−50
−5


 , d =




3
8
21
25


 , f =




6
15

−13
48
8




and ǫ is a parameter.

(a) Prove that x⋆ = (1, 1, 1, 1) is optimal when ǫ = 0, by constructing a dual optimal point
z⋆ that has the same objective value as x⋆. Are there any other primal or dual optimal
solutions?

(b) Express the optimal value p⋆(ǫ) as a continuous function of ǫ on an interval that con-
tains ǫ = 0. Specify the interval in which your expression is valid. Also give explicit
expressions for the primal and dual solutions as a function of ǫ over the same interval.

Exercise 48. In some applications we are interested in minimizing two cost functions, cTx and
dTx, over a polyhedron P = {x | Ax ≤ b}. For general c and d, the two objectives are
competing, i.e., it is not possible to minimize them simultaneously, and there exists a trade-
off between them. The problem can be visualized as in the figure below.

cTx

dTx

The shaded region is the set of pairs (cTx, dTx) for all possible x ∈ P. The circles are the
values (cTx, dTx) at the extreme points of P. The lower part of the boundary, shown as a
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heavy line, is called the trade-off curve. Points (cT x̂, dT x̂) on this curve are efficient in the
following sense: it is not possible to improve both objectives by choosing a different feasible x.

Suppose (cT x̂, dT x̂) is a breakpoint of the trade-off curve, where x̂ is a nondegenerate extreme
point of P. Explain how the left and right derivatives of the trade-off curve at this breakpoint
can be computed.

Hint. Compute the largest and smallest values of γ such that x̂ is optimal for the LP

minimize dTx+ γcTx
subject to Ax ≤ b.

Exercise 49. Consider the ℓ1-norm minimization problem

minimize ‖Ax+ b+ ǫd‖1

with

A =




−2 7 1
−5 −1 3
−7 3 −5
−1 4 −4
1 5 5
2 −5 −1




, b =




−4
3
9
0

−11
5




, d =




−10
−13
−27
−10
−7
14




.

(a) Suppose ǫ = 0. Prove, without using any LP code, that x⋆ = 1 is optimal. Are there
any other optimal points?

(b) Give an explicit formula for the optimal value as a function of ǫ for small positive and
negative values of ǫ. What are the values of ǫ for which your expression is valid?

Exercise 50. Consider the following optimization problem in x:

minimize cTx
subject to ‖Ax+ b‖1 ≤ 1

(35)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn.

(a) Formulate this problem as a an LP in inequality form and explain why your LP formu-
lation is equivalent to problem (35).

(b) Derive the dual LP, and show that it is equivalent to the problem

maximize bT z − ‖z‖∞
subject to AT z + c = 0.

What is the relation between the optimal z and the optimal variables in the dual LP?

(c) Give a direct argument (i.e., not quoting any results from LP duality) that whenever
x is primal feasible (i.e., ‖Ax + b‖1 ≤ 1) and z is dual feasible (i.e., AT z + c = 0), we
have

cTx ≥ bT z − ‖z‖∞.
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Exercise 51. Lower bounds in Chebyshev approximation from least-squares. Consider the Cheby-
shev approximation problem

minimize ‖Ax− b‖∞ (36)

where A ∈ Rm×n (m ≥ n) and rankA = n. Let xcheb denote an optimal point for the
Chebyshev approximation problem (there may be multiple optimal points; xcheb denotes one
of them).

The Chebyshev problem has no closed-form solution, but the corresponding least-squares
problem does. We denote the least-squares solution xls as

xls = argmin ‖Ax− b‖ = (ATA)−1AT b.

The question we address is the following. Suppose that for a particular A and b you have
computed the least-squares solution xls (but not xcheb). How suboptimal is xls for the Cheby-
shev problem? In other words, how much larger is ‖Axls − b‖∞ than ‖Axcheb − b‖∞? To
answer this question, we need a lower bound on ‖Axcheb − b‖∞.

(a) Prove the lower bound

‖Axcheb − b‖∞ ≥ 1√
m
‖Axls − b‖∞,

using the fact that for all y ∈ Rm,

1√
m
‖y‖ ≤ ‖y‖∞ ≤ ‖y‖.

(b) In the duality lecture we derived the following dual for (36):

maximize bT z
subject to AT z = 0

‖z‖1 ≤ 1.
(37)

We can use this dual problem to improve the lower bound obtained in (a).

• Denote the least-squares residual as rls = b−Axls. Assuming rls 6= 0, show that

ẑ = −rls/‖rls‖1, z̃ = rls/‖rls‖1,

are both feasible in (37).

• By duality bT ẑ and bT z̃ are lower bounds for ‖Axcheb − b‖∞. Which is the better
bound? How does it compare with the bound obtained in part (a) above?

One application is as follows. You need to solve the Chebyshev approximation problem, but
only within, say, 10%. You first solve the least-squares problem (which can be done faster),
and then use the bound from part (b) to see if it can guarantee a maximum 10% error. If it
can, great; otherwise solve the Chebyshev problem (by slower methods).

33



Exercise 52. A matrix A ∈ R(mp)×n and a vector b ∈ Rmp are partitioned in m blocks of p rows:

A =




A1

A2
...
Am



, b =




b1
b2
...
bm



,

with Ak ∈ Rp×n, bk ∈ Rp.

(a) Express the optimization problem

minimize
m∑
k=1

‖Akx− bk‖∞ (38)

as an LP.

(b) Suppose rank(A) = n and Axls − b 6= 0, where xls is the solution of the least-squares
problem

minimize ‖Ax− b‖2.
Show that the optimal value of (38) is bounded below by

∑m
k=1 ‖rk‖2

maxk=1,...,m ‖rk‖1
,

where rk = Akxls − bk for k = 1, . . . ,m.

Exercise 53. Let x be a real-valued random variable which takes values in {a1, a2, . . . , an} where
0 < a1 < a2 < · · · < an, and prob(x = ai) = pi. Obviously p satisfies

∑n
i=1 pi = 1 and pi ≥ 0

for i = 1, . . . , n.

(a) Consider the problem of determining the probability distribution that maximizes prob(x ≥
α) subject to the constraint Ex = b, i.e.,

maximize prob(x ≥ α)
subject to Ex = b,

(39)

where α and b are given (a1 < α < an, and a1 ≤ b ≤ an). The variable in problem (39)
is the probability distribution, i.e., the vector p ∈ Rn. Write (39) as an LP.

(b) Take the dual of the LP in (a), and show that it is can be reformulated as

minimize λb+ ν
subject to λai + ν ≥ 0 for all ai < α

λai + ν ≥ 1 for all ai ≥ α.

The variables are λ and ν. Give a graphical interpretation of this problem, by interpret-
ing λ and ν as coefficients of an affine function f(x) = λx+ ν. Show that the optimal
value is equal to {

(b− a1)/(ā− a1) b ≤ ā
1 b ≥ ā,

where ā = min{ai | ai ≥ α}. Also give the optimal values of λ and ν.
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(c) From the dual solution, determine the distribution p that solves the problem in (a).

Exercise 54. The max-flow min-cut theorem. Consider the maximum flow problem with nonneg-
ative arc flows:

maximize t
subject to Ax = te

0 ≤ x ≤ c.
(40)

Here e = (1, 0, . . . , 0,−1) ∈ Rm, A ∈ Rm×n is the node-arc incidence matrix of a directed
graph with m nodes and n arcs, and c ∈ Rn is a vector of positive arc capacities. The
variables are t ∈ R and x ∈ Rn. In this problem we have an external supply of t at node 1
(the ‘source’ node) and −t at node m (the ‘target’ node), and we maximize t subject to the
balance equations and the arc capacity constraints.

A cut separating nodes 1 and m is a set of nodes that contains node 1 and does not contain
node m, i.e., S ⊂ {1, . . . ,m} with 1 ∈ S and m 6∈ S. The capacity of the cut is defined as

C(S) =
∑

k∈A(S)

ck,

where A(S) is the set of arcs that start at a node in S and end at a node outside S. The
problem of finding the cut with the minimum capacity is called the minimum cut problem.
In this exercise we show that the solution of the minimum cut problem (with positive weights
c) is provided by the dual of the maximum flow problem (40).

