
ICML 2018 AutoML Workshop

AlphaD3M: Machine Learning Pipeline Synthesis

Iddo Drori idrori@nyu.edu

Yamuna Krishnamurthy yamuna@nyu.edu

Remi Rampin remi.rampin@nyu.edu

Raoni de Paula Lourenco raoni@nyu.edu

Jorge Piazentin Ono jorgehpo@nyu.edu

Kyunghyun Cho kyunghyun.cho@nyu.edu

Claudio Silva csilva@nyu.edu

Juliana Freire juliana.freire@nyu.edu

New York University, Tandon School of Engineering and Center for Data Science

Abstract

We introduce AlphaD3M, an automatic machine learning (AutoML) system based on meta
reinforcement learning using sequence models with self play. AlphaD3M is based on edit
operations performed over machine learning pipeline primitives providing explainability.
We compare AlphaD3M with state-of-the-art AutoML systems: Autosklearn, Autostacker,
and TPOT, on OpenML datasets. AlphaD3M achieves competitive performance while
being an order of magnitude faster, reducing computation time from hours to minutes, and
is explainable by design.

Keywords: AutoML, Expert Iteration, Sequence Model, Data Driven Discovery of Models.

1. Introduction

Automatic machine learning (AutoML) aims to learn how to learn. Given a dataset, a well
defined task, and performance criteria, the goal is to solve the task with respect to the
dataset while optimizing performance. Existing systems have focused on a relatively small
set of machine learning primitives, with a few tasks (Feurer et al., 2015), or on a small set
of datasets (Chen et al., 2018), or on numerous datasets within specific domains (Olson and
Moore, 2016).

DARPA’s Data Driven Discovery of Models (D3M) program pushes this vision further
and proposes to develop infrastructure to automate model discovery, i.e., solve any task
on any dataset specified by the user. Using a broad set of computational primitives as
building blocks, the D3M system should synthesize a pipeline and set the appropriate hyper-
parameters to solve a previously unknown data and problem. The D3M system also has a
user interface that enables users to interact with and improve the automatically generated
results (Blei and Myth, 2017).

Inspired by AlphaZero (Silver et al., 2017), we frame the problem of pipeline synthesis for
model discovery as a single-player game (McAleer et al., 2018): the player iteratively builds
a pipeline by selecting among a set of actions which are insertion, deletion, replacement of
pipeline parts. An inherent advantage of this approach is that at the end of the process,
once there is a working pipeline, it is completely explainable, including all the actions and
decisions which led to its synthesis. Another advantage is that our approach leverages
recent advances in deep reinforcement learning using self play, specifically expert iteration

c© 2018 I. Drori, Y. Krishnamurthy, R. Rampin, R.d.P. Lourenco, J.P. Ono, K. Cho, C. Silva & J. Freire.



AlphaD3M: Machine Learning Pipeline Synthesis

(Anthony et al., 2017) and AlphaZero (Silver et al., 2017), by using a neural network for
predicting pipeline performance and action probabilities, along with a Monte-Carlo Tree
Search (MCTS), as illustrated in Figure 1 (left), which takes strong decisions based on the
network. The process progresses by self play with iterative self improvement, and is known
to be highly efficient at finding a solution to search problems in very high dimensional
spaces. We evaluate our approach using the OpenML dataset on the tasks of classification
and regression, demonstrating competitive performance and computation times an order of
magnitude faster than other AutoML systems.

AlphaZero AlphaD3M

Game Go, chess AutoML
Unit piece pipeline primitive
State configuration meta data, task, pipeline
Action move insert, delete, replace
Reward win, lose, draw pipeline performance

Figure 1: AlphaD3M iterative improvement (left); AlphaD3M game representation (right).

