
M. Herrlich, R. Malaka, and M. Masuch (Eds.): ICEC 2012, LNCS 7522, pp. 341–348, 2012.
© IFIP International Federation for Information Processing 2012

Writing Real-Time .Net Games in Casanova

Giuseppe Maggiore, Pieter Spronck, Renzo Orsini, Michele Bugliesi,
Enrico Steffinlongo, and Mohamed Abbadi

Università Ca’ Foscari Venezia
DAIS - Computer Science

{maggiore,orsini,bugliesi,esteffin,mabbadi}@dais.unive.it
Tilburg University

Tilburg Center for Creative Computing
p.spronck@gmail.com

Abstract. In this paper we show the Casanova language (and its accompanying
design pattern, Rule-Script-Draw) in action by building a series of games with
it. In particular we discuss how Casanova is suitable for making games regard-
less of their genre: the Game of Life, a shooter game, an adventure game and a
strategy game. We also discuss the difference between Casanova and existing
frameworks.

Keywords: Game development, Casanova, databases, languages, functional
programming, F#.

1 Introduction

There is a growing, substantial interest in research on principled design techniques and
on cost-effective development technologies for game architectures. This is driven by the
diffusion of independent games, an increased need for fast prototyping gameplay me-
chanics [1], and the need to develop serious or research games [2] for which the same
budget of blockbuster titles cannot be spared. Moreover, as the games market keeps
growing in size [3] this need is further emphasized. Our present endeavor makes a step
along the directions of studying disciplined models for game development.

In this paper we discuss the Casanova language for making games. We do not
present Casanova as such, that being the focus of other papers [5,6,7]. Rather, given
that Casanova exists and works already (albeit under a prototypical implementation),
we study and measure its feasibility when used for making games. We will thus try
and answer the research question “does Casanova make game development easier?”
by identifying a series of general, orthogonal activities in game development that we
show built in Casanova, and we will compare our implementation with other languag-
es. We start with a discussion of related work in section 2. We give a first description
of Casanova in section 3. We discuss with detailed examples how to make actual
games with Casanova in section 4. In section 5 we compare Casanova, C# and F#
when used for the games of the preceding section. In sections 6 and 7 we conclude by

342 G. Maggiore et al.

discussing some of the extensions that we are planning on adding to Casanova with
our future research.

2 Related Work

To build the logic of a game the two most common software architectures are object-
oriented hierarchies and component-based systems. In an object-oriented engine the
hierarchy is rooted in the Entity class [9]. A component-based system defines each
game entity as a composition of components that provide reusable, specific functionality
[10]. These two more traditional approaches both suffer from a noticeable shortcoming:
they focus exclusively on representing single entities and their update operations in
isolation: each entity needs to update itself at each tick of the simulation. This shifts the
game focus away from the interactions between entities (collision detection, AI, etc.),
from which most of a game complexity comes. Another particularly nasty problem that
arises in traditional game development is that of representing long-running behaviors of
entities; such behaviors are those processes performed by game entities which last many
ticks of the game loop to complete. These behaviors are coded as explicit state machines
inside the entities, thereby forcing entities to store spurious data that does not have to do
with the entity logical model but rather with the representation of its state machines.

Alternative paradigms have been experimented as part of various research efforts:
functional reactive programming (FRP, see [11]), a data-flow approach where values
are automatically propagated along a dependency graph that represents the computa-
tion; and automatically optimized SQL-queries for games (the SGL language, see
[12]). FRP mitigates the problem of representing long-running behaviors, but it offers
little else to game development, while SGL focuses exclusively on defining the tick
function and not on representing long-running processes.

We have designed Casanova around all these issues: Casanova promotes entities
that interact with each other, queries on the game world, long-running behaviors,
automated drawing of the game entities, and even consistency of the game world.

3 The Casanova Language

The Casanova language belongs to the ML family (F# in particular, with list compre-
hensions inspired from the elegant Haskell syntax). Its main design focus is syntactic
simplicity, where the language is built around few linguistic primitives that are
powerful enough to be combined into many games.

