6-6 Trapezoids and Kites

Objective To verify and use properties of trapezoids and kites

MATHEMATICAL In the Solve It, the orange and green regions are trapezoids. The entire figure is a kite. In
PRACTICES this lesson, you will learn about these special quadrilaterals that are not parallelograms.

Essential Understanding The angles, sides, and diagonals of a trapezoid have certain properties.

A trapezoid is a quadrilateral with exactly one pair of parallel sides. The parallel sides of a trapezoid are called bases. The nonparallel sides are called legs. The two angles that share a base of a trapezoid are called base angles. A trapezoid has two pairs of base angles.

An isosceles trapezoid is a trapezoid with legs that are congruent. $A B C D$ at the right is an isosceles trapezoid. The angles of an isosceles trapezoid have some unique properties.

Theorem 6-19

Theorem

If a quadrilateral is an isosceles trapezoid, then each pair of base angles is congruent.

If...
$T R A P$ is an isosceles trapezoid with bases $\overline{R A}$ and $\overline{T P}$

Then . . .
$\angle T \cong \angle P, \angle R \cong \angle A$

You will prove Theorem 6-19 in Exercise 45.

Problem 1 Finding Angle Measures in Trapezoids

What do you know about the angles of an isosceles trapezoid? You know that each pair of base angles is congruent. Because the bases of a trapezoid are parallel, you also know that two angles that share a leg are supplementary.
$C D E F$ is an isosceles trapezoid and $m \angle C=65$. What are $m \angle D$, $m \angle E$, and $m \angle F$?

$$
\begin{aligned}
m \angle C+m \angle D=180 & \begin{array}{l}
\text { Two angles that form same-side interior angles } \\
\text { along one leg are supplementary. }
\end{array} \\
65+m \angle D=180 & \text { Substitute. } \\
m \angle D=115 & \text { Subtract } 65 \text { from each side. }
\end{aligned}
$$

Since each pair of base angles of an isosceles trapezoid is congruent, $m \angle C=m \angle F=65$ and $m \angle D=m \angle E=115$.

Got li? 1. a. In the diagram, $P Q R S$ is an isosceles trapezoid and $m \angle R=106$. What are $m \angle P, m \angle Q$, and $m \angle S$?
b. Reasoning In Problem 1, if $C D E F$ were not an isosceles trapezoid, would $\angle C$ and $\angle D$ still be supplementary? Explain.

Got lt?

Problem 2 Finding Angle Measures in Isosceles Trapezoids

Paper Fans The second ring of the paper fan shown at the right consists of 20 congruent isosceles trapezoids that appear to form circles. What are the measures of the base angles of these trapezoids?

Step 1 Find the measure of each angle at the center of the fan. This is the measure of the vertex angle of an isosceles triangle.

$$
m \angle 1=\frac{360}{20}=18
$$

Step 2 Find the measure of each acute base angle of an isosceles triangle.

$$
\begin{aligned}
18+x+x & =180 & & \text { Triangle Angle-Sum Theorem } \\
18+2 x & =180 & & \text { Combine like terms } . \\
2 x & =162 & & \text { Subtract } 18 \text { from each side } . \\
x & =81 & & \text { Divide each side by } 2 .
\end{aligned}
$$

Step 3 Find the measure of each obtuse base angle of the isosceles trapezoid.

$$
\begin{aligned}
81+y & =180
\end{aligned} \begin{aligned}
& \text { Two angles that form same-side interior } \\
& \text { angles along one leg are supplementary. }
\end{aligned}
$$

Each acute base angle measures 81. Each obtuse base angle measures 99.
Got lt? 2. A fan like the one in Problem 2 has 15 angles meeting at the center. What are the measures of the base angles of the trapezoids in its second ring?

Theorem

If a quadrilateral is an isosceles trapezoid, then its diagonals are congruent.

If...
$A B C D$ is an isosceles trapezoid

Then...
$\overline{A C} \cong \overline{B D}$

You will prove Theorem 6-20 in Exercise 54.

In Lesson 5-1, you learned about midsegments of triangles. Trapezoids also have midsegments. The midsegment of a trapezoid is the segment that joins the midpoints of its legs. The midsegment has two unique properties.