Each of the existing AutoML systems uses any one of the following key elements indi-
vidually: differentiable programming, tree search, evolutionary algorithms, and Bayesian
optimization, to find the best machine learning pipelines for a given task and dataset. Dif-
ferentiable programming, of which neural network backpropagation is a special case, is used
for learning feature extraction and estimation (Ganin and Lempitsky, 2015) and for end-to-
end learning of machine learning pipelines with differentiable primitives (Milutinovic et al.,
2017). Bayesian optimization methods are used for hyper-parameter tuning (Bergstra and
Bengio, 2012). Both AutoWEKA (Kotthoff et al., 2017) and Autosklearn (Feurer et al.,
2015) extend the application of these techniques to the selection of the model in addition to
the hyper-parameter values, solving the combined algorithm selection and hyper-parameter
optimization problem by fitting probabilistic models capturing the relationship between
parameter values and performance measures using a Gaussian Process, Random Forest, or
tree-structured Parzen estimator (Bergstra et al., 2011). Auto-Tuned Models (Swearingen
et al., 2017) represent the search space as a tree with nodes being algorithms or hyperpa-
rameters and searches for the best branch using a multi-armed bandit. TPOT (Olson and
Moore, 2016) and Autostacker (Chen et al., 2018) uses evolutionary algorithms to gener-
ate machine learning pipelines while optimizing their hyperparameters. TPOT represents
machine learning pipelines as trees, whereas Autostacker represents them as stacked layers.

Our goal is to search within a large space for the machine learning, and pre and post
processing primitives and parameters which together constitute a pipeline for solving a task
on a given dataset. The problem is that of high dimensional search. Although the datasets
differ, the solution pipelines contain recurring patterns. Just as a data scientist develops
intuition and patterns about the pipeline components, we use a neural network along with
a Monte-Carlo tree search in an iterative process. This combination results in the network

2



AlphaD3M: Machine Learning Pipeline Synthesis

learning these patterns while the search splits the problem into components and looks ahead
for solutions. By self play and evaluations the network improves, incorporating a better
intuition. An advantage of this iterative dual process is that it is computationally efficient
in high dimensional search (Silver et al., 2017).

2. Methods

Following dual process theory, we solve the meta learning problem by sequence modeling
using a deep neural network and Monte Carlo tree search (MCTS) (Silver et al., 2017;
Anthony et al., 2017). This section describes our representation, followed by details of the
neural network and MCTS.

2.1. Representation

Figure 1 (right) illustrates a high level analogy between a two player competitive game and
our single player pipeline synthesis game, including state, action, and reward. A pipeline is
a data mining work flow, of pre-processing, feature extraction, feature selection, estimation,
and post-processing primitives. Algorithm 2.1 describes our pipeline state representation.
Our architecture models meta data and an entire pipeline chain as state rather than individ-
ual primitives. A pipeline, together with the meta data and problem definition is analogous
to an entire game board configuration. The actions are transitions from one state (pipeline)
to another.

Algorithm 1: Pipeline Encoding

Given datasets D, tasks T , and a set of possible pipeline sequences S1, . . . , Sn, from the
available machine learning, and data pre and post processing primitives.

• For each dataset Di and task Tj :

1. Encode dataset Di as meta data features f(Di).

2. Encode task Tj .

3. Encode the current pipeline at time t by a vector St.

4. Encode action fa(St), so policy π maps (f(Di), Tj , St) to fa(S1), . . . , fa(Sn).

2.2. Neural Network

AlphaD3M uses a recurrent neural network, specifically an LSTM. Let fθ(s) = (P (s, a), v(s)),
where P (s, a) is the action probabilities and v(s) the evaluation score of the model predicted
by the network f with parameters θ, for a given dataset D and task T , for a given state s.
The neural network predicts the probabilities over actions a which lead to sequences S that
describe a pipeline, which in turn solves the given task on the dataset. The network inputs
are training examples (st, πt, et) from games of self play, where st is the state at time t, πt
the policy estimated by MCTS, and et the actual pipeline evaluation at the end of the game.
The state st is composed of a vector encoded as described in Algorithm 2.1. The network
outputs are probabilities over actions P (s, a), and an estimate of pipeline performance v.