A Casanova game begins with the definition of a series of data structures, which
are the world and its entities. The updates of an entity are contained in its rules, a
series of methods that take the same name of the field they update at each tick; a rule
is invoked automatically for each entity of the game, and it receives as input the cur-
rent state of world, the current state of the entity being updated, and the time delta
between the current frame and the previous frame. All rules do not interfere with each
other, can be computed in parallel, and exhibit transactional behavior; this avoids
temporal inconsistencies where the game world is partially updated. Entities may also
have drawable fields such as text, sprites or 3D models; these fields are updated

 Writing Real-Time .Net Games in Casanova 343

through rules, and at each tick all drawable entities are grouped into layers (layers
specify a series of draw settings) for drawing.

We could define a hypothetical game world as a series of balls. The world also
features a sprite layer, to which renderables will be assigned (Listing 1).

type World = { Sprites : SpriteLayer
 Balls : var<list<Ball>> }

Listing 1. A world of balls
Each ball (Listing 2) contains a position and a velocity, in addition to a sprite for

drawing. The position is updated by moving it along the velocity, and the sprite posi-
tion is taken from the entity position:

type Ball = {
 Position : Vector2<m>
 Velocity : Vector2<m/s>
 Sprite : DrawableSprite {
 rule Position(world,self,dt) = self.Position + dt * self.Velocity
 rule Sprite.Position(world,self,dt) = self.Position

Listing 2. Ball
The initial state of the game features no initial balls and the empty sprite layer. We

omit this listing as it is rather straightforward.
We use the main script of the game to create random balls every few seconds

(Listing 3).

let main world =
 repeat { wait 1.0
 world.Balls.Add … }

Listing 3. Spawning balls

4 Making Games with Casanova

To assess the effectiveness of Casanova as a game development language we have
undertaken two parallel development initiatives. One such initiative is [13], where we
have built a series of small samples that are easy to understand and manipulate; these
samples are a series of real-time games, chosen so as to see Casanova in action in dif-
ferent sub-domains of the real-time game genre (possibly the most widespread nowa-
days). These samples are an asteroid shooter game, an action/adventure game and a
strategy game. We will not present the full samples themselves, which are available
online. We will now focus on a series of fundamental “development activities“ that we
believe to be nicely exemplified by our samples; these activities cover some of the
most common and important pieces that can be customized, combined and extended
into almost any game: (i) defining a player avatar, handling his input and his shooting;
(ii) spawning obstacles randomly; (iii) handling collisions between projectiles and
obstacles; (iv) active entities such as bases or buildings that produce units; (v) selec-
tion-based input mechanisms. We show (i), (ii), and (iii) from the asteroid shooter in
4.1, and (iv) and (v) are shown from the RTS game in 4.2. The primitives shown here
are just samples, but they can be recombined, modified and reassembled into many
new games; we also point the existence of [14], an upcoming (commercial) strategy

344 G. Maggiore et al.

game that is derived from the RTS sample and that we are building as an ongoing
study of how to create non-trivial games with Casanova with this extension process.

4.1 Player Avatar and Shooting Stuff

The asteroid shooter game is a simple shooter game where asteroids fall from the top
of the screen towards the bottom and must be shot down by the player.

In this game we will describe how to define: (i) the player avatar, his movement
and shooting; (ii) the spawning of obstacles such as asteroids; and (iii) detection of
collisions between asteroids and projectiles.