(a) Let p⋆ be the optimal value of the maximum flow problem (40). Show that

p⋆ ≤ C(S) (41)

for all cuts S that separate nodes 1 and m.

(b) Derive the dual problem of (40), and show that it can be expressed as

minimize cT v
subject to AT y ≤ v

y1 − ym = 1
v ≥ 0.

(42)

The variables are v ∈ Rn and y ∈ Rm.

Suppose x and t are optimal in (40), and y and v are optimal in (42). Define the cut

S̃ = {i | yi ≥ y1}.
Use the complementary slackness conditions for (40) and (42) to show that

xk = ck

if arc k starts at a node in S̃ and ends at a node outside S̃, and that

xk = 0

if arc k starts at a node outside S̃ and ends at a node in S̃. Conclude that

p⋆ = C(S̃).

Combined with the result of part 1, this proves that S̃ is a minimum-capacity cut.
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Exercise 55. A project consisting of n different tasks can be represented as a directed graph with
n arcs and m nodes. The arcs represent the tasks. The nodes represent precedence relations:
If arc k starts at node i and arc j ends at node i, then task k cannot start before task
j is completed. Node 1 only has outgoing arcs. These arcs represent tasks that can start
immediately and in parallel. Node m only has incoming arcs. When the tasks represented
by these arcs are completed, the entire project is completed.

We are interested in computing an optimal schedule, i.e., in assigning an optimal start time
and a duration to each task. The variables in the problem are defined as follows.

• yk is the duration of task k, for k = 1, . . . , n. The variables yk must satisfy the con-
straints αk ≤ yk ≤ βk. We also assume that the cost of completing task k in time yk is
given by ck(βk − yk). This means there is no cost if we we use the maximum allowable
time βk to complete the task, but we have to pay if we want the task finished more
quickly.

• vj is an upper bound on the completion times of all tasks associated with arcs that end
at node j. These variables must satisfy the relations

vj ≥ vi + yk if arc k starts at node i and ends at node j.

Our goal is to minimize the sum of the completion time of the entire project, which is given
by vm − v1, and the total cost

∑
k ck(βk − yk). The problem can be formulated as an LP

minimize −eT v + cT (β − y)
subject to AT v + y ≤ 0

α ≤ y ≤ β,

where e = (1, 0, . . . , 0,−1) and A is the node-arc incidence matrix of the graph. The variables
are v ∈ Rm, y ∈ Rn.

(a) Derive the dual of this LP.

(b) Interpret the dual problem as a minimum cost network flow problem with nonlinear
cost, i.e., a problem of the form

minimize
n∑

k=1
fk(xk)

subject to Ax = e
x ≥ 0,

where fk is a nonlinear function.

Exercise 56. This problem is a variation on the illumination problem of exercise 16. In part (a)
of exercise 16 we formulated the problem

minimize maxk=1,...,n |aTk p− Ides|
subject to 0 ≤ p ≤ 1

as the following LP in p ∈ Rm and an auxiliary variable w:

minimize w
subject to −w ≤ aTk p− Ides ≤ w, k = 1, . . . , n

0 ≤ p ≤ 1.
(43)
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Now suppose we add the following constraint on the lamp powers p: no more than half the
total power

∑m
i=1 pi is in any subset of r lamps (where r is a given integer with 0 < r <

m). The idea is to avoid solutions where all the power is concentrated in very few lamps.
Mathematically, the constraint can be expressed as

r∑

i=1

p[i] ≤ 0.5
m∑

i=1

pi (44)

where p[i] is the ith largest component of p. We would like to add this constraint to the
LP (43). However the left-hand side of (44) is a complicated nonlinear function of p.

We can write the constraint (44) as a set of linear inequalities by enumerating all subsets
{i1, . . . , ir} ⊆ {1, . . . ,m} with r different elements, and adding an inequality

r∑

k=1

pik ≤ 0.5
m∑

i=1

pi

for each subset. Equivalently, we express (44) as

sT p ≤ 0.5
m∑

i=1

pi for all s ∈ {0, 1}m with
∑m

i=1 si = r.

This yields a set of

(
m
r

)
linear inequalities in p.

We can use LP duality to derive a much more compact representation. We will prove that (44)
can be expressed as the set of 1 + 2m linear inequalities

rt+
m∑

i=1

xi ≤ 0.5
m∑

i=1

pi, pi ≤ t+ xi, i = 1, . . . ,m, x ≥ 0 (45)

in p ∈ Rm, and auxiliary variables x ∈ Rm and t ∈ R.

(a) Given a vector p ∈ Rm, show that the sum of its r largest elements (i.e., p[1]+ · · ·+p[r])
is equal to the optimal value of the LP (in the variables y ∈ Rm)

maximize pT y
subject to 0 ≤ y ≤ 1

1T y = r.
(46)

(b) Derive the dual of the LP (46). Show that it can be written as

minimize rt+ 1Tx
subject to t1+ x ≥ p

x ≥ 0,
(47)

where the variables are t ∈ R and x ∈ Rm. By duality the LP (47) has the same
optimal value as (46), i.e., p[1] + · · ·+ p[r].
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It is now clear that the optimal value of (47) is less than 0.5
∑m

i pi if and only if there is
a feasible solution t, x in (47) with rt + 1Tx ≤ 0.5

∑m
i pi. In other words, p satisfies the

constraint (44) if and only if the set of linear inequalities (45) in x and t are feasible. To
include the nonlinear constraint (44) in (43), we can add the inequalities (45), which yields

minimize w
subject to −w ≤ aTk p− Ides ≤ w, k = 1, . . . , n

0 ≤ p ≤ 1

rt+ 1Tx ≤ 0.5 1T p
p ≤ t1+ x
x ≥ 0.

This is an LP with 2m+ 2 variables p, x, w, t, and 2n+ 4m+ 1 constraints.

Exercise 57. In this problem we derive a linear programming formulation for the following vari-
ation on ℓ∞- and ℓ1-approximation: given A ∈ Rm×n, b ∈ Rm, and an integer k with
1 ≤ k ≤ m,

minimize
k∑

i=1
|Ax− b|[i]. (48)

The notation z[i] denotes the ith largest component of z ∈ Rm, and |z|[i] denotes the ith
largest component of the vector |z| = (|z1|, |z2|, . . . , |zm|) ∈ Rm. In other words in (48) we
minimize the sum of the k largest residuals |aTi x− bi|. For k = 1, this is the ℓ∞-problem; for
k = m, it is the ℓ1-problem.

Problem (48) can be written as

minimize max1≤i1<i2<···<ik≤m

k∑
j=1

|aTijx− bij |,

or as the following LP in x and t:

minimize t
subject to sT (Ax− b) ≤ t for all s ∈ {−1, 0, 1}m, ‖s‖1 = k.

Here we enumerate all vectors s with components −1, 0 or +1, and with exactly k nonzero

elements. This yields an LP with 2k
(
m
k

)
linear inequalities.

We now use LP duality to derive a more compact formulation.

(a) We have seen that for c ∈ Rm and 1 ≤ k ≤ n, the the optimal value of the LP

maximize cT v
subject to −y ≤ v ≤ y

1T y = k
y ≤ 1

(49)

is equal to |c|[1] + · · · + |c|[k]. Take the dual of the LP (49) and show that it can be
simplified as

minimize kt+ 1T z
subject to −t1− z ≤ c ≤ t1+ z

z ≥ 0
(50)
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with variables t ∈ R and z ∈ Rm. By duality the optimal values of (50) and (49) are
equal.

(b) Now apply this result to c = Ax− b. From part (a), we know that the optimal value of
the LP

minimize kt+ 1T z
subject to −t1− z ≤ Ax− b ≤ t1+ z

z ≥ 0,
(51)

with variables t ∈ R, z ∈ Rm is equal to
∑k

i=1 |Ax−b|[i]. Note that the constraints (51)
are linear in x, so we can simultaneously optimize over x, i.e., solve it as an LP with
variables x, t and z. This way we can solve problem (48) by solving an LP withm+n+1
variables and 3m inequalities.

