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Abstract

Parallel algorithms have been a subject of intensive algorithmic research in the 1980s. This
research almost died out in the mid 1990s. In this paper we argue that it is high time to reconsider
this subject since a lot of things have changed. First and foremost, parallel processing has
moved from a niche application to something mandatory for any performance critical computer
applications. We will also point out that even very fundamental results can still be obtained. We
give examples and also formulate some open problems.
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1 Introduction

Parallel algorithms were a hot topic in the 1980 but then the subject almost died. For
example, a quick, subjective count of the parallel algorithm papers in STOC 1985, 1990,
1995, 2000, 2005, 2010, 2014 gave 13, 8, 11, 6, 1, 1, 6 papers respectively. The left column of
the following table gives a number of interrelated very strong reasons why this happened.
However, if you also look at the right column, you see that these reasons are not relevant
any more.

Parallel computing
was in practice used
rarely because paral-
lel computers were ex-
pensive and hard to
program due to exotic
hardware and software.

Today, parallel hardware is everywhere (see Figure 1). Even smart
phones have quad-core processors. The latest Intel server processors
support up to 18 cores. With multiple sockets and hardware
multithreading, this already ranges into three digit numbers of
threads. Graphics processors increasingly used for general purpose
computing (GPGPU) have thousands of cores. For example, the
NVidia GTX 980 card has 2048 cores and needs a number of
hardware threads at least an order of magnitude larger to achieve
full performance.
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For most programmers,
it was easier to wait un-
til the microprocessor
industry provided new
processor designs that
translate the additional
transistor budget due to
Moore’s law into higher
clock frequency and
higher instruction paral-
lelism.

This stopped when processor design ran against the “power wall”
– it is no longer feasible to significantly increase processor clock
speeds since this increases the energy consumption to a point
where energy costs are too high and where cooling becomes too
expensive [16]. For example, in 2004, Intel presented the Pentium
4 Prescott microarchitecture that increased clock frequency and
energy consumption but not benchmark performance compared
to previous models. A short time later, the Netburst line of
microarchitectures used for the Pentium 4 was discontinued and
Intel started to design more conservative cores putting more and
more of them on the same chip.

The actual applications of paral-
lel computers were mostly numer-
ical simulations that needed little
of the results developed by the al-
gorithm theory community. Excep-
tions (that almost prove the rule)
can be found for lower level aspects
like network topologies, e.g. [21].

Now, we have to look for parallelization opportunities in
every performance critical application since this is the
only way to exploit the available hardware. Moreover,
the Big Data boom has produced many new applications
outside numerical simulations where massively parallel
processing is crucial. Furthermore, the methodology
of algorithm engineering (e.g. [29]) makes it easier to
bridge gaps between theory and practice.

The machine models used by
theorists, like the PRAM
model were widely criticized
as too remote from practice.

Message passing models (e.g., [41, 33]) or memory hierarchies
[4] avoid some of the pitfalls of PRAMs. Moreover, PRAM
algorithms are often not that impractical if we avoid the fallacy
of speeding up computations at the cost of highly inefficient
computing.

Most companies spe-
cializing in parallel
computers did go
bankrupt.

Now, parallel computers are mainstream products of the big players.
Big data and cloud is at the core of the business of some of the
worlds most profitable companies. Computer games proved to a be a
killer application (almost literally), catalyzing the use of architectures
(GPUs) that would otherwise have been dismissed as too exotic and
cumbersome.

In the late 1990s, the Internet boom (aka Dot-
com bubble) drew parallel algorithms researchers
into startups (e.g., Akamai) and into new research
fields related to emerging internet applications
(e.g., algorithmic game theory).

Some of these people and a new genera-
tion of researchers now look at parallel al-
gorithms from a fresh Big Data perspect-
ive. Indeed, in 2014 there were 6 STOC
papers on parallel algorithms again.

These observations indicate that parallel algorithms should be an even hotter topic than
in the 1980s. It seems that today the theory community is lagging behind an important trend.
One way to explain this lack of enthusiasm is the hypothesis that, perhaps, researchers may
have done a very thorough job in the past and discovered almost all the really interesting
parallel algorithms that are there to discover. The main purpose of the remainder of this
paper is to refute this hypothesis.

First it should be noted, that in the last two decades there have been important trends
in computer science that have a largely unaddressed parallel processing aspect:

There has been a lot of work on processing large data sets in the presence of memory
hierarchies (e.g., [23, 43]). Many of the techniques developed there, e.g., time forward
processing (e.g., [10, 11]), do not readily translate to parallel processing and thus pose
important open problems.
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Figure 1 Number of processors (cores) in the worlds fastest supercomputers [40], Nvidia GPUs
[44], and Intel Xeon server processors (single chip) [45].