The game world (Listing 4) contains a list of projectiles, asteroids, the cannon, the
current score, plus sprite layers for the main scene and the game UI. The game world
removes asteroids and projectiles when they exit the screen or collide with each other,
and it handles the current score (which is the number of destroyed asteroids).

type World = {
 Sprites : SpriteLayer
 UI : SpriteLayer
 Asteroids : var<list<Asteroid>>
 Projectiles : var<list<Projectile>>
 Cannon : Cannon }
 rule Asteroids(world,dt) =
 [a | a <- state.Asteroids && a.Colliders.Length = 0 && a.Position.Y < 100.0<m>]
 rule Projectiles(world,dt) =
 [p | p <- state.Projectiles && p.Colliders.Length = 0 && p.Position.Y > 0.0<m>]

Listing 4. Asteroids world
The player is represented by a cannon (similarly it might be represented by a mov-

ing ship) as an entity that contains a sprite, an angle, and two boolean movement flags
set from the input script that determine the variation of the angle and which are reset
to false at every tick; the rotation of the sprite is taken from the current angle of the
cannon (Listing 5).

type Cannon = {
 Sprite : DrawableSprite
 Angle : float<rad>
 MoveLeft : var<bool>
 MoveRight : var<bool> }
 rule Angle(world,self,dt) =
 self.Angle + if self.MoveLeft then dt elif self.MoveRight then -dt else 0.0<rad>
 rule MoveLeft(world,self,dt) = false
 rule MoveRight(world,self,dt) = false
 rule Sprite.Rotation(world,self,dt) = self.Angle

Listing 5. Cannon
The input script that modifies the rotation of the cannon simply checks if the appro-

priate key is currently pressed, and if so the cannon movement values are set (Listing 6).

 { return is_key_down Keys.Left } => { state.Cannon.MoveLeft := true },
 { return is_key_down Keys.Right } => { state.Cannon.MoveRight := true }

Listing 6. Cannon movement
Similarly, projectiles are generated (or “spawned”, Listing 7) whenever the space

key is pressed; contrary to movement, though, after a projectile is spawned the script
waits one-tenth of a second to ensure that projectiles are not shot with a frequency of

 Writing Real-Time .Net Games in Casanova 345

one per frame. It is worth noticing that such a simple activity would require a timer-
based event infrastructure that can be quite tedious to write in a traditional language;
for example, a timer to wait after the spawning of a projectile would need to be
stored, declared, and consulted manually at each tick.

 { return is_key_down Keys.Space } => {
 state.Projectiles.Add …
 wait 0.1<s> }

Listing 7. Shooting
Asteroids are generated with a simple recursive script that waits a random amount

of time and then adds the asteroid to the game world (Listing 8).

 repeat {
 wait (random(1.0<s>,3.0<s>))
 state.Asteroids.Add …
 }

Listing 8. Spawning asteroids
Collision detection is simple as well: both asteroids and projectiles compute the list

of colliders against themselves; this list is then used in the query shown above in the
definition of the game world to cull away asteroids (or projectiles) that are hit by
other entities (Listing 9).

type Asteroid =
 …
 rule Colliders(world,self,dt) =
 [x | x <- get_colliders world && distance(self.Position, x.Position) < 10.0f]

Listing 9. Asteroids collision detection

4.2 Active Map Entities and Selection-Based Input

The strategy game features a series of planets that produce ships, which can then be
sent to conquer other planets. In this game we can see: (iv) active entities, such as
planets, that represent complex components of the game scenario; and (v) complex
selection-based input mechanisms based on the selection of game entities and the
interaction with the selected entities. We represent the game world as a series of pla-
nets, ships, plus the currently selected planet; the game world also contains sprite
layers for rendering the game entities and UI, plus a boolean that allows the game
battles to tick at fixed time intervals rather than at each tick of the game (Listing 10).

type World = {
 Sprites : SpriteLayer
 UI : SpriteLayer
 Planets : list<Planet>
 Fleets : var<list<Fleet>>
 TickBattles : var<bool>
 SourcePlanet : var<Option<ref<Planet>>> }
rule Fleets(world,dt) =
 [f | f <- self.Fleets && f.Alive && (not(f.Arrived) || f.Fighting)]

Listing 10. RTS world
Planets manage the battles in their orbit (which determine the owner of the planet)

and ship production; in addition to their other fields, planets store the current owner,
the number of allied ships stationed on the planet, and the percentage of production

346 G. Maggiore et al.

for the next ship; furthermore, a planet maintains a list of the fleets that are targeting
itself for attacking or defending it (Listing 11).

type Planet = {
 Owner : Player
 … }
rule Owner(world,self,dt) =
 if self.Armies <= 0 && self.AttackingFleets.Length > 0 then
 self.AttackingFleets[0].Owner
 else self.Owner
…

Listing 11. Planet definition

Input scripts manage the selection of a new planet by waiting for a left click of the
mouse and then setting the SourcePlanet field of the game world (Listing 12).