Exercise 58. A portfolio optimization problem. We consider a portfolio optimization problem
with n assets or stocks held over one period. The variable xi will denote the amount of asset
i held at the beginning of (and throughout) the period, and pi will denote the price change
of asset i over the period, so the return is r = pTx. The optimization variable is the portfolio
vector x ∈ Rn, which has to satisfy xi ≥ 0 and

∑n
i=1 xi ≤ 1 (unit total budget).

If p is exactly known, the optimal allocation is to invest the entire budget in the asset with
the highest return, i.e., if pj = maxi pi, we choose xj = 1, and xi = 0 for i 6= j. However,
this choice is obviously very sensitive to uncertainty in p. We can add various constraints to
make the investment more robust against variations in p.

We can impose a diversity constraint that prevents us from allocating the entire budget in
a very small number of assets. For example, we can require that no more than, say, 90% of
the total budget is invested in any 5% of the assets. We can express this constraint as

⌊n/20⌋∑

i=1

x[i] ≤ 0.9

where x[i], i = 1, . . . , n, are the values xi sorted in decreasing order, and ⌊n/20⌋ is the largest
integer smaller than or equal to n/20.

In addition, we can model the uncertainty in p by specifying a set P of possible values, and
require that the investment maximizes the return in the worst-case scenario. The resulting
problem is:

maximize minp∈P p
Tx

subject to 1Tx ≤ 1, x ≥ 0,
⌊n/20⌋∑
i=1

x[i] ≤ 0.9.
(52)

For each of the following sets P, can you express problem (52) as an LP?

(a) P = {p(1), . . . , p(K)}, where p(i) ∈ Rn are given. This means we consider a finite number
of possible scenarios.

(b) P = {p̄ + By | ‖y‖∞ ≤ 1} where p̄ ∈ Rn and B ∈ Rn×m are given. We can interpret
p̄ as the expected value of p, and y ∈ Rm as uncertain parameters that determine the
actual values of p.

(c) P = {p̄ + y | By ≤ d} where p̄ ∈ Rn, B ∈ Rr×m, and d ∈ Rr are given. Here we
consider a polyhedron of possible value of p. (We assume that P is nonempty.)
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You may introduce new variables and constraints, but you must clearly explain why your
formulation is equivalent to (52). If you know more than one solution, you should choose the
most compact formulation, i.e., involving the smallest number of variables and constraints.

Exercise 59. Let v be a discrete random variable with possible values c1, . . . , cn, and distribution
pk = prob(v = ck), k = 1, . . . , n. The β-quantile of v, where 0 < β < 1, is defined as

qβ = min{α | prob(v ≤ α) ≥ β}.
For example, the 0.9-quantile of the distribution shown in the figure is q0.9 = 6.0.

ck

pk

1.0 1.5 2.5 4.0 4.5 5.0 6.0 7.0 9.0 10.0

0.08

0.14

0.18

0.14

0.16

0.14

0.08

0.04

0.02 0.02

A related quantity is

fβ =
1

1− β

∑

ck>qβ

pkck +


1− 1

1− β

∑

ci>qβ

pi


 qβ .

If
∑

ci>qβ
pi = 1 − β (and the second term vanishes), this is the conditional expected value

of v, given that v is greater than qβ . Roughly speaking, fβ is the mean of the tail of the
distribution above the β-quantile. In the example of the figure,

f0.9 =
0.02 · 6.0 + 0.04 · 7.0 + 0.02 · 9.0 + 0.02 · 10.0

0.1
= 7.8.

We consider optimization problems in which the values of ck depend linearly on some op-
timization variable x. We will formulate the problem of minimizing fβ , subject to linear
constraints on x, as a linear program.

(a) Show that the optimal value of the LP

maximize cT y
subject to 0 ≤ y ≤ (1− β)−1p

1T y = 1,
(53)

with variable y ∈ Rn, is equal to fβ . The parameters c, p and β are given, with p > 0,

1T p = 1, and 0 < β < 1.
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(b) Write the LP (53) in inequality form, derive its dual, and show that the dual is equivalent
to the piecewise-linear minimization problem

minimize t+
1

1− β

n∑

k=1

pk max{0, ck − t}, (54)

with a single scalar variable t. It follows from duality theory and the result in part 1
that the optimal value of (54) is equal to fβ .

(c) Now suppose ck = aTk x, where x ∈ Rm is an optimization variable and ak is given, so
qβ(x) and fβ(x) both depend on x. Use the result in part 2 to express the problem

minimize fβ(x)
subject to Fx ≤ g,

with variable x, as an LP.

As an application, we consider a portfolio optimization problem with m assets or stocks held
over a period of time. We represent the portfolio by a vector x = (x1, x2, . . . , xm), with xk
the amount invested in asset k during the investment period. We denote by r the vector of
returns for the m assets over the period, so the total return on the portfolio is rTx. The loss
(negative return) is denoted v = −rTx.
We model r as a discrete random variable, with possible values−a1, . . . , −an, and distribution

pk = prob(r = −ak), k = 1, . . . , n.

The loss of the portfolio v = −rTx is therefore a random variable with possible values
ck = aTk x, k = 1, . . . , n, and distribution p.

In this context, the β-quantile qβ(x) is called the value-at-risk of the portfolio, and fβ(x) is
called the conditional value-at-risk. If we take β close to one, both functions are meaningful
measures of the risk of the portfolio x. The result of part 3 implies that we can minimize
fβ(x), subject to linear constraints in x, via linear programming. For example, we can
minimize the risk (expressed as fβ(x)), subject to an upper bound on the expected loss (i.e.,
a lower bound on the expected return), by solving

minimize fβ(x)
subject to

∑
k
pka

T
k x ≤ R

1Tx = 1
x ≥ 0.

Exercise 60. A generalized linear-fractional problem.
Consider the problem

minimize ‖Ax− b‖1/(cTx+ d)
subject to ‖x‖∞ ≤ 1

(55)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn and d ∈ R are given. We assume that d > ‖c‖1. As a
consequence, cTx+ d > 0 for all feasible x.

Remark: There are several correct answers to part (a), including a method based on solving
one single LP.
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(a) Explain how you would solve this problem using linear programming. If you know more
than one method, you should give the simplest one.

(b) Prove that the following problem provides lower bounds on the optimal value of (55):

maximize λ
subject to ‖AT z + λc‖1 ≤ bT z − λd

‖z‖∞ ≤ 1.
(56)

The variables are z ∈ Rm and λ ∈ R.

(c) Use linear programming duality to show that the optimal values of (56) and (55) are in
fact equal.

Exercise 61. Consider the problem

minimize
m∑
i=1

h(aTi x− bi) (57)

where h is the function

h(z) =

{
0 |z| ≤ 1
|z| − 1 |z| > 1

and (as usual) x ∈ Rn is the variable, and a1, . . . , am ∈ Rn and b ∈ Rm are given. Note
that this problem can be thought of as a sort of hybrid between ℓ1- and ℓ∞-approximation,
since there is no cost for residuals smaller than one, and a linearly growing cost for residuals
larger than one.

Express (57) as an LP, derive its dual, and simplify it as much as you can.

Let xls denote the solution of the least-squares problem

minimize
m∑

i=1

(aTi x− bi)
2,

and let rls denote the residual rls = Axls − b. We assume A has rank n, so the least-squares
solution is unique and given by

xls = (ATA)−1AT b.

The least-squares residual rls satisfies

AT rls = 0.

Show how to construct from xls and rls a feasible solution for the dual of (57), and hence
a lower bound for its optimal value p⋆. Compare your lower bound with the trivial lower
bound p⋆ ≥ 0. Is it always better, or only in certain cases?

Exercise 62. Self-dual homogeneous LP formulation.

(a) Consider the LP
minimize fT1 u+ fT2 v
subject to M11u+M12v ≤ f1

−MT
12u+M22v = f2

u ≥ 0

(58)
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in the variables u ∈ Rp and v ∈ Rq. The problem data are the vectors f1 ∈ Rp,
f2 ∈ Rq, and the matrices M11 ∈ Rp×p, M12 ∈ Rp×q, and M22 ∈ Rq×q.

Show that if M11 and M22 are skew-symmetric, i.e.,

MT
11 = −M11, MT

22 = −M22,

then the dual of the LP (58) can be expressed as

maximize −fT1 w − fT2 y
subject to M11w +M12y ≤ f1

−MT
12w +M22y = f2

w ≥ 0,

(59)

with variables w ∈ Rp and y ∈ Rq.