Data movement in memory hierarchies is vertical data movement between memory units
at different levels. Horizontal data movements between processors in a distributed memory
machine is an equally important related problem but has been studied much less. An
important difference is that horizontal communication volume can be sublinear in the
input size if we manage to solve problems by predominantly local computation. The
resulting area of communication efficient algorithms is full of interesting open problems
[33].
Streaming algorithms [18] have explicitly been developed to allow processing large data
sets. However, the basic model for streaming algorithms is inherently sequential and
needs parallel generalizations. See also [33].
Many succinct data structures (e.g. [17]) have been designed to handle large data sets.
However, for many of them it is not clear how to construct them efficiently in parallel.
Smoothed analysis [37] is a sound way to explain why certain algorithms for hard problems
are efficient in practice. However, few parallel algorithms have been analyzed in this
framework.
Fixed-parameter algorithms (e.g., [25]) study efficient algorithms for “easy” instances of
hard problems. Few of these algorithms have been parallelized so far.
There has been some early work on parallel approximation algorithms [22] but very little
on parallelizing the vast number of approximation algorithms studied since then. It is
particularly surprising that even the intensive work on scheduling parallel processors has
seen very few algorithms for doing that in parallel [3, 31].
Application areas like bioinformatics or computational finance recently had large impact
on algorithmic research. Many of the investigated problems require parallel algorithms to
be useful in practice.
The big data boom brought a large number of new applications into focus, in particular,
algorithms for data analysis and machine learning become important.
The energy consumption of computations is becoming more important than running time.
this should become important for algorithm design, in particular for exascale computing
where the computer architects are already basing most of their design decisions on energy
consumption (e.g. [20]).
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Applications on exascale computers and Big data also require fault tolerance. Building
that already into the algorithms is a promising research area. The algorithm theory
community has done some work on resilient algorithms [14] that can survive certain
memory corruptions but is has not embraced fault tolerant parallel algorithms. This is
surprising because fault tolerance is actually easier to achieve in a parallel system since
intact processors may step in for faulty ones.

2 Examples from our Work

In order to illustrate that there is a bonanza of quite fundamental results on parallel algorithms
still to be found, we describe a selection of our results on parallel algorithms published since
2013.

2.1 Sorting
Sorting is one of the most intensively studied algorithmic problems. It is of particular interest
to parallel computing since sorting is often used to bring data together that has to be
processed together. We were able to obtain several quite fundamental new results on sorting.

String sorting. is practically important since many big data applications have variable
length keys. The theoretical challenge here is to exploit that only distinguishing prefixes
need to be inspected – indeed sequential string sorting needs work only linear in the total
distinguishing prefix size. We found no previous work on parallel string sorting except
some PRAM algorithms always inspecting the entire input which are thus work-inefficient.
We adapted parallel sorting algorithms for atomic objects so that they only inspect the
distinguishing prefixes [8, 7].

Malleable sorting. In practice, parallel programs have to share resources (e.g. processors)
with other programs. Therefore, the amount of available resources for a particular program
may vary over time in an online fashion. Thus parallel algorithms should be able to
dynamically adapt to the amount of available resources. We have studied this phenomenon
for the example of sorting and show that this yields advantages over leaving this adaptivity
to the operating system [15].

Massively parallel sorting. There are many asymptotically efficient sorting algorithms
running in polylogarithmic time. However, all these algorithms require the data to be moved
at least a logarithmic number of times. On the other hand, there are algorithms that need
to move data only once which makes them much more practical for sorting large inputs on
distributed memory machines. However, these algorithms need a linear number of message
startups on the critical path which makes them impractical for large machines. We have
designed algorithms that interpolate between these to extremes – moving the data k times
reduces the critical path length to kp1/k [5]. There were similar algorithms but none with a
comparable worst case guarantee.

2.2 Data Structures
There has been a lot of work on concurrent data structures (e.g. [19]). However, much of
this is very slow in the worst case since contention of operations competing for the same
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place in the data structure can occur. It turns out that these problems can sometimes be
avoided by relaxing the data structure semantics or by considering bulk operations.

Relaxed Priority Queues. support concurrent insertions and deletions of elements that have
near minimum values. We have designed a very simple such data structure (MultiQueue)
based on multiple sequential priority queues. Insertions go to random queues and deletions
take the minimum from two randomly sampled queues [28]. This data structure considerably
outperforms much more complicated previous data structures.

Approximate Membership. Bloom filters save communication volume by providing a space
efficient data structure for approximate membership queries. However, there is surprisingly
little work on distributed Bloom filters. For example, a recent survey on Bloom filters in
distributed systems [39] mentions no less than 23 variants but none that truly distributes
the data structure over multiple processors and thus scales to the largest data sets. We have
designed such a structure and apply it for communication efficient duplicate detection and
database join [33].

