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Abstract. In this paper, the authors find the best numbers α and β such that C̄(αa+
(1 − α)b, αb + (1 − α)a) < T (a, b) < C̄ (βa + (1 − β)b, βb + (1 − β)a) for

all a, b > 0 with a �= b, where C̄(a, b) = 2(a2+ab+b2)
3(a+b)

and T (a, b) = 2
π

∫ π/2
0√

a2cos2 θ + b2sin2 θ dθ denote respectively the centroidal mean and Toader mean of
two positive numbers a and b.

Keywords. Toader mean; centroidal mean; complete elliptic integral; double inequality.

2010 Mathematics Subject Classification. Primary: 26E60; Secondary: 26D20,
33E05.

1. Introduction

In [13], Toader introduced a mean

T (a, b) = 2

π

∫ π/2

0

√
a2 cos2 θ + b2 sin2 θ dθ (1.1)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2a

π
E

⎛

⎝

√

1 −
(

b

a

)2
⎞

⎠ , a > b,

2b

π
E

(√

1 −
(a

b

)2
)

, a < b,

a, a = b, (1.2)

where

E = E(r) =
∫ π/2

0

√
1 − r2 sin2 θ dθ

for r ∈ [0, 1] is the complete elliptic integral of the second kind.
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In recent years, there have been plenty of literature dedicated to Toader mean [6, 7,
9–11, 15].

For p ∈ R and a, b > 0, the centroidal mean C̄(a, b) and the p-th power mean
Mp(a, b) are defined respectively by

C̄(a, b) = 2
(
a2 + ab + b2

)

3(a + b)
(1.3)

and

Mp(a, b) =
⎧
⎨

⎩

(
ap + ap

2

)1/p

, p �= 0,
√

ab , p = 0. (1.4)

In [14], Vuorinen conjectured that

M3/2(a, b) < T (a, b) (1.5)

for all a, b > 0 with a �= b. This conjecture was verified by Qiu and Shen [12] and by
Barnard et al. [3]. In [1], Alzer and Qiu presented that

T (a, b) < M(ln 2)/ ln(π/2)(a, b) (1.6)

for all a, b > 0 with a �= b, which gives a best possible upper bound for Toader mean in
terms of the power mean.

Very recently, Chu et al. proved in [8] that the double inequality

C (αa+(1−α)b, αb+(1−α)a)<T (a, b)<C (βa+(1−β)b, βb+(1−β)a)

(1.7)

is valid for all a, b > 0 with a �= b if and only if α ≤ 3
4 and β ≥ 1

2 +
√

4π−π2

2π
, where

C(a, b) = a2+b2

a+b
is the contraharmonic mean.

For positive numbers a, b > 0 with a �= b, let

J (x) = C̄ (xa + (1 − x)b, xb + (1 − x)a) (1.8)

on [ 1
2 , 1]. It is easy to see that J (x) is continuous and strictly increasing on [ 1

2 , 1]. Now it
is natural to ask the question: What are the best constants α ≥ 1

2 and β ≤ 1 such that the
double inequality

C̄ (αa+(1−α)b, αb+(1−α)a)<T (a, b)<C̄ (βa+(1−β)b, βb+(1−β)a)

(1.9)

holds for a, b > 0 with a �= b? This problem can be affirmatively answered by the
following theorem which is the main result of this paper.

Theorem 1. For positive numbers a, b > 0 with a �= b, the double inequality (1.9) is

valid if and only if α ≤ 1
2

(
1 +

√
3

2

)
and β ≥ 1

2 + 1
2

√
12
π

− 3 .
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2. Proof of Theorem 1

For 0 < r < 1, denote r ′ = √
1 − r2 . It is known that Legendre’s complete elliptic

integrals of the first and second kinds are defined respectively by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

K = K(r) =
∫ π/2

0

1
√

1 − r2 sin2 θ
dθ,

K′ = K′(r) = K(r ′),
K(0) = π

2
,

K(1−) = ∞
and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E = E(r) =
∫ π/2

0

√
1 − r2 sin2 θ dθ,

E ′ = E ′(r) = E(r ′),
E(0) = π

2
,

E(1−) = 1,

(see [4, 5]). For 0 < r < 1, the following formulas were presented in Appendix E,
pp. 474–475 of [2]:

dK
dr

= E − (r ′)2K
r(r ′)2

,
dE
dr

= E − K
r

,
d(E − (r ′)2K)

dr
= rK,

d(K − E)

dr
= rE

(r ′)2 , E
(

2
√

r

1 + r

)

= 2E − (r ′)2K
1 + r

.