 { return mouse_clicked_left() } => {
 let mouse = mouse_position()
 let clicked =
 [p | p <- world.Planets && distance(p.Position,mouse) < 10.0 && p.Owner =
Human]
 if clicked <> [] then return Some(clicked.Head)
 else return None } => fun p -> { world.SourcePlanet := Some(p) },

Listing 12. Planet selection

Similarly, when the user right clicks if there is an active selection some ships are
sent (Listing 13).

 { return mouse_clicked_right() && world.SourcePlanet <> None } => {
 let mouse = mouse_position()
 let clicked = [p | p <- world.Planets && distance(p.Position,mouse) < 10.0]
 if clicked <> [] then return Some(clicked.[0],world.SourcePlanet.Value)
 else return None } => fun (source,target) -> { mk_fleet source target }

Listing 13. Issuing orders

5 Final Assessment

Assessing the quality of a programming language for a given activity is a daunting
task. It is with this in mind that we proceed with offering a series of arguments in
answer to our original claim that Casanova is better suited than traditional languages
such as C# for real-time game development. Casanova programs are overall much
shorter than equivalent C# programs (measured excluding trivial constructs such as
constructors or properties), as are all the analyzed snippets. We also include data from
the same games implemented in straightforward F# together with our Casanova libra-
ries, which allows retaining most of the advantages of Casanova. The first compari-
sons that we make can be seen in Figure 1, and is concerned with the surrounding
infrastructure, which is all the game code that is not strictly part of the game logic or
drawing, and the overall length of the various samples.

 Writing Real-Time .Net Games in Casanova 347

Fig. 1.

Fig. 2.

In Figure 2 we can see the comparison of the single snippets of game code that we
have analyzed. With the data above, we feel it’s safe enough to conclude that Casanova
allows to express game-related concepts with less verbosity than traditional main-
stream languages; specifically, Casanova completely removes the need for boilerplate
code to initialize the game (since it is already built-in), and it removes the need to tra-
verse the game world to update and draw each entity (since the framework takes care
of evaluating rules and drawing drawable entities). The F# samples fare comparably to
Casanova, both in terms of length and code complexity, mostly thanks to the Casanova
library that allows the definition of scripts and automated traversal of the game state.

Finally, while we don’t have enough data to qualify as a proper user study, we
wish to point out the importance of our work in an actual game project, the upcoming
strategy game Galaxy Wars [14]. This project is the complete version of the RTS
sample discussed in the previous sections. Compared with the RTS sample, Galaxy
Wars is much larger (tens of thousands of lines of code), and we have developed it
both as a commercial endeavor and as a research test-bed for Casanova, with the aid
of a group of Master students in Computer Science.

6 Future Work

We believe our work to have opened exciting new venues of exploration. Casanova
started with the goal of making it simpler to build a declarative, easily optimized
game logic, with its associated rendering. In addition to completing support for the
Casanova language in terms of compiler, development tools, and visual editors, we
will: (i) design further Casanova components such as menus, networking and audio
systems; (ii) study a list of query optimizations [16] that could make Casanova more
efficient; (iii) work on user studies on students and even actual game designers.