Note that the dual problem is essentially the same as the primal problem. Therefore if
u, v are primal optimal, then w = u, y = v are optimal in the dual problem. We say
that the LP (58) with skew-symmetric M11 and M22 is self-dual.

(b) Write down the optimality conditions for problem (58). Use the observation we made
in part (a) to show that the optimality conditions can be simplified as follows: u, v are
optimal for (58) if and only if

M11u+M12v ≤ f1
−MT

12u+M22v = f2
u ≥ 0

uT (f1 −M11u−M12v) = 0.

In other words, u, v must be feasible in (58), and the nonnegative vectors u and

s = f1 −M11u−M12v

must satisfy the complementarity condition uT s = 0.

It can be shown that if (58) is feasible, then it has an optimal solution that is strictly
complementary, i.e.,

u+ s > 0.

(In other words, for each k either sk = 0 or uk = 0, but not both.)

(c) Consider the LP
minimize 0
subject to bT z̃ + cT x̃ ≤ 0

−bt̃+Ax̃ ≤ 0

AT z̃ + ct̃ = 0

z̃ ≥ 0, t̃ ≥ 0

(60)

with variables x̃ ∈ Rn, z̃ ∈ Rm, and t̃ ∈ R. Show that this problem is self-dual.

Use the result in part (b) to prove that (60) has an optimal solution that satisfies

t̃(cT x̃+ bT z̃) = 0

and
t̃− (cT x̃+ bT z̃) > 0.

Suppose we have computed an optimal solution with these properties. We can distin-
guish the following cases.
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• t̃ > 0. Show that x = x̃/t̃, z = z̃/t̃ are optimal for the pair of primal and dual LPs

minimize cTx
subject to Ax ≤ b

(61)

and
maximize −bT z
subject to AT z + c = 0

z ≥ 0.
(62)

• t̃ = 0 and cT x̃ < 0. Show that the dual LP (62) is infeasible.

• t̃ = 0 and bT z̃ < 0. Show that the primal LP (62) is infeasible.

This result has an important practical ramification. It implies that we do not have to use
a two-phase approach to solve the LP (61) (i.e., a phase-I to find a feasible point, followed
by a phase-II to minimize cTx starting at the feasible point). We can solve the LP (61) and
its dual, or detect primal or dual infeasibility, by solving one single, feasible LP (60). The
LP (60) is much larger than (61), but it can be shown that the cost of solving it is not much
higher if one takes advantage of the symmetry in the constraints.

Exercise 63. We consider a network flow problem on the simple network shown below.

1 3

4

5

2

u1 u2

u3u4

u5 u6

u7

V1

V2

V3

V4

V5

Here u1, . . . , u7 ∈ R denote the flows or traffic along links 1, . . . , 7 in the direction indicated
by the arrow. (Thus, u1 = 1 means a traffic flow of one unit in the direction of the arrow
on link 1, i.e., from node 1 to node 2.) V1, . . . , V5 ∈ R denote the external inputs (or
outputs if Vi < 0) to the network. We assume that the net flow into the network is zero, i.e.,∑5

i=1 Vi = 0.

Conservation of traffic flow states that at each node, the total flow entering the node is zero.
For example, for node 1, this means that V1 − u1 + u4 − u5 = 0. This gives one equation
per node, so we have 5 traffic conservation equations, for the nodes 1, . . . , 5, respectively. (In
fact, the equations are redundant since they sum to zero, so you could leave one, e.g., for
node 5, out. However, to answer the questions below, it is easier to keep all five equations.)

The cost of a flow pattern u is given by
∑

i ci|ui|, where ci > 0 is the tariff on link i. In
addition to the tariff, each link also has a maximum possible traffic level or link capacity:
|ui| ≤ Ui.
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(a) Express the problem of finding the minimum cost flow as an LP in inequality form, for
the network shown above.

(b) Solve the LP from part (a) for the specific costs, capacities, and inputs

c = (2, 2, 2, 1, 1, 1, 1), V = (1, 1, 0.5, 0.5,−3), U = (0.5, 0.5, 0.1, 0.5, 1, 1, 1).

Find the optimal dual variables as well.

(c) Suppose we can increase the capacity of one link by a small fixed amount, say, 0.1.
Which one should we choose, and why? (You’re not allowed to solve new LPs to answer
this!) For the link you pick, increase its capacity by 0.1, and then solve the resulting
LP exactly. Compare the resulting cost with the cost predicted from the optimal dual
variables of the original problem. Can you explain the answer?

(d) Now suppose we have the possibility to increase or reduce two of the five external inputs
by a small amount, say, 0.1. To keep

∑
i Vi = 0, the changes in the two inputs must be

equal in absolute value and opposite in sign. For example, we can increae V1 by 0.1,
and decrease V4 by 0.1. Which two inputs should we modify, and why? (Again, you’re
not allowed to solve new LPs!) For the inputs you pick, change the value (increase or
decrease, depending on which will result in a smaller cost) by 0.1, and then solve the
resulting LP exactly. Compare the result with the one predicted from the optimal dual
variables of the original problem.

Exercise 64. Let P ∈ Rn×n be a matrix with the following two properties:

• all elements of P are nonnegative: pij ≥ 0 for i = 1, . . . , n and j = 1, . . . , n

• the columns of P sum to one:
∑n

i=1 pij = 1 for j = 1, . . . , n.

Show that there exists a y ∈ Rn such that

Py = y, y ≥ 0,
n∑

i=1

yi = 1.

Remark. This result has the following application. We can interpret P as the transition
probability matrix of a Markov chain with n states: if s(t) is the state at time t (i.e., s(t) is
a random variable taking values in {1, . . . , n}), then pij is defined as

pij = prob(s(t+ 1) = i | s(t) = j).

Let y(t) ∈ Rn be the probability distribution of the state at time t, i.e.,

yi(t) = prob(s(t) = i).

Then the distribution at time t+ 1 is given by y(t+ 1) = Py(t).

The result in this problem states that a finite state Markov chain always has an equilibrium
distribution y.

Exercise 65. Arbitrage and theorems of alternatives.

Consider an event (for example, a sports game, political elections, the evolution of the stock-
market over a certain period) with m possible outcomes. Suppose that n wagers on the
outcome are possible. If we bet an amount xj on wager j, and the outcome of the event is
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i, then our return is equal to rijxj (this amount does not include the stake, i.e., we pay xj
initially, and receive (1 + rij)xj if the outcome of the event is i, so rijxj is the net gain). We
allow the bets xj to be positive, negative, or zero. The interpretation of a negative bet is as
follows. If xj < 0, then initially we receive an amount of money |xj |, with an obligation to
pay (1 + rij)|xj | if outcome i occurs. In that case, we lose rij |xj |, i.e., our net gain is rijxj
(a negative number).

We call the matrix R ∈ Rm×n with elements rij the return matrix. A betting strategy is
a vector x ∈ Rn, with as components xj the amounts we bet on each wager. If we use a
betting strategy x, our total return in the event of outcome i is equal to

∑n
j=1 rijxj , i.e., the

ith component of the vector Rx.

(a) The arbitrage theorem. Suppose you are given a return matrix R. Prove the following
theorem: there is a betting strategy x ∈ Rn for which

Rx > 0 (63)

if and only if there exists no vector p ∈ Rm that satisfies

RT p = 0, p ≥ 0, p 6= 0. (64)

We can interpret this theorem as follows. If Rx > 0, then the betting strategy x
guarantees a positive return for all possible outcomes, i.e., it is a sure-win betting
scheme. In economics, we say there is an arbitrage opportunity.

If we normalize the vector p in (64) so that 1T p = 1, we can interpret it as a probability
vector on the outcomes. The condition RT p = 0 means that the expected return

ERx = pTRx = 0

for all betting strategies. We can therefore rephrase the arbitrage theorem as follows.
There is no sure-win betting strategy (or arbitrage opportunity) if and only if there is
a probability vector on the outcomes that makes all bets fair (i.e., the expected gain is
zero).