For simplicity, denote

λ = 1

2

(

1 +
√

3

2

)

and μ = 1

2
+ 1

2

√
12

π
− 3 .

It is clear that, in order to prove the double inequality (1.9), it suffices to show that

T (a, b) > C̄ (λa + (1 − λ)b, λb + (1 − λ)a) (2.1)

and

T (a, b) < C̄ (μa + (1 − μ)b,μb + (1 − μ)a) . (2.2)

From (1.1) and (1.3) we see that both T (a, b) and C̄(a, b) are symmetric and homogenous
of degree 1. Hence, without loss of generality, we assume that a > b. Let t = b

a
∈ (0, 1)

and r = 1−t
1+t

∈ (0, 1) and let p ∈
(

1
2 , 1

)
. Then

T (a, b) − C̄ (pa + (1 − p)b, pb + (1 − p)a) = 2a

π
E

⎛

⎝

√

1 −
(

b

a

)2
⎞

⎠
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− 2a
[p+(1−p)b/a]2+[p+(1−p)b/a](pb/a+1−p)+(pb/a+1−p)2

3(1 + b/a)

= 2a

π
E(
√

1−t2)−2a
[p+(1−p)t]2+[p+(1−p)t](pt+1−p)+(pt+1−p)2

3(1+t)

= 2a

π

2E − (1 − r2)K
1 + r

− a
(1 − 2p)2r2 + 3

3(1 + r)

= a

1 + r

{
2

π
[2E − (1 − r2)K] − 1

3
(1 − 2p)2r2 − 1

}

. (2.3)

Let

f (r) = 2

π
[2E − (1 − r2)K] − 1

3
(1 − 2p)2r2 − 1, (2.4)

and let f1(r) = rf ′(r) and f2(r) = f ′
1(r)

r
. Then, by standard argument, we have

f (0) = 0, f1(0) = 0, f2(0) = 1 − 4

3
(1 − 2p)2,

f (1−) = 4

π
−1− 1

3
(1 − 2p)2, f1(1−)= 2

π
− 2

3
(1−2p)2, f2(1−)=+∞,

f1(r) = 2

π
[E−(1−r2)K] − 2

3
(1−2p)2r2, f2(r) = 2

π
K− 4

3
(1 − 2p)2,

When p = λ = 1
2 (1 +

√
3

2 ), it follows that f2(0) = 0. An easy argument leads
to f (r) > 0 for r ∈ (0, 1). Together with this, the inequality (2.1) follows from (2.3)
and (2.4).

When p = μ = 1
2 + 1

2

√
12
π

− 3 , it is simple to derive that

f (1−) = 0, f1(1−) = 2(π − 3)

π
> 0, f2(0) = 5π − 16

π
< 0.

Consequently, considering the monotonicity of f2(r), it is deduced that there exists r0 ∈
(0, 1) such that f2(r) < 0 on (0, r0) and f2(r) > 0 on (r0, 1). Hence, the function
f1(r) is strictly decreasing on (0, r0) and strictly increasing on (r0, 1). Similarly, there
exists r1 ∈ (0, 1) such that f1(r) < 0 on (0, r1) and f1(r) > 0 on (r1, 1). Thus, the
function f (r) is strictly decreasing on (0, r1) and strictly increasing on (r1, 1). As a result,
inequality (2.2) follows.

If p > λ, then f2(r) < 0. From the continuity of f (r), f1(r) and f2(r), it
follows that there exists δ1 = δ1(p) > 0 such that f (r) < 0 on (0, δ1). Combin-
ing this with (2.3) and (2.4) yields T (a, b) < C̄ (pa + (1 − p)b, pb + (1 − p)a) for
b
a

∈ ( 1−δ1
1+δ1

, 1). If p < μ, then f (1−) > 0. Hence, there exists δ2 = δ2(p) ∈ (0, 1)

such that f (r) > 0 on (1 − δ2, 1). Combining this with (2.3) and (2.4) reveals that
T (a, b) > C̄ (pa + (1 − p)b, pb + (1 − p)a) for b

a
∈ (0, δ2/(2 − δ2)). These imply that

the constants λ and μ are the best possible. The proof of Theorem 1 is complete.
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