3



AlphaD3M: Machine Learning Pipeline Synthesis

We optimize the network parameters θ by making the predicted model S match the real
world model R and the predicted evaluation results v match the real world evaluation e, by
minimizing the cross entropy loss between S and R, and the mean squared error between v
and e. We add an `2 regularization term for the network parameters θ to avoid over-fitting
and an `1 regularization term which prefers simple pipelines. Thus our network fθ is trained
by minimizing the following non-linear loss function using stochastic gradient descent:

L(θ) = S logR+ (v − e)2 + α‖θ‖2 + β‖S‖1. (1)

2.3. Monte Carlo Tree Search

Our algorithm takes the predictions (P (s, a), v(s)) of the neural network and uses them in
a MTCS by running multiple simulations to search for a pipeline sequence R with a better
evaluation. The search result R improves upon the predicted result S given by the network
by improving the network policy using the update rule:

U(s, a) = Q(s, a) + cP (s, a)

√
N(s)

1 +N(s, a)
, (2)

where Q(s, a) is the expected reward for action a from state s, N(s, a) is the number of times
action a was taken from state s, N(s) the number of times state s was visited, P (s, a) is the
estimate of the neural network for the probability of taking action a from state s, and c is
a constant which determines the amount of exploration. At each step of the simulation, we
find the action a and state s which maximize U(s, a) and add the new state to the tree if it
does not exist with the neural network estimates (P (s, a), v(s)) or call the search recursively
otherwise. Next, the model represented by R is realized and applied to the data to solve the
task, resulting in a better evaluation e which is the result of running the generated pipeline
R on the data and task. Thus the real world search provides us with (R, e), where R is the
real world model, consisting of machine learning primitives, and e the real world evaluation
of the model and pipeline using those primitives on the data and task.

The neural network predictions, the MCTS model, and the real world evaluation, to-
gether, define a loss function shown in Equation 1, which is minimized to improve the
neural network parameters. This process continues iteratively until the best model, which
automatically solves the task, is found.

Inspired by the neural editor (Guu et al., 2018) we use edit operations that make the
pipeline generation explainable by design. For each iteration of self play the MCTS searches
the possible valid pipelines. For each state or pipeline the next possible states or pipelines
are limited to those derived from the edit operations of the current state.

3. Results

The data consists of 313 different tabular datasets, of which 296 are from OpenML (Van-
schoren et al., 2014). We considered classification, both binary (121 datasets) and multi-
class (108 datasets), and univariate regression tasks (84 datasets). Baseline pipelines were
constructed using sklearn SGD estimators for classification and regression, and an anno-
tated tabular feature extractor which uses linear SVC, Lasso, percentile classification or
regression estimators from sklearn.

4



AlphaD3M: Machine Learning Pipeline Synthesis

Figure 2: AlphaD3M vs. SGD performance for 180 classification tasks on OpenML datasets.

Figure 3: Comparison of normalized AlphaD3M performance t with SGD baseline perfor-
mance b by estimator.

Figure 2 compares performance between AlphaD3M and SGD which is the baseline
pipeline. Each of the 180 points represents a classification task on a different OpenML
dataset. The datasets for which AlphaD3M performs better than SGD are shown by green
circles and those for which SGD performs better are shown by red crosses. Figure 2 shows
that AlphaD3M performs better than baseline for 75% of the datasets, both are comparable
for 18% of the datasets, and performs worse for only 7% of the datasets. Figure 3 shows the
normalized difference in cross validation performance of AlphaD3M t and SGD baseline b for
a classification task for 180 datasets, split according to the estimators used by AlphaD3M,
demonstrating better performance across diverse estimators.

Figure 4 compares performance between different AutoML methods: Autosklearn, TPOT,
and Autostacker, and our method AlphaD3M, for a number of common OpenML datasets,
which serve as representative benchmark datasets for AutoML systems (Olson et al., 2017;
Olson and Moore, 2016; Chen et al., 2018). For each method and dataset, we compute the
performance mean and standard deviation by repeated evaluation. As shown in Figure 4
our method, AlphaD3M, is competitive with other approaches. All four methods are com-

5



AlphaD3M: Machine Learning Pipeline Synthesis

Figure 4: Comparing between performance of AutoML methods on OpenML datasets.

Table 1: Running time comparison (in seconds and speedup factors).
Dataset/Method TPOT Autostacker AlphaD3M Speedup vs TPOT Speedup vs AS
breast cancer 3366 1883 460 7.3 4
hill valley 17951 8411 556 32.2 15.1
monks 1517 1532 348 4.3 4.3
pima 5305 1940 619 8.5 3.1
spectf 4191 1673 522 8 3.2
vehicle 16795 4010 531 31.6 7.5

petitive and on par, as their performance including confidence intervals intersect; whereas
SGD and Random Forest are not competitive with the leading AutoML methods. We make
results for these and other datasets and methods available online (Drori et al.).