(b) Options pricing. The arbitrage theorem is used in mathematical finance to determine
prices of contracts. As a simple example, suppose we can invest in two assets: a stock
and an option. The current unit price of the stock is S. The price S̄ of the stock at
the end of the investment period is unknown, but it will be either S̄ = Su or S̄ = Sd,
where u > 1 and d < 1 are given numbers. In other words the price either goes up by a
factor u, or down by a factor d. If the current interest rate over the investment period
is r, then the present value of the stock price S̄ at the end of the period is equal to
S̄/(1 + r), and our unit return is

Su

1 + r
− S = S

u− 1− r

1 + r

if the stock goes up, and
Sd

1 + r
− S = S

d− 1− r

1 + r

if the stock goes down.

We can also buy options, at a unit price of C. An option gives us the right to purchase
one stock at a fixed price K at the end of the period. Whether we exercise the option
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or not, depends on the price of the stock at the end of the period. If the stock price S̄
at the end of the period is greater than K, we exercise the option, buy the stock and
sell it immediately, so we receive an amount S̄ −K. If the stock price S̄ is less than K,
we do not exercise the option and receive nothing. Combining both cases, we can say
that the value of the option at the end of the period is max{0, S̄ −K}, and the present
value is max{0, S̄ −K}/(1 + r). If we pay a price C per option, then our return is

1

1 + r
max{0, S̄ −K} − C

per option.

We can summarize the situation with the return matrix

R =

[
(u− 1− r)/(1 + r) (max{0, Su−K})/((1 + r)C)− 1
(d− 1− r)/(1 + r) (max{0, Sd−K})/((1 + r)C)− 1

]
.

The elements of the first row are the (present values of the) returns in the event that
the stock price goes up. The second row are the returns in the event that the stock
price goes down. The first column gives the returns per unit investment in the stock.
The second column gives the returns per unit investment in the option.

In this simple example the arbitrage theorem allows us to determine the price of the
option, given the other information S, K, u, d, and r. Show that if there is no arbitrage,
then the price of the option C must be equal to

1

1 + r
(pmax{0, Su−K}+ (1− p)max{0, Sd−K})

where

p =
1 + r − d

u− d
.

Exercise 66. We consider a network with m nodes and n directed arcs. Suppose we can apply
labels yr ∈ R, r = 1, . . . ,m, to the nodes in such a way that

yr ≥ ys if there is an arc from node r to node s. (65)

It is clear that this implies that if yi < yj , then there exists no directed path from node i to
node j. (If we follow a directed path from node i to j, we encounter only nodes with labels
less than or equal to yi. Therefore yj ≤ yi.)

Prove the converse: if there is no directed path from node i to j, then there exists a labeling
of the nodes that satisfies (65) and yi < yj .

Exercise 67. The projection of a point x0 ∈ Rn on a polyhedron P = {x | Ax ≤ b}, in the
ℓ∞-norm, is defined as the solution of the optimization problem

minimize ‖x− x0‖∞
subject to Ax ≤ b.

The variable is x ∈ Rn. We assume that P is nonempty.

(a) Formulate this problem as an LP.
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(b) Derive the dual problem, and simplify it as much as you can.

(c) Show that if x0 6∈ P, then a hyperplane that separates x0 from P can be constructed
from the optimal solution of the dual problem.

Exercise 68. Describe a method for constructing a hyperplane that separates two given polyhedra

P1 = {x ∈ Rn|Ax ≤ b}, P2 = {x ∈ Rn|Cx ≤ d}.

Your method must return a vector a ∈ Rn and a scalar γ such that

aTx > γ for all x ∈ P1, aTx < γ for all x ∈ P2.

a

aTx = γ

P1

P2

You can assume that P1 and P2 do not intersect. If you know several methods, you should
give the most efficient one.

Exercise 69. Suppose the feasible set of the LP

maximize bT z
subject to AT z ≤ c

(66)

is nonempty and bounded, with ‖z‖∞ < µ for all feasible z. Show that any optimal solution
of the problem

minimize cTx+ µ‖Ax− b‖1
subject to x ≥ 0

is also an optimal solution of the LP

minimize cTx
subject to Ax = b

x ≥ 0,
(67)

which is the dual of problem (66).

Exercise 70. An alternative to the phase-I/phase-II method for solving the LP

minimize cTx
subject to Ax ≤ b,

(68)
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is the “big-M”-method, in which we solve the auxiliary problem

minimize cTx+Mt
subject to Ax ≤ b+ t1

t ≥ 0.
(69)

M > 0 is a parameter and t is an auxiliary variable. Note that this auxiliary problem has
obvious feasible points, for example, x = 0, t ≥ max{0,−mini bi}.

(a) Derive the dual LP of (69).

(b) Prove the following property. If M > 1T z⋆, where z⋆ is an optimal solution of the dual
of (68), then the optimal t in (69) is zero, and therefore the optimal x in (69) is also an
optimal solution of (68).

Exercise 71. Robust linear programming with polyhedral uncertainty. Consider the robust LP

minimize cTx
subject to maxa∈Pi

aTx ≤ bi, i = 1, . . . ,m,

with variable x ∈ Rn, where Pi = {a | Cia ≤ di}. The problem data are c ∈ Rn, Ci ∈ Rmi×n,
di ∈ Rmi , and b ∈ Rm. We assume the polyhedra Pi are nonempty.

Show that this problem is equivalent to the LP

minimize cTx
subject to dTi zi ≤ bi, i = 1, . . . ,m

CT
i zi = x, i = 1, . . . ,m

zi ≥ 0, i = 1, . . . ,m

with variables x ∈ Rn and zi ∈ Rmi , i = 1, . . . ,m. Hint. Find the dual of the problem of
maximizing aTi x over ai ∈ Pi (with variable ai).

Exercise 72. Strict complementarity. We consider an LP

minimize cTx
subject to Ax ≤ b,

with A ∈ Rm×n, and its dual

maximize −bT z
subject to AT z + c = 0, z ≥ 0.

We assume the optimal value is finite. From duality theory we know that any primal optimal
x⋆ and any dual optimal z⋆ satisfy the complementary slackness conditions

z⋆i (bi − aTi x
⋆) = 0, i = 1, . . . ,m.

In other words, for each i, we have z⋆i = 0, or aTi x
⋆ = bi, or both.

In this problem you are asked to show that there exists at least one primal-dual optimal pair
x⋆, z⋆ that satisfies

z⋆i (bi − aTi x
⋆) = 0, z⋆i + (bi − aTi x

⋆) > 0,
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for all i. This is called a strictly complementary pair. In a strictly complementary pair, we
have for each i, either z⋆i = 0, or aTi x

⋆ = bi, but not both.

To prove the result, suppose x⋆, z⋆ are optimal but not strictly complementary, and

aTi x
⋆ = bi, z⋆i = 0, i = 1, . . . ,M

aTi x
⋆ = bi, z⋆i > 0, i =M + 1, . . . , N

aTi x
⋆ < bi, z⋆i = 0, i = N + 1, . . . ,m

with M > 1. In other words, m −M entries of b − Ax⋆ and z⋆ are strictly complementary;
for the other entries we have zero in both vectors.

(a) Use Farkas’ lemma to show that the following two sets of inequalities/equalities are
strong alternatives:

• There exists a v ∈ Rn such that

aT1 v < 0
aTi v ≤ 0, i = 2, . . . ,M
aTi v = 0, i =M + 1, . . . , N.

(70)

• There exists a w ∈ RN−1 such that

a1 +
N−1∑

i=1

wiai+1 = 0, wi ≥ 0, i = 1, . . . ,M − 1. (71)

(b) Assume the first alternative holds, and v satisfies (70). Show that there exists a primal
optimal solution x̃ with

aT1 x̃ < b1

aTi x̃ ≤ bi, i = 2, . . . ,M

aTi x̃ = bi, i =M + 1, . . . , N

aTi x̃ < bi, i = N + 1, . . . ,m.

(c) Assume the second alternative holds, and w satisfies (71). Show that there exists a dual
optimal z̃ with

z̃1 > 0

z̃i ≥ 0, i = 2, . . . ,M

z̃i > 0, i =M + 1, . . . , N

z̃i = 0, i = N + 1, . . . ,m.