2.3 Graph Algorithms
Multi-objective Shortest Paths. is an intensively studied problem of high practical relev-
ance where parallelization is attractive since it is computationally much more expensive than
the standard single-objective case. While the latter problem is difficult to parallelize in the
worst case, we have shown that the additional work due to the added objectives is easy to
parallelize. Indeed, a very simple generalization of Dijkstra’s well known single-objective
algorithm turns out to be a scalable parallel algorithm requiring the same number of n
iterations [32]. This algorithm also works well in practice [13]. Another interesting aspect of
this problem is that it combines graphs and computational geometry.

Maximal matchings. We give a simple linear work polylogarithmic time algorithm for
computing maximal matchings in [9]. The algorithm also computes 1/2-approximations of
weighted matchings and works well in practice.

Graph partitioning. asks for partitioning the vertex set of a graph into k pieces of about
equal size such that the number of cut edges is small. This is a frequently needed (NP-hard)
problem that is particularly important for processing graphs in parallel. Our partitioner
KaHIP [34] yields the highest quality world wide for a large spectrum of inputs including some
of the largest inputs considered so far [1, 24]. The algorithms used are complex heuristics
combining many techniques. What is interesting from an algorithm theory point of view
is that the practical quality improvements we achieve are in large parts due to integrating
solvers for graph theoretical subproblems for which polynomial time algorithms are known.
For example, this includes maximum flows, strongly connected components, negative cycle
detection, or edge coloring.

2.4 Linear Algebra
One criticism of classical PRAM algorithms is not so much founded in the machine model
but in the strive for polylogarithmic execution time even at the cost of inefficient algorithms.
One such example are algorithms for matrix inversion and related problems. Theoretical
research has found polylogarithmic time inefficient algorithms whereas the algorithms used
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in practice perform a near optimal amount of work yet need time Ω(n) where n is the matrix
dimension. We found an asymptotically efficient polylogarithmic time algorithm that also
works well in practice [35]. The algorithm combines Strassen’s recursive algorithm [38] with
an inefficient algorithm based on Newton’s method [26]. Overall, this reduces matrix inversion
to a polylogarithmic number of matrix multiplications. Since the inefficient algorithm is only
applied to small subproblems, the overall algorithm is efficient.

3 Selected Open Problems

To further underline that there is a lot to be done, we give a list of open problems selected
for being quite fundamentally interesting and spanning a wide range of topics. The ordering
is roughly from rather specific questions to quite general problem areas with a large number
of concrete possible projects.

1. Priority Queues: Show probabilistic quality guarantees for the MultiQueues from [28] or
design a comparably fast data structure with provable guarantees.

2. Strongly Connected Components: Is there a polylogarithmic time, work efficient algorithm
for finding strongly connected components? (Similar questions can be asked for many
graph problems.)

3. Matchings: Give a linear work polylogarithmic time parallel algorithm for (1 − ε)-
approximation of weighted matchings – perhaps by parallelizing [12]. Even the unweighted
case, or the 2/3 − ε-approximation algorithms like [27] would be an interesting result.

4. Data Exchange: There has been intensive work on routing in a wide spectrum of networks.
However, even very simple models have wide open problems. For example, consider a
half-duplex fully connected model: any one of p processors can move a data packet to any
other processor in one step. However, at any time, a processor can only be involved in a
single communication. Let h denote the maximum number of packets any processor is
involved in. Delivering the data directly is equivalent to edge coloring of multigraphs and
thus takes about 3

2h steps in the worst case [36]. We show that routing the packets on
detours can lower this to about 6

5h [30]. In the very special case that one fourth of the
processors need not communicate at all, this can be reduced to h steps [2]. An interesting
conjecture is that ≈ h steps also suffice as long as the total number of packets is at most
3
8hp.

5. Solving Systems of Linear Equations: Is there a polylogarithmic time algorithm with
work O(n3) that solves a system of equations Ax = b in a comparably stable way as
Gaussian elimination? The matrix inversion algorithm from [35] is not stable enough
for all applications, in particular if A is not symmetric. On the other hand, Gaussian
elimination is P-complete [42].

6. Compressed Text Indexing: Develop a polylogarithmic time work-efficient algorithm for
constructing compressed suffix arrays or related data structures.

7. Parallel Paging: A lot of work has been done on the sequential paging problem [6] – given
a single sequence of data block accesses, decide, which of them should be kept in cache at
what time to minimize the number of block transfers between slow memory and cache.
Very little is known on parallel paging. For example, given n such sequences representing
tasks, schedule them on p processors such that the bottleneck number of block transfers
is minimized. We may want to distinguish between shared and private caches, online and
offline strategies, . . .

8. Energy Efficient Computing: Find a simple model with high predictive value for the
actual energy efficiency of (parallel) algorithms.
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9. Communication Efficient Algorithms: For your favorite algorithmic problem, find out
whether there exists a communication efficient parallel algorithm for it.

10. Parallel Streaming Algorithms: Assume data arrives in data streams to p processors with
limited local memory. How can you approximate important information about the data
while keeping the communication volume small? The concrete problem considered could
be any problem previously considered in sequential streaming algorithms.
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