AlphaD3M is implemented using PyTorch. Our implementation takes advantage of
GPUs while training the neural network and uses CPUs for the MCTS. Table 1 compares
the running time of TPOT, Autostacker, and AlphaD3M on the same datasets, along with
the corresponding speedup factors. Table 1 shows that AlphaD3M performs on average an
order of magnitude faster, reducing computation time from hours to minutes.

4. Conclusions

We introduced AlphaD3M, an automatic machine learning system with competitive per-
formance, which is an order of magnitude faster than existing state-of-the-art AutoML
methods, reducing computation time from hours to minutes. We presented the first single
player AlphaZero game representation applied to meta learning by modeling meta-data,
task, and entire pipelines as state.

Acknowledgements

This work has been supported in part by the Defense Advanced Research Projects Agency
(DARPA) Data-Driven Discovery of Models (D3M) Program.

6



AlphaD3M: Machine Learning Pipeline Synthesis

References

Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning
and tree search. In Conference on Neural Information Processing Systems, 2017.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 2012.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. Conference on Neural Information Processing Systems, 2011.

David M. Blei and Padhraic Myth. Science and data science. In Proceedings of National
Academy of Sciences, 2017.

Boyuan Chen, Harvey Wu, Warren Mo, Ishanu Chattopadhyay, and Hod Lipson. Au-
tostacker: A compositional evolutionary learning system. The Genetic and Evolutionary
Computation Conference, 2018.

Iddo Drori, Yamuna Krishnamurthy, Remi Rampin, Raoni de Paula Lourenco, Jorge Pi-
azentin Ono, Kyunghyun Cho, Claudio Silva, and Juliana Freire. AlphaD3M results
repository. URL https://osf.io/4hfzm/.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg, Manuel
Blum, and Frank Hutter. Efficient and robust automated machine learning. In Conference
on Neural Information Processing Systems, 2015.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropaga-
tion. International Conference on Machine Learning, 2015.

Kelvin Guu, Tatsunori B Hashimoto, Yonatan Oren, and Percy Liang. Generating sentences
by editing prototypes. Transactions of the Association for Computational Linguistics,
2018.

Lars Kotthoff, Chris Thornton, Holger H Hoos, Frank Hutter, and Kevin Leyton-Brown.
Auto-WEKA 2.0: Automatic model selection and hyperparameter optimization in
WEKA. The Journal of Machine Learning Research, 18(1), 2017.

Stephen McAleer, Forest Agostinelli, Alexander Shmakov, and Pierre Baldi. Solving the
Rubik’s cube without human knowledge. arXiv preprint arXiv:1805.07470, 2018.

Mitar Milutinovic, Atlm Gunes Baydi, Robert Zinkov, William Harvey, Dawn Song, and
Frank Wood. End-to-end training of differentiable pipelines across machine learning
frameworks. In International Conference on Learning Representations, 2017.

Randal Olson and Jason Moore. TPOT: A tree-based pipeline optimization tool for au-
tomating machine learning. In International Conference on Machine Learning, 2016.

Randal S Olson, William La Cava, Patryk Orzechowski, Ryan J Urbanowicz, and Jason H
Moore. Pmlb: a large benchmark suite for machine learning evaluation and comparison.
BioData mining, 2017.

7

https://osf.io/4hfzm/


AlphaD3M: Machine Learning Pipeline Synthesis

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al.
Mastering chess and shogi by self-play with a general reinforcement learning algorithm.
Conference on Neural Information Processing Systems, 2017.

Thomas Swearingen, Will Drevo, Bennett Cyphers, Alfredo Cuesta-Infante, Arun Ross,
and Kalyan Veeramachaneni. ATM: A distributed, collaborative, scalable system for
automated machine learning. In IEEE International Conference on Big Data, 2017.

Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. OpenML: networked
science in machine learning. ACM SIGKDD Explorations Newsletter, 15(2), 2014.

8


	Introduction
	Methods
	Representation
	Neural Network
	Monte Carlo Tree Search

	Results
	Conclusions