Problem 3 Using the Midsegment of a Trapezoid

Algebra $\overline{Q R}$ is the midsegment of trapezoid $L M N P$. What is x ?

$$
\begin{aligned}
Q R & =\frac{1}{2}(L M+P N) & & \text { Trapezoid Midsegment Theorem } \\
x+2 & =\frac{1}{2}[(4 x-10)+8] & & \text { Substitute. } \\
x+2 & =\frac{1}{2}(4 x-2) & & \text { Simplify. } \\
x+2 & =2 x-1 & & \text { Distributive Property } \\
3 & =x & & \begin{array}{l}
\text { Subtract } x \text { and } \\
\text { add } 1 \text { to each side. }
\end{array}
\end{aligned}
$$

Got It? 3. a. Algebra $\overline{M N}$ is the midsegment of trapezoid $P Q R S$. What is x ? What is $M N$?
b. Reasoning How many midsegments can a triangle have? How many midsegments can a trapezoid have? Explain.

A kite is a quadrilateral with two pairs of consecutive sides congruent and no opposite sides congruent.

Essential Understanding The angles, sides, and diagonals of a kite have certain properties.

note
Theorem 6-22

Theorem
If a quadrilateral is a kite, then its diagonals are perpendicular.

If . . .
$A B C D$ is a kite

Then...
$\overline{A C} \perp \overline{B D}$

Proof Proof of Theorem 6-22

Given: Kite $A B C D$ with $\overline{A B} \cong \overline{A D}$ and $\overline{C B} \cong \overline{C D}$
Prove: $\overline{A C} \perp \overline{B D}$

Statements

1) Kite $A B C D$ with $\overline{A B} \cong \overline{A D}$ and $\overline{C B} \cong \overline{C D}$
2) A and C lie on the perpendicular bisector of $\overline{B D}$.
3) $\overline{A C}$ is the perpendicular bisector of $\overline{B D}$.
4) $\overline{A C} \perp \overline{B D}$

Reasons

1) Given
2) Converse of Perpendicular Bisector Theorem
3) Two points determine a line.
4) Definition of perpendicular bisector

Problem 4 Finding Angle Measures in Kites

How are the triangles congruent by SSS? $\overline{D E} \cong \overline{D G}$ and $\overline{F E} \cong \overline{F G}$ because a kite has congruent consecutive sides. $\overline{D F} \cong \overline{D F}$ by the Reflexive Property of Congruence.

Quadrilateral $D E F G$ is a kite. What are $m \angle 1, m \angle 2$, and $m \angle 3$?
$m \angle 1=90 \quad$ Diagonals of a kite are \perp.
$90+m \angle 2+52=180 \quad$ Triangle Angle-Sum Theorem
$142+m \angle 2=180 \quad$ Simplify.
$m \angle 2=38 \quad$ Subtract 142 from each side.
$\triangle D E F \cong \triangle D G F$ by SSS. Since corresponding parts of congruent triangles are congruent, $m \angle 3=m \angle G D F=52$.

Got $\mathbf{I t}$? 4. Quadrilateral $K L M N$ is a kite. What are $m \angle 1$, $m \angle 2$, and $m \angle 3$?

Lesson Check

Do you know HOW?

What are the measures of the numbered angles?

3. What is the length of the midsegment of a trapezoid with bases of length 14 and 26 ?

Do you UNDERSTAND?
MATHEMATICAL PRACTICES
(C) 4. Vocabulary Is a kite a parallelogram? Explain.

5. Compare and Contrast How is a kite similar to a rhombus? How is it different? Explain.
6. Error Analysis Since a parallelogram has two pairs of parallel sides, it certainly has one pair of parallel sides. Therefore, a parallelogram must also be a trapezoid. What is the error in this reasoning? Explain.

Practice and Problem-Solving Exercises

Find the measures of the numbered angles in each isosceles trapezoid.

$$
\text { See Problems } 1 \text { and } 2 .
$$

7.

8.

9.

10.

11.

12.

Find $E F$ in each trapezoid.
14.

15.

Find the measures of the numbered angles in each kite.
See Problem 4.
16.

17.

18.

19.

20.

21.

22.

23.

24.

(C) 25. Open-Ended Sketch two noncongruent kites such that the diagonals of one are congruent to the diagonals of the other.
(3) 26. Think About a Plan The perimeter of a kite is 66 cm . The length of one of its sides is 3 cm less than twice the length of another. Find the length of each side of the kite.

- Can you draw a diagram?
- How can you write algebraic expressions for the lengths of the sides?