(d) Combine (b) and (c) to show that there exists a primal-dual optimal pair x, z, for which

b−Ax and z have at most M̃ common zeros, where M̃ < M . If M̃ = 0, x, z are strictly
complementary and optimal, and we are done. Otherwise, we apply the argument given
above, with x⋆, z⋆ replaced by x, z, to show the existence of a strictly complementary
pair of optimal solutions with less than M̃ common zeros in b − Ax and z. Repeating
the argument eventually gives a strictly complementary pair.
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Exercise 73. Prove the following result. If the feasible set of a linear program

minimize cTx
subject to Ax ≤ b

is nonempty and bounded, then the feasible set of the corresponding dual problem

maximize −bT z
subject to AT z + c = 0

z ≥ 0

is nonempty and unbounded.

Exercise 74. We are given M +N polyhedra described by sets of linear inequalities

Pi = {x ∈ Rn | Aix ≤ bi}, i = 1, . . . ,M +N.

We define two sets S = P1 ∪ P2 ∪ · · · ∪ PM and T = PM+1 ∪ PM+2 ∪ · · · ∪ PM+N .

(a) Explain how you can use linear programming to solve the following problem. Find a
vector c and a scalar d such that

cTx+ d ≤ −1 for x ∈ S, cTx+ d ≥ 1 for x ∈ T (72)

or show that no such c and d exist. Geometrically, the problem is to construct a
hyperplane that strictly separates the polyhedra P1, . . . , PM from the polyhedra PM+1,
. . . , PM+N .

If you know several methods, give the most efficient one. In particular, you should
avoid methods based on enumerating extreme points, and methods that involve linear
programs with dimensions that grow quadratically (or faster) with M or N .

(b) The convex hull of a set S, denoted convS, is defined as the set of all convex combi-
nations of points in S:

convS = {θ1v1 + · · ·+ θmvm | θ1 + · · ·+ θm = 1, vi ∈ S, θi ≥ 0, i = 1, . . . ,m} .
The convex hull of the shaded set S the figure is the polyhedron enclosed by the dashed
lines.

Show that if no separating hyperplane exists between S and T (i.e., there exists no c
and d that satisfy (72)), then the convex hulls convS and conv T intersect.
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6 The simplex method

Exercise 75. Solve the following linear program using the simplex algorithm with Bland’s pivoting
rule. Start the algorithm at the extreme point x = (2, 2, 0), with active set I = {3, 4, 5}.

mininimize x1 + x2 − x3

subject to




−1 0 0
0 −1 0
0 0 −1
1 0 0
0 1 0
0 0 1
1 1 1






x1
x2
x3


 ≤




0
0
0
2
2
2
4




.

Exercise 76. Use the simplex method to solve the following LP:

minimize −24x1 + 396x2 − 8x3 − 28x4 − 10x5

subject to




12 4 1 −19 7
6 −7 18 −1 −13
1 17 3 18 −2







x1
x2
x3
x4
x5



=




12
6
1




x ≥ 0.

Start with the initial basis {1, 2, 3}, and use Bland’s rule to make pivot selections. Also
compute the dual optimal point from the results of the algorithm.

7 Interior-point methods

Exercise 77. The figure shows the feasible set of an LP

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . , 6

with two variables and six constraints. Also shown are the cost vector c, the analytic center,
and a few contour lines of the logarithmic barrier function

φ(x) = −
m∑

i=1

log(bi − aTi x).
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c

Sketch the central path as accurately as possible. Explain your answer.

Exercise 78. Let x⋆(t0) be a point on the central path of the LP

minimize cTx
subject to Ax ≤ b,

with t0 > 0. We assume that A is m×n with rank(A) = n. Define ∆xnt as the Newton step
at x⋆(t0) for the function

t1c
Tx−

m∑

i=1

log(bi − aTi x),

where aTi denotes the ith row of A, and t1 > t0. Show that ∆xnt is tangent to the central
path at x⋆(t0).

x⋆(t0)

x⋆(t1)

∆xnt

c

Hint. Find an expression for the tangent direction ∆xtg = dx⋆(t0)/dt, and show that ∆xnt
is a positive multiple of ∆xtg.
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Exercise 79. In the lecture on barrier methods, we noted that a point x∗(t) on the central path
yields a dual feasible point

z∗i (t) =
1

t(bi − aTi x
∗(t))

, i = 1, . . . ,m. (73)

In this problem we examine what happens when x∗(t) is calculated only approximately.

Suppose x is strictly feasible and v is the Newton step at x for the function

tcTx+ φ(x) = tcTx−
m∑

i=1

log(b− aTi x).

Let d ∈ Rm be defined as di = 1/(bi − aTi x), i = 1, . . . ,m. Show that if

λ(x) = ‖diag(d)Av‖ ≤ 1,

then the vector
z = (d+ diag(d)2Av)/t

is dual feasible. Note that z reduces to (73) if x = x∗(t) (and hence v = 0).

This observation is useful in a practical implementation of the barrier method. In practice,
Newton’s method provides an approximation of the central point x∗(t), which means that
the point (73) is not quite dual feasible, and a stopping criterion based on the corresponding
dual bound is not quite accurate. The results derived above imply that even though x∗(t) is
not exactly centered, we can still obtain a dual feasible point, and use a completely rigorous
stopping criterion.

Exercise 80. Let P be a polyhedron described by a set of linear inequalities:

P = {x ∈ Rn | Ax ≤ b} ,

where A ∈ Rm×n and b ∈ Rm. Let φ denote the logarithmic barrier function

φ(x) = −
m∑

i=1

log(bi − aTi x).

(a) Suppose x̂ is strictly feasible. Show that

(x− x̂)T∇2φ(x̂)(x− x̂) ≤ 1 =⇒ Ax ≤ b,

where ∇2φ(x̂) is the Hessian of φ at x̂. Geometrically, this means that the set

Einner = {x | (x− x̂)T∇2φ(x̂)(x− x̂) ≤ 1},

which is an ellipsoid centered at x̂, is enclosed in the polyhedron P.

(b) Suppose x̂ is the analytic center of the inequalities Ax < b. Show that

Ax ≤ b =⇒ (x− x̂)T∇2φ(x̂)(x− x̂) ≤ m(m− 1).

In other words, the ellipsoid

Eouter = {x | (x− x̂)T∇2φ(x̂)(x− x̂) ≤ m(m− 1)}

contains the polyhedron P.
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Exercise 81. Let x̂ be the analytic center of a set of linear inequalities

aTk x ≤ bk, k = 1, . . . ,m.

Show that the kth inequality is redundant (i.e., it can be deleted without changing the
feasible set) if

bk − aTk x̂ ≥ m
√
aTkH

−1ak

where H is defined as

H =
m∑

k=1

1

(bk − aTk x̂)
2
aka

T
k .

Exercise 82. The analytic center of a set of linear inequalities Ax ≤ b depends not only on the
geometry of the feasible set, but also on the representation (i.e., A and b). For example,
adding redundant inequalities does not change the polyhedron, but it moves the analytic
center. In fact, by adding redundant inequalities you can make any strictly feasible point
the analytic center, as you will show in this problem.

Suppose that A ∈ Rm×n and b ∈ Rm define a bounded polyhedron

P = {x | Ax ≤ b}

and that x⋆ satisfies Ax⋆ < b. Show that there exist c ∈ Rn, γ ∈ R, and a positive integer
q, such that

(a) P is the solution set of the m+ q inequalities

Ax ≤ b
cTx ≤ γ
cTx ≤ γ

...
cTx ≤ γ





q copies.
(74)

(b) x⋆ is the analytic center of the set of linear inequalities given in (74).

Exercise 83. Maximum-likelihood estimation with parabolic noise density. We consider the linear
measurement model

yi = aTi x+ vi, i = 1, . . . ,m.

The vector x ∈ Rn is a vector of parameters to be estimated, yi ∈ R are the measured or
observed quantities, and vi are the measurement errors or noise. The vectors ai ∈ Rn are
given. We assume that the measurement errors vi are independent and identically distributed
with a parabolic density function

p(v) =

{
(3/4)(1− v2) |v| ≤ 1
0 otherwise

(shown below).
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Let x̄ be the maximum-likelihood (ML) estimate based on the observed values y, i.e.,

x̄ = argmax
x

(
m∑

i=1

log
(
1− (yi − aTi x)

2
)
+m log(3/4)

)
.