7 Conclusions

Game development is a large aspect of modern culture. Games are used for enter-
tainment, education, training and more, and their impact on society is significant. This

Ͳ
ͷͲ
ͳͲͲ
ͳͷͲ
ʹͲͲ
ʹͷͲ
͵ͲͲ
͵ͷͲ
ͶͲͲ
ͶͷͲ

���

	͓

�͓

Ͳ
ͳͲ
ʹͲ
͵Ͳ
ͶͲ
ͷͲ
Ͳ
Ͳ
ͺͲ

���

	͓

�͓

348 G. Maggiore et al.

is driving a need for structured principles and practices for developing games and
simulations. Also, reducing the cost and difficulties of making games could greatly
benefit development studios with less resources, such as independent-, serious-, and
research-game makers. Casanova is a study in the automation and support of the most
common game-development activities, in order to allow game developers to put more
effort on what really matters (AI, gameplay, shaders, procedural generation, etc.)
instead of smaller technicalities.

While Casanova is still in its early stages, we have used it extensively and with
good results in a real game [14], and we are certain that with further work the benefits
of this approach will become much more apparent.

References

1. Fullerton, T., Swain, C., Hoffman, S.: Game design workshop: a playcentric approach to
creating innovative games. Morgan Kaufman (2008)

2. Ritterfeld, U., Cody, M., Vorderer, P.: Serious Games: Mechanisms and Effects (2009)
3. Entertainment Software Association: Industry Facts (2010)
4. Buckland, M.: Programming Game AI by Example, Sudbury, MA (2004)
5. Giuseppe Maggiore, M.: Monadic Scripting in F# for Computer Games, Oslo, Norway

(2011)
6. Maggiore, G., Spanò, A., Orsini, R., Costantini, G., Bugliesi, M., Abbadi, M.: Designing

Casanova: A Language for Games. In: van den Herik, H.J., Plaat, A. (eds.) ACG 2011.
LNCS, vol. 7168, pp. 320–332. Springer, Heidelberg (2012)

7. Maggiore, G., Bugliesi, M., Orsini, R.: Casanova Papers. In: Casanova project page,
http://casanova.codeplex.com/wikipage?title=Papers (accessed
2011)

8. DeLoura, M.: The Engine Survey. In: Gamasutra, http://www.gamasutra.com/
blogs/MarkDeLoura/20090316/903/The_Engine_Survey_Technology_
Results.php (accessed 2009)

9. Ampatzoglou, A., Chatzigeorgiou, A.: Evaluation of object-oriented design patterns in
game development. Journal of Information and Software Technology 49 (2007)

10. Folmer, E.: Component Based Game Development – A Solution to Escalating Costs and
Expanding Deadlines? In: Schmidt, H.W., Crnkoviü, I., Heineman, G.T., Stafford, J.A.
(eds.) CBSE 2007. LNCS, vol. 4608, pp. 66–73. Springer, Heidelberg (2007)

11. Conal, E., Hudak, P.: Functional reactive animation. In: International Conference on Func-
tional Programming (ICFP), pp. 263–273 (1997)

12. Walker White, A.: Scaling games to epic proportions. In: Proceedings of the 2007 ACM
SIGMOD International Conference on Management of Data (SIGMOD), New York, NY,
USA, pp. 31–42 (2007)

13. Maggiore, G.: Casanova project page (2011), http://casanova.codeplex.com/
14. Maggiore, G.: Galaxy Wars Project Page (2010), http://vsteam2010.codeplex.

com, http://galaxywars.vsteam.org
15. Zhao, R., Szafron, D.: Generating Believable Virtual Characters Using Behavior Capture

and Hidden Markov Models. In: van den Herik, H.J., Plaat, A. (eds.) ACG 2011. LNCS,
vol. 7168, pp. 342–353. Springer, Heidelberg (2012)

16. Garcia-molina, H., Ullman, J., Widom, J.: Database System Implementation (1999)

	Writing Real-Time .Net Games in Casanova
	Introduction
	Related Work
	The Casanova Language
	Making Games with Casanova
	Player Avatar and Shooting Stuff
	Active Map Entities and Selection-Based Input

	Final Assessment
	Future Work
	Conclusions
	References