27. Reasoning If $K L M N$ is an isosceles trapezoid, is it possible for $\overline{K M}$ to bisect $\angle L M N$ and $\angle L K N$? Explain.

Algebra Find the value of the variable in each isosceles trapezoid.
28.

29. B

30.

$$
\begin{aligned}
& Q S=x+5 \\
& R P=3 x+3
\end{aligned}
$$

Algebra Find the lengths of the segments with variable expressions.
31.

32.

33.

Algebra Find the value(s) of the variable(s) in each kite.
34.

36.

STEM
Bridge Design The beams of the bridge at the right form quadrilateral $A B C D . \triangle A E D \cong \triangle C D E \cong \triangle B E C$ and $m \angle D C B=120$.
37. Classify the quadrilateral. Explain your reasoning.
38. Find the measures of the other interior angles of the quadrilateral.
(C) Reasoning Can two angles of a kite be as follows? Explain.

39. opposite and acute
40. consecutive and obtuse
41. opposite and supplementary
42. consecutive and supplementary
43. opposite and complementary
44. consecutive and complementary
45. Developing Proof The plan suggests a proof of Theorem 6-19. Write a proof that follows the plan.

Given: Isosceles trapezoid $A B C D$ with $\overline{A B} \cong \overline{D C}$
Prove: $\angle B \cong \angle C$ and $\angle B A D \cong \angle D$
Plan: Begin by drawing $\overline{A E} \| \overline{D C}$ to form parallelogram $A E C D$ so that $\overline{A E} \cong \overline{D C} \cong \overline{A B}, \angle B \cong \angle C$ because $\angle B \cong \angle 1$ and $\angle 1 \cong \angle C$.
 Also, $\angle B A D \cong \angle D$ because they are supplements of the congruent angles, $\angle B$ and $\angle C$.
46. Prove the converse of Theorem 6-19: If a trapezoid has a pair of congruent base Proof angles, then the trapezoid is isosceles.

Name each type of special quadrilateral that can meet the given condition. Make sketches to support your answers.
47. exactly one pair of congruent sides
48. two pairs of parallel sides
49. four right angles
50. adjacent sides that are congruent
51. perpendicular diagonals
52. congruent diagonals
53. Prove Theorem 6-20.

Proof Given: Isosceles trapezoid $A B C D$ with $\overline{A B} \cong \overline{D C}$
Prove: $\overline{A C} \cong \overline{D B}$
54. Prove the converse of Theorem 6-20: If the diagonals of a
 Proof trapezoid are congruent, then the trapezoid is isosceles.
55. Given: Isosceles trapezoid $T R A P$ with $\overline{T R} \cong \overline{P A}$

Proof Prove: $\angle R T A \cong \angle A P R$
56. Prove that the angles formed by the noncongruent sides of a Proof kite are congruent. (Hint: Draw a diagonal of the kite.)

Determine whether each statement is true or false. Justify your response.
57. All squares are rectangles.
59. A rhombus can be a kite.
61. Every quadrilateral is a parallelogram.
58. A trapezoid is a parallelogram.
60. Some parallelograms are squares.
62. All rhombuses are squares.
63. Given: Isosceles trapezoid $T R A P$ with $\overline{T R} \cong \overline{P A ;}$ $\overline{B I}$ is the perpendicular bisector of $\overline{R A}$, intersecting $\overline{R A}$ at B and $\overline{T P}$ at I.
Prove: $\overline{B I}$ is the perpendicular bisector of $\overline{T P}$.

For a trapezoid, consider the segment joining the midpoints of the two given segments. How are its length and the lengths of the two parallel sides of the trapezoid related? Justify your answer.
64. the two nonparallel sides
65. the diagonals
66. $\overleftrightarrow{B N}$ is the perpendicular bisector of $\overline{A C}$ at N. Describe the set of points, D, for which $A B C D$ is a kite.

Apply What You've Learned

Alejandro's kite fits the geometric definition of a kite because it has two pairs of
Look back at the information about Alejandro's kite on page 351. His sketch is shown again at the right, with the missing vertical support drawn in.

Choose from the following words to complete the sentences below.
 congruent a. ? sides and no pairs of congruent b. ? sides.

The vertical and horizontal supports of the kite are its c. ?. Vertices B and D are each equidistant from vertices A and C, so the vertical support d. ? the horizontal support.

Because the diagonals of a kite are e. ? to each other, they divide the kite into four f. ? triangles. The kite's vertical support divides it into two g. ? triangles.