Show that the true value of x satisfies

(x− x̄)TH(x− x̄) ≤ 4m2

where

H = 2
m∑

i=1

1 + (yi − aTi x̄)
2

(1− (yi − aTi x̄)
2)2

aia
T
i .

Exercise 84. Potential reduction algorithm. Consider the LP

minimize cTx
subject to Ax ≤ b

with A ∈ Rm×n. We assume that rankA = n, that the problem is strictly feasible, and that
the optimal value p⋆ is finite.

For l < p⋆ and q > m, we define the potential function

ϕpot(x) = q log(cTx− l)−
m∑

i=1

log(bi − aTi x).

The function ϕpot is defined for all strictly feasible x, and although it is not a convex function,
it can be shown that it has a unique minimizer. We denote the minimizer as x⋆pot(l):

x⋆pot(l) = argmin
Ax<b

(
q log(cTx− l)−

m∑

i=1

log(bi − aTi x)

)
.

(a) Show that x⋆pot(l) lies on the central path, i.e., it is the minimizer of the function

tcTx−
m∑

i=1

log(bi − aTi x)

for some value of t.
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(b) Prove that the following algorithm converges and that it returns a suboptimal x with
cTx− p⋆ < ǫ.

given l < p⋆, tolerance ǫ > 0, q > m
repeat {

1. x := x⋆pot(l)

2. if m(cT x−l)
q < ǫ, return(x)

3. l := q−m
q cTx+ m

q l

}

Exercise 85. Consider the following variation on the barrier method for solving the LP

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m.

We assume we are given a strictly feasible x̂ (i.e., aTi x̂ < bi for i = 1, . . . ,m), a strictly dual
feasible ẑ (AT ẑ + c = 0, ẑ > 0), and a positive scalar ρ with 0 < ρ < 1.

initialize: x = x̂, wi = (bi − aTi x̂)ẑi, i = 1, . . . ,m
repeat:

1. x := argminy(c
T y −∑m

i=1wi log(bi − aTi y))

2. w := ρw

Give an estimate or a bound on the number of (outer) iterations required to reach an accuracy
cTx− p⋆ ≤ ǫ.

Exercise 86. The inverse barrier. The inverse barrier of a set of linear inequalities

aTi x ≤ bi, i = 1, . . . ,m,

is the function ψ, defined as

ψ(x) =
m∑

i=1

1

bi − aTi x

for strictly feasible x. It can be shown that ψ is convex and differentiable on the set of strictly
feasible points, and that ψ(x) tends to infinity as x approaches the boundary of the feasible
set.

Suppose x̂ is strictly feasible and minimizes

cTx+ ψ(x).

Show that you construct from x̂ a dual feasible point for the LP

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m.
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Exercise 87. Assume the primal and dual LPs

(P) minimize cTx
subject to Ax ≤ b

(D) maximize −bT z
subject to AT z + c = 0

z ≥ 0

are strictly feasible. Let {x(t) | t > 0} be the central path and define

s(t) = b−Ax(t), z(t) =
1

t




1/s1(t)
1/s2(t)

...
1/sm(t)



.

(a) Suppose x∗, z∗ are optimal for the primal and dual LPs, and define s∗ = b − Ax∗. (If
there are multiple optimal points, x∗, z∗ denote an arbitrary pair of optimal points.)
Show that

z(t)T s∗ + s(t)T z∗ =
m

t

for all t > 0. From the definition of z(t), this implies that

m∑

k=1

s∗k
sk(t)

+
m∑

k=1

z∗k
zk(t)

= m. (75)

(b) As t goes to infinity, the central path converges to the optimal points

x∗c = lim
t→∞

x(t), s∗c = b−Ax∗c = lim
t→∞

s(t), z∗c = lim
t→∞

z(t).

Define I = {k | s∗c,k = 0}, the set of active constraints at x∗c . Apply (75) to s∗ = s∗c ,
z∗ = z∗c to get

∑

k 6∈I

s∗c,k
sk(t)

+
∑

k∈I

z∗c,k
zk(t)

= m.

Use this to show that z∗c,k > 0 for k ∈ I. This proves that the central path converges to
a strictly complementary solution, i.e., s∗c + z∗c > 0.

(c) The primal optimal set is the set of all x that are feasible and satisfy complementary
slackness with z∗c :

Xopt = {x | aTk x = bk, k ∈ I, aTk x ≤ bk, k 6∈ I}.

Let x∗ be an arbitrary primal optimal point. Show that
∏

k 6∈I

(bk − aTk x
∗) ≤

∏

k 6∈I

(bk − aTk x
∗
c).

Hint. Use the arithmetic-geometric mean inequality

(
m∏

k=1

yk

)1/m

≤ 1

m

m∑

k=1

yk

for nonnegative vectors y ∈ Rm.
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Exercise 88. The most expensive step in one iteration of an interior-point method for an LP

minimize cTx
subject to Ax ≤ b

is the solution of a set of linear equations of the form

ATDA ∆x = y, (76)

where D is a positive diagonal matrix, the right-hand side y is a given vector, and ∆x is the
unknown. The values of D and y depend on the method used and on the current iterate, and
are not important for our purposes here. For example, the Newton equation in the barrier
methodm

∇2φ(x)v = −tc−∇φ(x),
is of the form (76). In the primal-dual method, we have to solve two sets of linear equations
of the form (76) with D = X−1Z.

It is often possible to speed up the algorithm significantly by taking advantage of special
structure of the matrix A when solving the equations (76).

Consider the following three optimization problems that we encountered before in this course.

• ℓ1-minimization:
minimize ‖Pu+ q‖1

(P ∈ Rr×s and q ∈ Rr are given; u ∈ Rs is the variable).

• Constrained ℓ1-minimization:

minimize ‖Pu+ q‖1
subject to −1 ≤ u ≤ 1

(P ∈ Rr×s and q ∈ Rr are given; u ∈ Rs is the variable).

• Robust linear programming (see exercise 24):

minimize wTu
subject to Pu+ ‖u‖11 ≤ q

(P ∈ Rr×s, q ∈ Rr, and w ∈ Rs are given; u ∈ Rs is the variable).

For each of these three problems, answer the following questions.

(a) Express the problem as an LP in inequality form. Give the matrix A, and the number
of variables and constraints.

(b) What is the cost of solving (76) for the matrix A you obtained in part (a), if you do
not use any special structure in A (knowing that the cost of solving a dense symmetric
positive definite set of n linear equations in n variables is (1/3)n3 operations, and the
cost of a matrix-matrix multiplication ATA, with A ∈ Rm×n, is mn2 operations)?
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(c) Work out the product ATDA (assuming D is a given positive diagonal matrix). Can
you give an efficient method for solving (76) that uses the structure in the equations?
What is the cost of your method (i.e., the approximate number of operations when r
and s are large) as a function of the dimensions r and s ?
Hint. Try to reduce the problem to solving a set of s linear equations in s variables,
followed by a number of simple operations.

For the third problem, you can use the following formula for the inverse of a matrix
H + yyT , where y is a vector:

(H + yyT )−1 = H−1 − 1

1 + yTH−1y
H−1yyTH−1.

Exercise 89. In this problem you are asked to write a MATLAB code for the ℓ1-approximation
problem

minimize ‖Pu+ q‖1, (77)

where P = Rr×s and q ∈ Rr. The calling sequence for the code is u = l1(P,q). On exit,
it must guarantee a relative accuracy of 10−6 or an absolute accuracy of 10−8, i.e., the code
can terminate if

‖Pu+ q‖1 − p⋆ ≤ 10−6 · p⋆

or
‖Pu+ q‖1 − p⋆ ≤ 10−8,

where p⋆ is the optimal value of (77). You may assume that P has full rank (rankP = s).

We will solve the problem using Mehrotra’s method as described in applied to the LP

minimize 1T v

subject to

[
P −I

−P −I

] [
u
v

]
≤
[
−q
q

]
.

(78)

We will take advantage of the structure in the problem to improve the efficiency.

(a) Initialization. Mehrotra’s method can be started at infeasible primal and dual points.
However good feasible starting points for the LP (78) are readily available from the
solution uls of the least-squares problem

minimize ‖Pu+ q‖

(in MATLAB: u = -P\q). As primal starting point we can use u = uls, and choose
v so that we have strict feasibility in (78). To find a strictly feasible point for the
dual of (78), we note that P TPuls = −P T q and therefore the least-squares residual
rls = Puls + q satisfies

P T rls = 0.

This property can be used to construct a strictly feasible point for the dual of (78). You
should try to find a dual starting point that provides a positive lower bound on p⋆, i.e.,
a lower bound that is better than the trivial lower bound p⋆ ≥ 0.

Since the starting points are strictly feasible, all iterates in the algorithm will remain
strictly feasible, and we don’t have to worry about testing the deviation from feasibility
in the convergence criteria.

60



(b) As we have seen, the most expensive part of an iteration in Mehrotra’s method is the
solution of two sets of equations of the form

ATX−1ZA∆x = r1 (79)

where X and Z are positive diagonal matrices that change at each iteration. One of
the two equations is needed to determine the affine-scaling direction; the other equation
(with a different right-hand side) is used to compute the combined centering-corrector
step. In our application, (79) has r + s equations in r + s variables, since

A =

[
P −I

−P −I

]
, ∆x =

[
∆u
∆v

]
.

By exploiting the special structure of A, show that you can solve systems of the form (79)
by solving a smaller system of the form

P TDP∆u = r2, (80)

followed by a number of inexpensive operations. In (80) D is an appropriately chosen
positive diagonal matrix. This observation is important, since it means that the cost
of one iteration reduces to the cost of solving two systems of size s × s (as opposed
to (r + s) × (r + s)). In other words, although we have introduced r new variables to
express (77) as an LP, the extra cost of introducing these variables is marginal.

(c) Test your code on randomly generated P and q. Plot the duality gap (on a logarithmic
scale) versus the iteration number for a few examples and include a typical plot with
your solutions.

Exercise 90. This problem is similar to the previous problem, but instead we consider the con-
strained ℓ1-approximation problem

minimize ‖Pu+ q‖1
subject to −1 ≤ u ≤ 1

(81)

where P = Rr×s and q ∈ Rr. The calling sequence for the code is u = cl1(P,q). On exit,
it must guarantee a relative accuracy of 10−5 or an absolute accuracy of 10−8, i.e., the code
can terminate if

‖Pu+ q‖1 − p⋆ ≤ 10−5 · p⋆

or
‖Pu+ q‖1 − p⋆ ≤ 10−8,

where p⋆ is the optimal value of (81). You may assume that P has full rank (rankP = s).

We will solve the problem using Mehrotra’s method as described in applied to the LP

minimize 1T v

subject to




P −I
−P −I
I 0

−I 0




[
u
v

]
≤




−q
q
1

1


 .

(82)

We will take advantage of the structure in the problem to improve the efficiency.
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(a) Initialization. For this problem it is easy to determine strictly feasible primal and dual
points at which the algorithm can be started. This has the advantage that all iterates
in the algorithm will remain strictly feasible, and we don’t have to worry about testing
the deviation from feasibility in the convergence criteria.

As primal starting point, we can simply take u = 0, and a vector v that satisfies
vi > |(Pu+ q)i|, i = 1, . . . , r. What would you choose as dual starting point?

(b) As we have seen, the most expensive part of an iteration in Mehrotra’s method is the
solution of two sets of equations of the form

ATX−1ZA∆x = r1 (83)

where X and Z are positive diagonal matrices that change at each iteration. One of
the two equations is needed to determine the affine-scaling direction; the other equation
(with a different right-hand side) is used to compute the combined centering-corrector
step. In our application, (83) has r + s equations in r + s variables, since

A =




P −I
−P −I
I 0

−I 0


 , ∆x =

[
∆u
∆v

]
.

By exploiting the special structure of A, show that you can solve systems of the form (83)
by solving a smaller system of the form

(P T D̃P + D̂)∆u = r2, (84)

followed by a number of inexpensive operations. The matrices D̃ and D̂ in (84) are
appropriately chosen positive diagonal matrices.

This observation is important, since the cost of solving (84) is roughly equal to the cost
of solving the least-squares problem

minimize ‖Pu+ q‖.

Since the interior-point method converges in very few iterations (typically less than 10),
this allows us to conclude that the cost of solving (81) is roughly equal to the cost of 10
least-squares problems of the same dimension, in spite of the fact that we introduced r
new variables to cast the problem as an LP.

(c) Test your code on randomly generated P and q. Plot the duality gap (on a logarithmic
scale) versus the iteration number for a few examples and include a typical plot with
your solutions.

Exercise 91. Consider the optimization problem

minimize
m∑
i=1

f(aTi x− bi)

where

f(u) =





0 |u| ≤ 1
|u| − 1 1 ≤ |u| ≤ 2
2|u| − 3 |u| ≥ 2.

The function f is shown below.
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u

f(u)

1 2−1−2

1

The problem data are ai ∈ Rn and bi ∈ R.

(a) Formulate this problem as an LP in inequality form

minimize c̄T x̄
subject to Āx̄ ≤ b̄.

(85)

Carefully explain why the two problems are equivalent, and what the meaning is of any
auxiliary variables you introduce.

(b) Describe an efficient method for solving the equations

ĀTDĀ∆x̄ = r

that arise in each iteration of Mehrotra’s method applied to the LP (85). Here D is a
given diagonal matrix with positive diagonal elements, and r is a given vector.

Compare the cost of your method with the cost of solving the least-squares problem

minimize
m∑
i=1

(aTi x− bi)
2.

Exercise 92. The most time consuming step in a primal-dual interior-point method for solving
an LP

minimize cTx
subject to Ax ≤ b

is the solution of linear equations of the form



0 A I
AT 0 0
X 0 Z







∆z
∆x
∆s


 =



r1
r2
r3


 ,

where X and Z are positive diagonal matrices. After eliminating ∆s from the last equation
we obtain [

−D A
AT 0

] [
∆z
∆x

]
=

[
d
f

]

where D = XZ−1, d = r1 − Z−1r3, f = r2.

Describe an efficient method for solving this equation for an LP of the form

minimize cTx
subject to Px ≤ q

−1 ≤ x ≤ 1,

where P ∈ Rm×n is a dense matrix. Distinguish two cases: m≫ n and m≪ n.
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Exercise 93. A network is described as a directed graph with m arcs or links. The network
supports n flows, with nonnegative rates x1, . . . , xn. Each flow moves along a fixed, or
pre-determined, path or route in the network, from a source node to a destination node.
Each link can support multiple flows, and the total traffic on a link is the sum of the rates
of the flows that travel over it. The total traffic on link i can be expressed as (Ax)i, where
A ∈ Rm×n is the flow-link incidence matrix defined as

Aij =

{
1 flow j passes through link i
0 otherwise.

Usually each path passes through only a small fraction of the total number of links, so the
matrix A is sparse.

Each link has a positive capacity, which is the maximum total traffic it can handle. These
link capacity constraints can be expressed as Ax ≤ b, where bi is the capacity of link i.

We consider the network rate optimization problem

maximize f1(x1) + · · ·+ fn(xn)
subject to Ax ≤ b

x ≥ 0,

where

fk(xk) =

{
xk xk ≤ ck
(xk + ck)/2 xk ≥ ck,

and ck > 0 is given. In this problem we choose feasible flow rates xk that maximize a utility
function

∑
k fk(xk).

(a) Express the network rate optimization problem as a linear program in inequality form.

(b) Derive the dual problem and show that it is equivalent to

minimize bT z + g1(a
T
1 z) + · · ·+ gn(a

T
nz)

subject to AT z ≥ (1/2)1
z ≥ 0

with variables z ∈ Rm, where ak is the kth column of A and

gk(y) =

{
(1− y)ck y ≤ 1
0 y ≥ 1.

(c) Suppose you are asked to write a custom implementation of the primal-dual interior-
point method for the linear program in part 1. Give an efficient method for solving
the linear equations that arise in each iteration of the algorithm. Justify your method,
assuming that m and n are very large, and that the matrix ATA is sparse.
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